diff --git a/README.MD b/README.MD index b1925e0..4b1f1f2 100644 --- a/README.MD +++ b/README.MD @@ -35,28 +35,38 @@ poe poe-torch-cuda11 # to install Pytorch with CUDA 11.6 ``` ## Data preparation -To generate out-of-focus dataset, you must download ... image from Cityscape and disparity maps. -To convert disparity maps to depth maps, we use: +To be added. -```shell -this to convert to depth maps -``` +[//]: # (To generate out-of-focus dataset, you must download ... image from Cityscape and disparity maps.) + +[//]: # () +[//]: # (To convert disparity maps to depth maps, we use:) + +[//]: # () +[//]: # (```shell) + +[//]: # (this to convert to depth maps) + +[//]: # (```) -Then, these depth maps are used with this matlab/octave code to generate defocused images using the method... The original code was written by ... and ... in ... +[//]: # () +[//]: # (Then, these depth maps are used with this matlab/octave code to generate defocused images using the method... The original code was written by ... and ... in ...) -run xyz to generate the dataset. Change the parameters according to the experiment in the paper, or personal usage. +[//]: # () +[//]: # (run xyz to generate the dataset. Change the parameters according to the experiment in the paper, or personal usage.) -Then, define the following environment variable to the +[//]: # () +[//]: # (Then, define the following environment variable to the ) ## Model zoo -| name | url | -|--------------------| --- | -| infocus_color | [weights will be soon available][model-link] | -| infocus_gray | [weights will be soon available][model-link] | -| defocus_color | [weights will be soon available][model-link] | -| defocus_gray | [weights will be soon available][model-link] | +| name | url | +|--------------------|---------------------------------------------| +| infocus_color | [download_weight][infocus_color-model-link] | +| infocus_gray | [download_weight][infocus_gray-model-link] | +| defocus_color | [download_weight][defocus-color-link] | +| defocus_gray | [download_weight][defocus_gray-model-link] | We suggest to save weights inside a folder called ```checkpoints/model_name```. @@ -76,13 +86,13 @@ visdom -p $DISPLAY_PORT To train a pretrained DeepLabV3 with one of our weights with a single GPU, run: ```shell -python main.py --train --name name-of-the-new-project-with-pretrained-weights --dataroot PATH_TO_CITYSCAPES --batchSize $batch_size --nEpochs $end --display_id $display_id --port $port --use_resize --data_augmentation f f --resume +python train_test_semseg.py --train --name name-of-the-new-project-with-pretrained-weights --dataroot PATH_TO_CITYSCAPES --batchSize $batch_size --nEpochs $end --display_id $display_id --port $port --use_resize --data_augmentation f f --resume ``` To train from scratch, run: ```shell -python main.py --train --name name-of-the-new-project --dataroot PATH_TO_CITYSCAPES --batchSize $batch_size --nEpochs $end --display_id $display_id --port $port --use_resize --data_augmentation f f +python train_test_semseg.py --train --name name-of-the-new-project --dataroot PATH_TO_CITYSCAPES --batchSize $batch_size --nEpochs $end --display_id $display_id --port $port --use_resize --data_augmentation f f ``` @@ -91,13 +101,13 @@ To train a pretrained DeepLabV3 with one of our weights with a single GPU, run: Generate images only: ```shell -python main.py --test --test_only --name infocus_color --save_samples --use_resize --display_id 0 --dataroot PATH_TO_DATA +python train_test_semseg.py --test --test_only --name infocus_color --save_samples --use_resize --display_id 0 --dataroot PATH_TO_DATA ``` Generate images and evaluation: ```shell -python main.py --test --test_metrics --name infocus_color --use_resize --display_id 0 --dataroot ./datasets/public_datasets/Cityscapes +python train_test_semseg.py --test --test_metrics --name infocus_color --use_resize --display_id 0 --dataroot ./datasets/public_datasets/Cityscapes ``` As a result from this last run, you should get the outputs under the results file and the following metric results: @@ -109,7 +119,7 @@ mIOU 0.6486886632431875 Generate only evaluation (resulting segmentation must be in the corresponding folder): ```shell -python main.py --test --evaluate_only --name infocus_color --use_resize --display_id 0 --dataroot ./datasets/public_datasets/Cityscapes +python train_test_semseg.py --test --evaluate_only --name infocus_color --use_resize --display_id 0 --dataroot ./datasets/public_datasets/Cityscapes ``` ## License @@ -123,3 +133,7 @@ Code (scripts) are released under the [MIT license][license]. [arxiv-paper]: https://arxiv.org/list/cs.CV/recent [model-link]: broken [license]: LICENSE +[infocus_color-model-link]: https://upciti-computer-vision-public.s3.eu-west-3.amazonaws.com/weights-privacy-aware-paper/infocus_color/0300.pth.tar +[infocus_gray-model-link]: https://upciti-computer-vision-public.s3.eu-west-3.amazonaws.com/weights-privacy-aware-paper/infocus_gray/0300.pth.tar +[defocus-color-link]: https://upciti-computer-vision-public.s3.eu-west-3.amazonaws.com/weights-privacy-aware-paper/defocus_color/0300.pth.tar +[defocus_gray-model-link]: https://upciti-computer-vision-public.s3.eu-west-3.amazonaws.com/weights-privacy-aware-paper/defocus_gray/0300.pth.tar