-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path内涝分析.py
333 lines (302 loc) · 13.6 KB
/
内涝分析.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
from PySide2.QtWidgets import QApplication, QMessageBox,QWidget, QVBoxLayout, QFileDialog, QApplication,QLineEdit
from PySide2.QtUiTools import QUiLoader
from PySide2.QtCore import Signal, Slot
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
plt.style.use({'figure.figsize':(25,20)})
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split,cross_val_score,GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
from sklearn import model_selection
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import roc_curve,auc,roc_auc_score
import scipy
import tensorflow as tf
from tensorflow import keras
from keras import models
from keras import layers
from keras import losses
#from keras import metrics
from keras import optimizers
from keras import backend as K
class Stats:
def __init__(self):
# 从文件中加载UI定义
# 从 UI 定义中动态 创建一个相应的窗口对象
# 注意:里面的控件对象也成为窗口对象的属性了
# 比如 self.ui.button , self.ui.textEdit
##导入建立好的ui
self.ui = QUiLoader().load('可视化.ui')
##导入文件显示的button
self.ui.import_text.clicked.connect(self.handleCalc_import_text)
self.ui.layout = QVBoxLayout()
self.ui.layout.addWidget(self.ui.import_text)
self.ui.setLayout(self.ui.layout)
##导入数据分析的button
self.ui.tongji.clicked.connect(self.handleCalc_tongji)
self.ui.cor.clicked.connect(self.handleCalc_cor)
self.ui.corr_heat.clicked.connect(self.handleCalc_corr_heat)
##导入不同模型的button
self.ui.Button_SVM.clicked.connect(self.handleCalc_SVM)
self.ui.KNN.clicked.connect(self.handleCalc_KNN)
self.ui.random_forest.clicked.connect(self.handleCalc_random_forest)
self.ui.logisticregression.clicked.connect(self.handleCalc_logisticregression)
self.ui.Decision_tree.clicked.connect(self.handleCalc_Decision_tree)
self.ui.flood_b.clicked.connect(self.handleCalc_flood_b)
self.ui.processdata.clicked.connect(self.process_data)
#*************************************************************************
# 函数部分
#*************************************************************************
#############################路径导入的函数##################################
#def handleCalc_import_text(self):
@Slot()
def handleCalc_import_text(self):
# 生成文件对话框对象
dialog = QFileDialog()
# 设置文件过滤器,这里是任何文件,包括目录噢
dialog.setFileMode(QFileDialog.AnyFile)
# 设置显示文件的模式,这里是详细模式
dialog.setViewMode(QFileDialog.Detail)
if dialog.exec_():
fileNames = dialog.selectedFiles()
self.ui.lineEdit.setText(fileNames[0])
#-------------------------------------------------------------------------------------------
##########################################数据预处理##########################################
def process_data(self):
##读入文件数据,并进行预处理
info = self.ui.lineEdit.text()
print(info)
global seed ,I_data,train,test,train_x,train_y,test_x,test_y,s1,s2
seed = 5
I_data = pd.read_csv(info)
train, test = train_test_split(I_data, test_size=0.3, random_state=seed)
train_x = train[
['after_proj', 'podu_1', 'poxiang_1', 'Convergenc', 'Terrain_Ru', 'Topographi',
'js_2019', 'shuixi1', 'jianzhu201']]
train_y = train.GRID_CODE
test_x = test[
['after_proj', 'podu_1', 'poxiang_1', 'Convergenc', 'Terrain_Ru', 'Topographi',
'js_2019', 'shuixi1', 'jianzhu201']]
test_y = test.GRID_CODE
# mean = train_x.mean(axis=0)
# train_x -= mean
# std = train_x.std(axis=0)
# train_x /= std
# test_x -= mean
# test_x /= std
Max_train = train_x.max(axis=0)
Min_train = train_x.min(axis=0)
Max_test = test_x.max(axis=0)
Min_test = test_x.min(axis=0)
train_x = train_x - Min_train
train_x = train_x / (Max_train - Min_train)
test_x = test_x - Min_test
test_x = test_x / (Max_test - Min_test)
s1 = pd.concat([train_x, train_y], axis=1, join='outer')
s2 = pd.concat([test_x, test_y], axis=1, join='outer')
#-------------------------------------------------------------------------
############################分析的函数######################################
#-------------------------------------------------------------------------
def handleCalc_tongji(self):
print(s1.describe())
print(s2.describe())
def handleCalc_cor(self):
print(s1.corr())
print(s2.corr())
def handleCalc_corr_heat(self):
sns.heatmap(s1.corr(), square=True, annot=True, cmap='YlGnBu')
sns.heatmap(s1.corr(), square=True, annot=True, cmap='YlGnBu')
plt.show()
#############################模型函数#######################################
#-------------------------------------------------------------------------
def handleCalc_SVM(self):
model = svm.SVC()
model.fit(train_x, train_y)
prediction = model.predict(test_x)
print('The accuracy of the SVM is:', metrics.accuracy_score(prediction, test_y))
t=metrics.accuracy_score(prediction, test_y)
self.ui.lineEdit_10.setText(str(t))
def handleCalc_KNN(self):
model = KNeighborsClassifier()
model.fit(train_x, train_y)
prediction = model.predict(test_x)
print('The accuracy of the KNN is:', metrics.accuracy_score(prediction, test_y))
t = metrics.accuracy_score(prediction, test_y)
self.ui.lineEdit_9.setText(str(t))
def handleCalc_random_forest(self):
y = I_data.GRID_CODE
x=I_data.drop('GRID_CODE',axis=1)
rfc = RandomForestClassifier()
rfc = rfc.fit(train_x, train_y)
result = rfc.score(test_x, test_y)
print(result)
t = result
self.ui.lineEdit_8.setText(str(t))
print(roc_auc_score(test_y, rfc.predict_proba(test_x)[:, 1]))
print('各feature的重要性:%s' % rfc.feature_importances_)
importances = rfc.feature_importances_
print(np.argsort(importances)[::-1])
##绘制重要性图
std = np.std([tree.feature_importances_ for tree in rfc.estimators_], axis=0)
indices = np.argsort(importances)[::-1]
print('Feature ranking:')
for f in range(min(20, train_x.shape[1])):
print("%2d') %-*s %f" % (f + 1, 30, train_x.columns[indices[f]], importances[indices[f]]))
plt.figure()
plt.title("Feature importances")
plt.bar(range(train_x.shape[1]), importances[indices], color='r', yerr=std[indices], align='center')
plt.xticks(range(train_x.shape[1]), indices)
plt.xlim([-1, train_x.shape[1]])
plt.show()
##绘制线性图
predictions_validation = rfc.predict_proba(test_x)[:, 1]
fpr, tpr, _ = roc_curve(test_y, predictions_validation)
roc_auc = auc(fpr, tpr)
plt.title('ROC Validation')
plt.plot(fpr, tpr, 'b', label='AUC= %0.2f' % roc_auc)
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1])
plt.ylim([0, 1])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
plt.show()
def handleCalc_logisticregression(self):
model = LogisticRegression()
model.fit(train_x, train_y)
prediction = model.predict(test_x)
print('The accuracy of the Logistic Regression is:', metrics.accuracy_score(prediction, test_y))
t = metrics.accuracy_score(prediction, test_y)
self.ui.lineEdit_12.setText(str(t))
def handleCalc_Decision_tree(self):
model = DecisionTreeClassifier()
model.fit(train_x, train_y)
prediction = model.predict(test_x)
print('The accuracy of the Decision Tree is:', metrics.accuracy_score(prediction, test_y))
t = metrics.accuracy_score(prediction, test_y)
self.ui.lineEdit_13.setText(str(t))
def handleCalc_flood_b(self):
# preparing the data:将各个数据进行标准化
I_data = pd.read_csv('D:\\big\\shaobinghao\\yanzheng\\新建文件夹\\Export_Output2.csv')
seed=5
train, test = train_test_split(I_data, test_size=0.3, random_state=seed)
train_x = train[
['after_proj', 'podu_1', 'poxiang_1', 'Convergenc', 'Terrain_Ru', 'Topographi',
'js_2019', 'shuixi1', 'jianzhu201']]
train_y = train.GRID_CODE
test_x = test[
['after_proj', 'podu_1', 'poxiang_1', 'Convergenc', 'Terrain_Ru', 'Topographi',
'js_2019', 'shuixi1', 'jianzhu201']]
test_y = test.GRID_CODE
mean = train_x.mean(axis=0)
train_x -= mean
std = train_x.std(axis=0)
train_x /= std
test_x -= mean
test_x /= std
# Max_train=train_data.max(axis=0)
# Min_train=train_data.min(axis=0)
# Max_test=test_data.max(axis=0)
# Min_test=test_data.min(axis=0)
# train_data-=Min_train
# train_data/=(Max_train-Min_train)
# test_data-=Min_test
# test_data/=(Max_test-Min_test)
##### 构建一个函数,因为之后会多次调用
def build_module():
model = models.Sequential()
model.add(layers.Dense(64, activation='relu',
input_shape=(train_x.shape[1],)))
# model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(32, activation='relu'))
# model.add(layers.Dense(32, activation='relu'))
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(8, activation='relu'))
model.add(layers.Dense(4, activation='relu'))
model.add(layers.Dense(2, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer=optimizers.RMSprop(lr=0.01), loss='binary_crossentropy',
metrics=[tf.keras.metrics.binary_accuracy])
return model
# some memory clean-up
k = 10
num_val_samples = len(train_x) // k
K.clear_session()
num_epochs = 50
all_acc_histories = []
for i in range(k):
print('processing fold #', i)
# prepare the validation data:data from partition # k
val_data = train_x[i * num_val_samples:(i + 1) * num_val_samples]
val_targets = train_y[i * num_val_samples:(i + 1) * num_val_samples]
# prepare the training data:data from all other partitions
partial_train_data = np.concatenate(
[train_x[:i * num_val_samples],
train_x[(i + 1) * num_val_samples:]],
axis=0)
partial_train_targets = np.concatenate(
[train_y[:i * num_val_samples],
train_y[(i + 1) * num_val_samples:]],
axis=0)
model = build_module()
history = model.fit(partial_train_data, partial_train_targets,
validation_data=(val_data, val_targets),
epochs=num_epochs, batch_size=100, verbose=2)
acc_history = history.history['binary_accuracy']
all_acc_histories.append(acc_history)
average_acc_history = [
np.mean([x[i] for x in all_acc_histories]) for i in range(num_epochs)
]
#####损失函数绘图
acc = history.history['binary_accuracy']
val_acc = history.history['val_binary_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and Validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.show()
# 对图像进行指数平滑
def smooth_curve(points, factor=0.9):
smoothed_points = []
for point in points:
if smoothed_points:
previous = smoothed_points[-1]
smoothed_points.append(previous * factor + point * (1 - factor))
else:
smoothed_points.append(point)
return smoothed_points
smooth_acc_history = smooth_curve(average_acc_history[10:])
plt.plot(range(1, len(smooth_acc_history) + 1), smooth_acc_history)
plt.xlabel('Epochs')
plt.ylabel('ACC')
plt.show()
#####准确率
acc = history.history['binary_accuracy']
val_acc = history.history['val_binary_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and Validation acc')
plt.xlabel('Epochs')
plt.ylabel('acc')
plt.legend()
plt.show()
self.ui.lineEdit_9.setText(str(acc))
app = QApplication([])
stats = Stats()
stats.ui.show()
app.exec_()