-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtraining.py
407 lines (376 loc) · 19.8 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import time
import json
from typing import Optional, List, Tuple, Union
import torch
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.distributed as dist
from torch.cuda.amp.grad_scaler import GradScaler
from transformers import Adafactor
from tqdm import tqdm
# from neptune.new.run import Run
import numpy as np
from model_math_gpt import MathGPTBase, MathGPTLM, MathGPTClassifier
from model_baseline import GPTLMBaseline, GPTClassifierBaseline
from loading import (
get_article_names, get_headline_data, get_answer_scoring_data, get_feedback_data, get_problem_solving_data, get_mwp_data, get_ct_data, get_probes,
Dataset, PreTrainDataset, PreTrainDatasetPreloaded, GenTaskDataset, AnswerScoringDataset, FeedbackDataset, ProblemSolvingDataset, CTDataset,
trim_batch, get_data_loader
)
from evaluate import evaluate_lm, evaluate_lm_accuracy, evaluate_cls_task, evaluate_gen_task, evaluate_problem_solving_task
from generate import generate
from decode import decode_batch
from utils import TrainOptions, device, is_cls_task, new_neptune_run, load_pretrained
from constants import DownstreamTask, Checkpoint, Optimizer, DOWNSTREAM_TASK_TO_NUM_CLASSES
def load_options(model_name: str):
with open(f"{model_name}.json", encoding="utf-8") as config_file:
return TrainOptions(json.load(config_file))
def load_model(model_name: str, ddp: bool, task: Optional[DownstreamTask] = None):
print("Loading model...")
options = load_options(model_name)
if is_cls_task(task):
if options.baseline:
model = GPTClassifierBaseline(options).to(device)
else:
model = MathGPTClassifier(options).to(device)
else:
if options.baseline:
model = GPTLMBaseline(options).to(device)
else:
model = MathGPTLM(options).to(device)
checkpoint: Checkpoint = torch.load(f"{model_name}.pt", map_location=device)
if "model_state_dict" not in checkpoint: # Backward compatability
model.load_state_dict(checkpoint)
checkpoint = None
else:
model.load_state_dict(checkpoint["model_state_dict"])
del checkpoint["model_state_dict"] # Free up memory
if ddp:
model = DDP(model, device_ids=[torch.cuda.current_device()], find_unused_parameters=True)
return model, checkpoint, options
def evaluate_model(model: MathGPTBase, dataset: Dataset, task: Optional[DownstreamTask], options: TrainOptions) -> Tuple[float, List[float], str]:
if not task:
return evaluate_lm(model, dataset, options)
if is_cls_task(task):
return evaluate_cls_task(model, dataset, task, options)
return evaluate_lm_accuracy(model, dataset, task, options)
def train(model: Union[MathGPTBase, DDP], model_name: str, train_loader: DataLoader, validation_dataset: Dataset, options: TrainOptions,
run = None, task: Optional[DownstreamTask] = None, checkpoint: Optional[Checkpoint] = None):
if options.optim == Optimizer.ADAMW.value:
optimizer = torch.optim.AdamW(model.parameters(), lr=options.lr, weight_decay=options.weight_decay)
else:
optimizer = Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=options.lr, weight_decay=options.weight_decay)
if checkpoint:
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
del checkpoint["optimizer_state_dict"]
if not options.amp:
torch.autograd.set_detect_anomaly(True) # Pause exectuion and get stack trace if something weird happens (ex: NaN grads)
# Scaler prevents gradient underflow when using fp16 precision
scaler = GradScaler() if options.amp else None
if checkpoint and scaler is not None:
scaler.load_state_dict(checkpoint["scaler_state_dict"])
del checkpoint["scaler_state_dict"]
if run:
run["name"] = model_name
run["options"] = options.as_dict()
run["task"] = str(task)
starting_epoch = checkpoint["epoch"] + 1 if checkpoint else 0
best_metric = None
best_epoch = starting_epoch
if checkpoint:
torch.random.set_rng_state(checkpoint["rng_state"].cpu())
print("Training...")
for epoch in range(starting_epoch, options.epochs):
if options.ddp:
train_loader.batch_sampler.sampler.set_epoch(epoch)
start_time = time.time()
model.train() # Set model to training mode
train_loss = 0.0
num_batches = 0
for batch in tqdm(train_loader):
if scaler:
with torch.cuda.amp.autocast():
loss = model(batch)[0]
scaler.scale(loss).backward()
else:
loss = model(batch)[0]
loss.backward()
train_loss += float(loss.detach().cpu().numpy())
num_batches += 1
if num_batches % options.grad_accum_batches == 0 or num_batches == len(train_loader):
if scaler:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
optimizer.zero_grad()
avg_train_loss = train_loss / num_batches
val_loss, results, template = evaluate_model(model, validation_dataset, task, options)
if run:
run["train/loss"].log(avg_train_loss)
run["val/loss"].log(val_loss)
run["val/metrics"].log(template.format(*results))
print(f"Epoch: {epoch + 1}, Train Loss: {avg_train_loss:.3f}, Val Loss: {val_loss:.3f}, {template.format(*results)}, Time: {time.time() - start_time:.2f}")
# Save model for best validation metric
if not best_metric or val_loss < best_metric:
best_metric = val_loss
best_epoch = epoch
if not options.ddp or torch.cuda.current_device() == 0:
print("Saving model")
if options.ddp:
model_state_dict = {param.replace("module.", ""): val for param, val in model.state_dict().items()}
else:
model_state_dict = model.state_dict()
torch.save({
"model_state_dict": model_state_dict,
"optimizer_state_dict": optimizer.state_dict(),
"scaler_state_dict": scaler.state_dict() if scaler else None,
"rng_state": torch.random.get_rng_state(),
"epoch": epoch,
}, f"{model_name}.pt")
with open(f"{model_name}.json", "w", encoding="utf-8") as config_file:
json.dump(options.as_dict(), config_file, indent=4)
if options.ddp:
dist.barrier() # Wait for main process to finish saving
# Stop training if we haven't improved in a while
if options.patience and (epoch - best_epoch >= options.patience):
print("Early stopping")
break
return best_metric
def pretrain(model_name: str, checkpoint_name: Optional[str], pretrained_name: Optional[str], options_dict: dict):
if checkpoint_name:
model, checkpoint, options = load_model(checkpoint_name, options_dict.get("ddp", False))
options.update(options_dict)
else:
checkpoint = None
if pretrained_name:
options = load_options(pretrained_name)
options.update(options_dict)
else:
options = TrainOptions(options_dict)
if options.baseline:
model = GPTLMBaseline(options).to(device)
else:
model = MathGPTLM(options).to(device)
if pretrained_name:
print("Loading pre-trained model...")
checkpoint: Checkpoint = torch.load(f"{pretrained_name}.pt", map_location=device)
load_pretrained(model, checkpoint["model_state_dict"] if "model_state_dict" in checkpoint else checkpoint)
checkpoint = None
if options.ddp:
model = DDP(model, device_ids=[torch.cuda.current_device()], find_unused_parameters=True)
articles = get_article_names(options)
split_point = int(len(articles) * options.split)
train_data = PreTrainDataset(articles[:split_point], options, options.max_seq_len)
val_data = PreTrainDataset(articles[split_point:], options, max_seq_len=None)
train_loader = get_data_loader(train_data, None, options.batch_size, True, True, options)
main_proc = not options.ddp or torch.cuda.current_device() == 0
train(model, model_name, train_loader, val_data, options, checkpoint=checkpoint)
results = evaluate_pretrained_lm(model_name, options.as_dict())
# Create run after training/eval to avoid using up hours
run = new_neptune_run() if main_proc else None
if run:
run["results"] = results
run.stop()
def evaluate_pretrained_lm(model_name: str, test_options: dict):
model, _, options = load_model(model_name, test_options.get("ddp", False))
options.update(test_options)
articles = get_article_names(options)
split_point = int(len(articles) * options.split)
test_articles = articles[split_point:]
dataset = PreTrainDataset(test_articles, options, max_seq_len=None)
loss, results, template = evaluate_lm(model, dataset, options)
print(f"Loss: {loss:.3f}, {template.format(*results)}")
return template.format(*results)
def test_lm(model_name: str, test_article: str, test_options: dict):
model, _, options = load_model(model_name, test_options.get("ddp", False))
options.update(test_options)
if test_article == "probes":
dataset = PreTrainDatasetPreloaded(get_probes(), options, options.max_seq_len)
data_loader = get_data_loader(dataset, None, 1, False, False, options)
with torch.no_grad():
for batch in data_loader:
prompt_text = decode_batch(batch)[0]
gen_batch = generate(model, batch, options)
pred_text = decode_batch(gen_batch)[0]
print("Prompt:", prompt_text)
print("Prediction:", pred_text)
print("")
else:
dataset = PreTrainDataset([test_article], options, options.max_seq_len // 2)
data_loader = get_data_loader(dataset, None, 1, False, False, options)
with torch.no_grad():
data_loader_it = iter(data_loader)
gen_batch = next(data_loader_it)
gen_batch_len = len(gen_batch["token_ids"])
prompt_text = decode_batch(gen_batch)[0]
gen_batch = generate(model, gen_batch, options)
pred_text = decode_batch(trim_batch(gen_batch, gen_batch_len, options.max_seq_len))[0]
followup_batch = next(data_loader_it)
og_text = decode_batch(followup_batch)[0]
print("Prompt:", prompt_text)
print("OG Text:", og_text)
print("Prediction:", pred_text)
print("")
def train_downstream_task(model_name: str, checkpoint_name: Optional[str], pretrained_name: Optional[str], task: DownstreamTask, options_dict: dict, fold: int = 0):
# Create/load model and config
if checkpoint_name:
model, checkpoint, options = load_model(checkpoint_name, options_dict.get("ddp", False), task)
options.update(options_dict)
else:
checkpoint = None
if pretrained_name:
options = load_options(pretrained_name)
options.update(options_dict)
else:
options = TrainOptions(options_dict)
if is_cls_task(task):
options.num_classes = DOWNSTREAM_TASK_TO_NUM_CLASSES.get(task)
if options.baseline:
model = GPTClassifierBaseline(options).to(device)
else:
model = MathGPTClassifier(options).to(device)
else:
if options.baseline:
model = GPTLMBaseline(options).to(device)
else:
model = MathGPTLM(options).to(device)
if pretrained_name:
print("Loading pre-trained model...")
checkpoint: Checkpoint = torch.load(f"{pretrained_name}.pt", map_location=device)
load_pretrained(model, checkpoint["model_state_dict"] if "model_state_dict" in checkpoint else checkpoint)
checkpoint = None
if options.ddp:
model = DDP(model, device_ids=[torch.cuda.current_device()], find_unused_parameters=True)
# Load and process data
if task == DownstreamTask.HEADLINES:
train_data = GenTaskDataset(get_headline_data("train", options, fold), task, options)
val_data = GenTaskDataset(get_headline_data("val", options), task, options)
elif task == DownstreamTask.ANSWER_SCORING:
problems, train_samples, val_samples, _ = get_answer_scoring_data(fold)
train_data = AnswerScoringDataset(train_samples, problems, options)
val_data = AnswerScoringDataset(val_samples, problems, options, train_data.data)
elif task == DownstreamTask.FEEDBACK:
problems, train_samples, val_samples, _ = get_feedback_data(fold)
train_data = FeedbackDataset(train_samples, problems, options)
val_data = FeedbackDataset(val_samples, problems, options)
elif task in (DownstreamTask.GSM8K, DownstreamTask.MATH):
train_samples, val_samples = get_problem_solving_data("train", task, .9, fold)
train_data = ProblemSolvingDataset(train_samples, options)
val_data = ProblemSolvingDataset(val_samples, options)
elif task == DownstreamTask.MWP:
train_samples, val_samples, _ = get_mwp_data(fold)
train_data = GenTaskDataset(train_samples, task, options)
val_data = GenTaskDataset(val_samples, task, options)
elif task == DownstreamTask.CT:
train_samples, val_samples, _ = get_ct_data(fold)
train_data = CTDataset(train_samples, options)
val_data = CTDataset(val_samples, options)
else:
raise Exception(f"Unsupported task {task}")
train_loader = get_data_loader(train_data, task, options.batch_size, True, True, options)
# Start training
main_proc = not options.ddp or torch.cuda.current_device() == 0
run = new_neptune_run() if main_proc else None
val_loss = train(model, model_name, train_loader, val_data, options, run, task, checkpoint=checkpoint)
results, template = evaluate_downstream_task(model_name, task, True, options.as_dict(), fold)
if run:
run["results"] = template.format(*results)
run.stop()
return val_loss, results, template
def evaluate_downstream_task(model_name: str, task: DownstreamTask, overwrite_results: bool, eval_options: dict, fold: int = 0) -> Tuple[List[float], str]:
model, _, options = load_model(model_name, eval_options.get("ddp", False), task)
options.update(eval_options)
if task == DownstreamTask.HEADLINES:
headlines = get_headline_data("test", options)
test_data = GenTaskDataset(headlines, task, options)
_, results, template = evaluate_gen_task(model_name, model, test_data, task, fold, options)
elif task == DownstreamTask.ANSWER_SCORING:
problems, train_samples, _, test_samples = get_answer_scoring_data(fold)
train_data = AnswerScoringDataset(train_samples, problems, options)
test_data = AnswerScoringDataset(test_samples, problems, options, train_data.data)
_, results, template = evaluate_cls_task(model, test_data, task, options)
elif task == DownstreamTask.FEEDBACK:
problems, _, _, test_samples = get_feedback_data(fold)
test_data = FeedbackDataset(test_samples, problems, options)
_, results, template = evaluate_gen_task(model_name, model, test_data, task, fold, options)
elif task in (DownstreamTask.GSM8K, DownstreamTask.MATH):
test_samples, _ = get_problem_solving_data("test", task)
test_data = ProblemSolvingDataset(test_samples, options)
_, results, template = evaluate_problem_solving_task(model_name, model, test_data, task, overwrite_results, options)
elif task == DownstreamTask.MWP:
_, _, test_samples = get_mwp_data(fold)
test_data = GenTaskDataset(test_samples, task, options)
_, results, template = evaluate_gen_task(model_name, model, test_data, task, fold, options)
elif task == DownstreamTask.CT:
_, _, test_samples = get_ct_data(fold)
test_data = CTDataset(test_samples, options)
_, results, template = evaluate_gen_task(model_name, model, test_data, task, fold, options)
else:
raise Exception(f"Unsupported task {task}")
print(template.format(*results))
return results, template
def cross_validate_downstream_task(model_name: str, checkpoint_name: Optional[str], pretrained_name: Optional[str], task: DownstreamTask, options_dict: dict):
all_results: List[List[float]] = []
template = ""
for fold in range(5):
print("\nFold", fold + 1)
options_dict["eval_formulas"] = False
options_dict["eval_text"] = False
val_loss, results, template = train_downstream_task(model_name, checkpoint_name, pretrained_name, task, options_dict, fold)
if task == DownstreamTask.HEADLINES:
options_dict["eval_formulas"] = True
f_results, f_template = evaluate_downstream_task(model_name, task, True, options_dict, fold)
results += f_results
template += "\nFormula-Only: " + f_template
options_dict["eval_formulas"] = False
options_dict["eval_text"] = True
t_results, t_template = evaluate_downstream_task(model_name, task, True, options_dict, fold)
results += t_results
template += "\nText-Only: " + t_template
all_results.append([val_loss] + results)
template = "Val Loss: {:.3f}, " + template
with open(f"results_{model_name}.txt", "w", encoding="utf-8") as results_file:
results_file.write(f"{template}\n" + "\n".join([
",".join([f"{res:.3f}" for res in trial])
for trial in all_results
]))
results_np = np.array(all_results)
avg = results_np.mean(axis=0)
std = results_np.std(axis=0)
print("Avg:\n" + template.format(*avg) + "\nStd:\n", template.format(*std))
def test_gen_task(model_name: str, task: DownstreamTask, test_options: dict):
model, _, options = load_model(model_name, test_options.get("ddp", False), task)
options.update(test_options)
start_idx = 0
samples_to_try = 5
if task == DownstreamTask.HEADLINES:
samples = get_headline_data("test", options)
dataset = GenTaskDataset(samples[start_idx : start_idx + samples_to_try], task, options)
elif task == DownstreamTask.FEEDBACK:
problems, _, _, samples = get_feedback_data()
dataset = FeedbackDataset(samples[start_idx : start_idx + samples_to_try], problems, options)
elif task in (DownstreamTask.GSM8K, DownstreamTask.MATH):
samples, _ = get_problem_solving_data("test", task)
dataset = ProblemSolvingDataset(samples[start_idx : start_idx + samples_to_try], options)
elif task == DownstreamTask.MWP:
_, _, samples = get_mwp_data()
dataset = GenTaskDataset(samples[start_idx : start_idx + samples_to_try], task, options)
elif task == DownstreamTask.CT:
_, _, samples = get_ct_data()
dataset = CTDataset(samples[start_idx : start_idx + samples_to_try], options)
else:
raise Exception(f"Unsupported task {task}")
data_loader = get_data_loader(dataset, task, 1, False, False, options)
with torch.no_grad():
for batch in data_loader:
split_point = batch["prompt_lengths"][0]
gen_batch = trim_batch(batch, 0, split_point)
prompt_text = decode_batch(gen_batch)[0]
gen_batch = generate(model, gen_batch, options)
pred_text = decode_batch(trim_batch(gen_batch, split_point, options.max_seq_len))[0]
og_text = decode_batch(trim_batch(batch, split_point, options.max_seq_len))[0]
print("Prompt:", prompt_text)
print("OG Text:", og_text)
print("Prediction:", pred_text)
print("")