-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
393 lines (355 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
from math import exp
import numpy as np
from scipy.sparse.sputils import matrix
import torch
import os
from dataset import Dataset, collate_fn
from utils.utils import compute_auc, compute_accuracy, data_split, batch_accuracy
from model import MAMLModel
from policy import PPO, Memory, StraightThrough
from copy import deepcopy
from utils.configuration import create_parser, initialize_seeds
import time
import os
import statistics
import subprocess
from collections import defaultdict
DEBUG = False if torch.cuda.is_available() else True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
best_val_score, best_test_score = 0, 0
best_val_auc, best_test_auc = 0, 0
best_epoch = -1
run = None
def clone_meta_params(batch):
return [meta_params[0].expand(len(batch['input_labels']), -1).clone(
)]
def inner_algo(batch, config, new_params, create_graph=False):
for _ in range(params.inner_loop):
config['meta_param'] = new_params[0]
res = model(batch, config)
loss = res['train_loss']
grads = torch.autograd.grad(
loss, new_params, create_graph=create_graph)
new_params = [(new_params[i] - params.inner_lr*grads[i])
for i in range(len(new_params))]
del grads
config['meta_param'] = new_params[0]
return
def get_rl_baseline(batch, config):
model.pick_sample('random', config)
new_params = clone_meta_params(batch)
inner_algo(batch, config, new_params)
with torch.no_grad():
output = model(batch, config)['output']
random_baseline = batch_accuracy(output, batch)
return random_baseline
def pick_rl_samples(batch, config):
env_states = model.reset(batch)
action_mask, train_mask = env_states['action_mask'], env_states['train_mask']
for _ in range(params.n_query):
with torch.no_grad():
state = model.step(env_states)
if config['mode'] == 'train':
actions = ppo_policy.policy_old.act(state, memory, action_mask)
else:
with torch.no_grad():
actions = ppo_policy.policy_old.act(state, memory, action_mask)
action_mask[range(len(action_mask)), actions], train_mask[range(
len(train_mask)), actions] = 0, 1
env_states['train_mask'], env_states['action_mask'] = train_mask, action_mask
# train_mask
config['train_mask'] = env_states['train_mask']
return
def run_unbiased(batch, config):
new_params = clone_meta_params(batch)
config['available_mask'] = batch['input_mask'].to(device).clone()
if config['mode'] == 'train':
random_baseline = get_rl_baseline(batch, config)
pick_rl_samples(batch, config)
optimizer.zero_grad()
meta_params_optimizer.zero_grad()
inner_algo(batch, config, new_params)
if config['mode'] == 'train':
res = model(batch, config)
loss = res['loss']
loss.backward()
optimizer.step()
meta_params_optimizer.step()
####
final_accuracy = batch_accuracy(res['output'], batch)
reward = final_accuracy - random_baseline
memory.rewards.append(reward.to(device))
ppo_policy.update(memory)
memory.clear_memory()
return
#
else:
picked_samples = config['train_mask'].nonzero()#student_idx, q_idx
available_samples = batch['input_mask'].to(device).clone()#nonzero()
with torch.no_grad():
res = model(batch, config)
memory.clear_memory()
return res['output'], picked_samples,available_samples
def pick_biased_samples(batch, config):
new_params = clone_meta_params(batch)
env_states = model.reset(batch)
action_mask, train_mask = env_states['action_mask'], env_states['train_mask']
for _ in range(params.n_query):
with torch.no_grad():
state = model.step(env_states)
train_mask = env_states['train_mask']
if config['mode'] == 'train':
train_mask_sample, actions, entropy = st_policy.policy(state, action_mask)
else:
with torch.no_grad():
train_mask_sample, actions, _ = st_policy.policy(
state, action_mask)
action_mask[range(len(action_mask)), actions] = 0
# env state train mask should be detached
env_states['train_mask'], env_states['action_mask'] = train_mask + \
train_mask_sample.data, action_mask
if config['mode'] == 'train':
# loss computation train mask should flow gradient
config['train_mask'] = train_mask_sample+train_mask
inner_algo(batch, config, new_params, create_graph=True)
res = model(batch, config)
loss = res['loss'] - params.lamda *entropy
st_policy.update(loss)
config['train_mask'] = env_states['train_mask']
return
def run_biased(batch, config):
new_params = clone_meta_params(batch)
if config['mode'] == 'train':
model.eval()
pick_biased_samples(batch, config)
optimizer.zero_grad()
meta_params_optimizer.zero_grad()
inner_algo(batch, config, new_params)
if config['mode'] == 'train':
model.train()
optimizer.zero_grad()
res = model(batch, config)
loss = res['loss']
loss.backward()
optimizer.step()
meta_params_optimizer.step()
####
else:
picked_samples = config['train_mask'].nonzero()#student_idx, q_idx
available_samples = batch['input_mask'].to(device).clone()#nonzero()
with torch.no_grad():
res = model(batch, config)
return res['output'], picked_samples, available_samples
def run_random(batch, config):
new_params = clone_meta_params(batch)
meta_params_optimizer.zero_grad()
if config['mode'] == 'train':
optimizer.zero_grad()
###
config['available_mask'] = batch['input_mask'].to(device).clone()
config['train_mask'] = torch.zeros(
len(batch['input_mask']), params.n_question).long().to(device)
# Random pick once
config['meta_param'] = new_params[0]
if sampling == 'random':
model.pick_sample('random', config)
inner_algo(batch, config, new_params)
if sampling == 'active':
for _ in range(params.n_query):
model.pick_sample('active', config)
inner_algo(batch, config, new_params)
if config['mode'] == 'train':
res = model(batch, config)
loss = res['loss']
loss.backward()
optimizer.step()
meta_params_optimizer.step()
return
else:
picked_samples = config['train_mask'].nonzero()#student_idx, q_idx
available_samples = batch['input_mask'].to(device).clone()#nonzero()
with torch.no_grad():
res = model(batch, config)
output = res['output']
return output, picked_samples, available_samples
def train_model():
global best_val_auc, best_test_auc, best_val_score, best_test_score, best_epoch
global run
config['mode'] = 'train'
config['epoch'] = epoch
model.train()
N = [idx for idx in range(100, 100+params.repeat)]
for batch in train_loader:
# Select RL Actions, save in config
if sampling == 'unbiased':
run_unbiased(batch, config)
elif sampling == 'biased':
run_biased(batch, config)
else:
run_random(batch, config)
if DEBUG:
break
# Validation
val_scores, val_aucs = [], []
test_scores, test_aucs = [], []
for idx in N:
_, auc, acc, _ = test_model(id_=idx, split='val', get_rate=False)
val_scores.append(acc)
val_aucs.append(auc)
val_score = sum(val_scores)/(len(N)+1e-20)
val_auc = sum(val_aucs)/(len(N)+1e-20)
if best_val_score < val_score:
best_epoch = epoch
best_val_score = val_score
best_val_auc = val_auc
# Run on test set
for idx in N:
_, auc, acc, exposure_rate = test_model(id_=idx, split='test', get_rate=idx==N[-1])
test_scores.append(acc)
test_aucs.append(auc)
best_test_score = sum(test_scores)/(len(N)+1e-20)
best_test_auc = sum(test_aucs)/(len(N)+1e-20)
if params.neptune:
run['overlap_mu'] = exposure_rate['overlap_mu']
run['expose_histogram'] = exposure_rate['histogram']
run['expose_mu'] = exposure_rate['mu']
run['expose_chi'] = exposure_rate['chi']
run['expose_std'] = exposure_rate['std']
if params.neptune:
run['Valid Accuracy'].log(val_score)
run['Best Test Accuracy'].log(best_test_score)
run['Best Test Auc'].log(best_test_auc)
run['Best Valid Accuracy'].log(best_val_score)
run['Best Valid Auc'].log(best_val_auc)
run['Best Epoch'].log(best_epoch)
run['Epoch'].log(epoch)
def test_model(id_, split='val', get_rate= False):
if DEBUG:
get_rate=True
model.eval()
config['mode'] = 'test'
if split == 'val':
valid_dataset.seed = id_
elif split == 'test':
test_dataset.seed = id_
loader = torch.utils.data.DataLoader(
valid_dataset if split == 'val' else test_dataset, collate_fn=collate_fn, batch_size=params.test_batch_size, num_workers=num_workers, shuffle=False, drop_last=False)
selected, occurrence = torch.zeros(1, params.n_question).to(device), 1e-12+torch.zeros(1, params.n_question).to(device)
random_probs = torch.zeros( params.n_question).to(device)
exposure_rates = None
total_loss, all_preds, all_targets = 0., [], []
n_batch = 0
for batch in loader:
if sampling == 'unbiased':
output, picked_samples, available_samples = run_unbiased(batch, config)
elif sampling == 'biased':
output, picked_samples, available_samples = run_biased(batch, config)
else:
output, picked_samples,available_samples = run_random(batch, config)
target = batch['output_labels'].float().numpy()
mask = batch['output_mask'].numpy() == 1
all_preds.append(output[mask])
all_targets.append(target[mask])
#
if get_rate:
selected.scatter_add_(1, picked_samples[:,1][None,:], torch.ones(1,picked_samples.shape[0]).to(device))
#
occurrence = occurrence + torch.sum(available_samples, dim =0, keepdim=True)
temp = (params.n_query*available_samples) / torch.sum(available_samples, dim=-1, keepdim=True)
random_probs = random_probs + torch.sum(temp, dim=0)
n_batch += 1
if DEBUG:
break
#
#exposure
if get_rate:
selected, occurrence = selected.squeeze(0), occurrence.squeeze(0)
exposure_rate = selected/occurrence
mu, std = torch.mean(exposure_rate), torch.std(exposure_rate)
histogram = torch.histogram(exposure_rate.cpu(),bins=101, range=(-0.01+1e-6,1.+1e-6))[0].numpy().tolist()
random_probs /= occurrence
chi_square = torch.mean((exposure_rate -random_probs)**2. /(random_probs +1e-20))
exposure_rates = {'mu':mu, 'std':std, 'histogram':histogram, 'chi':float(chi_square.cpu())}
#overlap
num = torch.sum(selected * torch.clamp(selected-1., min=0))
p = torch.sum(selected)/params.n_query
denom = params.n_query * p *(p-1.)
exposure_rates['overlap_mu']= float(num/denom)
all_pred = np.concatenate(all_preds, axis=0)
all_target = np.concatenate(all_targets, axis=0)
auc = compute_auc(all_target, all_pred)
accuracy = compute_accuracy(all_target, all_pred)
return total_loss/n_batch, auc, accuracy, exposure_rates
if __name__ == "__main__":
params = create_parser()
print(params)
if DEBUG:
params.repeat,params.gumbel = 1, True
if params.cuda:
if device.type!='cuda':
from datetime import datetime
time_now = str(datetime.utcnow())
command = "sacct -n -j " + params.name+" --format=Jobname"
config_name =[d for d in (subprocess.check_output(command, shell=True)).decode("utf-8").split(' ') if '.sh' in d][0]
line = params.name+','+params.nodes+','+str(time_now)+','+config_name +'\n'
with open('logs/exceptions.txt', 'a') as fp:
fp.write(line)
raise ValueError('No Cuda Found!')
if params.neptune:
import neptune.new as neptune
run = neptune.init(
project="", # need to add the neptune project name
api_token="" , # need to add the neptune api token
capture_hardware_metrics = False,
name = params.name,
)
run["parameters"] = vars(params)
config = {}
initialize_seeds(params.seed)
#
base, sampling = params.model.split('-')[0], params.model.split('-')[-1]
if base == 'biirt':
model = MAMLModel(sampling=sampling, n_query=params.n_query,
n_question=params.n_question, question_dim=1).to(device)
meta_params = [torch.Tensor(
1, 1).normal_(-1., 1.).to(device).requires_grad_()]
if base == 'binn':
model = MAMLModel(sampling=sampling, n_query=params.n_query,
n_question=params.n_question, question_dim=params.question_dim).to(device)
meta_params = [torch.Tensor(
1, params.question_dim).normal_(-1., 1.).to(device).requires_grad_()]
optimizer = torch.optim.Adam(
model.parameters(), lr=params.lr, weight_decay=1e-8)
meta_params_optimizer = torch.optim.SGD(
meta_params, lr=params.meta_lr, weight_decay=2e-6, momentum=0.9)
print(model)
#
if sampling == 'unbiased':
betas = (0.9, 0.999)
K_epochs = 4 # update policy for K epochs
eps_clip = 0.2 # clip parameter for PPO
memory = Memory()
ppo_policy = PPO(params.n_question, params.n_question,
params.policy_lr, betas, K_epochs, eps_clip, params.lamda)
print('ppo_model_summary', repr(ppo_policy.policy))
if sampling == 'biased':
betas = (0.9, 0.999)
st_policy = StraightThrough(params.n_question, params.n_question,
params.policy_lr, betas, params.gumbel, params.tau)
print('biased_model_summary', repr(st_policy.policy))
#
data_path = os.path.normpath('data/train_task_'+params.dataset+'.json')
train_data, valid_data, test_data = data_split(
data_path, params.fold, params.seed)
train_dataset, valid_dataset, test_dataset = Dataset(
train_data), Dataset(valid_data), Dataset(test_data)
#
num_workers = 3
collate_fn = collate_fn(params.n_question)
train_loader = torch.utils.data.DataLoader(
train_dataset, collate_fn=collate_fn, batch_size=params.train_batch_size, num_workers=num_workers, shuffle=True, drop_last=True)
start_time = time.time()
for epoch in range(params.n_epoch):
train_model()
if epoch >= (best_epoch+params.wait):
break