forked from Keep-Passion/ImageStitch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImageFusion.py
488 lines (462 loc) · 20.1 KB
/
ImageFusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
import numpy as np
import cv2
import math
import ImageUtility as Utility
class ImageFusion(Utility.Method):
# 图像融合类,目前只编写传统方法
def fuseByAverage(self, images):
'''
功能:均值融合
:param images: 输入两个相同区域的图像
:return:融合后的图像
'''
(imageA, imageB) = images
# 由于相加后数值可能溢出,需要转变类型
fuseRegion = np.uint8((imageA.astype(int) + imageB.astype(int)) / 2)
return fuseRegion
def fuseByMaximum(self, images):
'''
功能:最大值融合
:param images: 输入两个相同区域的图像
:return:融合后的图像
'''
(imageA, imageB) = images
fuseRegion = np.maximum(imageA, imageB)
return fuseRegion
def fuseByMinimum(self, images):
'''
功能:最小值融合
:param images: 输入两个相同区域的图像
:return:融合后的图像
'''
(imageA, imageB) = images
fuseRegion = np.minimum(imageA, imageB)
return fuseRegion
def getWeightsMatrix(self, images):
'''
功能:获取权值矩阵
:param images: 输入两个相同区域的图像
:return: weigthA,weightB
'''
(imageA, imageB) = images
weightMatA = np.ones(imageA.shape, dtype=np.float32)
weightMatB = np.ones(imageA.shape, dtype=np.float32)
row, col = imageA.shape[:2]
weightMatB_1 = weightMatB.copy()
weightMatB_2 = weightMatB.copy()
# 获取四条线的相加和,判断属于哪种模式
compareList = []
compareList.append(np.count_nonzero(imageA[0: row // 2, 0: col // 2] > 0))
compareList.append(np.count_nonzero(imageA[row // 2: row, 0: col // 2] > 0))
compareList.append(np.count_nonzero(imageA[row // 2: row, col // 2: col] > 0))
compareList.append(np.count_nonzero(imageA[0: row // 2, col // 2: col] > 0))
# self.printAndWrite(" compareList:" + str(compareList))
index = compareList.index(min(compareList))
# print("index:", index)
if index == 2:
# 重合区域在imageA的上左部分
# self.printAndWrite("上左")
rowIndex = 0; colIndex = 0;
for j in range(1, col):
for i in range(row - 1, -1, -1):
if imageA[i, col - j] != -1:
rowIndex = i + 1
break
if rowIndex != 0:
break
for i in range(col - 1, -1, -1):
if imageA[rowIndex, i] != -1:
colIndex = i + 1
break
# 赋值
for i in range(rowIndex + 1):
if rowIndex == 0:
rowIndex = 1
weightMatB_1[rowIndex - i, :] = (rowIndex - i) * 1 / rowIndex
for i in range(colIndex + 1):
if colIndex == 0:
colIndex = 1
weightMatB_2[:, colIndex - i] = (colIndex - i) * 1 / colIndex
weightMatB = weightMatB_1 * weightMatB_2
weightMatA = 1 - weightMatB
#elif leftCenter != 0 and bottomCenter != 0 and upCenter == 0 and rightCenter == 0:
elif index == 3:
# 重合区域在imageA的下左部分
# self.printAndWrite("下左")
rowIndex = 0; colIndex = 0;
for j in range(1, col):
for i in range(row):
if imageA[i, col - j] != -1:
rowIndex = i - 1
break
if rowIndex != 0:
break
for i in range(col - 1, -1, -1):
if imageA[rowIndex, i] != -1:
colIndex = i + 1
break
# 赋值
for i in range(rowIndex, row):
if rowIndex == 0:
rowIndex = 1
weightMatB_1[i, :] = (row - i - 1) * 1 / (row - rowIndex - 1)
for i in range(colIndex + 1):
if colIndex == 0:
colIndex = 1
weightMatB_2[:, colIndex - i] = (colIndex - i) * 1 / colIndex
weightMatB = weightMatB_1 * weightMatB_2
weightMatA = 1 - weightMatB
# elif rightCenter != 0 and bottomCenter != 0 and upCenter == 0 and leftCenter == 0:
elif index == 0:
# 重合区域在imageA的下右部分
# self.printAndWrite("下右")
rowIndex = 0;
colIndex = 0;
for j in range(0, col):
for i in range(row):
if imageA[i, j] != -1:
rowIndex = i - 1
break
if rowIndex != 0:
break
for i in range(col):
if imageA[rowIndex, i] != -1:
colIndex = i - 1
break
# 赋值
for i in range(rowIndex, row):
if rowIndex == 0:
rowIndex = 1
weightMatB_1[i, :] = (row - i - 1) * 1 / (row - rowIndex - 1)
for i in range(colIndex, col):
if colIndex == 0:
colIndex = 1
weightMatB_2[:, i] = (col - i - 1) * 1 / (col - colIndex - 1)
weightMatB = weightMatB_1 * weightMatB_2
weightMatA = 1 - weightMatB
# elif upCenter != 0 and rightCenter != 0 and leftCenter == 0 and bottomCenter == 0:
elif index == 1:
# 重合区域在imageA的上右部分
# self.printAndWrite("上右")
rowIndex = 0; colIndex = 0;
for j in range(0, col):
for i in range(row - 1, -1, -1):
if imageA[i, j] != -1:
rowIndex = i + 1
break
if rowIndex != 0:
break
for i in range(col):
if imageA[rowIndex, i] != -1:
colIndex = i - 1
break
for i in range(rowIndex + 1):
if rowIndex == 0:
rowIndex = 1
weightMatB_1[rowIndex - i, :] = (rowIndex - i) * 1 / rowIndex
for i in range(colIndex, col):
if colIndex == 0:
colIndex = 1
weightMatB_2[:, i] = (col - i - 1) * 1 / (col - colIndex - 1)
weightMatB = weightMatB_1 * weightMatB_2
weightMatA = 1 - weightMatB
# print(weightMatA)
# print(weightMatB)
return (weightMatA, weightMatB)
def fuseByFadeInAndFadeOut(self, images, dx, dy):
'''
功能:渐入渐出融合
:param images:输入两个相同区域的图像
:param direction: 横向拼接还是纵向拼接
:return:融合后的图像
'''
(imageA, imageB) = images
# cv2.imshow("A", imageA.astype(np.uint8))
# cv2.imshow("B", imageB.astype(np.uint8))
# cv2.waitKey(0)
# self.printAndWrite("dx={}, dy={}".format(dx, dy))
row, col = imageA.shape[:2]
weightMatA = np.ones(imageA.shape, dtype=np.float32)
weightMatB = np.ones(imageA.shape, dtype=np.float32)
# self.printAndWrite(" ratio: " + str(np.count_nonzero(imageA > -1) / imageA.size))
if np.count_nonzero(imageA > -1) / imageA.size > 0.65:
# self.printAndWrite("直接融合")
# 如果对于imageA中,非0值占比例比较大,则认为是普通融合
# 根据区域的行列大小来判断,如果行数大于列数,是水平方向
if col <= row:
# self.printAndWrite("普通融合-水平方向")
for i in range(0, col):
# print(dy)
if dy >= 0:
weightMatA[:, i] = weightMatA[:, i] * i * 1.0 / col
weightMatB[:, col - i - 1] = weightMatB[:, col - i - 1] * i * 1.0 / col
elif dy < 0:
weightMatA[:, i] = weightMatA[:, i] * (col - i) * 1.0 / col
weightMatB[:, col - i - 1] = weightMatB[:, col - i - 1] * (col - i) * 1.0 / col
# 根据区域的行列大小来判断,如果列数大于行数,是竖直方向
elif row < col:
# self.printAndWrite("普通融合-竖直方向")
for i in range(0, row):
if dx <= 0:
weightMatA[i, :] = weightMatA[i, :] * i * 1.0 / row
weightMatB[row - i - 1, :] = weightMatB[row - i - 1, :] * i * 1.0 / row
elif dx > 0:
weightMatA[i, :] = weightMatA[i, :] * (row - i) * 1.0 / row
weightMatB[row - i - 1, :] = weightMatB[row - i - 1, :] * (row - i) * 1.0 / row
else:
# 如果对于imageA中,非0值占比例比较小,则认为是拐角融合
# self.printAndWrite("拐角融合")
weightMatA, weightMatB = self.getWeightsMatrix(images)
imageA[imageA < 0] = imageB[imageA < 0]
result = weightMatA * imageA.astype(np.int) + weightMatB * imageB.astype(np.int)
result[result < 0] = 0; result[result > 255] = 255
fuseRegion = np.uint8(result)
return fuseRegion
def fuseByTrigonometric(self, images, dx, dy):
'''
功能:三角函数融合
引用自《一种三角函数权重的图像拼接算法》知网
:param images:输入两个相同区域的图像
:param direction: 横向拼接还是纵向拼接
:return:融合后的图像
'''
(imageA, imageB) = images
row, col = imageA.shape[:2]
weightMatA = np.ones(imageA.shape, dtype=np.float64)
weightMatB = np.ones(imageA.shape, dtype=np.float64)
# self.printAndWrite(" ratio: " + str(np.count_nonzero(imageA > -1) / imageA.size))
if np.count_nonzero(imageA > -1) / imageA.size > 0.65:
# 如果对于imageA中,非0值占比例比较大,则认为是普通融合
# 根据区域的行列大小来判断,如果行数大于列数,是水平方向
if col <= row:
# self.printAndWrite("普通融合-水平方向")
for i in range(0, col):
if dy >= 0:
weightMatA[:, i] = weightMatA[:, i] * i * 1.0 / col
weightMatB[:, col - i - 1] = weightMatB[:, col - i - 1] * i * 1.0 / col
elif dy < 0:
weightMatA[:, i] = weightMatA[:, i] * (col - i) * 1.0 / col
weightMatB[:, col - i - 1] = weightMatB[:, col - i - 1] * (col - i) * 1.0 / col
# 根据区域的行列大小来判断,如果列数大于行数,是竖直方向
elif row < col:
# self.printAndWrite("普通融合-竖直方向")
for i in range(0, row):
if dx <= 0:
weightMatA[i, :] = weightMatA[i, :] * i * 1.0 / row
weightMatB[row - i - 1, :] = weightMatB[row - i - 1, :] * i * 1.0 / row
elif dx > 0:
weightMatA[i, :] = weightMatA[i, :] * (row - i) * 1.0 / row
weightMatB[row - i - 1, :] = weightMatB[row - i - 1, :] * (row - i) * 1.0 / row
else:
# 如果对于imageA中,非0值占比例比较小,则认为是拐角融合
# self.printAndWrite("拐角融合")
weightMatA, weightMatB = self.getWeightsMatrix(images)
weightMatA = np.power(np.sin(weightMatA * math.pi / 2), 2)
weightMatB = 1 - weightMatA
imageA[imageA < 0] = imageB[imageA < 0]
result = weightMatA * imageA.astype(np.int) + weightMatB * imageB.astype(np.int)
result[result < 0] = 0; result[result > 255] = 255
fuseRegion = np.uint8(result)
return fuseRegion
# 多样条融合方法
def fuseByMultiBandBlending(self, images):
"""
功能:多带样条融合
:param images:
:return:
"""
(imageA, imageB) = images
imagesReturn = np.uint8(self.BlendArbitrary2(imageA, imageB, 4))
return imagesReturn
def BlendArbitrary(self, img1, img2, R, level):
"""
功能:带权拉普拉斯融合
:param img1: 第一张图像
:param img2: 第二张图像
:param R:
:param level: 金字塔权重
:return:
"""
# img1 and img2 have the same size
# R represents the region to be combined
# level is the expected number of levels in the pyramid
LA, GA = self.LaplacianPyramid(img1, level)
LB, GB = self.LaplacianPyramid(img2, level)
GR = self.GaussianPyramid(R, level)
GRN = []
for i in range(level):
GRN.append(np.ones((GR[i].shape[0], GR[i].shape[1])) - GR[i])
LC = []
for i in range(level):
LC.append(LA[i] * GR[level - i -1] + LB[i] * GRN[level - i - 1])
result = self.reconstruct(LC)
return result
def BlendArbitrary2(self, img1, img2, level):
# img1 and img2 have the same size
# R represents the region to be combined
# level is the expected number of levels in the pyramid
LA, GA = self.LaplacianPyramid(img1, level)
LB, GB = self.LaplacianPyramid(img2, level)
LC = []
for i in range(level):
LC.append(LA[i] * 0.5 + LB[i] * 0.5)
result = self.reconstruct(LC)
return result
def LaplacianPyramid(self, img, level):
gp = self.GaussianPyramid(img, level)
lp = [gp[level-1]]
for i in range(level - 1, -1, -1):
GE = cv2.pyrUp(gp[i])
GE = cv2.resize(GE, (gp[i - 1].shape[1], gp[i - 1].shape[0]), interpolation=cv2.INTER_CUBIC)
L = cv2.subtract(gp[i - 1], GE)
lp.append(L)
return lp, gp
def reconstruct(self, input_pyramid):
out = input_pyramid[0]
for i in range(1, len(input_pyramid)):
out = cv2.pyrUp(out)
out = cv2.resize(out, (input_pyramid[i].shape[1],input_pyramid[i].shape[0]), interpolation = cv2.INTER_CUBIC)
out = cv2.add(out, input_pyramid[i])
return out
def GaussianPyramid(self, R, level):
G = R.copy().astype(np.float64)
gp = [G]
for i in range(level):
G = cv2.pyrDown(G)
gp.append(G)
return gp
#权值矩阵归一化
def stretchImage(self, Region):
minI = Region.min()
maxI = Region.max()
out = (Region - minI) / (maxI - minI) * 255
return out
# OptialSeamLine's method 最佳缝合线方法
def fuseByOptimalSeamLine(self, images, direction="horizontal"):
'''
基于最佳缝合线的融合方法
:param images:输入两个相同区域的图像
:param direction: 横向拼接还是纵向拼接
:return:融合后的图像
'''
(imageA, imageB) = images
cv2.imshow("imageA", imageA)
cv2.imshow("imageB", imageB)
cv2.waitKey(0)
value = self.caculateVaule(images)
# print(value)
mask = 1 - self.findOptimalSeamLine(value, direction)
# cv2.namedWindow("mask", 0)
# cv2.imshow("mask", (mask*255).astype(np.uint8))
# cv2.waitKey(0)
fuseRegion = imageA.copy()
fuseRegion[(1 - mask) == 0] = imageA[(1 - mask) == 0]
fuseRegion[(1 - mask) == 1] = imageB[(1 - mask) == 1]
drawFuseRegion = self.drawOptimalLine(1- mask, fuseRegion)
cv2.imwrite("optimalLine.jpg", drawFuseRegion)
cv2.imwrite("fuseRegion.jpg", np.uint8(self.BlendArbitrary(imageA,imageB, mask, 4)))
cv2.waitKey(0)
return np.uint8(self.BlendArbitrary(imageA,imageB, mask, 4))
def caculateVaule(self, images):
(imageA, imageB) = images
row, col = imageA.shape[:2]
# value = np.zeros(imageA.shape, dtype=np.float32)
Ecolor = (imageA - imageB).astype(np.float32)
Sx = np.array([[-2, 0, 2],
[-1, 0, 1],
[-2, 0, 2]])
Sy = np.array([[-2, -1, -2],
[ 0, 0, 0],
[ 2, 1, 2]])
Egeometry = np.power(cv2.filter2D(Ecolor, -1, Sx), 2) + np.power(cv2.filter2D(Ecolor, -1, Sy), 2)
diff = np.abs(imageA - imageB) / np.maximum(imageA, imageB).max()
diffMax = np.amax(diff)
infinet = 10000
W = 10
for i in range(0, row):
for j in range(0, col):
if diff[i, j] < 0.7 * diffMax:
diff[i, j] = W * diff[i, j] / diffMax
else:
diff[i, j] = infinet
value = diff * (np.power(Ecolor, 2) + Egeometry)
return value
def findOptimalSeamLine(self, value, direction="horizontal"):
"""
功能:寻找最佳缝合线
:param value:
:param direction:
:return:
"""
if direction == "vertical":
value = np.transpose(value)
row, col = value.shape[:2]
indexMatrix = np.zeros(value.shape, dtype=np.int)
dpMatrix = np.zeros(value.shape, dtype=np.float32)
mask = np.zeros(value.shape, dtype=np.uint8)
dpMatrix[0, :] = value[0, :]
indexMatrix[0, :] = indexMatrix[0, :] - 1
for i in range(1, row):
for j in range(0, col):
if j == 0:
dpMatrix[i, j] = (np.array([dpMatrix[i - 1, j], dpMatrix[i - 1, j + 1]]) + value[i, j]).min()
indexMatrix[i, j] = (np.array([dpMatrix[i - 1, j], dpMatrix[i - 1, j + 1]]) + value[i, j]).argmin()
# print("last=" + str(np.array([dpMatrix[i - 1, j], dpMatrix[i - 1, j + 1]])))
# print("this=" + str(value[i, j]))
# print(dpMatrix[i, j])
# print(indexMatrix[i, j])
elif j == col - 1:
dpMatrix[i, j] = (np.array([dpMatrix[i - 1, j - 1], dpMatrix[i - 1, j]]) + value[i, j]).min()
indexMatrix[i, j] = (np.array([dpMatrix[i - 1, j - 1], dpMatrix[i - 1, j]]) + value[i, j]).argmin() - 1
else:
dpMatrix[i, j] = (np.array([dpMatrix[i - 1, j - 1], dpMatrix[i - 1, j], dpMatrix[i - 1, j + 1]]) + value[i, j]).min()
indexMatrix[i, j] = (np.array([dpMatrix[i - 1, j - 1], dpMatrix[i - 1, j], dpMatrix[i - 1, j + 1]]) + value[i, j]).argmin() - 1
# print(indexMatrix)
# generate the mask
index = dpMatrix[row - 1, :].argmin()
# print("here" + str(dpMatrix[row - 1, :]))
# print(index)
for j in range(index, col):
mask[row-1, j] = 1
for i in range(row - 1, 1, -1):
index = indexMatrix[i, index] + index
# print(index)
for j in range(index, col):
mask[i-1, j] = 1
if direction == "vertical":
mask = np.transpose(mask)
return mask
def drawOptimalLine(self, mask, fuseRegion):
"""
功能:绘制最佳缝合线
:param mask:
:param fuseRegion:
:return:
"""
row, col = mask.shape[:2]
drawing = np.zeros([row, col, 3], dtype=np.uint8)
drawing = cv2.cvtColor(fuseRegion, cv2.COLOR_GRAY2BGR)
for j in range(0, col):
for i in range(0, row):
if mask[i, j] == 1:
drawing[i, j] = np.array([0, 0, 255])
break
return drawing
if __name__=="__main__":
# 测试
num = 6
A_1 = np.zeros((num, num), dtype=np.uint8)
for i in range(num):
for j in range(num):
if j < 3:
A_1[i, j] = 1
for i in range(num):
for j in range(num):
if i < 3:
A_1[i, j] = 1
# A_1[0, num-1] = 0;A_1[1, num-1] = 0;A_1[2, num-1] = 0;
# A_1[num-1, 0] = 0; A_1[num-1, 1] = 0;A_1[num-1, 2] = 0;
print(A_1)
A_2 = np.ones((num, num), dtype=np.uint8)
imageFusion = ImageFusion()
imageFusion.fuseByFadeInAndFadeOut([A_1, A_2])