-
Notifications
You must be signed in to change notification settings - Fork 0
/
MM.v
113 lines (72 loc) · 3.9 KB
/
MM.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
(**************************************************************)
(* Copyright Dominique Larchey-Wendling [*] *)
(* *)
(* [*] Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
(* Certified Undecidability of Intuitionistic Linear Logic via Binary Stack Machines and Minsky Machines. Yannick Forster and Dominique Larchey-Wendling. CPP '19. http://uds-psl.github.io/ill-undecidability/ *)
From Undecidability.Shared.Libs.DLW
Require Import Vec.pos Vec.vec Code.sss.
Set Implicit Arguments.
(** * Halting problem for Minsky machines MM_HALTING *)
(* * Minsky Machines (MM)
A Minsky machine has n registers and there are just two instructions
1/ INC x : increment register x by 1
2/ DEC x k : decrement register x by 1 if x > 0
or jump to k if x = 0
*)
(* * Alternate Minsky Machines (MMA) such that two counters are enough for undec
Minsky machine has n registers and there are just two instructions
1/ INC x : increment register x by 1
2/ DEC x k : if x > 0 then decrement register x by 1 and jump to k
If no jump occurs, then implicitly, the jump is to the next instruction
We show that they simulated FRACTRAN
*)
Inductive mm_instr (X : Set) : Set :=
| mm_inc : X -> mm_instr X
| mm_dec : X -> nat -> mm_instr X
.
Notation INC := mm_inc.
Notation DEC := mm_dec.
Notation INCₐ := mm_inc.
Notation DECₐ := mm_dec.
(* ** Semantics for MM, restricted to X = pos n for some n *)
Section Minsky_Machine.
Variable (n : nat).
Definition mm_state := (nat*vec nat n)%type.
Local Notation "e #> x" := (vec_pos e x).
Local Notation "e [ v / x ]" := (vec_change e x v).
(* Minsky machine small step semantics *)
Inductive mm_sss : mm_instr (pos n) -> mm_state -> mm_state -> Prop :=
| in_mm_sss_inc : forall i x v, INC x // (i,v) -1> (1+i,v[(S (v#>x))/x])
| in_mm_sss_dec_0 : forall i x k v, v#>x = O -> DEC x k // (i,v) -1> (k,v)
| in_mm_sss_dec_1 : forall i x k v u, v#>x = S u -> DEC x k // (i,v) -1> (1+i,v[u/x])
where "i // s -1> t" := (mm_sss i s t).
(* Minsky machine alternate small step semantics *)
Inductive mma_sss : mm_instr (pos n) -> mm_state -> mm_state -> Prop :=
| in_mma_sss_inc : forall i x v, INCₐ x // (i,v) -1> (1+i,v[(S (v#>x))/x])
| in_mma_sss_dec_0 : forall i x k v, v#>x = O -> DECₐ x k // (i,v) -1> (1+i,v)
| in_mma_sss_dec_1 : forall i x k v u, v#>x = S u -> DECₐ x k // (i,v) -1> (k,v[u/x])
where "i // s -1> t" := (mma_sss i s t).
End Minsky_Machine.
Section MM_problems.
Notation "P // s ~~> t" := (sss_output (@mm_sss _) P s t).
Notation "P // s ↓" := (sss_terminates (@mm_sss _) P s).
Definition MM_PROBLEM := { n : nat & { P : list (mm_instr (pos n)) & vec nat n } }.
Definition MM_HALTS_ON_ZERO (P : MM_PROBLEM) :=
match P with existT _ n (existT _ P v) => (1,P) // (1,v) ~~> (0,vec_zero) end.
Definition MM_HALTING (P : MM_PROBLEM) :=
match P with existT _ n (existT _ P v) => (1, P) // (1, v) ↓ end.
End MM_problems.
Section MMA_problems.
Notation "P // s ~~> t" := (sss_output (@mma_sss _) P s t).
Notation "P // s ↓" := (sss_terminates (@mma_sss _) P s).
Definition MMA_PROBLEM n := (list (mm_instr (pos n)) * vec nat n)%type.
Definition MMA_HALTS_ON_ZERO {n} (P : MMA_PROBLEM n) := (1,fst P) // (1,snd P) ~~> (0,vec_zero).
Definition MMA_HALTING {n} (P : MMA_PROBLEM n) := (1,fst P) // (1,snd P) ↓.
Definition MMA2_PROBLEM := MMA_PROBLEM 2.
Definition MMA2_HALTS_ON_ZERO := @MMA_HALTS_ON_ZERO 2.
Definition MMA2_HALTING := @MMA_HALTING 2.
End MMA_problems.