Skip to content

Latest commit

 

History

History
161 lines (134 loc) · 7.31 KB

msc_project_template_md_version.md

File metadata and controls

161 lines (134 loc) · 7.31 KB
title authors affiliations end_date description cover_image links
Sampling Based MPC for Motion Planning of Autonomous Vehicles
name url superscript
John Doe
*1
name url superscript
Luzia Knödler
1
name url superscript
Ludwig van Beethoven
name superscript
Equal contribution
*
name superscript url
TU Delft
1
name superscript
Wien Opera House
2022-01-01
This project explores the use of Model Predictive Path Integral (MPPI) control algorithm to enable autonomous robots to navigate complex environments. MPPI is a sampling-based control method that combines path planning and control into a single optimization problem. By iteratively sampling and optimizing trajectories, the algorithm generates control inputs that minimize a cost function while satisfying system dynamics and constraints. The project aims to implement and evaluate the performance of MPPI on a robot platform, showcasing its effectiveness in real-world scenarios.
/assets/images/msc_projects/msc_project_template/jackal.jpg
name icon url
Paper
bi-file-earmark-pdf
/
name url
arXiv
/
name icon url
Code
bi-github
/
name icon url
Video
bi-youtube
/

All the content in the front matter will be rendered automatically. In this local version, it just shows the content of the front matter as text so ignore it, just make sure you fill the front matter with all the info correctly. You can see an example here.

Summary of the Work

Lorem ipsum dolor sit amet consectetur adipisicing elit. Repellat consequatur libero omnis dolore voluptatem.

Sequi nesciunt veniam, ea laboriosam quas corporis quae nobis esse doloremque in aperiam excepturi dignissimos quis? Lorem ipsum dolor sit amet consectetur adipisicing elit. Sequi repudiandae vero aliquid molestias at consequatur tempore autem ullam illo provident?

lab

Showcase 1

Lorem ipsum dolor sit amet consectetur adipisicing elit. Repellat consequatur libero omnis dolore voluptatem. Sequi nesciunt veniam, ea laboriosam quas corporis quae nobis esse doloremque in aperiam excepturi dignissimos quis? Lorem ipsum dolor sit amet consectetur adipisicing elit.

Sequi repudiandae vero aliquid molestias at consequatur tempore autem ullam illo provident?

Image 1
Image 2

Some code that explains something important. Use the highlight tag to highlight code. You can use inline code. NOTE: code blocks will not render correctly in the local template.

import torch
import torch.nn as nn

class VAE(nn.Module):
def __init__(self, input_dim, hidden_dim, latent_dim):
super(VAE, self).__init__()

self.encoder = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, latent_dim * 2) # Output mean and log variance
)

return reconstructed_x, mu, log_var

Some cool math equations here. You can just use math like in latex e.g $x^2$ or $\alpha = \int_{\beta}^\gamma 1 ; dt$. For inline, use $ ... $, for block, use \[ ... \].

[ \begin{aligned} \dot{x} &= \sigma(y-x) \ \dot{y} &= \rho x - y - xz \ \dot{z} &= -\beta z + xy \end{aligned} ]

Showcase 2

Lorem ipsum dolor sit amet consectetur adipisicing elit. Repellat consequatur libero omnis dolore voluptatem. Sequi nesciunt veniam, ea laboriosam quas corporis quae nobis esse doloremque in aperiam excepturi dignissimos quis? Lorem ipsum dolor sit amet consectetur adipisicing elit. Sequi repudiandae vero aliquid molestias at consequatur tempore autem ullam illo provident?

Image 1
Image 1
Image 1
Image 1
Image 1
Image 1

Conclusions

Lorem ipsum dolor sit amet consectetur adipisicing elit. Repellat consequatur libero omnis dolore voluptatem. Sequi nesciunt veniam, ea laboriosam quas corporis quae nobis esse doloremque in aperiam excepturi dignissimos quis? Lorem ipsum dolor sit amet consectetur adipisicing elit. Sequi repudiandae vero aliquid molestias at consequatur tempore autem ullam illo provident?

Lorem ipsum dolor sit, amet consectetur adipisicing elit. Sit optio qui illo quo nam adipisci dolorum maiores molestias. Maxime hic nihil laboriosam harum, dignissimos ex minus, veritatis nobis porro aspernatur laborum facere ea voluptate ipsa. Minima adipisci quo tenetur quod.