You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
A key requirement for many distributed systems is to be resilient toward partial failures, allowing a system to progress despite the failure of some components. This makes programming of such systems daunting, particularly in regards to avoiding inconsistencies due to failures and asynchrony. This work introduces a formal model for crash failure handling in asynchronous distributed systems featuring a lightweight coordinator, modeled in the image of widely used systems such as ZooKeeper and Chubby. We develop a typing discipline based on multiparty session types for this model that supports the specification and static verification of multiparty protocols with explicit failure handling. We show that our type system ensures subject reduction and progress in the presence of failures. In other words, in a well-typed system even if some participants crash during execution, the system is guaranteed to progress in a consistent manner with the remaining participants.
The text was updated successfully, but these errors were encountered:
Malte Viering, Tzu-Chun Chen, Patrick Eugster, Raymond Hu, Lukasz Ziarek
https://link.springer.com/chapter/10.1007/978-3-319-89884-1_28
A key requirement for many distributed systems is to be resilient toward partial failures, allowing a system to progress despite the failure of some components. This makes programming of such systems daunting, particularly in regards to avoiding inconsistencies due to failures and asynchrony. This work introduces a formal model for crash failure handling in asynchronous distributed systems featuring a lightweight coordinator, modeled in the image of widely used systems such as ZooKeeper and Chubby. We develop a typing discipline based on multiparty session types for this model that supports the specification and static verification of multiparty protocols with explicit failure handling. We show that our type system ensures subject reduction and progress in the presence of failures. In other words, in a well-typed system even if some participants crash during execution, the system is guaranteed to progress in a consistent manner with the remaining participants.
The text was updated successfully, but these errors were encountered: