forked from AikyamLab/Expass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
158 lines (117 loc) · 5.03 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#!/usr/bin/env python3
import torch
import numpy as np
from sklearn.model_selection import train_test_split
from torch_geometric.data import Data
from torch_geometric.loader import DataLoader
def load_graphs(datapath: str):
"""
Extracts datasets from a format consistent with that used by Sanchez-Lengeling et al., Neurips 2020
TODO: replace path with Harvard Dataverse loading
Args:
dir_path (str): Path to directory containing all graphs
smiles_df_path (str): Path to CSV file containing all information about SMILES
representations of the molecules.
:rtype: :obj:`(List[torch_geometric.data.Data], List[List[Explanation]], List[int])`
Returns:
all_graphs (list of `torch_geometric.data.Data`): List of all graphs in the
dataset
"""
# att = np.load(os.path.join(dir_path, 'true_raw_attribution_datadicts.npz'),
# allow_pickle = True)
# X = np.load(os.path.join(dir_path, 'x_true.npz'), allow_pickle = True)
# y = np.load(os.path.join(dir_path, 'y_true.npz'), allow_pickle = True)
data = np.load(datapath, allow_pickle=True)
att, X, y, df = data["attr"], data["X"], data["y"], data["smiles"]
# ylist = [y['y'][i][0] for i in range(y['y'].shape[0])]
ylist = [y[i][0] for i in range(y.shape[0])]
# att = att['datadict_list']
X = X[0]
all_graphs = []
for i in range(len(X)):
x = torch.from_numpy(X[i]["nodes"])
edge_attr = torch.from_numpy(X[i]["edges"])
y = torch.tensor([ylist[i]], dtype=torch.long)
# Get edge_index:
e1 = torch.from_numpy(X[i]["receivers"]).long()
e2 = torch.from_numpy(X[i]["senders"]).long()
edge_index = torch.stack([e1, e2])
data_i = Data(x=x, y=y, edge_attr=edge_attr, edge_index=edge_index)
all_graphs.append(data_i) # Add to larger list
return all_graphs
class GraphDataset:
def __init__(self, name, split_sizes=(0.7, 0.2, 0.1), seed=None, device=None):
self.name = name
self.seed = seed
self.device = device
if split_sizes[1] > 0:
self.train_index, self.test_index = train_test_split(
torch.arange(start=0, end=len(self.graphs)),
test_size=split_sizes[1] + split_sizes[2],
random_state=self.seed,
shuffle=True,
)
else:
self.test_index = None
self.train_index = torch.arange(start=0, end=len(self.graphs))
if split_sizes[2] > 0:
self.test_index, self.val_index = train_test_split(
self.test_index,
test_size=split_sizes[2] / (split_sizes[1] + split_sizes[2]),
random_state=self.seed,
shuffle=True,
)
else:
self.val_index = None
self.Y = torch.tensor([self.graphs[i].y for i in range(len(self.graphs))]).to(
self.device
)
def get_data_list(
self,
index,
):
data_list = [self.graphs[i].to(self.device) for i in index]
return data_list
def get_loader(self, index, batch_size=16, **kwargs):
data_list = self.get_data_list(index)
for i in range(len(data_list)):
data_list[i].exp_key = [i]
loader = DataLoader(data_list, batch_size=batch_size, shuffle=True)
return loader
def get_train_loader(self, batch_size=16):
return self.get_loader(index=self.train_index, batch_size=batch_size)
def get_train_list(self):
return self.get_list(index=self.train_index)
def get_test_loader(self):
assert self.test_index is not None, "test_index is None"
return self.get_loader(index=self.test_index, batch_size=1)
def get_test_list(self):
assert self.test_index is not None, "test_index is None"
return self.get_list(index=self.test_index)
def get_val_loader(self):
assert self.test_index is not None, "val_index is None"
return self.get_loader(index=self.val_index, batch_size=1)
def get_val_list(self):
assert self.val_index is not None, "val_index is None"
return self.get_list(index=self.val_index)
def get_train_w_label(self, label):
inds_to_choose = (self.Y[self.train_index] == label).nonzero(as_tuple=True)[0]
in_train_idx = inds_to_choose[
torch.randint(low=0, high=inds_to_choose.shape[0], size=(1,))
]
chosen = self.train_index[in_train_idx.item()]
return self.graphs[chosen]
def get_test_w_label(self, label):
assert self.test_index is not None, "test_index is None"
inds_to_choose = (self.Y[self.test_index] == label).nonzero(as_tuple=True)[0]
in_test_idx = inds_to_choose[
torch.randint(low=0, high=inds_to_choose.shape[0], size=(1,))
]
chosen = self.test_index[in_test_idx.item()]
return self.graphs[chosen]
def download(self):
pass
def __getitem__(self, idx):
return self.graphs[idx]
def __len__(self):
return len(self.graphs)