forked from hassan-sd/Swap-Mukham
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
924 lines (788 loc) · 32.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
import os
import cv2
import glob
import time
import torch
import shutil
import argparse
import platform
import datetime
import subprocess
import insightface
import onnxruntime
import numpy as np
import gradio as gr
import threading
import queue
from tqdm import tqdm
import concurrent.futures
from moviepy.editor import VideoFileClip
from nsfw_checker import NSFWChecker
from face_swapper import Inswapper, paste_to_whole
from face_analyser import detect_conditions, get_analysed_data, swap_options_list
from face_parsing import init_parsing_model, get_parsed_mask, mask_regions, mask_regions_to_list
from face_enhancer import get_available_enhancer_names, load_face_enhancer_model, cv2_interpolations
from utils import trim_video, StreamerThread, ProcessBar, open_directory, split_list_by_lengths, merge_img_sequence_from_ref, create_image_grid
## ------------------------------ USER ARGS ------------------------------
parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper")
parser.add_argument("--out_dir", help="Default Output directory", default=os.getcwd())
parser.add_argument("--batch_size", help="Gpu batch size", default=32)
parser.add_argument("--cuda", action="store_true", help="Enable cuda", default=False)
parser.add_argument(
"--colab", action="store_true", help="Enable colab mode", default=False
)
user_args = parser.parse_args()
## ------------------------------ DEFAULTS ------------------------------
USE_COLAB = user_args.colab
USE_CUDA = user_args.cuda
DEF_OUTPUT_PATH = user_args.out_dir
BATCH_SIZE = int(user_args.batch_size)
WORKSPACE = None
OUTPUT_FILE = None
CURRENT_FRAME = None
STREAMER = None
DETECT_CONDITION = "best detection"
DETECT_SIZE = 640
DETECT_THRESH = 0.6
NUM_OF_SRC_SPECIFIC = 10
MASK_INCLUDE = [
"Skin",
"R-Eyebrow",
"L-Eyebrow",
"L-Eye",
"R-Eye",
"Nose",
"Mouth",
"L-Lip",
"U-Lip"
]
MASK_SOFT_KERNEL = 17
MASK_SOFT_ITERATIONS = 10
MASK_BLUR_AMOUNT = 0.1
MASK_ERODE_AMOUNT = 0.15
FACE_SWAPPER = None
FACE_ANALYSER = None
FACE_ENHANCER = None
FACE_PARSER = None
NSFW_DETECTOR = None
FACE_ENHANCER_LIST = ["NONE"]
FACE_ENHANCER_LIST.extend(get_available_enhancer_names())
FACE_ENHANCER_LIST.extend(cv2_interpolations)
## ------------------------------ SET EXECUTION PROVIDER ------------------------------
# Note: Non CUDA users may change settings here
PROVIDER = ["CPUExecutionProvider"]
if USE_CUDA:
available_providers = onnxruntime.get_available_providers()
if "CUDAExecutionProvider" in available_providers:
print("\n********** Running on CUDA **********\n")
PROVIDER = ["CUDAExecutionProvider", "CPUExecutionProvider"]
else:
USE_CUDA = False
print("\n********** CUDA unavailable running on CPU **********\n")
else:
USE_CUDA = False
print("\n********** Running on CPU **********\n")
device = "cuda" if USE_CUDA else "cpu"
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None
## ------------------------------ LOAD MODELS ------------------------------
def load_face_analyser_model(name="buffalo_l"):
global FACE_ANALYSER
if FACE_ANALYSER is None:
FACE_ANALYSER = insightface.app.FaceAnalysis(name=name, providers=PROVIDER)
FACE_ANALYSER.prepare(
ctx_id=0, det_size=(DETECT_SIZE, DETECT_SIZE), det_thresh=DETECT_THRESH
)
def load_face_swapper_model(path="./assets/pretrained_models/inswapper_128.onnx"):
global FACE_SWAPPER
if FACE_SWAPPER is None:
batch = int(BATCH_SIZE) if device == "cuda" else 1
FACE_SWAPPER = Inswapper(model_file=path, batch_size=batch, providers=PROVIDER)
def load_face_parser_model(path="./assets/pretrained_models/79999_iter.pth"):
global FACE_PARSER
if FACE_PARSER is None:
FACE_PARSER = init_parsing_model(path, device=device)
def load_nsfw_detector_model(path="./assets/pretrained_models/open-nsfw.onnx"):
global NSFW_DETECTOR
if NSFW_DETECTOR is None:
NSFW_DETECTOR = NSFWChecker(model_path=path, providers=PROVIDER)
load_face_analyser_model()
load_face_swapper_model()
## ------------------------------ MAIN PROCESS ------------------------------
def process(
input_type,
image_path,
video_path,
directory_path,
source_path,
output_path,
output_name,
keep_output_sequence,
condition,
age,
distance,
face_enhancer_name,
enable_face_parser,
mask_includes,
mask_soft_kernel,
mask_soft_iterations,
blur_amount,
erode_amount,
face_scale,
enable_laplacian_blend,
crop_top,
crop_bott,
crop_left,
crop_right,
*specifics,
):
global WORKSPACE
global OUTPUT_FILE
global PREVIEW
WORKSPACE, OUTPUT_FILE, PREVIEW = None, None, None
## ------------------------------ GUI UPDATE FUNC ------------------------------
def ui_before():
return (
gr.update(visible=True, value=PREVIEW),
gr.update(interactive=False),
gr.update(interactive=False),
gr.update(visible=False),
)
def ui_after():
return (
gr.update(visible=True, value=PREVIEW),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(visible=False),
)
def ui_after_vid():
return (
gr.update(visible=False),
gr.update(interactive=True),
gr.update(interactive=True),
gr.update(value=OUTPUT_FILE, visible=True),
)
start_time = time.time()
total_exec_time = lambda start_time: divmod(time.time() - start_time, 60)
get_finsh_text = lambda start_time: f"✔️ Completed in {int(total_exec_time(start_time)[0])} min {int(total_exec_time(start_time)[1])} sec."
## ------------------------------ PREPARE INPUTS & LOAD MODELS ------------------------------
yield "### \n ⌛ Loading NSFW detector model...", *ui_before()
load_nsfw_detector_model()
yield "### \n ⌛ Loading face analyser model...", *ui_before()
load_face_analyser_model()
yield "### \n ⌛ Loading face swapper model...", *ui_before()
load_face_swapper_model()
if face_enhancer_name != "NONE":
if face_enhancer_name not in cv2_interpolations:
yield f"### \n ⌛ Loading {face_enhancer_name} model...", *ui_before()
FACE_ENHANCER = load_face_enhancer_model(name=face_enhancer_name, device=device)
else:
FACE_ENHANCER = None
if enable_face_parser:
yield "### \n ⌛ Loading face parsing model...", *ui_before()
load_face_parser_model()
includes = mask_regions_to_list(mask_includes)
specifics = list(specifics)
half = len(specifics) // 2
sources = specifics[:half]
specifics = specifics[half:]
if crop_top > crop_bott:
crop_top, crop_bott = crop_bott, crop_top
if crop_left > crop_right:
crop_left, crop_right = crop_right, crop_left
crop_mask = (crop_top, 511-crop_bott, crop_left, 511-crop_right)
def swap_process(image_sequence):
## ------------------------------ CONTENT CHECK ------------------------------
yield "### \n ⌛ Checking contents...", *ui_before()
nsfw = NSFW_DETECTOR.is_nsfw(image_sequence)
if nsfw:
message = "NSFW Content detected !!!"
yield f"### \n 🔞 {message}", *ui_before()
assert not nsfw, message
return False
EMPTY_CACHE()
## ------------------------------ ANALYSE FACE ------------------------------
yield "### \n ⌛ Analysing face data...", *ui_before()
if condition != "Specific Face":
source_data = source_path, age
else:
source_data = ((sources, specifics), distance)
analysed_targets, analysed_sources, whole_frame_list, num_faces_per_frame = get_analysed_data(
FACE_ANALYSER,
image_sequence,
source_data,
swap_condition=condition,
detect_condition=DETECT_CONDITION,
scale=face_scale
)
## ------------------------------ SWAP FUNC ------------------------------
yield "### \n ⌛ Generating faces...", *ui_before()
preds = []
matrs = []
count = 0
global PREVIEW
for batch_pred, batch_matr in FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources):
preds.extend(batch_pred)
matrs.extend(batch_matr)
EMPTY_CACHE()
count += 1
if USE_CUDA:
image_grid = create_image_grid(batch_pred, size=128)
PREVIEW = image_grid[:, :, ::-1]
yield f"### \n ⌛ Generating face Batch {count}", *ui_before()
## ------------------------------ FACE ENHANCEMENT ------------------------------
generated_len = len(preds)
if face_enhancer_name != "NONE":
yield f"### \n ⌛ Upscaling faces with {face_enhancer_name}...", *ui_before()
for idx, pred in tqdm(enumerate(preds), total=generated_len, desc=f"Upscaling with {face_enhancer_name}"):
enhancer_model, enhancer_model_runner = FACE_ENHANCER
pred = enhancer_model_runner(pred, enhancer_model)
preds[idx] = cv2.resize(pred, (512,512))
EMPTY_CACHE()
## ------------------------------ FACE PARSING ------------------------------
if enable_face_parser:
yield "### \n ⌛ Face-parsing mask...", *ui_before()
masks = []
count = 0
for batch_mask in get_parsed_mask(FACE_PARSER, preds, classes=includes, device=device, batch_size=BATCH_SIZE, softness=int(mask_soft_iterations)):
masks.append(batch_mask)
EMPTY_CACHE()
count += 1
if len(batch_mask) > 1:
image_grid = create_image_grid(batch_mask, size=128)
PREVIEW = image_grid[:, :, ::-1]
yield f"### \n ⌛ Face parsing Batch {count}", *ui_before()
masks = np.concatenate(masks, axis=0) if len(masks) >= 1 else masks
else:
masks = [None] * generated_len
## ------------------------------ SPLIT LIST ------------------------------
split_preds = split_list_by_lengths(preds, num_faces_per_frame)
del preds
split_matrs = split_list_by_lengths(matrs, num_faces_per_frame)
del matrs
split_masks = split_list_by_lengths(masks, num_faces_per_frame)
del masks
## ------------------------------ PASTE-BACK ------------------------------
yield "### \n ⌛ Pasting back...", *ui_before()
def post_process(frame_idx, frame_img, split_preds, split_matrs, split_masks, enable_laplacian_blend, crop_mask, blur_amount, erode_amount):
whole_img_path = frame_img
whole_img = cv2.imread(whole_img_path)
blend_method = 'laplacian' if enable_laplacian_blend else 'linear'
for p, m, mask in zip(split_preds[frame_idx], split_matrs[frame_idx], split_masks[frame_idx]):
p = cv2.resize(p, (512,512))
mask = cv2.resize(mask, (512,512)) if mask is not None else None
m /= 0.25
whole_img = paste_to_whole(p, whole_img, m, mask=mask, crop_mask=crop_mask, blend_method=blend_method, blur_amount=blur_amount, erode_amount=erode_amount)
cv2.imwrite(whole_img_path, whole_img)
def concurrent_post_process(image_sequence, *args):
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = []
for idx, frame_img in enumerate(image_sequence):
future = executor.submit(post_process, idx, frame_img, *args)
futures.append(future)
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures), desc="Pasting back"):
result = future.result()
concurrent_post_process(
image_sequence,
split_preds,
split_matrs,
split_masks,
enable_laplacian_blend,
crop_mask,
blur_amount,
erode_amount
)
## ------------------------------ IMAGE ------------------------------
if input_type == "Image":
target = cv2.imread(image_path)
output_file = os.path.join(output_path, output_name + ".png")
cv2.imwrite(output_file, target)
for info_update in swap_process([output_file]):
yield info_update
OUTPUT_FILE = output_file
WORKSPACE = output_path
PREVIEW = cv2.imread(output_file)[:, :, ::-1]
yield get_finsh_text(start_time), *ui_after()
## ------------------------------ VIDEO ------------------------------
elif input_type == "Video":
temp_path = os.path.join(output_path, output_name, "sequence")
os.makedirs(temp_path, exist_ok=True)
yield "### \n ⌛ Extracting video frames...", *ui_before()
image_sequence = []
cap = cv2.VideoCapture(video_path)
curr_idx = 0
while True:
ret, frame = cap.read()
if not ret:break
frame_path = os.path.join(temp_path, f"frame_{curr_idx}.jpg")
cv2.imwrite(frame_path, frame)
image_sequence.append(frame_path)
curr_idx += 1
cap.release()
cv2.destroyAllWindows()
for info_update in swap_process(image_sequence):
yield info_update
yield "### \n ⌛ Merging sequence...", *ui_before()
output_video_path = os.path.join(output_path, output_name + ".mp4")
merge_img_sequence_from_ref(video_path, image_sequence, output_video_path)
if os.path.exists(temp_path) and not keep_output_sequence:
yield "### \n ⌛ Removing temporary files...", *ui_before()
shutil.rmtree(temp_path)
WORKSPACE = output_path
OUTPUT_FILE = output_video_path
yield get_finsh_text(start_time), *ui_after_vid()
## ------------------------------ DIRECTORY ------------------------------
elif input_type == "Directory":
extensions = ["jpg", "jpeg", "png", "bmp", "tiff", "ico", "webp"]
temp_path = os.path.join(output_path, output_name)
if os.path.exists(temp_path):
shutil.rmtree(temp_path)
os.mkdir(temp_path)
file_paths =[]
for file_path in glob.glob(os.path.join(directory_path, "*")):
if any(file_path.lower().endswith(ext) for ext in extensions):
img = cv2.imread(file_path)
new_file_path = os.path.join(temp_path, os.path.basename(file_path))
cv2.imwrite(new_file_path, img)
file_paths.append(new_file_path)
for info_update in swap_process(file_paths):
yield info_update
PREVIEW = cv2.imread(file_paths[-1])[:, :, ::-1]
WORKSPACE = temp_path
OUTPUT_FILE = file_paths[-1]
yield get_finsh_text(start_time), *ui_after()
## ------------------------------ STREAM ------------------------------
elif input_type == "Stream":
pass
## ------------------------------ GRADIO FUNC ------------------------------
def update_radio(value):
if value == "Image":
return (
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
)
elif value == "Video":
return (
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
)
elif value == "Directory":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
)
elif value == "Stream":
return (
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=True),
)
def swap_option_changed(value):
if value.startswith("Age"):
return (
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True),
)
elif value == "Specific Face":
return (
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
)
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
def video_changed(video_path):
sliders_update = gr.Slider.update
button_update = gr.Button.update
number_update = gr.Number.update
if video_path is None:
return (
sliders_update(minimum=0, maximum=0, value=0),
sliders_update(minimum=1, maximum=1, value=1),
number_update(value=1),
)
try:
clip = VideoFileClip(video_path)
fps = clip.fps
total_frames = clip.reader.nframes
clip.close()
return (
sliders_update(minimum=0, maximum=total_frames, value=0, interactive=True),
sliders_update(
minimum=0, maximum=total_frames, value=total_frames, interactive=True
),
number_update(value=fps),
)
except:
return (
sliders_update(value=0),
sliders_update(value=0),
number_update(value=1),
)
def analyse_settings_changed(detect_condition, detection_size, detection_threshold):
yield "### \n ⌛ Applying new values..."
global FACE_ANALYSER
global DETECT_CONDITION
DETECT_CONDITION = detect_condition
FACE_ANALYSER = insightface.app.FaceAnalysis(name="buffalo_l", providers=PROVIDER)
FACE_ANALYSER.prepare(
ctx_id=0,
det_size=(int(detection_size), int(detection_size)),
det_thresh=float(detection_threshold),
)
yield f"### \n ✔️ Applied detect condition:{detect_condition}, detection size: {detection_size}, detection threshold: {detection_threshold}"
def stop_running():
global STREAMER
if hasattr(STREAMER, "stop"):
STREAMER.stop()
STREAMER = None
return "Cancelled"
def slider_changed(show_frame, video_path, frame_index):
if not show_frame:
return None, None
if video_path is None:
return None, None
clip = VideoFileClip(video_path)
frame = clip.get_frame(frame_index / clip.fps)
frame_array = np.array(frame)
clip.close()
return gr.Image.update(value=frame_array, visible=True), gr.Video.update(
visible=False
)
def trim_and_reload(video_path, output_path, output_name, start_frame, stop_frame):
yield video_path, f"### \n ⌛ Trimming video frame {start_frame} to {stop_frame}..."
try:
output_path = os.path.join(output_path, output_name)
trimmed_video = trim_video(video_path, output_path, start_frame, stop_frame)
yield trimmed_video, "### \n ✔️ Video trimmed and reloaded."
except Exception as e:
print(e)
yield video_path, "### \n ❌ Video trimming failed. See console for more info."
## ------------------------------ GRADIO GUI ------------------------------
css = """
footer{display:none !important}
"""
with gr.Blocks(css=css) as interface:
gr.Markdown("# 🗿 Swap Mukham")
gr.Markdown("### Face swap app based on insightface inswapper.")
with gr.Row():
with gr.Row():
with gr.Column(scale=0.4):
with gr.Tab("📄 Swap Condition"):
swap_option = gr.Dropdown(
swap_options_list,
info="Choose which face or faces in the target image to swap.",
multiselect=False,
show_label=False,
value=swap_options_list[0],
interactive=True,
)
age = gr.Number(
value=25, label="Value", interactive=True, visible=False
)
with gr.Tab("🎚️ Detection Settings"):
detect_condition_dropdown = gr.Dropdown(
detect_conditions,
label="Condition",
value=DETECT_CONDITION,
interactive=True,
info="This condition is only used when multiple faces are detected on source or specific image.",
)
detection_size = gr.Number(
label="Detection Size", value=DETECT_SIZE, interactive=True
)
detection_threshold = gr.Number(
label="Detection Threshold",
value=DETECT_THRESH,
interactive=True,
)
apply_detection_settings = gr.Button("Apply settings")
with gr.Tab("📤 Output Settings"):
output_directory = gr.Text(
label="Output Directory",
value=DEF_OUTPUT_PATH,
interactive=True,
)
output_name = gr.Text(
label="Output Name", value="Result", interactive=True
)
keep_output_sequence = gr.Checkbox(
label="Keep output sequence", value=False, interactive=True
)
with gr.Tab("🪄 Other Settings"):
face_scale = gr.Slider(
label="Face Scale",
minimum=0,
maximum=2,
value=1,
interactive=True,
)
face_enhancer_name = gr.Dropdown(
FACE_ENHANCER_LIST, label="Face Enhancer", value="NONE", multiselect=False, interactive=True
)
with gr.Accordion("Advanced Mask", open=False):
enable_face_parser_mask = gr.Checkbox(
label="Enable Face Parsing",
value=False,
interactive=True,
)
mask_include = gr.Dropdown(
mask_regions.keys(),
value=MASK_INCLUDE,
multiselect=True,
label="Include",
interactive=True,
)
mask_soft_kernel = gr.Number(
label="Soft Erode Kernel",
value=MASK_SOFT_KERNEL,
minimum=3,
interactive=True,
visible = False
)
mask_soft_iterations = gr.Number(
label="Soft Erode Iterations",
value=MASK_SOFT_ITERATIONS,
minimum=0,
interactive=True,
)
with gr.Accordion("Crop Mask", open=False):
crop_top = gr.Slider(label="Top", minimum=0, maximum=511, value=0, step=1, interactive=True)
crop_bott = gr.Slider(label="Bottom", minimum=0, maximum=511, value=511, step=1, interactive=True)
crop_left = gr.Slider(label="Left", minimum=0, maximum=511, value=0, step=1, interactive=True)
crop_right = gr.Slider(label="Right", minimum=0, maximum=511, value=511, step=1, interactive=True)
erode_amount = gr.Slider(
label="Mask Erode",
minimum=0,
maximum=1,
value=MASK_ERODE_AMOUNT,
step=0.05,
interactive=True,
)
blur_amount = gr.Slider(
label="Mask Blur",
minimum=0,
maximum=1,
value=MASK_BLUR_AMOUNT,
step=0.05,
interactive=True,
)
enable_laplacian_blend = gr.Checkbox(
label="Laplacian Blending",
value=True,
interactive=True,
)
source_image_input = gr.Image(
label="Source face", type="filepath", interactive=True
)
with gr.Box(visible=False) as specific_face:
for i in range(NUM_OF_SRC_SPECIFIC):
idx = i + 1
code = "\n"
code += f"with gr.Tab(label='({idx})'):"
code += "\n\twith gr.Row():"
code += f"\n\t\tsrc{idx} = gr.Image(interactive=True, type='numpy', label='Source Face {idx}')"
code += f"\n\t\ttrg{idx} = gr.Image(interactive=True, type='numpy', label='Specific Face {idx}')"
exec(code)
distance_slider = gr.Slider(
minimum=0,
maximum=2,
value=0.6,
interactive=True,
label="Distance",
info="Lower distance is more similar and higher distance is less similar to the target face.",
)
with gr.Group():
input_type = gr.Radio(
["Image", "Video", "Directory"],
label="Target Type",
value="Video",
)
with gr.Box(visible=False) as input_image_group:
image_input = gr.Image(
label="Target Image", interactive=True, type="filepath"
)
with gr.Box(visible=True) as input_video_group:
vid_widget = gr.Video if USE_COLAB else gr.Text
video_input = vid_widget(
label="Target Video Path", interactive=True
)
with gr.Accordion("✂️ Trim video", open=False):
with gr.Column():
with gr.Row():
set_slider_range_btn = gr.Button(
"Set frame range", interactive=True
)
show_trim_preview_btn = gr.Checkbox(
label="Show frame when slider change",
value=True,
interactive=True,
)
video_fps = gr.Number(
value=30,
interactive=False,
label="Fps",
visible=False,
)
start_frame = gr.Slider(
minimum=0,
maximum=1,
value=0,
step=1,
interactive=True,
label="Start Frame",
info="",
)
end_frame = gr.Slider(
minimum=0,
maximum=1,
value=1,
step=1,
interactive=True,
label="End Frame",
info="",
)
trim_and_reload_btn = gr.Button(
"Trim and Reload", interactive=True
)
with gr.Box(visible=False) as input_directory_group:
direc_input = gr.Text(label="Path", interactive=True)
with gr.Column(scale=0.6):
info = gr.Markdown(value="...")
with gr.Row():
swap_button = gr.Button("✨ Swap", variant="primary")
cancel_button = gr.Button("⛔ Cancel")
preview_image = gr.Image(label="Output", interactive=False)
preview_video = gr.Video(
label="Output", interactive=False, visible=False
)
with gr.Row():
output_directory_button = gr.Button(
"📂", interactive=False, visible=not USE_COLAB
)
output_video_button = gr.Button(
"🎬", interactive=False, visible=not USE_COLAB
)
with gr.Box():
with gr.Row():
gr.Markdown(
"### [🤝 Sponsor](https://github.com/sponsors/harisreedhar)"
)
gr.Markdown(
"### [👨💻 Source code](https://github.com/harisreedhar/Swap-Mukham)"
)
gr.Markdown(
"### [⚠️ Disclaimer](https://github.com/harisreedhar/Swap-Mukham#disclaimer)"
)
gr.Markdown(
"### [🌐 Run in Colab](https://colab.research.google.com/github/harisreedhar/Swap-Mukham/blob/main/swap_mukham_colab.ipynb)"
)
gr.Markdown(
"### [🤗 Acknowledgements](https://github.com/harisreedhar/Swap-Mukham#acknowledgements)"
)
## ------------------------------ GRADIO EVENTS ------------------------------
set_slider_range_event = set_slider_range_btn.click(
video_changed,
inputs=[video_input],
outputs=[start_frame, end_frame, video_fps],
)
trim_and_reload_event = trim_and_reload_btn.click(
fn=trim_and_reload,
inputs=[video_input, output_directory, output_name, start_frame, end_frame],
outputs=[video_input, info],
)
start_frame_event = start_frame.release(
fn=slider_changed,
inputs=[show_trim_preview_btn, video_input, start_frame],
outputs=[preview_image, preview_video],
show_progress=True,
)
end_frame_event = end_frame.release(
fn=slider_changed,
inputs=[show_trim_preview_btn, video_input, end_frame],
outputs=[preview_image, preview_video],
show_progress=True,
)
input_type.change(
update_radio,
inputs=[input_type],
outputs=[input_image_group, input_video_group, input_directory_group],
)
swap_option.change(
swap_option_changed,
inputs=[swap_option],
outputs=[age, specific_face, source_image_input],
)
apply_detection_settings.click(
analyse_settings_changed,
inputs=[detect_condition_dropdown, detection_size, detection_threshold],
outputs=[info],
)
src_specific_inputs = []
gen_variable_txt = ",".join(
[f"src{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)]
+ [f"trg{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)]
)
exec(f"src_specific_inputs = ({gen_variable_txt})")
swap_inputs = [
input_type,
image_input,
video_input,
direc_input,
source_image_input,
output_directory,
output_name,
keep_output_sequence,
swap_option,
age,
distance_slider,
face_enhancer_name,
enable_face_parser_mask,
mask_include,
mask_soft_kernel,
mask_soft_iterations,
blur_amount,
erode_amount,
face_scale,
enable_laplacian_blend,
crop_top,
crop_bott,
crop_left,
crop_right,
*src_specific_inputs,
]
swap_outputs = [
info,
preview_image,
output_directory_button,
output_video_button,
preview_video,
]
swap_event = swap_button.click(
fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=True
)
cancel_button.click(
fn=stop_running,
inputs=None,
outputs=[info],
cancels=[
swap_event,
trim_and_reload_event,
set_slider_range_event,
start_frame_event,
end_frame_event,
],
show_progress=True,
)
output_directory_button.click(
lambda: open_directory(path=WORKSPACE), inputs=None, outputs=None
)
output_video_button.click(
lambda: open_directory(path=OUTPUT_FILE), inputs=None, outputs=None
)
if __name__ == "__main__":
if USE_COLAB:
print("Running in colab mode")
interface.queue(concurrency_count=2, max_size=20).launch(share=USE_COLAB)