Skip to content

Latest commit

 

History

History
 
 

image_classification

This folder contains the Keras implementation of the ResNet models. For more information about the models, please refer to this README file.

Similar to the estimator implementation, the Keras implementation has code for both CIFAR-10 data and ImageNet data. The CIFAR-10 version uses a ResNet56 model implemented in resnet_cifar_model.py, and the ImageNet version uses a ResNet50 model implemented in resnet_model.py.

To use either dataset, make sure that you have the latest version of TensorFlow installed and add the models folder to your Python path, otherwise you may encounter an error like ImportError: No module named official.resnet.

CIFAR-10

Download and extract the CIFAR-10 data. You can use the following script:

python ../../r1/resnet/cifar10_download_and_extract.py

After you download the data, you can run the program by:

python resnet_cifar_main.py

If you did not use the default directory to download the data, specify the location with the --data_dir flag, like:

python resnet_cifar_main.py --data_dir=/path/to/cifar

ImageNet

Download the ImageNet dataset and convert it to TFRecord format. The following script and README provide a few options.

Once your dataset is ready, you can begin training the model as follows:

python resnet_imagenet_main.py

Again, if you did not download the data to the default directory, specify the location with the --data_dir flag:

python resnet_imagenet_main.py --data_dir=/path/to/imagenet

There are more flag options you can specify. Here are some examples:

  • --use_synthetic_data: when set to true, synthetic data, rather than real data, are used;
  • --batch_size: the batch size used for the model;
  • --model_dir: the directory to save the model checkpoint;
  • --train_epochs: number of epoches to run for training the model;
  • --train_steps: number of steps to run for training the model. We now only support a number that is smaller than the number of batches in an epoch.
  • --skip_eval: when set to true, evaluation as well as validation during training is skipped

For example, this is a typical command line to run with ImageNet data with batch size 128 per GPU:

python -m resnet_imagenet_main \
    --model_dir=/tmp/model_dir/something \
    --num_gpus=2 \
    --batch_size=128 \
    --train_epochs=90 \
    --train_steps=10 \
    --use_synthetic_data=false

See common.py for full list of options.

Using multiple GPUs

You can train these models on multiple GPUs using tf.distribute.Strategy API. You can read more about them in this guide.

In this example, we have made it easier to use is with just a command line flag --num_gpus. By default this flag is 1 if TensorFlow is compiled with CUDA, and 0 otherwise.

  • --num_gpus=0: Uses tf.distribute.OneDeviceStrategy with CPU as the device.
  • --num_gpus=1: Uses tf.distribute.OneDeviceStrategy with GPU as the device.
  • --num_gpus=2+: Uses tf.distribute.MirroredStrategy to run synchronous distributed training across the GPUs.

If you wish to run without tf.distribute.Strategy, you can do so by setting --distribution_strategy=off.