-
Notifications
You must be signed in to change notification settings - Fork 65
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
The error when training #3
Comments
@chengshuai is retinanet? |
thank you for you reply! I train the retinanet. |
@chengshuai yes |
@chengshuai @unsky i have the same problem, but my mxnet version is 0.9.5. i still have the same wrong message, do you solve this problem |
I use the The mxnet version in focal loss(https://github.com/unsky/focal-loss). but have the same wrong. And the mxnet version is 0.11.0.(Stack trace returned 10 entries: @feiyilicare i can not find the mxnet 0.9.5. Could you give me the link for downloading the mxnet 0.9.5? |
@chengshuai |
@unsky , a nice work
When training, the error occur. the details is bellow:
#########################################train#######################################
./data/VOCdevkit2007/VOC2007/JPEGImages/2009_002123.jpg
./data/VOCdevkit2007/VOC2007/JPEGImages/000783.jpg
[08:24:35] /home/chengshuai/mx-maskrcnn-master1/incubator-mxnet/dmlc-core/include/dmlc/logging.h:308: [08:24:35] /home/chengshuai/mx-maskrcnn-master1/incubator-mxnet/mshadow/mshadow/././././cuda/tensor_gpu-inl.cuh:58: too large launch parameter: Softmax[89847,1], [256,1,1]
Stack trace returned 10 entries:
[bt] (0) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN4dmlc15LogMessageFatalD1Ev+0x3c) [0x7f0b7ad7f70c]
[bt] (1) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN7mshadow4cuda16CheckLaunchParamE4dim3S1_PKc+0x165) [0x7f0b7d3e83f5]
[bt] (2) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZN7mshadow4cuda7SoftmaxIfEEvRKNS_6TensorINS_3gpuELi2ET_EES7+0xfa) [0x7f0b7e3ec24a]
[bt] (3) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZN5mxnet2op19SoftmaxActivationOpIN7mshadow3gpuEE7ForwardERKNS_9OpContextERKSt6vectorINS_5TBlobESaIS9_EERKS8_INS_9OpReqTypeESaISE_EESD_SD+0x20b) [0x7f0b7e4fe57b]
[bt] (4) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZN5mxnet2op13OperatorState7ForwardERKNS_9OpContextERKSt6vectorINS_5TBlobESaIS6_EERKS5_INS_9OpReqTypeESaISB_EESA+0x354) [0x7f0b7d04a524]
[bt] (5) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZZN5mxnet10imperative12PushOperatorERKNS_10OpStatePtrEPKN4nnvm2OpERKNS4_9NodeAttrsERKNS_7ContextERKSt6vectorIPNS_6engine3VarESaISH_EESL_RKSE_INS_8ResourceESaISM_EERKSE_IPNS_7NDArrayESaISS_EESW_RKSE_IjSaIjEERKSE_INS_9OpReqTypeESaIS11_EENS_12DispatchModeEENKUlNS_10RunContextENSF_18CallbackOnCompleteEE0_clES17_S18+0x2a0) [0x7f0b7cec2950]
[bt] (6) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN5mxnet6engine14ThreadedEngine15ExecuteOprBlockENS_10RunContextEPNS0_8OprBlockE+0x9d) [0x7f0b7ce3fc6d]
[bt] (7) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN5mxnet6engine23ThreadedEnginePerDevice9GPUWorkerILN4dmlc19ConcurrentQueueTypeE0EEEvNS_7ContextEbPNS1_17ThreadWorkerBlockIXT_EEESt10shared_ptrINS0_10ThreadPool11SimpleEventEE+0xf3) [0x7f0b7ce43cb3]
[bt] (8) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZNSt17_Function_handlerIFvSt10shared_ptrIN5mxnet6engine10ThreadPool11SimpleEventEEEZZNS2_23ThreadedEnginePerDevice13PushToExecuteEPNS2_8OprBlockEbENKUlvE1_clEvEUlS5_E_E9_M_invokeERKSt9_Any_dataS5+0x56) [0x7f0b7ce43e96]
[bt] (9) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZNSt6thread5_ImplISt12_Bind_simpleIFSt8functionIFvSt10shared_ptrIN5mxnet6engine10ThreadPool11SimpleEventEEEES8_EEE6_M_runEv+0x3b) [0x7f0b7ce410cb]
[08:24:35] /home/chengshuai/mx-maskrcnn-master1/incubator-mxnet/dmlc-core/include/dmlc/logging.h:308: [08:24:35] src/engine/./threaded_engine.h:370: [08:24:35] /home/chengshuai/mx-maskrcnn-master1/incubator-mxnet/mshadow/mshadow/././././cuda/tensor_gpu-inl.cuh:58: too large launch parameter: Softmax[89847,1], [256,1,1]
Stack trace returned 10 entries:
[bt] (0) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN4dmlc15LogMessageFatalD1Ev+0x3c) [0x7f0b7ad7f70c]
[bt] (1) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN7mshadow4cuda16CheckLaunchParamE4dim3S1_PKc+0x165) [0x7f0b7d3e83f5]
[bt] (2) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZN7mshadow4cuda7SoftmaxIfEEvRKNS_6TensorINS_3gpuELi2ET_EES7+0xfa) [0x7f0b7e3ec24a]
[bt] (3) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZN5mxnet2op19SoftmaxActivationOpIN7mshadow3gpuEE7ForwardERKNS_9OpContextERKSt6vectorINS_5TBlobESaIS9_EERKS8_INS_9OpReqTypeESaISE_EESD_SD+0x20b) [0x7f0b7e4fe57b]
[bt] (4) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZN5mxnet2op13OperatorState7ForwardERKNS_9OpContextERKSt6vectorINS_5TBlobESaIS6_EERKS5_INS_9OpReqTypeESaISB_EESA+0x354) [0x7f0b7d04a524]
[bt] (5) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZZN5mxnet10imperative12PushOperatorERKNS_10OpStatePtrEPKN4nnvm2OpERKNS4_9NodeAttrsERKNS_7ContextERKSt6vectorIPNS_6engine3VarESaISH_EESL_RKSE_INS_8ResourceESaISM_EERKSE_IPNS_7NDArrayESaISS_EESW_RKSE_IjSaIjEERKSE_INS_9OpReqTypeESaIS11_EENS_12DispatchModeEENKUlNS_10RunContextENSF_18CallbackOnCompleteEE0_clES17_S18+0x2a0) [0x7f0b7cec2950]
[bt] (6) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN5mxnet6engine14ThreadedEngine15ExecuteOprBlockENS_10RunContextEPNS0_8OprBlockE+0x9d) [0x7f0b7ce3fc6d]
[bt] (7) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN5mxnet6engine23ThreadedEnginePerDevice9GPUWorkerILN4dmlc19ConcurrentQueueTypeE0EEEvNS_7ContextEbPNS1_17ThreadWorkerBlockIXT_EEESt10shared_ptrINS0_10ThreadPool11SimpleEventEE+0xf3) [0x7f0b7ce43cb3]
[bt] (8) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZNSt17_Function_handlerIFvSt10shared_ptrIN5mxnet6engine10ThreadPool11SimpleEventEEEZZNS2_23ThreadedEnginePerDevice13PushToExecuteEPNS2_8OprBlockEbENKUlvE1_clEvEUlS5_E_E9_M_invokeERKSt9_Any_dataS5+0x56) [0x7f0b7ce43e96]
[bt] (9) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZNSt6thread5_ImplISt12_Bind_simpleIFSt8functionIFvSt10shared_ptrIN5mxnet6engine10ThreadPool11SimpleEventEEEES8_EEE6_M_runEv+0x3b) [0x7f0b7ce410cb]
A fatal error occurred in asynchronous engine operation. If you do not know what caused this error, you can try set environment variable MXNET_ENGINE_TYPE to NaiveEngine and run with debugger (i.e. gdb). This will force all operations to be synchronous and backtrace will give you the series of calls that lead to this error. Remember to set MXNET_ENGINE_TYPE back to empty after debugging.
Stack trace returned 8 entries:
[bt] (0) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN4dmlc15LogMessageFatalD1Ev+0x3c) [0x7f0b7ad7f70c]
[bt] (1) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN5mxnet6engine14ThreadedEngine15ExecuteOprBlockENS_10RunContextEPNS0_8OprBlockE+0x3a0) [0x7f0b7ce3ff70]
[bt] (2) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN5mxnet6engine23ThreadedEnginePerDevice9GPUWorkerILN4dmlc19ConcurrentQueueTypeE0EEEvNS_7ContextEbPNS1_17ThreadWorkerBlockIXT_EEESt10shared_ptrINS0_10ThreadPool11SimpleEventEE+0xf3) [0x7f0b7ce43cb3]
[bt] (3) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZNSt17_Function_handlerIFvSt10shared_ptrIN5mxnet6engine10ThreadPool11SimpleEventEEEZZNS2_23ThreadedEnginePerDevice13PushToExecuteEPNS2_8OprBlockEbENKUlvE1_clEvEUlS5_E_E9_M_invokeERKSt9_Any_dataS5+0x56) [0x7f0b7ce43e96]
[bt] (4) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZNSt6thread5_ImplISt12_Bind_simpleIFSt8functionIFvSt10shared_ptrIN5mxnet6engine10ThreadPool11SimpleEventEEEES8_EEE6_M_runEv+0x3b) [0x7f0b7ce410cb]
[bt] (5) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xb1a60) [0x7f0b9d5c7a60]
[bt] (6) /lib/x86_64-linux-gnu/libpthread.so.0(+0x8182) [0x7f0ba193a182]
[bt] (7) /lib/x86_64-linux-gnu/libc.so.6(clone+0x6d) [0x7f0ba166747d]
terminate called after throwing an instance of 'dmlc::Error'
what(): [08:24:35] src/engine/./threaded_engine.h:370: [08:24:35] /home/chengshuai/mx-maskrcnn-master1/incubator-mxnet/mshadow/mshadow/././././cuda/tensor_gpu-inl.cuh:58: too large launch parameter: Softmax[89847,1], [256,1,1]
Stack trace returned 10 entries:
[bt] (0) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN4dmlc15LogMessageFatalD1Ev+0x3c) [0x7f0b7ad7f70c]
[bt] (1) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN7mshadow4cuda16CheckLaunchParamE4dim3S1_PKc+0x165) [0x7f0b7d3e83f5]
[bt] (2) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZN7mshadow4cuda7SoftmaxIfEEvRKNS_6TensorINS_3gpuELi2ET_EES7+0xfa) [0x7f0b7e3ec24a]
[bt] (3) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZN5mxnet2op19SoftmaxActivationOpIN7mshadow3gpuEE7ForwardERKNS_9OpContextERKSt6vectorINS_5TBlobESaIS9_EERKS8_INS_9OpReqTypeESaISE_EESD_SD+0x20b) [0x7f0b7e4fe57b]
[bt] (4) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZN5mxnet2op13OperatorState7ForwardERKNS_9OpContextERKSt6vectorINS_5TBlobESaIS6_EERKS5_INS_9OpReqTypeESaISB_EESA+0x354) [0x7f0b7d04a524]
[bt] (5) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZZN5mxnet10imperative12PushOperatorERKNS_10OpStatePtrEPKN4nnvm2OpERKNS4_9NodeAttrsERKNS_7ContextERKSt6vectorIPNS_6engine3VarESaISH_EESL_RKSE_INS_8ResourceESaISM_EERKSE_IPNS_7NDArrayESaISS_EESW_RKSE_IjSaIjEERKSE_INS_9OpReqTypeESaIS11_EENS_12DispatchModeEENKUlNS_10RunContextENSF_18CallbackOnCompleteEE0_clES17_S18+0x2a0) [0x7f0b7cec2950]
[bt] (6) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN5mxnet6engine14ThreadedEngine15ExecuteOprBlockENS_10RunContextEPNS0_8OprBlockE+0x9d) [0x7f0b7ce3fc6d]
[bt] (7) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN5mxnet6engine23ThreadedEnginePerDevice9GPUWorkerILN4dmlc19ConcurrentQueueTypeE0EEEvNS_7ContextEbPNS1_17ThreadWorkerBlockIXT_EEESt10shared_ptrINS0_10ThreadPool11SimpleEventEE+0xf3) [0x7f0b7ce43cb3]
[bt] (8) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZNSt17_Function_handlerIFvSt10shared_ptrIN5mxnet6engine10ThreadPool11SimpleEventEEEZZNS2_23ThreadedEnginePerDevice13PushToExecuteEPNS2_8OprBlockEbENKUlvE1_clEvEUlS5_E_E9_M_invokeERKSt9_Any_dataS5+0x56) [0x7f0b7ce43e96]
[bt] (9) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZNSt6thread5_ImplISt12_Bind_simpleIFSt8functionIFvSt10shared_ptrIN5mxnet6engine10ThreadPool11SimpleEventEEEES8_EEE6_M_runEv+0x3b) [0x7f0b7ce410cb]
A fatal error occurred in asynchronous engine operation. If you do not know what caused this error, you can try set environment variable MXNET_ENGINE_TYPE to NaiveEngine and run with debugger (i.e. gdb). This will force all operations to be synchronous and backtrace will give you the series of calls that lead to this error. Remember to set MXNET_ENGINE_TYPE back to empty after debugging.
Stack trace returned 8 entries:
[bt] (0) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN4dmlc15LogMessageFatalD1Ev+0x3c) [0x7f0b7ad7f70c]
[bt] (1) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN5mxnet6engine14ThreadedEngine15ExecuteOprBlockENS_10RunContextEPNS0_8OprBlockE+0x3a0) [0x7f0b7ce3ff70]
[bt] (2) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZN5mxnet6engine23ThreadedEnginePerDevice9GPUWorkerILN4dmlc19ConcurrentQueueTypeE0EEEvNS_7ContextEbPNS1_17ThreadWorkerBlockIXT_EEESt10shared_ptrINS0_10ThreadPool11SimpleEventEE+0xf3) [0x7f0b7ce43cb3]
[bt] (3) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(ZNSt17_Function_handlerIFvSt10shared_ptrIN5mxnet6engine10ThreadPool11SimpleEventEEEZZNS2_23ThreadedEnginePerDevice13PushToExecuteEPNS2_8OprBlockEbENKUlvE1_clEvEUlS5_E_E9_M_invokeERKSt9_Any_dataS5+0x56) [0x7f0b7ce43e96]
[bt] (4) /usr/local/lib/python2.7/dist-packages/mxnet-0.12.1-py2.7.egg/mxnet/libmxnet.so(_ZNSt6thread5_ImplISt12_Bind_simpleIFSt8functionIFvSt10shared_ptrIN5mxnet6engine10ThreadPool11SimpleEventEEEES8_EEE6_M_runEv+0x3b) [0x7f0b7ce410cb]
[bt] (5) /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xb1a60) [0x7f0b9d5c7a60]
[bt] (6) /lib/x86_64-linux-gnu/libpthread.so.0(+0x8182) [0x7f0ba193a182]
[bt] (7) /lib/x86_64-linux-gnu/libc.so.6(clone+0x6d) [0x7f0ba166747d]
What is the problem? Does the mxnet version result in?
Thanks!
The text was updated successfully, but these errors were encountered: