forked from ValentinaGogulancea/nufeb-ibm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimePlotsv4.m
425 lines (407 loc) · 11.9 KB
/
timePlotsv4.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
clc
clear all
close all
% the first column is the values on
% 3D representation - X = fixed
% for all the files
folder='E:\NUFEB\fph-dbulk-4mg';
filetype='*.h5'; % or xlsx
f = fullfile(folder,filetype);
d = dir(f);
for k = 1:numel(d)
filename = fullfile(folder,d(k).name);
% fid = H5F.open(filename);
% h5disp(filename); % do it once to see how the hdf5 file was saved
% the values for the free energy of anabolism/catabolism - as value corresponding to coordinate point
aux_time = num2str(filename);
aux_time = aux_time(1:end-3);
aux_time = aux_time(29:end);
time1(k) = str2num(aux_time)/3600;
end
% because Matlab reads the files alphabetically - some rearrangements are
% required
[time,Index] = sort(time1);
% initialization
aux_Ana_AOB{length(time)} = [];
aux_Ana_NOB{length(time)} = [];
%
aux_Cat_AOB{length(time)} = [];
aux_Cat_NOB{length(time)} = [];
%
% concentration fields
aux_NH3_concfield{length(time)} = [];
aux_NO3_concfield{length(time)} = [];
aux_NO2_concfield{length(time)} = [];
aux_O2_concfield{length(time)} = [];
aux_CO2_concfield{length(time)} = [];
% pH field
aux_Hplus{length(time)} = [];
% and now for the particle plotting
% If we want to track one special particle
aux_ID_tracking{length(time)} = [];
% the type of particle
aux_Type_part{length(time)} = [];
% the coordinates of particles
aux_x_coord{length(time)} = [];
aux_y_coord{length(time)} = [];
aux_z_coord{length(time)} = [];
aux_radius{length(time)} = [];
%
for k = 1:numel(d)
filename = fullfile(folder,d(k).name);
aux_Ana_AOB{k} = h5read(filename,'/anabolism/aob');
aux_Ana_NOB{k} = h5read(filename,'/anabolism/nob');
%
aux_Cat_AOB{k} = h5read(filename,'/catabolism/aob');
aux_Cat_NOB{k} = h5read(filename,'/catabolism/nob');
%
% concentration fields
aux_NH3_concfield{k} = h5read(filename,'/concentration/nh3');
aux_NO3_concfield{k} = h5read(filename,'/concentration/no3');
aux_NO2_concfield{k} = h5read(filename,'/concentration/no2');
aux_O2_concfield{k} = h5read(filename,'/concentration/o2');
aux_CO2_concfield{k} = h5read(filename,'/concentration/co2');
% pH field
aux_Hplus{k} = h5read(filename,'//hydronium');
% and now for the particle plotting
% If we want to track one special particle
aux_ID_tracking{k} = h5read(filename,'//id');
% the type of particle
aux_Type_part{k} = h5read(filename,'//type');
% the coordinates of particles
aux_x_coord{k} = h5read(filename,'//x');
aux_y_coord{k} = h5read(filename,'//y');
aux_z_coord{k} = h5read(filename,'//z');
aux_radius{k} = h5read(filename,'//radius');
end
Ana_AOB{length(time)} = [];
Ana_NOB{length(time)} = [];
%
Cat_AOB{length(time)} = [];
Cat_NOB{length(time)} = [];
%
% concentration fields
NH3_concfield{length(time)} = [];
NO3_concfield{length(time)} = [];
NO2_concfield{length(time)} = [];
O2_concfield{length(time)} = [];
CO2_concfield{length(time)} = [];
% pH field
Hplus{length(time)} = [];
% If we want to track one special particle
ID_tracking{length(time)} = [];
% the type of particle
Type_part{length(time)} = [];
% the type of particle
% the coordinates of particles
x_coord{length(Index)} = [];
y_coord{length(Index)} = [] ;
z_coord{length(Index)} = [];
radius{length(Index)} = [];
for k = 1:length(Index)
% SORTED CONCENTRATIONS
O2_concfield{k} = aux_O2_concfield{Index(k)};
CO2_concfield{k} = aux_CO2_concfield{Index(k)};
NO2_concfield{k} = aux_NO2_concfield{Index(k)};
NO3_concfield{k} = aux_NO3_concfield{Index(k)};
NH3_concfield{k} = aux_NH3_concfield{Index(k)};
%SORTED ANABOLISM AND CATABOLISM FREE ENERGIES
Ana_AOB{k} = aux_Ana_AOB{Index(k)};
Ana_NOB{k} = aux_Ana_NOB{Index(k)};
%
Cat_AOB{k} = aux_Ana_AOB{Index(k)};
Cat_NOB{k} = aux_Ana_NOB{Index(k)};
%SORTED pH
Hplus{k} = aux_Hplus{Index(k)};
%SORTED BACTERIA COORDINATES & ALL
Type_part{k} = aux_Type_part{Index(k)};
ID_tracking{k} = aux_ID_tracking{k};
x_coord{k} = aux_x_coord{Index(k)};
y_coord{k} = aux_y_coord{Index(k)} ;
z_coord{k} = aux_z_coord{Index(k)};
radius{k} = aux_radius{Index(k)};
end
%%%
%%%
lmax_x = 120; lmax_y = 40; lmax_z = 300;
lmin_x = 0; lmin_y = 0; lmin_z = 0;
x_conc = linspace(lmin_x,lmax_x,40);
y_conc = linspace(lmin_y,lmax_y,20);
z_conc = linspace(lmin_z,lmax_z,100);
%%%%%%%% The actual plotting ------------------------------------------
%
% % now for making an average on the biofilm
% % see the biofilm max height
b_layer = 40;
% % The Oxygen Profile vs time
% average_O2 = zeros(1,numel(d));
% index_height = zeros(numel(d),1);
% for k = 1: numel(d)
% [~,index_height(k)] = min(abs(max(z_coord{k})+ b_layer - z_conc));
%
% n_voxels = length(x_conc)*length(y_conc)*index_height(k);
% average_auxO2 = zeros(index_height(k),1);
% for i = 1: index_height(k)
% average_auxO2(i) = sum(sum(O2_concfield{k}(:,:,i)));
% end
% average_O2(k) = sum(average_auxO2)/n_voxels;
% end
%
% figure
% plot(time, average_O2,'LineWidth',2)
% xlabel('time,h')
% ylabel('O_2 concentration')
% % The NH3 profile over time
% average_NH3 = zeros(1,numel(d));
% for k = 1: numel(d)
% [~,index_height(k)] = min(abs(max(z_coord{k})+ b_layer - z_conc));
%
% n_voxels = length(x_conc)*length(y_conc)*index_height(k);
% average_auxNH3 = zeros(index_height(k),1);
% for i = 1: index_height(k)
% average_auxNH3(i) = sum(sum(NH3_concfield{k}(:,:,i)));
% end
% average_NH3(k) = sum(average_auxNH3)/n_voxels;
% end
% %
% figure
% plot(time, average_NH3,'LineWidth',2)
% xlabel('time,h')
% ylabel('NH_3 concentration')
% % NO2
% average_NO2 = zeros(1,numel(d));
% for k = 1: numel(d)
% [~,index_height(k)] = min(abs(max(z_coord{k})+ b_layer - z_conc));
%
% n_voxels = length(x_conc)*length(y_conc)*index_height(k);
% average_auxNO2 = zeros(index_height(k),1);
% for i = 1: index_height(k)
% average_auxNO2(i) = sum(sum(NO2_concfield{k}(:,:,i)));
% end
% average_NO2(k) = sum(average_auxNO2)/n_voxels;
% end
% figure
% plot(time, average_NO2,'LineWidth',2)
% xlabel('time,h')
% ylabel('NO_2 concentration')
% %NO3
% average_NO3 = zeros(1,numel(d));
% for k = 1: numel(d)
% [~,index_height(k)] = min(abs(max(z_coord{k})+ b_layer - z_conc));
%
% n_voxels = length(x_conc)*length(y_conc)*index_height(k);
% average_auxNO3 = zeros(index_height(k),1);
% for i = 1: index_height(k)
% average_auxNO3(i) = sum(sum(NO3_concfield{k}(:,:,i)));
% end
% average_NO3(k) = sum(average_auxNO3)/n_voxels;
% end
% figure
% plot(time, average_NO3,'Linewidth',2)
% xlabel('time,h')
% ylabel('NO_3 concentration')
% %CO2
% average_CO2 = zeros(1,numel(d));
% for k = 1: numel(d)
% [~,index_height(k)] = min(abs(max(z_coord{k})+ b_layer - z_conc));
%
% n_voxels = length(x_conc)*length(y_conc)*index_height(k);
% average_auxCO2 = zeros(index_height(k),1);
% for i = 1: index_height(k)
% average_auxCO2(i) = sum(sum(CO2_concfield{k}(:,:,i)));
% end
% average_CO2(k) = sum(average_auxCO2)/n_voxels;
% end
% figure
% plot(time, average_CO2,'LineWidth',2)
% xlabel('time,h')
% ylabel('CO_2 concentration')
%%%% the average number of bacteria as well
n_AOB = zeros(1,numel(d)); n_NOB = zeros(1,numel(d)); n_dead = zeros(1,numel(d));
for k = 1: numel(d)
for i = 1:length(Type_part{k})
if Type_part{k}(i) == 1
n_AOB(k) = n_AOB(k) + 1;
elseif Type_part{k}(i) == 2
n_NOB(k) = n_NOB(k) + 1;
else
n_dead(k) = n_dead(k) + 1;
end
end
end
figure
plot(time, n_AOB)
hold on
plot(time, n_NOB)
xlabel('time,h')
ylabel('number of cells')
legend('AOB','NOB')
% average values
% now lets see how the 2D plotting
% O2 = O2_concfield{20};
%
% O2_ox = reshape(O2(:,1,1),[40,1]);
%
% O2_oz = reshape (O2(1,1,:),[100,1]);
%
% %
% O2_oy = reshape (O2(1,:,1),[20,1]);
% figure
% plot(x_conc,O2_ox)
% figure
% plot(y_conc,O2_oy)
% figure
% plot(z_conc,O2_oz)
%%%%%%Plotting and saving the videos
NH3fig = figure('Name','NH3','Color','w');
[X,Z] = ndgrid(x_conc,z_conc);
%at the 5 um distance
v1 = VideoWriter('NH3.avi');
v1.FrameRate = 15;
v1.Quality = 75;
open(v1);
aux = [];
for i = 1:numel(d)
aux = [aux NH3_concfield{i}];
end
NH3max = max(aux(:));
NH3min = min(aux(:));
for k = 1:numel(d)
NH3 = reshape(NH3_concfield{k}(:,1,:),[40,100]);
figure(NH3fig)
surf(X,Z,NH3,'EdgeColor','none');%C =
% clabel(C,'LabelSpacing',100,'FontSize',8,'LineStyle',':')
az = 0;
el = 90;
view(az, el);
shading interp
colormap(parula(256));
caxis([0.5*NH3min NH3max])
c = colorbar;
c.Label.String = 'Concentration (mol/L)';
title({'NH_3 concentration profile';['time (\itt) = ',num2str(time(k))]})
xlabel('Spatial co-ordinate (x), \mum')
ylabel(' Spatial co-ordinate (z), \mum')
axis ([0 lmax_x 0 lmax_z])%NH3min NH3max])
frame = getframe(NH3fig);
writeVideo(v1,frame);
end
close(v1);
v2 = VideoWriter('NO2.avi');
open(v2);
aux = [];
for i = 1:numel(d)
aux = [aux NO2_concfield{i}];
end
NO2max = max(aux(:));
NO2min = min(aux(:));
NO2fig = figure('Name','NO2','Color','w');
for k = 1:numel(d)
NO2 = reshape(NO2_concfield{k}(:,1,:),[40,100]);
figure(NO2fig)
surf(X,Z,NO2,'EdgeColor','none')
shading interp
az = 0;
el = 90;
view(az, el);
axis ([0 lmax_x 0 lmax_z])
caxis([NO2min NO2max])
colormap(parula(512));
c = colorbar;
c.Label.String = 'Concentration (mol/L)';
title({'NO_2 concentration profile';['time (\itt) = ',num2str(time(k))]})
xlabel('Spatial co-ordinate (x), \mum')
ylabel(' Spatial co-ordinate (z), \mum')
frame = getframe(NO2fig);
writeVideo(v2,frame);
end
colorbar('Limits',[NO2min NO2max]);
close(v2);
%
v3 = VideoWriter('NO3.avi');
open(v3);
aux = [];
for i = 1:numel(d)
aux = [aux NO3_concfield{i}];
end
NO3max = max(aux(:));
NO3min = min(aux(:));
NO3fig = figure('Name','NO3','Color','w');
for k = 1:numel(d)
NO3 = reshape(NO3_concfield{k}(:,1,:),[40,100]);
figure(NO3fig)
surf(X,Z,NO3,'EdgeColor','none')
shading interp
az = 0;
el = 90;
view(az, el);
caxis([NO3min NO3max])
colormap(parula(512));
c = colorbar;
c.Label.String = 'Concentration (mol/L)';
title({'NO_3 concentration profile';['time (\itt) = ',num2str(time(k))]})
xlabel('Spatial co-ordinate (x), \mum')
ylabel(' Spatial co-ordinate (z), \mum')
axis ([0 lmax_x 0 lmax_z])
frame = getframe(NO3fig);
writeVideo(v3,frame);
end
close(v3);
v4 = VideoWriter('O2.avi');
open(v4);
aux = [];
for i = 1:numel(d)
aux = [aux O2_concfield{i}];
end
O2max = max(aux(:));
O2min = min(aux(:));
O2fig = figure('Name','O2','Color','w');
for k = 1:numel(d)
O2 = reshape(O2_concfield{k}(:,1,:),[40,100]);
figure(O2fig)
surf(X,Z,O2,'EdgeColor','none')
shading interp
az = 0;
el = 90;
view(az, el);
colormap(parula(512));
caxis([O2min O2max])
c = colorbar;
c.Label.String = 'Concentration (mol/L)';
title({'O_2 concentration profile';['time (\itt) = ',num2str(time(k))]})
xlabel('Spatial co-ordinate (x), \mum')
ylabel(' Spatial co-ordinate (z), \mum')
axis ([0 lmax_x 0 lmax_z])
frame = getframe(O2fig);
writeVideo(v4,frame);
end
close(v4);
v5 = VideoWriter('CO2.avi');
open(v5);
aux = [];
for i = 1:numel(d)
aux = [aux CO2_concfield{i}];
end
CO2max = max(aux(:));
CO2min = min(aux(:));
CO2fig = figure('Name','CO2','Color','w');
for k = 1:numel(d)
CO2 = reshape(CO2_concfield{k}(:,1,:),[40,100]);
figure(CO2fig)
surf(X,Z,CO2,'EdgeColor','none')
shading interp
az = 0;
el = 90;
view(az, el);
colormap(parula(512));
caxis([CO2min CO2max])
c = colorbar;
c.Label.String = 'Concentration (mol/L)';
title({'CO_2 concentration profile';['time (\itt) = ',num2str(time(k))]})
xlabel('Spatial co-ordinate (x), \mum')
ylabel(' Spatial co-ordinate (z), \mum')
axis ([0 lmax_x 0 lmax_z])
frame = getframe(CO2fig);
writeVideo(v5,frame);
end
close(v5);