-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathILL.v
337 lines (234 loc) · 15.3 KB
/
ILL.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
(**************************************************************)
(* Copyright Dominique Larchey-Wendling [*] *)
(* *)
(* [*] Affiliation LORIA -- CNRS *)
(**************************************************************)
(* This file is distributed under the terms of the *)
(* CeCILL v2 FREE SOFTWARE LICENSE AGREEMENT *)
(**************************************************************)
(* Certified Undecidability of Intuitionistic Linear Logic via Binary Stack Machines and Minsky Machines. Yannick Forster and Dominique Larchey-Wendling. CPP '19. http://uds-psl.github.io/ill-undecidability/ *)
Require Import List Permutation.
Set Implicit Arguments.
(* * Intuionistic Linear Logic *)
Local Infix "~p" := (@Permutation _) (at level 70).
(* We consider four fragments of ILL:
- the (!,-o,&) fragment with or without cut
- full fragment with or without cut
*)
Notation ill_vars := nat.
Inductive ill_connective := ill_with | ill_limp | ill_times | ill_plus.
Inductive ill_constant := ill_1 | ill_bot | ill_top.
Inductive ill_form : Set :=
| ill_var : ill_vars -> ill_form
| ill_cst : ill_constant -> ill_form
| ill_ban : ill_form -> ill_form
| ill_bin : ill_connective -> ill_form -> ill_form -> ill_form.
(* Symbols for cut&paste ⟙ ⟘ 𝝐 ﹠ ⊗ ⊕ ⊸ ! ‼ ∅ ⊢ *)
Notation "⟙" := (ill_cst ill_top).
Notation "⟘" := (ill_cst ill_bot).
Notation "𝟙" := (ill_cst ill_1).
Infix "&" := (ill_bin ill_with) (at level 50).
Infix "⊗" := (ill_bin ill_times) (at level 50).
Infix "⊕" := (ill_bin ill_plus) (at level 50).
Infix "⊸" := (ill_bin ill_limp) (at level 51, right associativity).
Notation "'!' x" := (ill_ban x) (at level 52).
Notation "£" := ill_var.
Notation "‼ x" := (map ill_ban x) (at level 60).
Notation "∅" := nil (only parsing).
Reserved Notation "l '⊢' x" (at level 70, no associativity).
Section S_ill_restr_without_cut.
(* These are the SILL rules in the CPP'19 paper w/o the cut *)
Inductive S_ill_restr : list ill_form -> ill_form -> Prop :=
| in_ill1_ax : forall A, A::∅ ⊢ A
| in_ill1_perm : forall Γ Δ A, Γ ~p Δ -> Γ ⊢ A
(*-----------------------------*)
-> Δ ⊢ A
| in_ill1_limp_l : forall Γ Δ A B C, Γ ⊢ A -> B::Δ ⊢ C
(*-----------------------------*)
-> A ⊸ B::Γ++Δ ⊢ C
| in_ill1_limp_r : forall Γ A B, A::Γ ⊢ B
(*-----------------------------*)
-> Γ ⊢ A ⊸ B
| in_ill1_with_l1 : forall Γ A B C, A::Γ ⊢ C
(*-----------------------------*)
-> A&B::Γ ⊢ C
| in_ill1_with_l2 : forall Γ A B C, B::Γ ⊢ C
(*-----------------------------*)
-> A&B::Γ ⊢ C
| in_ill1_with_r : forall Γ A B, Γ ⊢ A -> Γ ⊢ B
(*-----------------------------*)
-> Γ ⊢ A&B
| in_ill1_bang_l : forall Γ A B, A::Γ ⊢ B
(*-----------------------------*)
-> !A::Γ ⊢ B
| in_ill1_bang_r : forall Γ A, ‼Γ ⊢ A
(*-----------------------------*)
-> ‼Γ ⊢ !A
| in_ill1_weak : forall Γ A B, Γ ⊢ B
(*-----------------------------*)
-> !A::Γ ⊢ B
| in_ill1_cntr : forall Γ A B, !A::!A::Γ ⊢ B
(*-----------------------------*)
-> !A::Γ ⊢ B
where "l ⊢ x" := (S_ill_restr l x).
End S_ill_restr_without_cut.
Section S_ill_restr_with_cut.
(* These are the SILL rules in the CPP'19 paper including the cut rule *)
Inductive S_ill_restr_wc : list ill_form -> ill_form -> Prop :=
| in_ill2_ax : forall A, A::∅ ⊢ A
| in_ill2_cut : forall Γ Δ A B, Γ ⊢ A -> A::Δ ⊢ B
(*-----------------------------*)
-> Γ++Δ ⊢ B
| in_ill2_perm : forall Γ Δ A, Γ ~p Δ -> Γ ⊢ A
(*-----------------------------*)
-> Δ ⊢ A
| in_ill2_limp_l : forall Γ Δ A B C, Γ ⊢ A -> B::Δ ⊢ C
(*-----------------------------*)
-> A ⊸ B::Γ++Δ ⊢ C
| in_ill2_limp_r : forall Γ A B, A::Γ ⊢ B
(*-----------------------------*)
-> Γ ⊢ A ⊸ B
| in_ill2_with_l1 : forall Γ A B C, A::Γ ⊢ C
(*-----------------------------*)
-> A&B::Γ ⊢ C
| in_ill2_with_l2 : forall Γ A B C, B::Γ ⊢ C
(*-----------------------------*)
-> A&B::Γ ⊢ C
| in_ill2_with_r : forall Γ A B, Γ ⊢ A -> Γ ⊢ B
(*-----------------------------*)
-> Γ ⊢ A&B
| in_ill2_bang_l : forall Γ A B, A::Γ ⊢ B
(*-----------------------------*)
-> !A::Γ ⊢ B
| in_ill2_bang_r : forall Γ A, ‼Γ ⊢ A
(*-----------------------------*)
-> ‼Γ ⊢ !A
| in_ill2_weak : forall Γ A B, Γ ⊢ B
(*-----------------------------*)
-> !A::Γ ⊢ B
| in_ill2_cntr : forall Γ A B, !A::!A::Γ ⊢ B
(*-----------------------------*)
-> !A::Γ ⊢ B
where "l ⊢ x" := (S_ill_restr_wc l x).
End S_ill_restr_with_cut.
Section S_ill_without_cut.
(* These are the rules for the whole ILL, without cut *)
Inductive S_ill : list ill_form -> ill_form -> Prop :=
| in_ill3_ax : forall A, A::∅ ⊢ A
| in_ill3_perm : forall Γ Δ A, Γ ~p Δ -> Γ ⊢ A
(*-----------------------------*)
-> Δ ⊢ A
| in_ill3_limp_l : forall Γ Δ A B C, Γ ⊢ A -> B::Δ ⊢ C
(*-----------------------------*)
-> A ⊸ B::Γ++Δ ⊢ C
| in_ill3_limp_r : forall Γ A B, A::Γ ⊢ B
(*-----------------------------*)
-> Γ ⊢ A ⊸ B
| in_ill3_with_l1 : forall Γ A B C, A::Γ ⊢ C
(*-----------------------------*)
-> A&B::Γ ⊢ C
| in_ill3_with_l2 : forall Γ A B C, B::Γ ⊢ C
(*-----------------------------*)
-> A&B::Γ ⊢ C
| in_ill3_with_r : forall Γ A B, Γ ⊢ A -> Γ ⊢ B
(*-----------------------------*)
-> Γ ⊢ A&B
| in_ill3_bang_l : forall Γ A B, A::Γ ⊢ B
(*-----------------------------*)
-> !A::Γ ⊢ B
| in_ill3_bang_r : forall Γ A, ‼Γ ⊢ A
(*-----------------------------*)
-> ‼Γ ⊢ !A
| in_ill3_weak : forall Γ A B, Γ ⊢ B
(*-----------------------------*)
-> !A::Γ ⊢ B
| in_ill3_cntr : forall Γ A B, !A::!A::Γ ⊢ B
(*-----------------------------*)
-> !A::Γ ⊢ B
| in_ill3_times_l : forall Γ A B C, A::B::Γ ⊢ C
(*-----------------------------*)
-> A⊗B::Γ ⊢ C
| in_ill3_times_r : forall Γ Δ A B, Γ ⊢ A -> Δ ⊢ B
(*-----------------------------*)
-> Γ++Δ ⊢ A⊗B
| in_ill3_plus_l : forall Γ A B C, A::Γ ⊢ C -> B::Γ ⊢ C
(*-----------------------------*)
-> A⊕B::Γ ⊢ C
| in_ill3_plus_r1 : forall Γ A B, Γ ⊢ A
(*-----------------------------*)
-> Γ ⊢ A⊕B
| in_ill3_plus_r2 : forall Γ A B, Γ ⊢ B
(*-----------------------------*)
-> Γ ⊢ A⊕B
| in_ill3_bot_l : forall Γ A, ⟘::Γ ⊢ A
| in_ill3_top_r : forall Γ, Γ ⊢ ⟙
| in_ill3_unit_l : forall Γ A, Γ ⊢ A
(*-----------------------------*)
-> 𝟙::Γ ⊢ A
| in_ill3_unit_r : ∅ ⊢ 𝟙
where "l ⊢ x" := (S_ill l x).
End S_ill_without_cut.
Section S_ill_with_cut.
(* These are the rules for the whole ILL, without cut *)
Inductive S_ill_wc : list ill_form -> ill_form -> Prop :=
| in_ill4_ax : forall A, A::∅ ⊢ A
| in_ill4_cut : forall Γ Δ A B, Γ ⊢ A -> A::Δ ⊢ B
(*-----------------------------*)
-> Γ++Δ ⊢ B
| in_ill4_perm : forall Γ Δ A, Γ ~p Δ -> Γ ⊢ A
(*-----------------------------*)
-> Δ ⊢ A
| in_ill4_limp_l : forall Γ Δ A B C, Γ ⊢ A -> B::Δ ⊢ C
(*-----------------------------*)
-> A ⊸ B::Γ++Δ ⊢ C
| in_ill4_limp_r : forall Γ A B, A::Γ ⊢ B
(*-----------------------------*)
-> Γ ⊢ A ⊸ B
| in_ill4_with_l1 : forall Γ A B C, A::Γ ⊢ C
(*-----------------------------*)
-> A&B::Γ ⊢ C
| in_ill4_with_l2 : forall Γ A B C, B::Γ ⊢ C
(*-----------------------------*)
-> A&B::Γ ⊢ C
| in_ill4_with_r : forall Γ A B, Γ ⊢ A -> Γ ⊢ B
(*-----------------------------*)
-> Γ ⊢ A&B
| in_ill4_bang_l : forall Γ A B, A::Γ ⊢ B
(*-----------------------------*)
-> !A::Γ ⊢ B
| in_ill4_bang_r : forall Γ A, ‼Γ ⊢ A
(*-----------------------------*)
-> ‼Γ ⊢ !A
| in_ill4_weak : forall Γ A B, Γ ⊢ B
(*-----------------------------*)
-> !A::Γ ⊢ B
| in_ill4_cntr : forall Γ A B, !A::!A::Γ ⊢ B
(*-----------------------------*)
-> !A::Γ ⊢ B
| in_ill4_times_l : forall Γ A B C, A::B::Γ ⊢ C
(*-----------------------------*)
-> A⊗B::Γ ⊢ C
| in_ill4_times_r : forall Γ Δ A B, Γ ⊢ A -> Δ ⊢ B
(*-----------------------------*)
-> Γ++Δ ⊢ A⊗B
| in_ill4_plus_l : forall Γ A B C, A::Γ ⊢ C -> B::Γ ⊢ C
(*-----------------------------*)
-> A⊕B::Γ ⊢ C
| in_ill4_plus_r1 : forall Γ A B, Γ ⊢ A
(*-----------------------------*)
-> Γ ⊢ A⊕B
| in_ill4_plus_r2 : forall Γ A B, Γ ⊢ B
(*-----------------------------*)
-> Γ ⊢ A⊕B
| in_ill4_bot_l : forall Γ A, ⟘::Γ ⊢ A
| in_ill4_top_r : forall Γ, Γ ⊢ ⟙
| in_ill4_unit_l : forall Γ A, Γ ⊢ A
(*-----------------------------*)
-> 𝟙::Γ ⊢ A
| in_ill4_unit_r : ∅ ⊢ 𝟙
where "l ⊢ x" := (S_ill_wc l x).
End S_ill_with_cut.
Definition rILL_cf_PROVABILITY (S : _*_) := let (Γ,A) := S in S_ill_restr Γ A.
Definition rILL_PROVABILITY (S : _*_) := let (Γ,A) := S in S_ill_restr_wc Γ A.
Definition ILL_cf_PROVABILITY (S : _*_) := let (Γ,A) := S in S_ill Γ A.
Definition ILL_PROVABILITY (S : _*_) := let (Γ,A) := S in S_ill_wc Γ A.