Skip to content

Latest commit

 

History

History
52 lines (50 loc) · 1.36 KB

README.md

File metadata and controls

52 lines (50 loc) · 1.36 KB

C-BOBCAT: Constrained Version of Bilevel Optimization-Based Computerized Adaptive Testing

Environment Setup

This repository uses the following Pytorch version in Python3.

torch==1.12.1

Data

You can download the preprocessed datasets from Google Drive to /data/ folder. Preprocessing scirpts can be found in utils/ folder.

Training

Train C-BOBCAT

python train.py
    --dataset mapt-math
    --model binn-biased
    --n_query 8
    --lamda 3e-2
    --cuda
    --gumbel

Hyperparameter ranges are:

hyperparameters = [
    [('dataset',), ['mapt-math', 'mapt-read']],
    [('model',), ['binn-biased', 'biirt-biased']],
    [('fold',), [ 1, 2, 3, 4, 5 ]],
    [('hidden_dim'), [256]],
    [('lr',), [ 1e-3 ]],
    [('inner_lr',), [ 2e-1, 1e-1, 5e-2]],
    [('meta_lr',), [ 1e-4 ]],
    [('inner_loop',), [ 5 ]],
    [('policy_lr',), [2e-3,  2e-4]],
    [('n_query',), [2, 4, 8]],
    [('lamda',), [ 3e-3, 1e-3, 3e-2, 1e-2]]
]

Train IRT-based Model

python irt.py
    --dataset mapt-math
    --model irt-active
    --n_query 8

Hyperparameter ranges are:

hyperparameters = [
    [('dataset',), ['mapt-math', 'mapt-read']],
    [('model',), ['irt-active', 'irt-random']],
    [('fold',), [ 1, 2, 3, 4, 5 ]],
    [('n_query',), [2, 4, 8]]
]