forked from CFSAN-Biostatistics/C-WAP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plotPieChartsforAbundance.py
executable file
·218 lines (169 loc) · 7.24 KB
/
plotPieChartsforAbundance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/env python3
import matplotlib.pyplot as plt
import sys
import csv
import pandas as pd
import numpy as np
import pickle
from getDisplayName import *
if len(sys.argv) != 9:
raise Exception('Incorrect call to the script.')
# Data regarding the current sample passed by UNIX
outputDirectory = sys.argv[1]
variantDBfilename = sys.argv[2]
# Sample-sepecific input files generated by upstream processes
variantFreqFilename = sys.argv[3]
kallistoFilename = sys.argv[4]
k2_allCovidFilename = sys.argv[5]
k2_majorCovidFilename = sys.argv[6]
freyjaOutputFile = sys.argv[7]
lcsFile = sys.argv[8]
# Import the pre-processed variant definitions from file
with open(variantDBfilename, 'rb') as file:
uniqueVarNames = pickle.load(file)
# uniqueMutationLabels = pickle.load(file)
# var2mut = pickle.load(file)
# mut2var = pickle.load(file) # Skipped these for efficiency
# importantVars = pickle.load(file)
# pos2gene = pickle.load(file)
# gene2pos = pickle.load(file)
# sigMutationMatrix = pickle.load(file)
########################################################################
# Generate a full-size pie chart for the current sample depicting the prevalence of variants
# Only display variants that are >= x% abundant
# Less frequent variants will be cumulated under 'other' category
def drawPieChart(names2percentages, outfilename, title=''):
minPlotThreshold = 5 # in %
# Lookup the display name (e.g. WHO label), cumulate minor subvariants
names2pct_combined = {}
for (name, freq) in names2percentages.items():
dname = getDisplayName(name)
if dname != 'Other':
if dname in names2pct_combined:
names2pct_combined[dname] += freq
else:
names2pct_combined[dname] = freq
# Eliminate infrequent variants and cast as two lists to plot
percentages2plot = []
names2plot = []
for (name, pct) in names2pct_combined.items():
if pct >= minPlotThreshold:
names2plot.append(name)
percentages2plot.append(pct)
# Cumulate all other infrequent variants under "other" category
other_pct = 100-np.sum(percentages2plot)
if other_pct > 0.1:
names2plot.append('Other')
percentages2plot = np.append(percentages2plot, other_pct)
colors2plot = [getColor(name) for name in names2plot]
explosionArray = np.full(len(percentages2plot), 0.07)
plt.rcParams.update({'font.size': 12})
plt.pie(percentages2plot, labels=names2plot, autopct='%1.1f%%', shadow=False,
explode=explosionArray, colors=colors2plot)
plt.axis('equal')
plt.title(title)
plt.savefig(outfilename, dpi=300)
plt.close()
########################################################
# Process the results of linear deconvolution approach
names2percentages = {}
with open(variantFreqFilename, 'r') as infile:
reader = csv.reader(infile, delimiter=" ")
counter = 0
for row in reader:
cFreq = float(row[1])
dname = getDisplayName(uniqueVarNames[counter])
if dname in names2percentages:
names2percentages[dname] += cFreq
else:
names2percentages[dname] = cFreq
counter += 1
drawPieChart(names2percentages, outputDirectory+'/pieChart_deconvolution.png',
title='Abundance of variants\n by linear regression')
########################################################
# Process the results of kallisto approach
# Read the tsv file generated by kallisto
kallistoHits = {}
with open(kallistoFilename, 'r') as infile:
reader = csv.reader(infile, delimiter="\t")
next(reader) # Skip the header
for row in reader:
pangoName = row[0].split('_')[0]
dname = getDisplayName(pangoName)
numberHits = float(row[3])
if dname in kallistoHits:
kallistoHits[dname].append(numberHits)
else:
kallistoHits[dname] = [numberHits]
# Loop through the imported kallisto data.
# For duplicates, get an average
for varWHOname in kallistoHits:
kallistoHits[varWHOname] = np.sum(kallistoHits[varWHOname])
totalNumReads = sum(kallistoHits.values())
names2percentages = {}
for varWHOname in kallistoHits:
names2percentages[varWHOname] = 100.0 * \
kallistoHits[varWHOname]/totalNumReads
drawPieChart(names2percentages, outputDirectory+'/pieChart_kallisto.png',
title='Abundance of variants by kallisto')
with open(outputDirectory + '/kallisto.out', 'w') as outfile:
for name in names2percentages:
outfile.write('%s\t%.1f\n' % (name, names2percentages[name]))
########################################################
# Process the results of kraken2+bracken approach
# Read the tsv file generated by bracken
def importBrackenOutput(brackenFilename, tax_level):
brackenHits = {}
with open(brackenFilename, 'r') as infile:
# If there were no reads that are variant specific, bracken generates
# an empty file output, even no header to skip.
reader = csv.reader(infile, delimiter="\t")
for row in reader:
pctHits = float(row[0])
entry_tax_level = row[3]
varDispName = getDisplayName(row[5]).strip()
# Skip the header or other taxonomic level rows than desired to retain
if entry_tax_level == tax_level:
brackenHits[varDispName] = pctHits
return brackenHits
brackenHits = importBrackenOutput(k2_allCovidFilename, 'P')
drawPieChart(brackenHits, outputDirectory+'/pieChart_k2_allCovid.png',
title='Abundance of variants by\n kraken2+bracken, using allCovid DB')
brackenHits = importBrackenOutput(k2_majorCovidFilename, 'C')
drawPieChart(brackenHits, outputDirectory+'/pieChart_k2_majorCovid.png',
title='Abundance of variants by\n kraken2+bracken, using majorCovid DB')
########################################################
# Process the abundance estimates by Freyja
freyja_raw = pd.read_table(freyjaOutputFile, index_col=0)
# Option A: summary reported by Freyja with WHO names
# var_pct = eval( pd.Series(freyja_raw.loc['summarized'][0])[0] )
# Option B: detailed subvariant breakdown
(lineages, abundances, freyja_names) = import_freyja_demix(freyjaOutputFile)
var_pct = tuple(zip(lineages, abundances))
freyjaHits = {}
for var in var_pct:
name = var[0]
pct = 100*var[1]
freyjaHits[name] = pct
drawPieChart(freyjaHits, outputDirectory+'/pieChart_freyja.png',
title='Abundance of variants by Freyja')
########################################################
# Process the abundance estimates by LCS
with open(lcsFile, 'r') as infile:
reader = csv.reader(infile, delimiter="\t")
next(reader) # Skip the header line of lcs.out
lcsHits = {}
for row in reader:
pangoName = row[1].split('_')[-1]
dname = getDisplayName(pangoName)
proportion = float(row[2])*100
if dname in lcsHits:
lcsHits[dname].append(proportion)
else:
lcsHits[dname] = [proportion]
# Loop through the imported kallisto data.
# For duplicates, get an average
for varWHOname in lcsHits:
lcsHits[varWHOname] = np.sum(lcsHits[varWHOname])
drawPieChart(lcsHits, outputDirectory+'/pieChart_lcs.png',
title='Abundance of variants by LCS')