From 570eed60fc3b1658f97a7a931233e6d9aacd48f6 Mon Sep 17 00:00:00 2001 From: "@daaronr" <8229168+daaronr@users.noreply.github.com> Date: Thu, 20 Jul 2023 08:25:12 -0400 Subject: [PATCH] small fixes, moving sections around --- .../evaluation_data/execute-results/html.json | 6 +- .../figure-html/unnamed-chunk-14-1.png | Bin 66287 -> 61347 bytes .../figure-html/unnamed-chunk-16-1.png | Bin 163778 -> 25763 bytes .../figure-html/unnamed-chunk-18-1.png | Bin 67808 -> 102021 bytes .../figure-html/unnamed-chunk-20-1.png | Bin 102021 -> 25763 bytes chapters/evaluation_data.qmd | 191 +- data/evals.Rdata | Bin 3354 -> 3265 bytes data/evals.csv | 20 +- docs/chapters/evaluation_data.html | 1989 +++++++++-------- .../figure-html/unnamed-chunk-14-1.png | Bin 66287 -> 61347 bytes .../figure-html/unnamed-chunk-16-1.png | Bin 163778 -> 25763 bytes .../figure-html/unnamed-chunk-18-1.png | Bin 67808 -> 102021 bytes .../figure-html/unnamed-chunk-20-1.png | Bin 102021 -> 25763 bytes docs/search.json | 8 +- 14 files changed, 1163 insertions(+), 1051 deletions(-) diff --git a/_freeze/chapters/evaluation_data/execute-results/html.json b/_freeze/chapters/evaluation_data/execute-results/html.json index b8ee42a..c0e3a07 100644 --- a/_freeze/chapters/evaluation_data/execute-results/html.json +++ b/_freeze/chapters/evaluation_data/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "104e91080201a5b92c7aa752f7089242", + "hash": "56f73f1b5509f9113084b441c3554330", "result": { - "markdown": "# Evaluation data: description, exploration, checks\n\n\n::: {.cell}\n\n```{.r .cell-code code-summary=\"load packages\"}\nsource(here::here(\"code\", \"shared_packages_code.R\"))\n\n#devtools::install_github(\"rethinkpriorities/rp-r-package\")\nlibrary(rethinkpriorities)\n\n#devtools::install_github(\"rethinkpriorities/r-noodling-package\") #mainly used playing in real time\nlibrary(rnoodling)\n\nlibrary(here)\nlibrary(dplyr)\nlibrary(pacman)\n\np_load(formattable, sparkline, install=FALSE)\n\np_load(DT, santoku, lme4, huxtable, janitor, emmeans, sjPlot, sjmisc, ggeffects, ggrepel, likert, labelled, plotly, stringr, install=FALSE)\n\np_load(ggthemes, paletteer, ggridges, install=FALSE)\n\nselect <- dplyr::select \n\noptions(knitr.duplicate.label = \"allow\")\n\noptions(mc.cores = parallel::detectCores())\n#rstan_options(auto_write = TRUE)\n\n#library(hunspell)\n\n#(brms)\n\n#devtools::install_github(\"bergant/airtabler\")\np_load(airtabler)\n\n#remotes::install_github(\"rmcelreath/rethinking\")\n#library(rethinking)\n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code code-summary=\"install aggrecat package\"}\n#devtools::install_github(\"metamelb-repliCATS/aggreCAT\")\n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code code-summary=\"input from airtable\"}\nbase_id <- \"appbPYEw9nURln7Qg\"\n\n# Set your Airtable API key\n#Sys.setenv(AIRTABLE_API_KEY = \"\") \n#this should be set in my .Renviron file\n\n\n# Read data from a specific view\n\nevals <- air_get(base = base_id, \"output_eval\") \n\n\nall_pub_records <- data.frame()\npub_records <- air_select(base = base_id, table = \"crucial_research\")\n\n# Append the records to the list\nall_pub_records <- bind_rows(all_pub_records, pub_records)\n\n# While the length of the records list is 100 (the maximum), fetch more records\nwhile(nrow(pub_records) == 100) {\n # Get the ID of the last record in the list\n offset <- get_offset(pub_records)\n \n # Fetch the next 100 records, starting after the last ID\n pub_records <- air_select(base = base_id, table = \"crucial_research\", offset = offset)\n \n # Append the records to the df\n all_pub_records <- bind_rows(all_pub_records, pub_records)\n}\n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code code-summary=\"just the useful and publish-able data, clean a bit\"}\ncolnames(evals) <- snakecase::to_snake_case(colnames(evals))\n\nevals_pub <- evals %>% \n dplyr::rename(stage_of_process = stage_of_process_todo_from_crucial_research_2) %>% \n mutate(stage_of_process = unlist(stage_of_process)) %>% \n dplyr::filter(stage_of_process == \"published\") %>% \n select(id, crucial_research, evaluator_name, category, source_main, author_agreement, overall, lb_overall, ub_overall, conf_index_overall, advancing_knowledge_and_practice, lb_advancing_knowledge_and_practice, ub_advancing_knowledge_and_practice, conf_index_advancing_knowledge_and_practice, methods_justification_reasonableness_validity_robustness, lb_methods_justification_reasonableness_validity_robustness, ub_methods_justification_reasonableness_validity_robustness, conf_index_methods_justification_reasonableness_validity_robustness, logic_communication, lb_logic_communication, ub_logic_communication, conf_index_logic_communication, engaging_with_real_world_impact_quantification_practice_realism_and_relevance, lb_engaging_with_real_world_impact_quantification_practice_realism_and_relevance, ub_engaging_with_real_world_impact_quantification_practice_realism_and_relevance, conf_index_engaging_with_real_world_impact_quantification_practice_realism_and_relevance, relevance_to_global_priorities, lb_relevance_to_global_priorities, ub_relevance_to_global_priorities, conf_index_relevance_to_global_priorities, journal_quality_predict, lb_journal_quality_predict, ub_journal_quality_predict, conf_index_journal_quality_predict, open_collaborative_replicable, conf_index_open_collaborative_replicable, lb_open_collaborative_replicable, ub_open_collaborative_replicable, merits_journal, lb_merits_journal, ub_merits_journal, conf_index_merits_journal)\n\nevals_pub %<>%\nmutate(across(everything(), ~ map(.x, ~ ifelse(is.null(.x), NA, .x)), .names = \"{.col}_unlisted\")) %>% # for each co\n tidyr::unnest_wider(category, names_sep = \"\") %>%\nmutate(across(everything(), unlist)) #unlist list columns\n\n\n#Todo -- check the unlist is not propagating the entry\n\n#Note: category, topic_subfield, and source have multiple meaningful categories. These will need care \n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code code-summary=\"Shorten names \"}\nnew_names <- c(\n \"eval_name\" = \"evaluator_name\",\n \"cat_1\" = \"category1\",\n \"cat_2\" = \"category2\",\n \"cat_3\" = \"category3\",\n \"crucial_rsx\" = \"crucial_research\",\n \"conf_overall\" = \"conf_index_overall\",\n \"adv_knowledge\" = \"advancing_knowledge_and_practice\",\n \"lb_adv_knowledge\" = \"lb_advancing_knowledge_and_practice\",\n \"ub_adv_knowledge\" = \"ub_advancing_knowledge_and_practice\",\n \"conf_adv_knowledge\" = \"conf_index_advancing_knowledge_and_practice\",\n \"methods\" = \"methods_justification_reasonableness_validity_robustness\",\n \"lb_methods\" = \"lb_methods_justification_reasonableness_validity_robustness\",\n \"ub_methods\" = \"ub_methods_justification_reasonableness_validity_robustness\",\n \"conf_methods\" = \"conf_index_methods_justification_reasonableness_validity_robustness\",\n \"logic_comms\" = \"logic_communication\",\n \"lb_logic_comms\" = \"lb_logic_communication\",\n \"ub_logic_comms\" = \"ub_logic_communication\",\n \"conf_logic_comms\" = \"conf_index_logic_communication\",\n \"real_world\" = \"engaging_with_real_world_impact_quantification_practice_realism_and_relevance\",\n \"lb_real_world\" = \"lb_engaging_with_real_world_impact_quantification_practice_realism_and_relevance\",\n \"ub_real_world\" = \"ub_engaging_with_real_world_impact_quantification_practice_realism_and_relevance\",\n \"conf_real_world\" = \"conf_index_engaging_with_real_world_impact_quantification_practice_realism_and_relevance\",\n \"gp_relevance\" = \"relevance_to_global_priorities\",\n \"lb_gp_relevance\" = \"lb_relevance_to_global_priorities\",\n \"ub_gp_relevance\" = \"ub_relevance_to_global_priorities\",\n \"conf_gp_relevance\" = \"conf_index_relevance_to_global_priorities\",\n \"journal_predict\" = \"journal_quality_predict\",\n \"lb_journal_predict\" = \"lb_journal_quality_predict\",\n \"ub_journal_predict\" = \"ub_journal_quality_predict\",\n \"conf_journal_predict\" = \"conf_index_journal_quality_predict\",\n \"open_sci\" = \"open_collaborative_replicable\",\n \"conf_open_sci\" = \"conf_index_open_collaborative_replicable\",\n \"lb_open_sci\" = \"lb_open_collaborative_replicable\",\n \"ub_open_sci\" = \"ub_open_collaborative_replicable\",\n \"conf_merits_journal\" = \"conf_index_merits_journal\"\n)\n\nevals_pub <- evals_pub %>%\n rename(!!!new_names)\n\n# make the old names into labels\n\nlibrary(stringr)\n \n# Create a list of labels\nlabels <- str_replace_all(new_names, \"_\", \" \")\nlabels <- str_to_title(labels)\n \n# Assign labels to the dataframe\n# for(i in seq_along(labels)) {\n# col_name <- new_names[names(new_names)[i]]\n# label <- labels[i]\n# attr(evals_pub[[col_name]], \"label\") <- label\n# }\n# \n```\n:::\n\n\n\n\n### Reconcile the uncertainty ratings and CIs (first-pass) {-}\n\nImpute CIs from stated confidence level 'dots', correspondence loosely described [here](https://effective-giving-marketing.gitbook.io/unjournal-x-ea-and-global-priorities-research/policies-projects-evaluation-workflow/evaluation/guidelines-for-evaluators#1-5-dots-explanation-and-relation-to-cis)\n\n::: {.callout-note collapse=\"true\"}\n## Dots to interval choices\n\n> 5 = Extremely confident, i.e., 90% confidence interval spans +/- 4 points or less)\n\nFor 0-100 ratings, code the LB as $min(R - 4\\times \\frac{R}{100},0)$ and the UB as $max(R + 4\\times \\frac{R}{100},0)$, where R is the stated (middle) rating. This 'scales' the CI, as interpreted, to be proportional to the rating, with a maximum 'interval' of about 8, with the rating is about 96.\n\n> 4 = Very*confident: 90% confidence interval +/- 8 points or less\n\nFor 0-100 ratings, code the LB as $min(R - 8\\times \\frac{R}{100},0)$ and the UB as $max(R + 8\\times \\frac{R}{100},0)$, where R is the stated (middle) rating. \n\n> 3 = Somewhat** confident: 90% confidence interval +/- 15 points or less \n\n> 2 = Not very** confident: 90% confidence interval, +/- 25 points or less\n\nComparable scaling for the 2-3 ratings as for the 4 and 5 rating.\n\n> 1 = Not** confident: (90% confidence interval +/- more than 25 points)\n \nCode LB as $min(R - 37.5\\times \\frac{R}{100},0)$ and the UB as $max(R + 37.5\\times \\frac{R}{100},0)$. \n \nThis is just a first-pass. There might be a more information-theoretic way of doing this. On the other hand, we might be switching the evaluations to use a different tool soon, perhaps getting rid of the 1-5 confidence ratings.\n\n::: \n\n\n\n::: {.cell}\n\n```{.r .cell-code code-summary=\"reconcile explicit bounds and stated confidence level\"}\n# Define the baseline widths for each confidence rating\nbaseline_widths <- c(4, 8, 15, 25, 37.5)\n\n# Define a function to calculate the lower and upper bounds, where given only an index\ncalc_bounds <- function(rating, confidence, lb_explicit, ub_explicit, scale=100) {\n # Check if confidence is NA\n if (is.na(confidence)) {\n return(c(lb_explicit, ub_explicit)) # Return explicit bounds if confidence is NA\n } else {\n baseline_width <- baseline_widths[confidence]\n lb <- pmax(rating - baseline_width * rating / scale, 0)\n ub <- pmin(rating + baseline_width * rating / scale, scale)\n return(c(lb, ub))\n }\n}\n\n# Function to calculate bounds for a single category\ncalc_category_bounds <- function(df, category, scale=100) {\n # Calculate bounds\n bounds <- mapply(calc_bounds, df[[category]], df[[paste0(\"conf_\", category)]], df[[paste0(\"lb_\", category)]], df[[paste0(\"ub_\", category)]])\n \n # Convert to data frame and ensure it has the same number of rows as the input\n bounds_df <- as.data.frame(t(bounds))\n rownames(bounds_df) <- NULL\n \n # Add bounds to original data frame\n df[[paste0(category, \"_lb_imp\")]] <- bounds_df[, 1]\n df[[paste0(category, \"_ub_imp\")]] <- bounds_df[, 2]\n \n return(df)\n}\n\n\n# Lists of categories\n\nrating_cats <- c(\"overall\", \"adv_knowledge\", \"methods\", \"logic_comms\", \"real_world\", \"gp_relevance\", \"open_sci\")\n\n#... 'predictions' are currently 1-5 (0-5?)\npred_cats <- c(\"journal_predict\", \"merits_journal\")\n\n# Apply the function to each category\n# DR: I don't love this looping 'edit in place' code approach, but whatever\nfor (cat in rating_cats) {\n evals_pub <- calc_category_bounds(evals_pub, cat, scale=100)\n}\n\nfor (cat in pred_cats) {\n evals_pub <- calc_category_bounds(evals_pub, cat, scale=5)\n}\n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code code-summary=\"save data for others' use\"}\nevals_pub %>% saveRDS(file = here(\"data\", \"evals.Rdata\"))\nevals_pub %>% write_csv(file = here(\"data\", \"evals.csv\"))\n\n#evals_pub %>% readRDS(file = here(\"data\", \"evals.Rdata\"))\n```\n:::\n\n\n \n# Basic presentation\n\n## Simple data summaries/codebooks/dashboards and visualization\n\nBelow, we give a data table of key attributes of the paper, the author, and the 'middle' ratings and predictions. \n\n\n::: {.cell}\n\n```{.r .cell-code code-summary=\"Data datable (all shareable relevant data)\"}\n(\n all_evals_dt <- evals_pub %>%\n arrange(crucial_rsx, eval_name) %>%\n dplyr::select(crucial_rsx, eval_name, everything())) %>%\n dplyr::select(-id) %>% \n dplyr::select(-matches(\"ub_|lb_|conf\")) %>% \n #rename_all(~ gsub(\"_\", \" \", .)) %>% \n rename(\"Research _____________________\" = \"crucial_rsx\" \n ) %>%\n DT::datatable(\n caption = \"Evaluations (confidence bounds not shown)\", \n filter = 'top',\n rownames= FALSE,\n options = list(pageLength = 7)\n )\n```\n:::\n\n\nNext, we present the ratings and predictions along with 'uncertainty measures'. We use \"ub imp\" (and \"lb imp\") to denote the upper and lower bounds given by evaluators. Where evaluators gave only a 1-5 confidence level^[More or less, the ones who report a level for 'conf overall', although some people did this for some but not others], we use the imputations discussed and coded above. \n\n\n::: {.cell}\n\n```{.r .cell-code}\n(\n all_evals_dt_ci <- evals_pub %>%\n arrange(crucial_rsx, eval_name) %>%\n dplyr::select(crucial_rsx, eval_name, conf_overall, matches(\"ub_imp|lb_imp\")) %>%\n #rename_all(~ gsub(\"_\", \" \", .)) %>% \n rename(\"Research _____________________\" = \"crucial_rsx\" \n ) %>%\n DT::datatable(\n caption = \"Evaluations and (imputed*) confidence bounds)\", \n filter = 'top',\n rownames= FALSE,\n options = list(pageLength = 7)\n )\n)\n```\n:::\n\n\n\n- Composition of research evaluated\n - By field (economics, psychology, etc.)\n - By subfield of economics \n - By topic/cause area (Global health, economic development, impact of technology, global catastrophic risks, etc. )\n - By source (submitted, identified with author permission, direct evaluation)\n \n- Timing of intake and evaluation (Consider: timing might be its own section or chapter; this is a major thing journals track, and we want to keep track of ourselves)\n\n\n\n\n::: {.cell}\n\n```{.r .cell-code}\n#Add in the 3 different evaluation input sources\n#update to be automated rather than hard-coded - to look at David's work here\npapers_considered = all_pub_records %>%nrow()\npapers_deprio = all_pub_records %>% filter(`stage of process/todo` == \"de-prioritized\") %>%nrow()\npapers_evaluated = all_pub_records %>% filter(`stage of process/todo` %in% c(\"published\",\n \"contacting/awaiting_authors_response_to_evaluation\",\n \"awaiting_publication_ME_comments\",\n \"awaiting_evaluations\")) %>%nrow()\npapers_complete = all_pub_records %>% filter(`stage of process/todo` == \"published\") %>% nrow()\npapers_in_progress = papers_evaluated-papers_complete\npapers_still_in_consideration = all_pub_records %>% filter(`stage of process/todo` == \"considering\") %>%nrow()\n\n\nfig <- plot_ly(\n type = \"sankey\",\n orientation = \"h\",\n\n node = list(\n label = c(\"All paper considered\", \"Papers evaluated\", \"Papers complete\", \"Papers in progress\", \"Papers still in consideration\", \"Papers rejected\"),\n color = c(\"orange\", \"green\", \"green\", \"orange\", \"orange\", \"red\"),\n pad = 15,\n thickness = 20,\n line = list(\n color = \"black\",\n width = 0.5\n )\n ),\n\n link = list(\n source = c(0,1,1,0,0),\n target = c(1,2,3,4,5),\n value = c(\n papers_evaluated,\n papers_complete,\n papers_in_progress,\n papers_still_in_consideration,\n papers_deprio\n ))\n )\nfig <- fig %>% layout(\n title = \"Unjournal paper funnel\",\n font = list(\n size = 10\n )\n)\n\nfig \n```\n\n::: {.cell-output-display}\n```{=html}\n
\n\n```\n:::\n:::\n\n\n\n### The distribution of ratings and predictions {-}\n\n- For each category and prediction (overall and by paper)\n\n\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary_df <- evals_pub %>%\n distinct(crucial_research_unlisted, .keep_all = T) %>% \n group_by(category_unlisted) %>%\n summarise(count = n()) \n\nsummary_df$category_unlisted[is.na(summary_df$category_unlisted)] <- \"Unknown\"\n\nsummary_df <- summary_df %>%\n arrange(-desc(count)) %>%\n mutate(category_unlisted = factor(category_unlisted, levels = unique(category_unlisted)))\n\n# Create stacked bar chart\nggplot(summary_df, aes(x = category_unlisted, y = count)) +\n geom_bar(stat = \"identity\") + \n coord_flip() + # This makes the chart horizontal\n theme_minimal() +\n labs(x = \"Paper category\", y = \"Count\", \n title = \"Count of evaluated papers by category\") \n```\n\n::: {.cell-output-display}\n![](evaluation_data_files/figure-html/unnamed-chunk-14-1.png){width=672}\n:::\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\nwrap_text <- function(text, width) {\n sapply(strwrap(text, width = width, simplify = FALSE), paste, collapse = \"\\n\")\n}\n\nevals_pub$wrapped_pub_names <- wrap_text(evals_pub$crucial_research_unlisted, width = 60)\n\n\n# original names\noriginal_names <- evals_pub$crucial_research_unlisted\n\n# shortened names\nshortened_names <- c(\"Resilient Foods vs AGI Safety\",\n \"Advance Market Commitments\",\n \"Wildlife Trade Demand\",\n \"Advance Market Commitments\",\n \"Economic Prod. & Biodiversity\",\n \"Advance Market Commitments\",\n \"AI and Economic Growth\",\n \"Wildlife Trade Demand\",\n \"Non-Profits Governance & Impact\",\n \"AI and Economic Growth\",\n \"Mental Health Therapy & Human Capital\",\n \"Economic Prod. & Biodiversity\",\n \"Cash Transfers vs Psychotherapy\",\n \"Cash Transfers vs Psychotherapy\",\n \"Resilient Foods vs AGI Safety\",\n \"Mental Health Therapy & Human Capital\",\n \"Resilient Foods vs AGI Safety\")\n\n# create a named vector for easy lookup\nname_lookup <- setNames(shortened_names, original_names)\n\n# use the lookup to create the new column\nevals_pub$shortened_names <- name_lookup[evals_pub$crucial_research_unlisted]\n\nevals_pub$wrapped_shortened_names <- wrap_text(evals_pub$shortened_names, width = 15)\n\n#Move this to do this 'cleaning' earlier\nevals_pub$revised_evaluator_name <- ifelse(\n grepl(\"^\\\\b\\\\w+\\\\b$|\\\\bAnonymous\\\\b\", evals_pub$evaluator_name_unlisted),\n paste0(\"Anonymous_\", seq_along(evals_pub$evaluator_name_unlisted)),\n evals_pub$evaluator_name_unlisted\n)\n\n\n# Dot plot\nggplot(evals_pub, aes(x = shortened_names, y = overall)) +\n geom_point(stat = \"identity\", size = 4, shape = 1, colour = \"lightblue\", stroke = 3) +\n geom_text_repel(aes(label = revised_evaluator_name), \n size = 3, \n box.padding = unit(0.35, \"lines\"),\n point.padding = unit(0.3, \"lines\")) +\n coord_flip() + # flipping the coordinates to have categories on y-axis (on the left)\n theme_light() +\n xlab(\"Paper\") + # remove x-axis label\n ylab(\"Overall score\") + # name y-axis\n ggtitle(\"Overall scores of evaluated papers\") +# add title\n theme(\n panel.grid.major = element_blank(),\n panel.grid.minor = element_blank(),\n text = element_text(size = 14), # changing all text size to 16\n axis.text.y = element_text(size = 10),\n axis.text.x = element_text(size = 12)\n )\n```\n\n::: {.cell-output-display}\n![](evaluation_data_files/figure-html/unnamed-chunk-16-1.png){width=672}\n:::\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\n# Function to insert a newline character every 15 characters\nwrap_text <- function(x, width = 15) {\n gsub(\"(.{1,15})\", \"\\\\1-\\n\", x)\n}\n\nevals_pub$source_main_wrapped <- wrap_text(evals_pub$source_main, 15)\n\n# Bar plot\nggplot(evals_pub, aes(x = source_main_wrapped)) + \n geom_bar(position = \"stack\", stat = \"count\") +\n labs(x = \"Source\", y = \"Count\") +\n coord_flip() + # flipping the coordinates to have categories on y-axis (on the left)\n theme_light() +\n theme_minimal() +\n ggtitle(\"Evaluations by source of the paper\") + # add title\n theme(\n panel.grid.major = element_blank(),\n panel.grid.minor = element_blank(),\n text = element_text(size = 16), # changing all text size to 16\n axis.text.y = element_text(size = 10),\n axis.text.x = element_text(size = 14)\n )\n```\n\n::: {.cell-output-display}\n![](evaluation_data_files/figure-html/unnamed-chunk-18-1.png){width=672}\n:::\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\nall_pub_records$is_evaluated = all_pub_records$`stage of process/todo` %in% c(\"published\",\n \"contacting/awaiting_authors_response_to_evaluation\",\n \"awaiting_publication_ME_comments\",\n \"awaiting_evaluations\")\n\nall_pub_records$source_main[all_pub_records$source_main == \"NA\"] <- \"Not applicable\" \nall_pub_records$source_main[all_pub_records$source_main == \"internal-from-syllabus-agenda-policy-database\"] <- \"Internal: syllabus, agenda, etc.\" \nall_pub_records$source_main = tidyr::replace_na(all_pub_records$source_main, \"Unknown\")\n\n\n\nggplot(all_pub_records, aes(x = fct_infreq(source_main), fill = is_evaluated)) + \n geom_bar(position = \"stack\", stat = \"count\") +\n labs(x = \"Source\", y = \"Count\", fill = \"Selected for\\nevaluation?\") +\n coord_flip() + # flipping the coordinates to have categories on y-axis (on the left)\n theme_light() +\n theme_minimal() +\n ggtitle(\"Evaluations by source of the paper\") +# add title\n theme(\n panel.grid.major = element_blank(),\n panel.grid.minor = element_blank(),\n text = element_text(size = 16), # changing all text size to 16\n axis.text.y = element_text(size = 12),\n axis.text.x = element_text(size = 14)\n )\n```\n\n::: {.cell-output-display}\n![](evaluation_data_files/figure-html/unnamed-chunk-20-1.png){width=672}\n:::\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\nunit.scale = function(x) (x*100 - min(x*100)) / (max(x*100) - min(x*100))\nevaluations_table <- evals_pub %>%\n select(crucial_rsx, eval_name, cat_1, source_main, overall, adv_knowledge, methods, logic_comms, journal_predict) %>%\n arrange(desc(crucial_rsx))\n\n\nout = formattable(\n evaluations_table,\n list(\n #area(col = 5:8) ~ function(x) percent(x / 100, digits = 0),\n area(col = 5:8) ~ color_tile(\"#FA614B66\",\"#3E7DCC\"),\n `journal_predict` = proportion_bar(\"#DeF7E9\", unit.scale)\n )\n)\nout\n```\n\n::: {.cell-output-display}\ncrucial_rsx | \neval_name | \ncat_1 | \nsource_main | \noverall | \nadv_knowledge | \nmethods | \nlogic_comms | \njournal_predict | \n
---|---|---|---|---|---|---|---|---|
The Governance Of Non-Profits And Their Social Impact: Evidence From A Randomized Program In Healthcare In DRC | \nWayne Aaron Sandholtz | \nGH&D | \ninternal-NBER | \n65 | \n70 | \n60 | \n55 | \n3.6 | \n
The Comparative Impact of Cash Transfers and a Psychotherapy Program on Psychological and Economic Well-being | \nAnonymous Reviewer 1 | \nGH&D | \ninternal-NBER | \n90 | \n90 | \n90 | \n80 | \n4.0 | \n
The Comparative Impact of Cash Transfers and a Psychotherapy Program on Psychological and Economic Well-being | \nHannah Metzler | \nGH&D | \ninternal-NBER | \n75 | \n70 | \n90 | \n75 | \n3.0 | \n
Mental Health Therapy as a Core Strategy for Increasing Human Capital: Evidence from Ghana (renamed \"Cognitive Behavioral Therapy among Ghana's Rural Poor Is Effective Regardless of Baseline Mental Distress\") | \nb62275b05d45f43cce4e494d31a07c19 | \nNA | \ninternal-NBER | \n75 | \n60 | \n90 | \n70 | \n4.0 | \n
Mental Health Therapy as a Core Strategy for Increasing Human Capital: Evidence from Ghana (renamed \"Cognitive Behavioral Therapy among Ghana's Rural Poor Is Effective Regardless of Baseline Mental Distress\") | \n47273de4862aaff608f9086d4d643054 | \nNA | \ninternal-NBER | \n75 | \n65 | \n60 | \n75 | \nNA | \n
Long term cost-effectiveness of resilient foods for global catastrophes compared to artificial general intelligence safety (Denkenberger et al) | \nScott Janzwood | \nlong-term-relevant | \nsubmitted | \n65 | \nNA | \nNA | \nNA | \nNA | \n
Long term cost-effectiveness of resilient foods for global catastrophes compared to artificial general intelligence safety (Denkenberger et al) | \nAnca Hanea | \nlong-term-relevant | \nsubmitted | \n80 | \n80 | \n70 | \n85 | \n3.5 | \n
Long term cost-effectiveness of resilient foods for global catastrophes compared to artificial general intelligence safety (Denkenberger et al) | \nAlex Bates | \nlong-term-relevant | \nsubmitted | \n40 | \n30 | \n50 | \n60 | \n2.0 | \n
Kremer, M., Levin, J. and Snyder, C.M., 2020, May. Advance Market Commitments: Insights from Theory and Experience. In AEA Papers and Proceedings (Vol. 110, pp. 269-73). | \nDavid Manheim | \npolicy | \ninternal-from-syllabus-agenda-policy-database | \n80 | \n25 | \n95 | \n75 | \n3.0 | \n
Kremer, M., Levin, J. and Snyder, C.M., 2020, May. Advance Market Commitments: Insights from Theory and Experience. In AEA Papers and Proceedings (Vol. 110, pp. 269-73). | \nJoel Tan | \npolicy | \ninternal-from-syllabus-agenda-policy-database | \n79 | \n90 | \n70 | \n70 | \n5.0 | \n
Kremer, M., Levin, J. and Snyder, C.M., 2020, May. Advance Market Commitments: Insights from Theory and Experience. In AEA Papers and Proceedings (Vol. 110, pp. 269-73). | \nDan Tortorice | \npolicy | \ninternal-from-syllabus-agenda-policy-database | \n80 | \n90 | \n80 | \n80 | \n4.0 | \n
Banning wildlife trade can boost demand for unregulated threatened species | \nAnonymous | \nconservation | \nsubmitted | \n75 | \n70 | \n80 | \n70 | \n3.0 | \n
Banning wildlife trade can boost demand for unregulated threatened species | \nLiew Jia Huan | \nconservation | \nsubmitted | \n75 | \n80 | \n50 | \n70 | \n2.5 | \n
Aghion, P., Jones, B.F., and Jones, C.I., 2017. Artificial Intelligence and Economic Growth | \nPhil Trammel | \nmacroeconomics | \ninternal-from-syllabus-agenda-policy-database | \n92 | \n97 | \n70 | \n45 | \n3.5 | \n
Aghion, P., Jones, B.F., and Jones, C.I., 2017. Artificial Intelligence and Economic Growth | \nSeth Benzell | \nmacroeconomics | \ninternal-from-syllabus-agenda-policy-database | \n80 | \n75 | \n80 | \n70 | \nNA | \n
\"The Environmental Effects of Economic Production: Evidence from Ecological Observations\n (previous title: Economic Production and Biodiversity in the United States)\" | \nElias Cisneros | \nNA | \ninternal-NBER | \n88 | \n90 | \n75 | \n80 | \n4.0 | \n
\"The Environmental Effects of Economic Production: Evidence from Ecological Observations\n (previous title: Economic Production and Biodiversity in the United States)\" | \n1ef6aff67012a1750f88f631fddb346c | \nNA | \ninternal-NBER | \n70 | \n70 | \n70 | \n75 | \n4.0 | \n
paper_abbrev | \neval_name | \ncat_1 | \nsource_main | \noverall | \nadv_knowledge | \nmethods | \nlogic_comms | \njournal_predict | \n
---|---|---|---|---|---|---|---|---|
Well-being: Cash vs. psychotherapy | \nAnonymous_13 | \nGH&D | \ninternal-NBER | \n90 | \n90 | \n90 | \n80 | \n4.0 | \n
Well-being: Cash vs. psychotherapy | \nHannah Metzler | \nGH&D | \ninternal-NBER | \n75 | \n70 | \n90 | \n75 | \n3.0 | \n
Nonprofit Govc.: Randomized healthcare DRC | \nWayne Aaron Sandholtz | \nGH&D | \ninternal-NBER | \n65 | \n70 | \n60 | \n55 | \n3.6 | \n
LT CEA: Resilient foods vs. AGI safety | \nScott Janzwood | \nlong-term-relevant | \nsubmitted | \n65 | \nNA | \nNA | \nNA | \nNA | \n
LT CEA: Resilient foods vs. AGI safety | \nAnca Hanea | \nlong-term-relevant | \nsubmitted | \n80 | \n80 | \n70 | \n85 | \n3.5 | \n
LT CEA: Resilient foods vs. AGI safety | \nAlex Bates | \nlong-term-relevant | \nsubmitted | \n40 | \n30 | \n50 | \n60 | \n2.0 | \n
Env. fx of prod.: ecological obs | \nElias Cisneros | \nNA | \ninternal-NBER | \n88 | \n90 | \n75 | \n80 | \n4.0 | \n
Env. fx of prod.: ecological obs | \nAnonymous_12 | \nNA | \ninternal-NBER | \n70 | \n70 | \n70 | \n75 | \n4.0 | \n
CBT Human K, Ghana | \nAnonymous_11 | \nNA | \ninternal-NBER | \n75 | \n60 | \n90 | \n70 | \n4.0 | \n
CBT Human K, Ghana | \nAnonymous_16 | \nNA | \ninternal-NBER | \n75 | \n65 | \n60 | \n75 | \nNA | \n
Banning wildlife trade can boost demand | \nAnonymous_3 | \nconservation | \nsubmitted | \n75 | \n70 | \n80 | \n70 | \n3.0 | \n
Banning wildlife trade can boost demand | \nLiew Jia Huan | \nconservation | \nsubmitted | \n75 | \n80 | \n50 | \n70 | \n2.5 | \n
Advance market commit. (vaccines) | \nDavid Manheim | \npolicy | \ninternal-from-syllabus-agenda-policy-database | \n80 | \n25 | \n95 | \n75 | \n3.0 | \n
Advance market commit. (vaccines) | \nJoel Tan | \npolicy | \ninternal-from-syllabus-agenda-policy-database | \n79 | \n90 | \n70 | \n70 | \n5.0 | \n
Advance market commit. (vaccines) | \nDan Tortorice | \npolicy | \ninternal-from-syllabus-agenda-policy-database | \n80 | \n90 | \n80 | \n80 | \n4.0 | \n
AI and econ. growth | \nSeth Benzell | \nmacroeconomics | \ninternal-from-syllabus-agenda-policy-database | \n80 | \n75 | \n80 | \n70 | \nNA | \n
AI and econ. growth | \nPhil Trammel | \nmacroeconomics | \ninternal-from-syllabus-agenda-policy-database | \n92 | \n97 | \n70 | \n45 | \n3.5 | \n
F0C~hvKwrLXc@K~-e5B&*jP15E0@|g(t{}N7{F7T0{e_F(@1)O9tt+so}*{_i&6< zyyt1{XI-^(=uFo64MQ&{j!{TI6lHR_yYJ(-cBFd@Qkryl Oc3%jbXQ^?=my n z&eU c9fm(If4}!O?HPXFzGO&dx|Qm&Dk3(q%vlzFy{pSuQ+r=$t94zh zr{}nY_dQNhGD;dYxj+cX-w(o)YQE48bH?BPkKh0JWYA4HNO#14{t4k!&DUd;fe{W} zgMxp**k6|?lUqDO^k!LskeRQd*(ceFToc?%hRCn~AHS8E(38z$ZW0M@z53QEp#oLn z#xC_|X5;L06z8)`Oa>o@@^wzdJ14TN#WW^s>lzoKn3AkCj~Ti5XwS}@9{O|?Zw)_I z8+=rIvWqj`;f=|`DqIa;j V}-+JE_JSNVKS1@vj_qj`afg?zWQHZg{Du~9F~goy78 zfvB*5FOMMa(|UhCbx81THSH~+Dcu~j@3NNN9dKLkP)HSzjdKVwn~5J?N3O^9Rm!uu z{gI4;$;zO{$pvC87RTuWuvbhK!E@=B I*x~-z z?04z_FNuXuwa63x@ ?qf_T098U~%LW6%>WBy}964yM =r^{vzwM7X0TO85K$3H6_XV zAK8~aQ?S01+51inOYhhmaz=OzSi&!UE$fhHN}12CmN9m1;^6kFt!J2viRLqm_84+3 zahpp|MK($=xtN<&OUY1utlq7tR&vqD^JHdqN<1k+Ejn`h4Aq}Td5x_^cqTg*4{(ln zPbb(mz2V5t%stkonzXq4eWAEHlVIdY3?vA0l#Qa&FRPA`B_V0Y7c6p5muls(>_HdI zSq-HEnl%$UuOUjRHnL}9%p #6Hu)>7>I3)Zqq)ZSljl~-AL>oW$S zx9#WG _bjVO<%wBym-W8Xj4mB z 1uv n?A-ip$4@zYS?4jcC9aKs_id-_HVy=RUnDNW(_Hg-L4qh=igsXmCZI;i!Q0; z$j)mx*RvMe%IwyD<4!JmhWwoLEw$^|x9gqoDz|2ML&8+R!5Sj9lzBJca4Vo|XFeCf zvXQ26CIGyp_G`4o*>?d4_}OSfCvF|t30l})B{+WquWg6OhJx&ldXbDz1Fu10nh%Re z^-fQ2$Y`bzE6P;Y$fZ6;1^j|29mt)*7$X~KVs#iO8x%U~v{db4P=*>Sw z&tv%KvBq`g1Bc-50(>S?yCeR^PSpn+xtTR?(hwhlZ@Q9OnV;qqc6c2g&jzN>aTZ>^ zXSw3}nVccHsMp|%^iBti|Dbr-wMB7geYHhEZG}OT%z_oTtqd9~Z8{0TF zp=<1}-ND(xpO>qE>r2xeE}aLnHW$_$m%*Zf3*E@KGTbU#3NCPL^ciWvi=d@M5?mV2 z&UPvZ@HN20F#-{JHcvTIcZ4dzQ=Bo!9bg3l6sHq?om@^d?rghoIW2EeA1+hd_Gs%S zxU3X72ImLjvxba@cp|!hFHBFf!;hZcU8mxDcRy^4+5BvyuXjl%$-~mf?a*Qrek#7J zmSywPX
;fj8+fI~7mr4-@2?wygVCw%limJI%|EzDaB&+0`q9@0Fh;QSSf9Gm z-jz{S&FVq_J<&0r`Rw`?x0QN^)c&RIci|Wem73R0pFIq#tPDOGZEdczw2M8UiQQUF zu*ks)V8l49)atFj-~tYJC%pV7=nydz&XFpj+;8L!? *gxcpRN6<9dUzRX+Yo8>qOczr&O%r=w> zN>J1;N8%^BWCxmVq$sw0<+`50e0g?fkXbO-1pXA40PP&SX6*N1{~CVEC;_UWYdX?I z@=o _?{aS-+*6pC3AhBfoxmq(_$G zqQv0}>!Hy1{?^agKJ?OUeX#G$jPsK<)?8!bnfCbWkd7wIdA0aMqoMb_W-@d1-eMg( zXy}y4m5 L*!c8Y($gW1X5mN2xBPs>@gAy8Bimcwoq( zO1Ov5_v5B|j?OGYzBjMUyN9C7nZxEL$K5yL%ID`Yb4?08W1GM}(APxLlVe*l>NBr; z>Kt6LLPpeGxviUhGV?_o6< zsA^fNbzfwvcvCa#d4^9N17 znllM4P4ayw_p6_)l(y+Yu5R(pO3mw| ?MR&{pXRi89Z&7^!Biu0{K< zY=N~`jj?2M@oBpbo3)&SdBeSw(0UkminCP1inNT}!JKZjk8&K6Gzo!kwU)>`jKWT{ zOe72+Df2PmhpjeJd~0#E`Eb6uat lt1=6u zJdm1VSxcahSq`F$*rH@(3D{fdvG+|#r;x+!U-4(=ZVBItcG~S98r>{btwe+&9x^re zvABM{fYDX+I(Sd*mv*nZ&%{?nPj=+Vk6EANfW+mh&g{e*8PuEa)tnCMgciwhJ^8-j zj+w^jwMes6tX}n2-k9jX6~n?|=mluXSF%hm(-2I`68*0GQn Qr|t{A61bJ~^B>g{6xnGFaUkdh`HaYFm3wNmo5^}Q9SVCg!N zbmCD1!=U(sHh3X}>D#rGupWkSaYgZ!Iyx?`^w}iMeTyQg&!LcMuv1_sZgZNx>A?^7 zRrL;lt*5b@PxZ~b=DTgIQmKTChJNCBokv6ds&jszk~Crms_E3xl9zRh>|)E#9kpgx ze2=cFv4D^K8rpxeAhU9!Zpj$uqswLb&7@M4)ByjcM97IYFl^Ktlj@^3`So!IH|eVl z$CrL-?^Z2em_K=k|Kpo#RdNYkgwP#<$Qk3kX5A`R<#MsAm2gXXbC%Sf_U}**vC(u# zwE6dINjCWF$mWHQD>B!*KpU%A9alnhD?bccH}4Cw#2*WcmPOtcsGG^tQ4IjDR&sZt z03DMryO{@z%FJv;4!&>wbZ{WtSAHi^rAT{Ho0{~kv=yd5gl$kHaV2abIBmvHUv(q# zNe7*bsgp4|Glo%eqgzw5gYJ_<-^_FAp>!4q-&*JvmNE@E*7Nm3`=O?L4_ifVms3tg zATBN&P35gLFzLFpAabCI0{gk0hs(jTybS2=yjf9PN`ennU^MQdOZ_e8;~l;d)UP`6 z=)*m<5H4>8V{ rpp=S{kf-7 zb#l{wIA7BTOk?g7;;+ynQp^h2XaN$$@>4rHtEYRsFQ0N$X?Dv}uL@pDaE4--5@sA( z=vVajUWiq`cfAbj@M30#IL=kv_ogZFX62cm`4w+7N`okqq}cXdO?UO9Dalf_q2mNu z67LnCS9P!KOSqq~(H8P_$)jt;2eQ>vjwW0j+i9|UThYQ_;dcJm_)-OKY0_miquepC zo_@nld#xk>Q`R8}el_?IZOV~OmiP@8qe$au6J)}i5bUh3qcxe&T1<{{q{4Wn{~Nj& znAFk}1t(6`Q<;-xa>iG!rwC|cdwo;y?DT;+r>9&R }eC79k^a#GNOEr_>nw1Q{BL7+l8sQ{; zudy {bilm2Li>h1cT&3bB$NI#Z3ZPt`qcySrX z;JW8~QQWPK{Tivi`vV6wBX#Cp{#h7Tf?H>0H>c0@9)aB*kS@tsUhgpEC8e_*xoD=2 zh&v&1r)ndzC(RnA@BlR&!zzo^>vrF}+7%hTlFM{hX >>}9qTNx*sTP)`s7Qb-)Oyy2CMKTQawwxoqQ9l`TD}Ct?khF@^f8KW=)jWZR4GR z%?%ejj6!ib(hJ8uGADaN)Ug)_W@w6XIa=1PLDV1TI~E`EuyyOxT~q47Z;d}@Nb{z? z;?JD!L{ZI`y*rIp*@8-M+4(iY<$4jKqO6{0A|! ^BBH@XY%U!cEH!z- zTxXi4$~ XU)-7{heM`6-PO&Y_IK?Lp;JkIr}= n9 z8oQOHc6v6w!-m~J5`Sih#oyVdE1oCVNd#{Pe;XXGh^P3x{z?t{;hylAmG+IISmc E~SE=Deot)pQrloPQrOSuWty^F!7jH#g)VuL>D#M-uSPT-M=kH3_ z^A#i9rsU|F`+;Xn{ChKsH*-3&Z2`E3o(w3%n4N!>bpu6x0~{`ZR>kLU+PR$V&!)dB z-epxHC8J-I;yv6e#Mu+#A_DUr#$<48^udp>g{x{Teb$$1L&<7XO%@wzOS3#~71I8b zuXEaEHp5*gvawK!HmwQ65TS1p@W+ja;Ycy8 IU~r<>sPL=lUE@bYT|I@sbq*0n!bHd5)P z*wc)wWaXCyNr% 976^o^T!>6Gt|O+LA7UC#Z47yH)tT695=`Q&Tg=`-lH{+H=2 z+x&EQ+C}{>UU8F_bj7~Sjh}PjcO2y# -eGO@xXryloQtH5c<<_X^kb?+k6ErTId*(3l>i)r-#+$hz zO|=)b)*{>LsH0bI$(PtxRUa?1Wt}VDkEZ _dA-3HHA-O9h73uDRXQlYKk^DUiR`HobQncr~q$VBjBm6}2m zQC*HURnJQ9X$1I{37SU4u7+!Cu=wWaotDm9HBM;hsW)diEbuYG^=R^CwcY-c( APlCnL %%u&F7< ?=Aet*GjsuP#Ek!5`b)={jYB7z@I+qxNME)_8irE=1K9s^@Zz(J=aLoGX6 zr2KEEtC<22FEjOUUF}e-4Q*)!CMtV4wotRA&)ram`jLmBsi|m>kn{-b{01~m25B|X zkz1TwP0>4MJ~t#Ak4LtZ_q?Cog4^emA$hDg8=Wsj;QUr%rTyb@xSNiH!41w8(?5aa z8XGFgz*C>3*J7Nxec0+a?1kzTF;Hb}O6Th>_+(sUY)_S$7oNT}2XU$2H zy0Q^k-sek))|G5caZ)MPMxAWN$9D7iOeqMIlwLv|9Gv#9Tc-0?9tA_}+W02}AwRe7 z##Cq3TEIlo4W%LHWbYdX>~Gla!JxE|aHR-#@tsBIfQr(&3o`Z(L)f+nU`A^rObE|u zSHEX;*p|H1wFujgXuVYJvy(nGzq_Y3`_Ne6#y2PLldCZyJL?}8=W#(B`+4z=%F%6b z{gV86|A2JE*7XWQW{MHgq>ZgO{PwBqUFI3AyZ1|q^L|0TjOPi_TZv`WigL(G`@@iy z!_oaEPjrTS$79Y0tFXO?%xydHZpy;wE@fZeddudGLYJEo@#!k49iQw&wh?5eJ!;y% zYREH0sL&^&yr_*1v0e9&`HT4XS1j=^={v ~u zvRf0Y+l)$rq}PW4ybz +P3e`bF}kM_Qj{KEdT|tTyAJM>1VKnj5oAMkVgRvRDDe%RR=(UEiOJ5x5R>+@4X8 zjeB@G6u{I~Gv_5NkzHBunhvx!n_*cG4JR5=E1FRLdh71=)I@_YB|i|Hr|fTyRo|uG z;BBmrXxVM~F5WOL#ERy!Uvsi-D@-UydF q1Jq)hWF%vC zc@b&_PFT_X0}a^& ?S*-4l5l$zd#7xw;2BFz10bq@&MYJ3>bT{ z+iYi!KzizIwAtP(%aW^(#-a$P$0JjW)SuoxWG>qYztxN_@C!3Z3TAe_yR!OKj5Nu` zl^zq&pk?w+Pbz&sbo7hRruEsqu)yJYldbXz*I`O%M0Hc&Hj|zTLsHh69(ND^-H9K2 zd9N=XV2)>u!y5z^ilh`#gPFyj9(6-+8H^hQ;xGTj6-8;2$yZ+*I#;J|lZU`8@ey%mNSRIeE9 z)pT}Wg^N08oO;@7T?Mk2V#lhXDw*g>kSUHR^)w`(f2QAs6L@WUy~>sBv9)l|7<_(q zXx-SRYU}-uM?BY0uvuPB4&qkhSU%)baRy~M(YLz2J5C`RGrBvvwW*a^>c;Z~fz?X9 zAB~>JTxq)sF;HVbX*EOcOzIyN`IpDjv`yBPWmylg#CzDg?gB3|o#1H_sh s)_?bmI_<1pD6^}oR1yU0^=ZuRn(2`rIVIRM_wT-JA zKi76#4D158$wr3mnE)3NR19o1O6ZQ jcmzB-v%wb)OT8F&<^YK;P9Q29viC2sEkBLTaft;ZpTH@zd9dFx? z3wMT^3(>nW-x8{FI?*IZSpY(rxiM2K;a0` <@86EH90cbpSrRcVubHZo0(IbcdP7X!5s zbEYO33op(aO+L==O0~-TskHW|&UInk0UX_vDXg`oQgN+pWg{}BH1B>`hs4NwR4z1S zrtPfxe3aP5+0D2aMMg2rSKK}wdwbKexlg$Bczw*=;^#aQ!V_&Z$z?GcF5XUlA%10j z>FIthH104*$Nck{DKV@Ypm4e3oc-L&==$FO=`*L?Op5F5`vl @90{h(0nuGYs~X5DO)?!cd&A_g{%XZnBb6;qWwuUp-SQ( z#qbuI3nDHearl^tDN!Mh1q;nEQ~gcVu&W#Uwlah7O<+HKOh%tAa!rWenK_iUH7rjy zHSUAoJgx=f>>=7?Uy&WEG@p8mvwrs;nXq}t=vWtuwP(z9qCtTx(d(hM!|+UUlPw5V zEToS{^+8!RQBHl(V!!oKz9Rv&MzESGEloe8`Bdpe+n(_LIMMkn>l+S_p)7TtF) Hrse2~<#kiYmWz=WP4*m)kul%X@MwyT1Yju_9s)^1%) Wbl6gG4b2_Q!*(6^6T+hzswc*F; zgg>p2$K%|tv}E U&F$d45L!v_#XO)?Cb?kEhYT*F@A$S5oew&0@J z w2To6uzr2 zHT9jmSvvtQj`Uec6DzN&wWlvVOO(pqpZK68)4%6;uI}AF| zAjtECyibhV?LL%TgB?#uQ}WvZ OK&D> #w6UENZizulg# z%(TeDrGgjUQC)HwY(m|Y%njI|m-Nmmx~M|-P}kINgJ<8fdUu4%Ta5wY_`?Y_Hnh6^ za07b0Lu@Q-CoMxfUSg!4kdy^$<;g_ghDFlv4Ou|0HixrqgU!22m1QVzJ9M8P#$gmy z(s0h+&Hr$B3}(BAw+Z&CNq37?8EFm?9ne9Mk+{N&C#186U)WT8<+e#*mZYuwigJ?l zwh5X*l`7MbBn?;OXZfhXHXt*0nb|spL-I_H-LF^;E;2G8PL?rvuAJ45X2|LCI~5i6 z5?!$Bj>V`eoY&4t>@x3i995Dm;sa<@qm}^6$T?S;A(`fu+GF7ZB_C8KDw==_W2{N+ z_&hUo`E$bdsK%1#>nfSH-~l$7;}7Fc0VL5*(%cs#X$h5|G 6tSBXO)(i@LOtRbF zRb$B2PO%~ZQRA(&A?2-F5TW~oPp` zZ*YSgh+fnh+O!8y&d~v|COD 7v)yV3<^2(uTfG?&em{akJxtPia#qH<$3&~imt!({X+t=T|Oyd zGUgV))v4-uBJikDB*7vguMI+r{7{w9f=?62UOEA$p&)JO6VFDUn5}3U`iZOW1Y-ot z(8?$c?)=J#&DMw~ZZhvfX3NBU?TE5_k#cG4hUDa@g 3WHcglc_ it;FyVZKaJ{KigZz}U$vCMk@U8r5N P>pOvj+S _Km=it)U>fRr-m@SlZ{Wmg0FS%q*$~|zQm~dtNdZT?s0Jl?_ z?hykk@3}IpW!SU!t_fP`2o*K*#zxhf4)5>h!TcP2+MlvqjfA5mR0?f}CwVCDY8(Vz z>cP>B*dsTJ@qpzs9VtxdgEpk*P7ie-h*yO@fR1(x_0$#j4W%^|<8(^;tslc0CIm(g zSE*&|w}N7!YO&M>H=y)xkJAN0nK-Z}A9~ulCggoqP>(Wf+sB^olu@f-&CdUdE~P+p zS=*&!cMr&IbdGha-JT~&71b(kbGLtrPMZ7EH;6%Y=FT|w0=4(uX3S^N&DvN|R;|o$ zS;KgT-Pj(pbxo|vCO0h8c+V^`I5&1vp10`NO?AsQHHpjV&eqvP%hoSl}K@%j}P46!6GT zw7pf9$0IE-Hw61WGapHysAk)5QS&voim58$8*FA%1pI7WnB{ZPjI!IMm z?zGHSnJr9uGcB>?L4!>93!VEEKd=MAb6|Epc0?3E`QgS2HOzo2Y?hE|%i^2V8oC9X zlHTH!rLAJQK5`^2QuHMfpa6-(y|pe~z^YG7$#cDXbTg#72}#iR%^o-1{$i0yQ9LYj zRnUi=j(~#(y{3CawfFT}`bjX3a);y-5zQiHnXZTS(IGxXMNUtbXFOv=>G|#vlrY*0 z6ZN5*VIp2X(yY|kxjWL|3cUjsTr^)u;MoTK(>|Ze*%NAHjs$6fbFw3lF?PNy0U7!a zU16lE1a~&j8$}|Sx{vL)Crw8El(5OG)fkT} tM5ZZLh)fH`Up{J|f4>1~Itjb?L7U z|3s62E{#b5^eE&gI@0{Kt$%(bB@kl6{rxWm ZRSC{Um(b%JeaYo~*WSd{yd?#D zhp9oagZ^u)`ZK!9K-{|Yb~gLcCn+i;&k^_fDSm^(%Y4S=Zr+1#L-)+?1<4+)z_?{( zAO3KtmIha-c-2V7M%*-aT1*c#99*GJb<@GGAVF`PP#e8&AX__g+NFwi`aF _d(D-IY{9L z!CU`a7(X3X8e#n#gbuP0TmL*@jsJc@BIEsg2LHE9RL`g_{A+8t*l0|I^k%=?YziDn z&^!Ypyy{p!i<~9Mw+)<88$P4WV?b{>OW5EDGFAh}qMlB`(nWfJt)md6E*tOQ3`B;W zt=%-}^|8Q2uoKTN*HWtiGuJgJv{5$z2VG^;iSYnDf9KYz$dz*I)b&e?AX65hKL9$A z#0aU?uNU`$YAzAz=&O?n+|`}H4FH4Ph50R*Tfc)pBW956re+rWL5H=h2lvTkO@US@ z83)uev)dS$0L#{>FYe;yb2nNtbIR@Hn+clcoh=}QEu09sg50XwLd_119e5B#$ML7c z#{)0sKBbls2O@WOk!Gb|xc@&*@+iBYFiATBKBQEZS+rGC%7tRDbltm>t@W}213(#g z;!bxevI18nd8a&98SK;y8mV210s;7zu1JuB7n*&3QuyWAm1F|SvzXV&GMnhTqzJb6 zFUt9EekD2ob{W9I1d&jMDMQx57+s-6tS581rwjv?SO^ww YC3C!MhF+RP$~))RwBAGYPQ`Y>|dBR!9!xx=~8fX<(n-qrHiYcjAdwE3P{D5XxVk zHnU#_6i%rGw67{7W(=fQo#*VcUjJ~n*eKod3!P*ajuY{jg}2Ns0Ckb>TViG@s36cr zpdp`c_Zm7&XG6od&UI;h?$q-HI{Gu_A>XDVmR-E}2}*X``HP<)QQfYH)?DzUy(C7< zCa5!hu#59_2;*3BxX$p>{KGq_(_66r?QKXxXKBXb8TgrFL;ITBR_~hWkh(k`b^YP= znILeq^dEYO ?P@h(u3A06<(-0lMM-qg(@wqNsM~ z!x0cYs!OS!f%w%NVG-n9ER6L~q@hT*bt9j6ro#kt+8xXvI9^9h9uYpU>y5QJE-orx z;paHAK>m<7fR2Qej{E?GzG_A`R3xN#mNg-6>mJW~fHJ<9>DnquJ0X|gKA2#@lvHB* zY{B3q(q~HHU$zW$#b2CbjubGDq|#UYwZ0e~gLEq=&U{1#6+4yD5&+-6nPLgibJ({7 z5OQXwBXzoN^WNdFHI07!>&qsXG0kTR4vuMKN#cR;A(#+cb)$69@{l->Rry} zHxxk+{& o61SoR`TaVlHzbn0~}cJKW=_RK#HOIZl$s z2En4}@=Zgt{s`FX >Sl<|*~x{?31RVa5MO#4 zI-VtF0(>-#0R152pav%Y!~KPe4qo;fKf-z!DDzy **i&Xy%7L|pHL)+X zpM$%~Q&$JetiLz!^}hK}ukgbhKz#*$aVpQ_OvPdCZ9=y21Yzh@W(oX(%(cvM>+Xk7 zPm10ploJqEY}bG_Li+u~)C3QM5Tyk6wv5aii3cchV*c%?VR0d#uI0;Lj%ylK9RPie zV0PJ5oX8(CYpo((+^O&0@Pk?*p;^<_H}KPFOpeZm(swwhTd7)&$~`^52_R>o+?8kl z4mbWaC_x@nVRanKE()77D`&e1WgH%3ep`xBCH)UW*JII8q(Q*sYXu}B3n!HK*mkLi zWk)xvM6v+Mcq;G~mluJnvn3P_0Z;4vL-^xVxzbQrdrC4n!DBG}o- ( zhUkR6*(K5>A^PdF*6)O_d yGEe` z;TmggWnL>2r^R%Hi3Q_=Mx^YI>5{)c)HNg)jO`HcKWa-$Vtb+>4T#i&K3#cBY!>_} zDFZie>7OO`TqkaW?0{|I7zeR%lNH32`}cK@{%b=2c5sAH$@5nh^&fYg2?lA5?Axec z3a5WOaE%;+=>C#(|Mx5YmzDpX#or6{w=Mp5H~)yyfB4+r9`%3Trtv(?R^hK+0RPN* z{{Pq`>8X>oo+DLLBbTano&I3wd~~?KrEBO0BE*!6rSeQ4rx%c*>SJ}g2=m%exp8Mw z7v;B+<{t?)zjCtVm0RnYhWfRa#`_tOy&8S~$3f @RdZ5GS3iGYTk1 z4PPsdZnBGzjBtf)ZAUda(v@35<{zmPy~92Pnwy_C>=C84sSeyq+$?#0?v#8@o)DvF z%BkQQwg?y?iqs%(;vTT-9@o!L$Zdg4{BVf$G5ZCY8)yJ^zweJeqoa2ryWpDyd!DiA z6FEB4KGOid*D8At8CZ<~V0geogJ4?0(?;Ts23%V~K!OgAdEsVrOFCaDfZIqprXcqj z80%JO^9l!4eFDGf !if4MFMQ(^Lk Hl~nW6jDY_`K$mpGWJ`7d$s4>nGLmAEBO{AqcvLI{%m>7LmzeK$sUE z+5G2!L~#T!6jTgi$Kn)@?x(~~HjtCaF>ys*_*+=`uNymp_|Q>FDUE{I$?)TpfugEB zw}{1ngBL-V8y$V0n%K#64B)Eov|jw{Hh()PyaP~9KEC%XfBW6PLeH!G;Hu*3Cx}7$ zHlZL~H8i*>{ZA|W`NlRz;HoYfXaD$br_9z)52Ehk!e>7Jy3OAX+DpMzG0DQjNPr|h zFyxN5R2xJtDwpH}uG*kz32NK_YwUhc 6tJ){*+pk8ajUD2eO=KPhg%>j`NqAb@uV;=U+kriEO+ZiYT6ULdVSFNK%3-7ixC| zr%GUc3@W`m;=LzcaUmb0r9C_835o+UIj)|(pR$a 04sMM^_gr-LX zYRYXY)><{zsXU6o6zcMNGVsW$yH^0n_-xWXE3e_1 WY4} zeWB+!idm{YJkYllFf8WX2db5OfE9Nd1W#oh70f^sc+?AeT~5_WKzdIBjo8KQGSGb` z<>@I2o8EFu92!K?uD#w~M8mwNXBg92k_Zg?pxM)toq!NaAk>egh aq@zyS@ndf6M^#MB0f=xfPtC?Di0;0rD+fw z$3HY`FO~8y)*McrCH%P9g33uD?a0Au9c^ow20D%HOt}*(f7}X-p(Gsom9jLxKs|v3 z-5@Xx&&q{^Z-B`AM0Rq-(?3AuowqZW$xv(j%_?32+~1<<%>bjDUmFM9NQ3tfH12sz zfQ*X=?J`f3WRD#lY|VCSs;LO|+6>#+hVm89?CiwyRs!*f)f?rw3uj)^88}KMho=s% z@zBVg78jk0(wn-)3j+6v22FQTaD=jc$)wgZtqmR^w^EqZHRuL2E1(TCAU2V^Dpx12 z^%-eel!1vt5(M
@C-J0r6?iU04_Aynq0)*!X})P(xZS z-maU{gHYu;`+~{oF3f-ZW7iY%;~81zVI2h3?X0DMuYO3&BpQ&Ug@7s0o%fB^2c5cn z75NuwC~xPY4V_U%X|q7Y6MBK}Mbco#-6R20u`%dl^>1IEAMXM+1Oss4GdIl`$tE6u ztUNL5`SgK}kozS;AJS1@d7#iy7XeBRD`u>49O+YWnF%A;;z)=MLm6bm3lkn%&7b+B z_faumcPE6mOE3A0lC)E1 YIeuQcw1>HgLbwR zWyBWf$S6 =TpId_ Td%AH7Lze2)r%6e8v1!*}I` z1~B#g2sN)Sbe&IG_r`_NodC1F4qCRA>lK5v5vD&47`uO1>JNB*kydX>AV~J_tV)J9 zs7e5e5}i3WiCLf@g_Z+@$#e(0Z%-efYDO%9er-Saj_l&W3 I&|9h;m_TSD1&fzi zg@L9cvHXXT{nIdoT%%2Qq7;zMs1cOjnq+qcK=J%~QLbOMUPUucW-{<$MU)W@jPHrI z863PK*h$jP1=MJ>VItpRG!FaCVF_-2VK{FB&j=RWHDl26&Nlp7?+=E|p!880>vb~? zkt;-=r%=%>`ACw=ja)!baUUrE_ZWjk0uRgytL-td`>X%i-;*pkYLIzJn<)Y% *h#wGO=^uSs^ozir|Ap z)61tIgQV7bL+l*jihv~Z_e=hs$=}QMw@v uLb$yP-3 RqZ<_zj#Xf$l*kTaeD0q!Iv0wps1#UoR1j6I2RcK zrItat+w2&93=>rl<-#y%aa> 8)%Kf!8K4&p;USj9w}*kNibS{)6^=g#(ITJ2X>DTcP|{g&Rgkg~Rh=CN z6pvy5 LF{B4fsSfW=O;E-zbEqdME EmO8O8~{34VK;e&X^A5&Z%Ai>a0k8emr%_?3^tQfVguTFwllH)0=3m5KT;G%{$U0 z)}8j?&X1s kd-dqR$!-Wa$ z-ZOcYL3=MQV^DZH3)Hz*gBFo08Q2jk9lZz73&96dRK!NEq6mF?fnwLA#Nw|mY5#mZ zAe;v;CjSa_PE}jcjb?$@D?rvkV?mV=Zy;&^=VyO_Fh@BAry(=jA-JMG6WiUz5;dS} z#%^mT{-{0t&%a2@B@L&LBh+qexgR+#PXxt*1T~Q%t5kL^a`WF2*?UMxZ?Uy|QMd1i z{(#2`I3S_QfdISBXO@4HU3fsPMC~_ot0Jd>m>`0L6m_hX(B&}^bo hw16 zmHi0MN_Ny*0*)8q^WTL3_Tj<^RVlM}g7^YmzTDlrUwFt~-w`GwS2;};LU$=_LRjL| z(K9a043BQyQ9tU!NTU8Ip5#cWRLJFzUnO{&kx6VJ$B(MBk=^j1q2Qn*d*(2l8?d1= z5-_H^vFN+&v9&n2n>elL fJ56T`-BSAZPVelOVR<-G{N+L5(Nn;Z$r-UG_b{Z*P2kL&A%wa;I%x848 zd*l=1K~Yi)N&5<>F_l{rX|eH=Hi>9-KqjwA_?*pGLJ@10Gyz22>S#PO7bND`<}(41N;X;9Zwf%^?%)l-F$rp7`&tniwJQO)gs(m7WCdnDhZ$p z1NK3kk7*~UY8^fF|HMGYsSFg@C%#G%v#A#x?W;=T!9^aiM6cW~9~2FPNQ3f*&cP!4 z_>5IT bupj77rP75| z$*g!sR4Pxym_rx{;GxF;oPYF%iYuA0A}TBn9wT;*B(QHaUsPs=5gP#-n@ix0Y(AdR zLBnVfa1$TfLD2lU3z!Rj9dsa<;M4n*B+>HH l q~-5a1I#S9H?`OF4_i# eZl=tRSCJsbIE#0Vk-@8)I_uJM)8g`HxAF+a-&G z(G;htx=^ o4NUp1BrNrfoo}91kpz!yz}|Tqtbfj86tD;?f96xtor> zwtHUrtGV6ZEvNlFDIay9|DwHV%M$$h@YH$tZuMEv6lmoU1Jj=Y!0?oEeMjaypHZ>f z>qsqM?hHFCa`dg~KIc@nQJFBIFRu!@9A !_-_e_t376hs9i1!?J)Zcso#TBX?_NJ&X|nzTrFg9=E8uqo;8PU%M2bl$l<=lMO) zIlq1H81G;2dEe_8jDfP*i@oNYYtC |*h=%3?PHR#vo&P8)2{=R*6^asnuv6Q zDuNhicUmZW+V8NU2w9Dnuqr3 ~VB?_Sxd>1@g})R`>-rCBf?TqEyfyTxbigVn8|B&-WH}mv>9A3A%P&+Q)W2 znBO|0bRIFkdnRie>t4;{xHf1x449Q#9FIqoyeB56hf5uwaG^Eeedvi-r$3cp;f>^t zLpuoW8!X?lCNkTv>Fct3#{bt8`(85i?&75Ye$~(=OLa!Rp{!NLP>#lkRsGjzIYq9J z^1+lyu*nU+A0>T7OZZfrM^?;7xFj8DHTunV+ZLw=;L7z5on#&0d*S5ixLAyjrx7PP zqPeopY=e@_viGcbQilR1uN<|pcN8*2lCI h!4lvP{`;;Y;e5RWXhkX4UbH?E`!t982r^Tu1b$Q_7UvB(;tAaX^FbxR z;vf^!_+Rg$?7})WKHGV7$ZIj2s}TvUa5ex|sM=Y})hZs2w?RX;Elg4OMm?TY7TIaM zNHNh}I|te`_kK4sp_p;UCl%rgf_bf)_WnYm576^c!Jl%U-d zS}BRY-KRc}0MD(+;XIva2(sX~_%Pw>(_yl|ru-it!ALV@5w#agGPN|2J_>~Gr8%6e zW}DJV1_pUUZB+ jdv6*a^G*iiEe}_RyAps$t(Nc`Xxw z2H2Yh9weVmE+2^FU8KIJkY7%)SBl!MyMnXPvyJhOzx=PAYYMDClojw`#_91<)HecA zkr%x_OF*M$4ah?aXF`PEriY)p#ZEU^amVGdK+P)?P}4Z8D9s&F9Fjc`+O{-6y{+G& zmHK@KsGsqZ<+%aIXjX-XH$>(IW??HYp5+Dp`^2L7KEGaaMv-Ex<(@$zDrnRk^lr%Y zpg1{k8u(DXIG*d@wU(Q22~~!uhHgVSut ETn< #nG@@pE@-mWa(HSxKb%#o6&Hq)L(^odgV$9G7i?MDglMdZ-d~ zN>+k#RMXejKae^FQQ@Fo^9>|ZhhF&z3JC$ *gVs*=`D}xLVr})%DrWr)Xe4QLukWDfAyWc@LB#x4$lo&_hx)4U7tOlV4 zo`AvNgEs3#5O$1Rc{?{9$8~~$ 95Lx 6j zr$z6tR-bR$^!TN8L~|%Z@b`oKGBo?8PC4N6R@pIQ@f_KCC1KErW`*S=lLtHLkIss> zsSyNJWBv9E0N>!50-+C+jC*$+FUx5;ptJ9ll~=O`Q;K^v-c&`hI>9);#26<+2_{rb z784~0n%3v*LGGT-;d4l (RA| zP&|QKTR#M+*#nMfCI$PMAU@}Tyy8|9?7QW1)bmJr@?-z8kp3>_lK4wJMoWQq$AiJc z-x-C=&$q9KmjOdpeni(^5opU#M*u4k(+o(#`1R8NCgJM39wdO`1`uOem>vL@;oZ6R z3j&YyRyGdIB7m(LP9{Y6Ud=7;Zf7_~hJ!%yjlv3IL?NXW#}QokNDy7yawP G4VPrDS5J!WxuW %y|pc !Wx>k pbKrU5~uV3 eD#!<+$ zJ0Z6h92go9pf0D%PllVqW!BdLnBBb?a{_{-GGkpxf=d8a{0MzI3ZP_Y4x(}Mt~lP+ zjBq8=-Rl3sZMxBo7mcZx-}k>(U|hRRCygRR^SNZ$VG6lTtd-8GZ*L zYT%e17%b;FVdt%aj)H%U$bb3A8Wy dq=S;|%-@hGP-$CjV@Otjj^P8b zt;OS9Q&E;vekcOBTWl`@{ilr?fP(y_o~zkcI}R<~4mhZTZ6q%tJ*?5SsX5b7%$^!R z=NAOu3vl-X9-F~m^7A=BJwR`)_V@WM)ciU^N&I{dJbjOmZWd;xbsyM$dsvD=?Isgo z1KB-+8<=dcjGa;(4^uTTxluGtay0?K)52NPkQJo$3pQes9n4<13>2Y4p?HxuR2BK1 z=s^M*8~W&?^RQG9A9bQ-fZVr(81bKGmj7*`TH%{%p_Ej<11ZxH1G4s$gaHqRwjI`) z8DCu`(j!R)$Z?k>1+5~x(+C)NZBOqrDzX;`f$&uxgOL!jGcyzLf!I8WU;dZ%@>g!O z54ue2Z83joVEprrBvwIR>+#H6Ql$AI !HYkGDg$3#b_Qg-P zLEXTuHng-r5cO2X-a2Z{6MWx3EF|LNfJ!eJa^d|Iw)1gcOMttcWuBH9sA=Uf$uglg zfA;Y-3vz;+@Dmi+@Z9_KJm~r;f3sPOh0{ZDfrm7ApkFY8egQ|$faf3-k^)wY>D6T{ z{+{_xih95R4X-dHBpmb!V0B`H$SN5&&?l?%F8$^TE{Jf7+VJ%48x?O3rJUi(MKK$2 zpw%xJ`@G*el8cU3O>IEA7VI?`Fbv+KZS%Ep8n?h^Pe%Nu^g6}{Sswp0LmNzRv2@DP zG*L9;32_nhFQOB^YRC?;6*RE>v#+2(`+Lv-`v6H11#pN>+h@%GHvQm<(1Sq07>Oy@ zk)3cQkHGOK`b{3G2n#ki#i~;9pZX$su6z$5GGNQIFUYRy;0v1C#14MU$d0OB3UDU} z70i*yuF8&!i?Zpbq=JDgnjD9aEfgA=$U^5{3@`+Gy;xuW9+khNLZDy-NXYYFpCY?z zr34rPY#~X)zYgzz-jP`-xD$8XNMxXG31Tn=PLd3tk=BehA=pP~&j0wyRH>Aq`b!G{ zT3df6*605p6Z>Z}e?QQFCKH$H&z6h(=ln!N|G(z^#2 96S zH|e^M*BpLwt6wtI_l2Ak`uA1`20%agV~F5V3{)b^c%m%IOAbo%57j|Kb)py!b+RF; z&k-H#a78{Xn>eh0Ml65DhYq0 $8ni4MDM4F7>F zaT+sTg^aIB@XPXq(u^#r37NQ(f{VZ1_`ozbI1c1LY~ow z!C#|uZu)%FtKtKlxm=;Z5oCYf;k!hSE*j FRcXpV1!+0;Sj)h?%KgXD@Rkm zPOPNHp9%dzUCnc0Div0P8Ad0rNFUDzK8X~~x*F9DLuOxGlHhaNq(knkD=EsN`%m4# z+!eDGOkW9s`ZZnpr7xcyI2T;f$ev`2pEGq7f%a!Mj`vZ+SVN@Y0|ijd7f+f?eGJ@` z)lLB3 O}at5u_zih1^D$lVlXYCkzBuT6v$ zjkBP~$acPYpMx8;TpS=o3M4SxWW2kxa7
2kBZa9(`!V*I(P>?k4#(JS~i&0VxH|0OktkA z1SvpfSMMO7aee?4P)k5F%rv^bg>DCs-Dy9Q9 e6_$~l@SK1$b>Ph2#`jEe(6U3nyJ>`K-- z@ST%|7`_mC<|;7WK!C1@u? O92~| zF_bCLD-v$XT!VT9ar`#ZKCYlSZdD0%qx%7uc1T>*FN52pQ`XbdbCqo7NJbm911{k% z<7cK~h}aF^$G=PFqV7(YA{@x_r4@GHBv(u|k*6!*o)y8fWeMEs!uuheXdckYaR3+~ z<9r6CgqRSawa=)^4x!&Pfq=H#ulj4n#?Am|mFvtmZk7%qt}-DgB$G@83?Ko1Q^!fg zy*w(H;w<`sJ!Ue^Hr}JVeR|bj_>gT5H=sK=D|rbO!6Tk1wV|azwk-kPVTLcv&{>iZ z3Cl0G-|x;)xNn3(hV90v{lLH@3u+weSne*gnFBen9=~*B_qidJaW k-{FnqX)c~j>@@-lxvLQ3-L7` z5aA;&C18NpU@OvAe;pP7JepD yUijwC^1`Fb{ncL_tr z=#m7)vIARaDT)KZ9`yj{6AZ_t!zF0|X%g4uahw>`qEeyYZYcoYZ#dUv;V>J_kVLd} za)I2Cq#-eX^(IDpnYRn3S_69|($J^~GS@0y9*jqpY`g=VlAHc7kVb#G;5Fk-!F_sU z**ZiX1|2k{Cr%D{P0L-W8d<<;2GL_b$|8;a+L?i0*>KVm8)Ts&DYy;3d!PQ?B9av3 z&n*5~sDGZtKikbellR{p?>{^0pF`vS>Z2c@bcs>x-Lo9^Ol%G~CmRedz@}d#0>Hy8 zU9sE@)c^>r3<~s=P8Pqd-yl>t#NSbjy-&9Z;K}BY;6C7#kUD7*Aq|m=(L@PR^a>57 zfAh-#qa~Wj8i0dW0m-oE;(U&{Ru BjMx_kVm#`>_(#{8=vtzdRX$_zpJSrxOkr z$IIEuz_e`@Xah`t>_AQ(?Z)04r2Cb8)W}dYy9_8Dzq$SFK>N^P>-%yRRE%8(ikNcQ zfav(~tqsszWc5Z@fEY@U@0W@1AShdli0(AvueQ>LDtH6f^LyPSq!dvHSc)lH3gn?y z30SH9fYUYr=_T@bp6n^ugL=CnWYFbwd ~HtZ~!8c^)@uHHB `Fv z4z~$G`_cg7+C4&(lUo1a_5e#&n647#A}>Pfr~)n~69=?-csPCmjt_rr0Ug#J2;I}) z3u_F>+yfyyUh-Ra(8=j*NX#*(y$uqA4?RCb*`a>N C}Xwqb6XRlqw}35 zQ1vdBfS{;b^oYtnW>5&oK^!LYN>4#{G&S?+rGOClV|}*e!&}4!HV)pDUw*Ct44X{L zls48I3FRP^;Gg+iHxB$6l4SSM5{~yka>KiE3~}dO)$?I`{5CL{RC2uHF=M|;bh+*! zmK5g&pc{8E^Ld>eMc6!^(s;s4)9dPcM*IV`my8cpw>)m F zh0aR_nSo_$l(lJ;nMx~2v=Xb_&Q>-`Q$=Z-AVrYraiW5zrmCKC_QEq`k&ulN)hBf@ z(@bliQiJMNKZZnAx%Z%@1IBL8;8FkXF@L4!^UWzb74n5b8wZV<&s{6m8~rUQP=cwH z&nj5)s6H0WnnM5UQMr2jik6cI-B3ae{J;KXp|>o$o$u1t-8haZX>UY|F=!*^X?x98 zuV%#$cWZBZrWYCd{){M}zOI0D_o0PaPE)|V@_qr}_7&r@C)WUYK2djmQcN_VvP+M* zR!-6-c;+*VJEDxEe|E<4=D0;6@1TZ3PvIfx0|o83v*hcB^1qY3TwoAy%jy9f`Re0R ze3R~kSd*TlM7{PiNMP2<35bg16m{6rDC>sMB555`^(OxQbU>q{|CaE^M{Cfpb{I2` zzS#@NfyDz58?$W2>y*c48jgziR(&w;0F09}fa8iq-5!v9W^|`iHqWWa{TD5f527XB zEePWO?-f2M9dd}4=n+9@qF{DdNqwIM=rMeWz
`k7* zMwXRUDnmP_q%g!OYG=xRf!bT4AbKGk5SIGruC0_?w|!E0HD$Z^PDC4|zQD2#soe&s zW`r4@Ksv@%)BE2xC{i9WJx1z#Ec3`fSD!Ap`|Cv2FiGYe9Ik+Cq)=Ch_PTm=YY)WF z#Tas$u!;tR{Ql{7mg*8T@EAO{jejExkO%UB(dKGCkv4~}&4!!4N!x@Yciga~U43g2 zk1<`s!=~}@Q3epl$O=+aF-5b&`!IhDb?S{<4rM&Rvc$}QWD@oOm;S|nSWg3X6H}Gv zPcXJos+}=hw2Db0cd&iEe3M8~$7jB_2OiOwJ^N+;;|-QM=q!F=pSD0YTJluAU>9Zf zEoDXu+k6gsQMX>}kpFvzi;9*A=ogy_rMyU&+MhT68Jz!7D~Du6LoQJ#5$S4`NU=wg z@p0-Nk3&{GTPXm=v-kCRA;_wA-9Q=o&l~?aI1(I~xd0rLr(OE;Y5eW=?e%rCAt6n{ z|JXr#&(ZKJYXe@&`qaI`0P>SHP{aME<^~X3@pc1vmVPL7E&*yII5GU{(|7G!skH#U zYJac -TL|`9KCHbw-vgp7!qU^gyp~h+^0-Ht@~H0G z)$=pq^SyzAZLh;BRO6<2NSFwOSeX!w;kP~(;M2Ee 4m(OAAjZquK+aFG7&1?yCO9 zqW()$_nAyI>50sqb@t6%E?6F9Ar4H>DIf3fD+6VpE-#fJ%DK522#9wc7`}u_ubwS% z(OP~e(?Y}bmAmH@SRXti4zGsD{RtT2w6B2Ay1PmJC 0{p+&UWH04e#D z+Q}a`BK>W5Jt2PbA$(aB%1`!-VwHUA7_p8*Hg0&F%|?3P;ums$xfd&%Kne+Q>1=Z+ zA9wy_rRVUahE&-7<>=8Caa}eFTl#^QaU#8fruWE2w)aUkf&PnXp54N`)%`Wvw}xjn zb#gvcJ(~rZ_KyK_ VW4?Huzv<5 zCgP`0hRaP5>*t4%a1c45(ViF6Qk{alBOAnn+&W@@-&-iXJ%r|ixQljAx!ojv>ONy1 zh1}g|S3yO~B-9j_R~ygzEP#sk8tX2A1-h2@)6Cc-!{k?C+va5z(6K^Wahq1pNNSZqY{!2uGT$SU&3AI#5iob_z<@ov)g{M{ zhCU1!m3lLc5k%L4p8)M|6A36?aZ+wK61K_4C2zSrj4x_%p zTo&6SSAoQxQJKP|hRtxU*4t=xNH(I1SUuMr0!hj|XcYZAXCSoH)aq9;^X#qzab|^$ zzHS=D;c}4E0uwt^D+gO3p0{mso|&^1*(E^5nH<&!EE-n-Bw-pSRtMe=$^jj%0Sdy; zlb>aETw*t@tiPvlW3&$m&q;HSXmTQtHkG2ZENY|Int|j8styfV@h`8E?ca_LZ)6Ow zFdYM%%f? {Mp^`Dm*TBJ!It6@Wip(#_Y9t&f8&`@vYJ+=LDtex8ielxA za3=H&t}X74y!M1WN*aaHViGt8oNNHWqI1tg8=SEG6@-|+*f1Vsq1}0L5-K6;3#kf> zl@T4biY&z#T|Ey8=t Gooo%QefkmE^5X_kj$GLEdNbNki`q}o(H+bAezgEA_JdT} wO#Pf?Nk}Oxq;UX-0P;(L-!A zb<@+T+S97NzECfRYW*p1AOV(H@!jqM^%Dm^rKN2FIcmh(9uRZlKE(}q94-d-+rw+8 zyCSxiRTTtZg{bfyg|;f@i*Tkz^v{BEigAF+1{3@HuS&MJfijgBx92?BOe@->W4HjW zI}oDzbg{30=_v8)0BD;@^2t-J;YX)66Ti&BG-;A_n9P4U4R>X-J_Cw8b@c3Pfhd}j z4cs_BFpr%kChH4I-@Y{hoV!QM-WSURwLUUFOlp&eH6XzOI}lo ZC8*D>zSGHnbF1KHaKRG4NbyM9& z2o*IhH)ck|;^xrrD;I`JdsDitq>kah9#MKa9K6=l{Xus4CQlJk2rcT#KSHIiiN6Q7 z<3>>~+NLrB$uBZYA=$f>*GU(xOuWuoNyICq>$qzyfMi=wHgJfdI-T~X#G9|bL#w!> zR}O%_rZ{tuHZ_LCBa}EwZb*S^45#z*eCBe>+XJtO;#D2$>Id2o*`2XFEjT-M-6Bn) z!aKjZ$Lp^&2#R%gkgk1iGiX6vBE&Dl$#HHSR&cFxP9g%})4^hh`2;HEhCGdF{sz$` zD<{#s@vAbs +3BqT&w|bfT*3PhJMb>Cdq_8k*=Vf1BTZTluei&6 zOUkGvl;K_THI2^G@sXP0%X_;dbO$z<2R2$vJA+*ixLAu5s(rR4@sLsqT!Muic>ru( zP%Q$kWW*5rW@D;Ir*Lfv6Y|f7))}Am??O6vI`qTIBTPw3r1gPEk;jm%nza*Uw0#rS z<_s9A!+hFXKhkcwqHxQ6m-gX9!^R^BPLV@*wRkd#VD|bRLiOZq4*%M!?R{L-GQcG; zO_#F3S(vNQ`bpT)nItOAvI|wqoNRJPng|_3!d!N89MGd^e28#_0`yaF0X<7rZ_Sn~ z*9=ARDmt!E4*6D%S33QuaY~#z5GzY|(R^qrZ2N=g5IqpZ @4!&BSj!cl8l%ukd& zi&h^v>PK(QWpK)HLGl%CXx)X0QYqXr!3&Z{n#u{ErDvMx-19v*Es9fqLJ(WlUqYj1 zMIN3*-emjEXMU6u5|+!580rDX+9mjmLKDRE*aB!#g`Vo!qxo|$Xv^YB*hm>-fC-a^ zcNFHF%&h1dnK+Ns>D&wIvYDeo8kx(+m0_2cMjOI~I86uDpp?BKNq8)qc!74!l}l4E z&PsoC?VXNN0&WYclJMaoJmledP#~oMO`Qjz1!N202KFg)xYT2-oz310R-pO@`;gt$ zZ0clr$n{C^V9dT-kYOTuzJK({y7ftM@|WY?;EU#yIeWS_1c-BlPjdqdOwd2ixpT-Q zwbUF2XuxSslY-y>Bm|0arvhpV;g~n*anp6?5bXUb;!oz@k2#5nFxGU;UE4fL-B^mZ zQG%4`)Pi0FZWmWP6~BD$Qs8vc80Hbu%%yi1N0yfOLr+(QsN~)7MlP$np^dcyNx_?} zUZeio`7WQI=}O-|vmUhvm{}kvNZm zb`Qq%*%JTZGnuBnXMPD++Vk#C?mc6tCgse(t+1+7@#;BW-fpG _{QO<&esNLQQ@_kHxV#StXMyBxykZXeo0IHC4(8fi69hA@$*!Dd zB>tqOHr=mL4Xlkl IQpo{Q>n+IkK;bMbLx-_>(OTJmlYbM4AL z^nqTV)_9!eo)wLXZv$;V^)iLU=(_!~v35x(Z`a6Kx6Av%u)+21_SUYN(Tntu$ZJx$ z8VayWc@*P1_^7pE>?i|^{^%Io<20DxwThV`-V F~L1y9`Mo5y_N z(b|GsJ-O-Lb5(3=U`3Zs7)LxibtNB|tD@R%K2+NmBSJ9yc3V!1pEZc@JyW^`R(s9v zYnVP=FQ Nh;0=MC7^NssNN3~eCxx^h$y-;$aGripw`S7)-N26bc z@}6?L_Nh>bFJT_GhqhnY)woKvclg{Yc_G;~5-;t%gU8)NB*8vhrUlV;m!Hob7FO=f zn0$;ns8Id&)Z}wZF|A&YY`L%5x@;}&dv_Sg`rW`Uw>Q>j#4SQ!zZ7MDO?iS)_cmE> zQ3K}!P=&KEE>Z&Ee@ouTSyTPRYZI2*mfof273*e8E^KSJlb@F^??g&!j_o|{%+Xa9 zN_n{xOEi$PE;3npi?KI83e&PTP2j5`<_ol)K&vz0@$ls3b~FKPli`P>9H16;@%Zyx z^vuySKK9EzFH+O)JJF8K9|}oSwT_G084fRlkGT@yLW}9Q=4w=21E^QR4AG5)Zhuzd z@=Lj$(9TZSo!xROdu&{Bymv%Kd!L08HkNVZSi#rC_(LA$i?^NFZR*-aF`0#@*++yc zfKg-4_laF5TKenVS>yE(RX48we7;4iApOWV#l#|;GOt8!c6Rqrf@sFUkj`Md(!!fk zUp?-adgojQy8jp!o2AZLjE>T 9+tB{C$LWY& zBPrV;!w+HHJL@m3z9ukce0h>>5{}p`7gCP6Q~PF#i5;u$k<+_J8&_Nd9)Ccnb`|F1 z@DmOhXKZ$?_kvY98U6m`PIP(O%rJH%8`Io%-!%da;zmBo^y+yp^)Q)}SZzJ8zV(Wy zENYYbg>ICA=8<)#d|ySx9?$h3k$fRNOb*$uX_s?&v8rqvDHU`hl!apV9PXV(jQ$ec z(7`)t%~LrM)Xc}8-RA1AJ i8!dx1~F_coN;b q9M>q!YA0jYz6ipBuLO3P~?RHFm?E+Bzx*;RX+O?(DqkQQSR| z@(c`Fju*7HT!I@4Bp<6To2*5aJA$B`R!f ivG6cM|bq+|gCs!`CF#blz*( zcFa8i(JcFG&9kVC=%L;t?iP#VXK96&NptSZHSTlm{i9{`%(((J?N2DGTBEzNTV_&+ zOWp3|>(I{LJ{lHaUc5x#Ww37+bq_#euoYB2>v-a2a5uVqIr{oCV$KF#d8s=weriGN zUBXBfX2Nh5X0uc~PSl*^4bjk3!KRbBSr+y}f1I3(PI@%Kp@(C%-mv_N2ob+~rA%TA zG=xJ;O1LjMB17P|cWlu|=X^w!Vi1*&3|MciFxTSlUz??AB|SXKRobbi>}XnSIzA^v zaQs^Hc<7l}UO08|Ft5jKA<*hx?Y5;Qwlq^Rh2+t%Z_`Ta`;O?8kmnx(j*>q?M^p7X znkHlYQl|Exa3453mw1iDJbEFcv;kjPmmAae1ZHnzw5@8u1Y2XYlV!uPoJ&D9kHzQj$*t*6#NoEIQhhB`9rmNN;kS z1a(X-*sNpBRi*JYiIJTuS|T6~ET_{?9_}v>xJ#YLOSci*BWpgANengib7Gl8OlbSI zt9FyugtiK!8KP^KZ(rP!rV2^iC75}AyzDB*cG1iiX>&O=Fz>h_K2+}Cy4>QKYvJwC zx!g2!Bo=h4Jdy>ps_uD$0$F#>6(cXp30um;qwe6xK`a`gFUqe3oX$4enxV^E*zBw6 zm{cFyem6?mov%5ou5BRx?7V?X_ts{zJ5y+JLK{70UVyn9D-OiF;==FUtUryUu8`!9 z%{O~ol61RD!?sgBmiTq@>&HnEFGEcqRVJxhUU5ydxV+WEQdasifq3{^$LUXO9(xh8 zWyYOjisd>y@einXUuUL%qn)9AZx1JOHTosHDF0#OE*q?ct%jxve&i8A88iRBLc|Gg z-Cw7r(d%jaJMEG2ML6Ym;JVj(Gg5`_qxUhv=E}3N6a6LBMvpzs%b>5s$I-@jT}HCf zuJoU+PT1B(WFLJx1%QGWQ6HwHW} WcT)dwy2H zPjH7iCL3OJe0pZ%!P$)2Ln23VXc2fCB@+-nAbb3|XhU(aR$w$REY&vs5Nd D z`jzX&&x_57^H=LbZD)mSZ|o;~?%( $ ze_H)3VsML_ONhJni<4uG3;E$>E`_g_usBXeGuHD-GP?qT!}+g@Lsq$o#M^-fBO)uw zp)p@z?8(uW zu@p-cN3;+2M;#~kxL(w{b|*S-O}a1Ftb5khF1yYMJ1->&E_;}4b;iz|5y7lqS=k)K z#Z7siC9dP_yu-8LpH3 S>IAPINQZHO&+ER{m!d*ne&VKn_14rB&} zwkfm U@*%3?k`e&eQG*irQBNKoV9xE39y_)cBN5SS-gT+4x{Ut9H?? zhl?ywY$DnxvDnqU$&RwH?%+U}!(Fk $b6m^8DrBNy5q|t$Z@HtJjLh|0f!BzA zmra@eem8HN6+@_bpXYFhv}khhFGFwRB<%IoM=X*4gh{&YuCCgOE?Lql1mmu^qw@~$ z2Cj1|3j#^jhr84_VmTG&rf(mzu K3CVHjk zXod9S%j+sEl!y8qi4P^N_jdoBw9u~qf$l%`Zm!;*OY-=U;AFpTy!4!=zpZN&o3%k$ zrbL-i>9(${tvO%0$@Ggf0=lG|WAtqHyu&{5yrxMpWyz;jm!-o9TuFLC`V~#JUswIf zYH^nIY>VsIC>9w4lys|$wm3B3(Kr?74_QwibeklPy#EG!KSZ~TJ{&8Cs 7ML$eMK(pWU1Q6J~rGry7J0BI6wB>A$!Iy z`fekvpYb^>rgYe0e5u9j?;}nNype4uKB!mj9 bh-mQqek#*!)hC9vHlJG5j-M1Awz?%_ z=af#Yt-FRujJ586#I+pzXuEUNl^%pBtA2B|1UHzct1B|@c(B4gr(m=?6BLn{AG^;a z^K?PPK+NP=*d@zgtBG5zCqmQDF2B)5uD=@dDGtp@^~sm%JzO+K4BT9%@0upYpkn=V z^QMh0?sN@x1@l;ZRKeWk<#SO3$-H9ux(eMqW53W)N^vnbZ$O9LbDA _eN=` z@%dMh=r?(5Ob(4|Cqj -@fx!uP5fTd|Cyv0zFl#b4Jo8nEN2t~je zkySAw>Y8maUqA;Ar5OByV7&8XU i}p&2i=IOXRbj%An$ z7%vA8zn4j3A^pA-y{XZsi70ba7k0H8(H_Cfmr2I9D4lAb*!lE8_ALG|x0{cZiA^v{ zbh`kQcsw2+-7CRLb}5N)H3>LXbE;|Xc(tU`nb|2zcZ;F%e$NtQs?d5xwd;g?D= 1(|G&px_sw?D@h<_qwS9I1OJ#R0)KCai2bYV;s-WIuF8rnSE9JLmr91+ zlRys6;0KM;VG@m+?k4k3fA+sEWw0^({+T-J_!LySuy*?A4hm%HfKv-O!f>q77!h?x zn4Kz+nB$g>zd@9zaN`>?N#97`p5>p>K{=RFfrT;B=*0Sl&k5yB3pv&vI**#PkVXe+ z+Dgm_@C#hS4df-Ni8y*MjQ%5oMg8+HA3nh0{~8{Umi3j~hMq-1!o~L&X!KQe)f`(H z`Ua^r=8go6uUb!xTX=MBWz%|h7{^Q;8>l0U4^oA!uyld`1+`O_)z7$2Q6G2GsOKhk zrosHe=BP*Xob^tMx=$KAcnpng^E;+l6jd)Fn;(LfIAt2NVBA^wkDFn?STx}&=yXxv zwIqu 1L7xvC8uE(a-G^FPF+FIYnI;#pglXxxEo2rAqPXV)dwbTSrP}q7X zp0mjT>v=8uJj`WP>C6i5hYKTEYAOp^fB7AO84*j#e`2X-!DGA>tezdV93Yc_JS_95 z$5c2cQM-k@su~X#EJkcHv8Fh)iGgc>BT1u(qt0bILCn+b*OHW^D-bMqz)S+2OfeG5 zLi;4E-5YspRu!?wq>gwG#;F@Gc?yrC?^Ma6zI;(RlC3*iHL_#oKh4RNB;soKik#+` zz;#uM*1}J7zF{aQpw)|I)MV)2S=wk}Sk%@O8I;PX6#HiP9fk%&=Txk0G@))MfGp8J z@@^$*#|Xf}vw6K~bwBojqHo>3)0Ee@uG +(%PQPOfC&Ho-py!TJO5KqJSF`hks|Oj z;l&T1Pn2|?w9Br2J4=!u7jVwD=uglI8y^_Wz Yoo+~MGS)ijstPfP+(dbXNxmE-x?rd%KCKam?XJ%sd*-(JjG zH`yedqSl&6JRKvks4#_8+!>uKLOE~wWAe!RyoUo2r$9tNr=kn4jKH;6XM@N)I@f;I z{}63`5X>_UgSjr5O^Sba=6aOC`TT*)*duR9%sk~yrf3-=E%az>FFM9y?3yaZirlfzESBOU=5WU*tk`VrB>ro0^=F4fYwCEZ=dc`lu{i=Q_al=gH11+O# zLE60Jef8bhv`4PfODU7wht}+jA{BU?A{-amv<=3 PNO$IIN`# zZ%0-z4oYJMI8wKN6Tx6S-@0*NeB|InPO+f!alXjMnEi)ffS=LeXVstiq9={P@%%Aw zRO%`th_BqMeGpqu<{lEM#XmR!E1eInB0Oze3$#!455&6epga5i7WvB@w@FiQevh3y zEZBVSd;LKFl|8J+!&T)2uNyn>ILwAg90(m73^|?ekG!Y0C#Qc$&!Mo98C$rrV!?b! z_w6yGvx-CftC^;kUGy_$Ny-#YkMhzhjOSo%t`fSBI%qyVLZMqB)X>F)y|T}5H0-DF zVd{YgpJEsC3$I-~psdgc-}|6xVG=CGNZV}#)3n=ssMUdu3cD5KtSmxLF=~{_VE@#M zB?uMgdT!D -CIp* z7>wOf<_E&V@r+5FiOV$VJq=Vu5^$?D)-8?F<~~cxJh5 k}acV=eyDlg-sF7>?k0({4oc z?Wh&{Z!Nru7qN~WaK#SMcnR*qL78O5mtoA@HmnHUzE<93vFKHeyuu}`?OdnbadvGD zj{N)o`S8VK@7(PwCFbyPOUkU`jt)u6cU&$!Y_5?*9VZK|Y-UBH>0Lz!syL(+jV>1c zEKgY(b!`_L649dJ@N3^I;8D^N=t4;n>Zs#8Y)%T;BDu58feaYKWc!RZ!dVRCIhY@O z{{C_x_Z_Fdp*O-`3NA~9#`X{en_%uL>{UGmA(nzHsbqqBL~=#G{PEcR_qtc`eA#Iw zEX{Hs`g4hZ{T{a?rV(Au%V~^SwE?{MUtf9(5?m5hM<}0N@o;^oC4Ho%Dk|`M2rZN+ z!~G?SfGrt{&w@cCPdM~BB#O~75q3a3B&&)VE1r&0LF1()x|GD J z+a qQ>$efg$e>tzibjGaNvC0+PVDH*_6EE!ijZDO)fK1e_ 046+rA+PVzj^DhH- 6`&P zrUJ6~qjp*YsP1Lp6o>O2M4UCRh=EI)_!MMtQ1=Q@m#hII>H3XeTDh-=u7Ci9mJO|( z=e#$7EdXBBwHqX}S8v@VA;#%wbbgEH&AJUhX}(WjV| <91XL^hm21MI3eP99 zHRkA+6P;mmk-=7LNiK8#sYx2Q=waqDF6C!@r>hg?Huqh37Z&zM^lhHZsJk?o{t(OU zI %K(oW z;puaIm}{&{;CLeoi@kFpuySc+*&ZJ(F669%jK jJ!!Nff z*?G(1L46F` eOvgaz*GG0huv7?d(`A#2?yN%8Z1;ivkyM366YK8|5(MM zktk7q^e|WBz@PSjz_j)8;VoO(&xHb|J^9ZDrT&qW>P|RfM=7TxwHJ$UL)M7nX8syg z)tQ=Ho$_u^2$&fa4}x9*t5dFkmdqAdjMvruAo^8;Mq?$wqIOvoNG|T}f|L7I#aej9 z7v*Fz>(-Cd)_~(?2OM50U-RA@4uimxkQL#aNmrb)V%f27iCNfbJ&u=3VbTtSQ6pUc z>RG>LKU(no`HhGjdA@QW8us>r9R?qD#rQ^>#jLvp(18Y?vV!8pPMTwCSL^K}k8&Xw zme;&=M2Q?VM`?)bGVe?2)QfFgJ9Hjs xUC z9&i+KD6m{Sg{)Hy!cM?~5-e>#12#h2n6@Yg2pUU}^AXs+H0uF`(sOc!6 mFJPNib++4)v)TMiSZT1y?g#{K_Fz*@ zCj(*(TVe&Byn$NdpZ>9_RpFY+>V5t3&-0F4CPfunC12n%+`{E$Atd m27I&(W8nCA2h_I40V)+SV8!av zWd2}caQ}Mk0@w||jBZ7~^mk5GUU$dPZ#oz)`snHM*3hm`nwV~yO)M4|+W9pZR{J?- z2RE=_N)q|2BXmYzr>uE1d+V?1~kN*JRVzM$L z*Ej}9)@|Jz_#M488gc`|lJ{U=?zGpjuxR# n`*BJDcmxfO7O%F^mR-v0eU& z7=)9uS{o0@`BuqH-T>@|U*t4oGgaDpA4X*nPHc3H)EtzSc&VdS_K2Onv6|lH-YFE% zlW$_Uu3!^O+MfCWR6(K#HuotQo)8S&axD76MRo5AJR68JPUUX@y@FKYB#bkh#3w%f zz07 {mk8d{0AJo8-b&wPFke6vh) zCOn$A24P_%CRKScVxE<3>K@j>oUFTr<>tC @_s2eE@p zNW9a}!bP_w%2x33djGG|52=x%;`tSG0kcHim4GMK9M2r(DbhJh+9SUf)7t}?{QO)8 ze`fnDT?tL2kH$ys(!KB(5AQ`iXbvV@7CWlP$(oqM_(ZG-QvclD_Q%V4HuGJpc73*x z^Yuf)?wdB!al?fe0{EX$p+wrURP65vA;lamQZg=XI??GL@ia}Z7CQWKDHK<|HoT7U zjFnN|b2t4LalYvt41znoZKRYeX&=^O85(hn^@kdD-e<+Pj)&a;s2S5ZB&9NXf-Ytr zyMflOjeoys+4zEfz)kCU0_HrGk|{5sd H{gNg2KXCu9qJYedV=6g#Onc8B@M8;aK0Dj_fJRl8|F z=UQcrd|(o)7eX8mf^Ykxe8O7z5MUXHp}6YjWbpd!*MyQ<6v_Cuch~~|6;Dgt0Wo1z zYL?L7E2+00U4 d+`BBk_Ah8W{2uu~u;fZb!gkKLl}IHoj5 z$ts$Ib {s$)XV&m#6Z>MKdGldG$@IbGh0s&4R{P3}*2|`{; zp? +eFDC85r~P1m?bQROojb(&Hh(&R~psSwMGGL z3y2~FP(TEQkSGKU^JJh Q={Dic!02bX+ )1mLwDQBf-?b km%Pf*u%EDk q3c_#vlM8sa8+EPY qtvgsKVA5e6pEqG`?fJWbG(lLpBA zq3UfFE^zh)e}#Q|&OEo&GtyQ(2Vnl?Ewu5opR9DDR4Rv6I0%u}u(rt)9Z8Kez2$C8 z@>SQK*O5?I?7bxryvk;XFyA7i3(=096pyz=U %-6h#} zZKAh8sLlKsaKE%I>V#2{maUtKx%`@*@BOG_5{{3GE!b 8JYx{ zS9Y$Y&6l)F+!?@Kjq;uK`0=lyu5gJdr%RKW_{84}b`{cRI#laVu(Ml|X<7Uf^_Qy= z!l80SdG7&ge>9d8-r~87m)*&f*7D8N2Q-R47NEBl%D)jQyD`~tGb|{AVgLfw5aZNP zGE3DemXV+95|LexPRV1mU*6gMbk&f_u|XwEcHn68@C+X)h-fTpF8-F{%)?(_Uv}gk zy3NOH9{9s 4T|p+`}|%G5`Urfq--gEYwkHI2+%WeSW63xV~)ru(-QNe z`_p)pYIsrCUI=jFyw{r&{0u;u4D~42N=Nl^Vf|0!Tz)TEpy?d6s1sXQ1psunP}oG* z@v>C9$*p@+{{f88xqO4@e15Mx_qEfXBQ1iz?zQ$3;Ub)I}JfWjYBX$1(1P$Mx z8cEAK0Op&V7yBYjfISH?n$FKs?;oG#W=^BSASw> FhyE zCg2K~&?Z{~J-A2_?Cn!ka*w;T$l1>oi?}FFYw02x*5_?=q;>5r^MoF1`Pmmtgn(A0 z%s?h-yZ`y64mwcH&PYVydTx9;B#{cN%7lE-{F?4`{$n)@ME+}l6MITYH_C>6+9X;? z0M~`Pz}ptw*(4Khp_bKm=a0-kks60A+sR8nd%Ok^ZDY>TQXN9zk{iQ5sxhbg4pLbh zfP6%YKb;6DJGFjCNaTvlLO|mU1RKT68|Tya0BgCGqe&qirV(#FB7n3)EGi;(C<-&1 za`z!jmv^u {~(wc}@|}T Sd2I@^pzuBr>GY$^5!B`cy(Yq; zVtEdql<)ZtlwNUu3E^(z&U5LDNm_FmNfBAy&%H-=k5ndDH!nE#KuXV93?|9wYmHH< z?<{IX%kx5<10JYR!@@qOlh7T(g*|j7mA=oIW+h9L@gf6~^v|^cfuN*)#+v$uWOiny zE$b{>WRNA;PggQ-3?dy=Dv?U(R5>sd1!GSNxKToH5wHSTz(2d%GpR38e=)OC`{r!7 z)(%5(Ut&__E8}6Qo9r8|aw%SAJ_@!xGcJ7fxbgxg!HSB?gnXjBSrt9zTN*0Z2$MFL zS&a+}TZwlO3OJ9(uJxL$M!D0U(KYph4kR&w8n^5b+i >JDRjzP@f_t3*fV>} zF@`sprS;*C6;2sL+O|2IibTFm#MpKnXnUMpCw!Wt;qiWw@phY4LocsBM=D7It>JMQ z_wXZ98gMM7VPUyZSeQYMuG`yYPCMxsA8^&IV%R!7V-lpj@3B5L9dkJ`+Ev$!q($J- z7srooqx?s8Vp#Klk&kDbMG;7ZkX^u4Jf_B2d&rKZ3OI}ocCPjnou8JuFQwTY;O{EH z6fb@gn7MQU)*u *O(i$vC{hW;vxwy6Jd;8sfv%p71F@xD2L9 jQnX>{~3%C3V|W#mQIJbzWt!K32S`=4`NC zjD%R-060MyUqLrxwENU?S4tWb1YKNU0gRhL5ms{6yu(u_ivf*|>AXw_Axybf;})h;I8u%*#8QZu_ddldfqrnb0l6Pn$qV>)r|1v9;=<%F9W}l5 z*R3h?zv>%Ke#7yj)D?RS*9~xiCC&o7?NPv!GKNJ9%PvMAmL8zU6qIeObs3It(H;F+ z^Ndr9XPRP@I0gr{zdvSt{l2HWQ3wCz8%Ld}*jM3Q)8z|{Sdxqp>v#u*TE;m#I}2o} zL0sc!VM#Rwh1+pN {7A1EyhJxW#Ggv|HLElkmKiE zjm+34Qwrz}D0wnkx*7;tQ~|Tweva{W;u0LSWg^09Z$x?6f?@yJRB`*=$)4Qre>Enq z3!C=?2ktBFUGGr*-hXG$+h=%jciFuMO5M1)`YwODB5xV36tIcmMi}>vg%RqA&^lN$ zH-RKg$_P*^udyWci~JoJA_ib!CNO332{zpP%SD7=#{D*ex9auAut{me{>yNa7ANpB zA<2B@tR%_>ICn;I$N5WbQ }wQrXD#QFMx~so zTY7$7iuTVpzE&1s1W@1>g2P|OeImK1-d|pU=iNRW?Cv96_w7Cq`L9nGTZ88PfMK)L m 3RNm{&=qEx}NjLIoI9Xw|n_4@8$J+z27hHtH_`Fjp;WM5|UF2 zckif^kQ|jFAvw}WaSZ&jWzmZwAt66)EhBT^Rz_aN(a!O)#v@}>b9r+I^T*bv>hiZq zNQ6T}H4UxKY0^r>Rh4jG?0Wh&BjfdH!mY?sJN2GFh876sCH5mc5q720FI!he6Ra=a znBGsb=8~Y5KJy`KB4XlD{{!a*o7`16Z%XO?6!NE6cDwiF-+f^?v0Qbdq$Z-$wyu2y zHy4lgogZ^v8>4(#$)g`Vc8QFKsepI3cd7(2_vw?U%LkwCQ$F3i++k5yqb`#&Pk(F} zT1B6485`KCz#dvI7u=U8eLnhZFi*IReaf7KK-XMs=ua+<|9oP=WcS1;F}wKlQ@=Nr zk!Uj}Qmq#w-@Lm1+(?$^N=^vj)9~}-^Bg;R #ZnQD5~o?CFq&JpTq Ns6jQH77$})SF7auVZQTCsr(MRGcE+gO#V>qn z p;RLlV>M{Rp;*RRf7nbg`kWQXl^CT%qHCNOR}qc`9pf{fDWUzcDRXy<14P zdbis*u`>RV3r8TScwj^Lyu8rEe>>xlW4$})Bic%nqxPh)r&X?N_X&$f9A5<#_!M40 z-95)1F~fiMLhAX~oUIyWA!a?Iil=WOqS>9zFjYNYJxMv#lZ4>4@CA427J{W&>_jQD zSusiI%ph_QY1 $Y~|j^gA!QT(o4e;dS{u^floz^6;b4{6LY>ypY~W z!g1dte#^sJ6}Ogec4+ WRK-yH=R`{ KSQ?jibGyW z|D@ytx#(k@-Wk*A8%I re^M;-HQ4?@0${| zk{=&EJv$DsS6kWm`gpOp{q$6bbwX*`+oj;9)|qLO-wLl^r9U~_n0#fqdZFfAPsZu8 z7^_*5BCqSh9~~742MoiW>E_N!$AtGe#jtwiB2*K3N4oJ=?SlT6({*T)Jc$gC9d!@R zPbTAJ!hKJhK4_~lA#>T5xAi?7E{%~4de=b@@dq#;%#p9-B$dgBM-DG}P&S+Pw*vzq zY_6kVp{z`D6&zELkOo Jvp<}JYN@?Cub`%MUf~P7TFTwS?Y=tAuUjri7uA7|Etk4^Pm7xB jO%V|lGxR}LhHUH{8&XBlL{qH9c z-+{lFj4YXBxb&*rKfd<+_xqD%dHv#Nl7LrqXGmC38JYsW7$|absnH|f|NigeM@|uv z=TEZmSuj7C`hSM@+k3E)f{%jHS(WK6=9P3Q`r+D*zR+nKyeg=gds{kWlbbFtvH8mS z=_$dxarWi9dJa{yFi3*8%*982n%e1T?|CuL8p5*Cq2h90iHe?M-S(GUql2XjS7%q~ zFRkH+9UCBgpPJYR>sv2_#Le6&Z<=T~91`%o&lsRO{a43S=Q`uGB`SIh0`BqE-5iB2 z=ZiEpvF;R=F6HD3GRSnE_;ctoF7oqHT9szFq&=lLV-?a^HUNza6I-ivS$U7hXgFAP zG+bu+(CuD3&9a#9=#wjDbv&I$Ra~HME1hq($kNSdZ*QO>(QVkiVhine=%pmhUc@3T zx#)K^5!Ydvk#w+PiHqPLb{#OBzt~wc7UVwSB(LX-o4watvsTRwS&*i>nlx-x&
q_Qs2Pm1*he2VowCNSR;Xqs`ND?0 zF`bBW {N_m&ICH)1c>G6o=b&-QNx zN$$Vn88QxHiQXA;Ms8Mx_E0nK;2*i9_5IPfPU#`ZNDx%N{e4#?`+^Z!7IKv%bB0d1 zH{cCLcPE~2mPC6|+JJhQ82t+0LmenevuVJmYB zY^G}QVL!sWUk06)&O7h1_7-3KYK#Q73Ym^aH%OvS!G^3e)3xh2qYSA+HRt>=apP%> zVF&Y)ha&m!TbQgPlm%P;STV7PNQh!h!o){PKBbD0$M@>JQbPq5a|`QX6?vX-x`d}g z9v}85?v$2- h`)RdK-3 z-EeQ3?JyP@q_+~T*$>zJG+mY{v7K#A*w1b_rP{ZOZ8-Ef8(DBn3Msmr=Q10mJ=YwH zlRR!nzPK~&sLEjIqDH_Bj}rv*Yd71hdzFPc{RBrIHHEFhaI-O)yDw--QJsRrJmZNA zNtMVP`|9m}eRo61eok&d+wi5K%WK;Uq|CFy&uR$Ml7!UEWmoQd30UJyTcz}sr(;1H z)=etrd{BH}p>LG$2HYr(XjYO;1$_^vuslP_1rH8b#%yx)H>=#yb=WbNG0*wghNkzD zgd!SvP2J2TK81GP3In5 HMda{HX~Sp?oA zQ!=pm0p|wIDh$&plqoN{*TXdipSC1gO3Yj*H-(K?NELkg?S>~E=00Mixo2#HwWQ;E zyGyOg2L6oLw2$Ok1M~~ZGRd$j>Kt0(>HhnLetpMI<-^UGhP29 rrsGXULV0mjjljNB<;`8N-pPDKofb#GE+NV zP2H&It&2f-5Z)}!8#{RyV*NV8S!RQ8>SOP#S%iQ06H-ZJsN0;s1G}XdfUTW} o>@$CnpZwN$h2ApHm>QJpM9u YN$@XWlVKNK!tJ#2*r{4Hd=B?0Wik?`3g%+k=B+;GOk! z&)9c}Otm^8SO&IZr_P~hNvFe>XP-%rLifJJsOXimxR1P#Npb1Kppd@hQAeYzp`7^F z!);G4O@|?$%+3nvPSi#Dpw7i)9z0tTKz%gGU!nBziq@k4WNj|Jy*VPwTq?O%+N+Xp zg;lXG#@iJi^f{}zv1wsWtM5p!HD#9@m#s9r)iRg`EQS$u&%AT(5I~d;DHoGyJ9!v| z_l-~T@b|ZoCFR=%6ow6SJyFfKdsmUzC3%;)G75^DamVco!H&bFtI<=~n^UGlA>rc@ zJoiW2$l_&P^>o+YM;$Ff%yMrcOm~7JwFHBc#VxKf^LbBFw%daL8CjY4mX;Pv>O~f6 z7FM)f%`No>qwZ3xv?CubfcWHj`JV2>d^)U^0moRcXx+G~Ti75QqHgk(W9+(*z|eVo zYR?~;%rg?_GO$l~PiB?tyNWT(erY3E^}sr9p&D~9yz(`ewlGD)mSEazV>H`EBfzX{ z{h0N}ujF68o_3}sB}={fa(j^L(3$N6Vo_0771 ClBn(q3 zLD&d)=T%Gy$h7fiUw-oi_BECDRtAr(NN)J6OeWgrPfl;jme|Ucu((z#Taw&d*8K|m zKndmV;#schZG+W>c|wNvcBjMHG)D7;ESHU`yma26na6iqVh<7$A2eLFghV6Eaos@@ z4-yNlD(n)6`oU%&3PwzoO$jWI_O-#ZL&cD0Sd x8TIfE0{!J%WBU z?smJ rhSWKE2_}jJYG!)GRvjPmGh+yR#HCYp3WbF$U}JBcHSB|hpk~H z{R9Gv_u}Q_p*AEp#~P->IhtLkebRdmT!D)$ojOQ^$g%{RQi(1k?~G0-vN?UCHYX50 z+6Vy(eU4qVE0yw0oZ5484Ak8aXH9j`b^H{T$+9JJE)e^aX!co#bL&n`AGiRA%x5op zRBCxwoF^Gyb!a)wdbMrw)%S=lwi-loUsum5JiK@`r%r&Q=q3vnv)gFS4&e$}{D%4E z`XY-al>WvgF6K5JU)&46K+YuZ$B3z~XFYO`T}i3XFc2b(2ho`}X2MkPT;X=7qi@Of z$h?HR5^Cz+<6GuU=k!thRa$~GbsY@bAp^llFUYR-InxchR>@K!QchC;!Bg)oui7@X z4V*}IrJYf@*h-O%XZ@}TafdfVow7zEsY&zgK2I~&P)Ny9)!F3i+z!JiN3y@v$(I?C z>5DvdgN0_syO|r>(-yd0{_(o{*7ac4mO{USWyH*|-{C=SW@`m!4f67^5yY5}v|F@I zA_`v=CdjkIgw?xML=AD7#tQo)rU~KYgFe{NcCU;|hUxcVBvu=U$c1MfAC5B6Hrwz* zYb(nTtibrL5#7>bKiAYSFx%Q-wo~n##;S*MnMkg}I$F^EU1I1F*cc{pAQ)S?;G>&n z7wfgi0GTY|Qfl)z-S yZPkf&St6R6Q2#q+J8sr+LNggY$90DchrH-wHZNSQGmge4MaT5p!Br ztl89yq_hCplyV^#+hvA5R2r9&Jq!8$dr1HE1cm?Uxp^xxj!WwxL^JJR2)8?mwazy3 z#&OpV-U-j!of_hjCAmnZB|ElomeI& jUZH`vQ_~%wh&IDiyNQdF8TIj1P3kD4 zydRnKO;FI^Daz3oo&1BQ%~s1RlMaUkPVVtxyAfe?YBntVIIG9QH$qRwSAQ5~%=Ygj z`6VlLV?nNE#%co#0@@>o)Dtfx&$}qH;Rg|I-m(NyvSg=%%7*Gw`XG!RH-riWs<^+6 zPU&*9^7A`eYUf%GwlJ*&Dn8OQBl)>kxmCn23-1tD98HNW8f6Eaylymu-hqxUCT7+5 zvyz04Z|^{{uO!FxO=3OO$|+u#t2X_Py `cUYs)=;m;^t)B#ogHvcVSu(X**69uL z{q?5dT>d%Fned4_Jq10vt@*fsO^|zoL)2J zG&DIS?y$D>HBB?w=9g)q)>iAJmK}mb+qK-iG>=Ga91pp7ttw6NmIYpad{4`o{zK~v zb@Gcz+j*9=0j+kVc`u6HMzv4*%OO!O=2}CrlPOr=QooaU2h~378!4QRDqI>#k4J8= zY@vErE0>o0suZWgd1%rr4^uieG!B~XkAeZOWxL~Fv9Nt^8{ewxd!1S~_rN`!i6kKm z+2p%+cx6{ XD8_l5m%^^%5%_DM)4Od_3D+IYEJ6B5>f9@y}SzY zNSZ_;%I@^1R1%dP5kA&eD>A(}D6P_Y?hb5Ue}5HNMWfnWRohWkw+fwA2(v`efQVMP z-?IL=sPO@Zs^Cg(2j&3n*Dw+mYNz9Z6K8JGbI=wt=^MAZYeP`)FS%+i zBq4jHgC5hS9lqvfCparV uzFSkmf&5mSkw54t_@ z-F)ub@YegDn>eJO!~xdt&^;KzlckNiQPvq#w_?sk8SM@cmbj6FmP9?dJH4qjZdBap z-A0dRj^SJzwOfkV+#aakDVudGWJZZ+FFN|+^%Eg$WyI8)hV^Zz$6ZwE1up#4`+FUh z5*l*}UHGEfyTfv$*n#ZKM5csmo4IC`Dd{WW+V 8f6 z*!$^2g5T5n0Meu6Qpd?%gag!m*D(#f)$)KdF2=S4BbsPd7u?os*2JjM-(KuJW^W3T zSYCJY+}-Hm-nt&vGqw#-L2)tjrlIy2c%uXEb|`bxT6CwXcE4a;jcdrgs#JSZ5R&s5 zWwWyJSx_dV GHU;9E_+^VO$2Aps=lgJw zvFJLExoq{whoho81%&2sN|J9Di?xT7!vs5E_$V{f6C18LbeZ> {iTvW-n+1hFg_3L+lUDC>Ns& z?TS7ev;Oep=qyHs8THYQEAEKMp=lS$#&!jCGnOUJIlpR)s74psNvv$HptgRSb*l)q zlWw8?u%cpJElK5Nz5J#+NVIR<_IvaX;=no8RepKu^ZdbNsHHm7oT$zqp*c?$)f^*( zV7~5%go@o1CS0*`D=y}X-Qbd0(5YHUSe8mOyMNrN)XoxfOp|i7Pa8gHG=I-rgjq2W zyOxkwj5;%R{oeMjhd^8^pE+f28Xw5RJQEjQMCC6T%!P;A5s;gnWkM=AlVLe>o0R$c zg0vFmlrPgLLheXG%Eh*KcwpRR2^Lz3U3XBq_V?wPEim{fE!31e@na}X%kovJ*!Qf) zwnEXf?!x+yGQ^d)o**+g78sSnm0W*r3e%KCv}`?qQ3TDKA~nd*a3najoW-ebJvOjR za8(yf6Rw*$%J-Qq)o@v{&fCEZ&Kwm3A4l&Rb_E*66gInUEqIUP$6^}j>pG^xuk>xr z^7&PH?^O@f6^yJ|rtXQ|uS4#M$Y<8Njs+!ju@(0D_!&BP-kME^SvP$?mvpd^IGPBS zd{GSEFJtZ9PPLcHcY~y42#~@hx3G)+kI7KAj$E*0Gx&vBS2$moYo qb-;x@*?)KnX~ zG+a+6z?fn;S9eX7%Ki1~N70gf;{i5r_8_XS{6yE9rbbr7UB`_y;ZVtjY4;Khl2TZM zGUAW}R)zRzdl?L)+eZAq!{Fj(OZAQy^jv`?tgwZ58ab9*i7#+xr@aMYEH*A(dXgu* zRF LNZVc)!sUQST}ZHs@2$!g-1*myy!p&Rcp^}-X~UBJ0wEYF8k@8OnI zVQ_sRxl)$7s}zjP>{XS7B*p9jJjD%0grzLukLjIF5bFdJ(Xbt7rJdS6-M)KOoTB4O z<3V6>`vhYbsMIu{+FdAH>U~_ZC!u!GApPcDlbqyX_`)_J>4jI8jArefAFEXjtk&R1 zr#bj@$le1pK?0eNcW&8kTP_ Ux$kRr@@Y7U zmA61RPLhMJ=?sR`{_sxtWGudf!dFge&EC;VU*e(=S<))pyNu7I@7~Me)z`DV(C z6|Yfyoz+>_W;*RiK^pt5VP}sN=jM9h@jH}rw4TA3I}@oeBPC0*lX~UVAV!L9Gwpb# z%kzj9PPlXaCOxazYH4p9*X=F|{7Pj06Nz;%8NLrCO9%8a$lMRRHV0D&>AT{=*hqE~ zJwp#(LgV$m2MPB!mvRdem#jB?sBRoUwXg?t^W1ZTp${GSvWM{>_ rGVXnk503YfqA7uhu_k!7PpF)g6<{#hF}) z0!en4?rOdO>h_&FZ_hC2)B0~uSBNg_929$l6z8kk5(wGz?Zy|P=%ia?ZHr=6ufZO< zG8ZrggvPdCSI-k=gS-tFo_fBuVkzl00s*6t&1NF@#Z0>6uyeby0hlbXMzdtWxY@_p zNG*}Rf3M#&%pJ%&@TU6c{hWcUxfj>9hn+;hN*%TF%o*+zUnK?_IRh+aVi{>3y>Vla zDiXLETIq(R^$m*Wr#FM1UD4h+9{Qq9r*1q)`ty!y4m`j45rNT!)sF%PVvt13P~+u3 z+1;V=q!rKYp}J!SJL7(bTLtcQ+({D2I?o@8qMICCv+#r*-@xtbow8d~ykqmj?K%+c z?Ze}%xEy3IPV_)BSBG+9v8g!hx_^j7!(@(;JsugGJ)emtX?Z>{rJxu;YvNJ znFF-ay+Qy9FyCP$W0cNg*KDZ#6f+4Wd)+rCETB{+y3gCCZ}`x(7?a@IuPduI_jTH( zvhT$GgW_|Pl+EJ#5$VL7)HA$`;w3HoRVf=y9fhet)Lm*NfGzk&m}J?!O2H~uJTP<> zhGjwy7FE&FxBMW13tAc@?FVV#bKYF@`dYFk7;^McaH&;Kih|$3^g;64)>F3qhhH>& z0ba|4St)8dJ?m!o=hC!QYUcEO{8deUHlTB1l |pp6IsZ>o=j1fDa2bI&;mZ!mUwRyr!w zcuzcj%_~dYKJLe0`-8zgLM9sDc;z?m1sOKQW-=*(hJNQnOuQ4O+BMgG3;Lo;5>88+ zLqxef-X`VhoDzb0`G91S3+p=coG+A;;Tn&-rWXwzpB6*Kb3Vi