-
Notifications
You must be signed in to change notification settings - Fork 11
/
losses.py
51 lines (45 loc) · 1.67 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch.nn as nn
import torch.nn.functional as F
import torch
class OHEMLoss(nn.Module):
def __init__(self, k=1):
super(OHEMLoss, self).__init__()
self.k = k
def forward(self, y_pred, y_true):
loss = F.cross_entropy(y_pred, y_true, reduction='none')
if len(y_pred) < self.k:
k = len(y_pred)
_, idxs = loss.topk(k)
else:
_, idxs = loss.topk(self.k)
return loss[idxs].mean()
class CrossEntropyLabelSmooth(nn.Module):
"""Cross entropy loss with label smoothing regularizer.
Reference:
Szegedy et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
Equation: y = (1 - epsilon) * y + epsilon / K.
Args:
num_classes (int): number of classes.
epsilon (float): weight.
"""
def __init__(self, num_classes, epsilon=0.1, use_gpu=True):
super(CrossEntropyLabelSmooth, self).__init__()
self.num_classes = num_classes
self.epsilon = epsilon
self.use_gpu = use_gpu
self.logsoftmax = nn.LogSoftmax(dim=1)
def forward(self, inputs, targets):
"""
Args:
inputs: prediction matrix (before softmax) with shape (batch_size, num_classes)
targets: ground truth labels with shape (num_classes)
"""
log_probs = self.logsoftmax(inputs)
targets = torch.zeros(log_probs.size()).scatter_(
1, targets.unsqueeze(1).data.cpu(), 1
)
if self.use_gpu:
targets = targets.cuda()
targets = (1 - self.epsilon) * targets + self.epsilon / self.num_classes
loss = (-targets * log_probs).mean(0).sum()
return loss