generated from usf-cs360-spring2020/template-bulma
-
Notifications
You must be signed in to change notification settings - Fork 0
/
map.twb
3055 lines (3054 loc) · 226 KB
/
map.twb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version='1.0' encoding='utf-8' ?>
<!-- build 20194.20.0323.1706 -->
<workbook original-version='18.1' source-build='2019.4.5 (20194.20.0323.1706)' source-platform='mac' version='18.1' xmlns:user='http://www.tableausoftware.com/xml/user'>
<document-format-change-manifest>
<AutoCreateAndUpdateDSDPhoneLayouts ignorable='true' predowngraded='true' />
<MapboxVectorStylesAndLayers />
<SheetIdentifierTracking ignorable='true' predowngraded='true' />
<WindowsPersistSimpleIdentifiers />
</document-format-change-manifest>
<preferences>
<preference name='ui.encoding.shelf.height' value='24' />
<preference name='ui.shelf.height' value='26' />
</preferences>
<datasources>
<datasource caption='COVID-19 Cases' inline='true' name='federated.1l15y0f0y470a617ll9v50cnppu6' version='18.1'>
<connection class='federated'>
<named-connections>
<named-connection caption='COVID-19 Cases' name='textscan.1i2nk8f12o16ty14zxomj00iimgd'>
<connection class='textscan' directory='/Users/zwang/Desktop/project-ZhenzhenWang918' filename='COVID-19 Cases.csv' password='' server='' />
</named-connection>
</named-connections>
<relation connection='textscan.1i2nk8f12o16ty14zxomj00iimgd' name='COVID-19 Cases.csv' table='[COVID-19 Cases#csv]' type='table'>
<columns character-set='UTF-8' header='yes' locale='en_US' separator=','>
<column datatype='string' name='Case_Type' ordinal='0' />
<column datatype='integer' name='Cases' ordinal='1' />
<column datatype='integer' name='Difference' ordinal='2' />
<column datatype='date' name='Date' ordinal='3' />
<column datatype='string' name='Country_Region' ordinal='4' />
<column datatype='string' name='Province_State' ordinal='5' />
<column datatype='string' name='Admin2' ordinal='6' />
<column datatype='string' name='Combined_Key' ordinal='7' />
<column datatype='string' name='FIPS' ordinal='8' />
<column datatype='real' name='Lat' ordinal='9' />
<column datatype='real' name='Long' ordinal='10' />
<column datatype='string' name='Table_Names' ordinal='11' />
<column datatype='datetime' name='Prep_Flow_Runtime' ordinal='12' />
</columns>
</relation>
<metadata-records>
<metadata-record class='capability'>
<remote-name />
<remote-type>0</remote-type>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias />
<aggregation>Count</aggregation>
<contains-null>true</contains-null>
<attributes>
<attribute datatype='string' name='character-set'>"UTF-8"</attribute>
<attribute datatype='string' name='collation'>"en_US"</attribute>
<attribute datatype='string' name='field-delimiter'>","</attribute>
<attribute datatype='string' name='header-row'>"true"</attribute>
<attribute datatype='string' name='locale'>"en_US"</attribute>
<attribute datatype='string' name='single-char'>""</attribute>
</attributes>
</metadata-record>
<metadata-record class='column'>
<remote-name>Case_Type</remote-name>
<remote-type>129</remote-type>
<local-name>[Case_Type]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>Case_Type</remote-alias>
<ordinal>0</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Cases</remote-name>
<remote-type>20</remote-type>
<local-name>[Cases]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>Cases</remote-alias>
<ordinal>1</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Difference</remote-name>
<remote-type>20</remote-type>
<local-name>[Difference]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>Difference</remote-alias>
<ordinal>2</ordinal>
<local-type>integer</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Date</remote-name>
<remote-type>133</remote-type>
<local-name>[Date]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>Date</remote-alias>
<ordinal>3</ordinal>
<local-type>date</local-type>
<aggregation>Year</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Country_Region</remote-name>
<remote-type>129</remote-type>
<local-name>[Country_Region]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>Country_Region</remote-alias>
<ordinal>4</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Province_State</remote-name>
<remote-type>129</remote-type>
<local-name>[Province_State]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>Province_State</remote-alias>
<ordinal>5</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Admin2</remote-name>
<remote-type>129</remote-type>
<local-name>[Admin2]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>Admin2</remote-alias>
<ordinal>6</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>1</approx-count>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Combined_Key</remote-name>
<remote-type>129</remote-type>
<local-name>[Combined_Key]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>Combined_Key</remote-alias>
<ordinal>7</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>1</approx-count>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>FIPS</remote-name>
<remote-type>129</remote-type>
<local-name>[FIPS]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>FIPS</remote-alias>
<ordinal>8</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<approx-count>1</approx-count>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Lat</remote-name>
<remote-type>5</remote-type>
<local-name>[Lat]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>Lat</remote-alias>
<ordinal>9</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Long</remote-name>
<remote-type>5</remote-type>
<local-name>[Long]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>Long</remote-alias>
<ordinal>10</ordinal>
<local-type>real</local-type>
<aggregation>Sum</aggregation>
<contains-null>true</contains-null>
</metadata-record>
<metadata-record class='column'>
<remote-name>Table_Names</remote-name>
<remote-type>129</remote-type>
<local-name>[Table_Names]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>Table_Names</remote-alias>
<ordinal>11</ordinal>
<local-type>string</local-type>
<aggregation>Count</aggregation>
<scale>1</scale>
<width>1073741823</width>
<contains-null>true</contains-null>
<collation flag='0' name='LEN_RUS' />
</metadata-record>
<metadata-record class='column'>
<remote-name>Prep_Flow_Runtime</remote-name>
<remote-type>135</remote-type>
<local-name>[Prep_Flow_Runtime]</local-name>
<parent-name>[COVID-19 Cases.csv]</parent-name>
<remote-alias>Prep_Flow_Runtime</remote-alias>
<ordinal>12</ordinal>
<local-type>datetime</local-type>
<aggregation>Year</aggregation>
<contains-null>true</contains-null>
</metadata-record>
</metadata-records>
</connection>
<aliases enabled='yes' />
<column caption='Case Type' datatype='string' name='[Case_Type]' role='dimension' type='nominal' />
<column caption='Combined Key' datatype='string' name='[Combined_Key]' role='dimension' type='nominal' />
<column aggregation='None' caption='Country Region' datatype='string' name='[Country_Region]' role='dimension' semantic-role='[Country].[ISO3166_2]' type='nominal' />
<column caption='Fips' datatype='string' name='[FIPS]' role='dimension' type='nominal' />
<column aggregation='Avg' datatype='real' name='[Lat]' role='measure' semantic-role='[Geographical].[Latitude]' type='quantitative' />
<column aggregation='Avg' datatype='real' name='[Long]' role='measure' semantic-role='[Geographical].[Longitude]' type='quantitative' />
<column datatype='integer' name='[Number of Records]' role='measure' type='quantitative' user:auto-column='numrec'>
<calculation class='tableau' formula='1' />
</column>
<column caption='Prep Flow Runtime' datatype='datetime' name='[Prep_Flow_Runtime]' role='dimension' type='ordinal' />
<column aggregation='None' caption='Province State' datatype='string' name='[Province_State]' role='dimension' semantic-role='[State].[Name]' type='nominal' />
<column caption='Table Names' datatype='string' name='[Table_Names]' role='dimension' type='nominal' />
<drill-paths>
<drill-path name='Country_Region, Province_State'>
<field>[Country_Region]</field>
<field>[Province_State]</field>
</drill-path>
</drill-paths>
<layout dim-ordering='alphabetic' dim-percentage='0.564516' measure-ordering='alphabetic' measure-percentage='0.435484' show-structure='true' />
<semantic-values>
<semantic-value key='[Country].[Name]' value='"United States"' />
</semantic-values>
</datasource>
</datasources>
<mapsources>
<mapsource name='Tableau' />
</mapsources>
<worksheets>
<worksheet name='Sheet 1'>
<layout-options>
<title>
<formatted-text>
<run>Corvid-19 total tests.</run>
</formatted-text>
</title>
</layout-options>
<table>
<view>
<datasources>
<datasource caption='COVID-19 Cases' name='federated.1l15y0f0y470a617ll9v50cnppu6' />
</datasources>
<mapsources>
<mapsource name='Tableau' />
</mapsources>
<datasource-dependencies datasource='federated.1l15y0f0y470a617ll9v50cnppu6'>
<column datatype='integer' name='[Cases]' role='measure' type='quantitative' />
<column aggregation='None' caption='Country Region' datatype='string' name='[Country_Region]' role='dimension' semantic-role='[Country].[ISO3166_2]' type='nominal' />
<column-instance column='[Country_Region]' derivation='None' name='[none:Country_Region:nk]' pivot='key' type='nominal' />
<column-instance column='[Cases]' derivation='Sum' name='[sum:Cases:qk]' pivot='key' type='quantitative' />
</datasource-dependencies>
<filter class='categorical' column='[federated.1l15y0f0y470a617ll9v50cnppu6].[none:Country_Region:nk]'>
<groupfilter from='"Afghanistan"' function='range' level='[none:Country_Region:nk]' to='"Zimbabwe"' user:ui-domain='relevant' user:ui-enumeration='inclusive' user:ui-marker='enumerate' />
</filter>
<slices>
<column>[federated.1l15y0f0y470a617ll9v50cnppu6].[none:Country_Region:nk]</column>
</slices>
<aggregation value='true' />
</view>
<style>
<style-rule element='map'>
<format attr='washout' value='0.0' />
</style-rule>
</style>
<panes>
<pane selection-relaxation-option='selection-relaxation-allow'>
<view>
<breakdown value='auto' />
</view>
<mark class='Automatic' />
<mark-sizing mark-sizing-setting='marks-scaling-off' />
<encodings>
<text column='[federated.1l15y0f0y470a617ll9v50cnppu6].[sum:Cases:qk]' />
<lod column='[federated.1l15y0f0y470a617ll9v50cnppu6].[none:Country_Region:nk]' />
</encodings>
<style>
<style-rule element='mark'>
<format attr='mark-labels-cull' value='true' />
<format attr='size' value='0.80160218477249146' />
<format attr='mark-labels-show' value='true' />
</style-rule>
</style>
</pane>
</panes>
<rows>[federated.1l15y0f0y470a617ll9v50cnppu6].[Latitude (generated)]</rows>
<cols>[federated.1l15y0f0y470a617ll9v50cnppu6].[Longitude (generated)]</cols>
</table>
<simple-id uuid='{8F2C2EB4-B275-48AD-9C32-B94D79807221}' />
</worksheet>
</worksheets>
<dashboards>
<dashboard name='Dashboard 1'>
<style />
<size maxheight='500' maxwidth='960' minheight='500' minwidth='960' sizing-mode='fixed' />
<zones>
<zone h='100000' id='4' type='layout-basic' w='100000' x='0' y='0'>
<zone h='96800' id='3' name='Sheet 1' w='98334' x='833' y='1600'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
</zone-style>
</zone>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='8' />
</zone-style>
</zone>
</zones>
<devicelayouts>
<devicelayout auto-generated='true' name='Phone'>
<size maxheight='700' minheight='700' sizing-mode='vscroll' />
<zones>
<zone h='100000' id='8' type='layout-basic' w='100000' x='0' y='0'>
<zone h='96800' id='7' param='vert' type='layout-flow' w='98334' x='833' y='1600'>
<zone fixed-size='280' h='96800' id='3' is-fixed='true' name='Sheet 1' w='98334' x='833' y='1600'>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='4' />
<format attr='padding' value='0' />
</zone-style>
</zone>
</zone>
<zone-style>
<format attr='border-color' value='#000000' />
<format attr='border-style' value='none' />
<format attr='border-width' value='0' />
<format attr='margin' value='8' />
</zone-style>
</zone>
</zones>
</devicelayout>
</devicelayouts>
<simple-id uuid='{CE0E168E-B2F5-4416-A9A0-1881C0A49722}' />
</dashboard>
</dashboards>
<windows source-height='30'>
<window class='worksheet' name='Sheet 1'>
<cards>
<edge name='left'>
<strip size='160'>
<card type='pages' />
<card type='filters' />
<card type='marks' />
</strip>
</edge>
<edge name='top'>
<strip size='2147483647'>
<card type='columns' />
</strip>
<strip size='2147483647'>
<card type='rows' />
</strip>
<strip size='31'>
<card type='title' />
</strip>
</edge>
</cards>
<viewpoint>
<highlight>
<color-one-way>
<field>[federated.1l15y0f0y470a617ll9v50cnppu6].[mn:Date:ok]</field>
<field>[federated.1l15y0f0y470a617ll9v50cnppu6].[none:Country_Region:nk]</field>
<field>[federated.1l15y0f0y470a617ll9v50cnppu6].[none:Province_State:nk]</field>
<field>[federated.1l15y0f0y470a617ll9v50cnppu6].[yr:Date:ok]</field>
</color-one-way>
</highlight>
</viewpoint>
<simple-id uuid='{8055F122-39BD-4BD8-B894-3C71909B20D6}' />
</window>
<window class='dashboard' maximized='true' name='Dashboard 1'>
<viewpoints>
<viewpoint name='Sheet 1'>
<zoom type='entire-view' />
</viewpoint>
</viewpoints>
<active id='3' />
<simple-id uuid='{764677D7-7E08-452A-8643-8A773081557D}' />
</window>
</windows>
<thumbnails>
<thumbnail height='384' name='Dashboard 1' width='384'>
iVBORw0KGgoAAAANSUhEUgAAAYAAAAGACAYAAACkx7W/AAAACXBIWXMAAA7DAAAOwwHHb6hk
AAAgAElEQVR4nOx9eZgU5Z3/p7r6Puc+OIb7ELzwQAHxjBolMRqzRjdEEzFm1U2ixpjr96i7
0Wx2E11NXFETHt01B/HCC4PIIaKiyKXIJQMOwsAMM9PT91HdVfX7Y/wWb1dXdVf39BxAfZ6H
B6iueuutqvf93gcny7IMEyZMmDBx3MEy1BMwYcKECRNDA5MBmDBhwsRxCpMBmDBhwsRxCpMB
mDBhwsRxCpMBmDBhwsRxCpMBmDBhwsRxCpMBmDBhwsRxCpMBmDBhwsRxCpMBmDBhwsRxCpMB
mDBhwsRxCpMBmDBhwsRxCpMBmDBhwsRxCpMBmDBhwsRxCpMBmDBhwsRxCpMBmDBhwsRxCpMB
mDBhwsRxCpMBmDBhwsRximOOAciyjFgsBlEUh3oqgwpJkhCNRmE2eDNhwoRRlMQAZFlGOp3G
qlWrsHDhQixatAjvvvsuBEEYqPnlYNOmTVi5cmXBcyRJwk9+8hPs2rWr6HiyLCMej2PJkiVo
a2vT/H3btm1YuHAhfvWrX+Hvf/87kslkudMfUHR3d+P2229HKBQa6qmYMGHiKEFJDKC9vR03
3XQTHn74YXR3d2Pfvn34r//6L/zxj38cqPnlYOPGjXjjjTcKniPLMrq6upBKpQqel0wm8eKL
L+K6667DAw88oMkA/vrXv+KOO+5Ab28vAoEAnn32Wdx2220Ih8OaY4bDYTz44IO6vxfDJ598
Uva7zGaz6Ozs1NV8du7ciYULF5Y1djG0trbi0UcfhSRJAzK+CRMmBgZWoyeKoojf/va38Hq9
eOihh1BXVweO4xAOhxEMBgdyjgquv/76iph2stks7r77bhw8eBDf/va3sWTJkrxzDh48iKee
egq/+tWvcPbZZ4PjOFx33XW45ZZb8Oyzz+J73/te3jXJZBJvvfUW5s+fj0AgUPK8Ojo68P77
72uO3V8cPnwY7777Lm655ZaKj93d3Y133nkHt956a8XHNmHCxMDBMAPYsGEDtm/fjkWLFqG+
vl45HggEcojd4cOH8dprr+Hw4cMYP348LrjggpzzP/zwQ4wbNw61tbXYvn07tm/fji996Uto
bW1FXV0dxo0bl3PfHTt2wGKxYMqUKejs7EQkEsGJJ56Yc05bWxs2bNiA3t5eNDU1FZX+OY7D
VVddhTPPPBMulwtLly7NO+eTTz7BqFGjMHPmTHAcBwCor6/H/Pnz8cwzz2DBggWwWI4oUDt3
7sTWrVuRTCbx9ttvIxAIwGKx4Mwzz1TeT1dXF1577TV0dnZi3LhxuPDCC1FfXw9RFPHhhx/i
o48+QigUwvLlywEADocDc+fOBcdxOHDgADZv3ozOzk54PB6cccYZmDx5csHnBPpMYh9++CG2
bNmCaDSqjG232zF37lzwPA8A2LZtG1asWAFJknDKKafgggsuUJ5blmXs2rULGzZsQCqVwqhR
o3DOOefA7XZj48aN2LRpE6LRKN58801wHAebzYZzzjkHNpsNqVQK77zzDtra2uByuTBt2jSc
euqpytgmTJgYOhgyAcmyjLVr1+K0007D6NGjdc/79NNPsWDBAmzZsgVVVVVYu3YtbrrpJrS2
tirnPPnkk9i8eTMef/xx/OAHP8DSpUuRTCaxfv16/OEPf8iR8AVBwAMPPIDdu3cDANasWYPF
ixfnzOu5557DzTffjPfeew+xWAwrV65ET09PwefheR4XXnghfD6f7jnJZBIWiyWPUE2bNg3h
cBjd3d05x3fs2IHVq1cjkUhgzZo1WL58Od58803FHNTa2ooFCxZg06ZNqKqqwrvvvosFCxbg
008/hSRJWLduHTZt2oRgMIjly5dj+fLlWLNmDWRZxv79+3HTTTdh5cqViEQi2Lp1K2699VYs
W7asqNNXkiR88MEH+PDDDxXmsnz5crz11lsQRRGyLGPp0qX4yU9+gmw2C5/Ph8ceewwPPvig
8i2WLVuGH/zgB2htbUVvby+ef/553HXXXZAkCevXr8cHH3yASCSSM3Y2m4UkSbjjjjuwaNEi
RCIR7Nq1C//2b/+G119/veCcTZgwMUiQDUCSJPmOO+6QH3vsMd1zMpmMfPvtt8sPPPCAnE6n
ZVmW5XQ6Ld9///3ynXfeKWcyGVmWZXnBggXyzTffLH/jG9+QP/74Y1kURVmWZXn37t3yeeed
J3d2dipj7ty5U/7Sl74kB4NBWZZl+f/+7//kX/7yl8rv+/btky+44AJ5xYoVyjiZTEa+6qqr
5I0bNxp5NDmTycg33HCDvHr16pzju3btks877zx5w4YNsiRJsizLsiiK8q5du+RLLrlE3rNn
T95Yhw4dkr/yla/IHR0defe488475V/96lc57+bXv/61fPvttyvv5s0335RvvPHGvHHT6bTc
3t6eM4+nn35avummm5Rr29vb5Xnz5sldXV2az7lmzRr5W9/6Vt7xWCwmX3755fKKFSuU8dva
2uQLL7xQ/vTTT2VZluUf/vCH8qJFi5RrBEGQ9+zZo5y/bt06+Zvf/KbyDQjt7e3yRRddJO/f
v185FgwGc76xCRMmhg6GTUCZTAYul0v3956eHuzcuRN33nkn7HY7gD4zw3e+8x3Mnz8f0WgU
1dXVAPpsxo899hgaGxuV68eMGYOJEyfirbfewjXXXAOgT/KcM2cOqqqqNO/5+uuvY8aMGTj/
/PNzzDHsv/fv3494PA4AsFqtGDdunGL2KITJkyfj6quvxo9//GPMmTMHgUAABw4cwCeffAJB
EEoyYfT29mL79u144okn8t7Nddddh3A4jNraWt3r7XY7RowYgWAwiGAwiFQqherqavT09CCT
ycBqNfwZ87Bjxw54vV7Mnj1beaaWlhaceuqp2Lx5MyZNmoT6+nqsX78ec+fOxfjx42Gz2TB+
/PiiY/t8PmSzWaxevRrz5s1DdXW1sgZMmDAx9DBMOaqrq3Hw4EHd36PRKFKpFEaMGJFzvKam
Rgm3pM2/YMGCHOIPADabDZdccgnefPNNXH311Uin03jnnXdw55136hLbgwcPYvLkyQUJ+hNP
PIFt27YB6PNX/OEPfyho+mFxyy23YPbs2di8eTOy2Swuu+wyXHvttbj33nsNjwEAsVgM8Xgc
I0eOzDleU1MDjuMQi8UKMoB4PI7f/e532LJlC7xeL9xutxLzL/cz7v/QoUPo7u7GL37xi5zj
u3btwtixYwH0fa///u//xo9+9CP4fD7MmjUL1157LZqamgqO7fP58Mtf/hJ/+tOfsHjxYowd
OxZf/vKXcemllyqM0IQJE0MHQwyA4zicdNJJWLx4MRKJBNxud945DocDVqsV8Xgcfr9fOZ7N
ZiGKIhwOh3LM6XRq3uf888/HU089hba2NnR3d0OSJJx++um683K5XMhmswXnft999ylEkuM4
Q9I/wWq14vTTT8+Zw7Jly1BVVVWQYKtht9tht9s13002m9V9H4S///3vaGtrwyOPPILRo0eD
4zh8+umn+OlPf2p4Dnrw+Xyorq7GNddck/duiMA3NzfjP//zP9HZ2YkdO3bglVdewQ9/+EM8
+eSTutoZ4eKLL8Z5552Hzz77DBs3bsTjjz+OQ4cO4eabb+733E2YMNE/GM4DuPjiiyGKIhYv
XpzjqJVlGYIgoLa2FrW1tVi9enWOVLpy5UqMHDkSXq+36D3q6+tx8sknY/Xq1Vi2bBkuvvji
gpLi+PHjsX79+pzkLFmWc+ZntVphs9lgs9lgtVr7FX0Sj8fxl7/8BZdddpnmOA6HA5lMJi9Z
rLq6GvX19Vi5cmXOu1m1ahWam5sVbcLpdCIcDudJ9du2bcPFF1+MlpYWcBwHWZaVhC+jz+N0
OhGJRPJi9cePH4/e3l40NDRg5syZyp8ZM2agpqZGeW6O49DU1IQLLrgAv/3tb9HT04POzs6C
YwuCAEEQYLfbMWXKFFx33XW47bbbsH79euVcEhBMmDAx+ODvu++++4yc6HQ64fP58Oijj6Kr
qwtOpxNtbW1YvHgx9u7dizPPPBNWqxWPP/446urq4PV68fbbb2PhwoX47ne/i+nTp4PjOLzy
yis46aST8sI9ASghhH/961+xd+9e3HbbbTmS9scff4yenh5ceOGFAIBRo0bh6aefxueff47m
5ma0tbVh0aJF2LJlC+bNm4fm5mbNZwmHw1i/fj327duHtrY2rF27Fl6vF6lUCvv27UNVVRWc
Ticef/xxBINBWK1WfP755/jNb36DRCKBH//4x5r+EIfDgddffx0HDhzAqFGjsG/fPng8Hni9
Xtjtdjz++OOoqamBz+fD2rVr8dhjj+GGG27ASSedpBDyv//977Db7XC73di7dy+ampqwZ88e
rFmzBtOmTUMikcCzzz6LJ554AjzP4+tf/zpsNhui0SheffVVXHnllZoamsViwbPPPgue5+Hx
eLB37140NjYiEAhg7969eO6551BVVQVBEPDRRx/hkUcegSiKmDZtGu688060t7fD6/Uik8ng
lVdewa5du/DP//zPcLvd4Hkezz33HIA+jWLv3r2or6/Htm3bcP/998PlcsHhcKC9vR3PPPMM
Jk2ahDlz5oDjONx8883o6enBaaedZmQZmjBhooIwzAAAYNKkSTj55JOxfv16vP7669i4cSM8
Hg8uvfRSNDQ0YPLkyQgEAnj++efxl7/8Bbt378Z3v/tdXHHFFQqB27t3L0444QRd+3FNTQ3e
e+89TJgwAVdddVWOQ7e7uxs2mw2nnnoqgD6CO3PmTLz99tt49tlnsWHDBsyYMQN1dXWYOXOm
IsGqcejQISxatAjbt2/Hjh074Pf70d3dreQlnHrqqaiursbu3bvx4osv4tlnn8WaNWswYcIE
3HvvvbrmH47jcOKJJ+Ltt9/Giy++iK1bt+Lss89GIBDA5MmTUVVVhRdeeAF//vOfsWvXLtxw
ww248sorlXfj9/vR1NSEl156CUuXLsWhQ4dw0UUXYdq0adixYwf+/Oc/44033kBVVRUWLFiA
eDyOuXPnwmq1QhAE7N+/H3Pnzs0xtxG8Xi9Gjx6NJUuWYOnSpWhvb8eFF14Iq9WKWbNmIZlM
YtmyZVi2bBna2towZ84cXH755XA4HGhsbMQ777yDF154AS+99BKi0SjuvvtuxRHsdrsxduxY
vPzyy3jttdewf/9+XHDBBairq0MymcSrr76KZ599FmvXrsX06dPxr//6r4pm98EHH6ClpQXT
p083sgRNmDBRQXByGV5ESZKQTqdhsVhgt9vzzBCCICCVSsFut8PhcJRkdiGTEsdxhh2Foigi
mUzCarWWfD8jc6FndbvdOQyp0HzS6TSsVmveM5CJSO/dyLKMTCaDbDYLh8Oh2OUlSUIymQTH
cXC5XGU9oyzLyGazyGQysNvtOdFDZDqj39T+APrmoijC6XRqRh5lMhnNsTOZDNLpNHieh9Pp
NJPATJgYJiiLAZgwYcKEiaMfx1w5aBMmTJgwYQwmAzBhwoSJ4xQmAzBhwoSJ4xQmAzBhwoSJ
4xQmAzBhwoSJ4xQmAzBhwoSJ4xQmAzBhwoSJ4xQmAzBhwoSJ4xQmAzBhwoSJ4xSGykGHw+Gi
ZZfV6E+6v9VqNdzkJJ1Ol10T32q1wmKxQBTFohUpC82Jyjqz4DgOVqs1p6RCJpPRvQ+VvjD6
3mRZRjqd1v2dynRoXSdJkjIvtqcAtXHUQynf1GazGSqbMdCQJAmCIADo35oczrBYLLDZbEM9
jWMatE8ymUxBekNlbARBgMfjybmeRSaTAQDN75ZOp5HNZnOu1wO7pnmeL7nisSEqS/VjSgFN
othkOI7LOYfq1bhcLqXSpB5kWQbP84hGoyXNDeirbkq1eIgoJhIJXQJttVqVOjZss/R0Oq0Q
GDXcbrdSmI0Wjx6BJQbA8zzi8XjO/bQgyzJSqZTuYpQkCYFAIO/6bDab0xdBkiRIkqS890IM
wAhBp0qm6u86VEilUkoNpeEyp0qC53n4fL5hwWyPRRBtoH1GdbrUEAQBXV1dSCQSGDNmjFKu
3W635+1RWZaRTCYhCEJePw1ZltHZ2QlBEJTy78VA52SzWQiCAJfLBZfLpdnTXI3yewkWAfvQ
hSYhy7Lm7/SCXC4XeJ5XHoYWOm1mIppGa8pTUTeWALLHY7GY5nVWq1U5V01MiImokU6nFSlc
kiSlCTvboIYdg85Jp9M5UoDe5ibtRQ+spM8+BwuaO92vECRJKsrYaeENB6g377FG/K1WK7xe
77B538caqACjJEmw2WwKHdI7V5Ik2O12WCwWpWUrdT6kfU/XJxKJHObAEvFkMql0Dyxm3WBp
D/07kUgoGkgxq4IhBtCfenF6BE8PrHQtiqLSjEStJTgcDni9XuXfiUSi6FzsdrtSSVMURaRS
KUWzcbvdsNvt8Pv9CqPRIh70G/2fKmPG4/E8LYkaovA8X/QdkobAahNk3vL5fJpVQ1mCTMfU
5xQDvVur1Qqfz4dMJoNUKlVwnnrfcDhI2PTNaB7EIIfD3CoJh8OhaFomKg9ZlhGNRhUzazKZ
hMViKbinnE4nvF4vDh06hObmZkiShN7e3pxGT36/X6mUTPSLQPuQuisaIf7qObOMJBwOw+12
F6xiXDENQE8K1pugUdCY6muJOLrdboU7i6KobHSLxaJwbPbfkiQhlUohnU7nSPTJZBI8zyt/
aAwjDIwksd7e3pz3oX7x1MtX7zm1CG82m9V8b+l0WnMupTBbAqslGPH1FPqOkiQNmUTKlrQm
RnAs2f85joPD4YDD4TCk3psoHySQsWDNo9FoVCmNbrfb0d3djcbGRvA8j/r6enR0dCh9Q2Kx
GAKBABwOB3p7e5FMJpX+6Oz9SHo3ytjVwimNwV6bSCSQzWYVM6F63IowALVdvFQUYwx6Krwg
CMrLoi5YRLzV5hUaJ5lM5jmOSZpOJpN5rSuNElL1YvF6vTmElZ1TKSYJMguxRJVq8+uBGJLR
/sesfTOdTit9CFKplK5PQOubkdREqudgg74hzftYsftTH4Xh4lg/HlDMpByLxeDz+ZBIJNDb
24tUKoVsNgue52G321FbW4tQKASLxYK6ujplDbLNpFjhliBJkuEAGD2oaRvRO6/Xm+ck7jcD
KHWDafkG1FJ2Iccme0+W2BOxKzYXp9OZY2ZhPwI1fym14YraIUsmJpbjEvNhn8EI6H3QgrRY
LBAEoaCzllRIo3MnrSiVSoHneaXdpc1mQyKR0A0A0PuWsVgMLpdrSJq/FIvSOFrAcX3tUZ1O
p7LOTQwOSHt0Op1Kz2p1H3SO45R2r0S/2HXncDjQ0NCAVCqFzs5ONDY25n1DLfOty+VCV1dX
Rc17RNvC4TACgUAOE+g3AyjVwabenFpSZDEHsizLsNls8Hg8hqVcGstiscDhcCCVSmkym0Qi
AZ7nYbPZDEmQbAcvdqxEIqGoXRSKWGokFQBlHnSfYqGkpRI/SZJy/BekcZAkQmarYv4G9TtK
JpMQRTFnIQ80EaN5G1GNhxPUIbtk6jkWtJejCbROyIzpdDoV4hmPxyFJEjo7O3Xpgtb/XS4X
otEoIpGI4l9Ug7UM8DwPt9uNzs5O1NbWFg3vNUp/KcovHA7D6/Uq66siJiB2c5ViCtLblGoV
hsBK+0RYCo1BkjN551m7fqE5RSIRAFDuo9UAnj2fzDE0HxpfFEVFqygksRcC68Un+7bex6b7
CoJgSPomrYRlTGTGAaA0c7fb7Zo+h2KLj5zg5IMpFNFUCaiZMLs2WJPQcILFYoHf7zdNO8MA
rP+Q1bppfxNRJkJNKEbr6urq0NHRAb/fX/T+QF9vcHIc19XVFZ13KUJ4NptFJBKBz+frC2Ap
eoVB6NmEi0ErtFBLkmU3ryiKiEQiCnEirk1/k8rGRso4HA4lsYIcncXmJ4oiYrGY0p+XriFi
TqFfenkAbOgnCy1nTDGzF12nB5bxUGKakeQgLalFHVpos9lyHNSl+nzoPaVSKcVXU2mQhlRI
eBhu0HrXJoYHaD+R2VYURc0e30bXv3ov6hFt+j9p/vF43FBCWKl+xUgk0vdMRc82iP6o2OrJ
q4mLmuBwHKc4/JLJpKHxyUnjdrvz4vGLXat1Hy1pUj0ey4DYubPPqAdigtTs3mq15hHiQnMW
BKFoVqDWM9C9WAmHIqPYkEojz6AGhb/118mlB9b8Q9DTCIYDyClnYniCEqskSUJXV5emBG+U
hmj5CQhq0yqtU7/fj0gkYogBsHMxssbJV1dR0WOgnW+FXqIRZLNZxZ7d37mq56E1Hpv5S6ql
3sdh7YpqTYgczKRpsLZKNpOXhSAIhp6RlT7J7qn2q5BDkv6t/q0UJBKJss1h/UF/1s1AoJRy
JyYGH1QZgPYXx3F52qvR9WSxWJBIJIqantk1KssygsEgAoFA+Q9hAIOSCTwQY/dX2xhosKai
QvMwogkIgpBj3zbyDFqmJy3YbDYlZJRyJrRQyNleyrfIZrOIxWJKNnYlJXJZlvNyN8qZ42CA
nHAmhh9kWUY8Hs+JvGOdw3SOUUiSBKfTmXdcrYGzY6ZSKSW/qdS509hGUFEG0B/CrKUG0XG1
c3W4oBBBNuKANXIe68Q0Coo+MLJ4yLxTCGS/rxTIEeVwODQ1jkpjuDl/WY3KxPCCLPclY7F5
NuQQVpumSWhig020wJaR0QPr95RlGaFQSDN0lKDOC1I/A41ZDBX3PpHKZBQcx8HpdMLn8+Ul
YRXCcGEGesTfyMs3SpRKGc9iscDj8RSMXCoFZCs0WmupFKTTaUQiEUNlPIxAHUqpZXYbDuum
1IqNJgYHFEhAxQPpWDAYRFVVlXKMQsnTWRkdvQlEklnYCvi2OI5DTU0NgsGg4bnQ2jV6brmo
uAmoFMmWlQAlSdIsQzAcJf9iMCrVl/LhtCKjtM6hCqSVIDDkhNaLcqoEyMdRieggypQtlL08
HGCaf4YnyO7PQhAEJZ+FTIw2mw2bWw/jr6t2oiuUgMdlw4WntuDrcyflhI+yYJNWi4HjOCX0
mqIP1b+TtYXC4rXK0Ru5T8VNQMVC7+jhiPATl2MrW+pF2Gg5XQdzI9Fc+1sznxZSf+bBcVze
QnM6nZq2xnIgy335DeoNoRfuOxwIWjG/y3CAw+EYtuYfNmptuJnNBhpEuMnXRvSlp6cHzc3N
yjk8z6M7nMTCVz9COtO3/2LJDF5dtwdNNR7MntasyQB6e3tRU1Oja+oGculeVVUVuru7UV9f
rxttSFn7VDiOikka1dYrkgegJ1VpLR6KMtGLhrFarTmmC0qkKnbvwVio7D0KSeMDORd6f0Tk
o9GoksRFpRcqAVnuyxqMx+O6v6v/rxcdZERrMRrmZgSsz4i9/3AgaINRHoO+HcWeGxE0iBAJ
goBEIqEUnDveSlCoS8Sw0jytI4vFgm37ehTir5wPYNPuTsyZPkJTC9Uqzc6OC+TSDrZcvZ6P
jBJDqbEVWVSy2SzS6bRuWRSyFFit1splAqtvoAVSsUjyd7lcit2WNAMW6vLIevce6EWq3kRa
zKAU8wJLHPUWQKFwUXI8eTwepfZ3pc0KhWrqFHtWlklFIpGCUjkVz6oE9JIK6e+hJGYej0dT
na80yMFO0mogENBlArT+iNmTMEHmhFJrYh3NkCRJWfPkhE2lUpphmDZe+33arPoRQl6vF6FQ
KKcKaKE1yXEcqqqqEI1G85rGEMh8yoZv035yuVxKbxF1CRqqJgtUsBZQKWBNPYXKB5eSsDXY
MEKs9a7T0ybUJi6tBUJlHij2nzZppQkcW4NI7zm05kvX0jf1eDwFO7ZVMgKo0GYaKkJGTvnB
iPmnPBeWsEejUaVsCjX9IVMPm0+iRjweVwjL8cAEqOgbrWlRFFFbW5tXl18URZwyoR51fhe6
I0eSQ21WC849aZQuvfJ6vejo6ChpTlQ+uhgSiYTS0IqlBeSvYOkL+VpJ4zO0KvVsUP0hzES4
1EXGqGiaXhmF4YpyNkmx6BQtE5coikpzCbZWUSXLCdDisVqtmgXsijEcdRkJl8ulmbFNgQCV
mjM5zliHWDGf1EDCYrEMWrYvxa6zxJw2uc1mg9VqVcoasGayQvuLmEApvaqPRtB7Yuka0SY1
stks3A47fvT10/C31TvR2t6LuoALX5s9EdPG1Cqll+kdEwGWJAkNDQ0FgxTU0Ast1fp+bC8U
rfPVf5O5z/DKVCfYFFo4xRYLddEiUIEzqkxZahjpsQL1h1J3t7Lb7YPW5Lw/pjW13ZLskiwz
sVgs8Pl8FdUAqOAcm+1NfwaygQpl9VIiHRW/G8y1qRakWAJBZle2/Sm9dyJOasZBY1IVy2OZ
CbAMgNWe9Gz2giBgdL0XP/3mmTm/sZV6aX2zzXtIqE0kEoZK2PT29ub0DyCozZokDBoRAil4
hDKTDWsAaq6jpzoaWSTsiyVOxHLKYnMxep+jCXqcm941ScvswqEFReaaUsEmeLHEi/qS6kUT
FHO+U/0i9luxZaWB/IY5lQJbwloramwgQA61oQT51Mj3QoUM1QTeZrMhkc5i0/YOhONpTG2p
wfjmAHhG4lW/N0EQhqTBz2BBXWK92F6iCDnaL+QsZsu+sA5/Go8Ygc1mK8oAKKpHK2JMLZyR
xl7IYcyCLR1jeNWym5klSjShUqR2VsIgAmSkVv5QO/IGEoVMQMARKZN9fkmSlLIKpdpqyWRQ
qLOYkflq3ZOkfZZokHROdY0GKvuX4zilmJ3aFDQQAQNGMqkHAxzH5Uj5WgTGZrMhFBfw279/
iPaeGACAt3D42uyJ+NrsCQC0Q5yPFjNsOSBHKoEkZCOtTVnGyr4jYsaFyqoU8q+x56VSqbyk
Tq29p45aYp+HpZvq9V+W2KIehNUOtKCecCqVUqrsqV9goQ06VMRfK7pEDdY8VuhcI05t9e+y
LCvEVOtaStYqxdlI1xhZiHoo9D0SiYRCjFnn8GBIyoNlfnE6ncMqUoa+I1WxVPs/OI7Dy++2
KsQfAERJxqvr9mDm1CY013g018JwYHADBa1Iw3A4rNu8RQ/s3i+U6c36B4rtu6sTdtoAACAA
SURBVGw2q6t5qb+tlr80FospJazJREnXUt5V2buRfQhWKzCShUmSmZYTVM8UUulNxmovRqA+
T88xzv6blTj7M39SGwsleFCPBCNEiSQFdm6lJlAVex5JkhCNRpWkPyL8g0UsB/o+pOYPJ+JP
604rdJrm2dYZzvstI0po74qiucaTR5x4nj9mM5cpLJ19d9RvWy/00ggKMUzS2o3sN5fLhUgk
ktdAnsDSHAphZf2H1BvbarXmVF1g6Ui/Q0fUDgkttYcltmpCWUwiHgjnnVotKgUsozMyfyPn
FAMl5Wg5etTjp1KpoqVni4G+Y6F3b3R8QRAUW/RgQmsdHsumDJI8KexUzyTYWJ2fdMdbONRV
HSnFwX53qtp6rIGc42rnL9UBKnWtsO+albbV94zH44ZKq3BcX/0gI6ZxEujU5SBIe6A8j56e
HgSDwZxIJUMMwCgRK9fkcbSiFOJeLiPgOE5x7OkxWHZsclAVWmQc15d9y9b4dzqdShE5UmGL
MUmjfRX06jwNJPSI1rG6FgkU4eP1enPqK9G3+srZ4+Fzs0XzgNnTRmBMoz9Pc6WEvmNN+qc9
kkwm8/YkVdE1QqTV+w444ovROjcejxuK/mFB2b5G5kKBG+TDcLlcef4DyhInGDYBqW1ORq8p
tuGOp3Z4WrZ9IPcdqFVwu92eF7JXbHxabDzP69rcKUY9k8loOjLp21FDbKP+HT1QPPpgQSuR
bSCcwMMZ6m+WzWYxut6HX/7zWVjz0QGE42lMG1OLs6c1A8xepRozx6rpRxRFZU2z74iyaq1W
q+F6Oup3rNdTI51OIxaL5R0vhsbGRnR3d6OhoaHoPDKZDKLRqMLEiIkTw2PpA/1dsg/AqLPW
iKRlZHENxKYdakKgxQjYUDEy+ZAqydr19KJ21AkmZIP3+/260jDH5ZffYH+jBcTzfE4Ip97z
FHqnahvlQILMIQ6HQ7eX8bEMWZaVzFb18Uwmg6ZqN669YIpynIIx2Hoyx+q7on2hfjddXV3g
eV4xpxRr4K4H2rNs4Egmk0EkEjF0vXovUS9iNbT8p1TOQhTFHE2ePUd9jSEGoOaUxRaGUQer
EcJhVMIsFUYqeg62uYBMM1pEWZaPtIZUg1R+URSV3sfAkVhwn8/XL03LZrPB7/drbhx2fuxz
qEGLc7DiyYl5EcPUM58dzSiUNEl71ojWRe+Fokn0igCq4XQ6h21lUy2QZqw2qSSTSVgsFtTU
1Bgeh/2bYLPZlHIMABRzTLF6WIXG7urqQn19vea5rP+VNUVRopde1WAWZZmA1A+uZ/uvFAaK
CaihlnoGmwHwPK+7oWRZVmLpqVwGcKTWDF1LUm8qlYLValWqr/YXVqtVaVJdiAkU+kaDmVDE
agHpdLria6fc5LtKoljzpXKk+HLyeYY7SHOmBEcCzT8SiegSWT2wz041k9xud85eE0VRU2ii
qD62vLxW8UUSYrLZbFFGqxZajfrnygoD1RpYvdCMENJSFuhAMoFKhGr2B0Q4C9lc6XegjxiH
w33hfF6vN4cYkVnHbrcXjOJha8IYBYUEanXworEoXFWLkAx2rX4K1aRIj0p9X47LbxBuYviB
TGGxWCynpzb9Rj61UtYGXceabH0+nxKoQeNRuKc6+IFqKx0KxrGl9TDAAadOaEBzjScnIon2
U3V1NQ4fPgxJknK0C715qY8VQ0kmoFI2EKkleuYULeIzFNK31jyGQrKRZblgYTR1mBkr9Wu9
t2Lhs+USQzKraEk1QJ/U4/P5IAhCnslqMMohq+dEiTCV7GqmlvSGEsFgEM8//zw+/fRTjBw5
EvPnz0d9fT1kWca2bduwY8cO/NM//VPedVu2bMHSpUsRCoVw1lln4eqrrwYAvP3223jllVcw
duxYfO9738vpMbFy5Up0d3fjmmuuGXLtpxhY4k/aciUjEolu+P3+nEgp1gSjFb1jt9vx8d5u
LHx1CxLpPubw6rq9uOWrp+DEsbV5NZ14nlccwZRhTPdhn7VcGF7FLLdk/02/FdIKSmUcA+WA
0oqiURNP9hkHGvScVNWzlGd2Op05Bbpo4VElVaP3LmfOWv2GWdUzHo/D6XQiEAgoJh+SfAYb
bBhtJb6pzWYbVnVx9u7di5aWFvz0pz/FlClTcO+99wIA7r//fixcuBCvv/665nU7d+7EFVdc
gbvuugsbNmzA66+/jk2bNuH555/Hz3/+czQ0NOD+++9X1tJnn32G//3f/8WqVasG7dnKBRH/
SCRSNISStZ8bBe0brR4PHNdXaVMrWIPneWSyEv62eodC/AEgnsrgb6t3Iivpl0ipra3NKw1d
CTrVryggtVmmlMkMll1f655qzWQonL5EgKmHbykJb1rn0aLLZDJ51VYrCTJFUZYhkGtv5DgO
2WwWiUQCbrdbSUoaiKbyRmG1WmGz2fqdi0DfazhJv2eccQaAvrU7YcIEZW433HAD6uvr8cMf
/lDzumuvvRZAn8Y2cuRISJKEDz/8EN/4xjdQV1eHr3/961i+fDni8Tg8Hg/+8Ic/4LbbbsPT
Tz89KM9VLljir6elqqVno5U0WVC0lFazKD1t02KxICmIOBTMd7If7Ikhk5XgsFo094osF24j
azTyUg3D1UDV5aC1Jqh1nd5vgwkj9x/MOdKHpHKxlUAikVBCxoyW7qUy3KXWziHVlxYdtaZk
mWk6nVZ8BlTIbqhAqnOhxjRGQOG5ww0vvfQSli9fjo6ODjz00EMAgJaWloKF/uLxOB555BFs
2bIFU6ZMwa233oq33noLS5cuxdSpUxGJRNDb24t0Oo2VK1diwoQJmDZt2mA9Ulkg4l8oWk1N
k1gNwMgeoP1SqJptITu9zWpBrd+F7nBuQlid3wUrb4Esa2vvkUhEszsZ3Y/+lKoVlGXIrJSJ
pNQx2PvqpVuz51KUhHq+7P/V5qzBAplwKjmew+HQbUDCFouikNJIJIJwOIxQKIRYLKYU6SP7
fSwW000CI42FrXtOYxPKrTQ6ELDZbEqcd7kYjsQfAM455xwsWLAAZ555JhYvXmzoGZ1OJ669
9lrcdNNNOHz4MDZu3IjzzjsPp59+On73u9/hhRdegCzL6OnpwdNPP41zzz0Xu3fvRiQSweef
fz4IT1UaWOLPanrkByLTnZpuEOEsJUCByn/rEfpCPXwdNh5Xzp6otI8EALvVgivnTIRdR/qn
qD4jPb9L1U5LCgOtNJHUcr6qY1u15gFAsZsT0SoVQ2GCovuVY/MvBmrkrWXbp8YeFDEEIMdB
S3VE1OYwdqMUmi9lFZOpJ5vNaiYiDSXIdxGNRst+78OVAdTV1aGurg6nnXYarrvuOkP5FjzP
Y/z48Rg/fjxGjhyJxYsXY+bMmfjmN7+Jb37zmwiHw9i9ezd4nsf555+PlStXQhAEtLe34/33
38eYMWMG6emKQx3tQ6CotKwoYVtbN4SMiCmjauD32DX9gUZAYxZaQ4V6MGcyGcw9aSRq/U58
uKuvReTMqc04oaVGMxQ0k8kgFAqhoaFhQGhVWXkABCNx84WYhtYDsVJqoblQzRNyxJAJhB27
GMNifx8sRsBxHLxeb8WjSAqNR5U/jRAwrXdGiTKF6sLQxmB7kA43kATIVkItBcMl8ofFwoUL
0dnZiYkTJ6K1tRWTJk2CKIp48sknkU6nsWvXLjz22GOYO3cuuru78fnnn+Pqq6/Gz372M0ye
PBnV1dVYtWoVvvvd7yIYDOKPf/wjWlpa8Oabb+KGG27AxIkTcfvttwMAotEoPvvsM1xzzTVD
/NT5UDc/J8m/K5zEI0s2Yf/hPvOf22HFzfNOxoyJDTnlEUrxvxU7t9A+I038hJYaTBvT1+1L
lmWlPD4LWZbR3d2Nurq6otaOUp6BBScb2K1dXV2a3nTWcWnE/qT+vdxIFIfDAY/Hk1PfmtS/
QvcrhIGKPFKDHKOD7fxmuwXJsoxwOJznFGXfl/p9cBwHn883LBKg+oN0Oq1oAaU8B8/zJdeI
H2hEo1Ekk0ns3r0bHR0daGhowNSpU2GxWLB79+4cgtLU1IT77rsPt912G6ZOnYqenh7s3r0b
iUQCEyZMQEtLC0RRxLZt23Dw4EGccMIJGDt2bM79RFFER0cHRowYoWhUwyEiivxQbNkPaoj+
2Ctb8P6OQznn11e5cN+3Z8Np6wtYCAaDCk0pBp7nUV1dXdCnlUwmEYlEitKeQj5SWZbR29sL
m81maF7sei6F7pXkmTMisRcjIuy5pYLjOEXiV2seanvzYIVyloJiUvRAQU/6LzVqKx6PIxAI
DCsiWCpo45YqNQ1H6R/oE4ZOPPFEnHjiiTnHTzjhhJz/i6KIb3zjG5g6dSqAvrBCdb9Zq9WK
U045BaeccormvXiex8iRIys4+8pBvZZJIN2+ryfv3O5QEl3hBMY0+AAANTU16OrqUjLHC6GS
a7/Q/qOSLoFAQPHvCYKgW01UbT4vNj7B0KpWE3G9GxRytrLHCv1eCFR7hJ0PZdxRWCKNWY6D
mZzGrPO4kmArew4HsO9KSztTg62ieLSCmDCQ//yFckAGu8l7pcHzPM4777yhnsaAoBCdqfLm
E3SHnYfLYc0RWu12u6EwYSProL/rhDSI2tpapUCf3W6H1+stqIWqaasRGM4EVv9fTSz0No46
3Errd+JexV4cbVI2JFXdYKGSxInlqpXA0V5bneM4pbKhOhHtaAHF8pOjWq0J6H3z4cS4CVoJ
eYOJ4aoVAUfKjsw7azyeXPoxROkIXThrajMaqzzIZProRjQahSAI8Pl8Rcc1QhPKjckH+py+
PT09aG5uVjR3NuKIcnxCoZCmz6BUlGQC0uO0RpytpThk2f+z8a3pdDrH1HM0SaKFavMPBUp1
zrMgf4ueSW64g6KW1Gn38XhckynQNcMNw2k9DTW01nM2m8XZJzTD7bDhzU37IGSymDGxEV86
bQwk6Ui9KpvNZqgJPHAk4VJPmOsPTcpkMujs7ERTU5MytiRJEEUxx99KeTVa0Y+l3r9iiWCV
QCENQe/3gUaltIBKVeWsFGw2m6Zjv5AmphW2SyGHRxMDAKDZBMfj8ShMgIXRCCoTQwM9ukSd
6E4eX4eTx9cpx7PZLDLMN3Y6nUpxRSOIRqMKEVb7IinCjOglHS8GjuMQj8cVyZ99BkEQcu5V
rApsKSjLCXw0Sd4saBMPRXz6cJLWOK6vYqhWVc9C0FrQRtcC2deHCyHVM/O43W7E43FljRBD
HE7M+3gC9bgoBurkpQVWupe/CCFXRy81NDSUFNEUi8Xg8XhgtVrzGJDFYoHb7Vb2l17kIwkh
VqsVPM+jpqYGsiwjEonkSPepVConx4f6DFQCJVOl/ti3KgWHw4HOzk7Y7XYEAoEciY3yA6gr
D70s4sjZbDYnHNII+hNnO1xB9ci17Ihaz8t+91IZAJnvMpmMUsV0OIKIiMfjQSwWUwjHcAh1
PF5htJ+0US1Nbw8bCbVkIQgCEokEXC6XYiWg+3Mcp5iI4vG4QriJ2FNmsp62TT4qdr/F43HY
7Xal4GOlaPDwEUsNQJIk2O12tLa2oq6uTknvDwaDSriUJElo64ygvTuGEbVejGvyw2q1IpFI
oKOjA4FAQGkSUltbW7RcgdaLPhYYAWkBhaQrI4RebUfXGycWi0GWZVit1mFdS582KvkISDoz
YUIN8gWQMKU2B1E7VbVARVoDSfHqyCLSOEk4I1NrJUuaE8piAEOpBVAkkN/vhyiKCgE/ePAg
Ro0eg7+u2oGVm4/UKrng1NGYf9EJyGQycLlc4DgO6XQa8XgciUQCjY2NJWsCRqOWhjMqHeFU
CKzEkkwmle8wHEEMQF0vxsTQIxgMYt26dZg3bx6AvjW8ZcsWbNy4ER6PB5dffjkCgQA+++wz
LFu2DIFAAF/72tfypPtoNIoVK1YoBPaUU06BJEnYunVrznlXXHEFeJ7HmjVrEAwGAfSV3WDD
aTOZjGYQBBFxh8Oh2OyJ4FNHP5Yx2Gw2xbGbTCYrEuFjBGUZNon4aW0MevBSyhuXem8y6Tid
TnR2doLjOIwaNQof7+3C6i25harWfLQfW/Z0obq6Gm63G5IkobOzEy6XS/kgheLh9aB1jTqm
fDgjk8kMWrE2klxIcBgISabSKLTGTQw+/vGPf+AHP/gBfvvb3yrHli9fjr/97W8YP348IpEI
HnjgAfT29uKXv/wlTj75ZKTTafz7v/973n7etWsXVq1aBZfLBZfLBZ7nYbfblf/LsozHHntM
qWv1xBNPwOFw5GQ+k6BQqEAbu4aIJgiCgGQqjTc2tOHfnlmHf3tmHZZvbEMylUYoFEJ7e7ti
/imFHpWLsk1AesSffWBCJR8gm82ipaUFu3btUvpwRqNR1NXV4dMDQUiqW0kysGt/EGdMbkRv
by8aGhpgsVgQj8fh9Xp152dk4w+1L6RcUPJcJZgUbZJCvYyp7DS901QqdVRGDpmoLNi8nmJr
oaWlBYsWLcL3v/995djs2bNxySWXgOM4zJw5E//yL/+CDz74AJdeeinmzJmDOXPm4NZbb8XB
gwdzMphbW1tx6aWX4vLLL8+5x9gvSl8sWbIEV199NRwOB6LRKGpqavCVr3wl51yO45Ty4IXm
TqaeTCaDRCIBm82Gl95txSvr9ijnfHYojFgyg6/NGg+Px9NvuqIluOgxkn6HNqglJT0HYqVA
dtmJEydi1KhRqK6uRktLCwCg2qfNjWu+OD5mzBg4nU5MmjQJo0ePRnV19YBGBLEvXBCEnJLM
Q4lkMlmx55YkKacfAAty/qqdeJlMpt/NWUwc/ShFup0+fXqetO3z+cBxHA4cOIA77rgD8+fP
x4gRI7Bp0yaEQiH09vbC5XKhu7s757rDhw9j6dKluPfee7F48eIcP1gqlcKSJUtw7bXXguM4
HDp0CPv27cP/+3//Dw8//DA6OvoqeLrd7qKtQUnbFUURgiCA4zgkhWyelUIGsHLT58iIhdvC
9gd6NHhAnMCsjbxQlnC5IFWKQA7Ns6Y2Y8Wmz3E4dCS8sT7gwtknjFA+gtGY3EqAtbMnk0lF
8i1WT3ygUWlGRB2YAoGA4uCSJAmZTEa3CUsqldLVGkwc+6iUmfSdd97B73//e9x1110488wz
AQAnnngifv7zn8Pn82H37t156+zGG29EJBJBIpHAc889h6eeegq33HILgL6+xzNmzEBNTQ0A
YMKECfjjH/+IbDaLbdu24e6778aiRYvgcrmKhgZns9mcrnkc19d3IJ7KF37iqQxESQbP958m
6Pn3tHy3AxoFpBdGWGmQmSHgceAX/3wWXnmvFe3dMYys8+KrsyagymvPa1CuN59K233ZKBlZ
lpV56HX3GQw4nU7N8rP9gSiKCIfDSsKbJElIJBK63zydTsPlcg2r/AgTAwcSAtPpNBKJhOIn
7E9fjLa2Njz00EN4/PHH0dDQoBy/6aabAPTtve9///toamrKuc7hcGDEiBEAgPnz5+N3v/sd
gD6CvXjxYjz44IM586ZzR48ejeeffx7xeBx+v7/g3CRJQjqdRjKZhMfjgc1mgyAIcNqtmDyq
Gjv3B3POnzK6Gg4bj2xmcP1jA6oBsBjoyCFJkpBKpeB32XHDJdOV45RIopeMoXe8klCXtaDG
7UMVXkj5E+ruSeWCno+acqih904TicSA9EYwMTxAkS/0/amYIB032otXFEWsW7cO4XAYBw8e
xNKlSzFy5EisWbMGY8eOxdtvvw0A8Pv9uPjii/HUU09h6tSpWLFihSLNS5KERx55BNdffz0W
LlyI+vp6TJgwAS+++KLiC1i7di2mTp2K+vp65d4rVqzABx98gNmzZ2Pnzp2ora0tSvyBI8Ew
RPypE1k2m8X8L52A/3llCzq+6A3cXOPF/IumwcJhQINH1DSY4zhj/QC6u7sNEQp1uQi1CciI
KagSNjByKumpmep4XfUxNYwmoxiZF8Hv9xtq8TaQINNNf56t0DdlGaoecyVHvskEjj1QmDYR
w1QqlRN55na7lSgcPZAZ8f33388p1zBq1CjY7Xbs3btXOebxeHDuuedi1apV+PTTTzFt2jSc
c8454HkeO3fuxMMPP4z/+Z//QSqVwrp163DgwAGcfPLJmDFjBjiOw86dO9HY2Ijq6mplTFmW
sWnTJmzfvh11dXW46KKLlIghan6k53Qluz9pxOl0WsmITwki9h4KAQDGj6iCw2pBV1cXfD5f
RQRlo/vJEAPo6enRrBsDHOEqRu39xThcpVslVgLkP+gv2IXidDoVJ9ZQQZZlJJNJTand6PWF
vrVW71WtMVwulxKRZeLYAYUzkj9IXXrEbrcr0jGVRVCvEa3rysH777+PESNGKAEj/QWZOqny
gBr0zCQUp1IpHArG8PyaT7FzfxDVPifmnTUeZ01tgiAI6OjogMPhQCAQ6LfPtBRLhmETEFtL
Q831hhvBHq5gtQ11IshQgELZjNb4LyW0V0siYn9jF7mecGHi6AfRCa2Mc0EQFMHKbrcPaMe1
s88+u6LjkRlXq4QEZb4TA7Db7RAyWTzywia09/QJW5GEgCde+whelw2TR/iRSCSUDHkt87QR
lEOPy6oFVOgmlVBfZFnGhg0bsHHjRni9Xnz1q1+F3+9HW1sbli9fDgC47LLL0NLSglgshldf
fRWdnZ2YN28eJk2alDdWa2sr1q5di2w2i3nz5mHkyJHo6enBa6+9hmg0inPPPRcnnXQSOI5D
b28vVq9ejf3792P27Nk4/fTT+/086vkAR7QKtn4IMPiNR0iKMRoW2p/vq8dASC02BYljE0YC
DvT8ATzP97vvAfV+YJs8kaWBNJREIlFwjhzHKaUdAChRfFpzZgvYkQ9k62fdCvFXzpNkrNi4
D9PHnIbx48ejvb29bE24XP9l2ZnAwMC1XfzHP/6BJUuWYPr06UilUnjggQeQSqXw4x//GFOm
TMHUqVPxs5/9DMFgEL/+9a8hyzJmzZqFe+65B+3t7Tlj7dq1Cw8++CBaWlpQV1eHn//850il
UvjpT3+KqqoqnHXWWfjNb36DvXv3QhAE3HPPPUilUjjttNPw6KOPYufOnRV/Plp04XAYvb29
CAaD6OnpQU9Pj2KTH4iOZHowEolT6remZ9Ty/6jHGcxnNTF4UPcMLwS9gnskQZfzx2azIZvN
QhAERBNpRJMCJPlI0T/2XJ7nlcKRen94nofD4VDq/2iFcpNZVY10RlvAouPqvVGu9F8qDGkA
yWQSsqydpMCaMcrdxOpr586di8suuwwcx+HUU0/FrbfeikgkgoaGBpx77rmwWCxYsmQJent7
0d7ejvvvvx8WiwXXXHMN3nzzTXznO99Rxho3bhx+//vfw263I5PJ4IUXXkAymYQgCPjKV74C
nudxxhlnoL29HePGjcN//Md/KFx406ZN6OjowJQpU8p6rmLQIqo0N4/HoyzMgZSMOa6vDkk5
RfGMgL2uWNKMiWML9L1tNltBO36hUs7lguzu0XgSz7/9KdZubUcmK2LK6Bp859LpSlMgkuKd
TmfBwohsXlOxzF/1XpIkCSe01MBp55ESchnBjIlHwld5nocgCINafdaQBmC1WhGNRtHR0ZFj
r2W5lZYUZyTZQ+vFknN03759+NGPfoQbbrgBDQ0NaGlpwfe//33ceOONaGlpwZgxYyCKInbv
3o1oNAqXy4XPP8/NsqN+msFgEPfccw/mzp2LqqoqXHHFFfjWt76FH/3oR9izZw9mzZqlLIpM
JoPFixdjx44dmDlzppFXVFGIoohIJIJYLJZTFnagUCwcdaDvL8uymRl8DKNYqQej4aClgJJF
X1m3B8s37kNSyCIrydi2rwdPLP0YyXQmp0ZVsftbLJa8fuRaEMW+TmORSATBYBCxWAyhUAh+
tx03zzsZdQEXOABOO4/zTxmNC2e0KObX6upqRKPRQZP+AYMagNVqRW1tLbLZLA4fPoza2lpD
IYwsgyg2SXVo5ltvvYUnnngCd999N2bMmIFwOIx9+/ZhwYIFAIA///nPCIfDuOuuu/DYY48p
dmxK2mDH2rNnD37xi1/g+uuvx+WXX450Oo1169ZhwYIFqK+vx1NPPYW9e/diypQpSCQSuOee
e1BdXY2HHnoIbrd7SBrIAH3ZsplMBl6vd8D6CcuyrGQGFwppq9S99J4hm82a9YGOURTzMxkh
rKWCBKf3tx/K++2zQ2F0BOPwuPqEQzLHavXHIFNRsXBVgiiK6OjogMvlgsfjgSAIiuVkxsRG
TBxRhZ5ICh6nDQ1VbsiyhCzTRSyVSuX0LDHyXgacAQB9m5fneYwYMQIHDhzAqFGjlONq4q11
rJRJ7t27F48++iieeOIJ1NX1tXLbvHkzTjzxRMWb/95772Hnzp2YM2cOHnnkEQDAn/70p7ys
v1AohJ/97Gf49a9/jcmTJwMADh3qWxQXX3wxAGDevHlYvXo1Jk2ahAceeACnnnoq5s+fb3i+
AwnKsBUEAV6vt+LJY5lMRqnVD+TnRQyWaYbKZJjlIY5NWK1WXQaQzWYVG3vFUYDskPCTzWbR
1dWF2tpaZd1bLBb4/X7FBGtUQxEEAbW1tco6drvdkMDh5ff6NJF0RsQp4+sx/0snQJYlxUGe
TCbR29sLt9uNrq4uyLKsmKjIilEJVKQUBNtRS03wCzn6Ck2IZRAvv/wyxowZgxUrVgAAAoEA
zjzzTDz66KMYPXo0AGD9+vX41re+hTfeeAMWiwXBYBDvv/8+Hn74YQB9pWJ5nleqDW7atAmb
Nm2CxWLBZZddhmAwiGeeeQYNDQ14+umn8Ytf/ALJZBLvvPMOpk6disWLFwMAZs2apTC7gYY6
VJIF+QYqqQ2IoqhZFbSUcM9SUCjsleYSCATMpLBjCEQfHA6HQmzVEAShz0zi91dMACAH7TnT
R+Kl91pzfps4sgrNNR6IoohoNApRFOFwOJBMJpVQTIfDoWTvlrLXXC4XMplMTrOXZR/sxUvv
toJ20sbdnUikM7jrn85AKBRCPB5HIBBAc3Oz0kBGEAR0d3ejqqoKoVAIeh2xyAAAIABJREFU
Pp9PMxqqHDrA7mn+vvvuu6/YBeoQqXg8Do/Hk+fh748TmMYgc1N9fb1Sn9vn82HKlCk477zz
0NbWBlEUccstt6CxsREWiwXbtm2Dw+HArbfeCp/PB0mS8MADD+DKK69Ec3MzRo0apYzldDox
efJkXHLJJejo6EAoFML111+PKVOmwGKxYMyYMfB4PMr5zc3N8Hq9A24G0sqg1jqHqmuWszjV
Y0Wj0YLO34Eyx+iNS3WTBsIkYGLwQfZwoO+bW61W3YbmtPYrVQ2TAkvGNPogihLau2OQIeOk
cfW48csnwue25/jXotEoGhsblaQ0NtGrFAiCoETx0fV/+sdWxFK5uS6haAqnTW5ElcehJEIS
8ad35ff7Ybfb4XQ6EQqFckJESSspdZ/klYMwkgnMloIQBAE9PT1obm7OO68SGWyV6BbV29uL
zZs344ILLqiYpDwQTUyKSdqFQug4jlOyJ8mJRv1GjdQoTyQSupU6BxqFNhWtAbbWuskMjh6Q
WSWZTCKTySjtEm02m1JSRS8iyGKxoLq6umKmIIoESqfTSGdEyDJgt1lg+YIIWiwWZDIZWK1W
xcbPlpGhc0pZf8FgUKGXgUAAHo8Hdz2xBl3h3NBQi4XDvfNnod7HKz0HaM5qWpDNZhEMBnNq
FPVnT7D3MGQCstlsSh/djo4ONDU1DYiNuFJjVVdX48ILL6zIWAOJYqUzCvlOKHJGrVLb7fac
Wibs+QCUlnND1ZWr2LqRZVlp12mz2eB0OmG32wesw5yJyiKbzSIcDiOVSiEUCilVOql2Dktg
1WDLJ1TiW1PyViQSQTgchiiKsFqtaGpqUoJYotGoEm4NHBFO9OaoFyxBxSg5jkNVVVVOH4wz
pzTh9fWf5Ywzut6H5loPLJBQXV1dMP6f1aL68y5ofPbZDDEAUolILWE5tNpu3V8ibrRNoboU
RaH7lmPTZscfSEeoEYJYyocvlFWbSCQQj8cL3q8U0DsyWsGwlHdK5q50Og2e5xX7sOkfGL6Q
ZVlpNXrgwAGMGTNG+S2VSikaaiAQgCiKSCQSeabVVCoFnucr1i+D4zjU1dUp5hV1dzp1ZU8y
3dC17LOxJZ5ZTZXjOCSTSWVvAX2mLNK0r5wzEUkhi3XbDyKTlTBhRBVuvPRE2K0WpNPFy6BQ
fgA1wyrF0sI+q7pYJ2DQBBSLxeB0OiHLMiKRSM5HU2/+weqFq84fMPJSSjVRDab5odDcSiF6
FosFtbW1mmp0PB5X6v70lwGw76ZcBlDKHCiszuwfMPxA35GIOitVU4ixzWZToloIeg2DeJ5X
mgtVan49PT2KYGSz2fKKTrLh0A6HI6f2GUv46RyWqHIch46OjrzfgD7aOWLECPgDAUTiAkRJ
ht9tR0ZIKQSdbP50T9ZZTnumu7tb6UJmdO+ohWT13pNlufQoIHU8b55TgeNyXkKpBNfI+fTS
2RfNMoJyiYwapUrf/YGakZV7X3KyaTGAUqWH/qKSDFQQBCVCw8TwAhtNZrFYYLM7sfNAL0RJ
xqSRVfA47UqOB7vHycejFTFIEWGV3H90n0wmg0gkomgk1LOXghCy2azCIFKpFJLJZF5Cplr4
Ye3zaoRCIXR3daGmpgaJRAKJeBrxeBxut1spRRFJCGht74HDzmPq6Bo4HLxSThroM2tTeGix
vsFatFH9O8EQA2CJhpY0qib26gmUyq2MXqM3DvvvUlQlrXsbIcZaqlW5qATR1JsHqcGVRLGF
WClQsxlqsGH6A4YXyJl6sCeOR1/ajIM9McgAqrwO/ODKGZg8qkYJX2bNlNQpi0Drn3ID+qMF
0J5k/WSsrV0QhDyTsyzLCIVCCIVCOUmgWkzK6F51u93Yv38/kskk7HY7ampqlJBOu92Oza2H
segfWxFNZsBxwPimAP71yhmo8tgVkxXP86itrcXhw4cBwFAoeKEgEoJh2wJxOrVkqTbFlGs7
V6sq5W5wCr2iMdQFqej/7Hns+erfSAUsROC9Xi+8Xu+g1vAoBL3yEbSQ+guj30erGBz7PkuB
LPcV2QqHwxVtam+i/2DLJPx11Q60f0H8ASAUS+P/3tyOZDqTZ38HCkunRsqEa60vakRDZRgi
kUiOmZI9V+95KD+AztcC0QqbzQabzaa7tyjKqLGxMSfZjOd5xJIZ/HnlDkSTmS/uBew5FMaL
7+zOi0giJhAOh0vylRaCYQ2APhwldBSaQKVszDRWqdew/zbqH1BD7ZUvpAmQVkS9docayWQS
FotFcVARqHlFf4hnqXb8ct873Yv9NznxIpEI/H5/RUKGTfQfRyT5DLa19eT9/vnhCKIJAT6P
qJxPJZOJjpAdnF1bmUxGV9IlQp9KpXKSrqgGUCKRAM/zZSWWqUtCqNckzaevIxjQ1hmBkBEx
qt4Hj9Oe0+uDrqExWQuKxWJBRzCKnnB+9VB6j6zGFAqFYLfbldaaWuV4So2gMswA2MF9Ph+s
Vmte0+9yiHYh6I2nZWqqNCEoxR/B/lurnogW2GeoFGhMavVos9nyMmsrZV4aCMJbrH0nOwdB
EPpdJ95EZXBEiwYCHjt6Y7nCodthg816hDDR+mTpitVqxeeHo/jks27YbRacPqkJNX6nUh1T
vQ4ymQySyST2d0WxdW8XeN6C0yY2oC7gUoJVamtry3qedDqtMA494m+1WhFLZfDk0q3Yvq8b
oiijLuDCjV8+CdPG1OQJgh6PJ6eZPAlPLocVNisPIZsrlAU8udYENgG0vr5eiTJi52aU+LOC
myEGoGUmoc3Hhj6x57M3MzJ+od+KSfF6RIKkdqN2aq37sNcXkkTYRhFGtIByCKnWNWpNhf5N
Upla6jBS+tnoPCrtT1B/K71/mxh+oDV52czx+NvqHWA/17knjULA41CIKuuLIsn/3W0H8fQb
n0DI9gkBSz/4DD+66jSMbeoz/blcLoURkOT/4a4OPLn0Y6Wm/mvv78G/fm0GJo2syimoVioo
6qeY6eeld1vx8d4u5XhXOImn3vgE910/C05brqYtCEJOD2GgjxE213px+uRGrNt+UDmXt3C4
bOY4AFDGoGzgQCCQM4/+WFs4jjPmA9Bz/DqdzrzU7UrZ8rWgpREUG1+tLahNIurjpc5XluUc
TajURae2h+v5HNQ2dPqjtQBkWVZsk2rpv5JZlpWGlhTDPl8pUo6JwYMsy4op5pLTx+DmeSfj
hJYaTB5ZjW9deAKuOX+yktkN5K5Di8WCSELAc2t2KcQfAILRFBa/tVMh+KzQkslkEEsKWLx6
Z06jlXBcwF9X7QDHcXnJkLQfqOBgoX1AbR5ZX5oWjfhoT1fetV2hBA72xHL2XTgchtVqVcJg
6Y8kSYAs4cYvn4ir507ChOYApo+txQ+vOg0zpzTn+EBo7ZNpTBAExR/GfgejAjftI0MagF7Y
pcViUYofsep7qaYgVlpnr1dPmj1f7zy9+evdU2sc+j+Zc4ppESSRsC3jioEdU0+yL4fQ0TVU
h6UUe30p0DPLqecyEAKAieGFbDabY/eePW0EZk/rK8tOfkPyR5GNns1uDcfSCMXytdK2joiy
D9gAC0mSEE8K6Nawne/rjADI7TDG8zwsPI/9h6Nobe9Fjd+F6WP6KnaqHc20Tyg6ifxMWmvP
7bAByJ2DlbfAbsuNtstkMsrzs1I7x3GKZnDFrAm4YtYEZQ7ZbCbHCR0KhZBIJHD48GGldLrD
4VAq+bK12UqB4RgrLcJGnNzlcuWYgtQTKYURaF2vvmexc7TO1zqmR2TVWgKdW+g52NTvQtAb
p5hZxShnZ58tEunbDGQvJNW2VBQyPZV6ndY5hbS0YuY3kykMLcgfQ9+JkqHcbrcSZ88KYBTO
y64fj8sGj8uGWDKXGDfVuBVBk3XmchwHp8OGgMeBUDx3PTdW90nvrPmT53m8/N4evPxeK0Sp
774TR1bhx984A06bNW/fEsPJZDKafiZiXpeeORZ/en0rJOZZThpfh9H1PkiM+ae6uhrBYBA8
zyuJb8QMqcoCvS92fAJpEGPHjkUqlcrRpjweD9rb2weeAeiBenam02klzIvAStKVlECNEpRy
x9A7Xz2umlCVE11TiKhWwmEbiUTg8/lgs9mQSqXKjlJSa2nlXF/seCHTnta6MjE8QJE6tP/d
brduQUKKTkun05AkCaIoosbnxKVnjMWSd1oVYupyWHHVOZMUaZw1/dlsNvhcdlx21jgsXr1T
8Tc4bDyunjsJQG7Y+sGeGF56tzWHULe2h7Dsw8/w9XMm5cyP7uF0OtHT05NXKoKQzWYxa1oz
OABvbGhDUsji1AkN+NrsCeCQT8QpFJUtS9En6WeRTCZx6NAh8DyPbDar0FTKQ0gkEhg5cqTy
brXmUu6e6DcDIA5N9Sq0Ni4RT3oplWAEelJ0KUTUiP+AlajZCB+1tG0UWmqg1n3V9y9mhtIb
g9rTaam7pcy5HMdvOe9I/U5oM9Cm0Wq4bWLoQFYAKlFAx/RAFgOe5xVNQBRFfPXsCRhZ68WW
PV2wWy0456SRGNcUyGsUo9jAM1l09iaUtWmxcPj2l6bhzClNORI9x3HYczCcQ/wJuw/0Kueo
1yflNWQyGc38HqIDs6ePwOzpI3KOq/cZPXNjY2Peu6McAmI0VFSOzMrUJYy9hn0XlGNA5aJL
DXutSLENelH0AFo2M9aJQZPvL4xIpKVk7KmhZY5gibf6HPZYsefTYgJGmFWhcfW0H7K76o05
UCj3G9M7oR7NtKjZQnamFjD8YOSb0DkskSSz0WmTGnD65D4iSdIx69OSZRmHDh1CIBDAy+v2
YNXmI/2/JUnGm5v2YebUJlgtuX6vuoB2uHBdQLu0CNUo8vv9Sqx9oX1VzEzMcRz8fj/C4TCq
qqpyflOfb7FYcqR8WZaVyB8tPywAjBgxAtFoFIcOHcKIESNKyp6uCANIp9M55g89wqaefCF7
uJHFpPeyCzkoSyEcWkRXjxBrPaMRJlDO8XIIa6FrSn0nhb5dKfdl761+b3a7XSH+RAxYyc7s
H3x0gogmWQvYUsykTWhV46R6Q6RpfLizI2/s/V1RvPr+XsyeNgJNNW6IX6yZKaOqcfHpY7B2
6wGkBBEWjsOU0dW4bObYnGg6krwtFgv8VbXY2taNRCqCE1pq0FDthiSKEL/o36t+pmLwer04
ePCgwgC0/KR6x9R/6DcCMRjSqvx+vyJs69UFU66VDeziRCJRsBBXJpNBKBTStYGzTiA14dBL
/jEqTRQKGyx3XBbl+i4q6fMY6HGLvRctjUc9j0I+kmJmLLVg4HQ64fF4lIVLPVPJgWa1Wiva
OMTE4IGydIE+04jH4ylY7ZZMRLFYTNEIrFYr/uNvH2DH50HNa6y8BddeMAUXnzYG6XRacSJ3
hZPY1xlBldeB8c0B4AtzUigUUphLU1MTuiMpPPT8RhzsiQEAbFYLvv2laTjv5FFob2+H3W7P
iccvBlEU0dXVpZSMKQfU+ImFuruaLMs4fPiwEnVEpblbWlr0y1SUNRv1IFYrqqqqEI1GNU0N
pTY0MGJLpPNKMQccC6aDUn0BRkDvUb0Rtcx1etqc+jyr1ZoT+sbOncxylDlNmaAELabOriu2
nIWZF3D0gKRRn8+nKeXrgcojs+vxyjkT8fnhzYin8v1aWVHCC2t3Y8aEBlR7j5RmqPHaUedv
UMYkuiSKIvx+v1J99MV3divEHwAyWQnPrfkUJ42rQ2NjI/bv349oNIqmpiYlTJTNzWFBRJlt
FK9GsXfA8zwkGfjH+s/w9tYDkCQZM6c246uzJsDG7AWO49DY2AhZ7uulQZFM+/fvh81mQ21t
rdJciVAxHwA1eohGozlOCxalOjGPJ8JuFAOhVRi9n5ZfRwskxWs5z2S5L3GOwgMpgKCQ3VLt
w2DLAxDjKtfPY2LwUKyvhVrwI4dvPB7PyWkRRRFTR9fg59fNxNsfH8Dare1ICrmhnMl0Fge6
Y6j11wHQb5TEcRxqamrQ2dmpmGda23vz5hZNCugMxlHdUoORI0d+UbfIgs86wjgcSmB0vQ8j
6/p6h7OWEGrort4LRnt8kKD0yrutOY3lX1m3B4l0BvMvmpYnFNL+A/pCwEeNGgWgr1Uu7R2/
39/X+N7QLEqYKNmi1HWCyoH6g+lpBqUwAC1tpNi1attbMTMGew5F4ZBdrr8YKAZg1OdSzFFN
kQmFohFsNpvSDcpIPR91Wr4sy4pDmBiI2n5s4uiCEt3zBYGyWCwQBEFpYETnsPtqVJ0X37ro
BHSFk9jcejhnPCtvQbXXoUszWJC9PJvNwmazoS7gxuFQbrSZ3cbD7+kbj+d5ZCVg0T8+wgc7
D0GW+8o3fOXsCbhyzgREv0jaqqqqQjKZzHP8lupzEyUZb27cB/XOf/eTg/jarInwuqwF6QIJ
V/X19ZBlGeFwGKFQCI2NjZVjADRZjuMU+200Gs2bWDQaVZgFoG1fVhNprSgb9T3p36XayPvj
F9C7ln6nRRUKhZRU8P5gsKV/vTkUkvzJ9ENJOKQWi6KopOA7HA7FuVvsmSgsTus4rSVaTyRp
mZrA0QmKiaeWi4Wcq8QwbDYb5p01Hjs+70FK+P/sfWmYHGW59l3d1fs+Mz1bZk8my2RfCAlb
CAFEQEUQOIQjizmfgnrYg4BREcUDBs7B4FEWEfSAoChEQRYRCEtCQsieTCbb7EvP9PS+d3VV
fT867zvV3dU93ZPJJJG+r2uuQHV1bf3Wsz/3M2J5nzatAnXlZkQi4bzChGVlZXA4HKipqcGl
S5pwpN+bQjOxdEYVqkuN4PkkIdtHu3qxZf8AFcq8IOL1zUcwp6kMk6tKkjkHpxPRaJTyEh2L
lxqNZzaZxhM8eIlnlA/IcyXy97jM1yMUEem82gDgcDhgt9tTFAC5MILRBIOcAjjWl16qZPLJ
PaRfh9w+ZL+Kigr4/X5a/1zodRHFxjBMSrxvLAqvEGSr0CLnT79OUtFBOo6lFRbAyKi/fGuV
SegnV4c1uX9Sf10cFnPqQI5yWS7vlAuJRALNk6y495rT8e6ObgTCccxuLMM5s2sgCDx6enpQ
V1c36nHUajWqq6sRCoUws74U9/zbYry7oxvhKIc5TXacPXsSwuEQ/H4/qqqq0NbtyrDIeUHE
gR43plRbKVWDxWKh73y+uU1pSEcURSiUCsxusmd4OZOrrTDq1QWH1l0uF6qqqgAcJwUAJG+C
dPw5nU46VN5gMFCXSK6pSrq9kHONZzJQKlyl24DRrX8CIpSkAmp4eJjGMjmOQ2lpaVZOe4ZJ
dv2lzyf1+XzHPHNALmlbCOS8NgCUEiDb7ydHDZDrHNms/2zINginiJMLPM8jHo/T2n6CsTQq
Ek+gvtyEVRfNotuTlBMhmEymFC8RyCRgJGCYZDllJJ6AwxNCqVmLBVPKMXeyHUoFA6fTSUnm
rKZMLn4AsBm1lK8/Go1mUFKnvzuimCw/ValUGfM7SAUURBHXrpiBUITDkQEvRBGYVGbEDV+Y
CZVSkRcFjRRkvjZwHBUAkLxBk8mEUCgEh8NBPQO5/dL/v1CtRtyabCGZbOfKdryxfC8d0u8Y
DAbodDqqPKLRKDweD3w+H/R6PeLxOIxGYzIxc3ROqcPhgFKpRG1tLQ2ZmEwm+P1++rKMReBJ
Q2bS7ux0y6MQSMNeciANLoXE6NOrf0aDVOEWvYCTF7FYDOFwOKNJ81gMEikNDVkHgUAAVqs1
o/KFeKlSwUnq+2OcgHWv7kBr98hgmzNnVuMbF82is3hFUcSyOTXYuLcP/vDI+qy1mzBvSjm9
R6VSiVAolCH3pFVwvb29EEURtbW1GHCH8dbWDji9YUyeZMMXT2uEXpOs8rFbdLj76tPQ40yG
1WvsJmhUyoKFPwnRh8PhJH+QmMdTH60PIBeIhvP5fLJZfrJNWhY2FncwlxeQzWItBGPNFUit
DTnLmDTRsSyLWCyGeDxOR7+VlJRAFEX09vbCYDDQwdPRaJROUyo035HuvRTqbaVD+mJlOxbx
BskgoXyeY3rtf77XQvoDisngkxeksieRSMiyCEciEbAsC61WSwWcNNlP3isSDpVbdySxq9Fo
EIpy+MN7bdh2cBCsksHyeXX40tLJYBWg18DzPNRqNd7d2YcX32/LON5tly/AvMl27NmzBzU1
NbDZbOhxBvE/f9kGdyDppc6dbMcNF86EzZiswQ+Hw+jv74fFYkkx2LRaLWKxGBiGQWlpKQwG
AwbcYTz4h80phHiTq624599OA6tgMgzcXJ52NrjdbkoxUVNTk8zZFXSEMYBhmFHjslKLND3m
Tf7Nd8pWtnAK+Zz8jUVApAvbQrwJsn/6Mcg8BeJ+arVautiBpLXS2NgIv9+P9vZ2VFRUQK/X
02eaLzdOeq5kvHIH5OUhXD3Znkk+YTO5ayauqhTp/PDS58pxXFH4n+RgWRZmszllLCSpruns
7KSfm81myurJCwIO9HjQPeRHZYkRLfUl9B0g9MjRaBQsy9JjDbhDaN03iM8OOtAqaRp77ZMj
YABcfnYzbQLTarWorq5G95Bf9pq7hwKYP6UcjY2NdO0d6HXDExwJUe464sRTf9+Nu65chHg8
Dr/fj9raWsrGS4R2OBymk/qIUnt3R3cGG+qRfi/2driwoLlctscgXwiCgKGhIdqvJX0Pj7sC
AEZGvslxb0uRntwl/xYaDko/1ngg2zWMlgeQ21duu1arTZl/KrVuSOehyWTC4OAgXC4XysvL
oVarC1IA+dxPoQgEAvD5fPRFLSkpyRgSNJawTDonCjBi6ZF2/Wg0Sue+EiGSSCQyzl/EyQVp
TJ7Evv1+P10fRqMRer0eBw4cgFqtRlX1JDz/7n68v7OHHmNBczluunQuAj4PpZUgcwaamprw
0Z4+/O4fe1OGzBCIAN7b2Y3Lz26G1WpNYfysKpGv1KsqSRoiGo2G5u3e39mD9NfoYK8HPc4A
qqwa2O32FJoLURRpchhASnGM2y//HruybC8EpLS2pKQk47MJMZVIhYgUx7NyhWjaXFOzxutc
hUJOCBLGS3JMIsiCwSBCoRBVnAqFApWVlaisrITD4YDb7c7L2i1UieaLRCKBUCiE6upqlJaW
ory8HB5PZhMNANogM1ppX7YEHTAyc5mUkppMJphMppSms2L8/9SDSqWiyl4Uk4yvJERSXV2N
fV0ubNjVk/Kd7YeGsGlfP+x2O2praxEOhxGLxWCz2eAJRjMmjKUjwSfXWCgUQl9fH5UVy+bU
YFJZqhKY01SGuZOT4deU2Qa8jHIRk9VApHhDavxotVokBAauQAzBaAIqCQ/StNpM4axUMGie
ZBvzuysNvWajtZ4QD4CEgaTIVmKY7eU9FiF2PCtDRhM4ctedvo3UtJPYNSlplHoMFoslJXxV
XV2N9vZ2GI3GrF20cvH5QoWj1BOT3jOQjCmWlZVRwZzr+CRRR/aTo52IRCLgeX7U4RYMw2Tc
M0myjzXHU8SJA8MkZ4wTb7eiogIsy8LlcoFlWbQP+DIsbQA4MuDF8nm16OjogMViwdDQEDQa
Dfo8kYxBMekgrKMGgwGCINBijG6nH5xkQHtDhRkXL27CZwcHManUiIZKM13/C5sr8ManHSnH
rSzRo6bMmFFcoVKpsL/bjef/2Yo+VxAGrQrL5tTiqmVTAQDnzqvFvq5h7G4fBgAoGAZfWjIZ
9RVmCEJhc0YUCgUd1ysdvSk3DGpCFABQ+KxcQD5Ukk2Y51ueKd1/IgSFXNgnfZvUa0m/RiCZ
KHa5XPT+yXar1YrBwUEYDAaq4XOFqgr1hLI9S1LGKieIs0EURdkFSBq3CAUvKX8d7bqyraei
B3BqgvzuDQ0NlPunsbERoiii3Cq/Hsj22tpaMExyDnA8HodJp4ZOzWbQQwCAmlVg3uRyXHPe
dGr16/V6WK1WeIMx/HL9zpTvdQ768dBLn9L/P29eHa5dMQOsErjszCkIRjhsaRsAlxBQX2HG
Ny6aBa2aTZmSxrIsghEO617djnAseexghMPft7Sj3KrDuXNroWEVuP2KhTjY64HTG0ZjlRU1
R6klSJMjmblCqDEAUM4f8i7qdDrqDUvlTLYS2wlTAPkkMHLFqfPxAAqx/uTi0uMtOEa7n/Rt
uSAlP2NZlj7PiooKOJ1OxONxyvkhDYFJG8cKOd9oyDYoIxfi8Tj1AqRJW61WS4eDkMU6VqbP
ovA/dUFyAiSfQ0op508px5RqKw73e+m+VSUGnD1rUko5JykOKLdZcc6cGvxjWyf1HDQqJW78
wixMmWRFiUkLBiNCkRgU+zodskpDig27ujGrsRQLmyugZETc+IWZ+MoZk5HgBdhMWqjZzLp8
hUKB1i4nFf5SfHZgEOfOraU9EZMrTWiuTpLSkW0Gg4EaWqSkNRwOU7ZPaahH7r1Jr7aSYsIU
QCHWvNz+uXAsbv9YKnvSv58rbEX+lVYgyZXDjgai4UnIh+d5eL1eKBQKNDQ0oKOjA/F4PIWm
VhpPHe3Y+WyTwufz0aYYKYj1lq3ySxTFFKVEOn3JtvSa7SI+X0gv/eZ5Hjq1Cnd8bSHe2daF
riE/qkoMOH9BPaxHyy3J/iTOLvA8rj53GurKTdh5xAmtWonlc2sxudp6VBCKVGgC0vGRo687
QQQO9niwsLmCztwuOVpZIwgCBgcHUVZWlvFOK5Xy75N0O8dxtFSzqqqK5gbT5yGzLAu9Xg+f
z5fi+WcLq+cqFDlhCkAOoyUIswnrU8nqk5a5ykFuO1kIUo586XF4nkdzczMCgQB6e3tRW1tL
hSjhHyKWgtw5Cnl+HMdheHgYarVa1gMoKyuDx+NBeXl5xvHTzysNfZFEYFEBfL4hVyjAcRy0
KiUuO3MK3UZoQuQMsEQigXA4jLNmTcJZsyYBAC2sSL43CuzvdmN/twtmvQanTauE1ajBnCY7
Ss1auPy5u88P9Xnw0Z4+LJpaAVYh0iYyooDS33Ge5zGroQx2iw5O34gwVjAMls2ppf+vVCrh
8/koO6larUZjY2PW95NlUwfaR6NR2nBGriGRSOTssD7ujWAEoVCoja1rAAAgAElEQVQopaln
LDH79BDK8RD8YzluvgJLev3p8f9s+5EEK6nfBUArhNInZJlMJvT19aGysjIlNi8IArxeb0pi
Kv0cBNFolA6wlkM8HkdZWVlG27r02gn/uU6nA8uyUCqViEQisspNpVLRKp5iA1cRfr8/hf4j
3WPOJ5dFusdNJhOAEaVCkrGvfHwIr29uBy8kj1Fu1ePuq0+D3aJD16Aff3ivDQd73Sg16xBP
8PCF5LvRp9eV4NavLoBWpaBNWkSmkUIOcl6NRoMeZwB/eK8Nbd1ulJg0uHTJZCyfNxL+Idca
iUSg0+mQSCRQXV2dNZQciUTocB0CMmSH9OVIB/DIYcIUQCAQSJnpmv6jjoZ013A8FUC2RG2+
xx+L0JIK2FwdtKRemvAnkWRp+nfIPAaHw0Fr8dNLStMVQHqIyuPxgOd5lJaWZhXu+eRNWJZF
IBBAdXU1RFGk8Urpd9RqNbRaLWUIzXasIj4/IGuQ1PWTbYUgmRBVwOEJIRTlUG7Vw6xXI5FI
QKFQwOGJ4IfPbQSXVsKpZhU4fXoVrjlvOgzakZCLJxDF3z45gj0dwynWO8G/nTsNX1zciF3t
TvxxwwEMuIKYVGbCyvOmo6W+lIZfSe4ufY2n8yERaLVa6PX6nHKI53n4/X6aKFar1ZSEk7zT
sVgMfr8/Q26SY05oCChdiEv/e7SXf7yTmNLjypU45ntdZN+xlFdKzyEXlpH78UfrCNRqtbRB
inDuk2OT5KtcFZLP5wMAGr/MVU2Ufo3kv0lYSKVSoaSkhMb2pcKfEFGRDsgiiiCQVsLlejey
gWVZiGDw7Ft7saVtAHGOR4lZi2uWz8Bp05Jlnw53KEP4A0A8IeCjvX1ICAK+eckcaI5W1thM
wPUXzsRfNx3GKx8fzvhejzOAriE/nnhtF03y9jgD+N+/7cT3Vy5BpU1HSQpJcQNZ9+mlogRk
JOpo7weZriYIAlUu6e8nYSQNBAIpZInEsJwwf5sIomyCLl8cT6GRTRkcr3Plex3S68k2d5ns
r9PpEIlEwHGcLDumVLEQS8HtdkMURco9lO/1k3Oq1WpYrVaYTCbodDqoVCrasCUlczMYDAXx
ARXx+UK2MC/LstSwkKtyodYsy+Ld7d34cE8vYhwPEYDLH8Vv3twNbyiZA7NbdWBzJHu3HRqC
LxSnBG7kfNWl8h3C1aVGfLrfkVHhE4xw+OxAcnA9mQdA3gsgKfyDwSAGBwfhcDjgcDgoW3C2
8KocyLPJxoNGlIDNZqNTwoARWTIhHkCu7s6xYDzDP+NRNz7W76d7Afnsn+1HJrFDQjQlxxJI
XELpZ2QhpNPW5nMdDJOs3Za6ndLrUyqV0Gq19BmPNgC8iFMf0hLk9DWRzaghkCOHU6lUEERg
+CglQolJCw3LUsOCHJOsqx1HUjnzASAa59HW7cbSlmrU2k1YPq8W727vgiAjkgRhpFKPrNlA
IIC5TXbMm2zHziPOlP1f23wE2URb4ugzEEURCoUSLn8EvCDCZtSAVSYbPkm4lbybQ0NDUKlU
shV2xwIyi4NlWYTDYZpnmRAFMFrSphAcD8sxPR6evq2Q748FY/muXByeEGspFAoaF5Q+exLj
l1oCACjLaL7nJX+EsyXb9RPrg1g+ReH/rw2SdJQ2KgGpuSy5/ybrc3BwECqVipY9siwLf5jD
b9/ag32dyQEs02ps+H+XzIHVoM4IFwGAVi3fP6JVKWkc/t+WT8e0Ghve3NqJI5LeAhw9vlmv
oUUUCoXiqOESwc1fnodP9vXjQI8bm49OA5NOIZNCpVRgTpMdDMNAqdLiN2/uwdYDDnAJAQ2V
Zqz64mzUlJWkKDK9Xg+73Z7xfo4XiEIDgIGBgeRsjuNyJhkcz3DKeEO6QPPBWBXcWDwZIkiz
5QicTmdKeaZ0H4PBAI7jKIcO+ZMK5nyvR6/X5xT+0uvNdwhMEac2YrEYfD4fteQTiQQtQ4zH
44hGo7RyJRgMIhAIwO/3IxAIIBAIQKFQYHBwkBoxDKPA7/6xDzuPOMHxAhK8gH1dLvz2zT0Q
xGSVT2lpKUpLS2G1WqFQKHDBgnooFalrsqbMiFmNdhouMei0WDy9CndcsRCnTauAmlWAVSrQ
Ul+K/7h4NrQaVUrtPRlkZTbocN78OsydbM+YBiaLozu98vEhfLy3DzGOhyCKaB/w4YnXdiHK
jbDoAiONcMfzXSGG26xZs1BdXV1UAEAqTXQ6yIBz8uNIY5BKpZKWOQLyoS6VSpU3XcJ4gMwW
ICAKIxaLwe1206E0uZK8o+UnyLMooohcKNS40Wq1qKysRCAQQCQSQTzBY3e7M2O/1m43wlEu
paGQ0CDMbCjDzV+ah6ZKC6wGDZbOqMJtVyyEWqWkwpYYJDoNi2k1JdCoWKhZBZonWWHWy8+U
lg51kc4KzgaOF7C73QlRFLHt4GDG533DQQy4ghlh4LF2wBcKGhKakLNBXgGMZyz/WJEtjKNQ
KNDd3Y3GxkYcPHgQLS0t1G0TBAFutxtGoxGiKKaUyiYSyeHRkUgEQ0NDdAZnOuSqm3JZALkq
gNxuN62nV6vV4HmesiTyPI/y8vKUBVeoUpb+XqS+uYgiCNK9PVKCLG2UkkJuLbMsi7KysiTd
CRiwSkVG1Q6rkJcbRAmcPqOKVv0QoUpoIogQFwQBb23twMsfHqQx/L9uOoJILIFrV8xALBbL
SMYSRdNSXwq1Son4KIpgb5cLFyysl006KxSAMo1AcaKN5AmtAjrW6p+JgNwPQJIzDJMc4zg8
PIzW1lbs3LkTQDLufvjwYbS2tsLv96O1tRX79u2DUqlEW1sbDh8+XNAPm+2ZkOvINiM3Go1C
EATU1NRAo9HA6XQiEAhQN9liseT1vLNVasmFxE5mr66IiQURsIEIh39s68KfNhzArvZhKJTJ
sIsoirKUBsSDTq9mEUURKlaBs2ZPyjjX6TOqYNBmetakFJnkpkjJsV6vpwYeGQfJCyLe2jrC
FUTw8d4++ELJ5qlAIJBRvajRaFBhM2DVRbNQcnQusE6T9CDScaTfi9+/04plc2qQ/upNry1F
damRGohDQ0NwuVx5zcAmhRscx6X8ZespyIUJSwJn23ayKYHRkEgkUFdXB5fLhVgshlgshkmT
kot0hFNEicOHD8NsNqOkpAQOhyPnMXNVSRDkGgHJMAwlVOvr6wPLstTjIBTL+U4TyqcZTpq8
O9V+vyLGH6KYHPs67Avjv17cgkFPsvP0za2dOH9Bkj3T4/FAp9PBbrfT8mRRxNEKGYbSOhBh
TYTc186eCgXD4OO9fRBFEUtbqnHlOVOh0ahz0qBL82CiKNLEKhXmoohQNJMiIRrnKc9/LBYD
x3F0Ah9RVjqdDktbqtFSX4phXwQGnQq9zgDWvboj43g7jwzh2hUzICKpcGIcj/lTynHN8ung
4lG0t7ejqakJDMPQ3En6rGTpfQDJTmdS109AlJtOpyuIFv2EloGeCkqAYRiqpaUxR5IPqK2t
pXXt8XiyfpiEWnp7e1MEb7b7lYZksj2LdOGf/gMzDJPCv0OGbkuPX+h9p18L4RnXarXFxG4R
FCTh+9dNh6nwBwBBFPHO9i6cNXsSGqqrodFo4HA4YLFY8Y9tXXjz03b4QnHMqCvByhUzUFdu
xrZt22A2mxGNRjF16lSoWQYrz5uOledNBzDy7hEhly+kyiJJOcJgVmMZdqWVdTZWmWHSq1MG
SYVCIWg0GlrGTMKsDMNAwTB44b392HYgM86fBAOWVeDSJZNxyelNdGsgEMDwsJdOStTr9WBZ
lnoA0so58i6ScZKEUUEKojBDoRClkiDl2XIg9zZx2cksOFFKIF2YZkMikcDMmTPh9/sxa9Ys
+sPr9XpE4zx2dzjh9CT5u6fX2lBbWwtBEGA2m6HRaCAIQpKhUKIERxPIoyVhs+0zHuW2UsEv
XXyErK3YxFVEOsja7nMGMj4TRaB/OIhKiwZdXV2oq6vDJ60DePH9/TT8sq/LhV+u34EfX38G
qqqqUF9fj88++wwA6LxfEh4iVniha5DjOOoJkNDTtefNgD8UQ9dgACJEVFj1uP6CmVCzCnDc
yEhWhmFo/wxh4xUEAQmex+/facWWtoGs513YXA69hs0Y8CSKImw2W5Lt9GhegpyPcPdIK/2k
/RVykD4PQRAQCoUQjUZTJpNJpySS/U64AjiRSLe45RYVeVgGg4GWtbEsiygn4LFXtuFAj+fo
d4Hz59dj5YrpEAUBsViMWh2FNMLl8gIKWfTHkugFRoQ/4RfJRu9cRBFkrVSXGXGwL7WunkFy
zu5IaSeDD/f0ZsTeB9whtPW4Mas+2ZBI1hopwRwrUaAoiimkaaTPQKfTobpMxH0rl6BjwAdB
FNFQaYZBq6Y5CynVNPkjk8MAwBeKY8fhbJZ/cmbBtee3gMGIHFGpVFCr1TCbzfB4PLDZbDnz
fulVh1IjTzpUHsjkFSJFILlwwnIA6Z+fKA8gnzp2IMlmajQa6Q/y7vYOKvyTxwP+ub0Lp02v
xNRJ1pQ5vuPZCJcP8o33A7nv32w202lDRRSRDUQQfWnpZOztcNGuXYYBzp1Ti4bKJGc9GWsq
yLXgItmFS5hjW1pawPM8tbiPZQ3KhWFJg5dKFcfMxmS+gMyaJoYPCadIwTAMwuEwFcZZbgUA
MOgNY9O+PnxhUUMK6y1RhHa7HX6/P4UuRQoSfurs7EQsFkNtbS0qKioorbVSqUQoysEbjEGn
YWEzaYGjspSEhETJ/8uWuRf6MMcCEi+WtlinX9REKAG56pbRoFAo0NbWhpKSEhrO0el06HD4
Mo8PoMvhw7QaG6VAIC3xow1lyXVN6c+tEIzmUWT7jFgqReFfxGhgmORM33KrgPtWno5PWvvh
CUQxra4EC6aU0xwB6R85bVol2nrcKcewGjSYWmOj1S1kDOKxep6kgk3uv0nxRLbvGY1GqFQq
yqSrVCppybcgCDCLwPTaEuztHJY9hiCIePPTDiybUwOzUZ+VsyeXwWYwGDBt2jQ4nU5UVlZi
cHAQNTU1iMfj2HF4CH94rw1Obxh6rQrL59bia+dMhcvlgiiKCAaDaG5uRmdnJ6qrq2XnAkxI
Fo8kD9PLCSeqFJT8YLkavsh+2bYnEgnY7XYMDAwgkUigwmaQ3bfClgwVDQwMYNu2bejt7ZXl
5Snk2qVKMtv1Zwv5ZNt/tGc/kc1rRZz6IGRnNqMaly5pwtcvaMGi5nJAHBnZSBTBefPrcMnp
jTBqVWAYoL7CjO9eNh8GrSqlZ2C8wo7ScFIhx2OYJJWJtHeAXJdWq4VWrcJ/XDwbsxpKsxLM
eUMxcImkgJcT/qO9h1JCR47jEAwGwfM8XP4onnhtF4a8YYgAQtHkjOGP9/ahpKQETqcTWq0W
Docjq4cBTJAHQB6k3FAQqSdwvJRBrq5XuX3T8wJz586Fy+XC7t27UVZWBo7jsGJBHbYedMDp
HXER5zSVoaWhFAG/D4IgoLKyMmUQy1iuNV34F5IEllMK+TxjwtVfRBH5QhRFOt6TwOFwoLy8
PCV2z/M8lACuXDYNF53WiHiCh0mnhkalTJnRO55gWRYajWZMoSTSrwCMKADyp9frYQdw+xWL
4AlG8cv1O9A56E/5fq3dBK1a/rzJEthkpc9o1YLEeCZl3a1dw4imNaKJALYfHsTZsyehqqoK
NpsNH3/8MRYtWpSVRXjCzDxSRyvnhhAlcLwgzb4XClEUsW/fPgCgdMcdHR2YOnUq7vm3xdiw
qxdOTxiTqy04Z04t4tEIPB4PSktL4fUmE2LxeDwrdYLcj53NYk/3BtI/Sz+unDIY7QVQqVQ0
11EM/xQB5B4qTkBizlJhb7FYMqhJyL6iIMCsV9P/HxnXOLLm8jlvLpDQM+kQHishIS35TEu6
kjyCWs1BrVLi2hUz8Pj6HfCHkxa3UafCyvNmQMWOVOFIk7rZDLr0906j0cBut0OhUNAhSypW
njJCdfT4ZFZwSUkJ9Ho9TcKnP88JmwhGmkXIIGUpSHjmeNaVpwvEbK5X+nayaKQZeRLXT/cW
iIVAfmhp9Y9UA8sJ5lzXJD3+WO9Xej+5zqfRaDII4or4fIOEHU41kAauYy01TyQSCIVCMBgM
WUOjZA6xJxDB7vZhACJmNdphOzq4XqFQwGw2p3ghiUQCsVgM4XA4L+OUvK9KpRKROI8fPrcx
ZUqZSqnA7V9biJn1pTSBTELv6ZEEesyJUgDk5D6fLyMmJRWUx8vqlDYujdc50o9zPLwYaRdv
PlZYrmuQE/jp2/R6PR0kX0QRwKmvAPKBnGdN3jee5yldRa7vE4FOwmA8z6c8N6PRSBPB5F0l
I17zBXlfWZZFjzOAl94/gEN9HpSZdfjS0slY2lKVUf0jd5/0eBOpAIDkQ/F6vSkP5ljcvHwx
0ayc4wUyWBrI/ZzyKTXN5fUQtsN8RtEV8fkCUQA8z6O/vx+iKKKmpibDSxRFEV1dXQCA2tpa
6jH7/X44HA7U1dXR3BLHcejq6oLBYEBlZWXGmiOzbIHk+rRarWBZNsWAJPX0oiiip6eHnpdc
VyEKgNTME2OU/MuybN4eMVEC4XA4pXyUdA+TGdhSviOe5xEMBnMmatNBroV4E9L3Xi5sJr32
9KjFhEtEUhEkfdjHOwdwKoMsxnz2S8doTW5SmEymYtlnEVnR39+P+++/HzabDV6vF3V1dbjv
vvvoeonH4/jhD39IjYlQKISf//zn6O/vx3333YepU6eiu7sbv/jFL6BWq7F69WqUlpaiu7sb
l1xyCS6//PKU861fvx7/+Mc/YLcnh6p861vfQm1tLb7zne+gpqYGAFBXV4dvfetbePTRR+Fy
ucBxHCoqKnD33XdnTboSpH9OhCTp2CWfa7XavMOhUkMqGo3S8xFaBqIQpXF/pVIJg8FAK6Ty
AZGZ0rwJUSa59pe77wlXAKRmmLBXSrdPhBIIh8N45pln0NHRgbPPPhtf+cpXZC2Zv/3tb9Bo
NLjwwgvxyiuvoLe3l35eU1ODr33ta3C73fjNb36DcDiMVatWoba2VvacmzdvxoEDB3D99dcD
ADo7O/Hb3/4WRqMRN998M0wmE/x+P15++WUcOnQICxYswOWXX563xzKWMs90FCd2FZELgiDg
7rvvxpQpU5BIJPDv//7vKZ87HA6EQiE8/vjjEEURt956KwYGBvDkk0/irrvuwvz58/G73/0O
r7/+OqqqqtDc3Izvfve7iMVi+MY3voHzzz+fJi4B4NChQ7jzzjvR0tJCt7lcLpSUlOChhx6i
2zo6OjA0NIS1a9eC53ncdNNN6O/vx6RJkygVNcnNkdAI6XFJz4dJiejIO0WYgPMtSSXhHY1G
k8Hrk837Jt3OPl9mb5EcpAJd6q1kg5SkknzH5/MhEolMHB20FORhS0uqpH/HCxzH4Z577kFz
czO+//3vY9KkSbIPbvfu3Xj11VfxzjvvgGEYLFq0CCtWrMCKFSug0+mwd+9eiKKIH/zgB5g3
bx6+/OUv43vf+55shZPL5cK6devwz3/+E0Cyo/jee+/FVVddhdmzZ+MHP/gBEokEfv7zn6Oi
ogLf/OY3sXPnTrz11lt53VOuOv9CMBFhuCJOXdTU1GDKlClJHv233kohHgSSY0WVSiVef/11
vPnmm0gkEigvL0dPTw/mz58PhmFwzjnnoLW1FZFIhIZmtFotmpqaMDSUOsu3r68Pe/bswZYt
W+B2J5vGnE4n/H4/3nvvPezfv5/SIEvr/M866yzs2bMHQPJdCwQCSZrqYBhdDi96h/wIhSMZ
YysJB0/PkB+PvPwZvvXYO/j+bz/Gpn19iEQieVvnUqter9dTDyLX+0gUjNlszhqyYlk2Y6i7
VPiT8xKlNjw8DLfbTaugiBIaHh6m4yArKytPDBcQ6QsIh8MpbstopZDHip6eHuh0Opx//vkQ
RRGnnXaabOzx17/+Nf7zP/8TL774IhiGQUNDA72m//3f/8Xq1asxPDwMnudxwQUXgGEYTJ8+
Ha2trZg7dy49Fs/zeOyxx/DNb34TL730EgCgra0Ns2fPxsyZM9HS0oL169fD5/NhzZo1tHt4
9uzZtIR0NORqXitECRzvXowiTn1Eo1GsXbsWgUAAP/7xj1NjySwLu92ODz/8ECzLoqSkBABS
yib1ej3C4TDOPvtsvPDCC+jp6QHHcdi0aVOGR3H11Vejv78fGzduxKOPPopHHnkElZWVuPji
i9HT04PXX38dZrMZ9913HxQKBe644w4YjUZs2bIF3/72t1Oua9AbwROv7UL3kB8KJskC+o2L
ZkGhUFBDNBaLIRSJ47FXtmPIm+TP6R0O4uk39sCkV2NOU3nefQTEqjcajXkbVtLvJBIJ2jOl
0WigVqtpNRPxZAgEQYBKpYJGo4FSqUwqu6NzDCorKxGNC9jVPgguIWBmQxkqKytTOINOWFaU
1NDKlYUer3BQR0cHWltbcddddyEUCmHJkiW44YYbUlyjZ599FhdeeCGNM0qxc+dOmEwmNDU1
Yf/+/aitraULoq6uLsOK+fjjj6HVarFo0SKqAPr6+jB58mTq7VgsFkQiEZSWloLjOLz88st4
99138T//8z953dN4PCtSulpUAEVkQzwex+rVq7Fw4UJcd911GeHCffv2geM4/PznP4coinj0
0UexY8cOWv6t1WoxMDCA0tJSGI1GPPfcc+jp6YHFYsEDDzwAq9Wacrxzzz2X/vcrr7yCDRs2
4LrrrsNVV10FIGlcXXPNNVAqlXjooYfQ29tLGWuJwaZUKsHxIp7++25K3cJDxI7DQ3jxvTbc
9KW5tE+B4zjsandS4U+Q4AVs2NmDWQ1lsj0N2SCNaOTzXkmjH2q1mnISSUM94XAYwXAMH+zu
RafDh8oSA5bNrUWZRZVCt+N0OlFaWore4RB+8ep2DB8tFdWqlLj5S3Mx7yg9BzBBVBDZQGhe
JwoKhQLLli3Dgw8+iP/+7//Gxo0bU2L7nZ2dePfddzFt2jR0dHTA6/ViYCBJ9crzPJ544gl8
5zvfoS6bNOTDcVyK++bz+fD444/jwgsvRHt7O/x+P7q6uqBSqWjGn7hwpMPvnnvuQXd3Nx5/
/PGUeOhEIN9kcxGfT2zduhUAcPHFF8PtdmN4eBiiKOLgwYMYHh6GXq9Hd3c3XC4X3G432tvb
YTQacc455+D555+Hx+PBiy++iOXLl0MQBPT19cFut2Pv3r10hsbAwAA6OjogiiKee+45OBwO
uN1ufPrpp5QietOmTfB6vdi/fz+Ny/f29sJqtcLtdmPfvn2YNWsWgKRQ9QSisrxd2w8N0qod
Ai4hn0QlVA5jAUkM5wPSaEZCOVLhn/RQYnh8/Q68+H4bPtk/gFc3HsbaP27FsC9ZdRSPxyEI
AioqKqDX6/HS+21U+ANAlOPxh/fbEIpKwmZjvrNxAPECpKWOxzMZ3NDQgPXr19NhEvX19Snl
WuFwGEuXLsXbb7+NUCiErq4ubNu2DZdeein27t0Lg8GA+vp6AEBVVRXa29spPXRraytWrFhB