-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhashmap.c
879 lines (798 loc) · 27.2 KB
/
hashmap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
// Copyright 2020 Joshua J Baker. All rights reserved.
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file.
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <stddef.h>
#include "hashmap.h"
static void *(*_malloc)(size_t) = NULL;
static void *(*_realloc)(void *, size_t) = NULL;
static void (*_free)(void *) = NULL;
// hashmap_set_allocator allows for configuring a custom allocator for
// all hashmap library operations. This function, if needed, should be called
// only once at startup and a prior to calling hashmap_new().
void hashmap_set_allocator(void *(*malloc)(size_t), void (*free)(void*))
{
_malloc = malloc;
_free = free;
}
#define panic(_msg_) { \
fprintf(stderr, "panic: %s (%s:%d)\n", (_msg_), __FILE__, __LINE__); \
exit(1); \
}
struct bucket {
uint64_t hash:48;
uint64_t dib:16;
};
// hashmap is an open addressed hash map using robinhood hashing.
struct hashmap {
void *(*malloc)(size_t);
void *(*realloc)(void *, size_t);
void (*free)(void *);
bool oom;
size_t elsize;
size_t cap;
uint64_t seed0;
uint64_t seed1;
uint64_t (*hash)(const void *item, uint64_t seed0, uint64_t seed1);
int (*compare)(const void *a, const void *b, void *udata);
void *udata;
size_t bucketsz;
size_t nbuckets;
size_t count;
size_t mask;
size_t growat;
size_t shrinkat;
void *buckets;
void *spare;
void *edata;
};
static struct bucket *bucket_at(struct hashmap *map, size_t index) {
return (struct bucket*)(((char*)map->buckets)+(map->bucketsz*index));
}
static void *bucket_item(struct bucket *entry) {
return ((char*)entry)+sizeof(struct bucket);
}
static uint64_t get_hash(struct hashmap *map, void *key) {
return map->hash(key, map->seed0, map->seed1) << 16 >> 16;
}
// hashmap_new_with_allocator returns a new hash map using a custom allocator.
// See hashmap_new for more information information
struct hashmap *hashmap_new_with_allocator(
void *(*_malloc)(size_t),
void *(*_realloc)(void*, size_t),
void (*_free)(void*),
size_t elsize, size_t cap,
uint64_t seed0, uint64_t seed1,
uint64_t (*hash)(const void *item,
uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b,
void *udata),
void *udata)
{
_malloc = _malloc ? _malloc : malloc;
_realloc = _realloc ? _realloc : realloc;
_free = _free ? _free : free;
int ncap = 16;
if (cap < ncap) {
cap = ncap;
} else {
while (ncap < cap) {
ncap *= 2;
}
cap = ncap;
}
size_t bucketsz = sizeof(struct bucket) + elsize;
while (bucketsz & (sizeof(uintptr_t)-1)) {
bucketsz++;
}
// hashmap + spare + edata
size_t size = sizeof(struct hashmap)+bucketsz*2;
struct hashmap *map = _malloc(size);
if (!map) {
return NULL;
}
memset(map, 0, sizeof(struct hashmap));
map->elsize = elsize;
map->bucketsz = bucketsz;
map->seed0 = seed0;
map->seed1 = seed1;
map->hash = hash;
map->compare = compare;
map->udata = udata;
map->spare = ((char*)map)+sizeof(struct hashmap);
map->edata = (char*)map->spare+bucketsz;
map->cap = cap;
map->nbuckets = cap;
map->mask = map->nbuckets-1;
map->buckets = _malloc(map->bucketsz*map->nbuckets);
if (!map->buckets) {
_free(map);
return NULL;
}
memset(map->buckets, 0, map->bucketsz*map->nbuckets);
map->growat = map->nbuckets*0.75;
map->shrinkat = map->nbuckets*0.10;
map->malloc = _malloc;
map->realloc = _realloc;
map->free = _free;
return map;
}
// hashmap_new returns a new hash map.
// Param `elsize` is the size of each element in the tree. Every element that
// is inserted, deleted, or retrieved will be this size.
// Param `cap` is the default lower capacity of the hashmap. Setting this to
// zero will default to 16.
// Params `seed0` and `seed1` are optional seed values that are passed to the
// following `hash` function. These can be any value you wish but it's often
// best to use randomly generated values.
// Param `hash` is a function that generates a hash value for an item. It's
// important that you provide a good hash function, otherwise it will perform
// poorly or be vulnerable to Denial-of-service attacks. This implementation
// comes with two helper functions `hashmap_sip()` and `hashmap_murmur()`.
// Param `compare` is a function that compares items in the tree. See the
// qsort stdlib function for an example of how this function works.
// The hashmap must be freed with hashmap_free().
struct hashmap *hashmap_new(size_t elsize, size_t cap,
uint64_t seed0, uint64_t seed1,
uint64_t (*hash)(const void *item,
uint64_t seed0, uint64_t seed1),
int (*compare)(const void *a, const void *b,
void *udata),
void *udata)
{
return hashmap_new_with_allocator(
(_malloc?_malloc:malloc),
(_realloc?_realloc:realloc),
(_free?_free:free),
elsize, cap, seed0, seed1, hash, compare, udata
);
}
// hashmap_clear quickly clears the map.
// When the update_cap is provided, the map's capacity will be updated to match
// the currently number of allocated buckets. This is an optimization to ensure
// that this operation does not perform any allocations.
void hashmap_clear(struct hashmap *map, bool update_cap) {
map->count = 0;
if (update_cap) {
map->cap = map->nbuckets;
} else if (map->nbuckets != map->cap) {
void *new_buckets = map->malloc(map->bucketsz*map->cap);
if (new_buckets) {
map->free(map->buckets);
map->buckets = new_buckets;
}
map->nbuckets = map->cap;
}
memset(map->buckets, 0, map->bucketsz*map->nbuckets);
map->mask = map->nbuckets-1;
map->growat = map->nbuckets*0.75;
map->shrinkat = map->nbuckets*0.10;
}
static bool resize(struct hashmap *map, size_t new_cap) {
struct hashmap *map2 = hashmap_new(map->elsize, new_cap, map->seed1,
map->seed1, map->hash, map->compare,
map->udata);
if (!map2) {
return false;
}
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *entry = bucket_at(map, i);
if (!entry->dib) {
continue;
}
entry->dib = 1;
size_t j = entry->hash & map2->mask;
for (;;) {
struct bucket *bucket = bucket_at(map2, j);
if (bucket->dib == 0) {
memcpy(bucket, entry, map->bucketsz);
break;
}
if (bucket->dib < entry->dib) {
memcpy(map2->spare, bucket, map->bucketsz);
memcpy(bucket, entry, map->bucketsz);
memcpy(entry, map2->spare, map->bucketsz);
}
j = (j + 1) & map2->mask;
entry->dib += 1;
}
}
map->free(map->buckets);
map->buckets = map2->buckets;
map->nbuckets = map2->nbuckets;
map->mask = map2->mask;
map->growat = map2->growat;
map->shrinkat = map2->shrinkat;
map->free(map2);
return true;
}
// hashmap_set inserts or replaces an item in the hash map. If an item is
// replaced then it is returned otherwise NULL is returned. This operation
// may allocate memory. If the system is unable to allocate additional
// memory then NULL is returned and hashmap_oom() returns true.
void *hashmap_set(struct hashmap *map, void *item) {
if (!item) {
panic("item is null");
}
map->oom = false;
if (map->count == map->growat) {
if (!resize(map, map->nbuckets*2)) {
map->oom = true;
return NULL;
}
}
struct bucket *entry = map->edata;
entry->hash = get_hash(map, item);
entry->dib = 1;
memcpy(bucket_item(entry), item, map->elsize);
size_t i = entry->hash & map->mask;
for (;;) {
struct bucket *bucket = bucket_at(map, i);
if (bucket->dib == 0) {
memcpy(bucket, entry, map->bucketsz);
map->count++;
return NULL;
}
if (entry->hash == bucket->hash &&
map->compare(bucket_item(entry), bucket_item(bucket),
map->udata) == 0)
{
memcpy(map->spare, bucket_item(bucket), map->elsize);
memcpy(bucket_item(bucket), bucket_item(entry), map->elsize);
return map->spare;
}
if (bucket->dib < entry->dib) {
memcpy(map->spare, bucket, map->bucketsz);
memcpy(bucket, entry, map->bucketsz);
memcpy(entry, map->spare, map->bucketsz);
}
i = (i + 1) & map->mask;
entry->dib += 1;
}
}
// hashmap_get returns the item based on the provided key. If the item is not
// found then NULL is returned.
void *hashmap_get(struct hashmap *map, void *key) {
if (!key) {
panic("key is null");
}
uint64_t hash = get_hash(map, key);
size_t i = hash & map->mask;
for (;;) {
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) {
return NULL;
}
if (bucket->hash == hash &&
map->compare(key, bucket_item(bucket), map->udata) == 0)
{
return bucket_item(bucket);
}
i = (i + 1) & map->mask;
}
}
// hashmap_probe returns the item in the bucket at position or NULL if an item
// is not set for that bucket. The position is 'moduloed' by the number of
// buckets in the hashmap.
void *hashmap_probe(struct hashmap *map, uint64_t position) {
size_t i = position & map->mask;
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) {
return NULL;
}
return bucket_item(bucket);
}
// hashmap_delete removes an item from the hash map and returns it. If the
// item is not found then NULL is returned.
void *hashmap_delete(struct hashmap *map, void *key) {
if (!key) {
panic("key is null");
}
map->oom = false;
uint64_t hash = get_hash(map, key);
size_t i = hash & map->mask;
for (;;) {
struct bucket *bucket = bucket_at(map, i);
if (!bucket->dib) {
return NULL;
}
if (bucket->hash == hash &&
map->compare(key, bucket_item(bucket), map->udata) == 0)
{
memcpy(map->spare, bucket_item(bucket), map->elsize);
bucket->dib = 0;
for (;;) {
struct bucket *prev = bucket;
i = (i + 1) & map->mask;
bucket = bucket_at(map, i);
if (bucket->dib <= 1) {
prev->dib = 0;
break;
}
memcpy(prev, bucket, map->bucketsz);
prev->dib--;
}
map->count--;
if (map->nbuckets > map->cap && map->count <= map->shrinkat) {
// Ignore the return value. It's ok for the resize operation to
// fail to allocate enough memory because a shrink operation
// does not change the integrity of the data.
resize(map, map->nbuckets/2);
}
return map->spare;
}
i = (i + 1) & map->mask;
}
}
// hashmap_count returns the number of items in the hash map.
size_t hashmap_count(struct hashmap *map) {
return map->count;
}
// hashmap_free frees the hash map
void hashmap_free(struct hashmap *map) {
if (!map) return;
map->free(map->buckets);
map->free(map);
}
// hashmap_oom returns true if the last hashmap_set() call failed due to the
// system being out of memory.
bool hashmap_oom(struct hashmap *map) {
return map->oom;
}
// hashmap_scan iterates over all items in the hash map
// Param `iter` can return false to stop iteration early.
// Returns false if the iteration has been stopped early.
bool hashmap_scan(struct hashmap *map,
bool (*iter)(const void *item, void *udata), void *udata)
{
for (size_t i = 0; i < map->nbuckets; i++) {
struct bucket *bucket = bucket_at(map, i);
if (bucket->dib) {
if (!iter(bucket_item(bucket), udata)) {
return false;
}
}
}
return true;
}
//-----------------------------------------------------------------------------
// SipHash reference C implementation
//
// Copyright (c) 2012-2016 Jean-Philippe Aumasson
// <[email protected]>
// Copyright (c) 2012-2014 Daniel J. Bernstein <[email protected]>
//
// To the extent possible under law, the author(s) have dedicated all copyright
// and related and neighboring rights to this software to the public domain
// worldwide. This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication along
// with this software. If not, see
// <http://creativecommons.org/publicdomain/zero/1.0/>.
//
// default: SipHash-2-4
//-----------------------------------------------------------------------------
static uint64_t SIP64(const uint8_t *in, const size_t inlen,
uint64_t seed0, uint64_t seed1)
{
#define U8TO64_LE(p) \
{ (((uint64_t)((p)[0])) | ((uint64_t)((p)[1]) << 8) | \
((uint64_t)((p)[2]) << 16) | ((uint64_t)((p)[3]) << 24) | \
((uint64_t)((p)[4]) << 32) | ((uint64_t)((p)[5]) << 40) | \
((uint64_t)((p)[6]) << 48) | ((uint64_t)((p)[7]) << 56)) }
#define U64TO8_LE(p, v) \
{ U32TO8_LE((p), (uint32_t)((v))); \
U32TO8_LE((p) + 4, (uint32_t)((v) >> 32)); }
#define U32TO8_LE(p, v) \
{ (p)[0] = (uint8_t)((v)); \
(p)[1] = (uint8_t)((v) >> 8); \
(p)[2] = (uint8_t)((v) >> 16); \
(p)[3] = (uint8_t)((v) >> 24); }
#define ROTL(x, b) (uint64_t)(((x) << (b)) | ((x) >> (64 - (b))))
#define SIPROUND \
{ v0 += v1; v1 = ROTL(v1, 13); \
v1 ^= v0; v0 = ROTL(v0, 32); \
v2 += v3; v3 = ROTL(v3, 16); \
v3 ^= v2; \
v0 += v3; v3 = ROTL(v3, 21); \
v3 ^= v0; \
v2 += v1; v1 = ROTL(v1, 17); \
v1 ^= v2; v2 = ROTL(v2, 32); }
uint64_t k0 = U8TO64_LE((uint8_t*)&seed0);
uint64_t k1 = U8TO64_LE((uint8_t*)&seed1);
uint64_t v3 = UINT64_C(0x7465646279746573) ^ k1;
uint64_t v2 = UINT64_C(0x6c7967656e657261) ^ k0;
uint64_t v1 = UINT64_C(0x646f72616e646f6d) ^ k1;
uint64_t v0 = UINT64_C(0x736f6d6570736575) ^ k0;
const uint8_t *end = in + inlen - (inlen % sizeof(uint64_t));
for (; in != end; in += 8) {
uint64_t m = U8TO64_LE(in);
v3 ^= m;
SIPROUND; SIPROUND;
v0 ^= m;
}
const int left = inlen & 7;
uint64_t b = ((uint64_t)inlen) << 56;
switch (left) {
case 7: b |= ((uint64_t)in[6]) << 48;
case 6: b |= ((uint64_t)in[5]) << 40;
case 5: b |= ((uint64_t)in[4]) << 32;
case 4: b |= ((uint64_t)in[3]) << 24;
case 3: b |= ((uint64_t)in[2]) << 16;
case 2: b |= ((uint64_t)in[1]) << 8;
case 1: b |= ((uint64_t)in[0]); break;
case 0: break;
}
v3 ^= b;
SIPROUND; SIPROUND;
v0 ^= b;
v2 ^= 0xff;
SIPROUND; SIPROUND; SIPROUND; SIPROUND;
b = v0 ^ v1 ^ v2 ^ v3;
uint64_t out = 0;
U64TO8_LE((uint8_t*)&out, b);
return out;
}
//-----------------------------------------------------------------------------
// MurmurHash3 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.
//
// Murmur3_86_128
//-----------------------------------------------------------------------------
static void MM86128(const void *key, const int len, uint32_t seed, void *out) {
#define ROTL32(x, r) ((x << r) | (x >> (32 - r)))
#define FMIX32(h) h^=h>>16; h*=0x85ebca6b; h^=h>>13; h*=0xc2b2ae35; h^=h>>16;
const uint8_t * data = (const uint8_t*)key;
const int nblocks = len / 16;
uint32_t h1 = seed;
uint32_t h2 = seed;
uint32_t h3 = seed;
uint32_t h4 = seed;
uint32_t c1 = 0x239b961b;
uint32_t c2 = 0xab0e9789;
uint32_t c3 = 0x38b34ae5;
uint32_t c4 = 0xa1e38b93;
const uint32_t * blocks = (const uint32_t *)(data + nblocks*16);
for (int i = -nblocks; i; i++) {
uint32_t k1 = blocks[i*4+0];
uint32_t k2 = blocks[i*4+1];
uint32_t k3 = blocks[i*4+2];
uint32_t k4 = blocks[i*4+3];
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
h1 = ROTL32(h1,19); h1 += h2; h1 = h1*5+0x561ccd1b;
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
h2 = ROTL32(h2,17); h2 += h3; h2 = h2*5+0x0bcaa747;
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
h3 = ROTL32(h3,15); h3 += h4; h3 = h3*5+0x96cd1c35;
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
h4 = ROTL32(h4,13); h4 += h1; h4 = h4*5+0x32ac3b17;
}
const uint8_t * tail = (const uint8_t*)(data + nblocks*16);
uint32_t k1 = 0;
uint32_t k2 = 0;
uint32_t k3 = 0;
uint32_t k4 = 0;
switch(len & 15) {
case 15: k4 ^= tail[14] << 16;
case 14: k4 ^= tail[13] << 8;
case 13: k4 ^= tail[12] << 0;
k4 *= c4; k4 = ROTL32(k4,18); k4 *= c1; h4 ^= k4;
case 12: k3 ^= tail[11] << 24;
case 11: k3 ^= tail[10] << 16;
case 10: k3 ^= tail[ 9] << 8;
case 9: k3 ^= tail[ 8] << 0;
k3 *= c3; k3 = ROTL32(k3,17); k3 *= c4; h3 ^= k3;
case 8: k2 ^= tail[ 7] << 24;
case 7: k2 ^= tail[ 6] << 16;
case 6: k2 ^= tail[ 5] << 8;
case 5: k2 ^= tail[ 4] << 0;
k2 *= c2; k2 = ROTL32(k2,16); k2 *= c3; h2 ^= k2;
case 4: k1 ^= tail[ 3] << 24;
case 3: k1 ^= tail[ 2] << 16;
case 2: k1 ^= tail[ 1] << 8;
case 1: k1 ^= tail[ 0] << 0;
k1 *= c1; k1 = ROTL32(k1,15); k1 *= c2; h1 ^= k1;
};
h1 ^= len; h2 ^= len; h3 ^= len; h4 ^= len;
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
FMIX32(h1); FMIX32(h2); FMIX32(h3); FMIX32(h4);
h1 += h2; h1 += h3; h1 += h4;
h2 += h1; h3 += h1; h4 += h1;
((uint32_t*)out)[0] = h1;
((uint32_t*)out)[1] = h2;
((uint32_t*)out)[2] = h3;
((uint32_t*)out)[3] = h4;
}
// hashmap_sip returns a hash value for `data` using SipHash-2-4.
uint64_t hashmap_sip(const void *data, size_t len,
uint64_t seed0, uint64_t seed1)
{
return SIP64((uint8_t*)data, len, seed0, seed1);
}
// hashmap_murmur returns a hash value for `data` using Murmur3_86_128.
uint64_t hashmap_murmur(const void *data, size_t len,
uint64_t seed0, uint64_t seed1)
{
char out[16];
MM86128(data, len, seed0, &out);
return *(uint64_t*)out;
}
//==============================================================================
// TESTS AND BENCHMARKS
// $ cc -DHASHMAP_TEST hashmap.c && ./a.out # run tests
// $ cc -DHASHMAP_TEST -O3 hashmap.c && BENCH=1 ./a.out # run benchmarks
//==============================================================================
#ifdef HASHMAP_TEST
static size_t deepcount(struct hashmap *map) {
size_t count = 0;
for (size_t i = 0; i < map->nbuckets; i++) {
if (bucket_at(map, i)->dib) {
count++;
}
}
return count;
}
#pragma GCC diagnostic ignored "-Wextra"
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <assert.h>
#include <stdio.h>
#include "hashmap.h"
static bool rand_alloc_fail = false;
static int rand_alloc_fail_odds = 3; // 1 in 3 chance malloc will fail.
static uintptr_t total_allocs = 0;
static uintptr_t total_mem = 0;
static void *xmalloc(size_t size) {
if (rand_alloc_fail && rand()%rand_alloc_fail_odds == 0) {
return NULL;
}
void *mem = malloc(sizeof(uintptr_t)+size);
assert(mem);
*(uintptr_t*)mem = size;
total_allocs++;
total_mem += size;
return (char*)mem+sizeof(uintptr_t);
}
static void xfree(void *ptr) {
if (ptr) {
total_mem -= *(uintptr_t*)((char*)ptr-sizeof(uintptr_t));
free((char*)ptr-sizeof(uintptr_t));
total_allocs--;
}
}
static void shuffle(void *array, size_t numels, size_t elsize) {
char tmp[elsize];
char *arr = array;
for (size_t i = 0; i < numels - 1; i++) {
int j = i + rand() / (RAND_MAX / (numels - i) + 1);
memcpy(tmp, arr + j * elsize, elsize);
memcpy(arr + j * elsize, arr + i * elsize, elsize);
memcpy(arr + i * elsize, tmp, elsize);
}
}
static bool iter_ints(const void *item, void *udata) {
int *vals = *(int**)udata;
vals[*(int*)item] = 1;
return true;
}
static int compare_ints(const void *a, const void *b) {
return *(int*)a - *(int*)b;
}
static int compare_ints_udata(const void *a, const void *b, void *udata) {
return *(int*)a - *(int*)b;
}
static uint64_t hash_int(const void *item, uint64_t seed0, uint64_t seed1) {
return hashmap_murmur(item, sizeof(int), seed0, seed1);
}
static void all() {
int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
int N = getenv("N")?atoi(getenv("N")):2000;
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
srand(seed);
rand_alloc_fail = true;
// test sip and murmur hashes
assert(hashmap_sip("hello", 5, 1, 2) == 2957200328589801622);
assert(hashmap_murmur("hello", 5, 1, 2) == 1682575153221130884);
int *vals;
while (!(vals = xmalloc(N * sizeof(int)))) {}
for (int i = 0; i < N; i++) {
vals[i] = i;
}
struct hashmap *map;
while (!(map = hashmap_new(sizeof(int), 0, seed, seed,
hash_int, compare_ints_udata, NULL))) {}
shuffle(vals, N, sizeof(int));
for (int i = 0; i < N; i++) {
// // printf("== %d ==\n", vals[i]);
assert(map->count == i);
assert(map->count == hashmap_count(map));
assert(map->count == deepcount(map));
int *v;
assert(!hashmap_get(map, &vals[i]));
assert(!hashmap_delete(map, &vals[i]));
while (true) {
assert(!hashmap_set(map, &vals[i]));
if (!hashmap_oom(map)) {
break;
}
}
for (int j = 0; j < i; j++) {
v = hashmap_get(map, &vals[j]);
assert(v && *v == vals[j]);
}
while (true) {
v = hashmap_set(map, &vals[i]);
if (!v) {
assert(hashmap_oom(map));
continue;
} else {
assert(!hashmap_oom(map));
assert(v && *v == vals[i]);
break;
}
}
v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
assert(!hashmap_get(map, &vals[i]));
assert(!hashmap_delete(map, &vals[i]));
assert(!hashmap_set(map, &vals[i]));
assert(map->count == i+1);
assert(map->count == hashmap_count(map));
assert(map->count == deepcount(map));
}
int *vals2;
while (!(vals2 = xmalloc(N * sizeof(int)))) {}
memset(vals2, 0, N * sizeof(int));
assert(hashmap_scan(map, iter_ints, &vals2));
for (int i = 0; i < N; i++) {
assert(vals2[i] == 1);
}
xfree(vals2);
shuffle(vals, N, sizeof(int));
for (int i = 0; i < N; i++) {
int *v;
v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
assert(!hashmap_get(map, &vals[i]));
assert(map->count == N-i-1);
assert(map->count == hashmap_count(map));
assert(map->count == deepcount(map));
for (int j = N-1; j > i; j--) {
v = hashmap_get(map, &vals[j]);
assert(v && *v == vals[j]);
}
}
for (int i = 0; i < N; i++) {
while (true) {
assert(!hashmap_set(map, &vals[i]));
if (!hashmap_oom(map)) {
break;
}
}
}
assert(map->count != 0);
size_t prev_cap = map->cap;
hashmap_clear(map, true);
assert(prev_cap < map->cap);
assert(map->count == 0);
for (int i = 0; i < N; i++) {
while (true) {
assert(!hashmap_set(map, &vals[i]));
if (!hashmap_oom(map)) {
break;
}
}
}
prev_cap = map->cap;
hashmap_clear(map, false);
assert(prev_cap == map->cap);
hashmap_free(map);
xfree(vals);
if (total_allocs != 0) {
fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
exit(1);
}
}
#define bench(name, N, code) {{ \
if (strlen(name) > 0) { \
printf("%-14s ", name); \
} \
size_t tmem = total_mem; \
size_t tallocs = total_allocs; \
uint64_t bytes = 0; \
clock_t begin = clock(); \
for (int i = 0; i < N; i++) { \
(code); \
} \
clock_t end = clock(); \
double elapsed_secs = (double)(end - begin) / CLOCKS_PER_SEC; \
double bytes_sec = (double)bytes/elapsed_secs; \
printf("%d ops in %.3f secs, %.0f ns/op, %.0f op/sec", \
N, elapsed_secs, \
elapsed_secs/(double)N*1e9, \
(double)N/elapsed_secs \
); \
if (bytes > 0) { \
printf(", %.1f GB/sec", bytes_sec/1024/1024/1024); \
} \
if (total_mem > tmem) { \
size_t used_mem = total_mem-tmem; \
printf(", %.2f bytes/op", (double)used_mem/N); \
} \
if (total_allocs > tallocs) { \
size_t used_allocs = total_allocs-tallocs; \
printf(", %.2f allocs/op", (double)used_allocs/N); \
} \
printf("\n"); \
}}
static void benchmarks() {
int seed = getenv("SEED")?atoi(getenv("SEED")):time(NULL);
int N = getenv("N")?atoi(getenv("N")):5000000;
printf("seed=%d, count=%d, item_size=%zu\n", seed, N, sizeof(int));
srand(seed);
int *vals = xmalloc(N * sizeof(int));
for (int i = 0; i < N; i++) {
vals[i] = i;
}
shuffle(vals, N, sizeof(int));
struct hashmap *map;
shuffle(vals, N, sizeof(int));
map = hashmap_new(sizeof(int), 0, seed, seed, hash_int, compare_ints_udata,
NULL);
bench("set", N, {
int *v = hashmap_set(map, &vals[i]);
assert(!v);
})
shuffle(vals, N, sizeof(int));
bench("get", N, {
int *v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
})
shuffle(vals, N, sizeof(int));
bench("delete", N, {
int *v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
})
hashmap_free(map);
map = hashmap_new(sizeof(int), N, seed, seed, hash_int, compare_ints_udata,
NULL);
bench("set (cap)", N, {
int *v = hashmap_set(map, &vals[i]);
assert(!v);
})
shuffle(vals, N, sizeof(int));
bench("get (cap)", N, {
int *v = hashmap_get(map, &vals[i]);
assert(v && *v == vals[i]);
})
shuffle(vals, N, sizeof(int));
bench("delete (cap)" , N, {
int *v = hashmap_delete(map, &vals[i]);
assert(v && *v == vals[i]);
})
hashmap_free(map);
xfree(vals);
if (total_allocs != 0) {
fprintf(stderr, "total_allocs: expected 0, got %lu\n", total_allocs);
exit(1);
}
}
int main() {
hashmap_set_allocator(xmalloc, xfree);
if (getenv("BENCH")) {
printf("Running hashmap.c benchmarks...\n");
benchmarks();
} else {
printf("Running hashmap.c tests...\n");
all();
printf("PASSED\n");
}
}
#endif