-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathextract_features.py
275 lines (237 loc) · 10.2 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import argparse
import glob
import logging
import math
import pathlib
from typing import Tuple, List, Union, Optional
import cv2
import deepdish as dd
import numpy as np
import os
import torch
import yaml
from torch import multiprocessing
from models.features import get_feature_extractor
logging.basicConfig(format='[%(asctime)s] %(name)s | %(levelname)s: %(message)s', datefmt='%Y/%m/%d %I:%M:%S',
level=logging.INFO)
def parse_arguments() -> argparse.Namespace:
"""
Define and parse command line arguments for this module.
Returns:
args: Namespace object containing parsed arguments
"""
parser = argparse.ArgumentParser('Local Features Extraction')
parser.add_argument(
'--device',
help='Device type, where features are extracted',
type=str,
default='cpu',
choices=['cpu', 'cuda'],
)
parser.add_argument(
'--num_workers',
help='Number of workers for parallel processing',
type=int,
default=1
)
parser.add_argument(
'--target_size',
help='Target size of the image (WIDTH, HEIGHT). '
'At least one side of resulting image will correspond with `target_size` '
'dimensions, such that the original aspect ration is preserved',
type=int,
default=None,
nargs=2
)
parser.add_argument(
'--data_path',
help='Path to directory with scenes images',
type=pathlib.Path,
required=True
)
parser.add_argument(
'--output_path',
help='Path to directory where extracted features are stored',
type=pathlib.Path,
required=True
)
parser.add_argument(
'--extractor_config_path',
help='Path to the file containing config for feature extractor in .yaml format',
type=pathlib.Path,
default='config/features/sift_opencv.yaml'
)
parser.add_argument(
'--recompute',
help='Flag indicating whether to recompute features if it is already present in output directory',
action='store_true'
)
parser.add_argument(
'--image_format',
help='Formats of images searched inside `data_path` to compute features for',
type=str,
default=['jpg', 'JPEG', 'JPG', 'png'],
nargs='+'
)
return parser.parse_args()
def main():
logger = logging.getLogger(__name__)
args = parse_arguments()
logger.info(args)
num_workers = args.num_workers
if args.device == 'cuda' and torch.cuda.device_count() < num_workers:
logger.warning(f'Number of workers selected is bigger than number of available cuda devices. '
f'Setting num_workers to {torch.cuda.device_count()}.')
num_workers = torch.cuda.device_count()
# read feature extractor config
with open(args.extractor_config_path) as f:
feature_extractor_config = yaml.full_load(f)
# make output directory
output_path = args.output_path / get_output_directory_name(feature_extractor_config, args)
logger.info(f'Creating output directory {output_path} (if not exists).')
os.makedirs(output_path, exist_ok=True)
with open(os.path.join(output_path, 'config.yaml'), 'w') as f:
yaml.dump(feature_extractor_config, f)
images_list = get_images_list(args.data_path, args.image_format)
logger.info(f'Total number of images found to process: {len(images_list)}')
# split into chunks of (almost) equal size
chunk_size = math.ceil(len(images_list) / num_workers)
images_list = [images_list[i * chunk_size:(i + 1) * chunk_size] for i in range(num_workers)]
logger.info(f'Starting {num_workers} processes for features extraction.')
multiprocessing.start_processes(
process_chunk,
args=(images_list, feature_extractor_config, output_path, args),
nprocs=num_workers,
join=True
)
def process_chunk(process_id: int, images_list: List[Tuple[str, Union[str, None]]], feature_extractor_config: dict,
output_path: Union[str, pathlib.Path], args: argparse.Namespace):
"""Function to execute on each worker"""
if args.device == 'cuda':
device = f'cuda:{process_id}'
else:
device = 'cpu'
cv2.setNumThreads(1)
logger = logging.getLogger(__name__)
features_name = feature_extractor_config['name']
feature_extractor = get_feature_extractor(features_name)(**feature_extractor_config['parameters'])
feature_extractor.eval().to(device)
with torch.inference_mode():
images_list = images_list[process_id]
for i, (image_path, scene) in enumerate(images_list, start=1):
output_path_scene = output_path
if scene is not None:
output_path_scene = output_path_scene / scene
os.makedirs(output_path_scene, exist_ok=True)
base_name = image_path.rpartition(os.path.sep)[2].rpartition('.')[0]
# skip image if output already exists and recompute=False
if not args.recompute and check_if_features_exist(output_path_scene, base_name):
continue
image = read_image(image_path, args.target_size)
image = (torch.FloatTensor(image) / 255.).unsqueeze(0).unsqueeze(0).to(device) # (1, 1, H, W)
_, _, resize_height, resize_width = image.size()
lafs, scores, descriptors = map(lambda x: x[0].cpu().numpy(), feature_extractor(image))
# save results
save_outputs(
output_path_scene,
base_name,
(lafs, scores, descriptors, np.array([resize_width, resize_height]))
)
if i % 100 == 0:
logger.info(f'PID #{process_id}: Processed {i}/{len(images_list)} images.')
def get_output_directory_name(feature_extractor_config: dict, args: argparse.Namespace) -> str:
"""
Build output directory name based on parameters
Args:
feature_extractor_config: parameters of feature extractor
args: command line arguments
Returns:
Name of directory where features are stored
"""
name = feature_extractor_config['name']
if args.target_size is not None:
name += f'_{args.target_size[0]}_{args.target_size[1]}'
return name
def get_images_list(input_data_path: pathlib.Path, image_formats: List[str]) -> List[Tuple[str, Optional[str]]]:
"""
Get list of images that wil be processed.
Args:
input_data_path: input path to the location with images
image_formats: file formats of images to look for
Returns:
images_path_list: list where each image is represented as tuple with path to image
and scene name (or None if no scenes are available)
"""
# process each scene
images_path_list = []
scenes = os.listdir(input_data_path)
for scene in scenes:
images_path = input_data_path / scene / 'dense0' / 'imgs'
scene_list = []
for image_format in image_formats:
scene_list.extend(glob.glob(str(images_path / f'*.{image_format}')))
images_path_list.extend(((path, scene) for path in scene_list))
return images_path_list
def check_if_features_exist(output_path_scene: pathlib.Path, image_base_name: str) -> bool:
"""
Check if feature outputs already exist in the output location
Args:
output_path_scene: location of output for particular scene
image_base_name: image name without format
Returns:
exists_flag: flag indicating whether the outputs for particular base_name exists
"""
return os.path.exists(output_path_scene / f'{image_base_name}_lafs.h5') and \
os.path.exists(output_path_scene / f'{image_base_name}_scores.h5') and \
os.path.exists(output_path_scene / f'{image_base_name}_descriptors.h5') and \
os.path.exists(output_path_scene / f'{image_base_name}_size.h5')
def read_image(image_path: Union[str, pathlib.Path], target_size: Optional[Tuple[int, int]]) -> np.ndarray:
"""
Read image, convert to gray and resize to target size
Args:
image_path: path to image file
target_size: size of returned image will correspond with target size in at least one dimension, such that
its aspect ratio is preserved
Returns:
image: array (H, W) representing image, where H=target_size[1] or W=target_size[0]
"""
# read image and convert to gray
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
size = image.shape[:2][::-1]
if target_size is not None:
# resize image to target size
target_ratio = target_size[0] / target_size[1] # 960 / 720 = 1.333
current_ratio = size[0] / size[1]
if current_ratio > target_ratio:
resize_height = target_size[1]
resize_width = int(current_ratio * resize_height)
image = cv2.resize(image, (resize_width, resize_height))
else:
resize_width = target_size[0]
resize_height = int(resize_width / current_ratio)
image = cv2.resize(image, (resize_width, resize_height))
return image
def save_outputs(output_path_scene: pathlib.Path,
image_base_name: str, outputs: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]):
"""
Safely save outputs. If an error occurs remove all outputs.
Args:
output_path_scene: location of output for particular scene
image_base_name: image name without format
outputs: outputs to be saved
"""
lafs, scores, descriptors, size = outputs
try:
dd.io.save(output_path_scene / f'{image_base_name}_lafs.h5', lafs)
dd.io.save(output_path_scene / f'{image_base_name}_scores.h5', scores)
dd.io.save(output_path_scene / f'{image_base_name}_descriptors.h5', descriptors)
dd.io.save(output_path_scene / f'{image_base_name}_size.h5', size)
except (Exception, KeyboardInterrupt):
os.remove(output_path_scene / f'{image_base_name}_lafs.h5')
os.remove(output_path_scene / f'{image_base_name}_scores.h5')
os.remove(output_path_scene / f'{image_base_name}_descriptors.h5')
os.remove(output_path_scene / f'{image_base_name}_size.h5')
raise
if __name__ == '__main__':
main()