-
Notifications
You must be signed in to change notification settings - Fork 0
/
red_utils.v
105 lines (78 loc) · 3.33 KB
/
red_utils.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
(**************************************************************)
(* Copyright Dominique Larchey-Wendling [*] *)
(* *)
(* [*] Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
Require Import List.
From Undecidability.Synthetic
Require Import Definitions
ReducibilityFacts
InformativeDefinitions
InformativeReducibilityFacts.
From Undecidability.PCP Require Import PCP.
From Undecidability.Shared.Libs.DLW.Utils
Require Import utils_tac utils_list finite.
From Undecidability.Shared.Libs.DLW.Vec
Require Import pos vec.
From Undecidability.TRAKHTENBROT
Require Import notations bpcp
fo_sig fo_terms fo_logic fo_sat
Sig_discrete (* UTILITY: discrete <-> non discrete *)
Sig_noeq (* UTILITY: from interpreted to uninterpreted *)
.
Set Implicit Arguments.
(* * Common Tools for reductions *)
(* Inductively defined Boolean PCP as defined in PCP/PCP.v
is equivalent to BPCP_problem here *)
Theorem BPCP_BPCP_problem_eq R : BPCP_problem R <-> BPCP R.
Proof.
split; intros (u & Hu).
+ constructor 1 with u; auto.
+ exists u; auto.
Qed.
(* The reduction from BPCP as defined in Problems/PCP.v
and BPCP_problem as defined in ./bpcp.v *)
Theorem BPCP_BPCP_problem : BPCP ⪯ᵢ BPCP_problem.
Proof.
exists (fun x => x); red; symmetry; apply BPCP_BPCP_problem_eq.
Qed.
(* From a given (arbitrary) signature,
the reduction from
- finite and decidable SAT
- to finite and decidable and discrete SAT
SAT(Σ,𝔽,𝔻) <---> SAT(Σ,𝔽,ℂ,𝔻)
The reduction is the identity here !! *)
Theorem fo_form_fin_dec_SAT_discr_equiv Σ A : FSAT Σ A <-> FSAT' Σ A.
Proof.
split.
+ apply fo_form_fin_dec_SAT_fin_discr_dec.
+ apply fo_form_fin_discr_dec_SAT_fin_dec.
Qed.
(* Check fo_form_fin_dec_SAT_discr_equiv.
Print Assumptions fo_form_fin_dec_SAT_discr_equiv. *)
Corollary FIN_DEC_SAT_FIN_DISCR_DEC_SAT Σ : FSAT Σ ⪯ᵢ FSAT' Σ.
Proof. exists (fun A => A); red; apply fo_form_fin_dec_SAT_discr_equiv. Qed.
(* Check FIN_DEC_SAT_FIN_DISCR_DEC_SAT.
Print Assumptions FIN_DEC_SAT_FIN_DISCR_DEC_SAT. *)
(* With Σ = (sy,re) a signature and <<=_2>> : re and a proof that
arity of =_2 is 2, there is a reduction from
- finite and decidable and interpreted SAT over Σ (=_2 is interpreted by =)
- to finite and decidable SAT over Σ
SAT(sy,re,𝔽,ℂ,=) ---> SAT(sy,re,𝔽,ℂ) (with =_2 of arity 2 in re)
*)
Section FIN_DEC_EQ_SAT_FIN_DEC_SAT.
Variable (Σ : fo_signature) (e : rels Σ) (He : ar_rels _ e = 2).
Theorem FIN_DEC_EQ_SAT_FIN_DEC_SAT : FSATEQ e He ⪯ᵢ FSAT Σ.
Proof.
exists (fun A => Σ_noeq (fol_syms A) (e::fol_rels A) _ He A).
intros A; split.
+ intros (X & HX); exists X; revert HX.
apply Σ_noeq_sound.
+ apply Σ_noeq_complete; cbv; auto.
Qed.
End FIN_DEC_EQ_SAT_FIN_DEC_SAT.
(* Check FIN_DEC_EQ_SAT_FIN_DEC_SAT.
Print Assumptions FIN_DEC_EQ_SAT_FIN_DEC_SAT. *)