-
Notifications
You must be signed in to change notification settings - Fork 3
/
imnet_train.py
433 lines (380 loc) · 18.4 KB
/
imnet_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import argparse
import os
import random
import time
import warnings
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torchvision
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import models
from models import resnet
from models.resnet_cifar import NormedLinear
from tensorboardX import SummaryWriter
from sklearn.metrics import confusion_matrix
from utils import *
from datasets.imagenet import ImageNet_LT
from losses import LDAMLoss, FocalLoss
import wandb
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--dataset', default='imagenet', help='dataset setting')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet50'),
parser.add_argument('--loss_type', default="CE", type=str, help='loss type')
parser.add_argument('--imb_type', default="exp", type=str, help='imbalance type')
parser.add_argument('--imb_factor', default=0.01, type=float, help='imbalance factor')
parser.add_argument('--train_rule', default='None', type=str, help='data sampling strategy for train loader')
parser.add_argument('--rand_number', default=0, type=int, help='fix random number for data sampling')
parser.add_argument('--exp_str', default='0', type=str, help='number to indicate which experiment it is')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=128, type=int,
metavar='N',
help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=2e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--root_log',type=str, default='log')
parser.add_argument('--root_model', type=str, default='checkpoint')
parser.add_argument('--log_results', action='store_true',
help='use distributed model')
parser.add_argument('--name', type=str, default='test')
parser.add_argument('--distributed', action='store_true',
help='use distributed model')
parser.add_argument('--deterministic', action='store_true',
help='use deterministic')
parser.add_argument('--multiprocessing_distributed', action='store_true',
help='use deterministic')
parser.add_argument('--data_path', default='Imagenet', type=str, metavar='PATH',
help='path to latest dataset ')
parser.add_argument('--cos_lr', action='store_true',
help='Using cosine lr')
parser.add_argument('--constant_lr', action='store_true',
help='Using constant lr')
parser.add_argument('--end_lr_cos', default=0.0, type=float, metavar='M',
help='End lr for cos learning schedule')
parser.add_argument('--margin', default=0.5, type=float, metavar='M',
help='Margin value for LDAM')
best_acc1 = 0
def main():
args = parser.parse_args()
sched = 'cos' if args.cos_lr else ''
args.store_name = '_'.join([args.dataset, args.arch, args.loss_type, args.train_rule, args.imb_type, str(args.imb_factor), args.exp_str])
print("The args.store name is", args.store_name)
prepare_folders(args)
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
ngpus_per_node = torch.cuda.device_count()
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
args.gpu = gpu
args.head_class_idx = [0,390]
args.med_class_idx = [390,835]
args.tail_class_idx = [835,1000]
if args.log_results:
wandb.init(project="long-tail",
entity="long-tail", name=args.store_name,
dir=args.wandb_dir)
wandb.config.update(args)
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
# create model
print("[INFORMATION] creating model '{}'".format(args.arch))
num_classes = 1000
use_norm = True if args.loss_type == 'LDAM' else False
if args.arch == 'resnet50':
model = torchvision.models.resnet50(pretrained=False)
else:
warnings.simplefilter("error")
warnings.warn("Add support for other models apart from resnet50")
if use_norm:
model.fc = NormedLinear(2048, num_classes)
print("[INFORMATION] Using normed linear")
else:
model.fc = nn.Linear(2048, num_classes)
model = model.cuda(args.gpu)
# DataParallel will divide and allocate batch_size to all available GPUs
model = torch.nn.DataParallel(model).cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if args.cos_lr == True:
print("[INFORMATION] Using cosine lr_scheduler")
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, eta_min=args.end_lr_cos)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("[INFORMATION] loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume, map_location='cuda:0')
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None:
# best_acc1 may be from a checkpoint from a different GPU
best_acc1 = best_acc1.to(args.gpu)
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
if args.cos_lr == True:
scheduler.load_state_dict(checkpoint['scheduler'])
print("[INFORMATION] loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("[INFORMATION] no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_val = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
if args.dataset == 'imagenet':
print("[INFORMATION] Extracting images from Imagenet")
dataset = ImageNet_LT(args.distributed, root=args.data_path,
batch_size=args.batch_size, num_works=args.workers)
cls_num_list = dataset.cls_num_list
args.cls_num_list = dataset.cls_num_list
print("The class list for imagenet(initial 20) is ", dataset.cls_num_list[:20])
print("The class list for imagenet(last 20) is ", dataset.cls_num_list[-20:])
else:
warnings.warn('Dataset is not listed')
return
train_sampler = None
train_loader = dataset.train_instance
val_loader = dataset.eval
# init log for training
log_training = open(os.path.join(args.root_log, args.store_name, 'log_train.csv'), 'w')
log_testing = open(os.path.join(args.root_log, args.store_name, 'log_test.csv'), 'w')
with open(os.path.join(args.root_log, args.store_name, 'args.txt'), 'w') as f:
f.write(str(args))
tf_writer = SummaryWriter(log_dir=os.path.join(args.root_log, args.store_name))
for epoch in range(args.start_epoch, args.epochs):
for param_group in optimizer.param_groups:
lr_1 = param_group['lr']
if args.log_results:
wandb.log({'lr':lr_1})
if args.cos_lr!= True:
adjust_learning_rate(optimizer, epoch, args)
if args.train_rule == 'None':
train_sampler = None
per_cls_weights = None
elif args.train_rule == 'Resample':
train_sampler = ImbalancedDatasetSampler(train_dataset)
per_cls_weights = None
elif args.train_rule == 'Reweight':
train_sampler = None
beta = 0.9999
effective_num = 1.0 - np.power(beta, cls_num_list)
per_cls_weights = (1.0 - beta) / np.array(effective_num)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).cuda(args.gpu)
elif args.train_rule == 'DRW':
train_sampler = None
idx = epoch // 60
betas = [0, 0.9999]
effective_num = 1.0 - np.power(betas[idx], cls_num_list)
per_cls_weights = (1.0 - betas[idx]) / np.array(effective_num)
per_cls_weights = per_cls_weights / np.sum(per_cls_weights) * len(cls_num_list)
per_cls_weights = torch.FloatTensor(per_cls_weights).cuda(args.gpu)
else:
warnings.warn('Sample rule is not listed')
if args.loss_type == 'CE':
criterion = nn.CrossEntropyLoss(weight=per_cls_weights).cuda(args.gpu)
elif args.loss_type == 'LDAM':
print("[INFORMATION] LDAM is being used")
print("[INFORMATION] margin value being used is ", args.margin)
criterion = LDAMLoss(cls_num_list=cls_num_list, max_m=args.margin, s=30, weight=per_cls_weights).cuda(args.gpu)
elif args.loss_type == 'Focal':
criterion = FocalLoss(weight=per_cls_weights, gamma=1).cuda(args.gpu)
else:
warnings.warn('Loss type is not listed')
return
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, args, log_training, tf_writer)
# evaluate on validation set
acc1 = validate(val_loader, model, criterion, epoch, args, log_testing, tf_writer)
if args.cos_lr == True:
scheduler.step()
if args.log_results:
wandb.log({'epoch':epoch, 'val_acc':acc1})
#wandb.log({'lr':lr})
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
tf_writer.add_scalar('acc/test_top1_best', best_acc1, epoch)
output_best = 'Best Prec@1: %.3f\n' % (best_acc1)
print(output_best)
log_testing.write(output_best + '\n')
log_testing.flush()
if args.cos_lr == True:
save_checkpoint(args, {
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optimizer.state_dict(),
'scheduler': scheduler.state_dict(),
}, is_best)
else:
save_checkpoint(args, {
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer' : optimizer.state_dict(),
}, is_best)
if args.log_results:
wandb.log({'best_acc':best_acc1})
def train(train_loader, model, criterion, optimizer, epoch, args, log, tf_writer):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
if args.log_results:
wandb.log({'loss':loss, 'top1_acc':acc1, 'top5_acc':acc5})
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
output = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5, lr=optimizer.param_groups[-1]['lr'] * 0.1)) # TODO
print(output)
log.write(output + '\n')
log.flush()
tf_writer.add_scalar('loss/train', losses.avg, epoch)
tf_writer.add_scalar('acc/train_top1', top1.avg, epoch)
tf_writer.add_scalar('acc/train_top5', top5.avg, epoch)
tf_writer.add_scalar('lr', optimizer.param_groups[-1]['lr'], epoch)
def validate(val_loader, model, criterion, epoch, args, log=None, tf_writer=None, flag='val'):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
# switch to evaluate mode
model.eval()
all_preds = []
all_targets = []
with torch.no_grad():
end = time.time()
for i, (input, target) in enumerate(val_loader):
if args.gpu is not None:
input = input.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(input) #bs, num_classes
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
_, pred = torch.max(output, 1) #bs
all_preds.extend(pred.cpu().numpy())
all_targets.extend(target.cpu().numpy())
if i % args.print_freq == 0:
output = ('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5))
print(output)
cf = confusion_matrix(all_targets, all_preds).astype(float)
print("The size of the cf is", cf.shape)
cls_cnt = cf.sum(axis=1)
cls_hit = np.diag(cf) #num of correct preds
cls_acc = cls_hit / cls_cnt
if args.dataset == 'imagenet':
head_acc = cls_acc[args.head_class_idx[0]:args.head_class_idx[1]].mean() * 100
med_acc = cls_acc[args.med_class_idx[0]:args.med_class_idx[1]].mean() * 100
tail_acc = cls_acc[args.tail_class_idx[0]:args.tail_class_idx[1]].mean() * 100
print(f"The head accuracy is {head_acc}\n")
print(f"The med accuracy is {med_acc}\n")
print(f"The tail accuracy is {tail_acc}\n")
if args.log_results:
wandb.log({'head_acc':head_acc, 'med_acc':med_acc, 'tail_acc':tail_acc})
output = ('{flag} Results: Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Loss {loss.avg:.5f}'
.format(flag=flag, top1=top1, top5=top5, loss=losses))
out_cls_acc = '%s Class Accuracy: %s'%(flag,(np.array2string(cls_acc, separator=',', formatter={'float_kind':lambda x: "%.3f" % x})))
if log is not None:
log.write(output + '\n')
log.write(out_cls_acc + '\n')
log.flush()
tf_writer.add_scalar('loss/test_'+ flag, losses.avg, epoch)
tf_writer.add_scalar('acc/test_' + flag + '_top1', top1.avg, epoch)
tf_writer.add_scalar('acc/test_' + flag + '_top5', top5.avg, epoch)
tf_writer.add_scalars('acc/test_' + flag + '_cls_acc', {str(i):x for i, x in enumerate(cls_acc)}, epoch)
return top1.avg
if __name__ == '__main__':
main()