Setting up conda
- wget https://repo.anaconda.com/archive/Anaconda3-2018.12-Linux-x86_64.sh
- bash Anaconda3–2018.12-Linux-x86_64.sh
- . ~/.bashrc
Installing libraries
- conda create -n fastai python=3.7
- conda activate fastai
- pip install fastai
- conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
- conda install -c anaconda ipython
python train.py --dataset cifar100 --compression_factor 16 --masking_factor 0.5
Running the above command would use default value for batch_size, image_size, lr, c, epoch and is_sgd.
If you want to change anyone of these value then use --default_config False
eg. python train.py --dataset cifar100 --default_config False --compression_factor 16 --masking_factor 0.5 --lr 0.1
Arguments
Argument | Discription | Domain |
---|---|---|
lr | Learning Rate | Float |
is_adjoint_training | True for adjoint training, false otherwise | True/False |
is_sgd | We support sgd and adam both | True/False |
classes | Denote number of classes in the dataset | Integer |
compression_factor | Normally used compression factors are 4,8,16. Default value is 4 | Integer |
masking_factor | Used to denote fraction of weight converted to zero in each kernel. Default value is None | (0,1) |
resnet | the resnet model to be used | {18,34,50,101,152} |
dataset | Dataset supported are cifar100, cifar10, imagenet, imagewoof and Oxford-IIIT Pet | {cifar100,cifar10,imagenet,imagewoof,pets} |
default_config | Setting it to true will be using parameter used in the currect experiemnt for each dataset. By default it's true | True/False |
batch_size | Batch size | Integer |
image_size | Image size | Integer |
epoch | Total number of epochs | Integer |