forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Embedding.cu
389 lines (323 loc) · 13.5 KB
/
Embedding.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/TensorUtils.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/util/Exception.h>
#include <THC/THCDeviceUtils.cuh>
#include <THC/THCTensorMathReduce.cuh>
#include <THC/THCTensorSort.cuh>
#include <THC/THCThrustAllocator.cuh>
#include <thrust/execution_policy.h>
#include <thrust/unique.h>
namespace at { namespace native {
namespace {
#ifdef __HIP_PLATFORM_HCC__
static const int WARP_SIZE = 64;
static const int BLOCKDIMY = 16;
#else
static const int WARP_SIZE = 32;
static const int BLOCKDIMY = 32;
#endif
template
<typename scalar_t,
typename accscalar_t>
__global__ void embedding_backward_feature_kernel
(int64_t* indices,
const scalar_t* __restrict__ grad,
scalar_t* __restrict__ grad_weight,
int n, // OK to pass as int, we don't expect 2 billion+ samples in one shot
int64_t stride,
int padding_idx)
{
extern __shared__ char buf[];
accscalar_t* smem = (accscalar_t*)buf;
accscalar_t* my_s = smem + WARP_SIZE*threadIdx.y;
int* indices_batch = (int*)(buf + sizeof(accscalar_t)*WARP_SIZE*blockDim.y);
const int s = (int)stride; // OK to make int, we don't expect 2 billion+ embedding row size
const int f = threadIdx.x + blockIdx.x*blockDim.x; // feature_dim
for(int batch_start = 0; batch_start < n; batch_start += blockDim.x*blockDim.y)
{
// Entire block cooperates to load a batch of 1024 indices to process
int tid = threadIdx.x + threadIdx.y*blockDim.x;
if(batch_start + tid < n)
indices_batch[tid] = (int)indices[batch_start + tid];
int batch_end = batch_start + blockDim.x*blockDim.y < n ?
batch_start + blockDim.x*blockDim.y : n;
// Loop over the batch of <= 1024 loaded indices in chunks of blockDim.y = 32
for(int chunk_start = batch_start; chunk_start < batch_end; chunk_start += blockDim.y)
{
// This does double duty: it makes sure indices_batch is ready, and it makes sure match-group
// leaders are done with their accumulates before other warps start loading again.
__syncthreads();
int n_this_chunk = (batch_end - chunk_start) < blockDim.y ?
(batch_end - chunk_start) : blockDim.y;
int src_row = chunk_start + threadIdx.y;
int dst_row = indices_batch[src_row - batch_start]; // This warp's target row in grad_weight
// All warps load their smem segments with incoming grad data
if(src_row < n && f < s && dst_row != padding_idx)
my_s[threadIdx.x] = static_cast<accscalar_t>(grad[src_row*stride + f]);
__syncthreads();
// To ensure determinism, we can't just have each warp add its grad data to its dst_row.
// We need to check if any other warps pulled grad data targeting dst_row.
// If so, we elect the first warp in each matching group as the leader.
// Each leader warp serializes the accumulates targeting dst_row in shared memory,
// then finishes by adding the accumulated buffer to dst_row in grad_weight.
if(dst_row != padding_idx && src_row < n) // Per-warp exit condition, safe with ballot_sync
{
int match_found_this_thread =
(dst_row == indices_batch[chunk_start - batch_start + threadIdx.x]);
if(threadIdx.x >= n_this_chunk)
match_found_this_thread = 0;
#ifdef __HIP_PLATFORM_HCC__
unsigned long long int matchmask = WARP_BALLOT(match_found_this_thread);
int first_remaining_peer = __ffsll(matchmask) - 1;
#else
unsigned int matchmask = WARP_BALLOT(match_found_this_thread);
int first_remaining_peer = __ffs(matchmask) - 1;
#endif
if(threadIdx.y == first_remaining_peer) // Nominate lowest-indexed warp as the leader
{
matchmask ^= (1 << first_remaining_peer);
while(matchmask)
{
#ifdef __HIP_PLATFORM_HCC__
first_remaining_peer = __ffsll(matchmask) - 1;
#else
first_remaining_peer = __ffs(matchmask) - 1;
#endif
my_s[threadIdx.x] += smem[threadIdx.x + WARP_SIZE*first_remaining_peer];
matchmask ^= (1 << first_remaining_peer);
}
if(f < s)
grad_weight[dst_row*stride + f] += static_cast<scalar_t>(my_s[threadIdx.x]);
}
}
}
}
}
template <typename scalar_t>
__global__ void embedding_backward_kernel(
int64_t* input, int64_t* indices, scalar_t* grad_output, scalar_t* grad_weight,
int64_t* count, int64_t numel, int64_t stride, int padding_idx) {
using accscalar_t = acc_type<scalar_t, true>;
int idx = blockIdx.x * 4 + threadIdx.y;
// Each warp is responsible for an input into the LookupTable.
// If the preceding input has the same as this input, then the warp
// exits immediately. The warp also processes subsequent inputs with the
// same value.
//
// Input Warp
// 1 <warp 1>
// 1 <warp 1> (<warp 2> exits without doing any work)
// 5 <warp 3>
// 8 <warp 4>
// Number of values proceessed by each thread (grain size)
const int SZ = 4;
if (idx < numel
&& (idx == 0 || input[idx] != input[idx - 1])
&& input[idx] != padding_idx) {
do {
const int start_feature = threadIdx.x + blockIdx.y * blockDim.x * SZ;
const int weight_row = ((int) input[idx]) * stride;
const int grad_row = ((int) indices[idx]) * stride;
const accscalar_t scale = count ? (accscalar_t)1.0 / count[idx] : 1.0;
accscalar_t gradient[SZ];
accscalar_t weight[SZ];
#pragma unroll
for (int ii = 0; ii < SZ; ii++) {
int feature_dim = start_feature + ii * WARP_SIZE;
if (feature_dim < stride) {
gradient[ii] = static_cast<accscalar_t>(grad_output[grad_row + feature_dim]);
weight[ii] = static_cast<accscalar_t>(grad_weight[weight_row + feature_dim]);
}
}
#pragma unroll
for (int ii = 0; ii < SZ; ii++) {
weight[ii] += gradient[ii] * scale;
}
#pragma unroll
for (int ii = 0; ii < SZ; ii++) {
int feature_dim = start_feature + ii * WARP_SIZE;
if (feature_dim < stride) {
grad_weight[weight_row + feature_dim] = static_cast<scalar_t>(weight[ii]);
}
}
idx++;
} while (idx < numel && input[idx] == input[idx - 1]);
}
}
/* Calculate norms of the rows of weight_ptr given by idx_ptr and capture them in norms */
template <typename scalar_t, typename accscalar_t>
__global__ void renorm_kernel(
scalar_t* weights, int64_t* indices, accscalar_t max_norm,
accscalar_t norm_type, int64_t dim,
int64_t weights_stride0, int64_t weights_stride1) {
// Some casting hacks since dynamic shared memory and templates don't work together:
extern __shared__ unsigned char smem[];
auto sdata = reinterpret_cast<accscalar_t*>(smem);
int tid = threadIdx.x;
int base_index = indices[blockIdx.x] * weights_stride0;
accscalar_t v = 0;
for (int i = tid; i < dim; i += blockDim.x) {
auto x = static_cast<accscalar_t>(weights[base_index + i * weights_stride1]);
if (norm_type == 1) {
v += std::abs(x);
} else if (norm_type == 2) {
v += x * x;
} else {
v += std::pow(x, norm_type);
}
}
using Op = ReduceAdd<accscalar_t>;
v = reduceBlock<accscalar_t>(sdata, blockDim.x, v, Op(), 0);
if (tid == 0) {
sdata[0] = std::pow(v, static_cast<accscalar_t>(1.0 / norm_type));
}
__syncthreads();
// now we renormalize the blocks that need it
if (sdata[0] > max_norm) {
auto factor = static_cast<scalar_t>(max_norm / (sdata[0] + 1e-7));
for (int i = tid; i < dim; i += blockDim.x) {
weights[base_index + i * weights_stride1] *= factor;
}
}
}
} // anonymous namespace
Tensor embedding_dense_backward_cuda(const Tensor & grad_, const Tensor & indices,
int64_t num_weights, int64_t padding_idx,
bool scale_grad_by_freq) {
auto grad_arg = TensorArg(grad_, "grad", 1);
auto indices_arg = TensorArg(indices, "indices", 1);
checkScalarType("embedding_backward", indices_arg, kLong);
checkSameGPU("embedding_backward", grad_arg, indices_arg);
auto num_indices = indices.numel();
auto grad = grad_.contiguous().view({num_indices, grad_.size(-1)});
auto grad_weight = at::zeros({num_weights, grad_.size(-1)}, grad_.options());
int64_t stride = grad_weight.stride(0);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (num_indices <= 768 && !scale_grad_by_freq) {
auto indices_contig = indices.contiguous();
dim3 grid(THCCeilDiv(stride, (int64_t)WARP_SIZE));
dim3 block(WARP_SIZE, BLOCKDIMY);
AT_DISPATCH_FLOATING_TYPES_AND_HALF
(grad.scalar_type(),
"embedding_backward",
[&]
{
using accscalar_t = acc_type<scalar_t, true>;
embedding_backward_feature_kernel<scalar_t, accscalar_t>
<<<grid,
block,
sizeof(accscalar_t)*WARP_SIZE*BLOCKDIMY + sizeof(int)*WARP_SIZE*BLOCKDIMY,
stream>>>
(indices_contig.data<int64_t>(),
grad.data<scalar_t>(),
grad_weight.data<scalar_t>(),
static_cast<int>(num_indices),
static_cast<int64_t>(stride),
static_cast<int>(padding_idx));
});
THCudaCheck(cudaGetLastError());
return grad_weight;
}
auto sorted_indices = at::empty_like(indices);
auto orig_indices = at::empty_like(indices);
using device_ptr = thrust::device_ptr<int64_t>;
// Sort the inputs into sorted with the corresponding indices; we
// don't need a stable or multidimensional sort, so just use Thrust
// directly
{
sorted_indices.copy_(indices);
auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA());
auto policy = thrust::cuda::par(allocator).on(stream);
// Fill sortedOrigIndices with sequential indices
auto count_iter = thrust::counting_iterator<int64_t>(0);
auto orig_data = device_ptr(orig_indices.data<int64_t>());
thrust::copy(policy, count_iter, count_iter + num_indices, orig_data);
// Sort; a stable sort is not required
auto sorted_data = device_ptr(sorted_indices.data<int64_t>());
thrust::sort_by_key(policy, sorted_data, sorted_data + num_indices, orig_data,
ThrustLTOp<int64_t>());
}
Tensor count;
if (scale_grad_by_freq) {
count = at::empty_like(indices);
auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA());
auto policy = thrust::cuda::par(allocator).on(stream);
// Compute an increasing sequence per unique item in sortedIndices:
// sorted: 2 5 5 5 7 7 8 9 9
// count: 1 1 2 3 1 2 1 1 2
auto sorted_data = device_ptr(sorted_indices.data<int64_t>());
auto count_data = device_ptr(count.data<int64_t>());
thrust::inclusive_scan_by_key(
policy,
sorted_data,
sorted_data + num_indices,
thrust::make_constant_iterator(1),
count_data
);
// Take the maximum of each count per unique key in reverse:
// sorted: 2 5 5 5 7 7 8 9 9
// count: 1 3 3 3 2 2 1 2 2
thrust::inclusive_scan_by_key(
policy,
thrust::make_reverse_iterator(sorted_data + num_indices),
thrust::make_reverse_iterator(sorted_data),
thrust::make_reverse_iterator(count_data + num_indices),
thrust::make_reverse_iterator(count_data + num_indices),
thrust::equal_to<int64_t>(),
thrust::maximum<int64_t>()
);
}
dim3 grid(THCCeilDiv(num_indices, (int64_t) 4), THCCeilDiv(stride, (int64_t) 128));
dim3 block(32, 4);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(grad.scalar_type(), "embedding_backward", [&] {
embedding_backward_kernel<<<grid, block, 0, stream>>>(
sorted_indices.data<int64_t>(),
orig_indices.data<int64_t>(),
grad.data<scalar_t>(),
grad_weight.data<scalar_t>(),
count.defined() ? count.data<int64_t>() : nullptr,
num_indices,
stride,
padding_idx);
});
THCudaCheck(cudaGetLastError());
return grad_weight;
}
Tensor & embedding_renorm_cuda_(Tensor & self, const Tensor & indices,
double max_norm, double norm_type) {
auto self_arg = TensorArg(self, "self", 1);
auto indices_arg = TensorArg(indices, "indices", 1);
checkDim("embedding_renorm_", self_arg, 2);
checkSameGPU("embedding_renorm", self_arg, indices_arg);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
auto allocator = THCThrustAllocator(globalContext().lazyInitCUDA());
auto policy = thrust::cuda::par(allocator).on(stream);
using device_ptr = thrust::device_ptr<int64_t>;
auto num_indices = indices.numel();
auto indices_contig = indices.contiguous();
auto indices_data = device_ptr(indices_contig.data<int64_t>());
// FIXME: thrust::unique only removes consecutive elements that are equal.
// We have race conditions when indices contain duplicates which are not
// adjacent
auto unique_indices = at::empty(indices.numel(), indices.options());
auto unique_data = device_ptr(unique_indices.data<int64_t>());
auto end = thrust::unique_copy(policy, indices_data, indices_data + num_indices, unique_data);
auto num_unique_indices = static_cast<int>(end - unique_data);
dim3 grid(num_unique_indices);
dim3 block(128);
int dim = self.stride(0);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(self.scalar_type(), "embedding_backward", [&] {
using accscalar_t = acc_type<scalar_t, true>;
renorm_kernel<<<grid, block, 128 * sizeof(accscalar_t), stream>>>(
self.data<scalar_t>(),
unique_indices.data<int64_t>(),
static_cast<accscalar_t>(max_norm),
static_cast<accscalar_t>(norm_type),
dim, self.stride(0), self.stride(1));
});
THCudaCheck(cudaGetLastError());
return self;
}
}} // namespace at::native