From d45d5ac5928b26779f161b2d584217c63bc3f217 Mon Sep 17 00:00:00 2001 From: FPrasetiawan <89938578+FPrasetiawan@users.noreply.github.com> Date: Wed, 8 Dec 2021 17:52:52 -0500 Subject: [PATCH 1/3] Update README.md --- README.md | 22 +++++++++++++++++++++- 1 file changed, 21 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index fcf1b52..9655324 100644 --- a/README.md +++ b/README.md @@ -1 +1,21 @@ -# 3D Object Detection \ No newline at end of file +# 3D Object Detection + + + + +# Directory Guide + + + +data_generator.py + - loads file paths of data into memory, when you call __getItem__(index) it reads the binary point cloud data and converts it to a voxel grid, and outputs the labels + +index_data.py + - process the file paths for the data generator + +Velodyne.py + - converts the binary lidar file to a list of 3D points + +Labels.py + - Reads labels from the .label files + From 5370266f95060010a545d8b66ce667ed64612e57 Mon Sep 17 00:00:00 2001 From: Jordan Chen <57933842+jordsch@users.noreply.github.com> Date: Thu, 9 Dec 2021 21:05:45 -0500 Subject: [PATCH 2/3] Update README.md added citations --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 9655324..6fd6123 100644 --- a/README.md +++ b/README.md @@ -19,3 +19,5 @@ Velodyne.py Labels.py - Reads labels from the .label files +Citations +J. Behley, A. Milioto, C. Stachniss, M. Garbade, J. Gall, J. Quenzel, and S. Behnke, “Semantic Kitti Dataset Overview,” Semantickitti - A dataset for LIDAR-based Semantic Scene Understanding, 2020. [Online]. Available: http://www.semantic-kitti.org/dataset.html. [Accessed: 08-Dec-2021]. From 688543b2d24ebcc40dbd44b89d1d55cb88e9281a Mon Sep 17 00:00:00 2001 From: atharvtrasi <45699336+atharvtrasi@users.noreply.github.com> Date: Fri, 10 Dec 2021 01:16:31 -0500 Subject: [PATCH 3/3] Update README.md --- README.md | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 6fd6123..284d1da 100644 --- a/README.md +++ b/README.md @@ -1,11 +1,13 @@ # 3D Object Detection +# Product Description +This product identifies and labels 3D Objects in images of every day settings, such as cars, trees, bikes, pedestrians, etc. - -# Directory Guide +This product makes use of a UNet, which is a Convolutional Neural Network, to identify objects, given voxel data. Our product first takes point cloud data from the SemanticKITTI dataset, and converts it to voxels. For the sake of simplicity, a voxel can be described as a 3d pixel. We visualize these voxels as cubes, each cube containing spatial information in 3 dimensions. +# Directory Guide data_generator.py - loads file paths of data into memory, when you call __getItem__(index) it reads the binary point cloud data and converts it to a voxel grid, and outputs the labels