From 2df210f87a79deedc9003b1bbd6015a2fea7c03e Mon Sep 17 00:00:00 2001 From: Jeff Epler Date: Fri, 22 Sep 2023 14:47:02 -0500 Subject: [PATCH 1/3] Drop certain CircuitPython workarounds that are no longer needed * ndarray_set_value: in CircuitPython 9 * mp_obj_slice_indices: ditto * Use modern MP_REGISTER_MODULE calls: ditto * use MP_OBJ_SENTINEL to forward to locals dict (was never necessary?) --- code/ndarray.c | 92 ---------------------------------- code/ndarray.h | 4 +- code/ndarray_properties.c | 28 +---------- code/ndarray_properties.h | 70 -------------------------- code/numpy/fft/fft.c | 4 -- code/numpy/linalg/linalg.c | 4 -- code/numpy/numpy.c | 4 -- code/scipy/linalg/linalg.c | 4 -- code/scipy/optimize/optimize.c | 4 -- code/scipy/scipy.c | 4 -- code/scipy/signal/signal.c | 4 -- code/scipy/special/special.c | 4 -- code/ulab.c | 28 ----------- code/user/user.c | 4 -- code/utils/utils.c | 4 -- 15 files changed, 3 insertions(+), 259 deletions(-) diff --git a/code/ndarray.c b/code/ndarray.c index 45418be2..1d60ef87 100644 --- a/code/ndarray.c +++ b/code/ndarray.c @@ -61,98 +61,6 @@ void ndarray_set_complex_value(void *p, size_t index, mp_obj_t value) { } } -#ifdef CIRCUITPY -void ndarray_set_value(char typecode, void *p, size_t index, mp_obj_t val_in) { - switch (typecode) { - case NDARRAY_INT8: - ((signed char *)p)[index] = mp_obj_get_int(val_in); - break; - case NDARRAY_UINT8: - ((unsigned char *)p)[index] = mp_obj_get_int(val_in); - break; - case NDARRAY_INT16: - ((short *)p)[index] = mp_obj_get_int(val_in); - break; - case NDARRAY_UINT16: - ((unsigned short *)p)[index] = mp_obj_get_int(val_in); - break; - case NDARRAY_FLOAT: - ((mp_float_t *)p)[index] = mp_obj_get_float(val_in); - break; - #if ULAB_SUPPORTS_COMPLEX - case NDARRAY_COMPLEX: - ndarray_set_complex_value(p, index, val_in); - break; - #endif - } -} -#endif - -#if defined(MICROPY_VERSION_MAJOR) && MICROPY_VERSION_MAJOR == 1 && MICROPY_VERSION_MINOR == 11 - -void mp_obj_slice_indices(mp_obj_t self_in, mp_int_t length, mp_bound_slice_t *result) { - mp_obj_slice_t *self = MP_OBJ_TO_PTR(self_in); - mp_int_t start, stop, step; - - if (self->step == mp_const_none) { - step = 1; - } else { - step = mp_obj_get_int(self->step); - if (step == 0) { - mp_raise_ValueError(translate("slice step can't be zero")); - } - } - - if (step > 0) { - // Positive step - if (self->start == mp_const_none) { - start = 0; - } else { - start = mp_obj_get_int(self->start); - if (start < 0) { - start += length; - } - start = MIN(length, MAX(start, 0)); - } - - if (self->stop == mp_const_none) { - stop = length; - } else { - stop = mp_obj_get_int(self->stop); - if (stop < 0) { - stop += length; - } - stop = MIN(length, MAX(stop, 0)); - } - } else { - // Negative step - if (self->start == mp_const_none) { - start = length - 1; - } else { - start = mp_obj_get_int(self->start); - if (start < 0) { - start += length; - } - start = MIN(length - 1, MAX(start, -1)); - } - - if (self->stop == mp_const_none) { - stop = -1; - } else { - stop = mp_obj_get_int(self->stop); - if (stop < 0) { - stop += length; - } - stop = MIN(length - 1, MAX(stop, -1)); - } - } - - result->start = start; - result->stop = stop; - result->step = step; -} -#endif /* MICROPY_VERSION v1.11 */ - void ndarray_fill_array_iterable(mp_float_t *array, mp_obj_t iterable) { mp_obj_iter_buf_t x_buf; mp_obj_t x_item, x_iterable = mp_getiter(iterable, &x_buf); diff --git a/code/ndarray.h b/code/ndarray.h index 4564f772..3025c051 100644 --- a/code/ndarray.h +++ b/code/ndarray.h @@ -113,11 +113,9 @@ typedef struct _mp_obj_slice_t { #if !CIRCUITPY #define translate(x) MP_ERROR_TEXT(x) -#define ndarray_set_value(a, b, c, d) mp_binary_set_val_array(a, b, c, d) -#else -void ndarray_set_value(char , void *, size_t , mp_obj_t ); #endif +#define ndarray_set_value(a, b, c, d) mp_binary_set_val_array(a, b, c, d) void ndarray_set_complex_value(void *, size_t , mp_obj_t ); #define NDARRAY_NUMERIC 0 diff --git a/code/ndarray_properties.c b/code/ndarray_properties.c index 547b1912..aa297158 100644 --- a/code/ndarray_properties.c +++ b/code/ndarray_properties.c @@ -24,29 +24,6 @@ #include "numpy/carray/carray.h" #endif -#ifndef CIRCUITPY - -// a somewhat hackish implementation of property getters/setters; -// this functions is hooked into the attr member of ndarray - -STATIC void call_local_method(mp_obj_t obj, qstr attr, mp_obj_t *dest) { - const mp_obj_type_t *type = mp_obj_get_type(obj); - while (MP_OBJ_TYPE_HAS_SLOT(type, locals_dict)) { - assert(MP_OBJ_TYPE_GET_SLOT(type, locals_dict)->base.type == &mp_type_dict); // MicroPython restriction, for now - mp_map_t *locals_map = &MP_OBJ_TYPE_GET_SLOT(type, locals_dict)->map; - mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP); - if (elem != NULL) { - mp_convert_member_lookup(obj, type, elem->value, dest); - break; - } - if (!MP_OBJ_TYPE_HAS_SLOT(type, parent)) { - break; - } - type = MP_OBJ_TYPE_GET_SLOT(type, parent); - } -} - - void ndarray_properties_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { if (dest[0] == MP_OBJ_NULL) { switch(attr) { @@ -98,7 +75,8 @@ void ndarray_properties_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { #endif #endif /* ULAB_SUPPORTS_COMPLEX */ default: - call_local_method(self_in, attr, dest); + // forward to locals dict + dest[1] = MP_OBJ_SENTINEL; break; } } else { @@ -119,5 +97,3 @@ void ndarray_properties_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) { } } } - -#endif /* CIRCUITPY */ diff --git a/code/ndarray_properties.h b/code/ndarray_properties.h index a074ec1f..3e0b9a40 100644 --- a/code/ndarray_properties.h +++ b/code/ndarray_properties.h @@ -22,74 +22,6 @@ #include "ndarray.h" #include "numpy/ndarray/ndarray_iter.h" -#if CIRCUITPY -typedef struct _mp_obj_property_t { - mp_obj_base_t base; - mp_obj_t proxy[3]; // getter, setter, deleter -} mp_obj_property_t; - -#if NDARRAY_HAS_DTYPE -MP_DEFINE_CONST_FUN_OBJ_1(ndarray_get_dtype_obj, ndarray_dtype); -STATIC const mp_obj_property_t ndarray_dtype_obj = { - .base.type = &mp_type_property, - .proxy = {(mp_obj_t)&ndarray_get_dtype_obj, - mp_const_none, - mp_const_none }, -}; -#endif /* NDARRAY_HAS_DTYPE */ - -#if NDARRAY_HAS_FLATITER -MP_DEFINE_CONST_FUN_OBJ_1(ndarray_flatiter_make_new_obj, ndarray_flatiter_make_new); -STATIC const mp_obj_property_t ndarray_flat_obj = { - .base.type = &mp_type_property, - .proxy = {(mp_obj_t)&ndarray_flatiter_make_new_obj, - mp_const_none, - mp_const_none }, -}; -#endif /* NDARRAY_HAS_FLATITER */ - -#if NDARRAY_HAS_ITEMSIZE -MP_DEFINE_CONST_FUN_OBJ_1(ndarray_get_itemsize_obj, ndarray_itemsize); -STATIC const mp_obj_property_t ndarray_itemsize_obj = { - .base.type = &mp_type_property, - .proxy = {(mp_obj_t)&ndarray_get_itemsize_obj, - mp_const_none, - mp_const_none }, -}; -#endif /* NDARRAY_HAS_ITEMSIZE */ - -#if NDARRAY_HAS_SHAPE -MP_DEFINE_CONST_FUN_OBJ_1(ndarray_get_shape_obj, ndarray_shape); -STATIC const mp_obj_property_t ndarray_shape_obj = { - .base.type = &mp_type_property, - .proxy = {(mp_obj_t)&ndarray_get_shape_obj, - mp_const_none, - mp_const_none }, -}; -#endif /* NDARRAY_HAS_SHAPE */ - -#if NDARRAY_HAS_SIZE -MP_DEFINE_CONST_FUN_OBJ_1(ndarray_get_size_obj, ndarray_size); -STATIC const mp_obj_property_t ndarray_size_obj = { - .base.type = &mp_type_property, - .proxy = {(mp_obj_t)&ndarray_get_size_obj, - mp_const_none, - mp_const_none }, -}; -#endif /* NDARRAY_HAS_SIZE */ - -#if NDARRAY_HAS_STRIDES -MP_DEFINE_CONST_FUN_OBJ_1(ndarray_get_strides_obj, ndarray_strides); -STATIC const mp_obj_property_t ndarray_strides_obj = { - .base.type = &mp_type_property, - .proxy = {(mp_obj_t)&ndarray_get_strides_obj, - mp_const_none, - mp_const_none }, -}; -#endif /* NDARRAY_HAS_STRIDES */ - -#else - void ndarray_properties_attr(mp_obj_t , qstr , mp_obj_t *); #if NDARRAY_HAS_DTYPE @@ -116,6 +48,4 @@ MP_DEFINE_CONST_FUN_OBJ_1(ndarray_size_obj, ndarray_size); MP_DEFINE_CONST_FUN_OBJ_1(ndarray_strides_obj, ndarray_strides); #endif -#endif /* CIRCUITPY */ - #endif diff --git a/code/numpy/fft/fft.c b/code/numpy/fft/fft.c index ad4996e3..42621f52 100644 --- a/code/numpy/fft/fft.c +++ b/code/numpy/fft/fft.c @@ -101,9 +101,5 @@ const mp_obj_module_t ulab_fft_module = { .globals = (mp_obj_dict_t*)&mp_module_ulab_fft_globals, }; #if CIRCUITPY_ULAB -#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144 -MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy_dot_fft, ulab_fft_module, MODULE_ULAB_ENABLED); -#else MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy_dot_fft, ulab_fft_module); #endif -#endif diff --git a/code/numpy/linalg/linalg.c b/code/numpy/linalg/linalg.c index 0243a5d9..55ac4752 100644 --- a/code/numpy/linalg/linalg.c +++ b/code/numpy/linalg/linalg.c @@ -537,10 +537,6 @@ const mp_obj_module_t ulab_linalg_module = { .globals = (mp_obj_dict_t*)&mp_module_ulab_linalg_globals, }; #if CIRCUITPY_ULAB -#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144 -MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy_dot_linalg, ulab_linalg_module, MODULE_ULAB_ENABLED); -#else MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy_dot_linalg, ulab_linalg_module); #endif #endif -#endif diff --git a/code/numpy/numpy.c b/code/numpy/numpy.c index d530638e..74de9088 100644 --- a/code/numpy/numpy.c +++ b/code/numpy/numpy.c @@ -397,9 +397,5 @@ const mp_obj_module_t ulab_numpy_module = { }; #if CIRCUITPY_ULAB -#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144 -MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy, ulab_numpy_module, MODULE_ULAB_ENABLED); -#else MP_REGISTER_MODULE(MP_QSTR_ulab_dot_numpy, ulab_numpy_module); #endif -#endif diff --git a/code/scipy/linalg/linalg.c b/code/scipy/linalg/linalg.c index 52c04afe..a42392ce 100644 --- a/code/scipy/linalg/linalg.c +++ b/code/scipy/linalg/linalg.c @@ -276,10 +276,6 @@ const mp_obj_module_t ulab_scipy_linalg_module = { .globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_linalg_globals, }; #if CIRCUITPY_ULAB -#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144 -MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_linalg, ulab_scipy_linalg_module, MODULE_ULAB_ENABLED); -#else MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_linalg, ulab_scipy_linalg_module); #endif #endif -#endif diff --git a/code/scipy/optimize/optimize.c b/code/scipy/optimize/optimize.c index 7fc6b670..ef10288d 100644 --- a/code/scipy/optimize/optimize.c +++ b/code/scipy/optimize/optimize.c @@ -413,9 +413,5 @@ const mp_obj_module_t ulab_scipy_optimize_module = { .globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_optimize_globals, }; #if CIRCUITPY_ULAB -#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144 -MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_optimize, ulab_scipy_optimize_module, MODULE_ULAB_ENABLED); -#else MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_optimize, ulab_scipy_optimize_module); #endif -#endif diff --git a/code/scipy/scipy.c b/code/scipy/scipy.c index c9f51df5..6895127b 100644 --- a/code/scipy/scipy.c +++ b/code/scipy/scipy.c @@ -49,10 +49,6 @@ const mp_obj_module_t ulab_scipy_module = { .globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_globals, }; #if CIRCUITPY_ULAB -#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144 -MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy, ulab_scipy_module, MODULE_ULAB_ENABLED); -#else MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy, ulab_scipy_module); #endif -#endif #endif /* ULAB_HAS_SCIPY */ diff --git a/code/scipy/signal/signal.c b/code/scipy/signal/signal.c index 6afa05f6..db8d3cc5 100644 --- a/code/scipy/signal/signal.c +++ b/code/scipy/signal/signal.c @@ -134,9 +134,5 @@ const mp_obj_module_t ulab_scipy_signal_module = { .globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_signal_globals, }; #if CIRCUITPY_ULAB -#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144 -MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_signal, ulab_scipy_signal_module, MODULE_ULAB_ENABLED); -#else MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_signal, ulab_scipy_signal_module); #endif -#endif diff --git a/code/scipy/special/special.c b/code/scipy/special/special.c index 9d5ca629..0e561b6f 100644 --- a/code/scipy/special/special.c +++ b/code/scipy/special/special.c @@ -41,9 +41,5 @@ const mp_obj_module_t ulab_scipy_special_module = { .globals = (mp_obj_dict_t*)&mp_module_ulab_scipy_special_globals, }; #if CIRCUITPY_ULAB -#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144 -MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_special, ulab_scipy_special_module, MODULE_ULAB_ENABLED); -#else MP_REGISTER_MODULE(MP_QSTR_ulab_dot_scipy_dot_special, ulab_scipy_special_module); #endif -#endif diff --git a/code/ulab.c b/code/ulab.c index d731aac4..bb0f8758 100644 --- a/code/ulab.c +++ b/code/ulab.c @@ -76,26 +76,6 @@ STATIC const mp_rom_map_elem_t ulab_ndarray_locals_dict_table[] = { #if NDARRAY_HAS_SORT { MP_ROM_QSTR(MP_QSTR_sort), MP_ROM_PTR(&numerical_sort_inplace_obj) }, #endif - #ifdef CIRCUITPY - #if NDARRAY_HAS_DTYPE - { MP_ROM_QSTR(MP_QSTR_dtype), MP_ROM_PTR(&ndarray_dtype_obj) }, - #endif - #if NDARRAY_HAS_FLATITER - { MP_ROM_QSTR(MP_QSTR_flat), MP_ROM_PTR(&ndarray_flat_obj) }, - #endif - #if NDARRAY_HAS_ITEMSIZE - { MP_ROM_QSTR(MP_QSTR_itemsize), MP_ROM_PTR(&ndarray_itemsize_obj) }, - #endif - #if NDARRAY_HAS_SHAPE - { MP_ROM_QSTR(MP_QSTR_shape), MP_ROM_PTR(&ndarray_shape_obj) }, - #endif - #if NDARRAY_HAS_SIZE - { MP_ROM_QSTR(MP_QSTR_size), MP_ROM_PTR(&ndarray_size_obj) }, - #endif - #if NDARRAY_HAS_STRIDES - { MP_ROM_QSTR(MP_QSTR_strides), MP_ROM_PTR(&ndarray_strides_obj) }, - #endif - #endif /* CIRCUITPY */ }; STATIC MP_DEFINE_CONST_DICT(ulab_ndarray_locals_dict, ulab_ndarray_locals_dict_table); @@ -167,9 +147,7 @@ const mp_obj_type_t ulab_ndarray_type = { #if NDARRAY_HAS_BINARY_OPS .binary_op = ndarray_binary_op, #endif - #ifndef CIRCUITPY .attr = ndarray_properties_attr, - #endif .buffer_p = { .get_buffer = ndarray_get_buffer, }, ) }; @@ -253,10 +231,4 @@ const mp_obj_module_t ulab_user_cmodule = { .globals = (mp_obj_dict_t*)&mp_module_ulab_globals, }; -// Use old three-argument MP_REGISTER_MODULE for -// MicroPython <= v1.18.0: (1 << 16) | (18 << 8) | 0 -#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144 -MP_REGISTER_MODULE(MP_QSTR_ulab, ulab_user_cmodule, MODULE_ULAB_ENABLED); -#else MP_REGISTER_MODULE(MP_QSTR_ulab, ulab_user_cmodule); -#endif diff --git a/code/user/user.c b/code/user/user.c index dfc3fcde..88775fda 100644 --- a/code/user/user.c +++ b/code/user/user.c @@ -92,11 +92,7 @@ const mp_obj_module_t ulab_user_module = { .globals = (mp_obj_dict_t*)&mp_module_ulab_user_globals, }; #if CIRCUITPY_ULAB -#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144 -MP_REGISTER_MODULE(MP_QSTR_ulab_dot_user, ulab_user_module, ULAB_HAS_USER_MODULE); -#else MP_REGISTER_MODULE(MP_QSTR_ulab_dot_user, ulab_user_module); #endif #endif -#endif diff --git a/code/utils/utils.c b/code/utils/utils.c index fee67d47..6a59baf3 100644 --- a/code/utils/utils.c +++ b/code/utils/utils.c @@ -250,11 +250,7 @@ const mp_obj_module_t ulab_utils_module = { .globals = (mp_obj_dict_t*)&mp_module_ulab_utils_globals, }; #if CIRCUITPY_ULAB -#if !defined(MICROPY_VERSION) || MICROPY_VERSION <= 70144 -MP_REGISTER_MODULE(MP_QSTR_ulab_dot_utils, ulab_utils_module, MODULE_ULAB_ENABLED); -#else MP_REGISTER_MODULE(MP_QSTR_ulab_dot_utils, ulab_utils_module); #endif -#endif #endif /* ULAB_HAS_UTILS_MODULE */ From 9c9e9532ac3755de5d6f779fcdcc12ea236ddd48 Mon Sep 17 00:00:00 2001 From: Jeff Epler Date: Mon, 30 Oct 2023 09:48:45 +0100 Subject: [PATCH 2/3] Switch to using MP_ERROR_TEXT in CircuitPython, change ulab accordingly --- code/ndarray.c | 52 ++++++++++++++++---------------- code/ndarray.h | 4 --- code/ndarray_operators.c | 6 ++-- code/numpy/approx.c | 6 ++-- code/numpy/bitwise.c | 6 ++-- code/numpy/carray/carray.c | 10 +++--- code/numpy/carray/carray_tools.c | 2 +- code/numpy/compare.c | 6 ++-- code/numpy/create.c | 32 ++++++++++---------- code/numpy/fft/fft_tools.c | 18 +++++------ code/numpy/filter.c | 6 ++-- code/numpy/io/io.c | 22 +++++++------- code/numpy/linalg/linalg.c | 16 +++++----- code/numpy/numerical.c | 44 +++++++++++++-------------- code/numpy/poly.c | 14 ++++----- code/numpy/transform.c | 20 ++++++------ code/numpy/vector.c | 32 ++++++++++---------- code/scipy/linalg/linalg.c | 10 +++--- code/scipy/optimize/optimize.c | 22 +++++++------- code/scipy/signal/signal.c | 14 ++++----- code/ulab_tools.c | 10 +++--- code/user/user.c | 4 +-- code/utils/utils.c | 10 +++--- 23 files changed, 181 insertions(+), 185 deletions(-) diff --git a/code/ndarray.c b/code/ndarray.c index 1d60ef87..8fc72a7e 100644 --- a/code/ndarray.c +++ b/code/ndarray.c @@ -199,7 +199,7 @@ mp_obj_t ndarray_dtype_make_new(const mp_obj_type_t *type, size_t n_args, size_t if((_dtype != NDARRAY_BOOL) && (_dtype != NDARRAY_UINT8) && (_dtype != NDARRAY_INT8) && (_dtype != NDARRAY_UINT16) && (_dtype != NDARRAY_INT16) && (_dtype != NDARRAY_FLOAT)) { - mp_raise_TypeError(translate("data type not understood")); + mp_raise_TypeError(MP_ERROR_TEXT("data type not understood")); } } else { GET_STR_DATA_LEN(_args[0].u_obj, _dtype_, len); @@ -220,7 +220,7 @@ mp_obj_t ndarray_dtype_make_new(const mp_obj_type_t *type, size_t n_args, size_t } #endif else { - mp_raise_TypeError(translate("data type not understood")); + mp_raise_TypeError(MP_ERROR_TEXT("data type not understood")); } } dtype->dtype = _dtype; @@ -252,7 +252,7 @@ mp_obj_t ndarray_dtype(mp_obj_t self_in) { && (*_dtype != NDARRAY_COMPLEX) #endif )) { - mp_raise_TypeError(translate("data type not understood")); + mp_raise_TypeError(MP_ERROR_TEXT("data type not understood")); } dtype = *_dtype; } @@ -504,7 +504,7 @@ bool ndarray_is_dense(ndarray_obj_t *ndarray) { static size_t multiply_size(size_t a, size_t b) { size_t result; if (__builtin_mul_overflow(a, b, &result)) { - mp_raise_ValueError(translate("array is too big")); + mp_raise_ValueError(MP_ERROR_TEXT("array is too big")); } return result; } @@ -531,7 +531,7 @@ ndarray_obj_t *ndarray_new_ndarray(uint8_t ndim, size_t *shape, int32_t *strides } if (SIZE_MAX / ndarray->itemsize <= ndarray->len) { - mp_raise_ValueError(translate("ndarray length overflows")); + mp_raise_ValueError(MP_ERROR_TEXT("ndarray length overflows")); } // if the length is 0, still allocate a single item, so that contractions can be handled @@ -690,7 +690,7 @@ ndarray_obj_t *ndarray_copy_view_convert_type(ndarray_obj_t *source, uint8_t dty #if ULAB_SUPPORTS_COMPLEX if(source->dtype == NDARRAY_COMPLEX) { if(dtype != NDARRAY_COMPLEX) { - mp_raise_TypeError(translate("cannot convert complex type")); + mp_raise_TypeError(MP_ERROR_TEXT("cannot convert complex type")); } else { memcpy(array, sarray, complex_size); } @@ -856,7 +856,7 @@ ndarray_obj_t *ndarray_from_iterable(mp_obj_t obj, uint8_t dtype) { break; } if(ndim == ULAB_MAX_DIMS) { - mp_raise_ValueError(translate("too many dimensions")); + mp_raise_ValueError(MP_ERROR_TEXT("too many dimensions")); } shape[ndim] = MP_OBJ_SMALL_INT_VALUE(mp_obj_len_maybe(item)); if(shape[ndim] == 0) { @@ -1046,13 +1046,13 @@ static mp_bound_slice_t generate_slice(mp_int_t n, mp_obj_t index) { _index += n; } if((_index >= n) || (_index < 0)) { - mp_raise_msg(&mp_type_IndexError, translate("index is out of bounds")); + mp_raise_msg(&mp_type_IndexError, MP_ERROR_TEXT("index is out of bounds")); } slice.start = _index; slice.stop = _index + 1; slice.step = 1; } else { - mp_raise_msg(&mp_type_IndexError, translate("indices must be integers, slices, or Boolean lists")); + mp_raise_msg(&mp_type_IndexError, MP_ERROR_TEXT("indices must be integers, slices, or Boolean lists")); } return slice; } @@ -1078,7 +1078,7 @@ static ndarray_obj_t *ndarray_view_from_slices(ndarray_obj_t *ndarray, mp_obj_tu k += ndarray->shape[ULAB_MAX_DIMS - ndarray->ndim + i]; } if((k >= (int32_t)ndarray->shape[ULAB_MAX_DIMS - ndarray->ndim + i]) || (k < 0)) { - mp_raise_msg(&mp_type_IndexError, translate("index is out of bounds")); + mp_raise_msg(&mp_type_IndexError, MP_ERROR_TEXT("index is out of bounds")); } offset += ndarray->strides[ULAB_MAX_DIMS - ndarray->ndim + i] * k; // ... and then we have to shift the shapes to the right @@ -1105,7 +1105,7 @@ void ndarray_assign_view(ndarray_obj_t *view, ndarray_obj_t *values) { int32_t *lstrides = m_new0(int32_t, ULAB_MAX_DIMS); int32_t *rstrides = m_new0(int32_t, ULAB_MAX_DIMS); if(!ndarray_can_broadcast(view, values, &ndim, shape, lstrides, rstrides)) { - mp_raise_ValueError(translate("operands could not be broadcast together")); + mp_raise_ValueError(MP_ERROR_TEXT("operands could not be broadcast together")); } else { ndarray_obj_t *ndarray = ndarray_copy_view_convert_type(values, view->dtype); @@ -1171,7 +1171,7 @@ void ndarray_assign_view(ndarray_obj_t *view, ndarray_obj_t *values) { static mp_obj_t ndarray_from_boolean_index(ndarray_obj_t *ndarray, ndarray_obj_t *index) { // returns a 1D array, indexed by a Boolean array if(ndarray->len != index->len) { - mp_raise_ValueError(translate("array and index length must be equal")); + mp_raise_ValueError(MP_ERROR_TEXT("array and index length must be equal")); } uint8_t *iarray = (uint8_t *)index->array; // first we have to find out how many trues there are @@ -1223,7 +1223,7 @@ static mp_obj_t ndarray_assign_from_boolean_index(ndarray_obj_t *ndarray, ndarra #if ULAB_SUPPORTS_COMPLEX if(values->dtype == NDARRAY_COMPLEX) { if(ndarray->dtype != NDARRAY_COMPLEX) { - mp_raise_TypeError(translate("cannot convert complex to dtype")); + mp_raise_TypeError(MP_ERROR_TEXT("cannot convert complex to dtype")); } else { uint8_t *array = (uint8_t *)ndarray->array; for(size_t i = 0; i < ndarray->len; i++) { @@ -1314,7 +1314,7 @@ static mp_obj_t ndarray_get_slice(ndarray_obj_t *ndarray, mp_obj_t index, ndarra if(mp_obj_is_type(index, &ulab_ndarray_type)) { ndarray_obj_t *nindex = MP_OBJ_TO_PTR(index); if((nindex->ndim > 1) || (nindex->boolean == false)) { - mp_raise_NotImplementedError(translate("operation is implemented for 1D Boolean arrays only")); + mp_raise_NotImplementedError(MP_ERROR_TEXT("operation is implemented for 1D Boolean arrays only")); } if(values == NULL) { // return value(s) return ndarray_from_boolean_index(ndarray, nindex); @@ -1327,7 +1327,7 @@ static mp_obj_t ndarray_get_slice(ndarray_obj_t *ndarray, mp_obj_t index, ndarra if(mp_obj_is_type(index, &mp_type_tuple)) { tuple = MP_OBJ_TO_PTR(index); if(tuple->len > ndarray->ndim) { - mp_raise_msg(&mp_type_IndexError, translate("too many indices")); + mp_raise_msg(&mp_type_IndexError, MP_ERROR_TEXT("too many indices")); } } else { mp_obj_t *items = m_new(mp_obj_t, 1); @@ -1351,7 +1351,7 @@ static mp_obj_t ndarray_get_slice(ndarray_obj_t *ndarray, mp_obj_t index, ndarra mp_obj_t ndarray_subscr(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) { if(value == MP_OBJ_NULL) { - mp_raise_ValueError(translate("cannot delete array elements")); + mp_raise_ValueError(MP_ERROR_TEXT("cannot delete array elements")); } ndarray_obj_t *self = MP_OBJ_TO_PTR(self_in); @@ -1429,7 +1429,7 @@ mp_obj_t ndarray_flatten(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_a ndarray_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]); GET_STR_DATA_LEN(args[0].u_obj, order, len); if((len != 1) || ((memcmp(order, "C", 1) != 0) && (memcmp(order, "F", 1) != 0))) { - mp_raise_ValueError(translate("flattening order must be either 'C', or 'F'")); + mp_raise_ValueError(MP_ERROR_TEXT("flattening order must be either 'C', or 'F'")); } uint8_t *sarray = (uint8_t *)self->array; @@ -1567,7 +1567,7 @@ mp_obj_t ndarray_tobytes(mp_obj_t self_in) { // Piping into a bytearray makes sense for dense arrays only, // so bail out, if that is not the case if(!ndarray_is_dense(self)) { - mp_raise_ValueError(translate("tobytes can be invoked for dense arrays only")); + mp_raise_ValueError(MP_ERROR_TEXT("tobytes can be invoked for dense arrays only")); } return mp_obj_new_bytearray_by_ref(self->itemsize * self->len, self->array); } @@ -1707,7 +1707,7 @@ mp_obj_t ndarray_binary_op(mp_binary_op_t _op, mp_obj_t lobj, mp_obj_t robj) { broadcastable = ndarray_can_broadcast(lhs, rhs, &ndim, shape, lstrides, rstrides); } if(!broadcastable) { - mp_raise_ValueError(translate("operands could not be broadcast together")); + mp_raise_ValueError(MP_ERROR_TEXT("operands could not be broadcast together")); m_del(size_t, shape, ULAB_MAX_DIMS); m_del(int32_t, lstrides, ULAB_MAX_DIMS); m_del(int32_t, rstrides, ULAB_MAX_DIMS); @@ -1917,7 +1917,7 @@ mp_obj_t ndarray_unary_op(mp_unary_op_t op, mp_obj_t self_in) { #else if(self->dtype == NDARRAY_FLOAT) { #endif - mp_raise_ValueError(translate("operation is not supported for given type")); + mp_raise_ValueError(MP_ERROR_TEXT("operation is not supported for given type")); } // we can invert the content byte by byte, no need to distinguish between different dtypes ndarray = ndarray_copy_view(self); // from this point, this is a dense copy @@ -2006,7 +2006,7 @@ MP_DEFINE_CONST_FUN_OBJ_1(ndarray_transpose_obj, ndarray_transpose); mp_obj_t ndarray_reshape_core(mp_obj_t oin, mp_obj_t _shape, bool inplace) { ndarray_obj_t *source = MP_OBJ_TO_PTR(oin); if(!mp_obj_is_type(_shape, &mp_type_tuple) && !mp_obj_is_int(_shape)) { - mp_raise_TypeError(translate("shape must be integer or tuple of integers")); + mp_raise_TypeError(MP_ERROR_TEXT("shape must be integer or tuple of integers")); } mp_obj_tuple_t *shape; @@ -2020,7 +2020,7 @@ mp_obj_t ndarray_reshape_core(mp_obj_t oin, mp_obj_t _shape, bool inplace) { } if(shape->len > ULAB_MAX_DIMS) { - mp_raise_ValueError(translate("maximum number of dimensions is " MP_STRINGIFY(ULAB_MAX_DIMS))); + mp_raise_ValueError(MP_ERROR_TEXT("maximum number of dimensions is " MP_STRINGIFY(ULAB_MAX_DIMS))); } size_t new_length = 1; @@ -2040,14 +2040,14 @@ mp_obj_t ndarray_reshape_core(mp_obj_t oin, mp_obj_t _shape, bool inplace) { } if(unknown_dim > 1) { - mp_raise_ValueError(translate("can only specify one unknown dimension")); + mp_raise_ValueError(MP_ERROR_TEXT("can only specify one unknown dimension")); } else if(unknown_dim == 1) { new_shape[unknown_index] = source->len / new_length; new_length = source->len; } if(source->len != new_length) { - mp_raise_ValueError(translate("cannot reshape array")); + mp_raise_ValueError(MP_ERROR_TEXT("cannot reshape array")); } ndarray_obj_t *ndarray; @@ -2064,7 +2064,7 @@ mp_obj_t ndarray_reshape_core(mp_obj_t oin, mp_obj_t _shape, bool inplace) { } } else { if(inplace) { - mp_raise_ValueError(translate("cannot assign new shape")); + mp_raise_ValueError(MP_ERROR_TEXT("cannot assign new shape")); } if(mp_obj_is_type(_shape, &mp_type_tuple)) { ndarray = ndarray_new_ndarray_from_tuple(shape, source->dtype); @@ -2087,7 +2087,7 @@ MP_DEFINE_CONST_FUN_OBJ_2(ndarray_reshape_obj, ndarray_reshape); #if ULAB_NUMPY_HAS_NDINFO mp_obj_t ndarray_info(mp_obj_t obj_in) { if(!mp_obj_is_type(obj_in, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("function is defined for ndarrays only")); + mp_raise_TypeError(MP_ERROR_TEXT("function is defined for ndarrays only")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(obj_in); mp_printf(MP_PYTHON_PRINTER, "class: ndarray\n"); diff --git a/code/ndarray.h b/code/ndarray.h index 3025c051..ec8b3ee7 100644 --- a/code/ndarray.h +++ b/code/ndarray.h @@ -111,10 +111,6 @@ typedef struct _mp_obj_slice_t { #endif #endif -#if !CIRCUITPY -#define translate(x) MP_ERROR_TEXT(x) -#endif - #define ndarray_set_value(a, b, c, d) mp_binary_set_val_array(a, b, c, d) void ndarray_set_complex_value(void *, size_t , mp_obj_t ); diff --git a/code/ndarray_operators.c b/code/ndarray_operators.c index 3983dabc..5c07e8e8 100644 --- a/code/ndarray_operators.c +++ b/code/ndarray_operators.c @@ -861,7 +861,7 @@ mp_obj_t ndarray_binary_power(ndarray_obj_t *lhs, ndarray_obj_t *rhs, mp_obj_t ndarray_inplace_ams(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rstrides, uint8_t optype) { if((lhs->dtype != NDARRAY_FLOAT) && (rhs->dtype == NDARRAY_FLOAT)) { - mp_raise_TypeError(translate("cannot cast output with casting rule")); + mp_raise_TypeError(MP_ERROR_TEXT("cannot cast output with casting rule")); } uint8_t *larray = (uint8_t *)lhs->array; uint8_t *rarray = (uint8_t *)rhs->array; @@ -890,7 +890,7 @@ mp_obj_t ndarray_inplace_ams(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rs mp_obj_t ndarray_inplace_divide(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rstrides) { if((lhs->dtype != NDARRAY_FLOAT)) { - mp_raise_TypeError(translate("results cannot be cast to specified type")); + mp_raise_TypeError(MP_ERROR_TEXT("results cannot be cast to specified type")); } uint8_t *larray = (uint8_t *)lhs->array; uint8_t *rarray = (uint8_t *)rhs->array; @@ -914,7 +914,7 @@ mp_obj_t ndarray_inplace_divide(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t mp_obj_t ndarray_inplace_power(ndarray_obj_t *lhs, ndarray_obj_t *rhs, int32_t *rstrides) { if((lhs->dtype != NDARRAY_FLOAT)) { - mp_raise_TypeError(translate("results cannot be cast to specified type")); + mp_raise_TypeError(MP_ERROR_TEXT("results cannot be cast to specified type")); } uint8_t *larray = (uint8_t *)lhs->array; uint8_t *rarray = (uint8_t *)rhs->array; diff --git a/code/numpy/approx.c b/code/numpy/approx.c index 6088173d..23f9da1b 100644 --- a/code/numpy/approx.c +++ b/code/numpy/approx.c @@ -65,7 +65,7 @@ STATIC mp_obj_t approx_interp(size_t n_args, const mp_obj_t *pos_args, mp_map_t COMPLEX_DTYPE_NOT_IMPLEMENTED(xp->dtype) COMPLEX_DTYPE_NOT_IMPLEMENTED(fp->dtype) if((xp->ndim != 1) || (fp->ndim != 1) || (xp->len < 2) || (fp->len < 2) || (xp->len != fp->len)) { - mp_raise_ValueError(translate("interp is defined for 1D iterables of equal length")); + mp_raise_ValueError(MP_ERROR_TEXT("interp is defined for 1D iterables of equal length")); } ndarray_obj_t *y = ndarray_new_linear_array(x->len, NDARRAY_FLOAT); @@ -168,7 +168,7 @@ STATIC mp_obj_t approx_trapz(size_t n_args, const mp_obj_t *pos_args, mp_map_t * return mp_obj_new_float(mean); } if((y->ndim != 1)) { - mp_raise_ValueError(translate("trapz is defined for 1D iterables")); + mp_raise_ValueError(MP_ERROR_TEXT("trapz is defined for 1D iterables")); } mp_float_t (*funcy)(void *) = ndarray_get_float_function(y->dtype); @@ -181,7 +181,7 @@ STATIC mp_obj_t approx_trapz(size_t n_args, const mp_obj_t *pos_args, mp_map_t * x = ndarray_from_mp_obj(args[1].u_obj, 0); // x must hold an increasing sequence of independent values COMPLEX_DTYPE_NOT_IMPLEMENTED(x->dtype) if((x->ndim != 1) || (y->len != x->len)) { - mp_raise_ValueError(translate("trapz is defined for 1D arrays of equal length")); + mp_raise_ValueError(MP_ERROR_TEXT("trapz is defined for 1D arrays of equal length")); } mp_float_t (*funcx)(void *) = ndarray_get_float_function(x->dtype); diff --git a/code/numpy/bitwise.c b/code/numpy/bitwise.c index d02e0970..0aa5bac9 100644 --- a/code/numpy/bitwise.c +++ b/code/numpy/bitwise.c @@ -331,11 +331,11 @@ mp_obj_t *bitwise_binary_operators(mp_obj_t x1, mp_obj_t x2, uint8_t optype) { #if ULAB_SUPPORTS_COMPLEX if((lhs->dtype == NDARRAY_FLOAT) || (rhs->dtype == NDARRAY_FLOAT) || (lhs->dtype == NDARRAY_COMPLEX) || (rhs->dtype == NDARRAY_COMPLEX)) { - mp_raise_ValueError(translate("not supported for input types")); + mp_raise_ValueError(MP_ERROR_TEXT("not supported for input types")); } #else if((lhs->dtype == NDARRAY_FLOAT) || (rhs->dtype == NDARRAY_FLOAT)) { - mp_raise_ValueError(translate("not supported for input types")); + mp_raise_ValueError(MP_ERROR_TEXT("not supported for input types")); } #endif @@ -348,7 +348,7 @@ mp_obj_t *bitwise_binary_operators(mp_obj_t x1, mp_obj_t x2, uint8_t optype) { m_del(size_t, shape, ULAB_MAX_DIMS); m_del(int32_t, lstrides, ULAB_MAX_DIMS); m_del(int32_t, rstrides, ULAB_MAX_DIMS); - mp_raise_ValueError(translate("operands could not be broadcast together")); + mp_raise_ValueError(MP_ERROR_TEXT("operands could not be broadcast together")); } ndarray_obj_t *results = NULL; diff --git a/code/numpy/carray/carray.c b/code/numpy/carray/carray.c index 44e9ab12..159c191d 100644 --- a/code/numpy/carray/carray.c +++ b/code/numpy/carray/carray.c @@ -47,7 +47,7 @@ mp_obj_t carray_real(mp_obj_t _source) { return MP_OBJ_FROM_PTR(target); } } else { - mp_raise_NotImplementedError(translate("function is implemented for ndarrays only")); + mp_raise_NotImplementedError(MP_ERROR_TEXT("function is implemented for ndarrays only")); } return mp_const_none; } @@ -73,7 +73,7 @@ mp_obj_t carray_imag(mp_obj_t _source) { return MP_OBJ_FROM_PTR(target); } } else { - mp_raise_NotImplementedError(translate("function is implemented for ndarrays only")); + mp_raise_NotImplementedError(MP_ERROR_TEXT("function is implemented for ndarrays only")); } return mp_const_none; } @@ -111,7 +111,7 @@ mp_obj_t carray_conjugate(mp_obj_t _source) { } else if(mp_obj_is_int(_source) || mp_obj_is_float(_source)) { return _source; } else { - mp_raise_TypeError(translate("input must be an ndarray, or a scalar")); + mp_raise_TypeError(MP_ERROR_TEXT("input must be an ndarray, or a scalar")); } } // this should never happen @@ -183,11 +183,11 @@ static void carray_sort_complex_(mp_float_t *array, size_t len) { mp_obj_t carray_sort_complex(mp_obj_t _source) { if(!mp_obj_is_type(_source, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("input must be a 1D ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("input must be a 1D ndarray")); } ndarray_obj_t *source = MP_OBJ_TO_PTR(_source); if(source->ndim != 1) { - mp_raise_TypeError(translate("input must be a 1D ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("input must be a 1D ndarray")); } ndarray_obj_t *ndarray = ndarray_copy_view_convert_type(source, NDARRAY_COMPLEX); diff --git a/code/numpy/carray/carray_tools.c b/code/numpy/carray/carray_tools.c index 7b623d34..d8c7b183 100644 --- a/code/numpy/carray/carray_tools.c +++ b/code/numpy/carray/carray_tools.c @@ -22,7 +22,7 @@ #if ULAB_SUPPORTS_COMPLEX void raise_complex_NotImplementedError(void) { - mp_raise_NotImplementedError(translate("not implemented for complex dtype")); + mp_raise_NotImplementedError(MP_ERROR_TEXT("not implemented for complex dtype")); } #endif diff --git a/code/numpy/compare.c b/code/numpy/compare.c index 54647d6f..fabc33a9 100644 --- a/code/numpy/compare.c +++ b/code/numpy/compare.c @@ -36,7 +36,7 @@ static mp_obj_t compare_function(mp_obj_t x1, mp_obj_t x2, uint8_t op) { int32_t *lstrides = m_new(int32_t, ULAB_MAX_DIMS); int32_t *rstrides = m_new(int32_t, ULAB_MAX_DIMS); if(!ndarray_can_broadcast(lhs, rhs, &ndim, shape, lstrides, rstrides)) { - mp_raise_ValueError(translate("operands could not be broadcast together")); + mp_raise_ValueError(MP_ERROR_TEXT("operands could not be broadcast together")); m_del(size_t, shape, ULAB_MAX_DIMS); m_del(int32_t, lstrides, ULAB_MAX_DIMS); m_del(int32_t, rstrides, ULAB_MAX_DIMS); @@ -263,7 +263,7 @@ static mp_obj_t compare_isinf_isfinite(mp_obj_t _x, uint8_t mask) { return MP_OBJ_FROM_PTR(results); } else { - mp_raise_TypeError(translate("wrong input type")); + mp_raise_TypeError(MP_ERROR_TEXT("wrong input type")); } return mp_const_none; } @@ -470,7 +470,7 @@ mp_obj_t compare_where(mp_obj_t _condition, mp_obj_t _x, mp_obj_t _y) { if(!ndarray_can_broadcast(c, x, &ndim, oshape, cstrides, ystrides) || !ndarray_can_broadcast(c, y, &ndim, oshape, cstrides, ystrides) || !ndarray_can_broadcast(x, y, &ndim, oshape, xstrides, ystrides)) { - mp_raise_ValueError(translate("operands could not be broadcast together")); + mp_raise_ValueError(MP_ERROR_TEXT("operands could not be broadcast together")); } ndim = MAX(MAX(c->ndim, x->ndim), y->ndim); diff --git a/code/numpy/create.c b/code/numpy/create.c index 6c1c75fd..f427e374 100644 --- a/code/numpy/create.c +++ b/code/numpy/create.c @@ -24,7 +24,7 @@ #if ULAB_NUMPY_HAS_ONES | ULAB_NUMPY_HAS_ZEROS | ULAB_NUMPY_HAS_FULL | ULAB_NUMPY_HAS_EMPTY static mp_obj_t create_zeros_ones_full(mp_obj_t oshape, uint8_t dtype, mp_obj_t value) { if(!mp_obj_is_int(oshape) && !mp_obj_is_type(oshape, &mp_type_tuple) && !mp_obj_is_type(oshape, &mp_type_list)) { - mp_raise_TypeError(translate("input argument must be an integer, a tuple, or a list")); + mp_raise_TypeError(MP_ERROR_TEXT("input argument must be an integer, a tuple, or a list")); } ndarray_obj_t *ndarray = NULL; if(mp_obj_is_int(oshape)) { @@ -33,7 +33,7 @@ static mp_obj_t create_zeros_ones_full(mp_obj_t oshape, uint8_t dtype, mp_obj_t } else if(mp_obj_is_type(oshape, &mp_type_tuple) || mp_obj_is_type(oshape, &mp_type_list)) { uint8_t len = (uint8_t)mp_obj_get_int(mp_obj_len_maybe(oshape)); if(len > ULAB_MAX_DIMS) { - mp_raise_TypeError(translate("too many dimensions")); + mp_raise_TypeError(MP_ERROR_TEXT("too many dimensions")); } size_t *shape = m_new0(size_t, ULAB_MAX_DIMS); @@ -144,7 +144,7 @@ mp_obj_t create_arange(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg step = mp_obj_get_float(args[2].u_obj); if(mp_obj_is_int(args[0].u_obj) && mp_obj_is_int(args[1].u_obj) && mp_obj_is_int(args[2].u_obj)) dtype = NDARRAY_INT16; } else { - mp_raise_TypeError(translate("wrong number of arguments")); + mp_raise_TypeError(MP_ERROR_TEXT("wrong number of arguments")); } if((MICROPY_FLOAT_C_FUN(fabs)(stop) > 32768) || (MICROPY_FLOAT_C_FUN(fabs)(start) > 32768) || (MICROPY_FLOAT_C_FUN(fabs)(step) > 32768)) { dtype = NDARRAY_FLOAT; @@ -159,7 +159,7 @@ mp_obj_t create_arange(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg } if(!isfinite(start) || !isfinite(stop) || !isfinite(step)) { - mp_raise_ValueError(translate("arange: cannot compute length")); + mp_raise_ValueError(MP_ERROR_TEXT("arange: cannot compute length")); } ndarray_obj_t *ndarray; @@ -222,7 +222,7 @@ mp_obj_t create_asarray(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar } return MP_OBJ_FROM_PTR(ndarray_from_iterable(args[0].u_obj, _dtype)); } else { - mp_raise_TypeError(translate("wrong input type")); + mp_raise_TypeError(MP_ERROR_TEXT("wrong input type")); } return mp_const_none; // this should never happen } @@ -252,7 +252,7 @@ mp_obj_t create_concatenate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *k mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &mp_type_tuple)) { - mp_raise_TypeError(translate("first argument must be a tuple of ndarrays")); + mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a tuple of ndarrays")); } int8_t axis = (int8_t)args[1].u_int; size_t *shape = m_new0(size_t, ULAB_MAX_DIMS); @@ -260,7 +260,7 @@ mp_obj_t create_concatenate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *k for(uint8_t i = 0; i < ndarrays->len; i++) { if(!mp_obj_is_type(ndarrays->items[i], &ulab_ndarray_type)) { - mp_raise_ValueError(translate("only ndarrays can be concatenated")); + mp_raise_ValueError(MP_ERROR_TEXT("only ndarrays can be concatenated")); } } @@ -272,7 +272,7 @@ mp_obj_t create_concatenate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *k axis += ndim; } if((axis < 0) || (axis >= ndim)) { - mp_raise_ValueError(translate("wrong axis specified")); + mp_raise_ValueError(MP_ERROR_TEXT("wrong axis specified")); } // shift axis axis = ULAB_MAX_DIMS - ndim + axis; @@ -284,14 +284,14 @@ mp_obj_t create_concatenate(size_t n_args, const mp_obj_t *pos_args, mp_map_t *k _ndarray = MP_OBJ_TO_PTR(ndarrays->items[i]); // check, whether the arrays are compatible if((dtype != _ndarray->dtype) || (ndim != _ndarray->ndim)) { - mp_raise_ValueError(translate("input arrays are not compatible")); + mp_raise_ValueError(MP_ERROR_TEXT("input arrays are not compatible")); } for(uint8_t j=0; j < ULAB_MAX_DIMS; j++) { if(j == axis) { shape[j] += _ndarray->shape[j]; } else { if(shape[j] != _ndarray->shape[j]) { - mp_raise_ValueError(translate("input arrays are not compatible")); + mp_raise_ValueError(MP_ERROR_TEXT("input arrays are not compatible")); } } } @@ -431,7 +431,7 @@ mp_obj_t create_diag(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) } #if ULAB_MAX_DIMS > 2 else { - mp_raise_ValueError(translate("input must be 1- or 2-d")); + mp_raise_ValueError(MP_ERROR_TEXT("input must be 1- or 2-d")); } #endif @@ -585,7 +585,7 @@ mp_obj_t create_linspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_a mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(args[2].u_int < 2) { - mp_raise_ValueError(translate("number of points must be at least 2")); + mp_raise_ValueError(MP_ERROR_TEXT("number of points must be at least 2")); } size_t len = (size_t)args[2].u_int; mp_float_t start, step, stop; @@ -708,7 +708,7 @@ mp_obj_t create_logspace(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_a mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(args[2].u_int < 2) { - mp_raise_ValueError(translate("number of points must be at least 2")); + mp_raise_ValueError(MP_ERROR_TEXT("number of points must be at least 2")); } size_t len = (size_t)args[2].u_int; mp_float_t start, step, quotient; @@ -824,16 +824,16 @@ mp_obj_t create_frombuffer(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw size_t sz = ulab_binary_get_size(dtype); if(bufinfo.len < offset) { - mp_raise_ValueError(translate("offset must be non-negative and no greater than buffer length")); + mp_raise_ValueError(MP_ERROR_TEXT("offset must be non-negative and no greater than buffer length")); } size_t len = (bufinfo.len - offset) / sz; if((len * sz) != (bufinfo.len - offset)) { - mp_raise_ValueError(translate("buffer size must be a multiple of element size")); + mp_raise_ValueError(MP_ERROR_TEXT("buffer size must be a multiple of element size")); } if(mp_obj_get_int(args[2].u_obj) > 0) { size_t count = mp_obj_get_int(args[2].u_obj); if(len < count) { - mp_raise_ValueError(translate("buffer is smaller than requested size")); + mp_raise_ValueError(MP_ERROR_TEXT("buffer is smaller than requested size")); } else { len = count; } diff --git a/code/numpy/fft/fft_tools.c b/code/numpy/fft/fft_tools.c index 595b866b..04c0b2f7 100644 --- a/code/numpy/fft/fft_tools.c +++ b/code/numpy/fft/fft_tools.c @@ -98,18 +98,18 @@ void fft_kernel_complex(mp_float_t *data, size_t n, int isign) { */ mp_obj_t fft_fft_ifft_spectrogram(mp_obj_t data_in, uint8_t type) { if(!mp_obj_is_type(data_in, &ulab_ndarray_type)) { - mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only")); + mp_raise_NotImplementedError(MP_ERROR_TEXT("FFT is defined for ndarrays only")); } ndarray_obj_t *in = MP_OBJ_TO_PTR(data_in); #if ULAB_MAX_DIMS > 1 if(in->ndim != 1) { - mp_raise_TypeError(translate("FFT is implemented for linear arrays only")); + mp_raise_TypeError(MP_ERROR_TEXT("FFT is implemented for linear arrays only")); } #endif size_t len = in->len; // Check if input is of length of power of 2 if((len & (len-1)) != 0) { - mp_raise_ValueError(translate("input array length must be power of 2")); + mp_raise_ValueError(MP_ERROR_TEXT("input array length must be power of 2")); } ndarray_obj_t *out = ndarray_new_linear_array(len, NDARRAY_COMPLEX); @@ -204,24 +204,24 @@ void fft_kernel(mp_float_t *real, mp_float_t *imag, size_t n, int isign) { mp_obj_t fft_fft_ifft_spectrogram(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_im, uint8_t type) { if(!mp_obj_is_type(arg_re, &ulab_ndarray_type)) { - mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only")); + mp_raise_NotImplementedError(MP_ERROR_TEXT("FFT is defined for ndarrays only")); } if(n_args == 2) { if(!mp_obj_is_type(arg_im, &ulab_ndarray_type)) { - mp_raise_NotImplementedError(translate("FFT is defined for ndarrays only")); + mp_raise_NotImplementedError(MP_ERROR_TEXT("FFT is defined for ndarrays only")); } } ndarray_obj_t *re = MP_OBJ_TO_PTR(arg_re); #if ULAB_MAX_DIMS > 1 if(re->ndim != 1) { COMPLEX_DTYPE_NOT_IMPLEMENTED(re->dtype) - mp_raise_TypeError(translate("FFT is implemented for linear arrays only")); + mp_raise_TypeError(MP_ERROR_TEXT("FFT is implemented for linear arrays only")); } #endif size_t len = re->len; // Check if input is of length of power of 2 if((len & (len-1)) != 0) { - mp_raise_ValueError(translate("input array length must be power of 2")); + mp_raise_ValueError(MP_ERROR_TEXT("input array length must be power of 2")); } ndarray_obj_t *out_re = ndarray_new_linear_array(len, NDARRAY_FLOAT); @@ -243,11 +243,11 @@ mp_obj_t fft_fft_ifft_spectrogram(size_t n_args, mp_obj_t arg_re, mp_obj_t arg_i #if ULAB_MAX_DIMS > 1 if(im->ndim != 1) { COMPLEX_DTYPE_NOT_IMPLEMENTED(im->dtype) - mp_raise_TypeError(translate("FFT is implemented for linear arrays only")); + mp_raise_TypeError(MP_ERROR_TEXT("FFT is implemented for linear arrays only")); } #endif if (re->len != im->len) { - mp_raise_ValueError(translate("real and imaginary parts must be of equal length")); + mp_raise_ValueError(MP_ERROR_TEXT("real and imaginary parts must be of equal length")); } array = (uint8_t *)im->array; func = ndarray_get_float_function(im->dtype); diff --git a/code/numpy/filter.c b/code/numpy/filter.c index 92290388..79c1740a 100644 --- a/code/numpy/filter.c +++ b/code/numpy/filter.c @@ -36,7 +36,7 @@ mp_obj_t filter_convolve(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_a mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type) || !mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("convolve arguments must be ndarrays")); + mp_raise_TypeError(MP_ERROR_TEXT("convolve arguments must be ndarrays")); } ndarray_obj_t *a = MP_OBJ_TO_PTR(args[0].u_obj); @@ -44,13 +44,13 @@ mp_obj_t filter_convolve(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_a // deal with linear arrays only #if ULAB_MAX_DIMS > 1 if((a->ndim != 1) || (c->ndim != 1)) { - mp_raise_TypeError(translate("convolve arguments must be linear arrays")); + mp_raise_TypeError(MP_ERROR_TEXT("convolve arguments must be linear arrays")); } #endif size_t len_a = a->len; size_t len_c = c->len; if(len_a == 0 || len_c == 0) { - mp_raise_TypeError(translate("convolve arguments must not be empty")); + mp_raise_TypeError(MP_ERROR_TEXT("convolve arguments must not be empty")); } int len = len_a + len_c - 1; // convolve mode "full" diff --git a/code/numpy/io/io.c b/code/numpy/io/io.c index b9e5d367..f2479f19 100644 --- a/code/numpy/io/io.c +++ b/code/numpy/io/io.c @@ -46,13 +46,13 @@ static void io_read_(mp_obj_t stream, const mp_stream_p_t *stream_p, char *buffe } if(fail) { stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, error); - mp_raise_msg(&mp_type_RuntimeError, translate("corrupted file")); + mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("corrupted file")); } } static mp_obj_t io_load(mp_obj_t file) { if(!mp_obj_is_str(file)) { - mp_raise_TypeError(translate("wrong input type")); + mp_raise_TypeError(MP_ERROR_TEXT("wrong input type")); } int error; @@ -126,7 +126,7 @@ static mp_obj_t io_load(mp_obj_t file) { #endif /* ULAB_SUPPORT_COPMLEX */ else { stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error); - mp_raise_TypeError(translate("wrong dtype")); + mp_raise_TypeError(MP_ERROR_TEXT("wrong dtype")); } io_read_(stream, stream_p, buffer, "', 'fortran_order': False, 'shape': (", 37, &error); @@ -169,7 +169,7 @@ static mp_obj_t io_load(mp_obj_t file) { } else { stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error); - mp_raise_msg(&mp_type_RuntimeError, translate("corrupted file")); + mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("corrupted file")); } needle++; } @@ -188,7 +188,7 @@ static mp_obj_t io_load(mp_obj_t file) { size_t read = stream_p->read(stream, array, ndarray->len * ndarray->itemsize, &error); if(read != ndarray->len * ndarray->itemsize) { stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error); - mp_raise_msg(&mp_type_RuntimeError, translate("corrupted file")); + mp_raise_msg(&mp_type_RuntimeError, MP_ERROR_TEXT("corrupted file")); } stream_p->ioctl(stream, MP_STREAM_CLOSE, 0, &error); @@ -303,7 +303,7 @@ static mp_obj_t io_loadtxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw cols[0] = (uint16_t)mp_obj_get_int(args[4].u_obj); } else { #if ULAB_MAX_DIMS == 1 - mp_raise_ValueError(translate("usecols keyword must be specified")); + mp_raise_ValueError(MP_ERROR_TEXT("usecols keyword must be specified")); #else // assume that the argument is an iterable used_columns = (uint16_t)mp_obj_get_int(mp_obj_len(args[4].u_obj)); @@ -379,12 +379,12 @@ static mp_obj_t io_loadtxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw } while((read > 0) && (all_rows < max_rows)); if(rows == 0) { - mp_raise_ValueError(translate("empty file")); + mp_raise_ValueError(MP_ERROR_TEXT("empty file")); } uint16_t columns = items / rows; if(columns < used_columns) { - mp_raise_ValueError(translate("usecols is too high")); + mp_raise_ValueError(MP_ERROR_TEXT("usecols is too high")); } size_t *shape = m_new0(size_t, ULAB_MAX_DIMS); @@ -526,7 +526,7 @@ static uint8_t io_sprintf(char *buffer, const char *comma, size_t x) { static mp_obj_t io_save(mp_obj_t file, mp_obj_t ndarray_) { if(!mp_obj_is_str(file) || !mp_obj_is_type(ndarray_, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("wrong input type")); + mp_raise_TypeError(MP_ERROR_TEXT("wrong input type")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(ndarray_); @@ -725,14 +725,14 @@ static mp_obj_t io_savetxt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_str(args[0].u_obj) || !mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("wrong input type")); + mp_raise_TypeError(MP_ERROR_TEXT("wrong input type")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[1].u_obj); #if ULAB_MAX_DIMS > 2 if(ndarray->ndim > 2) { - mp_raise_ValueError(translate("array has too many dimensions")); + mp_raise_ValueError(MP_ERROR_TEXT("array has too many dimensions")); } #endif diff --git a/code/numpy/linalg/linalg.c b/code/numpy/linalg/linalg.c index 55ac4752..6fc79aa0 100644 --- a/code/numpy/linalg/linalg.c +++ b/code/numpy/linalg/linalg.c @@ -67,7 +67,7 @@ static mp_obj_t linalg_cholesky(mp_obj_t oin) { for(size_t n=m+1; n < N; n++) { // columns // compare entry (m, n) to (n, m) if(LINALG_EPSILON < MICROPY_FLOAT_C_FUN(fabs)(Larray[m * N + n] - Larray[n * N + m])) { - mp_raise_ValueError(translate("input matrix is asymmetric")); + mp_raise_ValueError(MP_ERROR_TEXT("input matrix is asymmetric")); } } } @@ -87,7 +87,7 @@ static mp_obj_t linalg_cholesky(mp_obj_t oin) { } if(i == j) { if(sum <= MICROPY_FLOAT_CONST(0.0)) { - mp_raise_ValueError(translate("matrix is not positive definite")); + mp_raise_ValueError(MP_ERROR_TEXT("matrix is not positive definite")); } else { Larray[i * N + i] = MICROPY_FLOAT_C_FUN(sqrt)(sum); } @@ -204,7 +204,7 @@ static mp_obj_t linalg_eig(mp_obj_t oin) { // compare entry (m, n) to (n, m) // TODO: this must probably be scaled! if(LINALG_EPSILON < MICROPY_FLOAT_C_FUN(fabs)(array[m * S + n] - array[n * S + m])) { - mp_raise_ValueError(translate("input matrix is asymmetric")); + mp_raise_ValueError(MP_ERROR_TEXT("input matrix is asymmetric")); } } } @@ -219,7 +219,7 @@ static mp_obj_t linalg_eig(mp_obj_t oin) { if(iterations == 0) { // the computation did not converge; numpy raises LinAlgError m_del(mp_float_t, array, in->len); - mp_raise_ValueError(translate("iterations did not converge")); + mp_raise_ValueError(MP_ERROR_TEXT("iterations did not converge")); } ndarray_obj_t *eigenvalues = ndarray_new_linear_array(S, NDARRAY_FLOAT); mp_float_t *eigvalues = (mp_float_t *)eigenvalues->array; @@ -267,7 +267,7 @@ static mp_obj_t linalg_inv(mp_obj_t o_in) { iarray -= N*N; if(!linalg_invert_matrix(iarray, N)) { - mp_raise_ValueError(translate("input matrix is singular")); + mp_raise_ValueError(MP_ERROR_TEXT("input matrix is singular")); } return MP_OBJ_FROM_PTR(inverted); } @@ -393,11 +393,11 @@ static mp_obj_t linalg_qr(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("operation is defined for ndarrays only")); + mp_raise_TypeError(MP_ERROR_TEXT("operation is defined for ndarrays only")); } ndarray_obj_t *source = MP_OBJ_TO_PTR(args[0].u_obj); if(source->ndim != 2) { - mp_raise_ValueError(translate("operation is defined for 2D arrays only")); + mp_raise_ValueError(MP_ERROR_TEXT("operation is defined for 2D arrays only")); } size_t m = source->shape[ULAB_MAX_DIMS - 2]; // rows @@ -498,7 +498,7 @@ static mp_obj_t linalg_qr(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ tuple->items[0] = MP_OBJ_FROM_PTR(q); tuple->items[1] = MP_OBJ_FROM_PTR(r); } else { - mp_raise_ValueError(translate("mode must be complete, or reduced")); + mp_raise_ValueError(MP_ERROR_TEXT("mode must be complete, or reduced")); } return MP_OBJ_FROM_PTR(tuple); } diff --git a/code/numpy/numerical.c b/code/numpy/numerical.c index 01bd0bd9..b642d5a2 100644 --- a/code/numpy/numerical.c +++ b/code/numpy/numerical.c @@ -407,7 +407,7 @@ static mp_obj_t numerical_sum_mean_std_ndarray(ndarray_obj_t *ndarray, mp_obj_t #if ULAB_NUMPY_HAS_ARGMINMAX static mp_obj_t numerical_argmin_argmax_iterable(mp_obj_t oin, uint8_t optype) { if(MP_OBJ_SMALL_INT_VALUE(mp_obj_len_maybe(oin)) == 0) { - mp_raise_ValueError(translate("attempt to get argmin/argmax of an empty sequence")); + mp_raise_ValueError(MP_ERROR_TEXT("attempt to get argmin/argmax of an empty sequence")); } size_t idx = 0, best_idx = 0; mp_obj_iter_buf_t iter_buf; @@ -442,7 +442,7 @@ static mp_obj_t numerical_argmin_argmax_iterable(mp_obj_t oin, uint8_t optype) { static mp_obj_t numerical_argmin_argmax_ndarray(ndarray_obj_t *ndarray, mp_obj_t axis, uint8_t optype) { // TODO: treat the flattened array if(ndarray->len == 0) { - mp_raise_ValueError(translate("attempt to get (arg)min/(arg)max of empty sequence")); + mp_raise_ValueError(MP_ERROR_TEXT("attempt to get (arg)min/(arg)max of empty sequence")); } if(axis == mp_const_none) { @@ -566,7 +566,7 @@ static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m mp_obj_t oin = args[0].u_obj; mp_obj_t axis = args[1].u_obj; if((axis != mp_const_none) && (!mp_obj_is_int(axis))) { - mp_raise_TypeError(translate("axis must be None, or an integer")); + mp_raise_TypeError(MP_ERROR_TEXT("axis must be None, or an integer")); } #if ULAB_NUMPY_HAS_ALL | ULAB_NUMPY_HAS_ANY @@ -602,10 +602,10 @@ static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype) return numerical_sum_mean_std_ndarray(ndarray, axis, optype, 0); default: - mp_raise_NotImplementedError(translate("operation is not implemented on ndarrays")); + mp_raise_NotImplementedError(MP_ERROR_TEXT("operation is not implemented on ndarrays")); } } else { - mp_raise_TypeError(translate("input must be tuple, list, range, or ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("input must be tuple, list, range, or ndarray")); } return mp_const_none; } @@ -613,7 +613,7 @@ static mp_obj_t numerical_function(size_t n_args, const mp_obj_t *pos_args, mp_m #if ULAB_NUMPY_HAS_SORT | NDARRAY_HAS_SORT static mp_obj_t numerical_sort_helper(mp_obj_t oin, mp_obj_t axis, uint8_t inplace) { if(!mp_obj_is_type(oin, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("sort argument must be an ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("sort argument must be an ndarray")); } ndarray_obj_t *ndarray; @@ -721,20 +721,20 @@ mp_obj_t numerical_argsort(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("argsort argument must be an ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("argsort argument must be an ndarray")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj); COMPLEX_DTYPE_NOT_IMPLEMENTED(ndarray->dtype) if(args[1].u_obj == mp_const_none) { // bail out, though dense arrays could still be sorted - mp_raise_NotImplementedError(translate("argsort is not implemented for flattened arrays")); + mp_raise_NotImplementedError(MP_ERROR_TEXT("argsort is not implemented for flattened arrays")); } // Since we are returning an NDARRAY_UINT16 array, bail out, // if the axis is longer than what we can hold for(uint8_t i=0; i < ULAB_MAX_DIMS; i++) { if(ndarray->shape[i] > 65535) { - mp_raise_ValueError(translate("axis too long")); + mp_raise_ValueError(MP_ERROR_TEXT("axis too long")); } } int8_t ax = tools_get_axis(args[1].u_obj, ndarray->ndim); @@ -827,14 +827,14 @@ MP_DEFINE_CONST_FUN_OBJ_KW(numerical_argsort_obj, 1, numerical_argsort); static mp_obj_t numerical_cross(mp_obj_t _a, mp_obj_t _b) { if (!mp_obj_is_type(_a, &ulab_ndarray_type) || !mp_obj_is_type(_b, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("arguments must be ndarrays")); + mp_raise_TypeError(MP_ERROR_TEXT("arguments must be ndarrays")); } ndarray_obj_t *a = MP_OBJ_TO_PTR(_a); ndarray_obj_t *b = MP_OBJ_TO_PTR(_b); COMPLEX_DTYPE_NOT_IMPLEMENTED(a->dtype) COMPLEX_DTYPE_NOT_IMPLEMENTED(b->dtype) if((a->ndim != 1) || (b->ndim != 1) || (a->len != b->len) || (a->len != 3)) { - mp_raise_ValueError(translate("cross is defined for 1D arrays of length 3")); + mp_raise_ValueError(MP_ERROR_TEXT("cross is defined for 1D arrays of length 3")); } mp_float_t *results = m_new(mp_float_t, 3); @@ -917,7 +917,7 @@ mp_obj_t numerical_diff(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("diff argument must be an ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("diff argument must be an ndarray")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj); @@ -926,16 +926,16 @@ mp_obj_t numerical_diff(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar if(ax < 0) ax += ndarray->ndim; if((ax < 0) || (ax > ndarray->ndim - 1)) { - mp_raise_ValueError(translate("index out of range")); + mp_raise_ValueError(MP_ERROR_TEXT("index out of range")); } if((args[1].u_int < 0) || (args[1].u_int > 9)) { - mp_raise_ValueError(translate("differentiation order out of range")); + mp_raise_ValueError(MP_ERROR_TEXT("differentiation order out of range")); } uint8_t N = (uint8_t)args[1].u_int; uint8_t index = ULAB_MAX_DIMS - ndarray->ndim + ax; if(N > ndarray->shape[index]) { - mp_raise_ValueError(translate("differentiation order out of range")); + mp_raise_ValueError(MP_ERROR_TEXT("differentiation order out of range")); } int8_t *stencil = m_new(int8_t, N+1); @@ -996,7 +996,7 @@ mp_obj_t numerical_flip(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("flip argument must be an ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("flip argument must be an ndarray")); } ndarray_obj_t *results = NULL; @@ -1016,7 +1016,7 @@ mp_obj_t numerical_flip(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar results = ndarray_new_view(ndarray, ndarray->ndim, ndarray->shape, ndarray->strides, offset); results->strides[ax] = -results->strides[ax]; } else { - mp_raise_TypeError(translate("wrong axis index")); + mp_raise_TypeError(MP_ERROR_TEXT("wrong axis index")); } return MP_OBJ_FROM_PTR(results); } @@ -1065,7 +1065,7 @@ mp_obj_t numerical_median(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("median argument must be an ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("median argument must be an ndarray")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj); @@ -1181,7 +1181,7 @@ mp_obj_t numerical_roll(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("roll argument must be an ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("roll argument must be an ndarray")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj); uint8_t *array = ndarray->array; @@ -1318,7 +1318,7 @@ mp_obj_t numerical_roll(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar m_del(int32_t, rstrides, ULAB_MAX_DIMS); } else { - mp_raise_TypeError(translate("wrong axis index")); + mp_raise_TypeError(MP_ERROR_TEXT("wrong axis index")); } return MP_OBJ_FROM_PTR(results); @@ -1387,7 +1387,7 @@ mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg size_t ddof = args[2].u_int; if((axis != mp_const_none) && (mp_obj_get_int(axis) != 0) && (mp_obj_get_int(axis) != 1)) { // this seems to pass with False, and True... - mp_raise_ValueError(translate("axis must be None, or an integer")); + mp_raise_ValueError(MP_ERROR_TEXT("axis must be None, or an integer")); } if(mp_obj_is_type(oin, &mp_type_tuple) || mp_obj_is_type(oin, &mp_type_list) || mp_obj_is_type(oin, &mp_type_range)) { return numerical_sum_mean_std_iterable(oin, NUMERICAL_STD, ddof); @@ -1395,7 +1395,7 @@ mp_obj_t numerical_std(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(oin); return numerical_sum_mean_std_ndarray(ndarray, axis, NUMERICAL_STD, ddof); } else { - mp_raise_TypeError(translate("input must be tuple, list, range, or ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("input must be tuple, list, range, or ndarray")); } return mp_const_none; } diff --git a/code/numpy/poly.c b/code/numpy/poly.c index ff4965d8..ca5aa638 100644 --- a/code/numpy/poly.c +++ b/code/numpy/poly.c @@ -26,7 +26,7 @@ mp_obj_t poly_polyfit(size_t n_args, const mp_obj_t *args) { if(!ndarray_object_is_array_like(args[0])) { - mp_raise_ValueError(translate("input data must be an iterable")); + mp_raise_ValueError(MP_ERROR_TEXT("input data must be an iterable")); } #if ULAB_SUPPORTS_COMPLEX if(mp_obj_is_type(args[0], &ulab_ndarray_type)) { @@ -44,7 +44,7 @@ mp_obj_t poly_polyfit(size_t n_args, const mp_obj_t *args) { leny = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[0])); deg = (uint8_t)mp_obj_get_int(args[1]); if(leny < deg) { - mp_raise_ValueError(translate("more degrees of freedom than data points")); + mp_raise_ValueError(MP_ERROR_TEXT("more degrees of freedom than data points")); } lenx = leny; x = m_new(mp_float_t, lenx); // assume uniformly spaced data points @@ -55,16 +55,16 @@ mp_obj_t poly_polyfit(size_t n_args, const mp_obj_t *args) { fill_array_iterable(y, args[0]); } else /* n_args == 3 */ { if(!ndarray_object_is_array_like(args[1])) { - mp_raise_ValueError(translate("input data must be an iterable")); + mp_raise_ValueError(MP_ERROR_TEXT("input data must be an iterable")); } lenx = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[0])); leny = (size_t)mp_obj_get_int(mp_obj_len_maybe(args[1])); if(lenx != leny) { - mp_raise_ValueError(translate("input vectors must be of equal length")); + mp_raise_ValueError(MP_ERROR_TEXT("input vectors must be of equal length")); } deg = (uint8_t)mp_obj_get_int(args[2]); if(leny < deg) { - mp_raise_ValueError(translate("more degrees of freedom than data points")); + mp_raise_ValueError(MP_ERROR_TEXT("more degrees of freedom than data points")); } x = m_new(mp_float_t, lenx); fill_array_iterable(x, args[0]); @@ -104,7 +104,7 @@ mp_obj_t poly_polyfit(size_t n_args, const mp_obj_t *args) { m_del(mp_float_t, x, lenx); m_del(mp_float_t, y, lenx); m_del(mp_float_t, prod, (deg+1)*(deg+1)); - mp_raise_ValueError(translate("could not invert Vandermonde matrix")); + mp_raise_ValueError(MP_ERROR_TEXT("could not invert Vandermonde matrix")); } // at this point, we have the inverse of X^T * X // y is a column vector; x is free now, we can use it for storing intermediate values @@ -156,7 +156,7 @@ static mp_float_t poly_eval(mp_float_t x, mp_float_t *p, uint8_t plen) { mp_obj_t poly_polyval(mp_obj_t o_p, mp_obj_t o_x) { if(!ndarray_object_is_array_like(o_p)) { - mp_raise_TypeError(translate("input is not iterable")); + mp_raise_TypeError(MP_ERROR_TEXT("input is not iterable")); } #if ULAB_SUPPORTS_COMPLEX ndarray_obj_t *input; diff --git a/code/numpy/transform.c b/code/numpy/transform.c index 6a849b94..b6b1bebc 100644 --- a/code/numpy/transform.c +++ b/code/numpy/transform.c @@ -38,7 +38,7 @@ static mp_obj_t transform_compress(size_t n_args, const mp_obj_t *pos_args, mp_m mp_obj_t condition = args[0].u_obj; if(!mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("wrong input type")); + mp_raise_TypeError(MP_ERROR_TEXT("wrong input type")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[1].u_obj); uint8_t *array = (uint8_t *)ndarray->array; @@ -55,7 +55,7 @@ static mp_obj_t transform_compress(size_t n_args, const mp_obj_t *pos_args, mp_m if(((axis == mp_const_none) && (len != ndarray->len)) || ((axis != mp_const_none) && (len != ndarray->shape[shift_ax]))) { - mp_raise_ValueError(translate("wrong length of condition array")); + mp_raise_ValueError(MP_ERROR_TEXT("wrong length of condition array")); } size_t true_count = 0; @@ -175,7 +175,7 @@ static mp_obj_t transform_delete(size_t n_args, const mp_obj_t *pos_args, mp_map mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("first argument must be an ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("first argument must be an ndarray")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(args[0].u_obj); uint8_t *array = (uint8_t *)ndarray->array; @@ -201,13 +201,13 @@ static mp_obj_t transform_delete(size_t n_args, const mp_obj_t *pos_args, mp_map index_len = 1; } else { if(mp_obj_len_maybe(indices) == MP_OBJ_NULL) { - mp_raise_TypeError(translate("wrong index type")); + mp_raise_TypeError(MP_ERROR_TEXT("wrong index type")); } index_len = MP_OBJ_SMALL_INT_VALUE(mp_obj_len_maybe(indices)); } if(index_len > axis_len) { - mp_raise_ValueError(translate("wrong length of index array")); + mp_raise_ValueError(MP_ERROR_TEXT("wrong length of index array")); } size_t *index_array = m_new(size_t, index_len); @@ -218,7 +218,7 @@ static mp_obj_t transform_delete(size_t n_args, const mp_obj_t *pos_args, mp_map value += axis_len; } if((value < 0) || (value > (ssize_t)axis_len)) { - mp_raise_ValueError(translate("index is out of bounds")); + mp_raise_ValueError(MP_ERROR_TEXT("index is out of bounds")); } else { *index_array++ = (size_t)value; } @@ -231,7 +231,7 @@ static mp_obj_t transform_delete(size_t n_args, const mp_obj_t *pos_args, mp_map value += axis_len; } if((value < 0) || (value > (ssize_t)axis_len)) { - mp_raise_ValueError(translate("index is out of bounds")); + mp_raise_ValueError(MP_ERROR_TEXT("index is out of bounds")); } else { *index_array++ = (size_t)value; } @@ -356,7 +356,7 @@ mp_obj_t transform_dot(mp_obj_t _m1, mp_obj_t _m2) { // TODO: should the results be upcast? // This implements 2D operations only! if(!mp_obj_is_type(_m1, &ulab_ndarray_type) || !mp_obj_is_type(_m2, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("arguments must be ndarrays")); + mp_raise_TypeError(MP_ERROR_TEXT("arguments must be ndarrays")); } ndarray_obj_t *m1 = MP_OBJ_TO_PTR(_m1); ndarray_obj_t *m2 = MP_OBJ_TO_PTR(_m2); @@ -370,7 +370,7 @@ mp_obj_t transform_dot(mp_obj_t _m1, mp_obj_t _m2) { mp_float_t (*func2)(void *) = ndarray_get_float_function(m2->dtype); if(m1->shape[ULAB_MAX_DIMS - 1] != m2->shape[ULAB_MAX_DIMS - m2->ndim]) { - mp_raise_ValueError(translate("dimensions do not match")); + mp_raise_ValueError(MP_ERROR_TEXT("dimensions do not match")); } uint8_t ndim = MIN(m1->ndim, m2->ndim); size_t shape1 = m1->ndim == 2 ? m1->shape[ULAB_MAX_DIMS - m1->ndim] : 1; @@ -428,7 +428,7 @@ static mp_obj_t transform_size(size_t n_args, const mp_obj_t *pos_args, mp_map_t } if(!ndarray_object_is_array_like(args[0].u_obj)) { - mp_raise_TypeError(translate("first argument must be an ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("first argument must be an ndarray")); } if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { return mp_obj_len_maybe(args[0].u_obj); diff --git a/code/numpy/vector.c b/code/numpy/vector.c index b9a4cc68..cd8fef3e 100644 --- a/code/numpy/vector.c +++ b/code/numpy/vector.c @@ -64,18 +64,18 @@ static mp_obj_t vector_generic_vector(size_t n_args, const mp_obj_t *pos_args, m target = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_FLOAT); } else { if(!mp_obj_is_type(out, &ulab_ndarray_type)) { - mp_raise_ValueError(translate("out must be an ndarray")); + mp_raise_ValueError(MP_ERROR_TEXT("out must be an ndarray")); } target = MP_OBJ_TO_PTR(out); if(target->dtype != NDARRAY_FLOAT) { - mp_raise_ValueError(translate("out must be of float dtype")); + mp_raise_ValueError(MP_ERROR_TEXT("out must be of float dtype")); } if(target->ndim != source->ndim) { - mp_raise_ValueError(translate("input and output dimensions differ")); + mp_raise_ValueError(MP_ERROR_TEXT("input and output dimensions differ")); } for(uint8_t d = 0; d < target->ndim; d++) { if(target->shape[ULAB_MAX_DIMS - 1 - d] != source->shape[ULAB_MAX_DIMS - 1 - d]) { - mp_raise_ValueError(translate("input and output shapes differ")); + mp_raise_ValueError(MP_ERROR_TEXT("input and output shapes differ")); } } } @@ -309,7 +309,7 @@ mp_obj_t vector_around(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)]; mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("first argument must be an ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("first argument must be an ndarray")); } int8_t n = args[1].u_int; mp_float_t mul = MICROPY_FLOAT_C_FUN(pow)(10.0, n); @@ -318,7 +318,7 @@ mp_obj_t vector_around(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_arg #if ULAB_MATH_FUNCTIONS_OUT_KEYWORD mp_obj_t out = args[2].u_obj; if(out != mp_const_none) { - mp_raise_ValueError(translate("out keyword is not supported for function")); + mp_raise_ValueError(MP_ERROR_TEXT("out keyword is not supported for function")); } #endif /* ULAB_MATH_FUNCTIONS_OUT_KEYWORD */ ndarray_obj_t *ndarray = ndarray_new_dense_ndarray(source->ndim, source->shape, NDARRAY_FLOAT); @@ -426,7 +426,7 @@ mp_obj_t vector_arctan2(mp_obj_t y, mp_obj_t x) { int32_t *xstrides = m_new(int32_t, ULAB_MAX_DIMS); int32_t *ystrides = m_new(int32_t, ULAB_MAX_DIMS); if(!ndarray_can_broadcast(ndarray_x, ndarray_y, &ndim, shape, xstrides, ystrides)) { - mp_raise_ValueError(translate("operands could not be broadcast together")); + mp_raise_ValueError(MP_ERROR_TEXT("operands could not be broadcast together")); m_del(size_t, shape, ULAB_MAX_DIMS); m_del(int32_t, xstrides, ULAB_MAX_DIMS); m_del(int32_t, ystrides, ULAB_MAX_DIMS); @@ -610,7 +610,7 @@ static mp_obj_t vector_exp(mp_obj_t o_in) { mp_obj_t o_in = args[0].u_obj; mp_obj_t out = args[1].u_obj; if(out != mp_const_none) { - mp_raise_ValueError(translate("out keyword is not supported for complex dtype")); + mp_raise_ValueError(MP_ERROR_TEXT("out keyword is not supported for complex dtype")); } #endif /* ULAB_MATH_FUNCTIONS_OUT_KEYWORD */ @@ -888,7 +888,7 @@ mp_obj_t vector_sqrt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) mp_obj_t o_in = args[0].u_obj; uint8_t dtype = mp_obj_get_int(args[2].u_obj); if((dtype != NDARRAY_FLOAT) && (dtype != NDARRAY_COMPLEX)) { - mp_raise_TypeError(translate("dtype must be float, or complex")); + mp_raise_TypeError(MP_ERROR_TEXT("dtype must be float, or complex")); } if(mp_obj_is_type(o_in, &mp_type_complex)) { @@ -901,14 +901,14 @@ mp_obj_t vector_sqrt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) } else if(mp_obj_is_type(o_in, &ulab_ndarray_type)) { ndarray_obj_t *source = MP_OBJ_TO_PTR(o_in); if((source->dtype == NDARRAY_COMPLEX) && (dtype == NDARRAY_FLOAT)) { - mp_raise_TypeError(translate("can't convert complex to float")); + mp_raise_TypeError(MP_ERROR_TEXT("can't convert complex to float")); } if(dtype == NDARRAY_COMPLEX) { #if ULAB_MATH_FUNCTIONS_OUT_KEYWORD mp_obj_t out = args[1].u_obj; if(out != mp_const_none) { - mp_raise_ValueError(translate("out keyword is not supported for complex dtype")); + mp_raise_ValueError(MP_ERROR_TEXT("out keyword is not supported for complex dtype")); } #endif if(source->dtype == NDARRAY_COMPLEX) { @@ -1010,7 +1010,7 @@ mp_obj_t vector_sqrt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) #endif /* ULAB_MAX_DIMS > 3 */ return MP_OBJ_FROM_PTR(ndarray); } else { - mp_raise_TypeError(translate("input dtype must be float or complex")); + mp_raise_TypeError(MP_ERROR_TEXT("input dtype must be float or complex")); } } } @@ -1127,7 +1127,7 @@ static mp_obj_t vector_vectorized_function_call(mp_obj_t self_in, size_t n_args, ndarray_set_value(self->otypes, ndarray->array, 0, fvalue); return MP_OBJ_FROM_PTR(ndarray); } else { - mp_raise_ValueError(translate("wrong input type")); + mp_raise_ValueError(MP_ERROR_TEXT("wrong input type")); } return mp_const_none; } @@ -1173,7 +1173,7 @@ static mp_obj_t vector_vectorize(size_t n_args, const mp_obj_t *pos_args, mp_map mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); const mp_obj_type_t *type = mp_obj_get_type(args[0].u_obj); if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) { - mp_raise_TypeError(translate("first argument must be a callable")); + mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a callable")); } mp_obj_t _otypes = args[1].u_obj; uint8_t otypes = NDARRAY_FLOAT; @@ -1184,11 +1184,11 @@ static mp_obj_t vector_vectorize(size_t n_args, const mp_obj_t *pos_args, mp_map otypes = mp_obj_get_int(_otypes); if(otypes != NDARRAY_FLOAT && otypes != NDARRAY_UINT8 && otypes != NDARRAY_INT8 && otypes != NDARRAY_UINT16 && otypes != NDARRAY_INT16) { - mp_raise_ValueError(translate("wrong output type")); + mp_raise_ValueError(MP_ERROR_TEXT("wrong output type")); } } else { - mp_raise_ValueError(translate("wrong output type")); + mp_raise_ValueError(MP_ERROR_TEXT("wrong output type")); } vectorized_function_obj_t *function = m_new_obj(vectorized_function_obj_t); function->base.type = &vector_function_type; diff --git a/code/scipy/linalg/linalg.c b/code/scipy/linalg/linalg.c index a42392ce..d7942d31 100644 --- a/code/scipy/linalg/linalg.c +++ b/code/scipy/linalg/linalg.c @@ -59,14 +59,14 @@ static mp_obj_t solve_triangular(size_t n_args, const mp_obj_t *pos_args, mp_map mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!mp_obj_is_type(args[0].u_obj, &ulab_ndarray_type) || !mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("first two arguments must be ndarrays")); + mp_raise_TypeError(MP_ERROR_TEXT("first two arguments must be ndarrays")); } ndarray_obj_t *A = MP_OBJ_TO_PTR(args[0].u_obj); ndarray_obj_t *b = MP_OBJ_TO_PTR(args[1].u_obj); if(!ndarray_is_dense(A) || !ndarray_is_dense(b)) { - mp_raise_TypeError(translate("input must be a dense ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("input must be a dense ndarray")); } size_t A_rows = A->shape[ULAB_MAX_DIMS - 2]; @@ -83,7 +83,7 @@ static mp_obj_t solve_triangular(size_t n_args, const mp_obj_t *pos_args, mp_map // check if input matrix A is singular for (i = 0; i < A_rows; i++) { if (MICROPY_FLOAT_C_FUN(fabs)(get_A_ele(A_arr)) < LINALG_EPSILON) - mp_raise_ValueError(translate("input matrix is singular")); + mp_raise_ValueError(MP_ERROR_TEXT("input matrix is singular")); A_arr += A->strides[ULAB_MAX_DIMS - 2]; A_arr += A->strides[ULAB_MAX_DIMS - 1]; } @@ -161,14 +161,14 @@ MP_DEFINE_CONST_FUN_OBJ_KW(linalg_solve_triangular_obj, 2, solve_triangular); static mp_obj_t cho_solve(mp_obj_t _L, mp_obj_t _b) { if(!mp_obj_is_type(_L, &ulab_ndarray_type) || !mp_obj_is_type(_b, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("first two arguments must be ndarrays")); + mp_raise_TypeError(MP_ERROR_TEXT("first two arguments must be ndarrays")); } ndarray_obj_t *L = MP_OBJ_TO_PTR(_L); ndarray_obj_t *b = MP_OBJ_TO_PTR(_b); if(!ndarray_is_dense(L) || !ndarray_is_dense(b)) { - mp_raise_TypeError(translate("input must be a dense ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("input must be a dense ndarray")); } mp_float_t (*get_L_ele)(void *) = ndarray_get_float_function(L->dtype); diff --git a/code/scipy/optimize/optimize.c b/code/scipy/optimize/optimize.c index ef10288d..9bd80878 100644 --- a/code/scipy/optimize/optimize.c +++ b/code/scipy/optimize/optimize.c @@ -71,7 +71,7 @@ STATIC mp_obj_t optimize_bisect(size_t n_args, const mp_obj_t *pos_args, mp_map_ mp_obj_t fun = args[0].u_obj; const mp_obj_type_t *type = mp_obj_get_type(fun); if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) { - mp_raise_TypeError(translate("first argument must be a function")); + mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a function")); } mp_float_t xtol = mp_obj_get_float(args[3].u_obj); mp_obj_t fargs[1]; @@ -82,12 +82,12 @@ STATIC mp_obj_t optimize_bisect(size_t n_args, const mp_obj_t *pos_args, mp_map_ left = optimize_python_call(type, fun, a, fargs, 0); right = optimize_python_call(type, fun, b, fargs, 0); if(left * right > 0) { - mp_raise_ValueError(translate("function has the same sign at the ends of interval")); + mp_raise_ValueError(MP_ERROR_TEXT("function has the same sign at the ends of interval")); } mp_float_t rtb = left < MICROPY_FLOAT_CONST(0.0) ? a : b; mp_float_t dx = left < MICROPY_FLOAT_CONST(0.0) ? b - a : a - b; if(args[4].u_int < 0) { - mp_raise_ValueError(translate("maxiter should be > 0")); + mp_raise_ValueError(MP_ERROR_TEXT("maxiter should be > 0")); } for(uint16_t i=0; i < args[4].u_int; i++) { dx *= MICROPY_FLOAT_CONST(0.5); @@ -141,14 +141,14 @@ STATIC mp_obj_t optimize_fmin(size_t n_args, const mp_obj_t *pos_args, mp_map_t mp_obj_t fun = args[0].u_obj; const mp_obj_type_t *type = mp_obj_get_type(fun); if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) { - mp_raise_TypeError(translate("first argument must be a function")); + mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a function")); } // parameters controlling convergence conditions mp_float_t xatol = mp_obj_get_float(args[2].u_obj); mp_float_t fatol = mp_obj_get_float(args[3].u_obj); if(args[4].u_int <= 0) { - mp_raise_ValueError(translate("maxiter must be > 0")); + mp_raise_ValueError(MP_ERROR_TEXT("maxiter must be > 0")); } uint16_t maxiter = (uint16_t)args[4].u_int; @@ -277,22 +277,22 @@ mp_obj_t optimize_curve_fit(size_t n_args, const mp_obj_t *pos_args, mp_map_t *k mp_obj_t fun = args[0].u_obj; const mp_obj_type_t *type = mp_obj_get_type(fun); if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) { - mp_raise_TypeError(translate("first argument must be a function")); + mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a function")); } mp_obj_t x_obj = args[1].u_obj; mp_obj_t y_obj = args[2].u_obj; mp_obj_t p0_obj = args[3].u_obj; if(!ndarray_object_is_array_like(x_obj) || !ndarray_object_is_array_like(y_obj)) { - mp_raise_TypeError(translate("data must be iterable")); + mp_raise_TypeError(MP_ERROR_TEXT("data must be iterable")); } if(!ndarray_object_is_nditerable(p0_obj)) { - mp_raise_TypeError(translate("initial values must be iterable")); + mp_raise_TypeError(MP_ERROR_TEXT("initial values must be iterable")); } size_t len = (size_t)mp_obj_get_int(mp_obj_len_maybe(x_obj)); uint8_t lenp = (uint8_t)mp_obj_get_int(mp_obj_len_maybe(p0_obj)); if(len != (uint16_t)mp_obj_get_int(mp_obj_len_maybe(y_obj))) { - mp_raise_ValueError(translate("data must be of equal length")); + mp_raise_ValueError(MP_ERROR_TEXT("data must be of equal length")); } mp_float_t *x = m_new(mp_float_t, len); @@ -366,7 +366,7 @@ static mp_obj_t optimize_newton(size_t n_args, const mp_obj_t *pos_args, mp_map_ mp_obj_t fun = args[0].u_obj; const mp_obj_type_t *type = mp_obj_get_type(fun); if(!MP_OBJ_TYPE_HAS_SLOT(type, call)) { - mp_raise_TypeError(translate("first argument must be a function")); + mp_raise_TypeError(MP_ERROR_TEXT("first argument must be a function")); } mp_float_t x = mp_obj_get_float(args[1].u_obj); mp_float_t tol = mp_obj_get_float(args[2].u_obj); @@ -375,7 +375,7 @@ static mp_obj_t optimize_newton(size_t n_args, const mp_obj_t *pos_args, mp_map_ dx = x > MICROPY_FLOAT_CONST(0.0) ? OPTIMIZE_EPS * x : -OPTIMIZE_EPS * x; mp_obj_t fargs[1]; if(args[4].u_int <= 0) { - mp_raise_ValueError(translate("maxiter must be > 0")); + mp_raise_ValueError(MP_ERROR_TEXT("maxiter must be > 0")); } for(uint16_t i=0; i < args[4].u_int; i++) { fx = optimize_python_call(type, fun, x, fargs, 0); diff --git a/code/scipy/signal/signal.c b/code/scipy/signal/signal.c index db8d3cc5..f930a943 100644 --- a/code/scipy/signal/signal.c +++ b/code/scipy/signal/signal.c @@ -43,7 +43,7 @@ mp_obj_t signal_sosfilt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args); if(!ndarray_object_is_array_like(args[0].u_obj) || !ndarray_object_is_array_like(args[1].u_obj)) { - mp_raise_TypeError(translate("sosfilt requires iterable arguments")); + mp_raise_TypeError(MP_ERROR_TEXT("sosfilt requires iterable arguments")); } #if ULAB_SUPPORTS_COMPLEX if(mp_obj_is_type(args[1].u_obj, &ulab_ndarray_type)) { @@ -59,7 +59,7 @@ mp_obj_t signal_sosfilt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar ndarray_obj_t *inarray = MP_OBJ_TO_PTR(args[1].u_obj); #if ULAB_MAX_DIMS > 1 if(inarray->ndim > 1) { - mp_raise_ValueError(translate("input must be one-dimensional")); + mp_raise_ValueError(MP_ERROR_TEXT("input must be one-dimensional")); } #endif uint8_t *iarray = (uint8_t *)inarray->array; @@ -82,14 +82,14 @@ mp_obj_t signal_sosfilt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar if(args[2].u_obj != mp_const_none) { if(!mp_obj_is_type(args[2].u_obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("zi must be an ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("zi must be an ndarray")); } else { ndarray_obj_t *zi = MP_OBJ_TO_PTR(args[2].u_obj); if((zi->shape[ULAB_MAX_DIMS - 2] != lensos) || (zi->shape[ULAB_MAX_DIMS - 1] != 2)) { - mp_raise_ValueError(translate("zi must be of shape (n_section, 2)")); + mp_raise_ValueError(MP_ERROR_TEXT("zi must be of shape (n_section, 2)")); } if(zi->dtype != NDARRAY_FLOAT) { - mp_raise_ValueError(translate("zi must be of float type")); + mp_raise_ValueError(MP_ERROR_TEXT("zi must be of float type")); } // TODO: this won't work with sparse arrays memcpy(zf_array, zi->array, 2*lensos*sizeof(mp_float_t)); @@ -97,11 +97,11 @@ mp_obj_t signal_sosfilt(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_ar } while((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) { if(mp_obj_get_int(mp_obj_len_maybe(item)) != 6) { - mp_raise_ValueError(translate("sos array must be of shape (n_section, 6)")); + mp_raise_ValueError(MP_ERROR_TEXT("sos array must be of shape (n_section, 6)")); } else { fill_array_iterable(coeffs, item); if(coeffs[3] != MICROPY_FLOAT_CONST(1.0)) { - mp_raise_ValueError(translate("sos[:, 3] should be all ones")); + mp_raise_ValueError(MP_ERROR_TEXT("sos[:, 3] should be all ones")); } signal_sosfilt_array(yarray, coeffs, zf_array, lenx); zf_array += 2; diff --git a/code/ulab_tools.c b/code/ulab_tools.c index 514721f7..b57f1e66 100644 --- a/code/ulab_tools.c +++ b/code/ulab_tools.c @@ -168,7 +168,7 @@ shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) { // The shape and strides at `axis` are moved to the zeroth position, // everything else is aligned to the right if(!mp_obj_is_int(axis) & (axis != mp_const_none)) { - mp_raise_TypeError(translate("axis must be None, or an integer")); + mp_raise_TypeError(MP_ERROR_TEXT("axis must be None, or an integer")); } shape_strides _shape_strides; @@ -194,7 +194,7 @@ shape_strides tools_reduce_axes(ndarray_obj_t *ndarray, mp_obj_t axis) { int8_t ax = mp_obj_get_int(axis); if(ax < 0) ax += ndarray->ndim; if((ax < 0) || (ax > ndarray->ndim - 1)) { - mp_raise_ValueError(translate("index out of range")); + mp_raise_ValueError(MP_ERROR_TEXT("index out of range")); } index = ULAB_MAX_DIMS - ndarray->ndim + ax; _shape_strides.ndim = ndarray->ndim - 1; @@ -220,7 +220,7 @@ int8_t tools_get_axis(mp_obj_t axis, uint8_t ndim) { int8_t ax = mp_obj_get_int(axis); if(ax < 0) ax += ndim; if((ax < 0) || (ax > ndim - 1)) { - mp_raise_ValueError(translate("axis is out of bounds")); + mp_raise_ValueError(MP_ERROR_TEXT("axis is out of bounds")); } return ax; } @@ -230,11 +230,11 @@ ndarray_obj_t *tools_object_is_square(mp_obj_t obj) { // Returns an ndarray, if the object is a square ndarray, // raises the appropriate exception otherwise if(!mp_obj_is_type(obj, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("size is defined for ndarrays only")); + mp_raise_TypeError(MP_ERROR_TEXT("size is defined for ndarrays only")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(obj); if((ndarray->shape[ULAB_MAX_DIMS - 1] != ndarray->shape[ULAB_MAX_DIMS - 2]) || (ndarray->ndim != 2)) { - mp_raise_ValueError(translate("input must be square matrix")); + mp_raise_ValueError(MP_ERROR_TEXT("input must be square matrix")); } return ndarray; } diff --git a/code/user/user.c b/code/user/user.c index 88775fda..c372092f 100644 --- a/code/user/user.c +++ b/code/user/user.c @@ -28,13 +28,13 @@ static mp_obj_t user_square(mp_obj_t arg) { // raise a TypeError exception, if the input is not an ndarray if(!mp_obj_is_type(arg, &ulab_ndarray_type)) { - mp_raise_TypeError(translate("input must be an ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("input must be an ndarray")); } ndarray_obj_t *ndarray = MP_OBJ_TO_PTR(arg); // make sure that the input is a dense array if(!ndarray_is_dense(ndarray)) { - mp_raise_TypeError(translate("input must be a dense ndarray")); + mp_raise_TypeError(MP_ERROR_TEXT("input must be a dense ndarray")); } // if the input is a dense array, create `results` with the same number of diff --git a/code/utils/utils.c b/code/utils/utils.c index 6a59baf3..1d282d86 100644 --- a/code/utils/utils.c +++ b/code/utils/utils.c @@ -45,7 +45,7 @@ static mp_obj_t utils_from_intbuffer_helper(size_t n_args, const mp_obj_t *pos_a if(args[3].u_obj != mp_const_none) { ndarray = MP_OBJ_TO_PTR(args[3].u_obj); if((ndarray->dtype != NDARRAY_FLOAT) || !ndarray_is_dense(ndarray)) { - mp_raise_TypeError(translate("out must be a float dense array")); + mp_raise_TypeError(MP_ERROR_TEXT("out must be a float dense array")); } } @@ -54,7 +54,7 @@ static mp_obj_t utils_from_intbuffer_helper(size_t n_args, const mp_obj_t *pos_a mp_buffer_info_t bufinfo; if(mp_get_buffer(args[0].u_obj, &bufinfo, MP_BUFFER_READ)) { if(bufinfo.len < offset) { - mp_raise_ValueError(translate("offset is too large")); + mp_raise_ValueError(MP_ERROR_TEXT("offset is too large")); } uint8_t sz = sizeof(int16_t); #if ULAB_UTILS_HAS_FROM_INT32_BUFFER | ULAB_UTILS_HAS_FROM_UINT32_BUFFER @@ -65,12 +65,12 @@ static mp_obj_t utils_from_intbuffer_helper(size_t n_args, const mp_obj_t *pos_a size_t len = (bufinfo.len - offset) / sz; if((len * sz) != (bufinfo.len - offset)) { - mp_raise_ValueError(translate("buffer size must be a multiple of element size")); + mp_raise_ValueError(MP_ERROR_TEXT("buffer size must be a multiple of element size")); } if(mp_obj_get_int(args[1].u_obj) > 0) { size_t count = mp_obj_get_int(args[1].u_obj); if(len < count) { - mp_raise_ValueError(translate("buffer is smaller than requested size")); + mp_raise_ValueError(MP_ERROR_TEXT("buffer is smaller than requested size")); } else { len = count; } @@ -79,7 +79,7 @@ static mp_obj_t utils_from_intbuffer_helper(size_t n_args, const mp_obj_t *pos_a ndarray = ndarray_new_linear_array(len, NDARRAY_FLOAT); } else { if(ndarray->len < len) { - mp_raise_ValueError(translate("out array is too small")); + mp_raise_ValueError(MP_ERROR_TEXT("out array is too small")); } } uint8_t *buffer = bufinfo.buf; From eacb0c9af47f85f5d4864b721c3b28661364e8e3 Mon Sep 17 00:00:00 2001 From: Jeff Epler Date: Mon, 30 Oct 2023 09:54:14 +0100 Subject: [PATCH 3/3] fix some more translate()s --- code/ndarray_operators.c | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/code/ndarray_operators.c b/code/ndarray_operators.c index c9c65a22..b7d61f26 100644 --- a/code/ndarray_operators.c +++ b/code/ndarray_operators.c @@ -863,11 +863,11 @@ mp_obj_t ndarray_binary_logical(ndarray_obj_t *lhs, ndarray_obj_t *rhs, #if ULAB_SUPPORTS_COMPLEX if((lhs->dtype == NDARRAY_COMPLEX) || (rhs->dtype == NDARRAY_COMPLEX) || (lhs->dtype == NDARRAY_FLOAT) || (rhs->dtype == NDARRAY_FLOAT)) { - mp_raise_TypeError(translate("operation not supported for the input types")); + mp_raise_TypeError(MP_ERROR_TEXT("operation not supported for the input types")); } #else if((lhs->dtype == NDARRAY_FLOAT) || (rhs->dtype == NDARRAY_FLOAT)) { - mp_raise_TypeError(translate("operation not supported for the input types")); + mp_raise_TypeError(MP_ERROR_TEXT("operation not supported for the input types")); } #endif @@ -875,7 +875,7 @@ mp_obj_t ndarray_binary_logical(ndarray_obj_t *lhs, ndarray_obj_t *rhs, // numpy promotes the result to int32 if(((lhs->dtype == NDARRAY_INT16) && (rhs->dtype == NDARRAY_UINT16)) || ((lhs->dtype == NDARRAY_UINT16) && (rhs->dtype == NDARRAY_INT16))) { - mp_raise_TypeError(translate("dtype of int32 is not supported")); + mp_raise_TypeError(MP_ERROR_TEXT("dtype of int32 is not supported")); } ndarray_obj_t *results = NULL;