Skip to content

utkarshnath/Adjoint-Network

Repository files navigation

Adjoint-Network

Setup

Setting up conda

  1. wget https://repo.anaconda.com/archive/Anaconda3-2018.12-Linux-x86_64.sh
  2. bash Anaconda3–2018.12-Linux-x86_64.sh
  3. . ~/.bashrc

Installing libraries

  1. conda create -n fastai python=3.7
  2. conda activate fastai
  3. pip install fastai
  4. conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
  5. conda install -c anaconda ipython

Running

python train.py --dataset cifar100 --compression_factor 16 --masking_factor 0.5
Running the above command would use default value for batch_size, image_size, lr, c, epoch and is_sgd.
If you want to change anyone of these value then use --default_config False
eg. python train.py --dataset cifar100 --default_config False --compression_factor 16 --masking_factor 0.5 --lr 0.1

Arguments

Argument Discription Domain
lr Learning Rate Float
is_adjoint_training True for adjoint training, false otherwise True/False
is_sgd We support sgd and adam both True/False
classes Denote number of classes in the dataset Integer
compression_factor Normally used compression factors are 4,8,16. Default value is 4 Integer
masking_factor Used to denote fraction of weight converted to zero in each kernel. Default value is None (0,1)
resnet the resnet model to be used {18,34,50,101,152}
dataset Dataset supported are cifar100, cifar10, imagenet, imagewoof and Oxford-IIIT Pet {cifar100,cifar10,imagenet,imagewoof,pets}
default_config Setting it to true will be using parameter used in the currect experiemnt for each dataset. By default it's true True/False
batch_size Batch size Integer
image_size Image size Integer
epoch Total number of epochs Integer

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages