-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmisc_functions.py
239 lines (216 loc) · 8.63 KB
/
misc_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
Created on Thu Oct 21 11:09:09 2017
@author: Utku Ozbulak - github.com/utkuozbulak
"""
import os
import copy
import numpy as np
from PIL import Image
import matplotlib.cm as mpl_color_map
import torch
from torch.autograd import Variable
from torchvision import models
def convert_to_grayscale(im_as_arr):
"""
Converts 3d image to grayscale
Args:
im_as_arr (numpy arr): RGB image with shape (D,W,H)
returns:
grayscale_im (numpy_arr): Grayscale image with shape (1,W,D)
"""
grayscale_im = np.sum(np.abs(im_as_arr), axis=0)
im_max = np.percentile(grayscale_im, 99)
im_min = np.min(grayscale_im)
grayscale_im = (np.clip((grayscale_im - im_min) / (im_max - im_min), 0, 1))
grayscale_im = np.expand_dims(grayscale_im, axis=0)
return grayscale_im
def save_gradient_images(gradient, file_name):
"""
Exports the original gradient image
Args:
gradient (np arr): Numpy array of the gradient with shape (3, 224, 224)
file_name (str): File name to be exported
"""
if not os.path.exists('../results'):
os.makedirs('../results')
# Normalize
gradient = gradient - gradient.min()
gradient /= gradient.max()
# Save image
path_to_file = os.path.join('../results', file_name + '.jpg')
save_image(gradient, path_to_file)
def save_class_activation_images(org_img, activation_map, file_name):
"""
Saves cam activation map and activation map on the original image
Args:
org_img (PIL img): Original image
activation_map (numpy arr): Activation map (grayscale) 0-255
file_name (str): File name of the exported image
"""
if not os.path.exists('../results'):
os.makedirs('../results')
# Grayscale activation map
heatmap, heatmap_on_image = apply_colormap_on_image(org_img, activation_map, 'hsv')
# Save colored heatmap
path_to_file = os.path.join('../results', file_name+'_Cam_Heatmap.png')
save_image(heatmap, path_to_file)
# Save heatmap on iamge
path_to_file = os.path.join('../results', file_name+'_Cam_On_Image.png')
save_image(heatmap_on_image, path_to_file)
# SAve grayscale heatmap
path_to_file = os.path.join('../results', file_name+'_Cam_Grayscale.png')
save_image(activation_map, path_to_file)
def apply_colormap_on_image(org_im, activation, colormap_name):
"""
Apply heatmap on image
Args:
org_img (PIL img): Original image
activation_map (numpy arr): Activation map (grayscale) 0-255
colormap_name (str): Name of the colormap
"""
# Get colormap
color_map = mpl_color_map.get_cmap(colormap_name)
no_trans_heatmap = color_map(activation)
# Change alpha channel in colormap to make sure original image is displayed
heatmap = copy.copy(no_trans_heatmap)
heatmap[:, :, 3] = 0.4
heatmap = Image.fromarray((heatmap*255).astype(np.uint8))
no_trans_heatmap = Image.fromarray((no_trans_heatmap*255).astype(np.uint8))
# Apply heatmap on iamge
heatmap_on_image = Image.new("RGBA", org_im.size)
heatmap_on_image = Image.alpha_composite(heatmap_on_image, org_im.convert('RGBA'))
heatmap_on_image = Image.alpha_composite(heatmap_on_image, heatmap)
return no_trans_heatmap, heatmap_on_image
def format_np_output(np_arr):
"""
This is a (kind of) bandaid fix to streamline saving procedure.
It converts all the outputs to the same format which is 3xWxH
with using sucecssive if clauses.
Args:
im_as_arr (Numpy array): Matrix of shape 1xWxH or WxH or 3xWxH
"""
# Phase/Case 1: The np arr only has 2 dimensions
# Result: Add a dimension at the beginning
if len(np_arr.shape) == 2:
np_arr = np.expand_dims(np_arr, axis=0)
# Phase/Case 2: Np arr has only 1 channel (assuming first dim is channel)
# Result: Repeat first channel and convert 1xWxH to 3xWxH
if np_arr.shape[0] == 1:
np_arr = np.repeat(np_arr, 3, axis=0)
# Phase/Case 3: Np arr is of shape 3xWxH
# Result: Convert it to WxHx3 in order to make it saveable by PIL
if np_arr.shape[0] == 3:
np_arr = np_arr.transpose(1, 2, 0)
# Phase/Case 4: NP arr is normalized between 0-1
# Result: Multiply with 255 and change type to make it saveable by PIL
if np.max(np_arr) <= 1:
np_arr = (np_arr*255).astype(np.uint8)
return np_arr
def save_image(im, path):
"""
Saves a numpy matrix or PIL image as an image
Args:
im_as_arr (Numpy array): Matrix of shape DxWxH
path (str): Path to the image
"""
if isinstance(im, (np.ndarray, np.generic)):
im = format_np_output(im)
im = Image.fromarray(im)
im.save(path)
def preprocess_image(pil_im, resize_im=True):
"""
Processes image for CNNs
Args:
PIL_img (PIL_img): Image to process
resize_im (bool): Resize to 224 or not
returns:
im_as_var (torch variable): Variable that contains processed float tensor
"""
# mean and std list for channels (Imagenet)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
# Resize image
if resize_im:
pil_im.thumbnail((512, 512))
im_as_arr = np.float32(pil_im)
im_as_arr = im_as_arr.transpose(2, 0, 1) # Convert array to D,W,H
# Normalize the channels
for channel, _ in enumerate(im_as_arr):
im_as_arr[channel] /= 255
im_as_arr[channel] -= mean[channel]
im_as_arr[channel] /= std[channel]
# Convert to float tensor
im_as_ten = torch.from_numpy(im_as_arr).float()
# Add one more channel to the beginning. Tensor shape = 1,3,224,224
im_as_ten.unsqueeze_(0)
# Convert to Pytorch variable
im_as_var = Variable(im_as_ten, requires_grad=True)
return im_as_var
def recreate_image(im_as_var):
"""
Recreates images from a torch variable, sort of reverse preprocessing
Args:
im_as_var (torch variable): Image to recreate
returns:
recreated_im (numpy arr): Recreated image in array
"""
reverse_mean = [-0.485, -0.456, -0.406]
reverse_std = [1/0.229, 1/0.224, 1/0.225]
recreated_im = copy.copy(im_as_var.data.numpy()[0])
for c in range(3):
recreated_im[c] /= reverse_std[c]
recreated_im[c] -= reverse_mean[c]
recreated_im[recreated_im > 1] = 1
recreated_im[recreated_im < 0] = 0
recreated_im = np.round(recreated_im * 255)
recreated_im = np.uint8(recreated_im).transpose(1, 2, 0)
return recreated_im
def get_positive_negative_saliency(gradient):
"""
Generates positive and negative saliency maps based on the gradient
Args:
gradient (numpy arr): Gradient of the operation to visualize
returns:
pos_saliency ( )
"""
pos_saliency = (np.maximum(0, gradient) / gradient.max())
neg_saliency = (np.maximum(0, -gradient) / -gradient.min())
return pos_saliency, neg_saliency
def get_example_params(example_index):
"""
Gets used variables for almost all visualizations, like the image, model etc.
Args:
example_index (int): Image id to use from examples
returns:
original_image (numpy arr): Original image read from the file
prep_img (numpy_arr): Processed image
target_class (int): Target class for the image
file_name_to_export (string): File name to export the visualizations
pretrained_model(Pytorch model): Model to use for the operations
"""
# Pick one of the examples
example_list = (('data/all_branches_with_pda_plv/test/imgs/CTCAZHX30011957/PLV_RCA/PLV_RCA_762_CTCAZHX30011957_50.png', 56),
('data/all_branches_with_pda_plv/test/imgs/CTCAZHX30011957/OM/OM_762_CTCAZHX30011957_5.png', 243),
('/data/all_branches_with_pda_plv/test/imgs/CTCAZHX30011957/LCX/LCX_762_CTCAZHX30011957_5.png', 72))
img_path = example_list[example_index][0]
target_class = example_list[example_index][1]
file_name_to_export = img_path[img_path.rfind('/')+1:img_path.rfind('.')]
# Read image
original_image = Image.open(img_path).convert('RGB')
# Process image
prep_img = preprocess_image(original_image)
# Define model
from models import ShuffleNetv2
device='cpu'
pretrained_model = ShuffleNetv2(n_classes=3)
PATH_WEIGHTS = 'model_model_34_val_f1=0.9360136.pth'
# model.load_state_dict(torch.load(PATH_WEIGHTS, map_location={'cuda:0': 'cpu'}))
pretrained_model.load_state_dict(torch.load(PATH_WEIGHTS,map_location={'cuda:0': 'cpu'}))
# model.model.fc = nn.Sequential()
pretrained_model.to(device)
pretrained_model.eval()
return (original_image,
prep_img,
target_class,
file_name_to_export,
pretrained_model)