forked from ripred/MicroChess
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchessutil.cpp
878 lines (662 loc) · 22.7 KB
/
chessutil.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
/**
* chessutil.cpp
*
* the MicroChess project: https://github.com/ripred/MicroChess
*
* MicroChess utility functions
*
*/
#include "HardwareSerial.h"
#include <Arduino.h>
#ifndef ESP32
#include <avr/pgmspace.h>
#endif
#include "MicroChess.h"
#include <stdarg.h>
#include <ctype.h>
#include <stdint.h>
extern game_t game;
////////////////////////////////////////////////////////////////////////////////////////
// Opening book moves (if enabled)
book_t const opening1[] = {
{ 6 * 8 + 4, 5 * 8 + 4 }, // Pawn from E2 to E3
{ 7 * 8 + 5, 4 * 8 + 2 }, // Bishop from F1 to C4
{ 7 * 8 + 3, 5 * 8 + 5 }, // Queen from D1 to F3
{ 5 * 8 + 5, 1 * 8 + 5 } // Queen from F3 to E7 - checkmate
}; // opening1
Color const book_t::side = White;
piece_gen_t::piece_gen_t(move_t &m) :
move(m),
wbest(m),
bbest(m) {
init(board, game);
}
piece_gen_t::piece_gen_t(move_t &m, move_t &wb, move_t &bb, generator_t *cb, Bool const eval) :
move(m),
wbest(wb),
bbest(bb),
callme(cb),
evaluating(eval) {
init(board, game);
}
void inline piece_gen_t::init(board_t const &board, game_t const &game) {
piece = board.get(move.from);
type = getType(piece);
side = getSide(piece);
col = move.from % 8;
row = move.from / 8;
piece_index = game.find_piece(move.from);
whites_turn = side; // same as (White == side)
cutoff = False;
num_wmoves = 0;
num_bmoves = 0;
}
// Utility functions
// get the Type of a Piece
Piece getType(Piece b)
{
return Type & b;
} // getType(Piece b)
// see if a Piece is Empty
Bool isEmpty(Piece b)
{
return getType(b) == Empty;
} // isEmpty(Piece b)
// get the value of a piece
int getValue(Piece b)
{
return pieceValues[getType(b)];
} // getValue(Piece b)
// get the side for a Piece
Piece getSide(Piece b)
{
return (Side & b) >> 3u;
} // getSide(Piece b)
// see if a Piece has moved
Bool hasMoved(Piece b)
{
return (Moved & b) == Moved;
} // hasMoved(Piece b)
// see if a Piece is in check
Bool inCheck(Piece b)
{
return (Check & b) == Check;
} // inCheck(Piece b)
// set the Type of a Piece
Piece setType(Piece b, Piece type)
{
return (b & ~Type) | (type & Type);
} // setType(Piece b, Piece type)
// set the Color of a Piece
Piece setSide(Piece b, Piece side)
{
return (b & ~Side) | ((side << 3u) & Side);
} // setSide(Piece b, Piece side)
// set or reset the flag indicating a Piece as moved
Piece setMoved(Piece b, Bool hasMoved)
{
return (b & ~Moved) | (hasMoved ? Moved : 0);
} // setMoved(Piece b, Bool hasMoved)
// set or reset the flag indicating a Piece is in check
Piece setCheck(Piece b, Bool inCheck)
{
return (b & ~Check) | (inCheck ? Check : 0);
} // setCheck(Piece b, Bool inCheck)
// construct a Piece value
Piece makeSpot(Piece type, Piece side, unsigned char moved, unsigned char inCheck) {
return setType(0, type) | setSide(0, side) | setMoved(0, moved) | setCheck(0, inCheck);
} // makeSpot(Piece type, Piece side, unsigned char moved, unsigned char inCheck)
char * addCommas(long int value) {
static char buff[16];
snprintf(buff, sizeof(buff), "%ld", value);
int start_idx = (buff[0] == '-') ? 1 : 0;
for (int i = strlen(buff) - 3; i > start_idx; i -= 3) {
memmove(&buff[i + 1], &buff[i], strlen(buff) - i + 1);
buff[i] = ',';
}
return buff;
} // addCommas(long int value)
// repeat printing a character a number of times
void printrep(print_t const level, char const c, index_t repeat) {
if (game.options.print_level < level) { return; }
while (repeat--) {
Serial.write(c);
}
} // printrep(...)
void printnl(print_t const level, index_t repeat /* = 1 */) {
printrep(level, '\n', repeat);
} // printnl(...)
int debug(char const * const progmem, ...) {
char fmt[128];
strcpy_P(fmt, progmem);
char buff[128];
va_list argList;
va_start(argList, fmt);
vsnprintf(buff, ARRAYSZ(buff), fmt, argList);
va_end(argList);
return Serial.write(buff, strlen(buff));
} // debug(char const * const progmem, ...)
#if ARDUINO_ARCH_RENESAS
#include <stdio.h>
char *dtostrf (double val, signed char width, unsigned char prec, char *sout) {
char fmt[20];
sprintf(fmt, "%%%d.%df", width, prec);
sprintf(sout, fmt, val);
return sout;
}
#endif
// This function wraps the dtostrf(...) function combined with
// adding commas to the resulting string to delineate thousands positions.
char * ftostr(double const value, int const dec, char * const buff)
{
static char str[16];
dtostrf(value, sizeof(str), dec, str);
char *p = str;
while (isspace(*p)) p++;
// char const * const begin = p;
while (isdigit(*p) || ('-' == *p)) p++;
char tmp[24];
strcpy(tmp, addCommas(long(value)));
strcat(tmp, p);
if (buff) strcpy(buff, tmp);
return p;
} // ftostr(double value, int dec = 2)
// Check for a timeout during a turn
Bool timeout() {
if (0 == game.options.time_limit) {
game.timeout1 = False;
game.timeout2 = False;
return False;
}
// We have TWO timeout flags; timeout1 and timeout2
// 2 is set as soon as the timeout happens regardless of ply level
// 1 is set when then timeout happens only for ply levels > 1 so that
// we always evaluate all moves for ply level 0 and 1 and only timeout
// for ply levels >= 2. This is necessary in order to allow the other
// side to determine if the king is in check after the initial move.
// Set the true timeout flag regardless of ply level
game.timeout2 = game.stats.move_stats.duration() >= game.options.time_limit;
// Set the other timeout flag ONLY if we are above ply level 1*
// NOTE: in order to truly set the game.white_king_in_check or the
// game.black_king_in_check flags correctly WE CANNOT RELY ON THE FACT
// THAT BOTH SIDES ARE EVALUATED DURING PLY 0. This only evaluates if
// the king is in check from the outermost level and stops the responses
// to any moves from being evaluated and tis is necessary to stop moves
// from being made that place a king in check. So we must allow both ply
// level 0 and 1 to complete before we allow a timeout to stop the
// evaluations:
game.timeout1 = game.timeout2 && (game.ply > game.options.minply);
if (game.timeout2) {
show_timeout();
}
return game.timeout1;
} // timeout()
// check for a low memory condition
Bool check_mem(index_t const
#ifdef ENA_MEM_STATS // get rid of 'unused' warning when not tracking memory
level
#endif
) {
#ifdef ENA_MEM_STATS
if ((unsigned int)freeMemory() < game.lowest_mem) {
game.lowest_mem = freeMemory();
game.lowest_mem_ply = game.ply;
}
game.freemem[level][game.ply].mem = freeMemory();
#endif
Bool const low_mem = freeMemory() < game.options.low_mem_limit;
if (low_mem) {
show_low_memory();
}
return low_mem;
} // check_mem(index_t const level)
#ifndef ESP32
void direct_write(index_t const pin, Bool const value) {
#if not ARDUINO_ARCH_RENESAS
if (!value)
{
if (pin > 1 && pin < 8 ) {
bitClear (PORTD, pin); // == digitalWrite(pin,LOW) for pins 2-6
}
else {
bitClear (PORTB, (pin-8)); // == digitalWrite(pin,LOW) for pins 8-12
}
}
else
{
if (pin > 1 && pin < 8 ) {
bitSet (PORTD, pin); // == digitalWrite(pin,HIGH) for pins 2-6
}
else {
bitSet (PORTB, (pin-8)); // == digitalWrite(pin,HIGH) for pins 8-12
}
}
#else
if (!value)
{
if (pin > 1 && pin < 8 ) {
digitalWrite(pin, LOW);
}
else {
digitalWrite(pin, LOW);
}
}
else
{
if (pin > 1 && pin < 8 ) {
digitalWrite(pin, HIGH);
}
else {
digitalWrite(pin, HIGH);
}
}
#endif // #if not ARDUINO_ARCH_RENESAS
} // direct_write(index_t const pin, Bool const value)
#else
void direct_write(index_t const /* pin */, Bool const /* value */) { }
#endif
#if 0
void check_kings() {
game.white_king_in_check = inCheck(board.get(game.wking));
game.black_king_in_check = inCheck(board.get(game.bking));
}
#else
// Static function used to implement the visitor-pattern
// when checking for either king's check state
static void visitor(piece_gen_t &gen) {
Piece const piece = board.get(gen.move.to);
if (King == getType(piece)) {
// This is a King; See which side it belongs to
if (White == getSide(piece)) {
game.white_king_in_check = True;
}
else {
game.black_king_in_check = True;
}
}
}
// Enumerate over all available moves and set the game.white_king_in_check
// and game.black_king_in_check flags accordingly
void check_kings() {
// Bool const wcheck = inCheck(board.get(game.wking));
// Bool const bcheck = inCheck(board.get(game.bking));
game.white_king_in_check = False;
game.black_king_in_check = False;
// Walk through the game.pieces[] list and set the king-in-check flags if necessary
for (index_t i = 0; i < game.piece_count; i++) {
if (-1 == game.pieces[i].x) { continue; }
// Construct a move_t object with the starting location
move_t move = { index_t(game.pieces[i].x + game.pieces[i].y * 8), -1, 0 };
piece_gen_t gen(move, move, move, visitor, False);
gen.move.value = gen.whites_turn ? MIN_VALUE : MAX_VALUE;
if (Empty == gen.type) { continue; }
// Evaluate the moves for this Piece Type and get the highest value move
switch (gen.type) {
case Pawn: add_pawn_moves(gen); break;
case Knight: add_knight_moves(gen); break;
case Bishop: add_bishop_moves(gen); break;
case Rook: add_rook_moves(gen); break;
case Queen: add_queen_moves(gen); break;
case King: add_king_moves(gen); break;
default: printf(Always, "bad type: line %d\n", __LINE__); break;
}
// If both king's are in check then there's nothing else for us to do
if (game.white_king_in_check && game.black_king_in_check) {
// if (wcheck != game.white_king_in_check || bcheck != game.black_king_in_check) {
// printf(Debug1, "check mismatch at line %d\n", __LINE__);
// while (1) {}
// }
return;
}
} // for each piece on both sides
// if (wcheck != game.white_king_in_check || bcheck != game.black_king_in_check) {
// printf(Debug1, "check mismatch at line %d\n", __LINE__);
// while (1) {}
// }
} // check_kings()
#endif
void show_low_memory() {
direct_write(DEBUG1_PIN, HIGH);
} // show_low_memory()
void show_quiescent_search() {
direct_write(DEBUG2_PIN, HIGH);
} // show_quiescent_search()
void show_timeout() {
direct_write(DEBUG3_PIN, HIGH);
} // show_timeout()
void show_check() {
direct_write(DEBUG4_PIN, HIGH);
} // show_check()
#ifdef ENA_MEM_STATS
void show_memory_stats1() {
// the amount of memory used as reported by the compiler
int const prg_ram = 938;
printf(Debug1, "== Memory Usage By Function and Ply Levels ==\n");
for (index_t i = 0; i <= game.options.max_max_ply; i++) {
printf(Debug1, "freemem[choose_best_move][ply %d] = %4d\n", i, game.freemem[CHOOSE][i].mem - prg_ram);
printf(Debug1, "freemem[ piece move gen ][ply %d] = %4d\n", i, game.freemem[ADD_MOVES][i].mem - prg_ram);
printf(Debug1, "freemem[ consider_move ][ply %d] = %4d\n", i, game.freemem[CONSIDER][i].mem - prg_ram);
printf(Debug1, "freemem[ make_move ][ply %d] = %4d. Diff = %d\n",
i,
game.freemem[MAKE][i].mem - prg_ram,
game.freemem[CHOOSE][i].mem - game.freemem[MAKE][i].mem);
printnl(Debug1);
}
printnl(Debug1);
} // show_memory_stats1()
void show_memory_stats2() {
// the amount of memory used as reported by the compiler
int const prg_ram = 933;
printf(Debug1, "== Memory Usage By Function and Ply Levels ==\n");
int const choose_best_move_mem = game.freemem[CHOOSE][0].mem - game.freemem[ADD_MOVES][0].mem;
int const piece_move_mem = game.freemem[ADD_MOVES][0].mem - game.freemem[CONSIDER][0].mem;
int const consider_move_mem = game.freemem[CONSIDER][0].mem - game.freemem[MAKE][0].mem;
int const make_move_mem = game.freemem[MAKE][0].mem - game.freemem[CHOOSE][1].mem;
printf(Debug1, "choose_best_move(...) memory: %3d\n", choose_best_move_mem);
printf(Debug1, " pieces_gen(...) memory: + %3d\n", piece_move_mem);
printf(Debug1, " consider_move(...) memory: + %3d\n", consider_move_mem);
printf(Debug1, " make_move(...) memory: + %3d\n", make_move_mem);
int const recurs_mem =
choose_best_move_mem +
piece_move_mem +
consider_move_mem +
make_move_mem;
printrep(Debug1, '=', 35);
printf(Debug1, "%d\n", recurs_mem);
printrep(Debug1, ' ', 7);
printf(Debug1, "Total Recusive Memory: %d\n", recurs_mem);
printf(Debug1, " Lowest Memory Registered: %4d at ply level %d\n", game.lowest_mem - prg_ram, game.lowest_mem_ply);
printnl(Debug1);
} // show_memory_stats2()
#endif
void show_stats() {
char str[16]= "";
// print out the game move counts and time statistics
printrep(Debug1, '=', 70);
printnl(Debug1);
printrep(Debug1, ' ', 11);
printf(Debug1, "total game time: ");
show_time(game.stats.game_stats.duration());
printnl(Debug1);
uint32_t const move_count = game.move_num;
ftostr(move_count, 0, str);
printrep(Debug1, ' ', 11);
printf(Debug1, "number of moves: %s\n", str);
uint32_t const game_count = game.stats.game_stats.counter();
ftostr(game_count, 0, str);
printf(Debug1, "total game moves evaluated: %s\n", str);
uint32_t const moves_per_sec = game.stats.game_stats.moveps();
ftostr(moves_per_sec, 0, str);
printf(Debug1, " average moves per second: %s %s\n", str,
game.options.profiling ? "" : "(this includes waiting on the serial output)");
#ifdef ENA_MEM_STATS
show_memory_stats2();
#endif
} // show_stats()
////////////////////////////////////////////////////////////////////////////////////////
// Check for any received serial data
//
// Note: Sanitized stack
Bool check_serial()
{
// Stack Management
// DECLARE ALL LOCAL VARIABLES USED IN THIS CONTEXT HERE AND
// DO NOT MODIFY ANYTHING BEFORE CHECKING THE AVAILABLE STACK
Bool moved;
Bool digits;
char movestr[5];
index_t i;
// Check for low stack space
if (check_mem(CHOOSE)) { return False; }
// Now we can alter local variables! 😎
moved = False;
if (Serial.available() == 5) {
digits = True;
for (i = 0; i < 5; i++) {
movestr[i] = Serial.read();
if (i < 4) {
if ((movestr[i] >= '0') && (movestr[i] <= '7')) {
movestr[i] -= '0';
}
else {
digits = False;
}
}
}
if (digits) {
game.supplied = { index_t(movestr[0] + movestr[1] * 8), index_t(movestr[2] + movestr[3] * 8), 0L };
game.user_supplied = True;
printf(Debug1, "User move: ");
show_move(game.supplied);
printnl(Debug1);
moved = True;
}
}
else while (Serial.available()) { Serial.read(); }
return moved;
} // check_serial()
////////////////////////////////////////////////////////////////////////////////////////
// Fill in the next opening book move if available.
//
// returns True if there is a move or False otherwise
Bool check_book()
{
static index_t index = 0;
if (!game.options.openbook) { return False; }
if (game.turn != book_t::side) {
return False;
}
if ((index * 2) != game.move_num) {
return False;
}
if (index < index_t(ARRAYSZ(opening1))) {
game.supplied = { index_t(opening1[index].from), index_t(opening1[index].to), 0L };
game.book_supplied = True;
game.supply_valid = False;
index++;
return True;
}
return False;
} // check_book()
////////////////////////////////////////////////////////////////////////////////////////
// see if a move would violate the move repetition rule
//
// returns True if the move would violate the rule and end the game, otherwise False
Bool would_repeat(move_t const &move)
{
// Stack Management
// DECLARE ALL LOCAL VARIABLES USED IN THIS CONTEXT HERE AND
// DO NOT MODIFY ANYTHING BEFORE CHECKING THE AVAILABLE STACK
game_t::history_t m;
index_t total, i;
Bool result;
// Check for low stack space
if (check_mem(ADD_MOVES)) { return False; }
// Now we can alter local variables! 😎
total = MAX_REPS * 2 - 1;
if (game.hist_count < total) {
return False;
}
result = True;
m = { move.from, move.to };
for (i = 1; i < total; i += 2) {
if (game.history[i].to == m.from && game.history[i].from == m.to) {
m = game.history[i];
}
else {
result = False;
break;
}
}
return result;
} // would_repeat(move_t const &move)
////////////////////////////////////////////////////////////////////////////////////////
// Add a move to the partial history list and check for 3-move repetition
//
// returns True if the move violates the rule and end the game, otherwise False
Bool add_to_history(move_t const &move)
{
// Stack Management
// DECLARE ALL LOCAL VARIABLES USED IN THIS CONTEXT HERE AND
// DO NOT MODIFY ANYTHING BEFORE CHECKING THE AVAILABLE STACK
Bool result;
// Check for low stack space
if (check_mem(ADD_MOVES)) { return False; }
// Now we can alter local variables! 😎
result = would_repeat(move);
memmove(&game.history[1], &game.history[0], sizeof(game_t::history_t) * (ARRAYSZ(game.history) - 1));
game.history[0] = { move.from, move.to };
if (game.hist_count < index_t(ARRAYSZ(game.history))) {
game.hist_count++;
}
return result;
} // add_to_history(move_t const &move)
void say_check() {
printf(Debug1, "check");
}
void say_mate() {
printf(Debug1, "mate");
}
void show_side(Color const side)
{
if (White == side) { printf(Debug1, "White"); } else { printf(Debug1, "Black"); }
}
void show_check(Color const side, Bool const mate /* = False */)
{
if (game.options.print_level >= Debug1) {
show_side(side);
if (mate) {
say_mate();
}
else {
Serial.write(" is in ");
say_check();
}
Serial.write("! ");
}
} // show_check()
void show_check_status() {
// Announce if either King is in check
if (game.white_king_in_check) {
show_check(White);
}
if (game.black_king_in_check) {
show_check(Black);
}
printnl(Debug1);
if (game.white_king_in_check || game.black_king_in_check) {
printnl(Debug1);
}
} // show_check_status()
// display a Piece's color and type
void show_piece(Piece const piece)
{
show_side(getSide(piece));
switch (getType(piece)) {
case Empty: printf(Debug1, " Empty"); break;
case Pawn: printf(Debug1, " Pawn"); break;
case Rook: printf(Debug1, " Rook"); break;
case Knight: printf(Debug1, " Knight"); break;
case Bishop: printf(Debug1, " Bishop"); break;
case Queen: printf(Debug1, " Queen"); break;
case King: printf(Debug1, " King"); break;
default:
printf(Debug1, "bad type %d\n", getType(piece));
break;
}
} // show_piece(Piece const piece)
// debug function to display all of the point_t's in the game.pieces[game.piece_count] list:
void show_pieces()
{
printf(Debug1, "game.pieces[%2d] = {\n", game.piece_count);
for (int i = 0; i < game.piece_count; i++) {
point_t const &loc = game.pieces[i];
index_t const col = loc.x;
index_t const row = loc.y;
if (-1 == col && -1 == row) {
printf(Debug1, " game.pieces[%2d] = Empty", i);
}
else {
Piece const p = board.get(col + row * 8u);
printf(Debug1, " game.pieces[%2d] = %2d, %2d (%2d): ", i, col, row, col + row * 8u);
show_piece(p);
}
printnl(Debug1);
}
printf(Debug1, "};\n");
} // show_pieces()
// display a piece being moved
void show_move(move_t const &move, Bool const align /* = False */)
{
index_t const col = move.from % 8;
index_t const row = move.from / 8;
Piece const p = board.get(move.from);
index_t const to_col = move.to % 8;
index_t const to_row = move.to / 8;
Piece const op = board.get(move.to);
show_piece(p);
printf(Debug1, " from: %d,%d (%c%c) to: %d,%d (%c%c)",
col, row, col + 'A', '8' - row,
to_col, to_row, to_col + 'A', '8' - to_row);
if (Empty != getType(op)) {
printf(Debug1, " taking a ");
show_piece(op);
}
char str_value[16] = "";
strcpy(str_value, addCommas(move.value));
if (align) {
printf(Debug1, " value: %14s", str_value);
}
else {
printf(Debug1, " value: %s", str_value);
}
} // show_move(move_t const &move, Bool const align)
void show_time(uint32_t ms)
{
uint32_t minutes = 0;
uint32_t seconds = 0;
while (ms >= 1000) {
ms -= 1000;
if (++seconds >= 60) {
seconds = 0;
minutes++;
}
}
if (0 != minutes) {
char str[16] {};
ftostr(minutes, 0, str);
printf(Debug1, "%s minute%s%s", str, 1 == minutes ? "" : "s", (0 == seconds && 0 == ms) ? "" : ", ");
}
if (0 != seconds) {
printf(Debug1, "%d second%s%s", seconds, (1 == seconds) ? "" : "s", (0 == ms) ? "" : ", ");
}
if (0 != ms) {
if (0 != seconds) {
printf(Debug1, ", ");
}
printf(Debug1, "%ld ms", ms);
}
}
////////////////////////////////////////////////////////////////////////////////////////
// runtime memory usage functions
#include <unistd.h>
#ifdef ESP32
int freeMemory() { return 0; }
#else
int freeMemory() {
#ifdef __arm__
// should use uinstd.h to define sbrk but Due causes a conflict
// extern "C" { char* sbrk(int incr); }
#else // __ARM__
extern char *__brkval;
#endif // __arm__
char top;
#ifdef __arm__
return &top - reinterpret_cast<char*>(sbrk(0));
#elif defined(CORE_TEENSY) || (ARDUINO > 103 && ARDUINO != 151)
return &top - __brkval;
#else // __arm__
return __brkval ? &top - __brkval : &top - __malloc_heap_start;
#endif // __arm__
}
#endif