forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_jit_internal.py
255 lines (198 loc) · 7.38 KB
/
_jit_internal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
"""
The weak_script annotation needs to be here instead of inside torch/jit/ so it
can be used in other places in torch/ (namely torch.nn) without running into
circular dependency problems
"""
import weakref
import inspect
from torch._six import builtins
# Tracks standalone weak script functions
compiled_weak_fns = weakref.WeakKeyDictionary() # noqa: T484
# Tracks which methods should be converted to strong methods
weak_script_methods = weakref.WeakKeyDictionary() # noqa: T484
# Converted modules and their corresponding WeakScriptModuleProxy objects
weak_modules = weakref.WeakKeyDictionary() # noqa: T484
# Types that have been declared as weak modules
weak_types = weakref.WeakKeyDictionary() # noqa: T484
# Wrapper functions that can call either of 2 functions depending on a boolean
# argument
boolean_dispatched = weakref.WeakKeyDictionary() # noqa: T484
# Python Op functions that should be ignored by the compiler. These will be replaced
# with an operator that always throws an error
ignored_fns = weakref.WeakSet() # noqa: T484
COMPILATION_PENDING = object()
COMPILED = object()
def createResolutionCallback(frames_up=0):
"""
Creates a function which, given a string variable name,
returns the value of the variable in the scope of the caller of
the function which called createResolutionCallback (by default).
This is used to enable access in-scope Python variables inside
TorchScript fragments.
frames_up is number of additional frames to go up on the stack.
The default value is 0, which correspond to the frame of the caller
of createResolutionCallback. Also for example, if frames_up is set
to 1, then the frame of the caller's caller of createResolutionCallback
will be taken.
For example, the following program prints 2::
def bar():
cb = createResolutionCallback(1)
print(cb("foo"))
def baz():
foo = 2
bar()
baz()
"""
frame = inspect.currentframe()
i = 0
while i < frames_up + 1:
frame = frame.f_back
i += 1
f_locals = frame.f_locals
f_globals = frame.f_globals
def env(key):
if key in f_locals:
return f_locals[key]
elif key in f_globals:
return f_globals[key]
elif hasattr(builtins, key):
return getattr(builtins, key)
else:
return None
return env
def weak_script(fn, _frames_up=0):
"""
Marks a function as a weak script function. When used in a script function
or ScriptModule, the weak script function will be lazily compiled and
inlined in the graph. When not used in a script function, the weak script
annotation has no effect.
"""
compiled_weak_fns[fn] = {
"status": COMPILATION_PENDING,
"compiled_fn": None,
"rcb": createResolutionCallback(_frames_up + 1)
}
return fn
def weak_module(cls):
weak_types[cls] = {
"method_stubs": None
}
return cls
def weak_script_method(fn):
weak_script_methods[fn] = {
"rcb": createResolutionCallback(frames_up=2),
"original_method": fn
}
return fn
def boolean_dispatch(arg_name, arg_index, default, if_true, if_false, module_name, func_name):
"""
Dispatches to either of 2 weak script functions based on a boolean argument.
In TorchScript, the boolean argument must be constant so that the correct
function to use can be determined at compile time.
"""
if compiled_weak_fns.get(if_true) is None or compiled_weak_fns.get(if_false) is None:
raise RuntimeError("both functions must be weak script")
def fn(*args, **kwargs):
dispatch_flag = False
if arg_name in kwargs:
dispatch_flag = kwargs[arg_name]
elif arg_index < len(args):
dispatch_flag = args[arg_index]
if dispatch_flag:
return if_true(*args, **kwargs)
else:
return if_false(*args, **kwargs)
if if_true.__doc__ is None and if_false.__doc__ is not None:
doc = if_false.__doc__
if_true.__doc__ = doc
elif if_false.__doc__ is None and if_true.__doc__ is not None:
doc = if_true.__doc__
if_false.__doc__ = doc
elif if_false.__doc__ is None and if_true.__doc__ is None:
# neither function has a docstring
doc = None
else:
raise RuntimeError("only one function can have a docstring")
fn.__doc__ = doc
if module_name is not None:
fn.__module__ = module_name
if func_name is not None:
fn.__name__ = func_name
boolean_dispatched[fn] = {
"if_true": if_true,
"if_false": if_false,
"index": arg_index,
"default": default,
"arg_name": arg_name
}
return fn
def ignore(fn):
ignored_fns.add(fn)
return fn
def _parameter_list(fn):
"""
Decorator to denote that a function returns a list of all the parameters
in a module
"""
fn._is_parameter_list = True
return fn
try:
import typing
from typing import Tuple, List, Dict
def is_tuple(ann):
# For some reason Python 3.7 violates the Type[A, B].__origin__ == Type rule
return ann.__module__ == 'typing' and \
(getattr(ann, '__origin__', None) is typing.Tuple or
getattr(ann, '__origin__', None) is tuple)
def is_list(ann):
return ann.__module__ == 'typing' and \
(getattr(ann, '__origin__', None) is typing.List or
getattr(ann, '__origin__', None) is list)
def is_dict(ann):
return ann.__module__ == 'typing' and \
(getattr(ann, '__origin__', None) is typing.Dict or
getattr(ann, '__origin__', None) is dict)
except ImportError:
# A minimal polyfill for versions of Python that don't have typing.
# Note that this means that they also don't support the fancy annotation syntax, so
# those instances will only be used in our tiny `type: ` comment interpreter.
# The __getitem__ in typing is implemented using metaclasses, but I'm too lazy for that.
class TupleCls(object):
def __getitem__(self, types):
return TupleInstance(types)
class TupleInstance(object):
__slots__ = ['__args__']
def __init__(self, types):
self.__args__ = types
class ListInstance(object):
__slots__ = ['__args__']
def __init__(self, types):
self.__args__ = types
class ListCls(object):
def __getitem__(self, types):
return TupleInstance(types)
class DictInstance(object):
__slots__ = ['__args__']
def __init__(self, types):
self.__args__ = types
class DictCls(object):
def __getitem__(self, types):
return DictInstance(types)
Tuple = TupleCls() # noqa: T484
List = ListCls() # noqa: T484
Dict = DictCls() # noqa: T484
def is_tuple(ann):
return isinstance(ann, TupleInstance)
def is_list(ann):
return isinstance(ann, ListInstance)
def is_dict(ann):
return isinstance(ann, DictInstance)
# allows BroadcastingList instance to be subscriptable
class BroadcastingListCls(object):
def __getitem__(self, types):
return
# mypy doesn't support parameters on types, so we have to explicitly type each
# list size
BroadcastingList1 = BroadcastingListCls()
for i in range(2, 7):
globals()["BroadcastingList{}".format(i)] = BroadcastingList1