-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbaselines.py
220 lines (186 loc) · 6.99 KB
/
baselines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torch.optim as optim
use_cuda = torch.cuda.is_available()
class MLPNet(nn.Module):
def __init__(self):
super(MLPNet, self).__init__()
self.fc1 = nn.Linear(28*28, 500)
self.fc2 = nn.Linear(500, 256)
self.fc3 = nn.Linear(256, 10)
def forward(self, x):
x = x.view(-1, 28*28)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def name(self):
return "MLP"
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def name(self):
return "LeNet"
class MNISTTrainer(object):
def __init__(batch_size=100, model=LeNet()):
self.batch_size=batch_size
self.model = model
def fit(train_x, train_y):
dataset = torch.utils.data.TensorDataset(torch.from_numpy(trian_x), torch.from_numpy(train_y))
train_loader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=self.batch_size,
shuffle=True)
if use_cuda:
self.model = self.model.cuda()
optimizer = optim.SGD(self.model.parameters(), lr=0.01, momentum=0.9)
ceriation = nn.CrossEntropyLoss()
for epoch in xrange(10):
# trainning
ave_loss = 0
for batch_idx, (x, target) in enumerate(train_loader):
optimizer.zero_grad()
if use_cuda:
x, target = x.cuda(), target.cuda()
x, target = Variable(x), Variable(target)
out = self.model(x)
loss = ceriation(out, target)
loss.backward()
optimizer.step()
def predict(test_x):
preds = []
dataset = torch.utils.data.TensorDataset(torch.from_numpy(test_x), torch.from_numpy(np.ones(len(test_x))))
train_loader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=False)
for batch_idx, x in enumerate(test_loader):
if use_cuda:
x = x.cuda()
x = Variable(x, volatile=True)
out = self.model(x)
_, pred_label = torch.max(out.data, 1)
preds += pred_labels.tolist()
return np.array(preds)
class MLP(nn.Module):
def __init__(self, gamma=0.001):
super(MLP, self).__init__()
self.fc1 = nn.Linear(10, 20)
self.fc2 = nn.Linear(20, 20)
self.fc3 = nn.Linear(20, 1)
#self.fc4 = nn.Linear(6, 1)
self.gamma = gamma
def forward(self, x):
x = self.fc1(x)**2 #torch.exp(self.gamma*self.fc1(x)) #torch.tanh(self.fc1(x))
x = self.fc2(x)**2
x = self.fc3(x)
#x = self.fc4(x)
return x
def name(self):
return "MLP"
def rbf(x, weights, gamma):
"""
Applies a rbf transformation to the incoming data: :math:y = exp(-gamma*(w[None, :, :]-x[:, None, :])^2).
Shape:
- x: :math:`(N, in\_features)` where `*` means any number of
additional dimensions
- Weights: :math:`(out\_features, in\_features)`
- Output: :math:`(N, out\_features)`
"""
y = (weights.unsqueeze(0) - x.unsqueeze(1))**2
y = y.sum(dim=-1)
return torch.exp(-gamma * y)
class RBFMLP(nn.Module):
def __init__(self, gamma=None):
super(RBFMLP, self).__init__()
self.fc1 = nn.Linear(11, 6)
self.fc2 = nn.Linear(6, 1)
if gamma is None:
gamma = 1.0 / 10.
self.gamma = gamma
def forward(self, x):
x = rbf(x, self.fc1.weight, self.gamma)
x = self.fc2(x)
return x
def name(self):
return "RBFMLP"
class MLPRegression(object):
def __init__(self, gamma=None, batch_size=1000):
self.batch_size = batch_size
self.model = MLP(gamma)
def fit(self, train_x, train_y):
dataset = torch.utils.data.TensorDataset(torch.from_numpy(train_x), torch.from_numpy(train_y))
train_loader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=self.batch_size,
shuffle=True)
if use_cuda:
self.model = self.model.cuda()
optimizer = optim.RMSprop(self.model.parameters(), lr=0.0001)
ceriation = nn.MSELoss()
for epoch in range(1000):
for batch_idx, (x, target) in enumerate(train_loader):
optimizer.zero_grad()
if use_cuda:
x, target = x.cuda(), target.float().cuda()
x, target = Variable(x), Variable(target)
out = self.model(x)
loss = ceriation(out, target)
loss.backward()
optimizer.step()
print(loss.data[0])
return self
def predict(self, test_x):
preds = []
dataset = torch.utils.data.TensorDataset(torch.from_numpy(test_x), torch.from_numpy(np.ones(len(test_x))))
test_loader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=self.batch_size,
shuffle=False)
for batch_idx, (x, y) in enumerate(test_loader):
if use_cuda:
x = x.cuda()
x = Variable(x, volatile=True)
out = self.model(x)
preds += out.data.cpu().numpy().tolist()
return np.array(preds)
if __name__ == '__main__':
import numpy as np
np.random.seed = 123
x = 5*np.random.rand(100000, 10).astype('float32')
#x = np.concatenate([x, np.ones((len(x), 1), dtype='float32')], axis=1)
y = (x[:, 0] * x[:, 8]**3).astype('float32')
np.random.seed = 1234
x_test = 5*np.random.rand(100000, 10).astype('float32')+5
#x_test = np.concatenate([x_test, np.ones((len(x_test), 1), dtype='float32')], axis=1)
y_test = (x_test[:, 0] * x_test[:, 8]**3).astype('float32')
from sklearn.neural_network import MLPRegressor
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.svm import SVR
#rg = MLPRegressor(hidden_layer_sizes=(50, ), activation='tanh', tol=1e-7)
rg = MLPRegression(gamma=1.)
preds = rg.fit(x, y).predict(x)
mse = mean_squared_error(y, preds)
print('train mse:{}'.format(mse))
preds = rg.predict(x_test)
mse = mean_squared_error(y_test, preds)
print('test mse:{}'.format(mse))