-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathCoordConv.py
100 lines (82 loc) · 4.5 KB
/
CoordConv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#! /usr/bin/env python
# Copyright (c) 2019 Uber Technologies, Inc.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from tensorflow.python.layers import base
import tensorflow as tf
class AddCoords(base.Layer):
"""Add coords to a tensor"""
def __init__(self, x_dim=64, y_dim=64, with_r=False, skiptile=False):
super(AddCoords, self).__init__()
self.x_dim = x_dim
self.y_dim = y_dim
self.with_r = with_r
self.skiptile = skiptile
def call(self, input_tensor):
"""
input_tensor: (batch, 1, 1, c), or (batch, x_dim, y_dim, c)
In the first case, first tile the input_tensor to be (batch, x_dim, y_dim, c)
In the second case, skiptile, just concat
"""
if not self.skiptile:
input_tensor = tf.tile(input_tensor, [1, self.x_dim, self.y_dim, 1]) # (batch, 64, 64, 2)
input_tensor = tf.cast(input_tensor, 'float32')
batch_size_tensor = tf.shape(input_tensor)[0] # get batch size
xx_ones = tf.ones([batch_size_tensor, self.x_dim],
dtype=tf.int32) # e.g. (batch, 64)
xx_ones = tf.expand_dims(xx_ones, -1) # e.g. (batch, 64, 1)
xx_range = tf.tile(tf.expand_dims(tf.range(self.y_dim), 0),
[batch_size_tensor, 1]) # e.g. (batch, 64)
xx_range = tf.expand_dims(xx_range, 1) # e.g. (batch, 1, 64)
xx_channel = tf.matmul(xx_ones, xx_range) # e.g. (batch, 64, 64)
xx_channel = tf.expand_dims(xx_channel, -1) # e.g. (batch, 64, 64, 1)
yy_ones = tf.ones([batch_size_tensor, self.y_dim],
dtype=tf.int32) # e.g. (batch, 64)
yy_ones = tf.expand_dims(yy_ones, 1) # e.g. (batch, 1, 64)
yy_range = tf.tile(tf.expand_dims(tf.range(self.x_dim), 0),
[batch_size_tensor, 1]) # (batch, 64)
yy_range = tf.expand_dims(yy_range, -1) # e.g. (batch, 64, 1)
yy_channel = tf.matmul(yy_range, yy_ones) # e.g. (batch, 64, 64)
yy_channel = tf.expand_dims(yy_channel, -1) # e.g. (batch, 64, 64, 1)
xx_channel = tf.cast(xx_channel, 'float32') / (self.x_dim - 1)
yy_channel = tf.cast(yy_channel, 'float32') / (self.y_dim - 1)
xx_channel = xx_channel*2 - 1 # [-1,1]
yy_channel = yy_channel*2 - 1
ret = tf.concat([input_tensor,
xx_channel,
yy_channel], axis=-1) # e.g. (batch, 64, 64, c+2)
if self.with_r:
rr = tf.sqrt( tf.square(xx_channel)
+ tf.square(yy_channel)
)
ret = tf.concat([ret, rr], axis=-1) # e.g. (batch, 64, 64, c+3)
return ret
class CoordConv(base.Layer):
"""CoordConv layer as in the paper."""
def __init__(self, x_dim, y_dim, with_r, *args, **kwargs):
super(CoordConv, self).__init__()
self.addcoords = AddCoords(x_dim=x_dim,
y_dim=y_dim,
with_r=with_r,
skiptile=True)
self.conv = tf.layers.Conv2D(*args, **kwargs)
def call(self, input_tensor):
ret = self.addcoords(input_tensor)
ret = self.conv(ret)
return ret