diff --git a/machine_learning/4_clustering_and_retrieval/assigment/week4/.ipynb_checkpoints/3_em-for-gmm_graphlab-checkpoint.ipynb b/machine_learning/4_clustering_and_retrieval/assigment/week4/.ipynb_checkpoints/3_em-for-gmm_graphlab-checkpoint.ipynb new file mode 100644 index 0000000..e58bf6a --- /dev/null +++ b/machine_learning/4_clustering_and_retrieval/assigment/week4/.ipynb_checkpoints/3_em-for-gmm_graphlab-checkpoint.ipynb @@ -0,0 +1,1629 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fitting Gaussian Mixture Models with EM\n", + "\n", + "In this assignment you will\n", + "* implement the EM algorithm for a Gaussian mixture model\n", + "* apply your implementation to cluster images\n", + "* explore clustering results and interpret the output of the EM algorithm " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note to Amazon EC2 users**: To conserve memory, make sure to stop all the other notebooks before running this notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import necessary packages" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following code block will check if you have the correct version of GraphLab Create. Any version later than 1.8.5 will do. To upgrade, read [this page](https://turi.com/download/upgrade-graphlab-create.html)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false, + "scrolled": true + }, + "outputs": [], + "source": [ + "import graphlab as gl\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt \n", + "import copy\n", + "from scipy.stats import multivariate_normal\n", + "\n", + "%matplotlib inline\n", + "\n", + "'''Check GraphLab Create version'''\n", + "from distutils.version import StrictVersion\n", + "assert (StrictVersion(gl.version) >= StrictVersion('1.8.5')), 'GraphLab Create must be version 1.8.5 or later.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Implementing the EM algorithm for Gaussian mixture models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this section, you will implement the EM algorithm. We will take the following steps:\n", + "\n", + "- Create some synthetic data.\n", + "- Provide a log likelihood function for this model.\n", + "- Implement the EM algorithm.\n", + "- Visualize the progress of the parameters during the course of running EM.\n", + "- Visualize the convergence of the model." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Dataset\n", + "\n", + "To help us develop and test our implementation, we will generate some observations from a mixture of Gaussians and then run our EM algorithm to discover the mixture components. We'll begin with a function to generate the data, and a quick plot to visualize its output for a 2-dimensional mixture of three Gaussians.\n", + "\n", + "Now we will create a function to generate data from a mixture of Gaussians model. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def generate_MoG_data(num_data, means, covariances, weights):\n", + " \"\"\" Creates a list of data points \"\"\"\n", + " num_clusters = len(weights)\n", + " data = []\n", + " for i in range(num_data):\n", + " # Use np.random.choice and weights to pick a cluster id greater than or equal to 0 and less than num_clusters.\n", + " k = np.random.choice(len(weights), 1, p=weights)[0]\n", + "\n", + " # Use np.random.multivariate_normal to create data from this cluster\n", + " x = np.random.multivariate_normal(means[k], covariances[k])\n", + "\n", + " data.append(x)\n", + " return data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After specifying a particular set of clusters (so that the results are reproducible across assignments), we use the above function to generate a dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "# Model parameters\n", + "init_means = [\n", + " [5, 0], # mean of cluster 1\n", + " [1, 1], # mean of cluster 2\n", + " [0, 5] # mean of cluster 3\n", + "]\n", + "init_covariances = [\n", + " [[.5, 0.], [0, .5]], # covariance of cluster 1\n", + " [[.92, .38], [.38, .91]], # covariance of cluster 2\n", + " [[.5, 0.], [0, .5]] # covariance of cluster 3\n", + "]\n", + "init_weights = [1/4., 1/2., 1/4.] # weights of each cluster\n", + "\n", + "# Generate data\n", + "np.random.seed(4)\n", + "data = generate_MoG_data(100, init_means, init_covariances, init_weights)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now plot the data you created above. The plot should be a scatterplot with 100 points that appear to roughly fall into three clusters." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEKCAYAAADEovgeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2UZHV95/H3V4bMsGkYxLOMzjhjt02iC4YFccOseqBK\nGMw6x5mzBk1MNcbAHnxgTdDVgHFbGirhmKgZ18dIEtbIjEoSNLCKypCxGldtgjIuER9nuhCccVXk\neQFxnO/+UVVtP9yqureqfveh6vM6p8703Lq37re7qu73/p7N3REREQnpSVkHICIiw0/JRkREglOy\nERGR4JRsREQkOCUbEREJTslGRESCC5ZszOwLZna4zePGUOcVEZH8WRXwtV8HHLNs2/OBdwPXBzyv\niIjkjKU5qNPM/hb4PeBp7v5AaicWEZFMpdZmY2ZHAecCNyjRiIiMljQ7CLwMGAP+LsVziohIDqRW\njWZmnwdOBja4++FUTioiIrmQSsnGzJ4GnAXsVKIRERk9aVWjnQcY8NGUziciIjmSSjWamX0DeMLd\nn9tlP613ICJSIO5ucfYLXrIxs9OAE4GPxNnf3XP7uOyyyzKPoegx5j2+IsSY9/iKEGPe4ytKjEmk\nUY32+8DPgY+lcC4REcmhoMnGzFYBvwt81t3vDXkuERHJr5DT1eDuh4DjQ54jTaVSKesQusp7jHmP\nD/IfY97jg/zHmPf4oBgxJpHqdDXdmJnnKR4REWnPzPC8dBAQERFRshERkeCUbEREJDglGxERCU7J\nRkREglOyGVL1ep2pqSnK5TJTU1PU6/WsQxKREaauz0OoXq+zZcsW9u/fv7BtcnKS3bt3MzExkWFk\nIjJM1PV5xE1PTy9JNAD79+9neno6o4hEZNQp2QyhAwcORG4/ePBgypGIiDQo2QyhDRs2RG5fv359\nypGIiDSozWYIqc1GRNKQpM0meLIxs5cAlwDPBQ4D3wH+2N1rEfsq2QxIvV5nenqagwcPsn79eqrV\nqhKNiAxUbpKNmb0GeB/wXuCzNKrtTgHudPcbI/ZXshERKYhcJBszewbwLeASd39fzGOUbERECiIv\nXZ8vAH4BfDjgOUREpABCJpsXAN8GXmlm+8zs52b2PTN7fcBziohIDoVcqXN98/EXwFuBeeDlwPvN\n7Ii4VWsiIlJ8IdtsvgOcALzM3a9ftP1G4BR3XzHoQ202IiLFkZc2m582/7152fabgHVmti7guUVE\nJEdCVqPdCZye9KCZmZmFn0ulEqVSaXARFVhr3MyBAwfYsGGDxs2ISOpqtRq1Wq2nY0NWo70E+F/A\ny939k4u2fx54trs/I+KYwlWjpZEENCOAiORRLsbZNAP5Z+Bk4L/T6CDwCuB84NXufk3E/oVKNmkl\ngampKXbt2rVie6VSYefOnQM7j4hIEnlpswHYDnwCmKFRyvkPwO9FJZoiSmsq/0HM4qzF1EQkSyHb\nbHD3R4A3NB9DJ62p/PudxTmqBDY3N9e2BKb2IREZtKDJZtilNZV/tVplbm5uRXVdtVqNdXynEtjy\narikiUlEJA6tZ9OHarXK5OTkkm1JkkBcExMT7N69m0qlQrlcplKpJLr4JymBaZVPEQlBJZs+tJJA\nGlP5T0xMdOwM0KnqK0kJTKt8ikgISjZ96pYE0tCt6uvCCy/k2muv5dChQwvPr1q1igsvvHDFa2mV\nTxEJQdVoQ6Bb1ddVV121JNEAHDp0iKuuumrFa6VVNSgio0UlmyHQreorSdVYmlWDIjI6lGyGQLeq\nr6RVY3moGhSR4RJ0BoGkijaDQF50m8mg15kONN5GRDrJzXQ1SSnZ9K6VGNpVfXV7Pur1NB+biHSi\nZCN903xsItJNnuZGk4LSeBsRGSQlG4mk8TYiMkgh17M5E/hCxFMPuPtxbY5RNVpOqM1GRLrJRZtN\nM9nsoTHj81cXPXXI3W9vc4ySTQxp9RJL2qlAREZL3pLNFnffE/MYJZsuVOIQkbzIUweBWEFIfJqV\nWUSKKI0OArvM7JCZ3Wtmu8xsYwrnzNygV8Zsvd6nP/3pyOd76SUWN0at8iki/Qo5Xc2DwLuAWeAh\n4FTgbcCXzexUd7834LkzNegFyKJeb7mkvcTixqjF1ERkEFId1GlmpwL/Alzp7pdFPD8UbTaDHhDZ\n7vVaemmzafea27dvZ2xsbKHzwcMPP8wNN9ywYj8N7hSRJG02qU7E6e57zey7wG+med60DXpAZLvX\nO/bYY9m6dWtPvcTaveZNN93EY489tvD/NWvWRO6nwZ0ikkTuZn2emZlZ+LlUKlEqlTKLpVeDHhDZ\n7vW2bt26onQRt1t0u9dcnGgAHn/88cj9jj766Dihi8gQqdVq1Gq13g5299QewPOAQ8BlbZ73YTA/\nP++Tk5MOLDwmJyd9fn4+6OslOW/UvmvWrFny/9Zj9erVK7Zt3Lix599nEObn571SqXipVPJKpZJp\nLCKjqnnNjnX9DznO5hpgP7CXRgeB5wKXAo8Ap7n7fRHHeKh40jboAZFxXi9pW9Hy12zXPrNhw4bI\nares2m001kgkH5K02YQsxVwKfB24H/gZ8H3gQ8C6DseESb8jYvPmzZElk3K5HOv4diWjfl938esP\nojRSqVQi46lUKj29noj0hgQlm2BtNu7+DuAdoV4/b7JeaKxer/ONb3wj8rm4bUXtloSenp5mbm6u\n59dtxTeoLtSakVqkgOJmpTQeFLRkM+g2ml60u9sfGxvrO45B/H6DLI2oZCOSDyQo2WiJgQEIMYVM\n0lH77e72n/Oc5/RdwmqVeCqVCuVymUqlkrhEMsjSSLVaZXJycsm2yclJqtVq4tcSkXTkrutzEbUb\n2d9pxH879Xqdiy++mJtuumlJt+NuVU7tujIvvyj3amJioq/OAIPsDt6uuk+dA0RyLG4RKI0HBa1G\nGx8fj6zWGR8fT/Q6UdVVxKwmStrtOe1uw3moahSRwSIPHQRGybp167jrrrtWbH/qU5+a6HWiquMW\n61TlFPduP6u5zlQaERltSjYDcMIJJ3Drrbeu2J60Cqtdu0ZLtyqnOFVdndqXQo+Z6bcqTkSKSx0E\nBmBQDdbt2jV6fb2WxZ0Ndu/eHbmPug2LSEgq2QzAoKqIqtUqc3NzS0oeRx11FOeccw47duyI/XqL\nx/wcc8wx7N27l3vuuafjMb3O2yYiEkeqSwx0M0zT1fSq32lu4qx9s5ymehGRXiSZrkbJZsh0W/um\nZd26dZx44olqqBeRnuV2PRsJr1sng5azzz5bjfUikhp1EBgynToZtGi0vYikLbVkY2afM7PDZnZF\nWucMLemUMmmI6hm3adMmtm/f3vNUMyIi/UqlGs3MXgmcTGPk+FDIanBkNxo8KSJ5FLyDgJk9Gfgm\ncDHwceBP3f3tbfYtTAeBpAuV9SLrZQtERDrJWweBPwfucPdrzezjKZwvFaHXVMlryUlEpBdB22zM\n7IXAFHBRyPNkYZCzGEdpN63M5s2bc9M+JCISV7BkY2ZHAn8FvNPd94U6T1ZCr6nSruT04x//mF27\ndrFlyxYlHBEpjJAlm0uANcCVAc+RmUEsKNZJty7M/S7OJiKSpiAdBMxsI/Ad4ALgxtZm4D7gnTQS\n0MPufnjZcYXpINCvbo3/caadKZfL7NmzJ41wRURWyEMHgWcCq4GdNJJMiwNvAd4MnArcsfzAmZmZ\nhZ9LpRKlUilQiNmJ0/i/uAvzzTffzI9+9KMVr6PJM0UkTbVajVqt1tOxoUo2xwCnRDxVA64B/gb4\nmrs/uuy4kSjZJO02HZWcNHmmiGQt85KNuz8E3LJ8u5kBfN/dvxjivEWRtNu0BmqKSNGlPRFna/35\nkdZLt2mtcikiRaYlBjKgajERGQZaz6YA+l0kTUQka0o2IiISXJJko/VsREQkOCUbEREJTslGRESC\nU7IREZHglGxERCQ4JRsREQlOyUZERIJTshERkeCUbEREJDglG0lNvV5namqKcrnM1NSUlrUWGSHB\npqsxs3NoLA19IvBk4CfAl4EZd/9Wm2M0Xc2Q0uSjIsMnL9PVHAd8FbgI2AJcCpwEfKW5bLSMkOnp\n6RVLXO/fv5/p6emMIhKRNAVbz8bdPwF8YvE2M7sN+DZwLrAj1Lklf5IuGCciwyXtNpv7mv8eSvm8\nkrFeFowTkeERfIkBM3sScAQwDrwDOB04xd3vjdhXbTZDSm02IsMnV+vZNKvOTmv+93vANnf/Tpt9\nlWyGmBaMExkueUs2zwKOAZ4JvBl4KvACd787Yl8lGxGRgshVsllyMrO1wF3Ax9399RHPK9mIiBRE\nkmQTrDdaFHd/0Mz2ASe022dmZmbh51KpRKlUCh+YiIh0VavVqNVqPR2bdslmHbAPuEYlGxGRYstF\nycbMPgncDtwBPAQ8C7gYeAL4y1DnFRGR/AlZjfYV4BXAm4BfAe4BvgC8I6pzgIiIDK9Uq9G6UTWa\niEhx5GVuNBEREUDJRkREUqBkIyIiwSnZiIhIcEo2IiISnJKNiIgEp2QjIiLBKdnIyKjX60xNTVEu\nl5mamqJer2cdksjI0KBOGQlavE1k8DSoU2SZ6enpJYkGYP/+/UxPT2cUkchoUbKRkXDgwIHI7QcP\nHkw5EpHRpGQjI2HDhg2R29evX59yJCKjKViyMbNzzexTZna3mT1qZt82syvNbCzUOUXaqVarTE5O\nLtk2OTlJtVrNKKLBUKcHKYpgHQTM7CvAD4BPNf89Bbgc+Ja7P7/NMeogIF3V63Wmp6c5cOAAGzZs\noFqtxmrkbx138OBB1q9fH/u4vFKnB8lakg4CIZPNU9z9p8u2nQd8BDjL3WsRxyjZSEdFvsD2miTb\nmZqaYteuXSu2VyoVdu7c2U+oIrHkYqXO5Ymm6TbAgOgKdJEuOvUqy/MFNipJzs3N9ZUk1elBiiTt\nDgIlwIFvpXxeGRJFvcCG6HqtTg9SJKklGzPbQKPNZre7357WeWW4FPUCGyJJDmunBxlOqSQbM/tV\n4HrgCeD8NM4p2QrVS6qoF9gQSXJiYoLdu3dTqVQol8tUKpVCtF3JaAo+XY2ZrQE+C/wGcIa7f7PD\nvuogMARCN+IXsVdZkTs2iLSTi95ozUBW0SjRvBA4291v67K/X3bZZQv/L5VKlEqlYPFJGOolFa2I\nSVKyMeiei4NSq9Wo1WoL/7/88suzTzZmZsC1wFZga1RX54hjVLIZAuVyeckHcvH2PXv2pB+QSIEU\nqRScl4k4PwicC7wbeMzMTl/0UNfnIVbURnyRPBjWSWNDJpvfotHN+W3Al5c9Lgh4XslYURvxRfKg\nqN37uwk5qDNf5T1JTauXlNonRJIb1poBLZ4mQH4bJKMUKVaRpIa1zUbJRgb24U4jCRTpiyjSq6L0\nXFSykUQG0VU5rSSgbtUi+ZGX3mhSEINokEyrB02cWLXGi0j+BOsgIMUxiAbJtHrQdIs1xOzKItI/\nlWwksqvy2NgY+/bti10ySKsHTbdu1cM6RkGypdLyALh7bh6NcCQL8/PzXqlUfPPmzT42NuY0xkg5\n4JOTkz4/P9/1+MnJycTHxY2rVCp5pVLx+fn5hW3lcnlhW0upVFoSQ+tRLpf7ikNGV6jP9jBoXrPj\nXd/j7pjGQ8kme5VKJfJiXalUluw3Pz/v27dv9+OPP96PP/5437Ztm8/OzrZNAr3o5UseN36RuPSZ\nak/JRnoWp2QwPz/vGzduXLHPpk2bBnq318uXXHehxRJVcs0blZbbS5Js1GYjS8Rpe5menuaee+5Z\nsc/dd9+9om2kn7ruXjodtGYv2LZtG095ylNYvXo1999/PxdffLHq2XOm1Zlj165d1Go1du3axZYt\nW3L3Pg3riP7Uxc1KaTxQySZzcUoG7e70iCgB9VPK6LX6Iq2Sl/SnKNVTKi23h6rRpB+dGuDd218k\nll8o+r2Y9PoljxufZKtI1VPdvhOjKkmyCTbOprmMwKXAacC/B44Cxt397lDnlMGYmJjoOBq/Wq1y\nyy23rKhK27Rp05KZnfsde9PrhJ7tzpvk3BJekaqnun0npLuQgzpPoLGezdeAW4BzAp5LUjQxMcHs\n7CxvfOMbmZubA+D000/nPe95z5JEMIiLSS9f8nbnTXpuCatarTI3N7diiiMtRTGcUpkbzcwuAK4C\nJjqVbDQ32nDJatLMer3OmWeeGVnyqtVqfZ9bs04PTlEmnJRouZuIU8lmdGV1ManX611LXr2+rmad\nFmlQspGgRvnOXrNOi/xSkmSjiTglkVGf6HJYl+wVCU2DOiWRrCa6zMtEiEXqQSWSJyrZSCJZ3Nnn\nqTSlHlRLjXKVqiSTu2QzMzOz8HOpVKJUKmUWi6yUxZ19u9LU5s2b2bJlS+oXuJNOOomHH34YM2Pz\n5s3s2LFjJC+weboJkHTUajVqtVpvB8cd/dnPA7gA+AWwqct+AxrXKqH0M3VHr5MudpoeJ8n5+6Vp\nS5YqynQzEg55ma4G+O3m40PAYeC1zf+f0Wb/gH8WGZRepu7o50LdafqZpBe42dlZHx8f97Vr1/r4\n+LjPzs7GOq5THKN6cc3rdDNFmEl6WOQp2RxulmiWP/a02T/gn0Wy1OlC3e3iEJWoernAzc7O+qpV\nq5Yct2rVqtgJJ68X16zkMfmq9Jmu3CSbpA8lm+HV7kK9efPmWBeHVkJat25dzxe48fHxyGPHx8dj\n/Q55vLhmKY8Xdr1H6VKykb4Nsipifn6+44U+ycWh0wWuW8xr166NPNexxx4b+/fI28U1a3mbDVml\nz3Qp2UhfBnlR7VQFNjk56Zs3b058cYi6wMWJuV1iW716daK2p23btvm6dev8+OOP9+3bt2d+gR11\ni28ykt68SH+UbCSxUF/YdtUa4+PjC+ccxLnivE5Um03ShKrSTb5EvR/L32O9P+Eo2UgicRrge62K\n6FatEXXusbExn52dTVSVF7f6pNUb7cgjj+wpyalNIF863cy0Sr6zs7PqnRZIkmSTu0GdkswgRnBH\nDZqM0svAzW6DQCcmJrj66qvZunUrjzzyCACPPPII5513Hu6+ZJmATgMG4w42PeOMM6jX65TL5cjB\nad1mQtDcaPnS7v2YmJhgz549GniaJ3GzUhoPVLJJZFBVOt0GTfb6unFjjDOOhi4liKR/i15LKCrZ\n5Eu39yOt92tUx/agarTRELq9o/VoVWv1qluPpTjJrvVI2nGg0769JGq12eRLt/cjjd5po/yZULIZ\nEYP6IsVpsxnUnWDUHeAgSjb9xJK0227euvvmRVZ3953ejzRKNqNc2lWyGRGD/JC3vrDHHntssDvB\ndneAs7OzK7Zv2rTJN27cOJJ3i0WU17v7NOIa5bE9SjYjIsQXKeRdWpwpa5aPnVEJohjyfHcf+nOU\n5989NCWbAuq1CmLQX6SQd4JZ3AGOasNt2kb57j6vpbo0JEk26vqcA/10z5yYmGDnzp0Di2ViYoLd\nu3czPT3NwYMHOfroozEzzj///L4Xx0p7LRx1e01PnPd2WBdaW/6dWb9+/dD8bgMVNyv18gCeDvwj\n8ADwIHAdsLHD/uFScI4Nohge4g5+0Hdsad8BjnL1Rtq6vbejfPc/zMhDNRpwFPA94A7gpc3HHc1t\nR7U5JuTfJbf6rYII9UUOcbFOsx1mlKt2spB1rzBJX5JkE7Ia7UJgHPh1d68DmNm/NpPNa4D3BDx3\nofRbvdRu2eTp6emOVWzdqjVCjJYfdLVfJ1ksYT3KOr23mnlBQiablwJzrUQD4O53mdmXgO0o2Syo\nVqvMzc0tSRiTk5NUq9VYx/fyRY7TnlH0i3W/f1cZnKJ/lmQA4haBkj6AHwIfitj+AeBHbY4JUtQr\ngn6ql3qpoohzzDDUs6v7dD4Mw2dpOfV0zE+bzc+AKyO2V4En2hwT6m8y1Hr5Isdtz9DFWgZlmD5L\ncTpEjEIiUrIZQUm/yGqwlWGT5gW+2wDlYSvFtZMk2Vhj/8Ezs/8LfMrdX7ds+weAc919XcQxHioe\nWSqqzWZycrIwY1CGdcyGxLf4M7B27Vr27t3L3XffvfB8yM9zuyUqyuUy69evZ9euXSueq1QqqXWO\nSYuZ4e4WZ9+QHQTuBE6K2H4i8M12B83MzCz8XCqVKJVKg45LKPZAtKhEed111/HiF7+YHTt2FOJ3\nkP5EfQaWi9Mjs1edOjy067Czf/9+pqamCn2DVKvVIpNsLHGLQEkfwB8BTwDji7aNN7dd3OaYECU9\nGTKdZoke1uoKWSruTOGhxlR1qiprF9vY2NjQfVZJUI32pN5SVCx/DdwFXG9m28xsG/BPwPeBqwKe\nt6N6vc7U1BTlcpmpqSnq9Xr3gyRX2t05wi/vZmW4dfoMLBaqa3WrZqBSqVAul6lUKgtVdtVqlcnJ\nySX7j42NLaxE2zJqn9Vg1Wju/qiZvQjYAXwUMOBm4I3u/mio83aiubKGQ7sqjBYNFBx+3T4DEH5M\nVbtBrFFV1Pv27ePWW29dse9IfVbjFoHSeBC4Gk09sIZDt8Xe9H4Ov6jPwMaNG33btm257Fo9rNce\nclKNljujNmXGsFYZtu4ct23bxpo1a5Y8pxkCRkNUNdbOnTs5+uijWzeuuRJVtTZyn9W4WSmNByrZ\nDMyo9PUfpoGC0rsifN6H8bNKHsbZ9CL0OJuijy1JYmpqamT6+ovo856NvIyzyZ0ijy1JatSqDGW0\n6fOefyOVbCDdKe6zpFl2ZZTo855/I1WNNkpGqcpQRJ/3bCSpRlOyGWKtuaOKWmWo+c8kiaJ/3otI\nyUYKT3eqIvmXJNmM1DgbKY5OS12LSPEo2UguqXeRyHBRspFcUu8ikeGiNhvJJbXZiORfLtpszOxN\nZnaDmR00s8Nm9vZQ55Lh02kKd5HQhnVewSyFXBb6m8CDwO3Aa4HL3f2KLseoZCMimVKpOr5clGzc\n/UR3/4/AH9JYy0YkFborlX6oJ2QYIzddzagalQGSWiBP+qWekGEo2YyAUboAd7orHYU58aR/6gkZ\nhro+j4Ak1QJFr4LSXan0SwudhRGrZGNmZwG7Y+xac/cX9ReSDFrcC/AwlIB0Vyr9GqWlSNIUtxrt\nS8CzY+z3aB+xSCBxL8DDUAVVrVaZm5tb0ZNId6WSxKgsRZKmWMnG3R8Hvhs4FgBmZmYWfi6VSpRK\npTROO9TiXoAHWQWVVYcE3ZWKhFOr1ajVaj0dG3wGATM7Avg5MKNxNtmJM/36oJbW1TgFkdGQiyUG\nzOw0YBw4AvgE8PfAPzSf/kyztLT8GCWbDA0qSWg9eJHRkCTZhOz6/F+BVzV/duDlzQfABHB3wHNL\nDwZVBaUeYSKyXLBk4+5/APxBqNeXMAbRMKoeYSKynGZ9loFTm43IaMhFm00vlGyGh9aDFxl+SjYi\nIhJcLmZ9FhERaVGyERGR4JRsREQkOCUbEREJTslGRESCU7JJSdHXiREZJvo+pk9dn1OgQY4i+aHv\n4+Co63POJFkpU0TC0vcxG0o2KdDElCL5oe9jNoIkGzP7NTN7n5ndaWYPm9lBM7vezE4Ocb6808SU\nIvmh72M2grTZmNlFwGuBjwBfA9YClwCnAC9w971tjlObjYgEpe/j4GQ+N5qZHefu9y3bdgxwF3CD\nu7+6zXFDmWxAE1OK5Im+j4ORebJpezKzOeBhd9/S5vmhTTYiIsMml73RzOzJwHOAb6Z1zkGr1WpZ\nh9BV3mPMe3yQ/xjzHh/kP8a8xwfFiDGJNHujvb/57/9I8ZwDVYQ3P+8x5j0+yH+MeY8P8h9j3uOD\nYsSYRKxkY2ZnmdnhGI89bY5/K/C7wEXuPj/IX0BERPJvVcz9vgQ8O8Z+jy7fYGavBf4M+BN3/7sE\nsYmIyJAI2kHAzM6j0f35Xe5+SYz91TtARKRAMu+NZmb/Gfh74G/c/XVBTiIiIoUQapzNGcDngW8A\nfwgcXvT0z9z96wM/qYiI5FbcNpukysCvAM8F/vey574PPDPQeUVEJIeCdH1298vd/Yg2j66Jpghz\nq5nZm8zshmZsh83s7RnG8nQz+0cze8DMHjSz68xsY1bxLGdmG5rv55fN7P81/16bso6rxczONbNP\nmdndZvaomX3bzK40s7GsY2sxs3PM7J/N7Idm9riZ3WNm15rZv8s6tnbM7HPN9/qKrGMBMLMz2/Si\nva/70ekxs5eY2Wzz2vegmf2LmZWyjgvAzL7QoTfyjZ2ODVWy6dc5QAm4mqVzq82ZWdu51VL2X4AH\ngU/RmAcuE2Z2FPAF4DHgvObmPwP2mNnJ7v5YVrEtcgJwLo338hYa72+e/DfgB8ClzX9PAS6n8Rl8\nfnZhLXEc8FXgA8BPgE3AW4GvmNlvuPs9WQa3nJm9EjgZyFunHwfeQONv2XIoo1hWMLPXAO8D3gtc\nQaNAcArwb7KMa5HXAccs2/Z84N3A9R2PdPfcPYDjIrYdA9wHfCTr+JbFdQSNNqm3Z3T+PwJ+Dkws\n2jbe3HZx1n+fiHgvAH4BbMo6lkUxPSVi23nNOEtZx9ch7l9vfvbemHUsy+J6MvBD4Hea8V2RdUzN\nuM5svqcvyjqWNvE9g8bwkTdkHUvCuP+Wxs3usZ32y+V6Nr5sEs/mtoeA7wLR84OPrpcCc+6+sK6t\nu99FY2zU9qyCKhJ3/2nE5tsAI9+ft9b3JDd35k1/Dtzh7tdmHUiEWN10M9K6Eftw1oHE1axZOZfG\nBMsPdNo3l8kmyjDMrRbISTR6/S13J3BiyrEMkxKNKpdvZRzHEmb2JDM70sx+jcZF6SDw8YzDWmBm\nLwSmgIuyjqWDXWZ2yMzuNbNdOWrffAHwbeCVZrbPzH5uZt8zs9dnHVgHLwPGgK4D9vPaZhOl8HOr\nBXIccH/E9vtoVGdIQma2gUabzW53vz3reJa5FTit+fP3gLPc/d4M41lgZkcCfwW80933ZR1PhAeB\ndwGzwEPAqcDbgC+b2ak5+Duubz7+gkZ73DzwcuD9ZnaEu78vy+DaeBXwY+Bz3XZMpWST97nV+o1P\nhoeZ/SqNhs4ngPMzDifKFHA68EoaF8ybc9Sz7xJgDXBl1oFEcfevu/sfu/tn3P2L7v5e4LeAp9Lo\nNJC1J9EoJVzo7le7e83dL6JxIX9rtqGtZGZPA84Cdrr74W77p1Wyyfvcaj3HlwP3E12CaVfikTbM\nbA3waRo4A5VsAAACqElEQVQdLM5w99wtSu/u32n+eJuZfY7GgoSXAplWtTSrov6ERrvDmubfstU+\nstrM1tJYy6rrRSlN7r7XzL4L/GbWsQA/pdFz8+Zl228CXmxm69z9R+mH1dZ5NN7jj8bZOZVk4+6P\n02jcT6Q5t9oHaBTL3zHwwJp6jS8n7qTRbrPciah9KzYzWwVcR2Mg8tnunvu/nbs/aGb7aFygsvZM\nYDWwk6WN8A68BXgzjWqrO9IPrTDupFFqLYpXAf/H3f81zs657SDQnFvtauAqjzGJ5wi7AdhsZuOt\nDc2fX0C3fu8CgJkZ8DEanQK2u/tt2UYUj5mto1Eiz0P7yF4aM4eUafwdWw8Drmn+nIc4lzCz5wHP\nAuayjoXGmD2AFy/b/p+AH+SpVGNmp9G4of1I3GNy2UHAGnOrfQz4OvBRM1uc7XMxt1rzjz1OY5wN\nwIlm9tvNnz/TLC2l4a9p9Py53symm9uuoDEt0FUpxdDVor/N82hcgF5iZj8BfuLut2QXGQAfpNF9\n80+Bx5Z93n7g7geyCeuXzOyTwO00SgYP0bhAXkyjbekvMwwNWBiasOJ9bORxvu/uX0w9qJWxXAPs\np5EYH6JRir0UuIfGQMpMufuNZlYDPmxm/5ZGB4FXAGcDr84wtCi/T2Ms38diH5H1gKA2g4Quo9Hf\nPOoxn3V8zRj/Z4cYUx2wCDwd+AfgARo9bq5LO4YYMR5u87fak4PY6h3ey0wG60bE+BYaY3/uAx6h\n0SX7g3l7nyPi/gVwedZxNGO5lMYN7P3Az2jckH0IWJd1bItiHKOR+H4IPN6M93eyjmtZjKto9ED7\npyTHBV3PRkREBHLcZiMiIsNDyUZERIJTshERkeCUbEREJDglGxERCU7JRkREglOyERGR4JRsREQk\nOCUbEREJ7v8DMMJK6Xi/bUQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "d = np.vstack(data)\n", + "plt.plot(d[:,0], d[:,1],'ko')\n", + "plt.rcParams.update({'font.size':16})\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Log likelihood \n", + "We provide a function to calculate log likelihood for mixture of Gaussians. The log likelihood quantifies the probability of observing a given set of data under a particular setting of the parameters in our model. We will use this to assess convergence of our EM algorithm; specifically, we will keep looping through EM update steps until the log likehood ceases to increase at a certain rate." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def log_sum_exp(Z):\n", + " \"\"\" Compute log(\\sum_i exp(Z_i)) for some array Z.\"\"\"\n", + " return np.max(Z) + np.log(np.sum(np.exp(Z - np.max(Z))))\n", + "\n", + "def loglikelihood(data, weights, means, covs):\n", + " \"\"\" Compute the loglikelihood of the data for a Gaussian mixture model with the given parameters. \"\"\"\n", + " num_clusters = len(means)\n", + " num_dim = len(data[0])\n", + " \n", + " ll = 0\n", + " for d in data:\n", + " \n", + " Z = np.zeros(num_clusters)\n", + " for k in range(num_clusters):\n", + " \n", + " # Compute (x-mu)^T * Sigma^{-1} * (x-mu)\n", + " delta = np.array(d) - means[k]\n", + " exponent_term = np.dot(delta.T, np.dot(np.linalg.inv(covs[k]), delta))\n", + " \n", + " # Compute loglikelihood contribution for this data point and this cluster\n", + " Z[k] += np.log(weights[k])\n", + " Z[k] -= 1/2. * (num_dim * np.log(2*np.pi) + np.log(np.linalg.det(covs[k])) + exponent_term)\n", + " \n", + " # Increment loglikelihood contribution of this data point across all clusters\n", + " ll += log_sum_exp(Z)\n", + " \n", + " return ll" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Implementation\n", + "\n", + "You will now complete an implementation that can run EM on the data you just created. It uses the `loglikelihood` function we provided above.\n", + "\n", + "Fill in the places where you find ## YOUR CODE HERE. There are seven places in this function for you to fill in.\n", + "\n", + "Hint: Some useful functions\n", + "\n", + "* [multivariate_normal.pdf](http://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.multivariate_normal.html): lets you compute the likelihood of seeing a data point in a multivariate Gaussian distribution.\n", + "* [np.outer](http://docs.scipy.org/doc/numpy/reference/generated/numpy.outer.html): comes in handy when estimating the covariance matrix from data." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "def EM(data, init_means, init_covariances, init_weights, maxiter=1000, thresh=1e-4):\n", + " \n", + " # Make copies of initial parameters, which we will update during each iteration\n", + " means = init_means[:]\n", + " covariances = init_covariances[:]\n", + " weights = init_weights[:]\n", + " \n", + " # Infer dimensions of dataset and the number of clusters\n", + " num_data = len(data)\n", + " num_dim = len(data[0])\n", + " num_clusters = len(means)\n", + " \n", + " # Initialize some useful variables\n", + " resp = np.zeros((num_data, num_clusters))\n", + " ll = loglikelihood(data, weights, means, covariances)\n", + " ll_trace = [ll]\n", + " \n", + " for i in range(maxiter):\n", + " if i % 5 == 0:\n", + " print(\"Iteration %s\" % i)\n", + " \n", + " # E-step: compute responsibilities\n", + " # Update resp matrix so that resp[j, k] is the responsibility of cluster k for data point j.\n", + " # Hint: To compute likelihood of seeing data point j given cluster k, use multivariate_normal.pdf.\n", + " for j in range(num_data):\n", + " for k in range(num_clusters):\n", + " # YOUR CODE HERE\n", + " resp[j, k] = weights[k] * multivariate_normal.pdf(data[j], means[k], covariances[k])\n", + " row_sums = resp.sum(axis=1)[:, np.newaxis]\n", + " resp = resp / row_sums # normalize over all possible cluster assignments\n", + "\n", + " # M-step\n", + " # Compute the total responsibility assigned to each cluster, which will be useful when \n", + " # implementing M-steps below. In the lectures this is called N^{soft}\n", + " counts = np.sum(resp, axis=0)\n", + " \n", + " for k in range(num_clusters):\n", + " \n", + " # Update the weight for cluster k using the M-step update rule for the cluster weight, \\hat{\\pi}_k.\n", + " # YOUR CODE HERE\n", + " weights[k] = counts[k]/num_data\n", + " \n", + " # Update means for cluster k using the M-step update rule for the mean variables.\n", + " # This will assign the variable means[k] to be our estimate for \\hat{\\mu}_k.\n", + " weighted_sum = 0\n", + " for j in range(num_data):\n", + " # YOUR CODE HERE\n", + " weighted_sum += resp[j,k]*data[j]\n", + " # YOUR CODE HERE\n", + " means[k] = weighted_sum/counts[k]\n", + " \n", + " # Update covariances for cluster k using the M-step update rule for covariance variables.\n", + " # This will assign the variable covariances[k] to be the estimate for \\hat{\\Sigma}_k.\n", + " weighted_sum = np.zeros((num_dim, num_dim))\n", + " for j in range(num_data):\n", + " # YOUR CODE HERE (Hint: Use np.outer on the data[j] and this cluster's mean)\n", + " weighted_sum += resp[j,k] * np.outer(data[j] - means[k], data[j] - means[k])\n", + " # YOUR CODE HERE\n", + " covariances[k] = weighted_sum/counts[k]\n", + " \n", + " \n", + " # Compute the loglikelihood at this iteration\n", + " # YOUR CODE HERE\n", + " ll_latest = loglikelihood(data, weights, means, covariances)\n", + " ll_trace.append(ll_latest)\n", + " \n", + " # Check for convergence in log-likelihood and store\n", + " if (ll_latest - ll) < thresh and ll_latest > -np.inf:\n", + " break\n", + " ll = ll_latest\n", + " \n", + " if i % 5 != 0:\n", + " print(\"Iteration %s\" % i)\n", + " \n", + " out = {'weights': weights, 'means': means, 'covs': covariances, 'loglik': ll_trace, 'resp': resp}\n", + "\n", + " return out" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Testing the implementation on the simulated data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we'll fit a mixture of Gaussians to this data using our implementation of the EM algorithm. As with k-means, it is important to ask how we obtain an initial configuration of mixing weights and component parameters. In this simple case, we'll take three random points to be the initial cluster means, use the empirical covariance of the data to be the initial covariance in each cluster (a clear overestimate), and set the initial mixing weights to be uniform across clusters." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n", + "Iteration 5\n", + "Iteration 10\n", + "Iteration 15\n", + "Iteration 20\n", + "Iteration 22\n" + ] + } + ], + "source": [ + "np.random.seed(4)\n", + "\n", + "# Initialization of parameters\n", + "chosen = np.random.choice(len(data), 3, replace=False)\n", + "initial_means = [data[x] for x in chosen]\n", + "initial_covs = [np.cov(data, rowvar=0)] * 3\n", + "initial_weights = [1/3.] * 3\n", + "\n", + "# Run EM \n", + "results = EM(data, initial_means, initial_covs, initial_weights)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note**. Like k-means, EM is prone to converging to a local optimum. In practice, you may want to run EM multiple times with different random initialization. We have omitted multiple restarts to keep the assignment reasonably short. For the purpose of this assignment, we assign a particular random seed (`seed=4`) to ensure consistent results among the students.\n", + "\n", + "**Checkpoint**. For this particular example, the EM algorithm is expected to terminate in 23 iterations. That is, the last line of the log should say \"Iteration 22\". If your function stopped too early or too late, you should re-visit your code." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Our algorithm returns a dictionary with five elements: \n", + "* 'loglik': a record of the log likelihood at each iteration\n", + "* 'resp': the final responsibility matrix\n", + "* 'means': a list of K means\n", + "* 'covs': a list of K covariance matrices\n", + "* 'weights': the weights corresponding to each model component" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Quiz Question**: What is the weight that EM assigns to the first component after running the above codeblock?" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.3007102300609823" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Your code here\n", + "results['weights'][0]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Quiz Question**: Using the same set of results, obtain the mean that EM assigns the second component. What is the mean in the first dimension?" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 4.94239235, 0.31365311])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Your code here\n", + "results['means'][1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Quiz Question**: Using the same set of results, obtain the covariance that EM assigns the third component. What is the variance in the first dimension?" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0.67114992, 0.33058965],\n", + " [ 0.33058965, 0.90429724]])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Your code here\n", + "results['covs'][2]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot progress of parameters" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One useful feature of testing our implementation on low-dimensional simulated data is that we can easily visualize the results. \n", + "\n", + "We will use the following `plot_contours` function to visualize the Gaussian components over the data at three different points in the algorithm's execution:\n", + "\n", + "1. At initialization (using initial_mu, initial_cov, and initial_weights)\n", + "2. After running the algorithm to completion \n", + "3. After just 12 iterations (using parameters estimates returned when setting `maxiter=12`)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import matplotlib.mlab as mlab\n", + "def plot_contours(data, means, covs, title):\n", + " plt.figure()\n", + " plt.plot([x[0] for x in data], [y[1] for y in data],'ko') # data\n", + "\n", + " delta = 0.025\n", + " k = len(means)\n", + " x = np.arange(-2.0, 7.0, delta)\n", + " y = np.arange(-2.0, 7.0, delta)\n", + " X, Y = np.meshgrid(x, y)\n", + " col = ['green', 'red', 'indigo']\n", + " for i in range(k):\n", + " mean = means[i]\n", + " cov = covs[i]\n", + " sigmax = np.sqrt(cov[0][0])\n", + " sigmay = np.sqrt(cov[1][1])\n", + " sigmaxy = cov[0][1]/(sigmax*sigmay)\n", + " Z = mlab.bivariate_normal(X, Y, sigmax, sigmay, mean[0], mean[1], sigmaxy)\n", + " plt.contour(X, Y, Z, colors = col[i])\n", + " plt.title(title)\n", + " plt.rcParams.update({'font.size':16})\n", + " plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAELCAYAAAAP/iu7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXVYlckXx78DIg1KiyKlqIjtqpgYmGuuje1au+pa6666\nxsraWNiBKHZ3rCgidoMFBq10d9x7z++PF1zivQlYv/t5nnngvjPvmXlfLnNmzpw5w4gISpQoUaJE\nSUWi8qUboESJEiVKvn+UykaJEiVKlFQ4SmWjRIkSJUoqHKWyUaJEiRIlFY5S2ShRokSJkgpHqWyU\nKFGiREmFo1Q2Sr4ZGGMdGGMixtiiiryHR4ZlgYw9isr4nHKVKPkaUSobJRVOkU71XDmIo4JUVL6I\nMeYjzz3/jzDGlhS8q/Zfui1K/v+o9KUboESJHDwAUA9AQgXf872iVLpKvhhKZaPkm4GIcgC8reh7\nvmPYl26Akv9flGY0JV8MxtjeArOOJWNsOmMskDGWwxgLY4wtYoyxEuWLrb8UfgY3WncqyCtMo/ju\nKSKrP2PsCGMsmDGWxRhLYox5M8Y6l9OzmTHGNjLG3jHGshljcYwxX8bYaBnuFWsWLHg3ISWu6TPG\nlhW8vwzGWApj7A1jbBdjrGpBmRsACt+Bb5H3VFKWDWPMkzEWyRjLLfi5hTFmVKLcp/Umxpg9Y+ws\nYyyRMSZkjOkVlOnCGLvKGIsq+LtGM8Z8GGNDZH+TSr4XlDMbJV+SQrOOG4D2AC4AuAKgH4AlANQA\nLJRwf1hBuSUFv+8tkucvpe5lAHIA+AKIAVCtoN5/GWMDieiMzE9RAsZYPQA3ABgX/DwOQA9AUwDT\nAexTVDb4zWDeBbKvAjgL7r1ZAxgCYD2AZACeBWXbg3tPYQWfU4q02xHc+68M4ByAUAB1AUwG0JUx\n9gMRfSpfQG0A9wA8A+ABwASAkDH2Y0Fbogt+JgIwA9AcwE8Ajirw7Eq+ZYhImZSpQhMASwAiAOdK\nXPcsuP4egEmR64YAksB1hJWKXO9QUH5RCTkiAD5i6hZ3jyVPWWMAkQDeimn/Hhmf9wkAIYDhPHnV\npMmV8jyhAEKKfG5QUN6Np6wmAPUinxcXtKs9T1k1AOHg1rbsSuT9VFCHO0/bhQAW8Mg7CSAbgCFP\nXtUv/Z1Ups+flGY0JV8aArCUiOI+XSBKBDca1gVQp0IqJQrnuRYP4BQAW8ZYTUXkMsZaAGgC4BoR\nHeKpI1oRuTKQw1NXNhHlynh/bwAWAFYSUbE1LiI6CU6B8pm/ogGsFCMzH5wyKtmuZBnbpOQ7QmlG\nU/I18JTn2oeCn1UqokLGmCmA+QC6g+tkNYpkEzizWoQCon8o+OldpgbKzmsALwH8yRhrAs4U6UdE\nr+SU0wLcczswxhbz5GsCMGKMGRBRUpHrz4molEIBZybrB+AlY+wwAB8Ad4goTc52KflOUCobJV8D\nfB2QoOCnanlXVrBo/giAOYDbAC4BSAVnFuoIbl1DXUHx+uA67aiyt1Q6RCRkjDkB+Bucuas7AMYY\n+whgDRG5yyjKAJy32khJ1QHQBmfiLCRWTLuOMcbyAMwCMKPgp5AxdgXATCIKlrFdSr4TlMpGyf8j\nPwOoDmA+Ea0qmsEYMwOnbBQlBVynbV4GGQTx/5v6KLKoDwAFM41pAKYxxuwBdAHniLCeMZZKRLI4\nJKQV1NudiOSZlYndt0Ock8UZxpgugLYABgMYDaAOY6w+EQnE3avk+0O5ZqPke0AE+WZANgU/z/Pk\ntS5jWx4V/OxaBhnJ4JRhMRhjVpBiViSi1wWzmZ/AKb0+RbILzV187+phQXlH+ZsrGSJKJ6LLRDQW\n3FpcLXAbbZX8H6FUNkq+B5IA1JCjfAS4jrVN0YuMsZkAGpalIUT0CNwaVGfGmEvJfMaYLDOeRwCs\nGGPtitynBmAdjzxLMc4MZgU/izoOJIF7bgue8mfAeeL9zhhryVOPRoHzg0wwxtoyxlRKXGPgPP5K\ntkvJ/wFKM5qS7wEfAIMYY6fB7fcQAjhLRC/FlN8P4A8AWxhjHQF8BLf/oyW4BfZeZWzPCHD7a/Yz\nxsaCmzXoAmgMQAtAMyn3rwM3M7pcsLieBcAZ3IynpDdbYwAnGWMPAASCW0OpCW5xPhfApiJlb4Az\ne61gjDmAW6dKIaItRJTHGBsEbv3qLmPsKjjng0oArMC5kN8F0FPGd7AJgBlj7A64PT0M3HpYIwDn\nieidjHKUfCcolY2Sz4W4uFzyxurik/NbwbVOAH4EN2OPBOelVeoeIvrAGOsAYDWAbgXl7wFoV3A/\nn7KROa4YEQUxxpqC83brBW69IgVc511ydlJKLhF5F3T8i8ApriQAxwAsAPCqRPnHBc/hVNB2PXAK\n6TSA1UUVLhEFMsbGAJgNYCo4J4hwAFsK8h8yxhoDmAugR4HMLHCegXvBKWlZ38lycKa8ZuCcFnIA\nhIBbW9op5h4l3zGMSBmXT4kSJUqUVCzKNRslSpQoUVLhKJWNEiVKlCipcJTKRokSJUqUVDhKZaNE\niRIlSiqcr8objTGm9FZQokSJkm8cIip1UN9XN7MpaxjrU2vvYVrjHQiMfAvj1ca4H3m/XMNkz/hl\nDibU3oxlYw+i7np7jDszDhm5GZ8tTHdKXAb+9XgG175HMEhvFX5rtgsec7xx/9wbpMRngoiwePHi\nLxZGPC9XgHdPonBx6yO4jTiNMTU3wsV0LVYPP4Vre/2RFJMOIsKiRYuw5+kemLmZYdL5SUjKSir/\nd5Wdgk77OqH/PyMxrckO/Om0Dx/eJMglg+9dxqTHwGajDfY83fPp2sOLbzHc2A03j7wsc7tPvj4J\nm402SM1JLXY9NSETvzhsw9Hlt6S2UdEkFAnRcldLeDz14M2PDUuGi8lavL4TUeb3+LUlZRvLJ1VY\n517OjaSy8Nw3jFxM11JUSCK18WhDbnfcyiSvJE+vBpODljOtX3mAjFcb0+4nu8tVvjiyM3Lp2j5/\n+qvrARqkt4qWDzxO170CKCU+k7f84sWLP0u7ZCU6JIku73xCy346RoOrrKZZLT1oYOex9PFdIiVn\nJ9OUC1PIfK05nXp9qtzrzsnPoYHHBpLzXmc65uZHwwzX0LEVt0mQL5TpfnHvMjA+kEzWmJBvqO+n\nayEBMTTGYgOddLtb5nZPPDeRRp8eXep6wsc0GmflTv96PJPaRkV5/PExmbmZUXJ2Mm/+/XNvaEzN\njZSelCWzzK/tO8mHso3lQ0E/Xqp//+pmNoqSGp8JN5fTmLm3Dw5Fe0JNVQ0zHWeWm/wbB55j7Ygz\nqO6sgRWqs3Bi8AmMbzq+3OTzEfYyDlumXMIYi424fSwQzuMawyt6JuYdH4hOIxtC30irQusvL8ys\nq6L7hKaYf2IQDsTOwghXJ2Sm5GJu271Y0vYEur4dhT0d9mPutbkYdXoUUnNSy61u9UrqOPzTYVTT\nr4atRouw7O5wPPMOwdy2e/HxXaLCcusa1cWB/gcw9ORQhKdwR+NYNzTF6jtjcG2PP/bMvSZ5lCeF\ntd3W4nbEbZwNOlvsuqG5Lpb+Oxxe833w+PJ7heVLopl5M/Sq3Qv/+P3Dm9+ytx1a9bXD5kkXy/SM\nSv7P4NNAXypBwZmNSCQi175HyON3bwpLDiPDVYb0PvG9QrL4uLj1EY2usYE2nNhBRlOM6GXsy3KT\nXRKRSET+10PoL+cDNLLaOjq4xJfiP6TKJePGjRsV07hy5MaNGyTIF9Iz72BaO+oMDdZfRUv6HKTR\nS34j63XW9ODDg3KtTyAU0OjTo6nzvs6UmZtF5zY9pGFGbvTv7qckEokktlMSa++upaY7mlJ2fvan\na2mJWTSrpQe5TzhPQqF42dLwC/Mj87XmlJSVVCrv9Z0IGmbkRiEBMRXy945OjyaDVQYUkhTCm5+T\nlUdT6m+j614BMsn7Vr6TXzvfQhshZmbzVUUQYIyRIu3x2f8cp9bcw/pH4zH83DA0MGmARR0WlUub\nLm17jBOr7qL1tqpYHPgnboy+ATtDu3KRXZKXfuHwWnADqXGZ+OmPNujo4gA1dfE+HKk5qXge+xyv\n4l/hfdJ7hKeGIzo9GvFZ8UjNSUW2IBv5wnwQCGoqatCurA19dX0YahnCTMcMNfVqwqaqDeoa1UV9\nk/qoplMNXKzEz09WWi78jrzCpW2PkZCcjBeNvfHzjH6Y3uHXcmuTUCTE8FPDkSvIxYnBJ/AxMAlr\nhp2GpYMxft3RC1q68h9hQ0QYcmIIjLSMsLXX1v+eJz0XS3sfhamVPqZ79IaqqmJGhKmXpiJHkIPd\nfXaXyrt5+CX2zfPBuofjUcVEWyH5kvjb92+8S3qHAwMO8OaH+MdgYdeD2PDkZxhb6Jd7/Uq+TRhj\nIB4HgW9e2aTGZ+JXhx1YcnkYEkzCMej4ILyZ+gZaamU3Md048Bz75t1A/4N1MPHhaFwbeQ0NTBuU\nWW5JPr5LhMdsb4S/iIfL0g7oMNyBt3NKzk7G1eCruB56HbcibiEyNRIOJg5wMHFAbYPasKpiBXNd\ncxhpGUFfQx/aatpQU1UDAOQJ85CVn4XUnFQkZCUgOiMaEakRCE4KRlBiEF7EvoCqiipaVG+BNhZt\n0NGqI5qbN4eqSrmfXSYRIkLg3Q84uOo6nt54D72e2di6eREMjcunM8sT5qH34d6w1LfEjh93IC9H\ngB3T/8Xr2xFYcGoQLOoZSxdSgtScVDTd2RRrnNdgQL0Bn67nZOVj6Y9HYGLJKRwVFfmVZlpuGuy3\n2OPIwCNoW7NtqXyvBT54fTsS/1wbgUpq5fu3Ss9NR+1NteE90lvs9/6wqx+C7n7AkkvDvthARcnX\nhThl88VNZ0UTFDCjrR97lnbO/JeIiJy9nGnn451yy+DjmXcwuZispXv3/Ml0jSl5B3uXi9yi5OXk\n04FFN2iY4Ro6vuoO5eXklyqTlpNGe57uoS5eXUh3uS71OtiLNtzbQM+in1G+sHR5RRGJRBSREkHH\nXh6j6Zemk8NWBzJYZUDDTw6nYy+PUWYevzNCRfL2ZQT92HE69dReSDv/uETpydnSb5KBtJw0arK9\nCa28tfLTtX93P6Xhxm704PwbhWTej7xPJmtM6GPax2LXszNyaW67vbRlykWJ5jpJHH15lBpua8j7\n9xYIhLS45yHaOeNfhWRLw+2OGw04OkBsfn6egKY13iGzOU3J9w/EmNG+uIIp1hg5lc27x1E0sto6\nykzNoccfH5PFOgvKFeTK92Z4iAyKp+HGbvTM5z212NWi3L3aiIjeP42iKfW3kWvfIxQfWXpN5n3i\ne/r14q9UdWVV6nO4zxfp8D+kfqDtj7aTs5cz6a/Qp1GnR5FfmJ/CnaYiCIQCmuz5G3VwHEtDjVbT\nqbX3KC9XUGa5kamRZL7WnM6/Of/pWuC9SBppvp5Or7un0DMu8llEvQ72KnVvZmoOzWi+i/bNv65Q\nW0UiEXXw7EBbH27lzU9LzKJx1u50+8RrheRLIjMvk0zXmNLzmOdiy7x7HEUuJmvFekcq+f/iu1M2\nIpGI5nX0oss7nhARkctJF1pzZ42cr6U0Wem5NLneVrq88wkt8llEPQ70KNfOVSQS0el192i4sRv5\nHHheSnZ4SjiNPj2ajFYb0fxr8+lD6odyq7ssxKTH0Nq7a6nu5rrksNWBdj/ZTTn5OZ+lbpFIRK43\nXcl+XjP6o+semlB7Mz28+LbMcu9G3CXj1cbFnEliw1NoSv1ttH36FbkX93MFudRwW0M6EHCgVF5K\nfCZNtNtM5zc/VKitz6KfkekaU0rN4XcWefPwIw03dqPokNLOBGVl5a2VNPzkcIlldvx2hTaMO1fu\ndSv59vjulI3/9RCaUHszCfKFlJCZQPor9CkxK1H+N1OCdaPP0PqxZ+ll7EsyWm1Urp19dkYurRh0\nnGY031WqU8gV5NJS36VkuMqQ/rr+F6Vkp5RLnSEhIeTi4kJOTk7k4uJCISH83kWyIhKJyDvYm7rt\n70bV11anzQ82fzals+bOGqrlXouunLhPP9faTMsGHKOEj2llkul+352abG9S7BnSk7Ppjw77aNXQ\nk3LPoh5+eEhmbma838XokCQaWW2dwqa6kadG0iKfRWLzT7rdpdmOe2TeQyQrqTmpZLDKgEKTQ8WW\nyUzNoZHm6+n13chyrVvJt8d3p2zmdfSia/v8iYho68OtNPTEUDlfSWluHX9FE+02U1Z6DnXx6kLu\n993LLLOQpOh0mt50J60ddYZys4vb3l/GvqQGWxvQj4d+pPCU8HKrMyQkhGxtbQsPuCIAZGtrW2aF\nU8ijj4+ox4EeZLPRho6/Ov5ZzGvL/JZR/S31KSYpjvYvvEHDjNzo6p5nCtctEomo35F+NPvf2cWu\n52bn09+9D9PfvQ/zrqVJ4pcLv9CUC1N48wLvRdIwIzcKfRErd1tDkkLIYJUBxWfG8+YLhSJa0GU/\nHXb1k1u2NOb8O4dmXJ4hscx1rwCa0XxXmdy9lXz7fFfK5t3jKBpTcyPl53GjTqe9TnQm8IwCr+U/\nUhMyaYTZOgq8F0newd5kt8mO8gR5ZZJZSHRIEo232USH/r5ZqlM8/OIwGa02Io+nHuXeWbu4uBRT\nNIXJxcWlXOu5HnKdHLY6kLOXMwUnBZer7JKIRCKaeWUmtfdsTzn5ORTsH01TG+0g175HFF4zSMhM\nIPO15sWiARBxi9/LBx6nxT0PyaVwErMSyWSNidh1Dp/9ATTeZhOlJcq+A7+Qiecm0rxr88Tmx0em\n0nBjNwr2j5ZbtiTCU8Kp6sqqlJ6bLraMUCiiWS09Pg0Clfx/8l0pm7WjztDxVXeIiPvH1l2uS1l5\n8v/jFsV9wnnaNvUyERG129OO1+6uCDGhyTSm5kZeW/3q26vJcr0l+UdXzD+nk5MTr7Lp2LFjsXKC\nfCElxaRT+Ks4Crr/gQJuhNKzayEU4BNKr+9EUEhADMWGp1BOlnjlmyfIo1W3V5HhKkPa/mh7hc5y\nhCIh9T/Sn8adGUcikYjycvLJY443ja6xgV74KTYzPBt0lmq51yr1PcrPE9CyAcfItd9RucxTG+9v\npO4HuovN3znjX1rS67Dcs4DQ5FAyXGUoNpQMEdHVPc9oetOd5W5O63ekH21/tF1imdd3ImiMxQaJ\n3xUl3zfilM03t88mIzkb4603Yef7qdA30sLJ1yfh8cwDl1wuKVxviH8MFnU/hO1Bv+Bt9mv0O9IP\nIb+FoJJK2YJiJ8dmYG6bvegzoyV6T/2hWN7K2yuxL2Afro28hup61ctUjzhGjBiBgwcPlrreoXl3\nDGw2FR8CExATkoLkmAzoVNWAroEmNPXUoa5ZCSqqKhCJCPm5AuRk5CEjOQep8VlQ11KDqZU+zGyr\nwqKeEawbmqJWs2owta4CxhgC4wMx/NRw1DKoBY8+HtBT16uQZ8vIy4CjhyOm/jAVk5pPAgA8vvwe\nG8aew6A/26DPby3k3vcx+Phg1DWqi6Udlxa7np8nxD99j6KKqTZmePaRSW6eMA91N9fF3n570d6y\nfal8Qb4Q85y80LJvHQyc21qudo44NQINTBrgj7Z/8OYTEf5yPohmPWwxYLajXLIlcTX4Kv689iee\nTnoqsdw//Y7Cvm1NDJhTfnUr+Xb4bvbZXNr+mFYMOv7p8/RL04vtl1CERd0P0rlN3Mxj8vnJ5HrT\ntUzyiLhwHjNb7KYDi26Uytvnv4+sN1iX2pNR3oSEhJBlTatisxq9yka0cPBOOuf+gJ5dC6GY0ORP\n5khpiEQiSonPpLePPpLv4Re0f+ENWtrnCI2qvp6GG7vRsgHH6PzmhxQaFEUTz02kepvrVahZ7U3C\nGzJabVTMXBUTmkxTG+2g9WPPyr24H5kaSQarDHjbnJ2RS7NaepDXAh+Z5Xk+8ySnvU5i82PDU8jF\nZC29eSjf9+Bp1FOqvra6RDPvx3eJNMxwDcVFlI+jCRE3o7Rcb0lPo55KLBf2MpaGG7tRZtrncRxR\n8nWBL2VGA9ATwE0A6QBSATwE4CSmrNQH+aPDPrp3JujTZ8fdjnQj9Iai74WC7n+gMTU3Ul6ugPKF\n+WS4ypDCksMUllfI+rFnaeWQE6XMSf7R/mS02ohexb0qcx3iSE/OpnPuD+i3Zruor+F8ambbgZo6\ntKDBA4eWm3NASWLDU8jnwHNaP+YsjTBbR5PrbaXpY1eT9Rx7ehb9TLoABfF85kkNtjYotr8qOyOX\nXPseoXmdvCgjRb6NoEt9l9Lg44N581LiMmi8zSaZ1yTyhflktcGK7kTcEVvG7+hLmmi3mbIz5TM7\ntd3Tlo6/Oi6xzP6FN2jlkBNyyZXGIp9FNP3SdKnlVg8/RUeX3SrXupV8G3wRZQNgEoA8AG4AOgNw\nBvA7gJ5iykt8iOTYDBqsv+qTN5dIJCKd5Tq8gQplZdmAY59mNb6hvtR0R1OFZRXisz+AJtXdQlnp\nxTeY5gnyqMHWBrTPf1+Z6+AjNiyZtv56iQZXWU2rhp6kp1eDSSAoX7u9LAiFIgq6/4F2zbpKg0yW\nk1ONX2n7qlOUnVH2DbclEYlE1PtQb1pyY0mx6wKBkLb+commN9lJKXEZMsvLyM2gam7V6EnUE978\n8FdxNNzYTebZyOYHm6n/kf4Sy6waevJTFAxZOfT8EHXx6iKxTHZmHo2x2EAvb5Wfh+PbhLdkusZU\navSKiNfce6qIv7mSr5vPrmwAWALIAjBNjnskPsS1ff60bMCxT58/pn0kkzUmCr+U2LBkGmqw5pNS\nWOizkP70/lNheURE8R9SaZiRGwU/K+0NtP7eeuq2v1u5L56nJmTS9mmXaajBGvL84xolRpVt70l5\nIhAIyX2HF7W2H0uDDFbS3nnXKTlW9s5fFiJTI8lwlSG9S3xX7LpIJKJ986/TFPutctW58f5G6nu4\nr9j8u6cDaUzNjZSaIN37LSM3gwxXGYqNnkzEbfgcYbaOgh7IvqcrJz9Hplm4z/4AmtWyfD0dm+1o\nJlP4puUDj9OZ9ffLrV4l3wbilE1FnmczHoAQwI7yEujvHYomXW0+fQ5PCYelvqXC8rw9A9BhuAM0\ndSoDAO59uMcb7FAeds24ih6Tm8KmsVmx61n5WVhxewXcurqVW8BCIsJ1rwD8Yr8dIhFhe9AUjFnZ\nGQbVdMtFfnmgqqqCaRNH4ucD7fD818NITEjB5Lpb4fnHNWQkZ5dLHTX0amC242z8ca34gjljDKOW\ndUKbgfWwoPN+pCfJVt+EphNw/8N9vI5/zZvv2K8u2g22x/ox5woHSWLRrqyNUY1GYeeTnWLL6Btp\nYdyaztg6+RKEApFMbVSvpI7B9QfjwHP+iMyFdBjeAHk5Atw780YmubIwyH4QTrw+IbXcwD9a48z6\nBzI/k5LvmwrzRmOMXQegB2AzgIXgZjphANYT0VYx95Ck9oy1dIfr1eGoUccIAHAm6Az2PNuDc8PO\nyd0+IsLE2lsw98gA1G5uDgAwdTPF04lPFfYOe+kXjnWjzmJb4BSoa6oVy9v9dDfOvTmnUFv5yEjJ\ngfv484h6n4QZnn1Qq2m1cpFbkcy5Ogev4l9hX/vDOOp6G/fPvMGwxe3RY3IzhUPwF5Kdnw27zXY4\nOfgkWlRvUSyPiLDn92t4fScSy66PhIaWmhgp/7HEdwmi06Oxozf/WCk/T4i5bTzhPK4xek5pLlHW\n6/jX6OLVBREzI8R6OBIR5nXcj3aD7dHrF8nyCrkTcQeTLkzCy19eSiz38MJb7Jvng00BkxSKPF2S\nd4nv0GFvB3yY9QEqTPLf7c8O+9Dzl+ZoP6R+mev94mRlAUlJXEpJAVJTgfR0ICMDyMzk8rOzgdxc\nIC8PyM8HBAJAJAKK9msqKoCqKqCmBlSuzCUNDUBTE9DWBnR0uKSnB+jrA1WqAFWrcqlS2TxkPwfi\nvNEqsuXmBWk1gHkAQgAMArCZMaZKRJvkEZYUnY6cjDxUtzP8dC0lJwVVNKoo1LjQgFgQAbWacZ10\nWm4aMvMyYa5rrpA8IoLXghsY4epUStEAwP7n+zHbcbZCskvy4U0ClvY+iqbdbPH7of4Sz7z5mljZ\nZSXaebbDkSgvTN85Hb2nt8D2qVdwfW8AftvTG1YNTBWWrammiXlt58HVzxXnh50vlscYw7g1XbBu\n1FmsHXEa804MktrpTm4+GfW21MOarmt43bfVKqti1v5++KPtXjTtZgszm6piZdkb26OGXg1cD7mO\nbrW68ZZhjGGSezcsdD6IDsMdoFNFQ+ozO1o4IiUnBYHxgahnXE9suR961cbhv/1w/0wQWg8QX05W\nahvWhp66Hp5GP0Vzc8mKsff0Fji7/sHXrWwyMoDwcC59+AB8/AhERQExMVyKjQXi4zmFYWgIGBhw\nSkBfn1MIOjqcktDU5JKeHqdA1NQ45aCiwiWAk0HEKSGBgFNKOTlciovjFFZmJqfE0tI4hZaSwim4\n1FRAVxcwNuaSmRmXzM25VKMGl2rW5NrzlVGRvZQKAB0Ao4io8GxbX8aYNTjlI5eyCX4aA9umZsVM\nUDmCHGhW0lSocY8uvkOL3rU/yYtKj4K5rrnCJq5XtyORHJ2BDsMdSuWl5KTgafRTdLXtqpDsorx/\nGo2/ex3ByH+c0HV8kzLL+5xUUqmEff32obVHa/Sv2x9WDhZYcWMkrnr4Y36nAxj4R2v0m9VK4dH3\n2MZjsfTmUgQlBKGuUd1ieYwxTN/9IxZ0OYBDS25ixFInibLMdMzQ0aojjr06hp+b/sxbxqKuEQbM\nbY0tky9h6b/DJX53hjcYjqOvjopVNgB3rPQPP9bGiVV3MGZFZ4ntAwAVpoK+dfri7JuzEpUNYwyD\nF7TF0X9uw7F/3XIx4/as3ROX312Wqmxa9a2DXTOuIvR5LKwbKj6YKDPp6cCbN0BQEPD2LfD+PRAc\nDISEcJ27pSXXSRd22M2bA9WqAaamXDI2/vIduEjEKZ64OE75FSrDqCjgxg1OUUZGcj91dAArK8DG\nhku1agF2dlwyMQG+wNlDFalsEgHUAnCtxPWrALoxxkyJKLbkTUuWLPn0u5OTE5ycnAAA4a/iYdnA\npFhZIlL4Hyfgehj6z2716XNydjIMNA0UkgUAFzY9RJ/fWvCagx5+fIim1ZpCo5L00aokwl/FYUnP\nw/hla4+mm7ZjAAAgAElEQVRyGaF+CewM7TCl+RQs8FkAr/5eYIyh289N0LiLNVYPO4WXfuGYvb8f\ntPXlf1eaapr4uenP2P54OzZ031AqX029EuadGIiZzT1Qp1V1/NCztkR5IxuOhPtDd7HKBgD6zWwJ\n34MvcOvYa4mj9wH1BuAfv38gEAkkbhYevqQ9pjXaib4zWqKqqY7E9gFA7zq9sezWMvzZ9k+J5Vr2\nqYN9f/rgxc1wNHSykipXGs42zlhxewUWdlgosZxqJRU4j2uEf3c9w+RN3ctcr1QEAk6p+PsDz58D\nL14AL18CCQlcR1u3Lveze3euA7ax4ZTJt3Dwm4oKN6syMOCeQxxE3GwsLIxTpsHBgJ8f4OHBKVqB\nAKhXj0v16wMODkDDhtwsSYH34OvrC19fX+kF+bwGyiMB2AXOQUC7xPUZBddNee4R6+Gw8efzdHHb\n42LXdj/ZTWPPjJXPVYK48Cw/aa8odhjXjdAb1N6zvdyyiLjzRAbprRJ7uNfG+xvplwu/KCS7kJT4\nTBpUfRF1duxZbhGcvxRpOWlkvNqY3iQUj36clyugrb9eosn1tiocKj84KZiMVhtJ3PD4wi+cXEzX\nUlK0+DhfRERZeVmkv0Kf4jLiJJZ7eSucxlhskLpXpvH2xnQrXPrek+3TLtPu2Vellitso85yHbFH\nDxTl4rbH5Nr3iExypZGem07ay7RlOmMpNiyZhhmuKRWAtsyIRERBQUT79hFNnUrUsiWRlhZR7dpE\nAwcSuboSnTlD9P49kaDsZyB9N8THE/n5EW3fTjRtGlHHjkSGhkRGRkSdOxP9/jvR4cNEb98SCeXf\nOoEv4I12uuBnSbtBDwAfiGdWI4m4sBSYWhU/GlhXXRfpeelyNywyMB6G1XWL2cVVmSqEIqHcsgDg\n9G4fvNU/j979e2DEiBEIDQ0tlh+dHq3wWhDADQgWDdoF38xduH7vEnx9fXHw4EE4OzuXqutbQFdd\nF5OaTYL7A/di19Uqq2LK5h7oOaUZ/mi3D+Gv4uSWbVPVBrUMauFG2A2xZRza1US3n5tg08QLEr3J\nNNU00cm6Ey6/vyyxzvpta8KuZXWc2/BAYrlutt3gHewt+QEA/DS3Nbz3+MvkraeppokfzH/A7Yjb\nUst2GtkAr25FIi4iVWpZaehU1oGDiQMefXwktayJZRVYNTLFwwtvy1ZpXh5w9y6wahXQuzdn2urW\nDbh4kTMZrV4NREdzo/fjx4G//gL69gVsbbkFeSUcRkZAu3bApEmAuzvg48OZ5QICgFmzuDWnY8eA\nzp25NSpnZ+5dXrwIJCYqXG2FKRsiugTAF8AOxtgkxpgzY2wXgC4A/pJXXlJ0BgzMi7v0GmkZIS5T\n/g4p/FU8rErYjxVVXKGhoZi5dDwCIm+LVQLZgmxoqWnJLbsQH6/n+DfgEOJTootdDw4OxsKFks0Y\nJds6YsQIdOzYkVcpfk4mNpuIwy8PI1eQWyqv97QWGLu6M/7qchCRgfFyy+5bpy/OvzkvsczQRe0R\nE5KC28f53ZsL6V6rO7xDpCuIUcs64sz6B8hIyRFbpqNVR4lKsBCjGnpo0dsOV3ZKjkFWSHvL9rgV\nfktqOQ3tyugw3AHee/xlkiuNNhZtcDfyrkxlnVwa4OYhyV5zpRAKgUePgBUruA7P0BCYOpVboxg9\nmjOThYUBR48Cs2cD7dtzHaUS+WGMczLo2ZNTLKdOARER3BrXb79x+evXA9bWnPltwgTAy4tzqpAV\nvulOeSVwDgKbAEQDyAHgD2CIhPJip2YupmtLHZT1JuEN2Wy0kXuad9jVjzz/vFbs2ofUD2TmZia3\nrOHDh0sN4z/36lxa7rdcbtlEXOiVkdXWUYumjjJFcBaHImfblPfBayVx3O1IV95dEZt/3SuAxlhs\n4D02WxKPPz6mupvrSi336nYEjaq+vlSkh6IExQdRzfU1Zap37agzEs+SSctJI61lWjIdXf7uSRSN\nsdggU+TmK++uUAfPDjK18f3TKBprubFczpw58uKIxM2vRUlPyqKBuiulx0uLjiby9CQaPJjIwIDI\n3p5o+nSis2eJksVHulbymRAIiJ4+JXJ3Jxo0iMjEhMjSkmjMGCIvL6KoqC9iRgMRZRDRNCKqRkQa\nRNSYiI4qIis7PQ9aeurFrlnqW+Jj2kfkC/PlkpUQmQZji+ImOTMdMyRnJyM7X76NhmHBEbzXo6Ki\nPv1uom2C2Ey5rIaf+Hf3M9RtXQO169nw5puby2aeW7hwIYKDg4tdkzQzCg0NhbOzMw4ePFhhZruu\ntl0ljvQ7jWyIXr82h2vfo8jNlv1v3NisMT6kfUBSdpLEcvZtLFC/XU2cXntPbBk7Qztk5GUgJiNG\nar2D/myNC5sfIS9HwJuvq64LqypWeBX3SqqsWk2rwcBcF0+uvJdatrl5czyNfgoRSd88adPYDJq6\nlfH6Nv/3Vh6amTfD02jZZl86VTVh38YCjy+VeB4i4NUrYNkyoGVLbtR88SJnHgsI4PI2bgT69OH2\nmyj5sqiqAk2aANOmcaa2mBjg8mXOe+/MGWDNGrG3VqiyKU/ycwSorFHci0e9kjpq6tfEm0T5dken\nJWRB36S4WUtVRRW1DWsjMCFQLlm66vz/AEWVgJ2hHYISguSSC3CzzktbH6P/rFZwdXWFra1tsXxb\nW1u4urrKJOvjx4+814sqxaLIq5wUoUX1FngS/URimZ/mtoZ5bQPsniXdlFWIqooqGpk2QkBMgNSy\no5Z1xIVNj8RGF2CMobFZY/jHSDc9WdQzhm0TM/gdEa9Mmpg1kUkWADiPb4xrntKfwVDLEPoa+ghL\nCZNaljGGDsMccOuoZPOhLNhUtUFyTjKSs5NlKt+qXx08OPuGUzBPnwLz5gF16nCmm9hYYPly7ufx\n48C4cZwLspKvG8a4AcKvvwInTwLr1okt+s0oG5GIwHj2XzSp1kTm0VUhWWm5vK61Tcya4HHUY7lk\n9W8/FkZ6xXfvl1QCzc2b4+HHh3I7IIT4x0AkJNR1rAFra2t4e3vDxcUFHTt2hIuLC7y9vWFtbV3s\nHnHrMtWr80dF0BNj45ZXOSmCnaEdgpOCJZZhjGHazh/x9EqwTKP8QuoZ1ZNpEGJmUxUt+tjhwmbx\nC931jOrJPFjo+UtzXN4uXoHaG9vLPKBpO8ge/tdCJa4DFVLfuL7Y8DolaTOoHu6eCoJIVLboISpM\nBfbG9jLX+4O9Kp6eeQmhXV1g4EBO6Rw6xK27uLtzC9KVK5epTUq+Xr4ZZaNaSQXC/NKddavqrXAv\nUrwZhI/8XCEqVS7tndK2ZlvcipC+0FoUDWEVLPx5vUQlUE23Gsx1zfHw40O5ZD+7GoLmPWt92ktk\nbW2NAwcOwMfHBwcOHOBVNOJMX66urrCwsChdx7NnvKYxccpJVrOdLBhrGSMhK0FqOS09dfyyvSe2\n/XpFrImqJJZVLBGRKpupaMAcR1zc+hj5efyDAduqtghNls182LxHLcRHpOLDG/7nqm1QG++TZFOa\nOlU00LCjJR6ck6407Qzt8C7xnUxyq9c2hK6BBt49KvvAoY5hHclKPSkJ2LIFaNkSRoN7wFBbiLd/\nbuL2fqxcyZlfvoU9LkrKzDejbNS11JCbXbqj6WDVQSYPn6IwBhDPqM7Zxhnewd4y2b4LyUrLhbWV\nZCUAAAPtB+LIyyNytfPd42jUdZTdlCDJ9GVtbY0mTUpHHIiIiOA1jZXVbCcLaqpqyBfJthbTrJst\nLB2McXGrbDNPWRUZANS0N0ZNe2POxMNDdb3q+JjOP9MriWolFbQbUl+sKU0eJQgAjgPq4r4MQTRt\nqtogJDlEZrnNe9bG48uyzxTFwas8ibgd7cOHc5smb90C/v4biIxE41Ft4R+loVQw/4d8M8pGu4oG\n776DxmaNkZSdJJO9upDKmmq8I2TrqtYw1jaWa6YkFIigWkn6axzTeAwOvjiIjLwMmWVHvUsqFgtO\nGtJMX2lpaRLziyKr2a4sZORlQKey9F3yhbgs7YDTbveQnyt9dqNdWRuZ+Zkyy+48piGuez3nzTPS\nMkJituz7CxwH1MXdU/xmt2o61RCdEc2bx0fzHrUQcD1M7KyrEAs9C0SmRcost0lXG/h7y66cxGFV\nxeq//72UFGDDBm53+7RpQKtW3A72I0e4HfuVKqFhR0u88JXDXVbJd8M3o2z0jbWQGp9V6roKU0Ev\nu144G3SW5y5+tPXVkSnGDj60/lCpYduLolZZFYJ86TMhqypW6GTdCdsebZNZdlpCFvSMZd+fI830\nJa9pTJrZrqxEpkaiuq7sEbZtGpnB0sEEt09IX/NQYSpyzVAd+9XFy5vhyEovve9Hp7IO0nNl34NV\nr3UNJH5IR8KH0srdUMtQqpdcUfSNtVGtVlW8eSB5ZmWmYyaXx2O9NhYI8Y9FTmaezPfwUUOvBtib\nt8CUKdwejAcPuLAoL14A06dzoVWKYN/GAu8eRkHAYxJX8n3zzSgbw+q6SOT55wW48zWOvpLdo1rf\nRBspsfyj3lGNRuHY62PIzJNtVKylJ15xlWRxh8VYc3cNErNkGyWLhCTTrKkQaaYvRU1jFbUZNCA2\nAPVN5IsG3GVsI/gelL45MDs/W64grVp66qjbqgYCrpd+tsqqlWU29wHcGT4NOloiwKe0LM1KmsgT\n5snlrt/AyQqv/CTPBgy1DGX+XgGAhpYarBqa4O1DBddtiAA/P/ww6W9sXOnP7Up//Ro4fBho21as\nmUynqiaMa+oh7IX8m7GVfNt8M8rG1LoKYkJSePOcbZwRnBws8wKpcU09sSE7LPQt0N6yPfb675VJ\nVtVqOkiMkm3UW9+kPoY6DMXv3r/LVF5DWw05GbKPPKWZvhQxjVXkfhvfMF+0q9lOrnt+6FUbr29F\nSB2RJ2Ynyh1YtWEnK14Tj4hEUGXyhTtxaG+J17dLm7UYY9CopIFcYekZlDjqta6BoHuSZzb66vpI\ny+UfjImjbqsaePtQtrWoTxAB588DrVsD48cDvXujwVwdwNWVi5IsA7V/MMf7x7KbEpV8H3wzyqa6\nnSE+vOEfuampqmFUw1HY9XSXTLKq1TJA1FvxpozfW/8Ot3tuMo0+zWyqIiZYtn0GALCs0zLcCLuB\nc2+kH6JmYK6LxI/yhdCRZvqS1zRWUfttcgW5uPjuInrV7iXXfVp66rBsIH1EHpkaiRp68u3TqOtY\nA2/ul+58M/Myoakm31EWdi3MxXp7MTCpJ3wWpfYP5nj/RHLnrKWmhaz80mZmSdg2NUPwU+mbVQFw\nSub0aaBpU2DhQmDmTCAoCJq/zkCcKF0uk6Vt02oIfiZjvUq+G74ZZWPpYIxwCVPvSc0nwdPfU6Z/\nOEsHY4nT+NYWrVHLoBb2PNsjVVbN+pwsWTsPXXVdHBpwCBPOT5DqAlso+0tSUfttjr8+jiZmTWCh\nX9odWxq2TcykvpegxCDYGdrJJdemsSnCX5b+WybnJKOqhvjD0fiwamCCD0GJvEciC0QCqKlKPy20\nEGMLPeTlCJAaL960K49nXyHWjUwR+lzKOg8RcOkS56Ls6gosWQI8ewYMHgyoqkJVRRUalTTkUnRW\nDU0QJq1eJd8d34yysWlshvCXcWIXFmsZ1EIbizYyKYhqtgbISs1BSpz4f96VnVdiyc0lUk0TxhZ6\nAAHxckTSdbRwxJIOS9D7cG+Jdva6jtXxUoqtvqKpiP02QpEQK26vwJzWcxS638RKH3Hh4t83EeFZ\n9DM0Nmssl1xtfQ1oaFdGckxxj8Ho9GiY6ZjJJUtDuzL0TbQRF17c9CsUCZEvyoe6qrqYO0vDGEON\nuoaIDFI84i4fNeoYIjY0Rfxi/b17QIcOwJw5wIIFwJMnXBTlEusx8s6qLOsbI+J1glyzOyXfPhWm\nbBhjHRhjIp4kuytOEbT01GFiqY/QAPEjonlt52H1ndW8kYSLoqLCUKdVDby+I95VtJl5M/Ss1ROL\nbyyWKIsxhvrta8rtzjnlhynoY9cHPQ72QGoOf8fZtKstAq6HybyRsSKoiP02O5/shJGWEbrZij+1\nUhLaVTSQlSreKSMwIRC66roKHetgWL206TI0JRRWVazklmXKoxRTclKgp64n96F/1WyrIjZEvLlW\nIBJATUX22RLAHSZnUE23tOIOCQEGDeJmL2PHcp5lAwaIXfRXU1GTy+FBz0gLjHHelt8tRNwRzwkJ\n3OmZ799zDhTPn3Mzw8Lk78+936Ag7r1HRQHJydxxCt8ZFX14PQGYBqDoTjyFe8767S3x0i8CtZvz\ndyIta7REA9MG2PlkJ6a1nCZRVsOOlgi4HorW/cWfeLeyy0o02NYAwxoMQ4vqLcSWa9rNFo8vvUfn\n0Y1ke5Ai8qdfno4u+7vgsstlGGkZFcuvaqYD2yZmeHDuDdoNLu61FRoaioULF+Ljx4+oXr06XF1d\ny901GfjPqWDhwoWIioqCubl5meoKSwnDIt9F8B3tWy7HE/Nx5f0VONs4K3SvrqFmqThpQQlBcGng\nIrcsA3PdUrOk2MxYmGrLfzyycU19xEeKn2Vn5WfJva4E/DdLNK9lAGRkcPHJdu4EZswA9u0DtKS7\n3svrZs4Y49Y6Q1Kgb/yFj1qWFSJOcUREAB8/ckohJoaL5RYfz+UlJXF7jVJTuXdZuTL3/jQ0uFS5\nMlCpEhfMsvC7LxJxRynk5XEpNxfIzuaOqmaMOzJBTw+oWpVLRkZcMjHhTtY0N+dSjRrc+T5f8WbZ\nilY2ABBERPLFaRFDo85W8PbwR/9ZrcSWWd5pObod6IZRjUZBX0NfbLlmPWrhn37HJB4tbaxtDPce\n7hh1ehSeTHwC7cr8/xgt+9hhzxxv5GTlQ0NL9tElYwzuPdwx//p8tNnTBheGXUBtw+JHFfec0gxn\nNzxA20H2n9pZ6CFWdOH+/v375b7pspBCp4Kykp2fjYHHBmJ+2/lyuzwXJSM5B9pVxB8bfTLwJBa0\nW6CQbDWNSsgvMZP0j/HHGmfx0WzFoVNVA+lJxWdgH9I+yO24AABVTLQRLcERJS03DXrq8p/lYlhd\nF4mRqVwE39mzAScnLtqyGPMpHyISyT1w4JRcCuq0lL2eCoeIUyKBgdzR0m/fcjOSkBDu3BZNTcDC\ngns31atznb2DA9fxGxpye4qqVAH09QFdXU6xlIXcXCA9nVNgKSmcMktM5JRbbCy3pyk6mmtzZCQ3\nk6pZkztIzsaGOzSuVi0u2Kmt7RePO1fRyqZc1WzjLjbYOO68xE69kVkj/Gj3I5beXIq13daKlWXV\nwAQgIDQgFjaNxdvjB9cfjAtvL2D65enw6OvBW6aKiTbqOtbAvdNB6OjSAIDsMw/GGFZ0WQGrKlZo\n69kWe/rsQS+7/zy0HAfUhdeCGwi4Hgp9W4aFCxfC29sbcXHFF8gLPcTkVQqfa4aUL8zHsJPDUM+4\nHma0mlEmWbGhKahpb8Sb9y7xHd4nvVd4ZkMlAr5Gp0cjLTcNtga2Eu7iR11LDXkljkYITgqGTVX+\n4yIkoWOggcwn4k2HCVkJMNSUPdpEIVU0BEhZsQmo/JALitlOPld0AMgX5aOyqnwdmaECnpblSm4u\nZ74qNGc9fw68fMl1yPb2XAdtZwd06sR11FZWgI7s0S7KBXV1Lhnxf9dLkZXFBTUNC+MUZHAwFzbo\n7VtOGVlZAfXrcwqyQQOgcWNOKal8nqX7zzGzOcgYMwaQAuBfAH8SkexxNYqgU0UDtX8wx7OrwXDs\nJ978tbzzcjhsdcCoRqPQyIzftMUYQ7sh9vA78kqisgGArb22osWuFtj9dDd+bvozbxnn8Y1xbuND\ndHRpoNDMY1LzSXAwccCwk8MwMHQglndeDo1KGlBVVcGoZR2xbuoh3Mn3REiI+BAj8nqIydPOsiil\nXEEuhp0chnxRPjz6eJTZfPb+cRQ6DHfgzdv6aCvGNBojl7dXUXIy8qCh/V/HeSPsBtpbtocKk/8f\nUkWVQSQsvgj+Ov416hqJ/+6KQ1OnMrIl7LmS24lBKAQ2bIDuoWvIaNkWuLodUFPsnWXlZ8l9Em1V\nMx2xG6srhIgI4M4d7ljpBw+4c3JsbTlX7saNuTWqBg1k79i/RrS0OEVpb186LzcXePeOe+4XL7hT\nNmfP5mZMjRpx3oYtWnDJ2rpCzHEVqWxSAbgBuAkgDUATAAsA3GWMNSEi3iiJ2fnZEm3PbQfWw62j\nryUqGxNtEyzvvBw/n/8Z98bfQyUV/sfsNKoh/nI+iJH/dJS4U1+nsg5ODzmN9nvbw87QDu0t25cq\n49ivLjxmX8PbR1FYulH83hRJM482NdvAf7I/Jl+YjMbbG2Nn751ob9kebQbWw+TplxASIzmWlbwe\nYuL20MycORM6OjqfFMvEiRMxbtw4hcx2cZlxGHhsIMx0zHD4p8Nyj4BLkpqQhY9vk1CnRelnTchK\ngNdzL/hPUvzY49T44iGCLr+/rLAjg1BQOgJEQGwA+tbtK7esSpVVIZAQHy0yLRIWejK6kQcFAWPG\nAJqa0JzzO5KTVRRWNAKRADmCHLmVjZ6RFmJC+TdplwuRkcD164CPD3DzJpCTA7Rpw21GHTKEUzIy\nrEd9N6irczMaBwfu+QtJTOTOFnry5D9Tan4+967atOFmuk2bKvz9KAbf8Z0VlcApnHwAf4vJp39u\n/iPxVNKUuAwarL9K6vGyIpGInL2cyfWmq8Ryc1rvoTunAiWWKcQ72JtM1pjQy9iXvPnn3B/Q0j5H\nyMnJqUxHOBMRnXx9kmqsq0EuJ10oIiWCWrdqyyuzMEk74pkPce3U1NQs9llHR0fq0dd8XA+5TjXW\n1aAF1xeQUCT9eGNZuLDlEa0ccoI3b86/c2jS+UkKyxaJRPST9grKTOW+W7mCXDJYZUCRqZEKyds0\n8QJd3Pb40+d8YT7pLtelpKwkuWU9OP+GlvQ6LDZ/2qVptO7uOslChEKiDRuIDA2JtmwhEgrp8o4n\ntPHn83K3p5D4zHgyWGUg931+R1/S8oHHFa63FNnZRFeucEdI16lDZGRENGQI0fbtRIGBRKKyH4P9\nf0N4ONHhw0S//krUoAGRri5Rt25Eq1YRPX7MfY8kADHHQn8OM9oniOgZY+wtALGuXctclyGhWQL0\nNfTh5OQEJyenYvn6xtpo0NEKt46+RrefS4fML4Qxhj1996DZzmZwtnFGyxotecv9OPUHnNvwQKJX\nWiFdbLpgXdd16H6wO26OuVnK9t5tQlOcXH0P2vbST++UxoB6A9DVtitW3l6Jxjsaw0TThLecqakp\nunTpUsysJavJS9wemuzs4t5YGRn8kaqvXbuG0NDQUrKTspMw//p8XHh7AR59PNCtlmIzg5KIRISL\nWx5honv3Unnvk97D098TL6a8UFh+bFgKtKtofDp+/PK7y7A3tldoQR8oCKRq+N8s3T/GHxb6Fqiq\nKd8GUaDwDCbxs++ghCB0r1X6vXwiJgYYPRpISwPu3+cWjgGoVFKBiGfjqazEZcaV8qKUBQ2dynKF\nYuIlORm4cIE7jvjaNW7U3rMncPAgd3TxZ1qL+O6oWZNLQ4dynxMTAT8/bpY4ciQQFwd06cJF8u7R\nA76BgfD19ZUul08DVWQC8ArAZTF5tNR3KfU+1JtEEkYijy69o9+a7ZJYppBTr0+R1QYrSsxK5M3P\nzxPQWMuNFHhP9tHrtkfbyHK9JQUnBZfKu7bXn8Y3Wkk2NrZlnnkUEpUWRaP3jCYVAxWpMkNCQsjW\nVra6+cpqaGhInEGVTEVlZ+Zl0po7a8h4tTH9cuEXSs5OVuh5xeF76AXN+GF3qb97cHAwmTqakm1T\nW3JxcVH4PfsdfUlL+xz59LnP4T60+8luhds7q6UHvbod8enzylsraerFqQrJ8vb0J7eRp8XmV3Or\nRmHJYfyZV64QmZkRLVxIlJ9fPGvXU9ow7pxCbSIiuhZ8jZz2Osl9n//1EPrTaZ/8FaamEu3bR9Sz\nJzfi7tOHyNOTKD5efllKFCMigmj3bqKffiLS1yf64QciV1ei58+JuONfifj6d76LFZUANAe3z2ax\nmHzKyc8h+y32dOTFf//0JREKRfSz7SZ6fSdCbJmizLwyk3oc6EECoYA3/+LWR7SoxyGZZBWy9eFW\nqrGuBr2Oe12qbbMd95DnP+fIxcWFOnbsWKYOsCgPXz4kh84NSFfXhKrp1aEVJ1ZRWk5asTIuLi5y\nmbxCQkKKtbNPnz6894szpQGg/oP709++f5PpGlPqf6S/WDNjWchMzaExFhvoxc3iHWpISAgZVTcq\nF8W+ZcpFOul2l5ObFEKGqwwpIzdD4TYPM3KjxKj//j4dPDvQ+TeKmaxOrb1HO367wpsXnR5NBqsM\nSg++BAKiBQuIqlcnunGD994LWx7R5skXFWoTEZHnM08aeWqk3Pe98Aun39t4ylY4P5/o4kXOLKan\nR9S7N9HBg0RpadLvVVKx5OYSXbtG9NtvRFZWRBMmfH5lA2A/gCUA+gLoCGA2gHgAoQAMxNxDRET3\nI++T6RpTik6PFvuM59wf0D/9j8r0PvIEeeS014nmXp3Ln5+TT+Os3OmFX7hM8grx8vci0zWmdCfi\nTrHroc9jaJiRG8VFpMglT1Zy8nJpxgB36lV7LhksNKF+R/rR3md7KTo9mlq1alWm9SJxM6ObN2+S\niYkJr2xVG1WaeG4ivYp7JXMdLi4u5OTkJJMiFolEtHbUGXKfULqj7t6/u0LrSXx1jKm5kUJfxBIR\n0dSLU8V+X2QhOTaDBldZ/UkBxGXEkd4KPcrKy1JInsfv3nR0+S3evDOBZ6jr/q7FLyYkEDk7E3Xq\nRBQTI1buyTV3adesqwq1iYhooc9CWuizUO77ZFI2ISFE8+cTmZsTtWxJtHUrUSK/hULJV4BIRJSa\n+kWUzZ8A/AEkA8gFEA5gGwBTCfd8aveC6wuo58GeYk1l2Rm55GKylsJfxcn0HhIyE6iWey3a+Xgn\nb77Pgec044fdJBTKt5B4+d1lMlptRAefHyzWibZp2IWmtHIjgaB8FsZLIhSKyON3bxpf2502ndlN\nP7YropgAACAASURBVB39iXR/1yWmzsrc+Zac7YSEhFBaThp17tOZV/bgoYPlki2rma+Qc+4PaEr9\nbZSdkVvsenR6NKnXUi+zMwYRUeC9SJpUZwuJRCL6kPqBqq6sKnGwI41Hl97RvI5enz5ve7SNhhwf\norC8lUNOkM+B57x5c/6dQ3/7/v3fhYAAImtrot9/L2U2K4nXAh86tPSmwu0acnwIefl7SS9Ygue+\nYTS33d7SGUIhN4vp0YNb5J8xg+hl+c+UlVQc4pRNhTkIENFKACsVvX9xh8Vos6cN3B+447dWv5XK\n19CujH6zWuLwUj/8ceQnqfIMtQxxafgltPNsBzMdM/Su07tYfodhDriw6RGuefqj63jxjgcl6V6r\nO3xG+aDn5p5I90hHavR/caZeaTyH3SxzzNg4TGZ5sqKiwjBudRdUtzOE1wQfzNzmisofK+Nw7uHS\nZdVVkOyYjD+v/YlqOtVgqmOKqhpVoVNZBxqVNKDCVCAkIXIEOUjLTUNSdhIa/9IYRmlGeJ/0Hl3O\nd0FMRgzsHO2g/0i/2DPa2tpi5XLZ/8ySjizgcwv3O/oKx1fexepbo4vtf0nLTcOPh36EnZUdXrwv\n7RQgrxv4VQ9/dBrVEIwxLPFdgglNJ8gdfLMogXciUdfxPwcMrwAvzG83X2F5Ue+SuJAyPPiE+WBD\ntw3ch3PnuHNm3N2BYdK/d6nxWbBpLH/4nEICEwIVCqianyuAmnqRM4KysoC9e7ljpXV0uFM+T57k\ndu0r+T7g00BfKqHIzIaIKDgpmIxXG9ODDw94NWh2Ri6NMFtH759Gyax1H3x4QMarjcknxKdU3rsn\nUeRispZS4uS30/805CfeEba1ZlN6cP6N3PKIZDc3vXn4kcbbbKJaZg1421C/aX06EHCAlvkto18v\n/kqDjg0iZy9nctztSE22N6FG2xpR0x1NqbVHa+q2vxsNOzGMZlyeQWvvrqXTgacpMD6Q8oX5xdqk\n6FqUPG7h/3o8oxFm6yj0eXEzUHpuOrX3bE+Tz0+m4OBguWdKJUmJz6TBVVZTUkw6PY16SiZrTMrs\n3DCrlQc98+YcSF7EviDzteaf3qG8CATCYi7ZRYnNiCW9FXqUK8glWr+eMzk94P9/4WPJj4fp3pkg\nhdqVJ8gjzX80KTMvU+5775wKJNe+R4iSkoiWLiUyMSHq25fo5k2lm/I3Dr4GBwFpqaSyISI6HXia\nLNZZUGxGLO+DXdjyiOZ33i+TZ1ohPiE+ZLzamPzC/ErleczxppWD+fdxSELcWkkjh6Y03NiNQgLE\n281LEhISQn369CnlGSapE81My6Fmth0Ucg6Qde2kPJDFgUGQLySPOd403mYTfXiTUOz+5OxkauPR\nhsadGfdp705ZFeC++dfJfcJ5EggF1GJXizJ5oBH9txcsL4dTLhPPTaTFNxYrLC/idRyNt9nEm+f5\nzJN+OtyfaOZMInt7orAwuWT/2nC7XIO1ojyLfkb1NtdT6F7vTbdpbYPFRAYGRGPGcHthlHwXfLPK\nhohbv2m3px03eitBfp6AJtfbSndPy/dl9Q725p3h5GTl0aQ6W8j38Au55FlZWfF2ohY1Lcjv6Esa\nVX09xYRKHy3zrWnIojgK761hXlMmBaXI2kl5IK3eD28TaLbjHlrY7SClJhQfMYclh5HDVgf67fJv\n5bZJNDEqjYYarKGY0GRac2cNdfDsUGbZl7Y//jRgic2Ipaorq1JMuuyDjZJc3fOMVg87yZvXz6sX\nhfRwJGrblpslyEHhJtaMlGyF2rXj8Q4adXqUfDelpRH9/Ted1OpCOx3mcE4A3ytCIVFyMjcAeP6c\n6O5dznPrwgWiU6eIjh7lNk8eOsSlY8e46xcuEF2/TnTvHndfWBgnR8pmyq8Fccrms27qVJSlHZdi\nwNEBmHxhcqnYWpXUVDHJvRs2TbiIJl1tZY663MWmC44NOobBxwfDo4/HpzUcdU01zDnYH4t7HEKd\nltVhZi3bBjxTU1OEhYWVuh5FUQit8wQ/zW2Nv7ocwIqbo2BUXXx0Xr41jWLyJMQ/s7a2ht9tXyxY\n8BdePXmD9AhCv1pjIUzWAErs6ZR37aS8EHdkQTXTGjjs6ofzGx9iyMJ26D2tBVSKBMT0C/fD0BND\n8Xvr3zGj1YxyO57Ac+51dJvQBNEaYVh1ZxUe/vxQoThoRbmx/wUG/O4IAFh3bx2G1B8CUx3F10Ve\n+UXAvm3NUtdTUmIwcfm/qGHTGbh6Wu71jfiIVGjpqUNbX3wEbUncjbwLxxqOshUWCIBdu4ClS4FO\nnZDqMgn61mZcHK5vkawsLthlYeDLyMjiRw/Ex3ObTrW0uEjQenrcWpS2Nhc6pnJlLgRM4XEDRNw7\nEgi4OGY5OVwdGRn/RX7OyvrvmAETE6Da/9g766got++NPwPSnYKApKKiIoqdiN3d7bW7rt2NhVio\n2IiFgomgomIriqIS0t3dU/v3x7mgXkFqBvX+vp+1Zrmcmfecd94Z3n3O2fs8j+5Xe4FitWcjI6ZA\n/RtaDfwRwUaCIwHnIc7ofLozNvtsxrrO6757vVk3EzRoq4cLGx9j8s5uFW63i1EX3BpzCwMuDMDW\nvK2Y2nwqAMCshS6Gr2yPnSOuYueTSZCWLf8ymZmZ4dWrVz883926OxxeOUBOSQ7DRs3Hyi7nsM17\nHLQMSrc/KMuGuZjyEt/GxsZwcTkPACjM5+Hu0bfYPOAS9Mw10GK4Lq76nEJCQjwCAgJKPb66ds8V\n4VvLAm4hH/dOvsfG7Tdg3kYP9m//grbhVwUGgVAAu2d22P9qP84MOiMyNQIAeHs3FJ+fRGPH2zHo\n4NIO9j3tYaxWvZtfdEAKEsIyYN3HDIm5iTj29hjez6y6VhsRwe9eOIavbP/9C/n5yO3VFcrqOpBy\nv1kl7aoI/2QYNa16EPSJ8sGydsvKf6OXF/PH0dVlFtNWVkgf7466dZSq3HeNkZ/PhCuLVaEDA5m2\nXHLyVyl/Q0N2s2/cmH1GHR3mLaOuLhpNsWL4fGYzUGwxkJjIglt0NPDkCQt6EREscNWrx1SrGzZk\nwpxNmjDhUUnJcrsRG6VNd37VA2UsoxWTkJNAxvbGpZYvpyfm0FjtPRT8Oq5ycz4iCkoJIpP9JrTq\n/qqSJRShUEjbhl0h+yk3KpQP+tnyEF/Ap2O+x0hntw4NmzSPxhvs+SEXUUxZOQ1UY5mLW8Sn83vv\nkIqMVpltowLLdKIkMSKDzq7xprG199CGvhco6FXsD+8JSQuhTqc6UadTnSg6s2IbeCtKZnIuTdDb\nR+/uhdKACwNo5s2ZImn3wIxb5LzuIRERzbw5kxZ6LKxWe2F+CTTV5MD3v8H8fCJbW7rdWoPuBFR9\n97/z+kd0euWDKh0bnh5O2ru0f/63ERVFNHgwkYkJkbv7d4n/vzuepg/eEVXqW2zw+axs/MgRlkey\nsCCSkyOysiKaOJFo1y5Wlh0Wxt77u5KaypbgTp8mWrGCbYI1MiJSUCBq1Ypo5kymAPDhg1g+B/7k\nnM23fEn9QnX21KFLn37c0PnI5SPNbHiYCvO5lbg0jKTcJGp/oj0NvjiYcopyiIgoP6eI5jRxJPd9\nLyvURnmJ6qzCLFrzYA2ZD+tAA9TW0yMv31Lb+HfQkpOTo4EDB1Y60HxbAFBWTkkUwayixIem0fX9\nr+jvjqdptMYucpznQdEBP+6TKuQV0vYn20ljpwbteb6nTOWHqsLnCWh1t3N0asV9Wuq5lDqd6lRq\nPrCypMVn00g1O8pIyiX/RH/SstMqUyapopxb+5Cclnyz6bKwkKhXL0ob3IuM9hhU69qs7Xm+ypVo\njm8caezVMgYmfD7R3r1M8HPDBiaS+S/G19lHSVHi2fRcYQQCIj8/ot27ifr2JVJVJapfnwWaI0eY\n6GRR9X8Xvw1ZWUQ+PkyMddw49lmVlIhsbIjWrCHy9CTKyal2N/+ZYENE9CHxA2nv0ia3wO+1ooRC\nIe0Y6UpH5npU4tJ8pZBXSFOvT6VGhxpRUAr7I0yKzKDxdfZVWBm6IiTlJtHMLSuoh8IKGrNwPgWm\nfN92dauritv4WaFB8UNFQY3qqjQkA0lLmtxkOx2Z60FeJ/3oy5s4ys+p+h9aXnYhBb6IoduH39De\nie40xdiBxunspX2Tr9PLG8HELfrxJikUCskt0I3qOdSjfi79KDxd9IFPKBSS4zwPWtPdmXb77KEG\nBxtUOyAU4zjPg44t9CSBUEDtT7SnI2+OVPtc/zI7+HXWx+czParBg2nilbG0/cn2KrfN5wlouPJO\nykypfNkyEVE/l3503v/8jy98/sxGz126EH35Uuqx+TlFNERuW6U3UIuEzEyiixeJxo9n5db16hHN\nmsWS8z9RWvjPkpbGZmsrVxJ17MhmP23bsuDz+HGVgm1ZwYbDXvs94HA4VNHzeRv/Fn1c+uBov6MY\n1GBQyfO5mYWY3+wYptn3+KnnTVkQEZzeOWGV9yoc6H0AoxqPQujbBKzv7YKVrsPQuJNhpdssiw++\nX7Bp4EVEGX+AznQu5rabgx6mPaqdoAaAcePG4fz58+W+b+zYsXB2dkZRAQ8hvgn48joO4X6JiPyY\njISQdMgpy0CrrgrUdRWhrCkPeRUZyCpIoZY0W/sV8ITgFvCRl1WIrJR8pMfnIDkqCwU5XOiba8C4\nWW3Ub6UHi44GqNtIq9TEPhHBK8wLGx5vQD4vH3bd7ESam/kW153P4H3uIxodIOz+sBM+k31QV+XH\n5HtliQ9Nx9I2J3E4YBZcos7A2d8ZT6c8rdZ3+flpNA5Mu4UjAbOY5e3MmUB4OGJdHNH0ZEuEzg+F\nulzpGz3LI/B5DA7NuoODH2ZU+thcbi7q7KmDqIVRXxWsBQJg3z5g505gyxZg+vQyk9TBr+NwaMZt\nOPhNr9K5V5rUVMDNDXB1BV68ADp0APr1A3r3/nMLFMRFfj67Rg8esFxbSAhga8vUtPv2ZTmpcuBw\nOCCiH778PzbYACzg9HXpC/te9hjVeFTJ88Gv4rCp/0XsfjEZuqZV+2P0S/DDSNeR6FC3Axx6OyD0\nSQp2jb6GdbdGwbyV6HzTczMKsGu8G8IjoxE46iYylBMx1WoqJlhOqLK0PQDY2NiUK/ttamr6UwM0\noZCQnpCDlOhsZCTmIjs1H/lZRSjK55UYeUlKSUBGXgryyjJQ1pSHuq4itAxVoK6r9F01WWlwBVy4\nBrhiz4s9KOQXYm2ntRhhMUIkwbY0rtu/ws0Db9BwP2F/yC48nPiwSnbP/4aIsKn/JVh0NECzabXR\n9kRbPJn8pEqOnN+yZ7w7jJvVxpAlbYHNm5mU/qNHWPB0DWpJ1Pqp7Xl5OK97BG4hH1PsKl5QU8yV\nz1dw/N1xeI33Yk/ExTHpeR6POUCWcwO/e/wdAp/FYNHpypvIVZj8fHa9nJ2ZO2fPnsCwYSzA1LS9\n859MSgpw9y5w+zbg6cnssgcPBoYOLbGp+DdlBZtfvnT27QMVXEb7Fv9Ef6qzpw45vnH87vmbB1/T\nnKaO1VoKyinKoSnuU8hkvwk9iXpCr24GV7kI4WcIhUJy3/eSRmvupqN7rtG069NJfac62Z6xJae3\nTlVa5imr0MDIyEikStRVISw9jFY/WE26u3Wpy+kudCPohsj2zZSGUCgkl42P6S+zA7T60iYy2W8i\n0iW6J1c+08yGhyk3P59aHW9F+1/ur3abafHZNELVjrLT8pnCsaEhUUKCSHTbiIjmWh79QUG7ogy+\nOPjrxtfbt9ly1ObNFU42H5hxi9ztK5YHrTS+vkTTpxOpqTHDL2dnkeQh/gexJTUvL1ZgULs2K5zY\nuZMVgnwDfnXOBsBdAEIAm37ynipdg9C0UDLZb0LrH64vqY4RCoW0b9J12jr0crXXht0D3Ul3ty4t\n8FhAj1w/0Bit3SX2BqLchR/hn0jzmh2ldb1dKDosia58vkJDLw0l5e3KZHvGlva/3E+haaEVautX\nbdosi9isWDrw6gC1O9GOtOy0aIHHArFYEfwbbhGf9k+9QXOtjtKk09PIytGq2jfqb0lPzKFxOnsp\n4Fk0Lbq7iPq59KuUmkVZnFp+nw7PuUP08iUTpPRnIpzTbkyjZV7LqtV2XEgajdXeUyWR2LT8NFLZ\nrkKZuWnMvkBfn+hJ6WrUZTGv2dFK+UeVS2Eh87hp2ZIF5S1biGJ/rG78HyKEzyfy9iaaNo0VgnTq\nxCrcsrN/bbABMBpAPACBOIINEVFiTiK1ONqCJrlPKqks4hbyaFmHU3Rqxf0qt1tMal4qjb82ngz3\nGdJhJxcao7Wbrp/yFvkNncfl08UtPjRaYxdd3fWceFw+fQr6RB37diSdxjokayVLBmsNaMbNGXTx\n40WKyy57liWKQoOqUsQvoqdRT2md9zqyPmZNajvUaNy1cXQz+CZx+ZWvFqwKKbFZtLTdSVrd9wx1\nPNyFBlwYUFJpKAoEAiGt6+1Cp1c+oAsfL5CxvbFIig0yU/JolPouSnodzLxorl8nIqaxpmWnVSVb\n6W9x2fSYBbIqcODVAZpyZghRr16sCCCpdBmpssjLKqShCttLpHyqRXo60datzBiue3eimzd/75Lk\n/ypFRUz5YOBAosmTf12wAaAGIAHASHHNbIrJLcqlgRcGUudTnSkljzn3Zabk0bR6B+n24TfVarsY\nr1AvMnMwowEbx5ChTDOx7VWJ/ZJKa3uep9EmG0lf53sJGn0jfVrluooGXBhA6jvVycjeiEZeGUm7\nnu2i+2H3y9SRExdCoZCiM6PpetB1Wv1gNdmesSXFbYpk5WhFy7yWkXe4d40FmGJe3gimcTp7acfS\ns6S/W5/Wea8T+VLdpa1PaEnbk/Qi4iVp2mnS+4T3ImnXaYkXHZx+k1UHbdhAROwadz3TlRxeOlSr\n7ZIKt5eVH/kLhULqs6E+5ZoYEM2fX659QWm8vv2FlneugkPntyQlEf39N1sqmziR6GPlpKX+hxj5\niVNnTSgI7ATgT0SXOBzOj/r3IkRBWgFXR1zFau/VaHW8FdxGusFSxxIbPUZjeaezUNaSR4dhjarV\nR3fT7vg46yP2PN+Du07XgJgf3yOKXfh69TSw0WM0etsMROzj6O9ei42MhctSF3h7e8NwpCG+pH3B\n67jXeBv/FjeCb+Bj8kdIciTRUKshzNTNYKxqDEMVQ+gr60NHUQfaCtpQk1NDLYmKff1CEiKrMAvJ\neclIyE1AbHYsojKjEJYRhuC0YASkBEBGUgZWulaw1rXGojaL0M6g3ddKpRokN6MATovvwf9RJLRW\nZsKeZ4eTA06id73eIu3n1c0vuHXIFwu9uqHf1R5w6u8ESx3LarebGJGBB6c/4ODIVCZtsnYtAODS\n50tIzU/FrJazqtX+x0dRkJKRRP1WlbNgAIAPbkdwek8Y5O0Ossq4KvD+fgQsbY2qdCwyMoBduwBH\nR2DUKMDPj+3e/x+/Dz+RyRFrsOFwOB0AjAPQtKLHfPKJqlZ5saSEJHZ024FmOs3Q7Vw37O2xF+Mt\nx2PDnVFY18MFsgrSsO5dehVFRZGtJYvVnVbDt60v3GPcf3i9sl4qZcHhcFDEySn1tcjISHTv3h33\n7t1DA+MGaKDZABMsJwBgs9XE3EQEpwUjND0UERkRuBd+D3E5cUjMTURKXgoyCjMgV0sOSjJKkKsl\nB5laMiXBRyAUgCfkoYBXgFxuLnK5uVCUVoSWghZ0FXWhr6wPQxVDtNVvi4mWE9FIqxG0FLRE8pmr\nilBIeHjOH6dXeMO8txb8F52HtoYG3g14B12l8ss1K0Po2wTsn3ITcy93x0jvwVjTaQ0GNhBNZZXT\n4nsY2E8D6jf2A+/eARISSMtPwyLPRXAb6VbhAUJZ3D7si94zmldeW+7GDRhPWoTHm6djQBUDDQD4\neYZhwakBlTuoqAg4eJCVVQ8YALx/z+Rh/jT4fBYwMzOZ3lleHlBQAHC57DX6pxJXUpLJ3MjIMG01\nRUWmraaqCigp/Za6ZxVBbMGGw+FIAXAEsIuIQit6nN2oa9jzakqZ2mEVZVTjUbDQssDQy0PxNPop\n7HvZY831EdjU/xKWuQyGVXeTarUPAHt37MXHtx+/E7TUqK2JtRvWVrvtYvT0yi6zDgsLw5o1a37Y\nT8PhcKCrpAtdJV10MepS6rFCEiKXm4ucohwU8AvAFXDBF/IBAJIcSUhJSkGulhwUpRWhJKNU7Zuc\nOPngHYHTyx+AOAT11alwKNiOHR13YHKzySIT7CwmNjgVm/pfxASHjpgRNBYTmk7A7JazRdL2qxvB\niPZPxPKCXcD5s0xfC8D8u/Mx0mIk2ui3qVb7yVGZ8PeOxIIT/ct/87c4O4O/ZBGGTZKD2yy7Kvef\nGJ6B7NQC1LOuxGDs1i1g0SJWcvv4MdP6+h0hAhISgC9fgLAwJtIZHf1VnDMpiQUYVdWvQUNBgYmn\nSksDtWoBEhKsHYGAlZEXFX0V48zOZoGqqIgJcdauzfa86Ol9FeE0MWGaaNrav2VAEts+Gw6HswbA\nJAAWRFT0z3NCAFuIaF0Zx5Cr3TP4XPyMnT7fOzNWleyibMy4NQOfkj/hwtAL4HxRxrYhV7D47EC0\n6FW9GQ4ARERElCgY52bxoRBkiYz+wZi6qD+mNp8KeSn5co+Ni4uDnp4eNm/e/MOel4iICHTv3r1M\nJWhduXo4sv0cbCdaQlG1auq9fyJEBP+Hkbi05SlSorNgMl0GRyQ3o6NxR+zpsadaLptlEReShtVd\nndF/tRU20lwMMB+AzTabRRLQcjMLMaexI5aYvkfTlprA7t0AgEufLmHdo3Xwm+H3099SRTg6/y6k\nZGtVbm/NiRPA+vVYv7IthA0bYHPXzVXu323vS8QEpGC+UwWCXVQUMG8eEBzMXEd7imeTb5Xgcpkw\np68vm2X5+wOfP7OZiLk5E7wsFujU12dBoXZtptgsUc09ZEVFbJNqYiILbnFxLKhFRLAAFxrKAlXD\nhkwYtEkTwNISsLICVKo3gK8oNbrPBoABgHywKjSVfx6qYAUCO//5v0Qpx9G6deuoh+VIsmkwjB48\n+NFNs2o5KyGdeHeCNO00af/L/fTpaRSN0dotUgmaYqI+J9PkBnupX+uFpLvRgNY/XF9qwr4ypcnh\n4eFlapv16TaQdo66SiNUdtKusdfI715YlUpa/xSKCnj04OwHWtDiOM0wP0QOdheo1ZHW1OJoi1LN\n8ERFxMckmqC3j1wc7lP9A/W/K7MXBXZjrtHhng5EDRuWaIlFZESQlp0WvYmrfnFLekIOjVSzo7T4\n7IofdPIkkb4+xfo+JPWd6iVFN1VlcZsT5Hu3nNJ9gYDIwYGV027ezMqafzU5OUQeHkTLlxO1b08k\nL0/UpAnTUHNwYLIuqaUL6/4SUlOZBtqRI0yKp107JkNTvz6T6Tl8mIlwisgf5+HDh7R+/fqSB2qy\nGg1AZ7AyZ8E/Aab4Ifjm36alHEdErGR5eeczdGyRp0guRjEhaSHUxqkNdT3TlXwe+dI4nb3kecJP\npH0QsRvi0QV3aYzuLpqwdj6p7lClCW4T6GXMy5IbVEUcK7+lvOCUmZJH7vYvaX7zYzRedy85zr9L\nH32i/hOBRygUUphfAh1b5EljtHbTmh7O5OTkSl1OdiEzBzM6739erJtCPz2JorHae+js4dtksNeA\n9j7fK9L27595TzPqHaCC2vpMrZeYTl+r461o97PdIumjWLetwly8yCymg4Np6vWptPL+ymr1nxCW\nTmO0dhOP+5PS5IgIos6d2c0xqGoCoSJBKCT69Iloxw52PoqKbB/JunVE9+4xA7g/DR6PBZhjx4gm\nT2aacGpqrFzZwYE5pYpo8FTTwUYZQKdSHkIAZwB0BCBfynGUW5RLRETZafk0q9Fhurr7uUguQDE8\nAY92PNlBGjs1aOeV/TTZaD+5bHos0lFqMR+8I2iKkQNtHX2RttzaQcb2xtTMsRkden2IOnTqUGqw\nsbGxKbO9iu6biQlKIZeNj2lOU0cao7Wb9k26Tj6XPrHd6H8IQqGQQt/Fk/O6hzSz4WGabLifTq+6\nTyc9XKiNUxuq51CPTvmdEntJtbezP1N2OHmRtOy0yMXfRaTtR3xMotGauyliyCyiOXNKnp9xcwYN\nvjhYJL/LhLB0Gq2xizKScit2wN27TBXA358CUwJJ006z2nt7nNc/+rlA7oULRFpaRHZ2v2avjFBI\n9O4dm72YmRHVrcu+j1u3iHIreN3+NOLjmUPolClEBgZsQ+ysWUR37pSq1F1RajTYlPVABfbZtDja\ngmKz2B6A5OhMmlR3P907JZr9C98SkBxA7U+0p3Z7OtO0pvtp36TrpSoRV5f8nCI6ttCTxmrvIc8T\n78jziyeNuDKCpCylasRPJiE8nW4ceE3r+7jQMKUdtKDFcTq+2IueuwVSesLvJeORHJ1J3uc+0L7J\n12mC3j76y/QAHV/sRU/vf6BtPtvIcJ8htXVqS66fXUVuO/BveFw+HV/sRVNNHGj9uZ2ks1uHnkY9\nFWkf2Wn59JfZQXqw3o1IV5cpEhPRkTdHqOHBhpRVmCWSfrYNu0IXt1RwifHdO3bTf8o+64ALA8ju\nqV21+hcIhDTZcD+FvI3/8cX8fLYLvV49ordvq9VPlYiLI9q2jahBAyJjY6Z+7OsrslH+H0PxbG7n\nTrZUqKJCNHIkkasr+44qwe8SbAQANv7kddrms4309+rT69jXREQUHZhC43T20pMrnyv1gSuCQCgg\nxzeOpL1Fh0a2XUtL2jtVfPRXSUJ842lhSyda0vYkfXkTR34BfqSpr/ldoNEx0KHAL6LPIxXDLeLT\nR58ourDZh9b1Ok8j1exokoE9bR50ic5veETPrgZQdECyWILutwgEQkqKzKDXt7/QpW1PaNuwKzTJ\nwJ5Ga+6mLYMv0Y0Dryn8czy5BbrRoIuDSHWHKk1xnyKS3EVFSIrKpGXtT9GqHmdo2MlR1OJoC4rK\njCr/wErALeLTSpuzdHyRJ1Hr1kSnThERkWeoJ9XeVZtC0kJE0o/f/XCaYuRQMY+n2FgmP+PqnYpf\nHgAAIABJREFUSkRE98LukbG9MRXwqj7KJWIbORe0OP7jC1FRRM2bE40YUbNLUwIBm70NGMCWkqZN\nI3r27P9fgPkZiYlEjo5EtrbM52fCBLaEWIFZZ1nB5rdUfXYPcsf0m9Oxq/suTGw2EeHvE7Gupwvm\nHuuLNgPNRd5vcl4ylnutwMdDGTAJaIktNyaivrXolJ2LEQoJ90+9x7k1j2DVwwSdphvD/ogdwqPD\nwZXjgmPLwRfhF3Qz6Ya+9fqil1kv1FESzZ6d0iAixIemI+xdIiI+JCHqUzJiAtOQGpMFdV0l1DZW\nhaaBMjT0lKBaWwEqWvJQVJODgooMZBSkICPHrAY4EsxDXSgg8Ir4KMrnIz+nCLkZhchJK0BmUi7S\n43OREpOFpIhMJIZnQkFFBnUttGBsWRumzXVQr2UdaBgp4EHEA1wNvIrrwdfRWLsxxjcdjxEWI6As\noyy26/Dt9fC5+BnHFnii5TR9HNJeA1tTW9j3sodsLdFV+gmFhD3j3VGUz8PK4QJI7t0DvH4Nv6QP\n6OncE1dHXEVHw47V7odbyMc8y6OYsqsbWg8o5++msBDo1AkYNAhYtQpcAReWjpbYbrv9OwuPqrC+\nzwW0H9YQPaY0+/rkixdMOXjxYmDJkpop1S0sZCrQe/awcuO5c4ExY1gJ8v8om8RE4NIl4MwZVgk3\neTIwZUqZG2r/OIuBgJQADL40GLbGttjXcx9iPqRjQ58LmHO0T5V8airCq9hXWLZ1OxSdG6PX6saY\nt3ykyPdpAEB+dhFcdz6Dh+M7dJtsiWEr2kNFk5W1puSl4E7IHdwOuY374fehr6wPW2Nb2BjboGPd\njjWyK5/PEyA5KgvJkZlIjs5GenwOMpPykJ2aj9yMQuRlFaIoj4eiAj74XAFISOBwAAlJCUjJSkJG\nTgpyStJQUJWFkoYcVLUVoF5HCZoGyqhtpAJdU3XIK8sAAKIyo+AV5gWPUA94R3ijSe0mGNJgCIY1\nGgYDFQOxf9Zi0uJz4DjXAzFBqVBblI4TmQ441OcQhlsMF2k/RIRjCzwR5peIzbeGQ6Z5U8DJCSFN\n9dHlTBcc6H0AQxoOEUlfZ1d7IzYoDauuVuAzTJsGZGWxmwqHg21PtuF5zHPcHH2zWn8DMUGpWNn5\nLE5GzYe07D97ta5cAebMAU6fZj4p4qagADh6lKkPNG0KLFsG2Nj8lntRfns+fACcnAAXF6BdOxaw\ne/T47lr+kRYDmQWZNOTSELI+Zk3h6eEU4htPY2vvIZ9L4lMLFgqF5Hj9DNnqLKI+7efRyxDxLd2k\nxmXToVm3aZT6Ljqz6gFlpX7vmsgX8OllzEva6rOVup3tRorbFKnJ4SY04+YMOuV3ij4lfRJ77kKU\nCIVCCk4NplN+p2jq9alkut+UtOy0aLTraDrz/gwl5/5oES1u+DwB3XB4RaM1d9PuhZeo5aHW1O1s\nN4rOjBZ5X0KhkE4su0fzmx+jnIwCVpravTtFZERQ3X11v8r2i4Dg13E0VntPxfJyZ84QmZuXLGUF\npwaTxk4NisiIqPZ52E+5Qec3PPr6xMGDTFzUT/RVoD/A5bKloDp1WNXVu3fi7/P/C7m5RMePEzVt\nyvJdR4+WFBXgd8jZlPf4d7Ah+scq4MU+0rLTosufLlP4h0Qar7uXPJ3E+8PJzs6l6f13kK3mYhqy\nfQJ9ThZ9zqiYpMgMOjD9Fo1S30XHFnlScnTp3uxcPpdexb4i+xf2NMp1FJk5mJHCVgVq49SGpt+Y\nTg4vHeh+2H2KyYoRS3VdZcgpyiHfOF868/4MLfFcQrZnbEl1hyoZ7jOkUa6j6MCrA+Sf6C/WkuXy\neOsZSrMbH6G/u5yiJSfWkKadJh31PSqWaycUCunYIk+ab3WMVQUWFREZGFDcvWtkZG9EB18dFFlf\n+TlFNK3ewYoNyr58+c7CgC/gU/sT7UXiyZMcnUkj1ey+DqJ27CAyNSWqCfVxDw+2Z8nGhuj1a/H3\n9/8VoZBZDfTpw9S3HR3/rJxNafjG+2L01dHobNgZf5usx45+bugzqwWG/t1OLEtdxdx3eYdDc24j\novVL1JukgDVdVotEcLE0UmOz4b7vFe6feg/rPmYYuLB1udIeWYVZ+JD0Af5J/vic/BkBqQEITg1G\nDjcHxqrGMFYzRl3lutBX1mcSNoq60FLQgoacBlRlVaEko1QpZ0yBUIDsomykF6QjNT8VSXlJSMhJ\nQFxOHKKyohCZGYmw9DCkF6TDTN0MFtoWaKrdFM10mqFFnRbQVtCu7mWqNsGv4nBuzUMkR2Wh4TxF\nOAg2oJV+K+zruU8sOTIBX4iDM24j+nMKNnqMhqKaHHDiBPLOn0ajAdFY1m4Z5raaK7L+7CffAAAs\nLE+DjM8H2rcHxo1ju/UB7Hq2C7dCbuHhxIfVdkw9NOsO5JWlMXlnN2D7drbm7+0NiEg7sFRiYoD5\n84GPH5lNdb9+/1suqyk+fgSiosDp3//PytmURk5RDhbcXQCfKB8cbHMMN6d+QdOuxvhrb3dISorH\nShhgQWDPJDdExsXgVb8LaNDMEMvbL0cnw05iCXS5mYXwPP4Otw76Qr2OIvrMaoEOwxtBRk6qwm3k\nFOUgPCMckZmRiMqKQlx2HOJz45GUm4SU/BSk5achozAD+bx8yEvJQ15KHjKSMpCWlC7RQSMQBEIB\nuAIuCvgFKOAVoIBfACVpJajJqUFTXhO1FWpDR1EH+sr6MFA2gLGaMUzVTKGvrA9JCUmRX5vq8Plp\nNC5ve4aoj8loM7cuLmkeQCo3BfY97WFrYiuWPgtyubAbfQ18rgCrrg6HnKI0IBSisL4pxnXPRp/p\nuzDFaorI+vM6+R5uu19g7+uprK+fsWMHcP8+85qXkMD7xPfofq473kx7AyNVo2qdR2J4Bha1PAHH\n4NlQcT4GHD7MtM0q4GFfJYRClpdZt47lEZYvB2R/Y/kmgQBIT2ePzEymf1ZQwORoBMxyHZKSrJBB\nVpaJcaqoAOrqgIYGE+r8TfnjCgR+xrXAa5hzZw7GmkxALYdGUFSVw1LnQSLRUisLIoLncT+cXe0N\n3aESuNXgOJQVFLGw9UIMtxgOaUnR9y3gC/Hmdgg8HN8i5E08Oo6yQPfJzWDaXEdkQU4gFCCPl4d8\nXj4K+YXgCrgQCNmPncPhQJIjCWlJacjWkoWCtALkpeSrPeKtSQR8IZ5fC8R1+9fITMpD+9nG8Khz\nDs8SnmBdp3WY2nyq2ERGU2KysHnAJZg218Ucxz6oJcWCr5/TFkhs2IhQzwsYajFMZP19eROPDX0u\nYKfPBBg0LEeFOyQEaNuW6XsZGSGXmwvrY9ZY13kdxjQZU+1z2TXmGvTMNTDGJBpYswZ48kR8Ss1x\nccCkSUzo8tSp30esMy8PCAhgumnFAp2RkUBsLJCczJSc1dWZZpqS0ldRTsl/BmkCAdNhKyxkny07\n+2uAUlFhM8S6dQFjY8DMDKhfn332unWrr8FWDf5TwQZg5cqzb8/G54RADHq6CPnhhLXXR0JTX7wl\nsikxWTgyxwMJoRlotlIVl8kJgSmBmNZ8Gqa1mAZ9ZX2x9JsclYn7pz/gwRl/SMvWQpexjdFplAV0\nTdXF0t+fTnJ0Fu6dfA8vJz/UNlZF88l1cEPpDO5H3sPitosxr9U8KEiLr+T14+Mo2I26hkGLW2PI\n0rYlgwOnd04wGT0HetOXwHzJNpH1lxqXjaVtTmHGgZ7lV2sSMWHLXr2AxYtBRBjnNg6ykrI4MfBE\ntc8l+HUctg66jKNOTSA3eSzw8CHQqHo+UmVy+zYwdSowezawahVTT/4VEAGBgSyoPn8OvHnDAou5\nOWBhwf41M2PlwgYGgI5O1WcnQiErQY6LY4KlkZFMgDM4mAW3nBwmvtm8OdCyJasaMzauseXE/1yw\nKcY1wBXz78xH10/jwPHSweprI9CgjXhu+MUQEV64BeHYAi807lwX7ZcbwDn6FC58uoCOhh3xl9Vf\n6F2vt1hGzESEwOexeOzyCc+uBkKjjhLaDmmANoPMYWihJdb81e9OXlYhXrgF46HzR4T7JaLTKAvU\nHgCcyXDEy9iXWNh6Iea0miPWPTtCIeHa7hdw3/sSi88ORPMepgAAvpCPpV5L8fHldXgezEKt2HiR\nLfPk5xRhRacz6DjSAsNXtC//gGvX2HKTnx8gJYWDrw/i+LvjeDH1RbWVpYVCwrJ2p9BrkD667xsP\nXLgAdO1arTbL6AjYsIHNZC5cADp0EH0f5ZGRAdy5A3h4APfusf06HTuyPFirVizI/IrlrvR0pkbt\n68uC3vPn7PlOnQBbW1aqLEY/oP9ssAGAjIIM/H3vbzy7HoCG7n0xbXtP9JreQgxn+D0FuVxc2vIE\nXk5+GLSkDbrNaQz3sGtweueEiMwIjG0yFhMsJ6Bp7Qp7x1UKgUCIz0+i8eJaEF5e/wIJSQ6s+5ih\nRS9TNOliVP6a/X+AzOQ8vL4VgpfuQfj0OBpNbQzRbqQ5Ikz8cOTDIWQVZWFRm0WY1GxStW+k5ZGe\nkAP7yTdRkFOEZReGQLsuk3RPzkvGSNeRkJGUgdvHxpDjCljyWgTwuAJs6ncRtY1VMcexT/mDDS6X\nLbUcPQp064bHkY8xwnUEnk95DlN102qfj9cJP3ge9cWufAdIzJ7FZhyiJi+PFTWkpgKurky+v6bI\nymJ9XroEvHwJdOkC9O3LbuD/sgf5bSBiFgQPHwIPHrA8nZYWK54YPJgFRhEuu/2ng00xz6KfYd7J\nZdA53gmtOjfCCqfRkJUX/8giPjQdp/6+j9C3iZiwtQs6j2mCL+nBOPvhLM5/PA9lGWWMbjwaIyxG\nwEy9+h46pUFEiPyYjLceoXh7Nwwhb+JhYqWDJl0M0biTIczb6EFeSUYsfdckvCI+gl7G4f39cPh5\nhSMuOA2W3YzRdpA5lNoIcD70LM75n0NLvZaY03IO+tTrUyM5pqeuAXCcexe9pjfHqLUdS/IzPlE+\nGHN1DCY1m4SNndZD0sSUGYI1rf4ARMAXwm70NQgFQqy4PAyStSrwOQ8eZEtPHh4ISw9D+5PtcW7w\nOXQ37V7t88lKycOcxkexsVUQTNUKWfWZqGfaycns5t64MQuY0jUwoCJiy2NHj7LvrmtXYPRodh5/\novqAUMhmPDdvAm5uLICOGAGMHcuW3qr5ndV4sOFwOD0ALAfQCIAagBQAzwFsIKLAMo6pVrAB2HKF\nw+NDuLz4DepkmmKz+wRYWFZ/xFYRPj2Jxqm/74NbwMeErTaw7mMGAuFZ9DNc/HQRVwOvQkdRB0Ma\nDsGgBoPQRLuJ2Ja9CvO4CHgWg4+PovD5STTC/RKha6YO89Z6MLPWhVkLXRhaaEFK5tescVfEOA5g\nO/tDfeMR9DIOgc9jEeobD4OGmrC0NUbznqZQbSqJayFXcc7/HJLzkjHRciKmWk2FsVrNjDIzEnPh\nOO8uoj4mY+HpASVLuHwhH1t9tuKI7xGcGngKvev1Bnx8WKWUv3+1+xUIhLCffAMZCblYd3PU1935\nP6OggBl73b6N9AaGaHeiHea3ni8yp1G70degkROHqaGHgLdvRX8jjokBunVjN8ZNm8Sfg+Dx2E75\nvXtZldjMmcD48awa7L9EQABbijx/ntlQT5kCTJjAHEGrwK8INqMAWAF4BRZo6gJYCUAfQBMiiinl\nmGoHm2KSc5OxZMVOJJ+WQdOFqtiyYQFkaol/ZE9EeHk9GOfWPIKcojTGbOiE5j1NweFwIBAK8DT6\nKdyC3HA9+DoAoF+9fuhdrze6GHUR6zIPjytAuF8ivryOw5c38Qj3S0RCaAZ0TFRR10ILBg01Uae+\nBurUU4eOiRqUNeTEFghLcx81NjLG4R1nwclRQExgKqI+JSPSPxkCngBm1nVQv1UdNGxvgIZt9ZFG\nyXAPcodroCv8k/wx0HwgxjUdBxsjmxortxYIhPA89g7n1z9G96nNMHpdp5LS9ND0UIx3Gw9FaUWc\nGXTm696duXNZ6e/q1dXu237yDaTF5mDdrVEVn707OADe3ii4cgE9nHugtV5r7O6xu1rnUszza4E4\nvdQLDjk7IXv3JtBCxMvY0dFMYmb2bKalJk54PODkSWDbNmazvHQpK6j4r+dDidiA6MQJ4MYNYOBA\nYMECNtupBL/FMhqHw6kPIAjAEiL6YdFalMGmmAePn2PvuJvI1kzClAM2mNh+bI0sqwiFhKdXAnBx\nkw9kFKQxYlV7tB5gDgkJ9h0QET4lf8LtkNvwCPXAu4R3aKXXCt2Mu8HG2AbWdazFVpJbDLeQj9ig\nVEQHpCAmMBXxX9IRH5qOxPBMCHiCf0Q4laGuq/hViFNdDoqqspBTloGsghRk5KUgLVsLkrUkwJHg\ngMNhn13AE4JXxAe3gI/CPB4KioU50wuw69RavAr0/uF8Gmi0xvR+K2HQULNEpFNTXxkCEuB13Gt4\nhHjgdshtRGdFo2/9vhjacCh6mPYQqUhmRfj0JBrHF3hCVlEasw73hlFjtlFVSEIcfH0Qmx5vwtpO\nazGv9byvvzWhkFUhPXgANKi6th+PK8CecW7IyyzCavcRFQ80fD5gagr+pQsYGrkTClIKcB7iLJK/\nhYzEXMxrdgyrzd+hYWcTNusQJUlJrABg1iwm3CkuiFjxxPLlzNZ50yagTRvx9fc7k5bGNNAOHWKz\n4eXLKxxwf5dgowkgGcACIjpQyusiDzYAUFTAw9bZZ/HmehjSx/li9Zy56F+/f41UbgmFrHLt8ran\n4BbwMXhJG3QZ2+SHZY/somw8inyEB+EP8DDyISIzI9FGvw061u2ItgZt0UqvVY0oHxeTn12ElJgs\npMbmICMhF5nJechOyUdOegHyMguRn12EwjweuAU8cAv5EPAJJGSyFBISHEhKSaCWNBPllFWUhrwy\nE+ZUVJODvftyfA73+6FPGxsbeHt7gy/kwz/JHz5RPngY+RCPIx/DSNUIvcx6oU+9Pmhn0E7sgbg0\nYoJScXaVN0LfJmLSjq7oNMqi5Df0Ofkzpt2cBkkJSZwYcAL1Nep/f/Dbt0xhODi4yv0X5HKxbegV\nyMhL4e8LQyq2dFbM5cuggwcxcZERUvJTcH3UdZHsDRMKCRv7XoCZUg7G++9jQo0yIlxByMkBOndm\no+z160XX7r8JDmazppQUtmzWrZv4+vqT4PGAy5eZAoScHKsA7NPnp0HnlwlxApAAIAWgHoCrAGIB\naJbx3goK8lSNd16hNFJ3O3XuMIms7VvTzeCbNaYhJhQKye9+OK3teZ7G1t5Dzusf/VQkMTUvla4H\nXadlXsuo/Yn2JL9VnhodakQT3CaQ/Qt7ehTxiDIKMmrk3EVNWZbYFl0tyPaMLSltU6KGBxvS9BvT\n6cLHC5SYk/hLzzchPJ32Tb5OozV305Wdz77zhskpyqHl95aTpp0mHX59uGytt82biRYtqvI5pMVn\n0/zmx2j/XzeJz6u8npywY0c6/LctdT7VmfK4eeUfUEFc7Z7R4tZOxDM2JfLyElm7RMS8U/r1I/rr\nL/F5zfB4RNu3E2loEO3bx/7/P35EIGA+RxYWzLb7adlGgvhVQpwA3oA5dAoBBAMw/8l7RXRlyiY3\ns4D2T71BI3S2UavZPcjK0YqufL5So+rJUZ+T6cCMWzRC1Y52jrpKHx5GlBv0uHwuvYt/R8d8j9HM\nmzOpjVMbUtymSPp79annuZ600GMhOb5xpAfhDygyI/K3U4MWCAUUnRlND8If0Ca3TaSso/xdoJHT\nlqO55+fSreBblJqX+qtPl4iYcd++SddplPouOrvGmyk1/4NQKKTz/udJf68+jb06lhJyEn7eWMeO\nTByyCoS9T6BJdffThc0+VRocCT5/ogw1Oep0tC3lFInOnfXTkygaq72HktbsIurfX2TtlrB6NVHn\nzky9WRxERTFXyq5diSIjxdPHfw0+n6mEGxgQDR9e6nUrK9iIfRmNw+GYA1AGYAJgKQAdAO2JKLqU\n95K4z6eY9w8icHDGbcibE97YXEG6bBKWtl2K8ZbjaywHkJtZCO+z/rh79C0EfCG6T2kGm/FNoVFH\nqULHC0mIyMxIBKQEIDAlEMFpwQhJD0FoeihS81NhoGwAAxUDGCgboI5SHegq6kJHUadEiFNNTg2q\nsqpQlFas8tp9Eb8IWUVZSC9IR1p+GlLyU5CUm4SE3ATEZcchOjsaUZlRiMqKgqqsKuqp10MDzQbQ\n4mrhxdkXKMosgrGBcZnVaDUNEeHzk2i4732JwOex6DevJfrPbcnEM//hafRTLPVaCr6QD/te9uhQ\nt5wNhQUFbF9DUlKlK7SeXgnA4dkemHWoFzqOsKj05+EL+bg7rBlyCrPQzy0ASjIV+22VR1p8Dha1\nPIH5Dl1hPbs7E9i0qPz5lcndu8BffwHv3gHaYhBv9fQEJk5kOaClS3+pvMsfSX4+sHs3KzpZsoQ9\n/ilD/11yNioAIgFcIKIf6i1rMtgAQGE+Dxc3+8DL6T2s5+jgvsl5+KX4YZb1LMy0nlljCsVEhKAX\nsfA68R7PrwWhQRs92IxvgjYDzaus91bIL0R0VjSis6IRmx2LuOw4JOYmIinvqxBnWkEasgqzUMAv\ngFwtOShIK0CulhykJaUhJSkFSY4kJDgSILCRCU/IA1fARRG/CPm8fORyc0EgqMmyoKUprwktBa0S\ncU49JT0YqBjAUMUQRqpGYpWHqS4FuVw8vvAJtw/5glvAw4AFrWE7yfK7BLx/kj9We6+Gf5I/tths\nwdimFSw2efwY+Ptv4NWrCp8PnyfA2VUP8fRKAFZdGw6z5pUXsCzkF2Ls1TE4PMcDyp6PINeidaXb\nKA1uIR8ru5xFq/71MLLWc5ancXERSdsAWN7E0pK12aWL6NotxsGBiZBeusR2/P+PqhMRwYzwYmNZ\nBZ+19e8RbACAw+G8AZBBRD1KeY3Wf5ME7NKlC7qI48f2L6IDUuA49y5y0gvQY6M5bnCc4RroioHm\nAzG31VxY17EW+zkUU5jHxQv3YDw6/wlBz2PQvJcpOgxvhBa9zcS2QbVYjDOPm1cixskVcCEgAZv+\ncjjggINaErUgU0sGsrVkS4KTjKTMHyuRQ0QIehmH+6fe45lrIBp3qoves6xh1d2kpGoQAD4mfcRm\nn83wifLBig4rMNN6ZuVmvzt3AgkJgL19hd6eHJ2F3WPcIKckjSXOg6CsUfmS+KzCLAy6NAht4ySw\n5VwcJAICRVK6S0TYPc4dQoEQf5/uC46JCZslNGlS7bZLGDUK0NdnI2dRQsSqqm7dYjIzRkaibf//\nKY8ePsSjAwfY76BtW2x88ODXBxsOh1MbQCiAc7/DzOZbiFip8sllD2Deug4GbmiOG+lXcMT3CLQV\ntDHTeiZGWoys0dF5Vkoenl8LwtMrgQh5E49m3YzRemB9tOxbr0o3oP/BiA5IwZNLn/HI5TMkJADb\nSZawnWj5w/Llq9hX2PFsB17EvMCStkswu+Xsqn3/w4YBQ4awarRyeHY1EEdmezABz2Xtvgt6FSUm\nKwZ9Xfqis2Fn7H+iwGZf20Qj+nlu7UO8vxeBbQ/HQ+ayC5t9eHqKpG0ATGds3jzmjSInV/77KwoR\na/f1a9bHf21j5u9AfDzw9i04AwbU+KbOawDeAfAHkA3AHMBCANoAWhNRaCnH/LJgU0xhPg9uu1/g\nxv7X6D6lGYauaIMnaY9w9O1RPIt+hhEWIzDFagpa1mlZoyP6rNR8vLkVgpfXg+HvHQnDxlpo0dsM\nzXuawrS5jlj9fP50hEJC2LsEvHQPxgu3IORlFaHDiEboPLox6lnrfvc9CoQC3PxyE3tf7EV0VjSW\ntF2Cqc2nVm/DrZkZkwb5ifR9bmYhji3wRODzWCx1HgTz1npV6so33heDLg7CwjYLsaTtEnCaNQOO\nHGHKv9XkjuNbuO1+gV3PJ0NVW4FZFKxcCQwox6StonC5TIZm/36gd2/RtFnM338Djx4xwUwVFdG2\nXVUSE5lgZlAQU22OjmbPpaUxO4GCgq/eNtLSLN+nqsryf7q6TEHa1JQpSjdpwuwKfgN+hYLAMgAj\nAJgCkAYQA+AhgB2lFQf8c8wvDzbFpCfk4Pz6x3jhFowhS9ug37xWSOUn4cz7Mzj1/hSkJaUxwXIC\nxjYZCwMVgxo9N24hH598ovD2bhje3Q1DZlIemnQxRBMbIzTpXBd1LbSrNCL+L5GVkof3DyLg5xmO\nt3fDoKAig1YD6qPt4AYwb633w/VJy0/D6fencejNIWgpaGFRm0UY1mhY9ffz5OezUXROTpny969v\nfcHhWR5oPaA+JtvZVjlPd/HTRczzmIfj/Y9jUINBTEesfn0mWFlN6f0nlz/j+KJ72OkzgdlaBAay\nvShRUaKT9f9Gt02kODgAjo7A06e/9oYcHc0+m7c38OwZCybNmjH7BTMzpsSsq8tkYpSV2cyu2NuG\ny2UCpBkZLKcVH8+ufVjYV88cDQ2gdWu2AbZrVza4+QVL3L9NzuZn/E7BppiYoFQ4r32EwGcxGL6q\nA3r+ZQUpGUk8i3mGcx/OwTXQFY21G2N049EY2nAotBTKMa0SA2nxOfD3jsDHR1H4+DgaOWn5aNBW\nHw3b6f+jhVYHiqq/sWuhCEiNy0bgsxh8fhKDT4+jkByVhcad68Kqhymse5uW6vtDRPCJ8oGTnxNu\nBt9Ef/P+mNtyLlrriyaRDoCNXMeNAz59+uGl9IQcHF/ohdC3CZh3vB+a2hhVqQu+kI9VD1bhSsAV\nuI90/2pb7uoKnD7NchTV4M3tEOyfchObvMbAxFKHPbl2LQuke/ZUq+0SinXbbt2qtDzKT7l/n+mZ\nvXjxa3I0CQmAszNw8SILDr16sSDdoQP7vKIKBkIhM8R78YKJhj54wGZF/foBQ4eyQosa8vr5X7Cp\nJqHvEnB+3WNEfEjC0OXt0PMvK0jL1kIRvwh3Q+/i4ueL8AjxgHUdawxtOBSDGgyCrpKYLHDLISMx\nF4HPYxD4PBZfXjMdNFUdRZha1YZJMx0YW9ZGXQstaNVV+eNmQESEtPgcRPonI9wvESH1a/54AAAg\nAElEQVS+8Qh5kwBuIR8N2uqhUYe6aNLZEGYtdMtUQQ5LD4OzvzPO+Z+DbC1ZTLWaigmWE6AhL4Z1\n/CtXWF7Dza3kKQFfiFuH3uDSlqfoOc0Ko9Z2rJTl97ck5SZh9NXRqCVRCy5DXaAp/4144qJFTH5/\nxYoqn/5bzzDsHe+OdTdHfb+017AhU3Vu1arKbX/HkSNs1H/jhmjaA9iNvnlzdv1tbETXbkV48YIF\n4gcPWL5u7FjmJ1NT5m5EbHnuxg026IiJYecwdar4jOz+4Y8JNssmH8CWIzMh/YvUiMsjxDceFzb5\nINQ3AQMXtUbvGS0gr8zkOfJ5+bgbehdXA6/iTsgdmGuYY6D5QPSr3w+NtRv/sqotgUCI2KBUhPsl\nIuJDMiL8kxD1MRkFOVzUqa8OffN/BDhN1VDbWA3ahirQqKNUMcl6MZGXVYikyEwkhmciITQdcV/S\nERuUipiAVHAkODC2rA1TKx2YttBB/ZZ1oGOi9tPrG5MVA9cAV1z6fAnhGeEYaTESEywnwLqOtXi/\nl9272ZLH3r0AgHdeYXBa5AU1XSXMPNCzfPvmn+Ad4Y3xbuMx1Woq1nde/6MIaYcOTN+riuZlb+6E\nwH7SDaxxH4GG7b5ZKg4JYRIysbGi2Z9CxILXsWPshiwKiNiovkUL0Wu1/Yw3b1geKyyM7eGZNIlZ\nPv9qvnxhs9xi2+zFi5nsjBj2F/0xwaZrk1mQypbHonP90bNj5199SmUS/iERrjue4/29cPSYZoX+\n81p9V83EFXDxKPIRbgbfxO2Q2+AL+eht1hs9zXqiq3FXqMqq/sKzZ+RlFSI2KA2xwalICM1AQlgG\nkiIykRyVheyUPKhoK0BdVxFquopQ1VaAspY8lNTloKQuB3kVGcgpyUBOURoy8rUgJVMLUjKSkKwl\nAQlJCYADgAChQAg+Twg+V/CPKCcXBblc5GcXIS+zCLnpBchKzUdWch4yk/KQHp+D1NgcCAVCaBup\noraxKuqYqUOvvjr0G2jCoJEm1GorlvvZiAgBKQG4EXwD7sHuCE0PxUDzgRhhMQK2xraQkqwhB8UF\nCwAjI4R3HY0zK7wRH5qBKbts0WageZWDHE/Aw/pH63H6/WmcGXSmdC8aoZAlk6OimMd9JSmuiltz\nvRTn24MH2WbLkyerdP4/8OgRU8T++FF0y0ouLqzk3Ne3ZtwyU1OBZcsALy+mHzZp0q9x6SwPLpfN\ndHbtYstsGzcCgwaJNLfzxwQbHp+HdasP4e3BJKiOy8HunX/XeAK+MiSGZ8B93ys8Ov8RLfvVw8AF\nrWHW4vvlMyJCUGoQ7obehWeYJ57FPIOFlgW6GneFjZEN2hm0++02PPJ5AqQn5CI9PgcZibnISs5H\nVkoestMKkJdRiLysQhTksMDBLeCDV8QHr0gAIV8IgYDYyJLDgaQkB5JSkpCSkYS0bC3IyDNhTgUV\nGciryEBJXQ7KmvJQ0ZaHmo4i1HUVoaGnDEU12UrfjHOKcvA46jE8QjzgEeoBvpCPAeYDMKjBIHQ2\n7FxzAeYb4vqMh0tWc3wII4xc3QG9ZrSAlHTVbRCCUoMw3m08tBW0cXLASdRWLMOlMiqKVaDFxVW6\nD6+T73Fu9UNsuDMKplalLAUPG8ZuUOPGVbrtUpk8mVVTiUrROS+PFUa4urKKOXFz5w5TOxg5ks2i\nfoeZTHkQsWKMNWtYIcK+fSJTuP5lQpyVeeAbbbSADxE0rP4Gal9vKi0+v/K3F53MTssnV7tnNKnu\nflrS9iR5O/sTt7B0Ub8CXgF5h3vTmgdrSkQ2Wx9vTUs8l9DVgKsUnx1fw2f/Z5JblEv3w+6XXEeF\nrQpkc9qGdj7dSf6J/jUmsloaMUEptHu8G42WWkMXJ52i/JyiarXHF/Bp34t9pLFTgw69PlT+Z7t3\nj6hLl0r1IRQK6eIWH5pi5ECxwT/Rp6tThyg8vFJtl0lREZGaGlFMjGjaIyLaupVo5EjRtVcWAgHR\nmjVE+vpEjx+Lvz9xIBAQnT5NpKtLNG0aUUb177P4VdpoleHfBQJ8ngAnN3ngpoMvwno8wqQFfTC3\n9Vyxe8lXBwFfiFc3v+D2IV9E+ifBdpIlek6zgl69spPP+bx8vI57jafRT/E85jlexb2CorQiWum1\ngrWuNVrUaQErHSvxJLD/EIgIYRlheBP3Bi9iX+BF7AsEpASgmU4zdKrbCTbGNuhQt8Mv/218eRMP\n153P8NknGv3nt0L/K0ugcPJItczEglKDMPXGVEhwJHBywEnU06hX/kHHjwMvXzIjrArA5wlwZI4H\nQt7EY8Od0VDXLWN0npDAZiEpKaJZevH2ZjmOSkj5/JS8PMDYmJmAVcM3qFx4PKatFh3NPHDEod9W\nk2RlsUKSW7dYXqcaFgt/zDJaaecT4Z+EnROuIE4QjU8DbmDJwLmY1nxajThvVoe4L2nwdPKD9xl/\n6JlroNtkS3QY3ghyij/fR0FECE0Pxeu41/CN98XbhLf4kPQByjLKsKxticbajWGhZYFGWo1grmkO\nRenycxh/EnncPASmBuJT8id8SPyAD0kf4JfoByVpJbTUa4nWeq3RVr8trOtYQ05KhLvMq0jxAOP6\nvldIjsrCoEWt0eMvK/Y9m5mxZZb69ctv6F8U8Yuw4+kOHHh9ABu6bMDslrMrLphaLPu0cWO5b83N\nKMD24VchJSOJvy8OgbzST/6uvLyYrpj3j+Z3VWLFCrZhUVRJ/KNHWVWbu7to2isNgYBJ6hQUsGpD\nUSod/Gru3WPLmhMnsu9EsvJLvn90sAHYH/R1+1e4uO0x8nqG4mOLe1jReTmmWk397YMOjyvAm9sh\nuH/qPT77RKNV//roMrYxmnUzqXDFV7HCs3+SPz4lf8Kn5E8ITA1ESFoI1OXUUU+jHkzVTGGqZgpj\nNWMYqhiirkpd6Cjq1JhVcmXIKsxCVFYUIjMjEZ4RjpC0EISkhyA4LRjJecmor1EfjbUbo6l2UzTT\naQYrXSuRCqNGRERg7dq1iIuLg56eXpVUpzOScnHvxHt4HH0HDT0lDFzYCu2GNPz+O9XTY6N2ff2y\nGyoFrzAvzL0zF420GuFA7wOVz1vOnMnELGfN+unbogNSsGXQZbTsVw9TdnUrX4nCwYGV1B4+XLnz\nKYv27YHNm6tcMfcD1tbA1q3MVVJczJvHNrXevi1ao7jfheRkFkxlZdn+IOXKmTb+8cGmmMTwDBya\ndQdx0clIHvEK71WeYmm7pZjWfNpvl2QvjczkPPhc/IxH5z8iKSIT7Yc1RMeRFmjUwaBKkjNCEiI6\nKxohaSEIywhDeEY4IjIjEJUZheisaKQXpKO2Yu0Se4HaCrWhpaAFTXlNqMuplyg2K8koQUlaqUT5\nWbaWLKQlpcsMVEQEAQlQxC9CAb8A+bx85HHzkMPNQVZhFjILM5FRmIHU/FSk5KUgOT8ZibmJiM+J\nR1x2HIQkhKEqU4M2UTWBqbop6mvUR32N+jBWNRZrgIyIiED37t0RFhZW8pypqSnu3btXbsAR8IV4\n5xWGeyfe44N3JNoPbYA+s6x/KAopQVubVVnVLiOR/+9zy4jAEq8leJ/4Hg69HdCvfr8Kf67vGD6c\nJfJHjizzLc+vBeLgjDuYbGeL7pObVazdRYtYAF26tGrn9S18PpOOSUwUTVI9JISVTsfGVmlEXiGc\nnVlwfP3695G9EQc8Hguqr14x7btKLBP+Z4INwG50Ty4HwGnxPRh2VMFn27t4lvUI81rNw+yWs6Eu\n93toBJVHQlg6nlwOwJNLAchIzEWbgeZoO6QBmnYxhJSI9hlxBVwk5CQgPiceSXlJSMr93mIgozAD\nWYVZyC7KRi43F/m8fOTz8kvUnwH8X3tnHhdV+f3xzyMgO8qOoAjivu+aS4Kmln4TS00NKm0zs7JF\nyzQqs9T2NC2tfraplabmbm6I+5L7igoogsgqyA7DnN8fBxBhBma5M3fA+3697ku8zDz3cOfOc57l\nnM+BdT3r8uUbAkFNaqjUKtQT9WBrZQt7G3vYW9vDqb4TnG2d4WLrgoZ2DeFm5wZ3B3d4OHiUlx3w\ndfaFn4sfGtg2kC3vKDw8HCtWrKhyPiwsDMuXL69ynogQc+IW9qw8h6iV5+DVtAEemtgJA8a3L8+x\n0oqnJ8uJeFafT5NVkIV5++fhxxM/4o3eb2Ban2nG1VV6+GEOu9agMaYqLsGv7+7Ggb8v4t2/R6NF\nd1/d233iCU5SHDfOcNvKuHgRePRR1gWTgi++4LaWLJGmvcokJABdurAqQadOprmGJUHEYdyrVgGR\nkYCPj05v0+ZsLDNzsgaEEHhwbDt0f6Q5Vs7ei5iZPTFnahgOpq5D84XN8VTHp/B679cR6Cp/Ma7q\naBTkhife7Ycn3u2HpJgMHFx7CX/M3ovPxqai8+Bm6Pm/Fuj2SHMWPTSQ+lb10bRhUzRt2NSg95eo\nS6BSq6AmNQC+9/VEvXscUG0jUUs48M2bN8t/JiLEnrqFA39fxP7VF6EuIQwY3w5zI59Ck9YeGt+v\nkXr17oopaqBQVYilx5di7r65GNZiGM5OPgtfZz06f23k52vcS0i+lonPxq+Fi7sDFpx4Ac5ueu43\npKbW6Dh15vJlaTfxd+0CXnhBuvYq8847wKRJ94ejATgAZPZs/nfoUA66MGI2ZzJnI4QYDSAMQDcA\nHgDiAawFMJeIcqS4hoOLLZ7/cjCGPt8ZP7y+HXbLe2DlnEnYbbUO3X/sjpCAELze+3X0bdLX4muu\nNApyw6jpfTBqeh/cTs7Bf1uu4sjGy/hh6r9o1NwNXYc2Q+fBzdDmgcaSzXp0waqelUXu+RiDn59m\nRWUfbx+c2hmLIxuv4OiGyxD1BPqMao1pKx6rog6tM7a2QGFhldMqtQrLzyzH7KjZaOvZFtuf2o6O\n3h31b78C9+xDXbiAOSkpqDjcivrjHH6Y+i9GvdMHI9/obZhUUWYmJ4tKwfXrrFwsBUQcfffLL9K0\nV5nz59mZSTULq0188AEnrY4Zw8EuBkrumFL1+RCABADrSv/tDGA2gItEpFHv3BhtNCLCsc1XsGza\nTrg3dsH4eX0Qqd6MhUcXwrm+M17t+SrGtR9nEdFL+qAqLsGlQwk48W8MTu2Mw40LaWjV2w8dgpui\n/YCmaNnD16zOx5IwdJNf056Nm4M3eoln0KZ9K/T4Xwv0GtESAR28jB+ktGoFrF9fPoJXqVVYeXYl\nPt77MXydffHxwI9rLiutAxr3oXx9sWP/fng08MGSV7Yi5uQtTFvxmEFVP8tp0wZYs0Yafa1Zs3gT\nOiLC+Lbi4zkpscLsVFImTeIgDylsrY2oVLw026sXB2BUg9mTOgG4azj3FIASAMFa3mNMLhERERUX\nqWjjoqMU5v0lfRG+jhJj0mnz5c00bMUw8vjMg97c9iZFp0UbfR25yL6dT4fXX6If3viXXuv6A41y\nnEfT+/1My97eQQfWXqS0xDtym2gWYmNjKSgoiACUH0FBQRRbTbJhSYmarp9Poa1Lj9OM0O8p0L4r\n+dRvTl2bPUgrv95Cmam50hvavTvR4cOUX5xPS/9bSs0WNKMBPw+g5VHL6cknn6Tg4GAKCwur1m5d\nCAsLu+delB1DBzxKT/t9TUte20YFeUXG/z3NmxNFS/T9efllooULpWlr506iBx+Upq3KlCWeJiSY\npv3aQnIyJ3/u21fty6AlqdNkQ2IiStdw+hhYNcuwylA6YG1jhf9N6YGBT3fEui8O4a0eyxAc1h7L\nZ/6F27Yp+OH4D+j/c3+09WyLF7q+gMdaP1arZjtODe3Qa0Qr9BrRCgCQl12I6MOJuHQoAdt/OolF\nL2yCjZ01mndrhObdGqFZZ28EdvKGp798G/KmICIi4p5RPADExMQgIiICy5cvL1eHjjmehCv/JSH6\nSCIuH70JZzd7tOnbGMH/64VXPh8D3+ZuJr0vxQ2csHb/Eryx/1909umMX0f+Cr8SvyqzkMOHD+sU\nDacNbftQZ45cwratC9ExOMCgdqtgZcW6a1JQUCBdjsrNm3qHl+vMgQNAixYchXc/4+UFLF7M0jxn\nznB+lB6Ye/0lGDziumjqCzk42yJsdjCGT+mB1fMOYHLb7zHk+S54d3oEPgr5COsvrcdPJ3/Cq1tf\nxdh2YzGh8wSzV9+UAgdnW3QZ3AxdBjcDwDPV5LhMXD2ehKsnkrD5u+OIO52MwrxiNG3vCf92nmjS\nxgONW3ugcSt3ePo3kFXd2VC0da7/RZ3De4OXI+50MgAgqGsjNO/mg+Evd8ebv/npJOIpBdFp0Vh4\nZCEGpB9E5vUibJu1rXxPJjw8vFpHaQja9qEGhHaTztEAvOyVny9NW6X6eZKQmWmQ4KhOHDoE9O9v\nmrZrG489xurcS5YAr72m11vN5myEEH7gPZsdRHTCXNdt6OWIF74egsfe6o1Vc/fjpdbfY8jznfHY\nW8MwJnwM4rPi8dvp3/DkmidhY2WD8A7hCOsYhoCGAeYyUVKEEPBp5gqfZq7oN+buunpWWh6un0tB\n/PlUJFxKx7HNV3HzSgYyk3Pg6d8A3oEN4R3QEF5NG8DT3wXujV3g7usMN1/nGhUPTAkRIed2AdJv\nZiM9MRup8VlIvZ6FzDjNEV6eHl4Y+WZvBHT0gruvs1kHDyq1Cpsvb8biY4txOvk0Xuj6AoY9+Cyc\nfAOACpv/ukTD6cucOXOwL+oA4hOulZ8LcnfH3HlzDW5TIy4uXLJYCurXZxViKSgoMF2C5cWL0iWd\n1gXmz+f9mxdf5MGHjpjF2QghHAGsB1AE4FlzXLMyHo1d8PJ3wzDm3b74e/5BvNT6Owx8uiMee6s3\n3nvwPczqPwuHEg7h99O/o8ePPdDSvSXGtRuHMe3GwMdJt/hyS6aBhwM6BgdUGeUWFahK68ZweYHU\n+Cxc35KCtATu3G8nZQNClJcYcHG3h5ObPZwa2pWWGahfWmbABvXtrVHfzhrW9e+WGriZnIDFP3+J\n1PRkeLh64cWwqfB280VxYQkK81UorFByIP9OEXJu5yM7o4AVplPzkJmSCxtba7j7OcPdzxkeTVzg\nHdAQ016dgXe/jseNxOvlf0tQUBB+W7vU4KUoQ7mWeQ3LTi7DspPL4N/AH5O7T8aGdhs4T+bcQiA6\n+p7Xa5uF+PoaFvKclZqLzZ9eQJe8J9Gs5wnAoQB+t29jTs+e0t8Ld3eOTJICKR2XlMt7lUlKAgz8\nbOoknTpxOes//+RSCjpicmcjhLADsAlAAIAHiaja4duHH35Y/nNwcDCCg4MltcezSQNMXvwIxr7X\nD+u+PIxXO/2AXiNaYtTbfdCnbR/0adIHCx9ZiO0x2/Hn+T/x/p730cm7E8a0HYPH2jwmTQ6EBVHf\nzhpNWntozR0hIuTnFCErJRdZqXnITs9Hzu185NwuKK1JU4D0xGwU5hWjKF+FogIVVEUlKFGpkZGd\njJWnPkVmfkp5e0eOHMWEfrPg7eYLW3sb2DrawM7RBg4utuWlBZzd7OHsbo+GXo5o6O2otYpln8cj\nERERgZs3b8LX19cgyRlDySnKwdqLa/Hr6V9x+tZpPNnhSWwN24oO3h3ufWHTppyBXYE5c+bg8OHD\nVRQM5syZo5cNRQUqbFh4FGs/P4QBT7bH8qvvwcm1dA9k+XKWU5GaRo2ki/jy8GBpFClwdgays6Vp\nqzIFBYCD/OK/UkgsScakSVyWYMIE7NmzB3v27Kn5PZqiBqQ6wM5sM4AsAD10eL0RoRKGcSc9j/6Y\ns5fCvL+kD4f/Qad2xd4j355fnE//XPyHwteGk+t8V+r9U2+av28+XUy9aHZbaxvaIqTCwsLkNs0g\nClWFtDF6Iz255klqMK8BDV8xnFafX00FxQXa33TuHFHLllVOx8bGUlhYGIWEhOgdjaYqLqEdP5+i\nCf4LaM7Iv+jGpdSqLzpwgKhHD53b1Jn584nefFOatpYvl64UwLp1RP/7nzRtVWbgQC7ZICOGRF+a\nlIICogYNiFJSqvwKWqLRTOloBIBVAHKhJdRZw3ukvSF6UJBXRFuXHqdJrRfTK52W0vZlJ6kw/956\nNIWqQvr36r80edNk8vvSj1osbEGvb32ddsTsqL7DuU8JDg7W6GxCQkLkNk1n8ovzaWP0Rnpm3TPk\n9qkb9f2/vrToyCJKyan6JdNIQQGRrS3/ayQlJWra+9c5mtR6Mb3d/xc6vz9e+4tTU7kzkLqmz5o1\nRI8+Kk1bhw4RdesmTVsnTxK1by9NW5UZN47o999N07aOWOTAbfhwotWrq5zW5mxMuYz2HYDRAD4G\nkC+E6FXhdwlEpH8JQRNia2+Dh1/siiHPd8HJHbHYsOAofnlnFwY/2xmPvNQN3gENUd+qPoYEDcGQ\noCFYPGwxTt06hU2XNyEiMgIXUi9gQNMBGBI0BIObDUZL95a1LrJNaqTemzAX6Xnp2Hp1KzZEb8D2\nGM7sH9VmFD4e+DEau+gZXmtry/VVoqOBjoYpBJSUqHHg74v46+N9qG9vgxe+HoKuQ4Oqf748PPja\niYnShgS3awecOydNW23asIJ0SYnxwpktWgAxMSwgKXU55pYt2U4ZMUVQidH06MHlwUeP1u31mjyQ\nFAeAOHACp6bjfS3vkdz5GkPC5TT64fV/abz75/Th8D/o8IZoUhWXaHxtWm4a/XH2D5r4z0Rq/FVj\navJVE3pm3TP066lfKT6zmhFoHcbipv5aUJWo6GjCUZoTNYf6/F8fcp7rTKF/hNJPx3+i5Jxk4y8w\ndizRb7/p/baigmL696cT9GLLRfTWA8vo6ObL+lUfHTyYaMMGva9bLSoVkZMTUUaGNO01a0Z04YI0\nbbVpQ3TihDRtVWTDBqJBg6RvVw8scmazciXRE09UOY3aWKnTUijIK8a+v85j29ITSEu4g4cmdMLg\nZzvDp5nmuH4iwuX0y9gVtwuR1yIRdS0KjvUd8WDTB9Hfvz/6NumLVh6tLFLIUupNyLL2TLWJb4i9\nRITo9GhExkWWf0bejt4YGjQUDzd/GAMCBhinuFyZzz8HbtzgWjA6kHM7H1uXnsDGb4+haXtPjJnR\nFx2Cm+o/U541i2cMUhUmK2PAAG57yBDj2woLAwYNAp6VIEj1xRd55jV1qvFtVSQrC2jShAMjnOQp\nVGhMWQyTsWMHh0Hv2nXP6TpVYkBOrp1Nxvb/O4WolefQpK0nBj3TEX1Ht6m2uiER4WLaRey7vg/7\nb+zH/vj9yCrIQu/GvdHLrxd6+vVED78e8HDQQ03YBEj1QJsrakZXe4tKinAy6SQO3jhYfv/tre0R\nHBCMgYEDMShwEPxcTJgdHhUFvP12jaWPr59PwaZF/2Hvn+fRa0RLjHyjF5p1NiLsftMmYMEC7hSk\nZOZMFmOUwoktXQrs3w/8/rvxba1axUKcW7YY31Zlhg/nsgpPPSV92zpi6oGb3uzZwyKdUVH3nFac\njcQUF6pwbPMV7Pr1DM5FXUe3R5ojOKw9ugwJgk39mtefk7KTcCTxCI4kHMGRxCM4nnQcrnau6Obb\nDV18uqCzT2d08u6Exi6Nzbb3o2+dF02YcwSmzd7ho4ZjbMRY/HfzPxy9eRRnk88iyC0IfRr3QV//\nvujv39/gkgsGkZfHUh8pKVVCaIuLSnBo3SVsXXIcCZfS8fCkrnhkUle4NZKgmNjt2xx6nZamt7RI\ntezYwXVODhwwvq1r11jcMSmJyzEYw507vD9144b0hc3WreMZ6sGD0rZbm9m0iSu2VnLudaqejSVg\nY2uNPo+3QZ/H2yArLQ/7V13A6nkH8M2EDej9WGs8OLYtOgQHaJWCaeTcCCNbj8TI1iMBcMXNqxlX\ncfzmcZy8dRLfHv0Wp2+dRlFJEdp7tUc7z3Zo69kWbTzboLVHa/g5+0nuhKTYhKxJs0wqiAhx8XEa\nf7frzC44XnFE90bd0dupN/7Z+Q9SbqUg2y8bfef0Na+jAdjBdOzIsieDBgHgWczOn08j8vez8G/n\niWGTu6H3yNY6DVR0xtWVN7cPH+YKllLRrx9XH83IANyMLFQYEMCO+NAhLhFtDC4unOm/Zo00y3IV\nGTECmD6di4iFhEjbdm0lIUEvvTjF2UhAAw8HDH+5O4a/3B0p1zOxb9UF/DJjN1Ljs9B7ZCv0ebw1\nOg4MrLYjqSfqlZdFHt9hfPn5lNwUnEs5h/Mp53Eh9QLWXFyDS2mXkFOUg+ZuzdHcrTmCXIPQzLUZ\nAl0D0bRBU/g38DdIXFSK6DEpo2bUpEZyTjKuZV5D7O1YxNyOwZWMK7icfhnRadEoyC7Q+L5RPUdh\n+ejlGmdZxgpeGszAgcjauBt7L7pg929nkJ6YjYFPd8Cn+5+BXwt301136FBg2zZpnY29PXe4W7YA\n4eHGtzdmDPDXX8Y7G4CdzLx50jsbKysuJPbOO+y8jZ2F1QVOn+Y9Mh1RltFMyK242zi45hIOrr2E\nGxfT0O3hIPQa0RLdHg66m+ltIFkFWbiacRVXM64i5nYM4m7HITYzFtczr+PGnRtwsXVBY5fG8HP2\ng6+zL3ycfODt6A1vJ294OnjCw8ED7g7ucLVzha017zdp6pydnJzQrl07NG/eXKc14pqW4ogI+ap8\nZORnIC0vDam5qUjNS0VyTjKScrh8dcKdhPLDxdYFga6BCGwYiCDXIDR3a46W7i3RyqMVspOzq12y\nk2JZ0FhyswpweH009n63D5f+S0H3sV0w8KkO6Dy4GayszNBhHTzI2d5nz0rb7m+/AWvXAv/8Y3xb\nV68CffrwSNnY5T6VCmjenJ1Xr141v14f1GoW5AwLA15+2bIy+uWgTRvea+ve/Z7Typ6NzNy+lYMj\nGy7jyMbLOBd1HUFdfNB9eAt0fyQITdtLUKSrAmpSIzU3FQl3EpCYnYik7CQk5SQhOScZybnJSMtL\nQ1peGtLz05GRnwGbejZoYNcALrYusMmyQeqmVBSmFSInIQclBXcFL10auWDU3FFw83WDgACBQxrV\npEYJlaC4pBjpienY+sFW5CTfLcZa37M+fCb7oMC5AFkFWQAAN3s3eDh4wNPRE6AiJOsAACAASURB\nVJ4OnvB29EYj50bwdfaFn7MfmjRogsYujeFgw3sc2r7Y1W2ahoSEaJTRCAkJwe7duyW735XJSsvD\nkQ2XcWjtJZzbex0dQwLQf1Qr9HptCOwvndG5lrsklJTwPsbevZyLIhVZWYC/PxAXZ/xSGgAEBwNT\npvAsx1gWLgR275bGEVbm4kWgf3/E/fUXBk+aZFnRYebkwgVg8GDeH6s0y1OcjQVRkFeMs5HX8N+W\nq/hv61UUF5ag65Bm6PRQIDo/FGg2GXyA9z7yivOQVZiFrIIs5BTlIKcoB7OnzkbUxqgqr+86pCvG\nvT8OBIKAQEZSBjYu2Ijr51kQM6hjEIY9NQz71u3DnbQ78PTxxKszXkXr5q3hYuuChnYN9V7iMzTo\nwFwzGyLCjYtpOLb5Co5uvIK408noPDgQDzzWGj3/1wKODUrDqMeO5S/o889Ldm2dmDKFhSRnzZK2\n3XHjeKQ/ZYrxba1aBXz7LbBvn/Ft5efz7OaffzjxUGqWLEH4jBlYkZVV5VfmnDXLytSpgKMjMLeq\nqrjZK3UacsDCkjrNgVqtpoToNNq46CjNCf2Tnmj4GU1u9z19N2UL7f/7At1OzpHFLl2kZmJjY6lJ\nkyZVXuPv7y9p4qahCW2mTCrNzsij/X9foG9f3EQTmy6gCf4LaNFLm+nopsvaK2L+8QfRI48YfW29\nOXCAEx6llq7ZsYOoY0dp2i0uJmralGLXrKGwsDDjK5j+8ANR//7S/81ERGo1Bfv41HopJoNJSqq2\ncinMrY1myHE/OpvKqFQlFH00kf7+7AB9MGwlPdHgU5rUajEteH4jbV92km5cStUvi9xAdOngtb1G\nkyMoE540pBMxRmMtKiqKGjduTDY2NmRra0uDBg0yqAPLycyno5sv0/9N30Gvd/+RRjvNp4ihK2jt\nl4fo2rlk3T6TO3eIXFyI0tP1vr5RqNVEQUFEhw9L225JCYuM7t0rSXOxs2dTkIODNIMDlYqoc2cW\n+zQBYePGWV5Gv7mYMIHorbe0/lpxNrUUlaqErp64SRu+PUqfjltDE5suoLGun1HE0BX0e0QkHd4Q\nTWmJdyS/ri6zAm1OQNMMyJgZhjEzG0NmXmq1mhIup9Gu307T4smbaUrHJTTaaT69O/A3Wjk7is5G\nXaOigmKt76+WUaN41G1u5s4leu456dtdtIho5EhJmpK8Az9yhMjbW6MysbHExsZSUGCgxUsxSc6W\nLUT+/jxw0oLibOoQ6Tfv0KF/LtFvs3bTe0OW03j3zynM+0t6/+EV9PM7O2nPyrMUdzaZiotURl2n\nJhl8XWc2xuo6GeqsdLGvpIQdy75V5+nnGTvpvcHLaazrZzShyTc0b8xqWvfVIbp46AYVFRp3L8tZ\nt46Xd8zNrVtEDRtKp2lWRm4ukZcX0fnzRjdlEpXw6dPZGZpgNSA2NpbCxo6lEHd3CvPxodhTpyS/\nhkURF8fOe8+eal+mzdmYLECgtAz0DADdAHQCYA8ggIjiq3kPmcqeugwRIfXGHcSduoXYU8mIO5OM\na2dSkHbjDnyCXOHf1gONW3vAr5U7Grdyh28Lt7ub1kYQFxeHAQMG4MaNG/ec9/f3x549eySNCjNE\nqkPbdQGguU8HPOo/FfHnU+Hi4YBmnb3RrIsPmndrhBY9fE0XpFFUxDpbBw7wJrY5CQ/nCovTpknb\n7rx5HFq9cqVRzZgkoKOwEOjdm3XTJk82yj6tqFTAm29yPtOaNUCHDjW/p7aRlsa5Wi+9BLz2WrUv\nNXs0mhBiAIA/ARwHYAVgCIBAxdmYj8L8YiRGpyP+QioSLqUjMTodiZfTcfNKBurb28CnWUP4NHOF\nV0ADeDVtCK+mDeDR2Lm8YqYu4dhxcXF44403cPjwYQBAr1698M0339zjCMwRFUZEuJOej7QbWUi5\nnoWUa1n4ZMm7OBYdqfH1wT0exqKvlqJpey84NZRQdFMXpk3jJMFPPzXvdU+cAEJDWYpfSvma7Gx2\nnDt2GFxGATCh1NGVK5wwumEDOx5T8fvv7HQ+/BB4+WWgrpQYuXWLRVcffRT45JMaXy5r6LMQ4jkA\nP0BxNhYBESEzORe3Ym/jVuxtJF/jDjo1PgtpN+4gPTEbqqISuDZyglsjJzT0dkQDT0c08HSAi4cD\nnNzs4ORqD8eGdnBsYAsHF1vYO9eHnWN92NhaVXFS+nYiquISFOQUIS+7CPnZhcjLKkROZgFyMvKR\nnVGAO2l5yErNQ2ZyDjKTc5FxMwcZSdmwdbCBRxMXePo3gHdAQ5BzLj784RWkpN+6p/3KMy9jMCix\n7/JlDhmOj+eaM+bkoYc4KXHiRGnbXbCAy18bKYJZPoONjISvvT3mSJW3snEjj8oPHeL8IFMRHQ08\n/TSHBS9dKm1ukxycOcMDlOee49B5HRyo4mwU9CI/pwgZSdm4fSsXmck5uJPKHfyd9Hxkp+fhRmI8\ndpz7E1l5GbCDM9pYPwTrAheoVWrUt7eGja01rOtbwbq+Fays6yFXnY7/0jchT3UHDjYu6OH+KByt\n3KFWqaEqLkFxYQmKC1QozC8GANg51oe9Mx+ODezg5MqHs7sDXDzs2fl5OcDVhx2iayNn2DlULZql\ny8zLUIwaiQ8dyp3+008bbYde7NkDvPACJydaS6hWVVTE0iXffgs8/LDx7d25w8tRS5YAjzxifHsA\n8NVXwLJlnMvjqrk8iCSoVJxYOncu3+t332XdttoEEfDjj+xgFi4Exo+v+T2lyJpnA+A5cNE0/xpe\np/NelYJ8VLdhryouobzsQspMzaXUhCy6FXebEi6nUfzFVIq/kELXz/MRfzGVEqLTKCkmg1LiM+l2\ncg7lZhUYHdRgTowKfNi8mUNzzRDGfg9qNVFwMNH//Z/0bW/cyKHQEpTAJiKiyEiiRo04uEEK1Gqi\nN94geuABouxsadqsjoQEomee4QCKzz8nypEnZ05vLl/mwntduxpU2A5yRqMpzqZuYZFVA2XAqOip\nkhJOtNyxw/SGVubAAQ5fzc+Xvu0RI4hmz5auvZkzueNTSTQIUauJXniBIwKrCd+VlLNniUaPJvL0\nJIqIIEpMNM919eXWLaKpU4nc3dk5FmlJTq4Bbc5GkS5V0Bs566HHxcUhPDwcISEhCA8PR1xcnMmv\nqQ2jVLLr1eOCavPnS2yVDvTpA3TtyvssEhP39tsInzsXIT17SvP5zJ4NFBcD778vjYFC8NJcmzYs\nHZSRIU271dG+PbB6NReJS0vj5cbHH+d9pKIi01+/Ji5c4Ei9Nm1YbPT8eQ5isam6LG0UmjyQ1Af0\nmNl88MEH5UdkZKRBnlXBtMg1szGl/IwhREVFkZOTk+H2FBURNW1KdPCgSe3USHQ0j2CTkiRr0mSf\nT3Iy36e//pLETiLiGc60aURt2xJduyZdu7qQlcWJvX37Erm5cUb+2rXmm2kR8exq0SKi3r15qTIi\nwuBnITIy8p5+G8oymoJUGNupGCpdo83JeXl5GaejZQCa7oGTkxNFRUXp19DSpbxMJAfTpxM9/bRk\nzZl0EHLqFC9DSe2Yv/qKyNdXeikfXYmPJ1qwgJ8BJyfeT3rnHU7+jY+Xbk/v1i2iDRv4M+/ShbXN\nwsOJNm1iXToJUZyNgqTUpC5Q3fsMdVTVyeMY4vBCQ0PJy8uLvLy8aMSIEXo5K8k61sJCosBAIn2d\nlBTcuUPUuLFk1zaJAkBFtmzhDHY9N61rHNxs2MCOzBRBE/qQm0u0cyfRBx+wYKu3N6s+PPAAO4ZZ\ns4gWLyZatYpo+3Z2vMeOER0/ztI8e/YQrV/Pf8cnnxBNmkQ0aBCRjw87lyFDeD9t3z6D92N0QRZn\nA2BU6fE9ADWAl0r//6CW15vsBihYBsZ00tXJz+jTjhRq1ZJ2rL//zssZ5o5MI+IRdMuWkgQLaP1s\nH39cAkNL+fVXoiZNWDpFB3Qe3Fy4QNS6NS9pWVLUWEoKDwaWLSP68EN2II8/TjRwIFGvXhwx1rkz\nUbduHPQwfDjPVt95h5fJtm4lun7drM+WXM5GXTqjqXzs1vJ6U98HBZmpqZOubhSqqeMwpLPXR61a\n3zYMWjIqKSHq1Ilo9Wr93ysFo0Zx52QkGjt2V1eK7dlT2pH0t9/ybFCHvRa9PqfsbA5VbtWKZwwK\nBiHrMpquh+JsLA9jSgNoorovvy6j0DJ7vL29q+1EqrNbV7Xqmu6LpJvhO3dyB2qKcOSauHWLl2wk\n2A+psrx65QrRsGFEU6ZIYGgFvvmGKCCAKCam2pcZNAP9809eVnvvPelyhu4jFGejoDdSd6ixsbE0\nYsQIsrOz09imPqPQ6myrye7qZjb6BBuU/T3e3t7k5eVFoaGhxjnj0FBea5eDNWu45o0pIqIyMzmn\naNEiadv97jveczp3rsqvyp4nLy8vw2agN2/y59G6dY0qxwr3ojgbBb2RcqlIkwOwt7e/p4PWdxSq\nLUihJru17dno61Qln93ExnIorLlDcct49lleRjIFMTEcYrthg7TtrljBGfoVCrjVtNyq82ekVrMT\nbtKEaPx4jg5TqBHF2SjUSOWlp969exu11FQRYyp/ljkSXZfzdC1pHRoaSt7e3mRra2uQUzVJqO9H\nHxE9+qg8wQI5OTyS/+UX07R/5AgvT+3fL22727dzuytWEJH2z8Xb25vCwsIoKipKv6XhnBxeUnNz\nI3r3XaLbt6W1v46hOJs6jBT7KtryRqTqTHVxAFFRUWRtbX3P762tremPP/7QawahrxMwNLLMJKG+\nBQW85PT334a3YQxnzxJ5eBCdPm2a9rdtY8dw8qS07Z45w3s4M2dW+7kYNRu9cYNo4kS+Px9/zMmZ\nClVQnE0dRaqlHG0ddOXO39BlImNmNgEBAXo5D33viaEzFJMlMe7fz0tO6enGtWMoy5fz/o2prr96\nNed+nD0rbbspKUQDBlBYo0ZaPxdJPrNLl4jCwliBYdYsrUKhUgfXWDyFhURXrijOpq4iVYdXU8Jk\n2UxH7wz5UnRxANpsaNiwod4zCH2STg112CaVz3ntNe7Q5OKNNzirXeLs8nJWrmSHeuaMtO0WFVHs\nc89RkJZBkqSz0atXiV56iRMvJ07k5MpSLE1ayaQUFXEiaUAA0SuvKM6mriLVl0eXhEljR+0VHUBo\naCiNGDHinlGfVDMbY23TVxHBkPfVSG4uUYsW8uXeFBcTDR1K9MorBjdR48j+jz845Pq//4w0VsO1\nv/+ewmxtKSQwkMLGj9c5eMQgUlOJ5s5lJe3u3YmWLKGwMWNM/szKTmYmy/34+xM99FB5kIbibOoo\nUn15dEmYNHgEqMO1goKCKCoqSq/zdXKUWJHDhznSKiFBnutnZhK1a0f09dd6v1Xnkf26dbyHYwrR\n3fh4rt3Trx/PQvSxyxBUKq5TNGoUBVtZmez7IytqNQd6vPACz+jGjSM6evSelyjOpo4i5Zen4ijd\nlLMJXaLOKs8UjJ1B1Nr189mzWZpEqnou+nLtGpGfn96Ky3oNgnbtYodjillcSQnRl1/y/so33xCp\nVKabjVYgbPRozX+/lNI95kKtJjp/nuVyWrXi/byPP+ZcJA0ozqYWYGiHaIovjylHgCYXbKxErV4/\nV6mIHnyQaM4c+WwoU1zWo9Cbrp9x+TPfvTuF2dtT7LvvmibsOzqa72PPntJHwmlA4zPn6EixTk6s\nujxtGisuW2oY9Z07PEt77TWi5s0512jqVKJDh2r8fBRnY+FI0SFKPXqv6MRGjBhBoaGhkrRt7no4\n5r6e5CQkcPTW7t3y2bB3LzucAwd0erku91zjM1+/PsU+8QRHNklNSQnRjz/y0uSrrxJlZEh/jQpo\nHAQWFbHqctmM1cmJa+pMnMgKC/v38/KlOVGpiC5e5DylqVOJevQgcnQkGjCAFS1OnNBrACCLswHQ\nGMDfADIBZAFYA6BJNa838G7VfoztEE05ejeFbI05ZxrmnkmZhO3bOXpLrv0bIlYQ9vTUSaRSl89Y\n6zPv58f7LFpCio0mNZXoxRfZ6SxebFK5/RopKuIotu+/J3r++bsdvZ8fO6MXXySaN48dwZ497BTS\n0/VbVi0u5gJ0Z84Q/fsv0U8/cZLq2LGsGO3gwLp8o0YRzZ/PKtN5eQb/SWZ3NgDsAVwBcAbAo6XH\nmdJz9lreY/AfWNsxtkM05ejdFG2bY928jFo/synjk09YVl5Occj167mT1iGCrKbPWOszHxzMNV0a\nN5ZebaAip05xvZeWLTmJVg7VBk2UlHAJhW3b2BlOm0b0xBPsgFu04I35evWInJ15ANKsGSs/tGvH\nR+vWfM7Hhx1XvXq8Z9W2Lf+9Eybw/f3tN97slzg5VQ5nMxVAMYDACucCSs+9ruU9kv7RtQljO0Rj\nnFVNy2+1fWZQq/dsKqJWcy2TZ5+Vt2P85x92OIcOGdVMjc/8pk18nS++MN3fq1Zzp96lC9eG2bjR\ncpxOdahUvN+TkEB05Qpv4J85w8f58xx9l5jIjqSkxKymyeFsdgLYp+H8HgCRWt5jyntg0RjbIRrq\nrIxa7qhFMwNzzqRMSnY2UceOHGElJ5s385KaEftIOj3zcXE8mxs2jJeCTEVJCYtudujATmf1avki\nAGs5cjibJADfazi/GECylveY9CZYOsZ0iIY6K4M3cmvjzKCucO0aka8vL2nJSWQkO5x16wxuQqdn\nvqiIBTAbNeLZjikpKeH72qsXR2F9951elTurWyWoteH3eiKHsykEMFfD+TkAirS8x6Q3oa5jiLPS\nN0S11s8M6gpHj7IgZKWEOrPz33/sBJYuNf21oqJYEuW550wfsaVW8/VCQ/k+v/UWL1dVQ3WDsvtp\nwKY4GwWN1PYlsvtltKiR9et5E7iGTtDkXLnCs4CZM02/P5CVxRFaTZpUmeVoehYkeT5iYoimT+dZ\n3EMPcSVPDRVVq/su1fbvmT7I4WxuGbKM9sEHH5QfkaaQsFC4h9o84tJku5OTE/Xq1ev+cTxLl3Lk\nkZZsbrORkkLUpw/RmDGs62Zqdu7kv3vsWKKbNzU+C02aNCF/f3/pnu38fBYQHTSIa9tMmsT5R6UO\ntrpVgprKHtTmAVNkZOQ9/bYczmYXgL0azkcqAQKWRW1dIqtJPLS2OE2jmTOHN7blKklQRn4+K1V3\n68a1X0xNbi7RjBlEHh4U1q1btc+C5LOJ69c5/6V9ew7Rfv11Chs8WO+ZzYgRI2rtYE8bcjibqQCK\nAARUOBdQek620OfaPopQuIsuZRHq4jJFFdRq3lPo0UP+gl5qNXfCjRpxprw5OH+egrWUodA2m5CU\nc+eIPvyQYlu1oqB69fTaswkNDa07z21GBtGlS7I4GwcAlwGcBjCi9DgFTup00PIek96L2rxkpFAV\nXcoi1JZcIKNRq4kmTybq25fDo+VmyxbOkVmwwCx5K2FPPmnemY0WYqOiKKxbNwpxdaUwa2uK7dqV\nKCKCaPduir1wocoKQq3OYSsp4Yqun3/O6trOzkQREeZ3NsTOozGA1bhXrsa/mteb9N7cT5t09wO6\nlEW4rz7bkhKWfu/fn4UU5SYmhpMlR482efSYxj0bR0fy9/OTb3CZl8cyQzNmcCi1gwPRAw8Qvfkm\nq2jHxmp1khb53BYVsVTRggX8mXp6sgL05MlEGzaU79VpczaCf2cZCCHIlPaEhIRgz549Gs/v3r3b\nZNeVk7i4OERERCAxMRF+fn6YM2cOAgMD5TZLMsr+vpiYGJw7dw45OTnlvwsKCsKOHTvq1N9bI2o1\n8NJLwIULwJYtgIuLvPYUFABvvAFs3w78+SfQo4fJLlX2LNy8eRO+7u540cYGX65ejcM2NhCOjujd\nty++/vpr+Z6H3Fzg6FHg0CH+99gxxOXkYHBREWIKCspfFhQQgB27diGwWTN57ASA9HR+hs6fB86c\nAU6cAM6dAwICgAceAPr3BwYMAJo2rfJWIQSISFQ5fz85m/DwcKxYsaLK+bCwMCxfvtxk15WLuLg4\nDB48GDExMeXn6nIHfE9n4+tb5xyrzqjVwKuvAseOAdu2AW5uclsE/P038PLLwJtvAtOnA1ZWJr2c\nxmffxQU7tm5FYJ8+Jr22XiQnI27rVkQsXIibSUnwLS7GnKIiBAoBBAVx5+7vDzRuDDRqBHh7A56e\n/Jm6ugKOjoCo0q9rp6gIyMwEMjKAtDQgORm4eRO4cQOIjwfi4oCrVwGVCmjTBmjXDujUCejcGejS\nBXB2rvESirPB/df53m/OVaECRMA77wBbtwL//gv4+sptEXdmTz/Ntv3yC2DC75zWZ79+fSwPC2OH\n16aNya5vFETsDGJjgWvX+L4lJgJJSewc0tJ45pGZyTNHR0fAwQGwtQVsbO46ciKguJgdTEEBz6xU\nKqBhQ8DdHfDwALy8+Nlo3JidWmAgOzkvL/2cWAW0ORtrY+5JbSMwMBA7duy4b0a/iYmJGs/fvHnT\nzJYomB0hgE8/5Y6lXz92OC1ayGuTvz+waxfw9de8nPbJJ8CLLxrcqVWH1me/Z0/uUENCgK5deYnv\noYdMYoPBCMHOwN295mVHlYqdSF4eUFjIzqWk5G471tbshOzs2CnZ2cn2t95XzgZgh3O/jOr9/Pw0\nnve1hFGugukRApg5k5ddBgwA1q836Z6JTlhZAdOmAY88AkycCKxaBfz4IyDx/oTWZ79pUyAigmc2\nK1bwsl5JCS/xPfUU0KCBpHaYHGtrtrk22K0pakCuA0pSp6Qood4K5fzzD2t8bdwotyV3KS4m+uwz\nrrXy2Wf8f4nQ+dlXq1lQdMwYrhMzcSJXI60NZQYsFCjRaPcndWHTvK5H1JmNI0eAkSOBWbOAV16R\n25q7XL0KTJ4MpKQA338PSLSBr/ezn5zMe0n/939AvXrAM88AYWG8/KegM0qAgEKt5H4L6jA5cXHA\n//7HexbffMPLMJYAEYdGT5sGDB0KzJvHkVdy2XLwIPDbbxxF164dMH488Pjj8tlUi9DmbOrJYYyC\ngq6U5dBUJCYmBhERETJZVMsJDOSONCYGePhhjmqyBITgDv3iRQ7rbdcO+OIL3vSWw5a+fYGlSzks\neNo0YN8+oFUrdtILFwLXr5vfrlqO4mwULBolos4ENGgAbNrEeRM9e3LSnqXg4sJO5sABYM8edjp/\n/82zDTmwtQVGjABWrgRu3eLotRMngO7dOf9k1ixg/36OClOoFsXZKFg0SkSdibCyAj7/HJgzBxg0\niCOzLIlWrdghLlnCIdIPPMDOR07s7Njx/PILO57vvmMn+OqrHPH32GPAokWcda9sB1RB2bNRsGiU\nPRszcOYMMGoU75V8+SWP5i0JtZpnFu+/z7lCH38sSwh3tYEqycnAzp3A7t1AZCSQk8P5Tf36saPs\n0oWd1X2A2QMEhBBvAggG0B2AD4APieijGt6jOBuFKtSFiDqLJyuL817i4zn3RU5dLm0UFXGk2Cef\ncELm++/zcpYZ0HvQEx/Py2sHDrAWWnQ0KxZ07862d+nCS4QODmax32SUlACXLwPHj7M8kr8/xLRp\nZnc2F8BKzycAvARgtuJsFMyJEjKtJ0TAt9/y0tq33wLjxsltkWYKCoCffmKFhA4deN+kb1+TXtJo\n6ae8PODkSe6UT57kIzqaZWLatQNat+alwxYtWC7Gx8eyVA2Ki1k65/Jl4NIlFuk8e5b/9fZmB9qz\nJzBoEES3bvKEPgshrAAUQ5nZyM791Pkqy29GcOIEO5q+fTnySgfxRVkoLOT9k88+Y32vt98Ghg/n\nHBmJMYlifHEx5xidP88deHQ0cOUKRwrm5rKicpkIp68vO6AyIU53dxbibNiQZ0eGOCYidoIVhTlT\nU++KcyYksEDntWusy+bnx86wdWugbVt2kh06VFEvkC3PRnE2lsH91vkqIqRGkpMDvP467z/8/rtk\niZYmQaXiiLXPP+fO8/XXWXpGwiUqsz9POTkcXh0fz53+zZsclFBRiDMjg5c/i4r4b3VwAOztgfr1\nqwpyqtV8nwoLeWaYl8fXsLVlh+Xqyg7My4sdmq8vOxd/f3Z6TZpwuzqgzdmYQ4LGCoAawPs6vNYY\nlQSFatC3cFxtL59dqysgWhLr1hH5+HABsIICua2pnjLpmREjWJpn+nQiiZ5bi5Z+Ki7m4nSJiVyw\n7uJFojNniE6e5OPUKf7/hQv8+8REotu3uRiaCYAWuRoLSR9WMDX65KtomgUdPny4Vs2ClJBpiRg5\nkmc1kyYB3brxspWZNuX1RgggOJiP2FgOTe7RA+jVi+0fNsxgxQSLVoyvLWKcmjxQ5QPAIPDspKZj\nt4b3KjMbC0CfmU1dKJ9t0SPR2ohaTbRiBZGXF9Hbb3PJ49pAbi7Rzz8T9e5N5OtLNHMm0ZUrcltV\np4GRM5sDAFrr8Lo8HdvTyocfflj+c3BwMIKDg41tUgHAnDlzcPjw4Sp7NnPmzKnyWimz9uUKSrDo\nkWhtRAjgySc5AfS114COHVnOZeBAuS2rHgcHYMIEPs6d49DpPn2Ali25kNuYMbxfoWAwe/bs0Rg8\nUQVNHkjKA8rMxmIo24cJCQmpdh9GqpmNMruow2zYQOTvT/TUU0TJyXJbox+FhUTr1xONGkXk4kIU\nGkr0559EOTlyW1YngJaZjeJsFKoglZOoC8txCtWQnU301ltEnp5E331HpFLJbZH+ZGYSLVtGNHQo\nO55Ro3i5MDNTbstqLdqcjSmTOrsBCCh1Nn8CWAVgdemvNxNRgYb3kKnsUdAPKbL2TZKboGB5nD3L\n9XGyszkZ1MQJliYjPZ2rma5dC+zdy8ttjz7KJRmaNpXbulqDHHI1PwN4WsuvA4koXsN7FGdTh1By\nXe4jqLQezdtvA/37A/Pn1+6iY9nZwL//Ahs3Alu3cv7Jww+zfly/fpzPoqARpXiagtm53xJJFcCZ\n759+CixezNU3336bywbUZkpKgP/+A7ZtYwd09izQuzfXtgkJ4VBwGxu5rbQYFGejIAuKiOZ9yo0b\nwHvvceccEQG88ILOGegWT1YWEBXF6gqRkSwv07Mnz3j69OG8noYN5bZSv0bqywAACoJJREFUNhRn\no6CgYH5OnQJmzGANsNmzuRqnCbTLZOX2ba5+un8/KzwfP856Zj173lV57tQJcHKS21KzoDgbBQUF\n+YiMBGbOZD2u2bO50JglqRpLiUrFOT3HjrHjOX6c1ZH9/Dg/qX17FrFs04aFLS2tfpCRKM5GQUFB\nXoiALVu4Do1azf+Ghta9mY4mVCpWdT57lh3R+fPAxYusqFymphwUxHWEAgPvKj57eFieUyYCUlJY\nKPTaNZYGunqVyw/06AHx1VeKs1FQULAAiIANG4CPPmKZ/VmzgNGj76oU308UFwNxcVxa4OpV7riv\nX7+r+JybywrMjRqxGnPFEgNubqx+4OLCh5MT4OjIkXK2tnxoc+REfO3CQiA/n6+TmwvcucN7Urdv\n81Gx7MCtW0BiIitQOzmxQwwIYAfZvDk7zHbtIHx8FGejoKBgQZTNdD75hDu0t9/m0gD3SflkncjL\n41oySUnc2aek8L1KS7vrELKyOFQ7O5tfX1DAR1ERz4qsrNjpcBY/R9ep1SzgaWvLzsnBgR2IiwsL\nepaVHfDwYOfm7c31dPz82PlVU75BWUZTUFCwTIg4iXL+fA4oePVV4KWXeOSuYDhljqXMuQhx1/lY\nWZlseU6bs7kPFksth7i4OISHhyMkJATh4eGIi4uT2yQFBfkRAhgwgJMnt2/ntf+gIGDKFN7nMBN1\n7vspxL2zFzs7/tnaWpZ9IGVmYyaUBEcFBT1ISgK+/56Vpbt0YTmcRx4x2b6O8v2UDmVmIzMRERH3\nPMgAEBMTg4iICJksUlCwYBo14gCC69c5N+ejj3gTet483qyWGOX7aXoUZ2MmpKwRo6Bw32BnBzzz\nDHD0KLBqFUdstWrFdWj+/Zf3IyRA+X6aHpM4GyFECyHEt0KI80KIbCHETSHEeiFER1NcrzaglClW\nUDCSHj24+Nn161y0beZMzkmJiODQYSNQvp+mxyR7NkKIKQBeAvALgOMAGgB4B0BnAH2J6KSW9yl7\nNgoKCrpz+jTwyy/AypUcVPDUU8ATT3Aeih4o30/pMGvosxDCjYgyKp1zAXANwAYimqDlfXXW2QCK\nKKWCgskoLuZlteXLWZ25Xz/e6xkxAnB21qkJ5fspDdqcjckrdVY8ABwGsKOa39dcBk5mIiMj5Tah\nRhQbpaM22KnYWIk7d4h+/51o+HCuvjlyJNHy5TVW31TuozRAS6VOswUICCFcAbQHcMFc1zQFmipP\nWhqKjdJRG+xUbKyEszMQHg5s2sTaXaGhXNitSRMOn16yhCVX5LTRQGqDjdowZzTaotJ/F5jxmgoK\nCvczrq7AhAlccTMxEZg4kdUK2rdn+f8PP+RIN7VabkvrPDo5GyHEICGEWodDY2F5IcS7AMYBmEJE\nsVL+AQoKCgo64ezMwQMrV3KuzhdfsPjkxIms+5WUJLeFdRqdAgSEEHYAdCkonkdECZXe+xKA7wDM\nJKL5NVyn7kYHKCgoKNwnkLmFOIUQT4HDn78gondMdiEFBQUFBYvGZM5GCPEYgFUAfiKiySa5iIKC\ngoJCrcBUeTYPAvgXwDkArwGouPtWSESnJL+ogoKCgoLFYqpotBAA9QF0BbAfwMEKx9qa3lxb5G6E\nEG8KITaU2qcWQrwvoy2NhRB/CyEyhRBZQog1QogmctmjCSGEX+nnelAIkVt6z3TZCzQbQojRQoh1\nQoh4IUSeEOKSEGKuEMJJbtvKEEIMEULsEkIkCSEKhBA3hBB/CSHayG1bdQghtpV+5h/JbQsACCEG\naAl0yqj53eZHCDFMCBFV2idmCSGOCiGC5bZLV0zibIhoNhFZaTma6dDEEADBAJYBeBTAZACeAA4L\nIbqYwmYDeR5s1zoAsgU3CCHsAUQCaAngKQDhAFoA2F36O0uhOYDRADIA7IWM96wa3gKgAjADwMPg\n4JbJALbLaVQl3AD8B2AKgMFgW9sBOGRpA4wyhBDjAXSE5X3mBOAVAL0rHA/JapEGhBCTAPwD4BiA\nkeDv0WoA2ktmWhqaMj3lPgC4aTjnAu6kfpHbPg22WYGXCt+X6fpTARQDCKxwLqD03Oty3x8tNj8H\noASAv9y2VLLLXcO5p0ptDZbbvmrsbln6DL4hty0abHMFkARgbKmNH8ltU6ldA0o/14Fy21KDnU0B\n5AF4VW5bjDksssQAVdJVKz13B8BlAJrlWe9vHgVwmIjKSwsS0TUABwCEymVUbYSI0jWcPgZAwLKf\nvbLvjEpWKzTzKYAzRPSX3IZowPwlK/WnbGC2VG5DjMEinY0m6orcjYloBw7GqMx5AG3NbEtdJBi8\n3HJRZjvuQQhRTwhhI4RoAe6IbgL4Q2az7kEI0Q+8rDtFbluqYYUQQiWESBNCrLDApci+AC4BGC+E\nuCqEKBZCXBFCvCy3YfpgLbcBeqDI3WjHDcBtDeczwEsYCgYihPADMBssIHtCbnsqcQRAt9KfrwAY\nRERpMtpzD0IIGwBLAHxORFfltkcDWQC+ABAF4A6ALgBmATgohOhiQffSt/T4DMC7AGIBjAGwSAhh\nRUTfymmcrphlZlMb5G6MtVGh7iGEcASwHkARgGdlNkcT4QB6ARgP7ix3Wlh03zsA7ADMldsQTRDR\nKSJ6m4g2E9E+IloIDgrxAfCqzOZVpB4AJwAvEtEyItpDRFMAbAM7n1qBuWY2BwC01uF1eZVPlMrd\nfAKWu/lVasMqYLCNFsBtaJ7BaJvxKNRAqUTTJnCgxYNEZHH1gYkouvTHY0KIbeB6UTMAyL68UroU\nNRO832BXej/L9kdshRANAGQTkUUpYBLRSSHEZQA95balAungSM6dlc5vBzBUCOFNRMnmN0s/zOJs\niKgAvLmvF6VyN4vB0/BqddWMxVAbLYTz4H2byrSFsselN0IIawBrwHliDxGRxd9DIsoSQlwFd0qW\nQDMAtgCW495NeAIwHcA08LLVGfObVus4D57B1mosNkCgVO5mGYAfSNFVq4kNAHoLIQLKTpT+3Be8\nDKSgI0IIAWAlOCgglIiOyWuRbgghvMEzc0vZGzkJTu4OAd/LskMA+L30Z0uxtRwhRHcArcCFHi2F\ndaX/Dq10/hEACbVhVgNYaIBAqdzNSgCnAPwmhKjo1S1G7kYI0Q28zGJVeqqtEGJU6c+bS2dL5uBH\ncLTPeiFEROm5jwBcB/CDmWzQiQr3pzu44xkmhEgFkEpEe+WzrJzvwAlzHwPIr/TsJRBRojxm3UUI\nsRbACfCs4A64c3wdvLf0lYymlVOaqlDl82RfjutEtM/sRlW15XcAMWDHeAc8k50B4AYAi9l0J6It\nQog9AJYKITzBAQJPgJNPJ8homn7IneijJYnpA3BcuaYjVm77Ktj5czV2mjVZEUBjcEZxJjjKZo25\nbdDRTrWW+7VbbttK7Yur5jOVJWlXg43Twbk/GQBywCHZ31ni563B9hIAs+W2o9SWGeAB7W0AheDB\n2fcAvOW2TYOtTmAHmASgoNTusXLbpc9h0hIDCgoKCgoKgAXv2SgoKCgo1B0UZ6OgoKCgYHIUZ6Og\noKCgYHIUZ6OgoKCgYHIUZ6OgoKCgYHIUZ6OgoKCgYHIUZ6OgoKCgYHIUZ6OgoKCgYHIUZ6OgoKCg\nYHL+H4UD4ecD4+zOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Parameters after initialization\n", + "plot_contours(data, initial_means, initial_covs, 'Initial clusters')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n", + "Iteration 5\n", + "Iteration 10\n", + "Iteration 15\n", + "Iteration 20\n", + "Iteration 22\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAELCAYAAAAP/iu7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4Tdf6wPHvSswiSCIhiciAmCtKDS0SY1subSklbqut\nzr2tVsefGlqdlFLVq4qqFnVVqRpqJlrzPI8ZSCQyEJnnnPf3x4lw5JxMZGJ9nuc8kb3XXnudjfOe\ntda711YigqZpmqaVJKuyboCmaZp299PBRtM0TStxOthomqZpJU4HG03TNK3E6WCjaZqmlTgdbDRN\n07QSp4ONVq4ppbyUUgal1JxSPu8OpVRmRalX08o7HWy0UqeUapQTQCy9Ym85RHJepamkzllq76Ws\nArWmmVOprBug3dPOAb+a2Z56058vAM2BuNJokKZpJUMHG60snRORT/IrICLZGIOSVnSqrBugadfp\nYTStXLM0FKSUuqSUOqeUslFKzVRKhSulUpVSR5RSj5upx1sp9XXO/lilVIpS6oRS6kOl1G1/6VJK\nWSmlXlJK7VJKxSulkpRSJ5VSU5VStQo4dlHOe3Q2s+/TnH1dbtn+lFLqH6VUTM77vqSUWqOU8svZ\n/zzGIC3AqJuGKLNvrkspVVUp9b5S6qhSKlkpFaeU2qCUeshMW3YopTKUUtWUUl8qpYJzfn81Z7+L\nUmqWUup8TptilVLHlFLfKKV04LvH6Z6NVlEJUBXYDNgAvwM1gaeAZUqp3iKy7abyg4ERwDZgY86x\nvsBngA8wpLgNUUpZASuB/kAI8DPGocAmwMvAfOBUAe/F0jxOnn1KqTeB6cB5jMOQSYAL8BDQG+N7\nPAR8C7yR8+dVN1URmlNPNWAL0AnYC8zGeC0fA7YqpQaJyOpb2gLwJ9AU2JBz7nClVE1gN+AIrAGW\nYfz7aAK8BLwHZORzDbS7nA42WllqqpSaYGb7EhEpzNCZK8YPyeEikgWglPoNWA+8hfFD97r5wJc5\nw3K5lFLzgWeUUg+IyL7ivAlgNMZA8yfw5PW25NRvC9zp7LPnMAaM1iJi8gGulKoLICKHlVIJ5AQb\nC8OVkzAGmndEZPpNdYwFDgI/KKXWi8jN7a8E1M45d9JNxzyO8e/jVRGZfUub6tzaTu3eo4ONVpaa\nAOPNbD9M4edpRt/84S4iG5VS4UCHmwuJyGULx88GRgK9gOIGm1eAdOD1m9uSc96EYtZZkAzAcOtG\nEblWmIOVUtbAC8DxmwNNTh1XlFLTgGmAH8aeYO5uYNzNgeYWaWbapJM7NB1stDK1VkQG3MbxMSIS\nYWb7JaDtzRty5gxewjiU1hKw5cYEugANitMApVRtwAs4JiLhxamjGJZi7JWcUEotBQKA3SKS54M+\nH80xXoNsC71Lb4zXpxmmwQaMvZ5bbQOiMfaG+mIcYvtbRIKL0CbtLqaDjVaRWeo1ZAHWt2ybjfGb\nfAjG+Z0ojL0DO4xDTVWL2YbaOT/NBb0SISKfK6ViMM4HfQSMA9KUUsuAMSJypRDV2OX8bMstgfnm\nU2Gcd7lZtojceh8UIhKnlOqIMQj2xzgHppRSZ4EJIvJbIdqk3cV0sNHuekqpBsAo4ADw0M3zBzmZ\nWW/cRvXxOT/zZJIVwfXhMHP/H2ub2YaIzAXmKqUcgO7AM8C/c9rRuxDnvB6oF4vI00VrrnkichF4\nOqcX6QM8DLwJ/KqUihCRHXfiPFrFpFOftXuBJ8Yhoc1mJqrzpPgWhYjEY8wK81ZKuRazmuvzLC5m\n9rUr4PxXRGR5znDkCcBPKVUjZ/f1ZIhbe3kAJ4FkoMOdTksWo0Mi8jnwKsbPmX/dyXNoFY8ONtq9\nIDTn5633qjTDmJJ7u8vHfI9xGO47pVTlW85he9OHvyX7MQbDkbcc+9Stbc7Z3t3MthoY52CyuBFk\nrg93Nby1fE6G2RyMczOf5aRv31pnR6VUlQLafr1si5xe1q3q5/wsynySdhfSw2jaXU9EwpRSq4H+\nSqm9GCfUG2L8tr0O4z04t+NbjFlb/wLOKqXWYLzPxgvoC3Qk//tsVmCc6xillHIHjgItMA6P/QU8\nckv5NTlzNnuBi0B14NGc9zRdRNLBmAmnlDqEsbezAAjCOGS3ICeZYSzGntP7wGNKqR0YA1RD4H6M\n2YL1uBG08vMI8HlOHecw9ta8c67JVeDHQtSh3cV0sNHKSlEWpLRUNr/jb93nD3wKDARex/jB+x6w\nCRhUjPpvFBIxKKUewzhh/2zOy4CxRzULCMuvXhFJVUr1wJhq3APjvS+7ga45bbs12LyHcT6kU877\nSQDOYkxJ/t8tZYdjvAF0ADcy8LYB4SKSppTqldNuf2Aoxs+EyxgD3ifcGOIz2/abrMN4n003jMG7\nBsaswB+AKSISauE47R6hREp7MV1N0zTtXqPnbDRN07QSp4ONpmmaVuJ0sNE0TdNKnA42mqZpWokr\nV9loSimdraBpmlbBiUieG4XLXc9GRMr1a8KECWXeBt1G3U7dRt3G8vqypNwFG03TNO3uo4ONpmma\nVuJ0sCkiX1/fsm5CgXQb75yK0E7dxjtDt7FklasVBJRSUp7ao2maphWNUgqpCAkCmqZp2t1HBxtN\n0zStxOlgo2mappU4HWw0TdO0EqeDzV0uJCSEESNG4Ofnx4gRIwgJCSnrJmmadg/S2Wh3sZCQEHr3\n7k1QUFDuNi8vLzZt2oSHh0cZtkzTtLuVzka7B40bN84k0AAEBQUxbty4MmqRpmn3Kh1s7mLh4eFm\nt0dERJRySzRNu9fpYHMXc3FxMbvd2dm5lFuiadq9Ts/Z3MX0nI2maaXN0pxNiQcbpdSjwPtAO8AA\nnAXeE5EAM2V1sLnDQkJCGDduHBERETg7OzNp0iQdaDRNKzFlEmyUUi8BM4FvgXUYh+3aAidF5C8z\n5XWw0TRNq8BKPdgopRoBp4H3RWRmIY/RwUbTNK0CsxRsSvKx0M8D2cAPJXgOrYSkZ6VzJeUK8enx\nJGckk56dTrYhGytlRdVKVbGpYoNddTscajhQyapcPV1c07RyqCQ/JR4EzgDDlFLjgEbABWC6iMwq\nwfNqhRSXFsexqGOcijnF2StnCboWxIW4C4QlhJGUkYR9dXvqVKuDTRUbqlaqirWyxiAG0rPTSUxP\nJDY1lmtp12hg04DGdo1p5diKdg3a8ZDbQ3jV9UKpPF9uNE27R5XkMNppwBlIAz4EgoEngVeAN80N\nrelhtJKTZcji0OVD7Azdye5Lu9kfsZ+Y5BhaO7WmZb2WeNt709iuMR51PXC1dcWuuh1WquDM+Mzs\nTMITwzl39RzHo46zP2I//4T+QxXrKgxoOoDhrYfzgMsDOvBo2j2iLOZszgKNgSdE5M+btv8FtBWR\nPDd76GBz54gI566eY13gOjYFb2JH6A4a1W7Egw0fpHPDznR06UgT+yaFCijFOffJmJOsOL2ChccW\nUrNyTd7p8g7DWg3D2sr6jp9P07TyoyyCzS6gI2ArIsk3bR8NfA04i0jULcfIhAkTcn/39fWt0I9B\nLW0GMbA7bDcrTq9g1blVpGWl8bDXw/Rt3Bdfd18cajiUSZs2Bm3k078/JS4tjv8++l+6u3cv9XZo\nmlYyAgICCAgIyP39448/LvVgMxd4jiIGG92zsez6PTPh4eG4uLgwadIk3N3dORx5mMXHFrP05FLq\nVq/LoOaDGOg9kLb125ab4SsR4Y8zf/DGujfwb+3PZz0/04kFmnYXKouezaPAauBJEVlx0/YNQDMR\naWTmmAoZbMwFgTt946S51QDsXeyxe8mOLNss/Fv7M6z1MFrUa1Go+kSESwmXOB97npBrIVxKuERk\nUiSxabEkpieSlpWGQQxUsqpEjco1sKtuR32b+njU8aCZQzPa1m9L7Wq1i/w+rqRcYfjy4VSxrsLv\nQ36nWqVqRa5D07Tyq6xu6twCtAE+wpggMARjb2ekiCw0U77CBZvSWhJmxIgRLF68OM/2ngN7svGP\njfnOvYgIF+IusGLXCn6Y+gNRl6NIqZZCnUfr0KJpCzzqeNDQtiH1bepjX8OeWlVqUa1SNayUFVmG\nLJIzk4lNjeVy4mVC4kI4FXOKY1HH8LLz4mGvhxncYjDtndsXuheVmZ3JiD9GkJ6VzvIhy/U8jqbd\nRSwFG0SkxF6ADcYVBC5jzEo7AgzNp7xUNP7+/gLkefn7+9+xc2RlZ0nLDi3NnsfPz8/sMVeSr8ji\nY4vlmT+eEddprlLvw3pS06mmybFeXl4SHBxs8bzBwcHi7+8vvr6+4u/vb1I2IytDdoXukrFbxorX\nDC+57/v7ZNHRRZKVnVWo95SelS7dfuomk7ZPKtrF0DStXMv5HM/7+W5uY1m9KmKw8fX1LVIQKIr0\nrHSZd3CeNPm2iTh0dCgwqIUnhMuMPTOk+0/dxfYLWxmwZID8d99/5dyVczJ8+PAiBcXg4GDx8vIq\nVHDKNmTLuvPrpMuPXcRnto8cijhUqPcXFh8m9pPt5dyVc8W7QJqmlTuWgo2eob1NJbGMf2Z2JguO\nLOCzfz6jqX1T5g2Yh2s/V/r06ZNnuO7/xv8fvxz9hV+O/sLBywcZ4D2AMZ3H0MuzF9UrV88ta+kZ\nNluPbWXg/wYSnxZPalYqBjFQxboKIfNCuBx02aTs9QevLVq0yGS7lbLi4cYP09erLwuPLaTPoj5M\n7jWZ53yey/d9utq6MrrTaD775zMWPLagiFdJ07SKRD9i4DbdyTkbEWHZqWWM3TqWRrUbMclvEp0b\ndjY51/UVnGvUrYFdPzvWxKyhc8POjLxvJP/y/heXwy7nJis4Ozsz8q2RBEogk8dM5uI/F/Ocs3W3\n1kycPZE61epQo3INrJQVGdkZvDbkNY7tPZanvHMbZ1atW8X9zvdbfB9nr5zl4cUP8+FDH/Li/S/m\n+56vplzF81tPwt4Kw7aqbRGulqZp5VGZzNkU9UUFHEYTuTG34efnl2duo7B2h+2WjnM7Srsf2smm\noE1myxgMBll/fr30/qW31J9aX8ZvHS+hcaEm7fD09DQZ+qpkX0kGzR4kX6z6QpxcnPIMo7m5uZlt\nr6W5qDa92ojbdDfp8XMPOXz5sMX3E3g1UJymOMnO0J0Fvve+C/vK8lPLC3GVNE0r79BzNuVTZGKk\nPP3H0+L8tbP8fORnyTZk5ymTbciW5aeWi89sH2k1q5UsOLxA0jLTTPZvCtokHt088p2XGTBggNn9\nnR7pJAuPLpSVp1fK7rDdEpUUle+cTUZWhszeP1vqfVVPvtrxlRgMBrPvbdnJZdLyvy0LTBr4OOBj\n+WDTB7dxFTVNKy8sBRs9Z1NGDGJg7sG5jNs2jmfue4Yzr52hVtVaJmVEhL/O/8XYrWOpbF2Zib4T\n6d+0f26ac3RyNHMPzmXuobnUrV4X6yTzKcQHzhxg1KpRbD2z1ez+kLAQ1gWuIyE9gcikSAJjA6le\nqTr3v30/Df5qgHWyNa4urib3D73U/iUebfIoA/43gCspV5jce3Keegc1H8SUXVNYc24NA5sNtHgt\nPOp4sD5ofaGum6ZpFZMONmUgMDaQ51c9T0Z2Blue3kJrp9Z5yhyMOMiYjWOISYnhsx6fMdB7YO59\nLKdjTjN111RWnFnBoOaDWD5kOfc738+If0YQeCgwT10ZNTJo16AdYS3C2HhuY579ve7rxaInbkz6\niwghcSFsCd7CUpulnIg+waCug3Br5GZyXMPaDdny9BY6zeuETwMfnmr1lMl+pRTPtX2O3079lm+w\nsaliQ3JGssX9mqbdBcx1d8rqxV0+jGYwGGTWvlliP9lepu2aZnZ4KSY5Rkb9OUrqT60vcw7Mkczs\nzNx9x6OOy+DfBovjFEf5JOATuZJ8RUSMw2hbg7fK498/LspOWUxXNjc05unpWeAc09p9a8Wxk6PU\nblZbBg0dlKf8nrA94vy1s6RmpuY59kzMGfH4xiPf+pccXyJDlg3Jt4ymaRUDehitbMUkx/Dsn88S\nmRTJjud20Myhmcl+EeGXo7/w3ub3GNZqGGdeO5O7HExofCgfbf2IDUEbeKfzOywYuICaVWqSmJ7I\nt3u/5bt931G1UlWea/scH2z/gG+//JaIiAic6jsx8NWB/B7xO0cPH+XMlTPEDo6Fv0AlKaxsrQjx\nDaHj7x3xdvCms2tnHmv2GJ1dO+f2okJCQnhj2BtEB0UDsPzMcg7vP8zmzZtzh9Q6unakZb2WrDyz\nMk/vxrOuJ6HxoYiIxRUGIhIjqF+z/h293pqmlS862JSCfy7+w7DlwxjRZgQrhq6ginUVk/2XEi7x\nwuoXiEqKYp3/Oto1aAdASmYKk3dM5rv93/Fah9cI/E8gtarWIjY1lsnbJjNr/yz8PPyYP3A+DzZ8\nEKUUUUlRdHmzC6vOrmJN2BqCTgfRybUTvTx78foDr9OodiMcP3fMXSIm25BNVHIUp2JO8c/Ff3h+\n1fNUta7KNw9/g6+7L+PGjTNJ6wYIDg7Oc7/NQO+BbA7enCfYVLKqhCBkSzaVlPl/biejT9LBpcNt\nX2dN08oxc92dsnpxlw2jGQwGmb57ujhNcZJ159eZLbPs5DKp91U9+TjgY8nIysjdvjFwo3jO8JQn\nf3syN705OSNZPt3+qdhPtpfnVj4n56+eFxGRzOxMWXFqhTyy6BGp/UVtGb58uCw7uUziUuOK1ebl\np5aL89fO8u2eby2ukNDdt7vJcZuDNkv3n7rnqS8+LV5qfFYj33M2+bZJvmnUmqZVHOhhtNKVnpXO\ni2te5FjUMfaM2oN7HXeT/WlZaYxeP5rNwZtZO3xt7jf7xPRE3t7wNhuDNzK732weafIIIsKyk8t4\nZ9M7PODyALuf300T+yakZKbwzZ5vmL5nOq62rrx8/8v8PuR3alSuYdKO87HnuRB3gaspV8kyZGFT\nxQb3Ou60cWpjssoAGCf1n2j+BPc3uJ+uP3WliW0Ts++vcu3KJr9XrVSVjOyMPOXOXDlDEzvzdQCc\nu3qOpIwk2ji1yfd6appWsZVYsFFKdQe2mdkVJyJ2JXXe8iA2NZbHlz6OQw0Hdjy7g5pVaprsD4sP\n44nfnsC9jjuHXjqUe+f8/vD9DFs+jO6NunP8lePYVrUlLD6Ml9e+zMW4iyx8fCHdGnUjMzuT7/Z9\nx2f/fEaXhl34/cnfc4OVQQzsubSHVWdXsTVkK8eijtGoTiM86njgUMOBSlaVSMxIJCg2iMDYQAZ4\nD+Bj34/xsvMyaWOjOo2Y3nc6n6Z/itdJL5OhNBsnG/q+0NekfHRyNPVq1stzLXaE7qCTayeL12rJ\n8SUMaj6oRJ4Yqmla+VHSPRsB/gMcuGlbVgmfs0xdSrhEn4V9eLTJo3zV+6s8H6L7wvfx+NLHebPj\nm7zb5d3rSzvww8EfGL9tPLP6zWJwi8EA/Hr8V0avH81/HvgPfwz9gyrWVdgaspXX/noN+zR7fHb5\nEBsby4xVM3jzwzfZcHUD8w/Pp2qlqjze7HG+6PkFHV07mvR0bnYl5QpzD86l04+d+G3wb/h5+Jns\nH9hsICP/HMnONTv56tOviIiIwNnZmbjOcTRo2MCk7KHLh2jtmDeF+8+zfzKm8xiz58/IzmDuobms\nHb620NdX07QKytzY2p14Ad2BbKBHEY4psXHE0hB4NVDcv3GXKTunmN2/6swqcfjKQVadWZW7LSMr\nQ15a/ZK0/G/L3NWPUzNT5fk/nxfvmd5yMOKgiIgkpCXIC6tekIbTGsr3m77Pk8JsZWclQ34YIgfC\nD1i8o9+SzUGbpcHUBpKckZxnn+cMzzyrMvvM9pHdYbtNtrX7oZ1sC9lmsu3clXNS76t6Jqsd3GzB\n4QXS4+ceRWqrpmnlG2U0Z1M+nklcCoJig/D72Y+xXcfyUvuX8jy9s71/e748+SVrh6/lAZcHAEjO\nSGbwssEoFLuf302tqrWITIpk4P8G0qh2I/a/sJ9aVWtxJPIITy57krZV2tJ5X2cmfDmB6Ohok/Mb\nYg1U/rsy979oeYFMc0JCQvhp/E+kHkyl3/Z+zJ8xPzel2SAGYpJjcKjhkFs+KimK4GvB+NT3yd12\nLOoYkUmRPOT2kEnd0/dM54V2L1C1UtU8503PSufj7R8zf+D8IrVX07QKylwEuhMvjD0bA8YHp2UB\nV4DFQMN8jinpoFsiQuNCpdH0RjJ7/2wRMX/zpLW9tazftz73mLjUOOnyYxcZuXJk7o2b56+eF49v\nPGTitom5vZNlJ5eJw1cO8s1f3+Sp89ZXUZ+hU9Aza/Zd2idNZzbNLevv7y+ePp7i0c3D5MZO/+X+\n8tnfn5nUHRQbJHaT7SQ6KdrsuSfvmCz9f+1fpPZqmlb+UdoLcQJtga+AfkBX4A0gCggDHCwcU+IX\n4k6LTYmV5t81l6k7p+ZuK+jpnUnpSdLlxy7yyppXchfePBNzRly+dpEfDvyQW8+sfbPE5WsXORRx\nyGKdlurfGLhR5h2cJ6vPrpb0rHSzbbdU58CBA8Xf318atG4grXu1lu3bt1sMSociDonTFCeJT4vP\nrddgMMiAJQPyBKDrgmODxX6yfW7qtqZpd49SDzZmTwY+QCbwsYX9JXkN7rj0rHTxXeArb61/y2R7\nfk/vzMzOlEcWPSIjV47MDTRh8WHiNt1N5h+an1vH7P2zxf0bdwmODc63zps//I+dOSbvbXxP6n5Z\nV7rO7yojV46UzvM6S9+Ffc2231Kd1atXN/ndxsbGbLlhw4fJA3MfkLkH55rU+7/j/5Nm3zUzO1eT\nlZ0lvgt8ZfKOybd17TVNK58sBZtSvc9GRA4rpc4BD1gqM3HixNw/+/r64uvrW/INK6a31r9FrSq1\nmNJ7isn2/J7e+c7Gd8iWbOb0n4OVsiIlM4V/LfkXr3V4jWd9ngXgr/N/8fH2j/nn2X/wqGucP7G2\nNb+is5OTE7169eLV915l6OahdHDpwOpHVvP9V99zIfwCde3qsr/ZfrPHWmpnamqqye9JSUlmy636\naxX3tbuP532ez912Me4ib6x/gzXD1pidq5m8czIGMVjMUNM0rWIJCAggICCg4ILmIlBJvoCTwDoL\n+0ou3N5hi48tlqYzm5oMH113LvCcVKtXLU/PY+b6meI1w0uupV7LLfvcyudkxIoRuXM0oXGh4jjF\n0eShY1FJUeLwoYM4uzlbnF957H+Pyfit483Ow9i72JtdbDMoKEhq1a9lUrZatWpmezGWXo08GuXW\nnZKRIh3mdLCYjbcpaJPUn1pfwuLDin/hzbg+n+Tr61vsh9dpmnZnUE6G0dpjTBaYYGF/CV6COyc4\nNlgcvnKwuMTKpO2TpMvULjJ8+PDcp3fuPb5XHKc4yv7w/bnl1pxdI54zPCUxPTF3279+/Zd8EvCJ\nSX0vrnpR3lr/Vr5PBPWe6S1zDsyRJ4Y8ke98znXZhmwZvW60tPy0pQx5akhunS0eamH2+CrVq+Q7\nV5RtyJanfn9Khi4bajb1+tyVc+I0xUm2Bm8t1jW3pKAkB03TSlepBxtgITARGAj4AWOAGCAEsLNw\nTIlfiNtlMBikx889LM45nI45LfaT7fN8ex++fLjJ0yjTs9LFa4aXbAjckLttx8Ud4v6Nu8lcR1xq\nnNT+orbEJMfk267NQZvl/h/uF2s36wIz1ZLSk2TosqHSeV5niU2JzX1fn//9uTQc11AaeTQyOda2\nvq0EBASIo6Oj2bp9fX3l7fVvS5cfu0hKRkqetkUlRUnjbxvLnANzROTO9kQKSsbQNK10lUWw+QA4\nAlwD0oGLwPeAUz7HlPR1uG0Ljy6Udj+0M3nOzHXBwcHSoHMDadyuscmH6KGIQ9JgagNJSk/KLfvT\n4Z+k5889TY4fvny4zNgzw2TbhsAN4rvAt1BtCw4OtjiZf/3Dd++lvdLsu2YycuXI3OfPpGely4ur\nXpTWs1pLeEK4BAcHyxNDn5Ba3rWkcffGEhgUKCIi/Qf1N1t3q56tpPWs1rmB62bXUq+Jz2wfGb91\nfG4b72RPJL9kDE3TSl+5GEYr6FXeg01SepK4fO2S5+55EeOHqKU5lSHLhsi0XdNMynee11lWn12d\n+7vBYJC6X9aViIQIk3K/n/xdBi4ZWKj2WfqWb2NjIwdOHpDX1r4mTlOcZMnxJTfaHRssHed2lAFL\nBuTOP52IOiGeMzzloy0f5Q6J7b20Vxw+dJB6rvVM6q7ToI40+aSJRCVF5WlPXGqcdJrXSd74643c\neu50T0T3bDStfNHB5g6YsnOKDFo6yOw+Sx96g4cOltpf1DZZ7j8mOUZsv7A1eaRAZGKk2E+2N6kz\nODhYBgweIJW9KsvQYUML/PZv6Vt+g+YNxH6yvby+9nWTp3vOOTBHHL5ykKk7p+YGg1+P/SoOXznI\nL0d+ya136YmlucvsXB8C6+7bXby6eUnrz1rn1nmzK8lXpMOcDvLa2tdM5nDudE9Ez9loWvliKdjo\nRwwUUnpWOtN2T2Od/zqz+0+fPW12+5HTR/B73C/3qZsARyKP4FPfh8rWpsv03/x0zNGjR7Nx40bS\n0tIAWBq0lH1797Fl85bc5WRuZSmVuaZjTXa+sDM3jfrQ5UO8se4NEqMSeeDAA6z5aw176+8lu3s2\nxzOPs+nfm2hbvy1ZhizGbhnL0pNL2ThiIz4NjEvUfDfvO4YsG0JTq6b89uRv2FSxMTnfpYRL9F3U\nl/5N+vNlry9NntCZX1p4cXh4eLBp0ybGjRuXu1DopEmTLF4jTdPKiLkIVFYvynHPZsnxJfkuGmnX\nwM7sN/ZajrXyDKEtOb5EhiwbYrLNYDBIva/qScDhgHyXpWnm10zWnF0jZ6+clcuJlyUsPkwOXz4s\nK06tkDd/fVOqO5rekOnheWNpmTMxZ2T48uHiNMVJPv3zU/H09MyTCHD8zHEREQm5FiIP/vig9FnY\nxyQ54UTUCWnybRN54683zM5bHbl8RFynucpXO74ye510T0TT7m7ons3tWXRsEc+2fdbifkNNg9nt\nylbRxN704WE2VWyIT4s3LacUz/k8x7NvPEtIUIjF86TFpTFj7wyCrwWTmJFIZavK2FW3o1GdRrSs\n15Jpi6ax5cctXI2+irOzM5988gkR1hG8t+w9Ai4E8GbHN5ndbzavPP8KwcHBJnUnRCbwxSdf4DfG\njw+3fMgm2f0UAAAgAElEQVR7Xd5jTJcxuY9J+OXoL4zZOIapvafyTNtn8rRt1dlVjFo1iu8e/Y4h\nLYeYbb/uiWjaPcpcBCqrF+W0Z5OYnig2n9uYvYHzOpv7zWeBOXVykk1Bm0zKXoq/JPaT7U3mbK6f\np0aTGhZ7NRRh4js0LlSm7JwirWa1kibfNpEZe2bI8TPHxd/fXzp37SzVa1c3W3+d5nXk/h/ul2OR\nx3LrupZ6TYYvHy7NvmsmRyOP5jlXtiFbxm8dL67TXGXvpb2Fap+maXcndM+m+HaH7canvk/uEzXN\nyeyeicc1D0KCb/RKvLy8aOrflOhk08cBuNi60MapjbG35HOjt2RTxYaH2z3MivMrzJ7Dy8uLSZMm\nmd2XmJ7IvvB9BFwIYF3gOkLiQnjM+zFmPjKT7o26c+HCBXx7+BJ6ITTf9+rZ0JM9o/ZQycr4T2N9\n4HpeXP0i/Zv25+CLB/M8iC06OZp///Fv0rLS2P/Cfurb1M+3fk3T7k3KGIjKB6WUlKf2XDdl5xQi\nEiOY/vB0i2UqT6rMiWEnmDRxksnw0NLwpVxKuMR3j35nUv5AxAH6/dqP7SO308yhWe72kJAQevfu\nbfIYZlVZ4ebjxqC3BtHQvSEASRlJRCdHczH+ImeunOFSwiXa1m9LN7du9PHqw0NuD3Ep9BJjPxrL\nyaCTnA86T+oV0zXPbtXIoxHbtmzDw8OD6ORoxmwcw47QHcz911x6efbKU35j0Eae/fNZnm7zNJN6\nTMoNUJqm3btynj6c51lmOtgUwqtrX6W5Q3P+0/E/Fss4TnHk6MtHaVDL9HHJ56+e58H5DxL8ZnCe\nrK1fjv7CB5s/YOHjC+np2TN3+/UHr0VERGDvaE//l/sTXz2eyKRIkjKSUChsqthQr2Y93Gq74W3v\nTVP7prnZbSLCyj0reXbQs8RfNp0bulUV2yq0adUGbw9vJk2ahKubK7MPzOaTvz9h5H0jmeg7kZpV\napock5KZwvub3mfl2ZUsGLjApO2apt3bLAUb/VW0EOLS4qhbvW6+ZVo6tuRI5JE8waaJfRP6ePVh\nwrYJfN33a5N9T9/3NA1sGjDyz5F0dOnI253fprNrZzw8PFi0aFGR2hiRGMHfF/9mc/Bm1gWuI3FJ\nIomXEws87sl/PcmiRYsQEdacW8Ojsx/F1daVgGcCaOnYMk/5gAsBjFo1ik6unTj28rECr4umaRro\nYFMoVsqKgnpcfb36svLMSh5p8kiefdP7TqfD3A40r9ecUe1Gmezr7dWbs6+fZfaB2Tz757OkZaXR\n06Mn7Rq0o6l9U+rb1Me2qi3WyppMQyYJ6QlEJ0cTFh9G0LUgTsac5NDlQ6RkpvCQ20P09OjJew++\nx0urXyKAgHzb7OXlxSeffMKW4C2MDxhPfFo8U3pPoV+Tfib3xgBcTbnK+5vfZ0PQBv776H8Z4D2g\ncBdP0zQNPYxWKKPXj6ahbUPGdLH8DJbLiZdpOaslJ189mad3A8bhtD6L+jC4+WAm9ZhEtUrV8pQR\nEU5fOc32C9s5EnmEwGuBRCVFkZiRSLYhm8rWlalVpRb1atajoW1DvOp60aJeC9rWb4tnXc/cAGEQ\nA4888QgbV27Mcw53d3c8PDxo0KABPZ7rwU8XfyI6OZrx3cczrNUwrK1Mn5uTbchm3qF5jA8Yz1Mt\nn2JSj0n5JkpomnZvK/M5G6XUeqAP8KmIjLdQplwGm9kHZrM3fC8/Dfwpz77r8yvh4eFEW0XjOtCV\n9f9Zn6dnABCTHMMra1/h0OVDfNTtI4a1Gkb1ytXvSBujkqLYdmEbG4M2si5wHTbJNlz94SrXIq7l\nlvHy8mLVX6vYlbSL6XumU9mqMu8/+D5DWg7JE2QANgdvZszGMdSpVodvH/6W++rfd0faqmna3atM\ng41SahjwNeAEfFbRgs3pmNP0WdSHi6Mv5t7gCOYzx6rWq8qo6aOYOXym2YADxnmPr3Z+xZ5Le3i0\nyaP09erLAy4P0NiusdkP/ZsDmrOzM6+8/wopNVM4EX2Cw5GH2XNpD1dSrtDVrSu9PXvzaJNH8bLz\nMkk0qF63Oo7/cmR19Go6N+zMmx3fpKdHT7NtPBhxkP/b+n8ExQbxZa8vGdR8kMX3ommadrMyCzZK\nqbrAKWA0sIQK2LMREdr+0JapvafS26t37vYRI0awePHiPOXrdKjD0PFD+ebhb8wOl10XnhDOqrOr\n2HphKwciDhCZFImrrSuONR2xrWpLFesqJEUlsfvz3aRG30hbtra3psP7HWjfsj0+DXx4wOUBWtRr\nYRIIwZg08NvJ31h0bBGRSZGMbDuSUe1G4V7H3Wx7Dl8+zCd/f8K+8H181PUjRrUblWf9Nk3TtPyU\nZbCZAzQSkb5KKQMVMNiAMU15zsE5/PPsP7nf8v38/Mw+e7tr9644vebEyeiTzHxkZqFTg1MyUwiL\nDyM6OZqE9AQyDZlMf3c6f6/5O09Zd3d3tm7darLMi4hw5soZ1pxbw8qzKzkdc5oB3gMY3no4PT16\nmu01iQg7Qnfw5c4vOXz5sDG54P6X7tjwnqZp95YySX1WSj0EjADalOR5SoN/a39m7pvJDwd/4OX2\nLwOWVzB2c3Vj4eCF/HHmD15e+zJONZ14tcOrDPQemOeelZvVqFwDbwdvvB28c7fNSJphtuyFCxfo\n3bs385bN46K6yPaL29kcvBmAR5s8ykddP6KHRw+qVqpq9vjM7EyWn17ON3u+4UrKFd7t8i7LhyzP\ntyemaZpWXCXWs1FKVQYOA8tFZELOtgrbswE4e+UsXX/qyvIhy+naqKvZORsvLy82bdqU2+PIMmSx\n8sxK5h2ax66wXXRt1JXujbpzf4P7aeXYCseajvnOh1gaqruuervq9P+gP90bdaenZ0+87b3zrS8s\nPowfD//I3ENzaWzXmNEdRzPAe4DZXo+maVpRlfowmlLqI2Ak0FJE0nO2VehgA8YMrWHLh7Fk0BJ6\nefYymYQvaAXj2NRYtoZsZUfoDg5ePsjxM8dJ2pBE5eTK1LCrgdcgL2zr22IQA+nZ6SSmJxJ1KYro\n2dEQa749fn5+bN26Nd82p2amsursKhYcXcDeS3sZ1moYr3R4hVaOrW73cmiappko1WCjlGoInAWe\nB/66vhnjR+YU4HMgUUQMtxwnEyZMyP3d19cXX1/fO96+2/X3xb8ZsmwIb3Z8k3cffLdYa4KZ6xU5\nuznzxc9f4OLmQtVKValVpRZ21e1IiU7h4T4Pc+HChTz1+Pv7m11tID0rnc3Bm/nt1G+sOruK9s7t\neea+Z3ii+RN5FtPUNE0rroCAAJO5648//rhUg0134PrX7ZtPKjm/C+AjIsduOa7c92yuC40P5dk/\nnyU2NZZpfabh5+FXpOMtDY9ZCh6FGbKLSY5hQ9AG1pxbw4agDbSs15IhLYcwuMVgnGsV70mYmqZp\nRVHaPRtboK2ZXQHAQmAecFBEUm45rsIEGzBmci09uZRx28bhWNOR1zu8zmPNHitUJpelTLb8hsVu\nHbJ7Z+w7hFuHs/3idraEbCEwNpAeHj3o16Qf/Zv218v9a5pW6ko1G01EEoA8+bo5E9cXReSfkjhv\naVNK8VSrpxjcYjArz6xkzsE5vLL2Ffo27ktfr750a9QNr7peZifsLWWyOTub74HEJMdwUV2kw+sd\nOBR5iP3h++m6sisdnDvQvVF3vun7DR1dO1LFusodfY+apml3QqmujaaUysaYIDDBwv4K1bMxJyop\nijXn1rA5ZDP/XPyHlMwUWjm2oql9U9xqu9HApgF21e1IjEpk7MixRIRG5B7r1NCJt2e9jaqriEyK\nJCwhjAtxFwiMDUQQWtRrQRvHNrRr0I72zu1p7dRaP0NG07RypczXRiuMuyHY3CoqKYqTMSc5f/U8\nofGhRCVHEZsaS2JGItcuX+PiiotkxmdSvW51Wg1thUsjF+yr21Pfpj6utq6413GnsV1jHGo46CVj\nNE0r93Sw0TRN00qcpWBjZa6wpmmapt1JOthomqZpJU4HG03TNK3E6WCjaZqmlTgdbDRN07QSp4ON\npmmaVuJ0sNE0TdNKnA42mqZpWonTwUbTNE0rcSUWbJRSfZRSW5RSl5VSaUqpMKXUUqVU85I6p1Zx\nhISEMGLECPz8/BgxYgQhISFl3SRN00pQST6p8ynAB9gLxABuwIeAK9BaRMLMHKOXq7kHFObZPJqm\nVUzlYm00pVRT4AwwRkSmm9mvg809oKgPjtM0reIoL2ujxeb8zCrl82rlSHh4uNntERERZrdrmlbx\nlXiwUUpZKaUqK6WaAD8AEcCSkj6vVn4V9cFxmqZVfCU+jKaU2g/cn/PreWCAiJy1UFYPo90D9JyN\npt29ymzORinlDdgCnsA7QH3gQREJNVNWB5t7REhICOPGjSMiIgJnZ2cmTZqkA42m3QXKS4JAbeAC\nsEREXjWzXwcbTdO0CsxSsCnVB9iLSLxSKhBobKnMxIkTc//s6+uLr69vyTdM0zRNK5aAgAACAgIK\nLFfaPRsnIBBYqHs2mqZpd59S79kopVYAh4BjQALgDYwGMoBpJXVeTdM0rfwpyWG03cAQ4G2gChAG\nbAO+NJccoGmapt29SnUYrSB6GE3TNK1iKy8rCGiapmn3IB1sNE3TtBKng42maZpW4nSw0TRN00pc\nqd7UqWnllYiQlWlADIJSYF3ZGiurPHOcmqYVkw422l0t6Voq4edjiQy+RszFeGLCEoiNSCQuKpnE\nq6kkXUsjNTGd9NQsrKwVVtZWIEJ2loFKVaypXqsqNnWrUcepJvYutXDyqINzE3sataxHo9aOVKtR\nuazfoqZVCDr1WbsrZGcZCD0VQ/DhSIIOR3LheDRhp66QlpSBcxM76nvVxcm9DvautbB3qUUdJxtq\nO1SnZp1qVK9VlSrVK2FtfWNUWUTITM8mJSGdxNhU4qKSuXIpgaiQOMLPXSX0RAyXzlzBtZkDrbo3\nwqePJ2383KlSTX9/0+5t5WIhzoLoYKMVVnJ8Gqd2hHFyRyhndl0i8OBl7F1q0fj+Bnj61Me9tSNu\nLevh4GqLUnmHw66vOh0eHo6Li0uxVp3OTM8i8OBljm27wMH1QVw8Hk37fk3oNfI+7uvpoYfhtHuS\nDjZahZaZkc3pnWEc2hjE0S0XCDsVQ9MHXGjZzY1mnV3x7uiCTZ1qhaqrpJ6nExedzD9LT7LxxyNk\npGbyxLtd6PlMGypVti52nZpW0ehgo1U48THJ7Ftznn2rz3Fs6wWcm9rTrq8nbXt50qyTC5WrFm/I\nasSIESxevDjPdn9/fxYtWnS7zUZEOL79Ir99toOokDhGTetNxwHet12vplUE5eIRA5pWkKsRiez8\n/TS7Vpwh5EgkbXt70vnxZrz+Qz9q16t5R84RHh5udntERMQdqV8pRRtfd9r4unNoYxCzX19PwOIT\nvPr9o9Syq35HzqFpFU1Jrvo8GPDH+EhoByAUWAF8LiJJJXVereJJupbKjt9PE7D4BBeORfHAv5ry\n+JhO+PT2LJEJdxcXF7PbnZ2d7/i52vXx4rtjL7Hggy2Mvn8eH/05BI82Tnf8PHBn5qE0raSU2DCa\nUmo3cAn4I+dnW+Bj4LSIdLFwjB5Gu0dkZxs4simYTfOPcGhDMG17e+Dr35r2jzQudIAp7odrSc3Z\nFGT7/04w540N/N+KJ2n5kNsdrbus3pOm3arU52yUUvYicvWWbf8GFgA9RSTAzDE62NzlrlxKYMO8\nw2yef4Q6TjXp/Vxbuj3VEpu6RRteut0P1+uBKiIiAmdn51LrBRzeFMxU/z8Y9eND/Lh05h3rhZT0\nPJSmFVapz9ncGmhy7AcUYH4cQ7sriQjHtl1gzXf7OR5wke7DWjFu9VA876tf7DrHjRtnEmgAgoKC\nePvNd/notcnEhMYTG5FIfHQKCVdTSEnIID0lk+zMbETAupIVHtUfoZVDVWrXrsm+Xy9x0SMJV28H\nGrZwoGr1krlZ06e3J49NbMPAx/uRmH3jv8iePXtuqxdS0vNQmna7SjtBwBcQ4HQpn1crAxlpWQT8\neoI/p+9BDEL/1zvw9i+PUd2mym3XffFCmNntezYeY0XKbuq52WLvUgvXZvbUsnelhm1VqtWsgnVl\nK5RSZGcZSE/JJDk+jYQrqVwNT2Dvn+f4/fQuLgfG4trcgda+7rR/xItW3Rvd0fTlP3f9bBJowBgo\nx40bV+xeSGnOQ2lacZRasFFKuWCcs9kkIodK67xa6UuKS+OvWQdYPXM/nm2dGDWtD217eZi9ubKw\nrlxK4OjWEE5sD+XUjlBCgxPMlus5+AE+WzSi2OcBY5AMPHiZo1tC+Pn/thF9IY7uw1vR77X2uDSx\nv626oWR6IZMmTWLPnj15hhUnTZpU7Do17U4qlftslFI1ge2AE9BRRMz+r9JzNhVbXHQyK6ftYcPc\nw7Tv15hB73ZGbFKKNYmfmZHNyb8vsn9tIAfXB5IQk0JrP3da+zaiZVc3smsk8fDDfUtlQjwy+Bob\n5h1mw9zD+PTx5OnP/HByr1Ps+kpqfqWs5qE07WZldlOnUqoasA5oDXQTkVP5lJUJEybk/u7r64uv\nr2+Jtk+7fXHRySz/aheb5h+h21MtGfReF5zc6xR5Ej89NZOD64PY+ftpDq4LxLmJHR36N6H9I43x\natcgz/Ivpf3hmpKYzsppe1gzcz9Dxj7EgDc7FmtJGp05phVHeU1tDwgIICAgIPf3jz/+uPSDjVKq\nEvAn8BDQS0T2F1Be92wqkKRrqfz+1S42zDlMt2EtefLDB3Fwsc3dX5hv8NnZBo5tvcC2RcfZu+oc\nXu3q89Dg5nR6zBu7BrVK7b0UxeWgWKaOWEnd+ja8s+gxqtUs+hzU9Q+OI7tOUaNybZaun18uPji0\n8qkifUEpi9RnBSwF+gH9zKU6mzlGB5sKID01k9Xf7mPF1D10esybp8Z1xdGtdp5yfn5+Jt94bt7+\n64/L2fTjEbb8fIzajjXo8e82dB3aotwGmFtlZmQz84U1RAZf45P1w4sVcABCjkXx+RPLmBv4+h1u\n4T1MBCIjITQULl+GmBiIi4PEREhLg+xsY7nKlaF6dbC1hbp1wdERnJ2hUSPj7+VIRUptL4vlamYB\ng4FPgVSlVMeb9l0SEfOzpFq5ZTAI2xYdY9FHATTp4MxXO57B1dvBYnlLGVIxZ9J5u8OP+I5ozcS/\nnsK9ddHvqI+/kkLoyRjCz10lMvgaV8ISiL2cRMKVFFLi08lIy8KQZUBZKapUr0zNOlWp62RDPTdb\nXLzt8WxbH++OLtSwrVrkcwNUrmLN6J8GMOO5VUwdsZKxK54sVgJEo1aOJFxNJS46mTqOd2Y5nntK\ncjIcOAD798Phw3DyJJw/DzVrgpubMXjUqwd2dsZtdnZQKedjLyMDUlPh4kXjsdHREB5u/N3aGpo2\nhVat4L77oH17aNcOqhVusdc77W5IbS/JYPMwxjTnsTmvm30MfFKC59busFM7w5jz5gasK1nx3v+e\noHmXhgUeYy5DqnbVerz/1v/x5Ot9Cn0vS3pqJmf3hnN6Zxhn94YTdCiStKQM3FrWw8XbnvqedfHp\n44ldg1rYOlSnZu1qxufTVLLCYBBjinNcGnFRyURfjCfs9BX2rT5P8OFIPO5zosugZvj6ty7yh72V\nleL1Of15v+sC1s46QP/XOhTp+Ot1uLVwIOz0FR1sCsNggH374K+/YPNmOHYMWreGDh2gd2946y1j\nkLC1LbguS0Tg6lU4exaOH4cjR+Dnn+HMGfDxAT8/6NsXOnW6EbhK2N2Q2q5XfdZM3DoJOeY/77P1\nuyCOB1zkmS974Du8VaG/wcdFJzN34kr+++PXWNfOoLlPE2bOnlbgGLOIcOF4NAf+CuTwxmDO7QvH\nrWU9WnZ1w7ujC43bN8DJvQ5KqduaNM1Iy+LYtgv8s/Qke/48x4ODmzN8QjccXIv2QRV2Oob3u/7M\n7LOvYmtfo0jHAkx+ajkdBzTFd3jrIh97TxCB3bvh119h+XKwt4d+/aBPH+jSxTgUVhqSkozt2LoV\n1q83DtP16wdPPmkMPlVu//4xS+6GORtEpNy8jM3RykpwcLB4eXkJxh6pAGJjZSeTX14oKYnpha7n\n4O5j8oC3n9Sz9pL2TXxlb8DhAo/JzjbIyR2hMmf0Bnm20Qx5zuNb+f71dbJ39VlJTkgrdHu9vLwk\nODi40G29Lv5Ksvz8f1tkmP0UWfnNHjEYDEU6/tsXVsuiCQFFPu/1Y9d+f6BYx97VYmNFvv5apGlT\nEW9vkUmTRM6dK+tW3RAWJjJzpshDD4nY24u89prIkSMldrrg4GDx9/cXPz8/8ff3L9a/89KQ8zme\n9/Pd3MayeulgU7b8/f1NPrivv/z9/Qt1fFx0knz23AKpaWVX6AAQdiZGFny4RUa6zZBXWsySxRMD\nJORYZKE+7G+3veaEn78qb3f8Ub54cplkpGUW+rjgo5Ey0m1GkYOUiMjMl9boYHOzsDCRN94QqVtX\nZPhwkR07RIpxXUtVSIjIhAkiDRuKdOkisnSpSGbh//3cTSwFmxsPXdfueWFhl8xuL2gSMjUpg8UT\nt/Nys+9Z+c8Ckg2xJvuvL8VyXUZaFlsXHuO9rgv4oPsvZGVkM27VEP574mWGT+iOe2unQg3VFWbS\nNCQkhBEjRuDn58eIESMICQnJt07nxnZ8uf1pDNnC5KdWkJ1tKLAdAO6tHalU2YqLJ6ILVf5maUkZ\nVK2hHy1FdDS88YZxQr5yZeN8yeLF8OCDcBurT5QKd3eYOBGCg2HMGJgxA5o1g3nzIDOzrFtXLuh/\n4RoAp3eFEXE42ew+S5OQ2dkGNv90lMXjA2jTw53pB55n2HNr4XzeshEREVyNSGTtf/ezYe5hPH3q\n89jbnXigf5NCrzuWcDWF0FNXiDgfS8zFOJIumZ/fSwwz8NsXO6hkl8aYL17kwsUbAaYwC15WrlqJ\nd5c8wbg+i1n2xU6e+qhrgW1TStH8wYac3RtR5Oy6uKhk6jjZFOmYu0pmJnz7LXzxBQwfDqdPG9OQ\nK6JKleCJJ4yvf/6Bjz+GL7+ESZNg6FCwune/3+tgc4/LTM9i8YTtbF5wlM+//JwPp71iMglpY2ND\nYGAgI0aMMJl8P7kjlB/+s55qNlX46M+hNO1gDEiWsmYSLhp4rdVsug9vxVc7RuLSNP81xrKzDQQd\niuTE3xc5s+sS5/ZFkByfZsxAa2qPY6PavPL024z7bzARUTcW5XRxasjL/36LpGtpTJ85gQuXTXsy\nhV3wsnIVa8YsHMibPnPx9W9FfY+C77twaWrH5cDYAsvd6nLQNep7FH/5mwpt/354/nlo0AB27TJm\nkt0uEePk/enTEBgIYWHG+22uXjXea5Oebsxqs7IypjLb2hpTouvXN6ZLe3kZeyVubvkGhwKTU7p2\nNWbMbdsG771n7O3MnGnMnLsH6Wy0e1joqRim+v9BPbfa/Gduf+o41sz9DxQUFMSJEydISrrxUFUv\nLy+WL/mTLd8FcmzrBZ6d0pNuQ1uaDHmZy5qxsbLn0/98x3PjB+b7WOTk+DT2rz3PvtXnObwxmLr1\na9La150WDzWkWoNMvp07lYiICJP/2PktWWPpptJuXbuz/e+82835ZexWUhIyeHnmwwWWXffDQQIP\nXuY/c/oXqm6AlIR0nnaeztK497CudA99683Kgk8/he+/h2nTjD2a4g6VZWbeyBLbudN430316tCi\nBTRpcuN+Gzs7qFXLGGCsrY03d6alQUKCMRBdvmwMUkFBxkCVkGC8t6ZzZ+jWzfiqaUxPL3J2mMEA\nv/wCH3xgzF77/HNjW+5COhtNy2UwGOSv2QdkmMNUWTfnoNlJbUuT742q+si8MRtzM8SCg4Nl4MCB\n4ujoKI6OjjJgwABZsWSN+Hh0E6fKjeWhtr3l1PEzFtuSnpop//x2Uj4Z8D8ZXOtLmdh/iaybc1Bi\nLsXnlilu1pml9+Bl015CjkcV6lpFhlyTYQ5TJSsru8Cy6+YclBnPrypUvdcd3hQk7z70U5GOqfAu\nXxbp3l2kVy+R8PDi1ZGeLrJypTGBoE4dER8fkXffFVm1SiSqcH+3BYqJEVm/XmT8eJFu3URsbER6\n9xaZNUv8n3iieMkpV6+KjBwp4u4uElC87MXyDp2NpomIJMWlyhdPLpPX7/tBws7EWCzn6+tr9j9T\np/ZdcssEBwdLw4YN85SpoerItDd+leR48ynLIiKhp2Nk9hvrZZj9FPm/ngtl84IjkhSXarZscbPO\nLAWpxV+vFX+nr/N9/zd7sel3EnIsssByy6fukjmjNxSqzut++mCz/DJ2a5GOqdAOHBBxdTVmbmVl\n5dl9Pb3X19fXfHpvSIgxqNSrZ0w5njVLJCKiVJouCQkiv/8uMny4+Fpbm/036efnV7i61qwRadBA\nZOzYuy5rzVKw0XM295Dgo5F8MXg5Pr09ePuXx6hSzfJfv6W5Fy/vG0ME48aNIyws70PMUiSOg1fX\nUsN2WO62kJAQPvroI86eCCI92hqvTF8GvdyL6QdGFbhcf3GX6vDw8GD+/Pn4+/sTFRWFlZUV7u7u\ndH68OXY29fnyyeV8c3BUgQkKbi3rcenM1QIn/q+EJeDQsGg3hB5YG8ir3z9apGMqrPXr4d//htmz\nYdCgPLvNDU3lJnSkpRmH3TZsgJEjjfM7jRuXYuMxDnsNGgSDBuGSnQ1Ll+YpUug7+vv1My6RM2KE\n8ebUpUuNy+rczcxFoLJ6oXs2JWbrwqMyzGGqbFt8rFDlj+w7IXVrOOU7dGWp98Mt3/ACA4PExcm0\nB+Tp6Vnom9Is9WyGDB6a730tlnpebm5uEhQUJB/2+EU2zDtU4PlnjFot6344WGC5sb0Wyr61hb/p\nMPRUtPzbebpkZ5fze0juhBUrRBwdRXbutFjEYg/Wy8vYk/niC5H4eIvHFyg7W+TaNZHQUJHAQOMr\nLMxYZxHv4zHba7aykuAxY0SSkgpfUVaWyAcfGIfVjh8v4hsqn9A9m3tTdpaB+e9tZt+qc3y+dUSh\n0nrHtkkAACAASURBVHIPbwpm+jMb+eDpqRyJ+4vIqMg8k+9pKZmkRlqe0HZ2dkZEOLg+CH9/f8Kv\nmfaAgoODLWaFXY1I5MTfFzm7J5zgI1EkHW9EDexI4UamV61KDiT85YZ/va/x7uRKh36N6TasFTZ1\nbiyUaKnnFRoayvjx4xn9zkSWfPI3fZ73yfd6GLINWFnnP3mdnWXg/P4ImrQv/FpVWxcep/uwlsV6\nJk6Fsno1vPKKsWfjY/laW+zBZmTAuXNQp5AZe1lZcPQo7N1rXNfszBkICYGoKGPiQK1aN5aWuZ4g\nkJlpTCLw8DBmot13nzFrrE0bs+ufeXh4sGnTJtPklJEj8Zg7F7y9jWncI0YUnPRgbW0s26oV9OgB\ny5ZB9+6Fe58VTIkFm5zHQH8A3A/cB1QH3EUktKTOqZlKiktj8tDlIDBt3/P5ZoKBMd3414nb2TT/\nKGMWPcZ9PTyAvI9YPrUzjOkjV+HbfDDhiee4FG56M6ibmxsvDHuDsT0XEXs5ERsX4Fre810fBhMR\ngg5HsvP30+xddY7YiERadXOjWWdXOvRrQsMWjxGf9jwTJow3yTpzd3fnWmQSp3aEsXP5aRZ+FMCT\nHz7IwLc6Ym1tZfHD6/q57+vhzheDlpGWkkm1GpYXBY2LSqZ2vfzXPDu3PwKHhraFXkwzMz2LTfOP\n8MW2fxeqfIW1c6cxtXnt2nwDDeSz2GS3bgUHmrg4+PNP42vrVnB1NS6U6eMDw4YZg4izs+X1y1JT\njSs+BwcbM9H27DHe+3PpkvHDv18/GDjQmB6dw8PDI++XpV69jMe+/jr8+CPMnWvMiCuIv7+x7ief\nhJ9+Mp7vbmOuu3MnXkB34DKwBuOTOrMBtwKOKcne3T0lMuSavNx8lnz/+jrJyiw4kyouJlnG9loo\nH/b4RWIjE82WyczIkp//b4v4O30tO1ecFpEb2WhOTk7i5OQkjz7STz4ZMV/8nb6WtbP2S1ZmtsXh\nkcFPDJVlk3fKS83+K897zpSf3t8sp3eHFSrzy5zw81fl3Yd+ks8HL5OsLMvn5abkglGNvyswUeB5\nz5kSejr/Mj++s0l++ajwE/2bfz4iY3stLHT5Cink/9s77/Aoqq+Pfy+91xRIKAkBpIlUAQEJKCBI\nUWlCABH8UQQVBQWRqEh5BUKv0kF6D9JDCT0QeodUAgk9hCSk737fP24SU2Z2NyHJbnA+z7MPYebO\nzNnd2XvmnHtKAFmuHLlvn0nD/f396WRnZ3rUoV4vS9n06UOWLEl27UquXk0+Mh7MYTJPnpDr15O9\ne8uotw8/JDdskNFwhkhIIGfNkjXTFiww3U3n5SXdjXv2vL7sZgLmjEYDMEhTNjmHz/kQ9rObRfc5\nZ00a73f5IQc6zOWKnzxUFdOjgBf8ocly/tphvaIy0uv1PLH5BvuVn8n5Q/cw/HlU8j4l/3bZ4uXY\nsfgYzvrSnTdPBWWqppgScTHx/LnNGq6fcMzgmk3SBDas9iKDkWahDyPYs9Q0VQXo7+/P3r370LZA\nVXb9uJtJ61A6nZ7Dai3khQO+mXuTuYHoaLJBA3LmTNOPWbOG/qVL06V1a+PFJj08ZA0yJyc5qT9/\nnjVyGyIqity4kWzTRkaSTZlifA3p9m0Zlt2tm+nrTWfOyDWqY8deX2YzoCmb/wgXD/qxt5UbT++4\nZdL4Mztvs7eVGz03qC9Ontt9ly42M7jN7XTyYnbKENUe3Xpx1EfzOKTGAt48fV/xHP7+/uz68Wd0\ntK5Nh0INOHfUJr589irjb9AEHge+YK/S0/gqPCad5dWlS5dUE5iL7YxUOT1pObjiEid326y4L7P5\nP54brvGHJsuzTMFaJCNHkp99ZvoT/dy5ZKVK5I0bhsf5+JAdOpBVq5Lr1imGTxskNlbm+fj5yQrS\nAQFSUekyaE1fvUq6uEilMH06GaMe5s+YGHLwYLJmTXldU/DwkBbOzZsZk8sC0JTNf4ATm2/QxWYG\nr5+4Z9L4nbO92M9uFu+cU06s0+n0XP/HMfa3n8UbJ4OStytNstYly/P2LeVIrNCHEZw9cBf7WLtx\n2/TTjH4Vl/E3l0F+brOG53YbjgwLexLJHiWmGpz0x7ddy2Mbryvuy0z+T1xsAr+qOp+XDllmefgs\n4dgx0t7edGtj4ULS0ZEMDFQfo9PJdgNly8rJ3Zgbi5TnW7WKHDZM5uTY2JD58kkF4eAgraJKlaQL\nrkABskoV8qOPyDFjyB07yGfPjF/j5k2yc2ep/A4eNDx23jxpEV0wHtlIkly5UsqYE1ZbFqIpmzcc\nj5WX2a/8TPpdemh0rE6n5/LRHhxacyEfBbxQHBMTFcc/e27lD02X83lIeKp9pk6yCQk67pp3jr2t\n3Lh8tIdq0mZ2MG/Ibu5e4G1wzPFN1/lrh/Wq+4N9nrO3lRtjo5WT7tRCvw0l9m2fccbgNXM9sbFk\njRoy1NkUduwg7ewMP/GHhkpr5r33jFsGAQHkhAlk7dpSqfTqJd1sR4+SDx6oWzDR0eSdO6S7O/n7\n72T79mSJEmSzZlK5PXhg+Lp79kjFNXiw4dDnpBDwM2cMny+JkSPJjz/OuOVlRjRl8wazf+lFflFh\nttFFbFIqgFlfuvOHpstTraukJOzpK45qtoJTP9+mONG2bPG+0Uk22Oc5R7+3gj+1XMWgm08y/+bS\nYDTDPJFZA9y5f6nhHJrJ3TZz3xL1p8x5Q3Zz9bjDqvv79OmTIcvmWXA4e5edbtL3lFvx/+UXupQv\nb/T7IUlev05aWZHeBh4KAgJk47TvviPjDFjE3t7kp5+SZcqQI0bIfJ7XnaBjYsgDB8iBA2Vvna5d\nyePH1ce/fEn27y/dZYbcX3v3SkVoioUTF0c2bZqxtS8zk2uUzW+//Zb8Onr0aDZ+JG8GB5Zf4hcV\nZvPBXeMmf3xcAv/stZW/fPg3oyOV3RBPgsI45K0FXDnmkGKyYbDPc1Yt3sjgJHto9WX2tnLjztle\nWZqwmJE1ku8aLk3l+kvL0wcv2av0NFVr66F/KD8vM51hT9SfUt1+Wsb8eQqavGYzpfsWg8ort+N/\n9Sqd8uQx7fOIiiJr1SJXrFA/4d27srTNvHnqY+7fJ3v2lG67OXMyllCZESIipLvPyYl0dibPnVMf\nu3y5VCYHDJQu2rZNutRMSWz285NK2dh6lpk4evRoqnk71ygbDdPxXH+N/exm8cEd44omIV7H/+ux\nhb92WK/qFgrxfc6BDnO5ze204v673sHsW24ml//hrjjp37ntw3lDdnPIWwsMRniZap2kRc19Z2Nj\nk+o8Tx+8ZM9S0wx22vzru/0G65j9X48tXPe7p+r+KxdusFjesqnkKFasGI+pRBCd2HKDQ95awJio\n7F+vMhcu9eqZbun9+CPZo4d6AMGDB2TlyuTSpeoXXLVKTsKuruSrDASbxMXJkOagIFkINCLC9ECG\n+HgpU/ny5P/+JysSKHHihHSXbdyofq45c8g6dUxTkAsXSjdiLnCnacrmDePc7rt0sZ1hUvVinU7P\n6S7b6dp+naqieegXygEVZ6u2J752LJB9rN3o5S4rOKfth37t0k2OabWaf3TZmFwRWgkl66RSBQfO\n+nY9x7ddyyE1FnD424u5+Jt9fPE49Y/QUHmclE/Ra389ynlDdqvKEOL7nJ1KjOVH7TumqladpKwu\nHPDlQIe5BhVDvcotTZ5Yn4eE08V2Bm+dUY7UeyOIj6dzgQKmrWFdvy6f/NWqM0dHkw0bkpMnK++P\ni5MTfc2a5JUrRuXy37CBLnXq0Ll0aboULkz/PHlkoIG9vcwDKlxYVnSuV09WZF66lLxnJMgmLEwG\nHlSsqO5au3pVnn+zcjQj9Xp5vX79DF+LlEqmSRMZNGDhmEXZAOiW+FoEQA9gaOL/31cZn92fwxvB\nrTP32dvKjbe9jCxaUua/LBy+l2PeX6UaBfb0/ksOdJjLPQuVfefXjt9jH2s31Qiq0EcRHP72Yv71\n3X6jCZlq1kmTGm149p87DLz+mD7nQ7hg2B7+2HylScemfPXo1ou9rdxU3Yp6vZ4jWs5i2RI26Y6t\nVKkSb1y5zS8rz+H5/eo5MCc232D5wtVMmlh1Oj3Ht13Ltb8eNfi55Hrc3eliZWWaAv74Y3L2bPVz\njRihbvVER5MdO8pzhIen35/E/fvkTz/Rv2xZOqVRgk5KdflevJCusUWLZAJn2bJycl+82LDlsWcP\naWtLzp+vvP/yZalY1ZYEIiNlQMWGDerXSMLLSwZTZMSKMwPmUjb6RIsm7euIyvjs/hxyPcE+z9m3\n3EyjYb1JbJpygiPe+Ut1bSIiNIrDai/ilqnKBRJ9LoRIReOhHAUU9iSSQ2su5NrfPE3KGzEWwZVk\nMbVq1Yr2qEufu/9O+kpWUdpX1XJv86/v9qtef99fF/hW6XdVj6/v0JLzBqtbRQ/9Q9nH2o2d239q\n0sS6cdJx/thipUlVHHI1PXrQf9Ik42tq3t7SGlDLSzl6VK7TKLmn4uNlmHHPnupl+cPCZARXmTLk\nyJF06dTJdNde2mvt3SuDAqytyT//lIpOCT8/qTDGjVNWkIcOSYUUEKB8/Llz0uX21ITAke7dyWnT\njI8zI2Z1o5n60pSNYSJeRHNIjQWqFkhaTmy+wQEVZ/NZsPITYHxcAn9uvUZ1cn4c+IKfWP/Cti0/\nVlxfiY6M5chGSzO06N2zey/VH78pAQBJysjW1lbxPE7FGjEqIlZxXSjg6iP2tnJjs3ebqyobuyLV\nVS3A2Oh4fttgCXfMPGOSrBcP+rFf+ZkGk0bfCF69kmHCz56lc6+msyD69CHd3JTPk5Ag1zC2bVPe\nP2qULBejFpXm6SkV2VdfJbvoMhOeno6bN8lPPpF5OEdUShI9fSrdcL/8orx/xgxpKanJ/u235JAh\nxmVJcs2pKT4LQFM2uZyEBB1/7bCei0aYVmfK79JD9rZyM5h3s2DYHv7eaYOi6yv6VRz71ZhE27L2\nihOqXq/nnz23ckb/nSZnwvv6+rG6dQPmy5tf8ZwZSZJUmuyL5SnLwzuVFYGjgyN7VvyNR/6+YtAd\nZ1XWSnGS1Ov1dOu3g3/22pr8fv39/dmlSxfa2trSxsaGXbt2TT4uxPc5XWxm8MrRAJM+m1zNvn1k\ny5bGx4WGygTK0FDl/WvXyuRLpfvpwAGpSNQSHJctk9ZDYh22pPvJxia9u9Qky0aJ3bulG8vVVXmh\n/skTsnp1csmS9Pt0Otnlc8oU5XOHhkoLypSKAR06yIg3C0VTNrmcv12Pckyr1YyPM16eIyI0igMd\n56pmvpPk4TVXOLj6fFX32uyBu1jfQX0RfM9Cb35bf4lqwEFa/P390/W0KVy4cKoJOqNPoUkTSvNm\nLVmlSEOum7mXpIF1oZptko9TqplmyErZNOUEv22wJFXIuJp1c+3yLQ6tudBoUukbw5gxsvOmMVas\nkCVslNDryXfeUS7aGR0tKwzsV3GPLl8uEyrv3CFp3N1qSkkhVR49Ips3Jz//XNlKuXNHKo3zCoE2\nAQHSvadWKWHKFFkCxxh79pCNG2dI7JxEUza5mPP7fdnffpZqNeaU6PV6Tv5sMxd/o24BJWXG+19J\nHZ6cNHk3qPMunYo14ruNldc2mjdrmeHkRGNWy/OQcDaqpqxskiwNpXDpJ0Fh/MppHnfO8kq+lprS\ncnZ2TvVeu3btSmsrG+ZBPoOyHVl7lQMqzUnnjlR7T7Vtmxn8/N84Wrc2rbLzZ5/JqsxKnD8v3VRK\nFsOcOWSnTsrHnTwp1zsSFQ2p/r3YWlnRpVEjHmvZki7Fi9M5b1665M1L/6QW06NGkYcPGw8vjoqS\nQQq9eyuP3bBBRsoprUu5usrETyXCwqQyClLPDyMp3Y12dhabd6Mpm1xK6MMI9i0306A7JuVE3LpJ\nB/arMUk1x0Sn03P0eyu4c7ZXunOkc0sVK6b4o63v8D7/dj2aofehpgDq12rMqZ9vY89S0ziq+zTm\ny5d64s+XLx83bNigaEGcPOjNLyvP4fYZqUt/mOqOC38exRHv/MWaDsr5Ia1bt+a5PbIIaeD19GG6\nau/J0ap2ptsk5Dr0ejlBPjRSJkmvlxFeamVffvpJeb1Dp5N1zM4qVDCPjpYKyt091WZVCzlvXvp3\n7UqnNK41p8qV6f/33+Qff8h1F0dH6ZYzVOQzKkrmvUyYoPxeO3eWQQVpCQuTn4OaZTV8uGlW4vff\nmzbODGjKJhei1+v5e6cNBhfg1fJW1NwEuxd488fmK9Nl9qtN0Gknf4dKjuxccixfvTRQ5VYBtfPX\nrdCCexZ6M/x5lOoYBwcH5e0FG/DQqsuKn0kVxyoGXSfhz6P4bYMlXDbqoGrZmQ4fdGEfazfV/Bg1\neT/v1TtDn02u5vlzGRxgbN3O31/mtahRr55yy+ijR6V7TQk3NxktlgbVh41u3Ux7EDl1Slo6zZoZ\nzrcJCZGL9V5e6ffduUP/kiXp0qNH+uCa0aPlSwlvb1mlwNjn6ekpWzhYIJqyyYUcXHGJ39T7i3Gx\n6k9YGVlUD38exT7WboqJoMYSJpMsnfEDZmfKRWRK9JaaDKVKlVLc3rh+M8VrhT19xa/qT2V9h/fp\n3Cp9FF3oQ5kXtPxHD+r1ekXZKthVYudSPxu1KNMFIjgq5HC8yVy+LCPIjLF3r1wgV+LVK5lYqeR2\nGjVK2XpISJAh0hfT178zdK+ZvC6o08kQYzs7w4v2a9eSjRqlUw7+/v50SuMZSL7fb9+WSkrJctLr\npSV39ar6NUlZ8LR4cYusCK0pm1xG6KMI9rE2HE1GZmxRffloD84fqtwB0JSESQCsadU00+XxU4bF\ndu3alV26dEn11JdRy0ZJoQZef8xBVeZx1c+HVWu7feU0j+v/OJYqii6lbB85dzaqaJLw8/Njszof\n0K5Idfbo1uu/pWhImUOSYi0sJanW2Ro3pn/PnsrnuHRJVmlWolkz5YTIkyfJunVVxfK/fZsuxYuz\nda1aqR42MtwWYtUqWTZHbVLX6aRVtjt1bpbR67zzjixpo8SwYerh4Slp25bctcv4uBxGUza5DLd+\nO7jiJw+j40z98YQ9fcVepaep5nz43PVNV+tL6WWT14lhT18vg1ntyfPYsWOK248e9WR56woGrSJS\n1h/rbeXGw2uUS5jcPH2ffcvN5N7FyiV5SNl2wMVmBm+eMrJIS+nmXD3uMIfVXpSutM5/Bnd3mc2f\nBsXvuFQpZWW8e7cM51WiVCnlZMfJk6XVo8by5WS7dqbJZSw6bcQIctAg9f0rVpBduqTaZPQh8Kef\n1Ndc1q9Xj9pLybhx5K+/Gh+Xw2jKJhdx8/R99refxagI4w2i/P39Wd7G+ES8afIJzh6o/hR07fg9\n9q85KfnpXs2aqJDnnddufmZIQaZNCvTYdpo/NFnOr+pPZdeOnykmC8ZGx3PRiH0c6DiXPudDFK+5\n1m0PKxeszwZ1m6gW/3Sfc5b97Weli9JTQqfTc8nIA/ym3l8GK0O/8ezYkW6iJTNoQaxdKyO70hIT\nQ+bPr7x+0a+f4YrR7durJocaTTxNS1iYbDGgFtwQFiZrq6VItDT6/nfuVFewt2/LIAVjrF8vKwpY\nGJqyyQX4+/uzT58+rFiiBts07WByP/vejhPY4YMuqj8evV7PQVXmqXbkJGVZlWWj/u00qPYE2LPC\nb7x34/X605ji+gu69ZR/9tzKfnazeHDFJdVWBX6XH/LrOos4pfsWRrxInzMUH5fASQNWsng+q3Tv\nJelzSkjQ8a/v9htsJpeShHgdZ36xk6OarWBEqHJPoP8Me/bI7pZpMNW96+/vT5dmzeicpnI3STmJ\nFy+ufN1OndJFoaWiQgXDnT8zSr9+svKyGg0apGqIZtSC8vWV7jkl4uNl51Bj3UjPnrXIIAE1ZZMH\nGhZBQEAA2rZti/Xr1+N++G0c8dqHtm3bIiAgwOBxF/b7wrp0eezx2Inly5cDAAYOHIi+ffsmH+t3\n8RFEHoFqjcqrnifoxlM41LVJ/r+joyM8PDzg4uKC1q1bo0uXLqhTpw4u6Xfg8169jcplCHt7e8Xt\ndnZ28Dkfgqm9tmFMy9VwrGeLJXe/Rtsv6yFPHpFqbHycDusnHMP4D9fhs9HNMHZzNxQrVSjVmKf3\nX+Jn5zXYdHAZIhKepdrn5+cHV1dXvHoZg4ldNiHw2hNMPzUAtg6lDMoe8yoOkz7djLDHrzDJwwXF\nShfOxCfwBlGiBPDyZbrNhr7jJJLu+XVnzsDzyROsW7cu9T1fuDAQHQ3IB9HU5M8PxMeryxUXBxQs\nmKG3YpCGDYEbN9T3V6sGpPhNJP9+WrZE67Jl4eLiAg8PDzg6OsoBFSsCwcGAXp/+XPnyATY2QEiI\nYZns7ICHDzPxZsyEkgbKqheACgC2AggD8BLANgAVDYzPZp1ruWSmnz1JTuy6kfuXXjT4JLVp8gmD\nxSlJcny7tTy/z0dxX0bDq42hdD47mwr8X4OpHFBxNre5nTbYpuDasUAOq7WQv3fawKf3ldegTm2/\nRRebGdz8fydVn7KbvducQ95awIVf7zWpMkPoowiObLyMM7/YadL4/wR37yq6fBTvx2LFUt0zJt3z\nZcrIrP20DB8u2z2r0aiR+gJ8ZvjrL1lzTY2vvpJj0nLkCNmqlfIxRYuqV65++20ZOGGIyEiyUCHD\nY8wAVCybfNmlxIQQhQEcBRANoF/i5skAjggh6pKMzq5r50aCg4MVt4cYeLqJfBGNq0fv4Yc1n2Dw\n14Pg5+eXan/S0/tbEZ3Rut/bBq+fJ28e6BIUnrIAuLq6pjt30INADB3wLQ4c+8fgeZVwdHTEbvc9\n+O7r0fC7E4j40HzoWuMLfP5dezTp8hby5lM2uJ8EvcTqsYdx8+R9DJrZFs271YQQqS2eqPBYLBl5\nANePBeGXnT1Rs1kFuF9XfsoOuRKF3xc0Q7tB9Y3KHHjtMSZ22Yw2X9RFn9/eT3fd/ywVK8on8IQE\n+USeSNKTvaurK0JCQmCXLx8mPnr075M9TLzna9YErl8HbG1TD6pfHzh8WF2uDz8EduwAWrTI1NtK\nh48PULmy+v6oKGmJpUWvB/KoOJDy5gV0OuV9BQtK68wQhQsDMTHS8ssF92O2KRsAgwE4AKhOMgAA\nhBDXAPgAGAJgdjZeO9dhitshLRf2+6FOq0ooUqKgwR9u0eBnqFTLWvU8AQEB2OuzBNu/D8c7G2ti\n4sSJJk0K173vYvR7K9FuUD3Ua1sF1hVLKE7Cej3x7EE4Aq8+ho93CK4fD4Lv+Ydo2LgnRoyvgRbd\na6J0uWKq8kWERmPbtNM4sPQSOo1ohG+WdkKhogUUPg9fzB+yFw0/csLcy/9DkeLSjTJx4kR4eXml\nUpjF85XFys2L0LqLcUVzdtcdzBm0G4PntINzH8NK+z9HoUKAvT3g6wvUqJFql6OjI9auXSv/ExYG\nVKiQSimZdM+/9x5w4gTwwQepB7VtC4wZIyfkAunvBQwZAjRqBIweDZRXdx+bhF4P7NwJrFunPsbf\nX1kZPXsGlC2bfjspFVTRosrni4+XrkJD5AIFk5LsVDadAXglKRoAIBkohDgFoCs0ZZOK0d+Nxc71\n+/CKocnbnJycMHHiRNVjLh8KQP12TgAM/3DDLr5SncyT/OZJE/F134vw8vJK5V9WO3erTxrhs+5N\ncWLTTawZdxQJ8TpYVSyBYqUKQeQRiItOQPjzaIQGh6NIyUJweNsGVRuVx2c/NkPtlpWSlYEaEaHR\n2DX3HPbM90bTT2tg3tXBsLIvkW5c2JNXWPbDQdw69QDfLuuE+m2rpNqf9JT9/Tc/4rznNViVscHa\nf5aizjs10p0rJXo9sWnyCez/6yJ+2/053mqi/Dn856lfH7h4MZ2ySUWpUtIKunZNjofyQ0C6e/7j\nj4HvvgN+/z31+SpVAurUAbZtA3r3Tn89Bwfg66+Bvn2B/fuNT9yGWLJErqE0bqy8PzIy1ftKhY8P\nUKVK+u3PngHFi6vLFRYGlCxpWK6YGGkB5Ralo+Rby4oXgIcAFilsXwDgscox2eZHtHTc55zlz58s\nylBI5rDai+hzQYb6Glqz6Vb0/1TLy5jiNzclN0Gv1/PF40j6XgzhlaMBvHzYnzdPBTHo1lOTQrhT\n8vheGJeNOshepadx1gB3BvsoJ9QlxOv4z/xz7G3lxuWjPVJVZE6JTqfnztle7G3lxv1LL5rUEiHi\nRTQndN7A0e+tUO0HpJHItGlyDcUYw4enqxeWHIZcuzZdypVLf88nJMjWAgqVArh3ryx4qdZILSFB\nhmV36WK426YhPD1JKyvjVQTat0/1fpKTlVu3Tm4LnWpf27b0VyvDk5BAFiwo668ZIjhYtlWwMJDT\noc8AYgFMUdg+EUCcyjHZ+iFYMmPeX8Wz/9wxPjCRhHgduxaYnKrEv1r+QH/7WXwcqBzSm6EQ1Yzk\nJmQQnU7PS4f8OaX7FvYqPY1Lvj/Ax/fCVMdf8vDj8LcXc6zzasXyO0k89AvlWOfVHP3eClWllRaf\n8yEcVGUeF3+zz2CpII1EvL1lp0pj7N9PNm2qvO/VK5nLcl+hDt3Uqcp5OHq9zKJXKniZRGwsOWAA\n+dZb5LFjxmVMIiFBtnq2spKVoNXQ6ciGDckdO5QfyoSg/4ULyvtKlFD+Hfn6SgVrDG9vWb3AwtCU\njQUT8SKa3Yv/yZgo05Mlnz54yb7lZpo09ufWa3h+v6/iPtVikp/nTDHJYJ/nXD/hGAdVmcfhby/m\nP/PPGYxE870YQtf26/hV1fk8te0m/fz8FFsPJMTruGPmGfYuO53b3E6bVIVZr5cWUB9rN57YbJnl\n2y0SnU7W+rprpFV5XJzs9eKjHPXIESPIsWPTbw8Pl0/wFy6k3xcYKM958qRiG4rkbbVr06VoUfo3\nbUquW6defubRIxlVVqeO7Ftz+7bh97RihYx80+kMegkyFG26ebNiomw6Nm0iP/3U+LgcRk3ZZOea\nzQsApRW2l0ncp8jvKXyzzs7OcHZ2zmq5LI6bJ4NQ/V17FCxsul85OjwWRUualkdQu2VFXPbw4Lj2\n2QAAHyFJREFUR8P2Tun2KfnNyxSzRf7LtXHXOwTVG6sHKGQGkgi4+hjeu31wevttPH8QgRY9a+Gn\njZ+hWqPyqlFegdefYOMfx3Hz5H30GNcCHw1ugAfBQanWmwDA3d0dTpWrISYkP9q81RPTz3wJ+2oK\nC7RpCHvyCnMG/oOwJ68ww2sgylVRunU1FMmTB/j0U2DLFmDcOPVx+fMDX3wBLF4MuLml3//DD/8u\n6qdcVC9eHJg8GRg6FDh9OlXUGypXBtasQUDXrmhbpAj87t9P3nX8+HEIIRAUFJS8zSsgAB7LlsFx\n6FC5DlOpklykj4qSeTKhoTL4wM0NaNfO8HrInTsySOHgQSBPHoNBOnIOVt4XEBAAV1dXBAcHw97e\nHhPz5IHje++pXzeJa9eA2rWNj8tmPD094enpaXygkgbKiheAwwCOK2w/CuCoyjHZp24tmDXjj3DN\neJXe5ioE3XrKwdXnmzT23o0n7FtupmpXzbQuMj8/Px5adZn9ys/k7x9voNeuO6r9cYyREK9jwNVH\n3PfXBU532c5+5WdKF9W3+3nlSAAT4g1bHHfOBXPyZ5vpYjODW6edSrUuY6x4qKkdGb123WG/8jO5\ncuwhLX8ms5w8KV1VxtbDAgJkP5cwFRfpsGHkN9+k367Xy1pnSj1vSLq8957BewFprYn4ePLWLVlI\n1N2dPHhQWjGGetikJChI9tJJ0Z45M5ZNly5d0rvX8uWjf5rCnoq0a2e4ioKZgBncaN8BiAPgkGKb\nQ+K2kSrHZPPHoLCAZwFVeid23cgTWzLmtgl9GMHeViZUhk1kQucN3DJVoV+IAWKi4rh/6UX+2GIl\ne5SYyl8+/JsrfvLgviUXeG7PXd48FUSfCyG86x3M6yfu8dzuuzyw/BLX/e5Jt347OLLRUnYr+n/8\nX7X5dOu3g/uWXGCIr/F1k4QEHb3cb3Os82oOqDibO2d7KdZjM6UtgqGk2IgX0Zz1pTsHOs7lteMG\n+pZoGEevJ2vVMry+kUT//uoFJJ8+lZ03z51Lv+/RI1mGZsuWdLtMuReSXmptxk3m0iXZhnpmaje2\noUAatX1du3ZVvm/79DEsQ1KLgWfPXu+9ZANqyiY73WhLAQwH4C6EcE3c9geAewCWZON1VUkb5gsg\nXZivOXjkH4byThlz25S0KYr4mAREhsWkK9OixP9mtcOopitR70NHVG1gWt5BwcL50f6r+mj/VX2E\nP4/C7TMPEHDlMW6feYDQkEi8CotBfGwCRB6B/AXzoWipQihpXQTWFUvgbWcHdBzaEJXr2KBICdPc\nfWFPXuHQqivYt/gCSpQtjC4jm6Blz1rIlz+v4nhDOUhJqCXFeu/xwYKhe9Ho46qYd2Ww0TBsDSMI\nAXz7LTBrFtCmjeGxEybI8i+DB8scnZRYWQFz5gD9+wPnz6fOQ7G1BXbtAtq3l2HBbdsm71ILz1fC\nlPtGkfh4YO5c4M8/gfnzgV69Uu12dHSEx969cG3ZEiGFC8OuRYtUOWseHh5w7dkTIX5+sOvYERMn\nTsTAgQMVLxVirAzNqVNA9erKOTyWipIGyqoXZLmaLUhdrqaSgfHZqnEzWxImu3GxmcHnIRkPrx3T\najW996ostipwcutN9rObpdji2FzExSbQa9cdTv5sM3uWnMpZA9x5+6xKdd1E9Ho9L3n4cWDd/2OJ\nAtYZsmzCnkRyWp/tHOg4l5cPm9+qfaOIiiLLl1cOU07LL7+QPXqo7x8wQEagKbnljh+XQQE7dyZv\nUrIcKgKsVKRIplyrqYiLkxWWa9QgP/xQRospodPJgp2dOim74x4+lHKnaIyW6TlpxAhy4sSMvY8c\nAjntRsvMK7uVTUYajeUk3Yr+n8EILDW2TD3Fuf/7x+CYtG7D9bP2ymirDLrtspK42AReOODLOV/9\nw95lp/PH5iu5b8kFRoalr9qcEr1ehkePeX8V/1dtPj3XX6Ovr4xGa9q0KYupdUakDK3ev/Qi+1i7\ncdmog6o5ORqvydy56qXzUxIVRVavnpyDori/USP1ni/e3rKL5p9/JiuktGuPx/buZZdatWiTJw9t\n8+Zl1+rV6b9tm/FqyqQMxT58mBw5UirQVq3IffvU16RiY8m+feU4pZwenU5+LmnWnDLVXyc2Viot\nNaVnZjRlQ8u1bDKrbJ4+eMlepaeplrlXu5E9tp3m4Orz+UeXjTlm5TwLDueh1Zf5Z6+t7FlqGn9o\nspzbpp9Wzf9JiU6n59l/7nBUsxUcXH0+D6+5ohhYoJYL5HMhhKOareAPTZYb7Xyq8ZrExpJVq8qc\nGmOcPSvXZwIClPc/ekQ6OakX3AwKIps0kZN4ml4zivd+yZL0r1FDtqCuV4/85BNy6FDZhG3UKHLI\nELmtTh2ySBF57t9/l4EEhggJIVu2JLt2lUpKiT/+kF1H49KvPfr7+9Olc2e2zpePLp9+atzy2rCB\nNPMDsiE0ZcNMPkXkAC62MzKdpT5n0C4uH63c0dOQco2NjufWaafoYjuD49uu5dF1V41aFqaSkKDj\nvRtP6LHyMucN3s0hby3g52Wmc3K3zdy/9KLJLsOkAIVhtRby2/pLeHzTdZPyZZIIexLJeUN208V2\nBvcvvajaE0cji9m9WyocYxnwJDljhuzJojZJ37sno74mT1a2KuLipPVjZUXOnp08mRt8sIyMlJbR\n1q3kggWyAsK0afLvrVulGzDahN+CXi/da7a2UimpRbKtXi0DCoJV+knp9dI9N326adds3Jjcvt34\nWDOhpmyE3GcZCCGY3fIkxbSHhITAzs4uXdFJc/Bt/SUYsaRTpnJaXjyKxDfvLMF4956o0bRCqn2t\nW7dWjH9v3bo1jhw5AgCIi0nA6e23cGz9DVw/dg+ValujehN7VK5jDbuqZVDWvjiKly2MwsUKIG/+\nvCCJhDgdoiPiEPkiGmGPX+HZg3A8DghD8N1Q3L/1DPdvPkUp22Ko/q4dajSrgNotK8Khri3y5jWt\nfdKToJfYt/gCDi67hKqN7PDpD03wzgeOJldajo9NwD/zvLF16mm06lMHLr+/r/WdyWl69pT1yaZN\nMzyOlLk3kZEyTyevQjBISAjQoQPQpIlcmFcqvHnzJvD994CfHzBuHFqvWQPPY8fSDUt5778Wp0/L\nnKIXL2TttCZNlMf9/Tfw00/AkSOygrUS8+bJcWlziJTYv1/mI12/rl5N2swIIUAy3Y/1P6dsLJHp\nfbajfjsnfDjgnUwd7+V+B4tH7Me0k1/ApvK/zb/69u2LdQqVal1cXP6txpuC2Oh43D0XAh/vEATd\neIqHfi8QGhKBiNBoxETGISFeDyGA/AXzoVCxAihWuhBK2RRFWfvisHEoCbtqZVGxphUq17FG0ZLG\nI+RSkhCvg/ceHxxcdhm3zzyAc9+30Wl4I9hXNz3aRq8njm+8jr9/8UTlt63x5bQPUbGGVYbk0Mgi\nnjwB6tUDNmwAWrUyPDY2VhbcdHCQE7fSJBoRAfTrBzx+DGzcqF7u39MTmDIFfU+cwLqYmHS71e59\nk4iOBtzdgYULgaAgYPx44MsvlRUkKRXtggVSQdSqpXzOs2eBzp2loqla1fD1dToZxTd+PNC9e+be\nQw6gpmzM7jpL+UIO5NlYIjtne3HOV4YX+o3hPucsBzrO5YO7/8bdW6rbMAm9Xk+f8yFcMvIAXWxn\n8MfmK+mx8rJiTo2x85zbfZcj3vmL37+7jFc9A7NJYo0MsW+fzItRan6WlogIWR5m0CB1d5ROJ11N\n1tYymdJAAqn/gQN0Klky9b1frhz9lfJ31NDpZKLnsmUycq5kSenu2rxZvfgnSYaGkt27y5ppSrXe\nkggIkEEOu3aZJs/ixWSLFsYTZ80MNDea5fLgzjOMa7MWK4O+NdnVpMSBZZewZtwRfL2oI5p3kya7\npbkNSSLgymOc2noLJ7fchC6BcHapg9Z931a1YtKV80h8DyRxycMf6347huiIOPSd6Ixmn7ylNTaz\nJH79VVobhw4pu79SEhEBfPIJUKYMsGaNcjMyALhyBRg0SObgzJkjLSgFAgIC4Dp+PEJu34ZdfDwm\nFisGx1u3ZFn+6tVlfx0rK6BYMWmdxMcD4eHSKrt3T5ajKVMGaN5c9tP5+OP0TdzSsnevLKvTpYss\neVNIxcJ/+FBafN98I1/GCA6WLQwOHQLq1jU+3oxobjQL57uGS9F/ShvF+mUZ4bbXA8zs747KdaQb\nya5qmSySMPPERsfj+rF7OL/XF+f+8YHII/DeZzXQvEdNVG9sZ1A5KCXiOjk5wW3cEpxYGoiol7H4\n3LUlWvSs9VqKWiOb0OuBzz6TSZirVhnvvRIbK11Tfn6y06ZaAqZOJ11uEybIrpzjxxvup5MEKSdu\nX1/577Nncr1Ip5O124oXlzXTKleWCqm0icnWN28CY8cCt27J2m9pm72l5N49mZA6cKA8xhh6vVyz\natYsfV8fC0Rzo1k4B1dc4rgP/s6Sc8VExXHjpOPsXXY6p/XZzpun75vUwyWriIuJ542TQdw0+QTH\nffA3uxf7kz+2WMlNk08w4OqjDMmiFlVUrWRjHtuYseg0DTMRGUm++y7500+muYD0enLSJJnf4qEc\naZnMy5cyudHaWoYeHzwo3V85gV5PenlJF5u1NenmRsYYSWE4f560tyfnzDH9OlOmkO+9Z9h1Z0FA\nc6NZNgnxOnxdezEGz2mPRh2MLBSaSGRYDA4uu4T9Sy6CeqLZpzXQoH0V1GhWQbGtcmaIjY7H/VvP\nEHDlMfwuPoKPdwgCrz1BxZpWqN2yEuq2row6rSpnOGAgCbWIOmdnZxw9evQ1pdfIMZ4/l26j7t1N\nfzo/fFhGqvXoIas+FymiPjYqSkZ0LVoku1z27i0tqoYNsz5qKygI2LpVXi88XLrBvvpKuuPUIIGV\nK2WV6CVLZJVsU9i7V5773Dnp9ssFaG60XMCF/b5YMHQv5l4ebFK9M1MhCb+Lj3B21x1cPhQA/0uP\nUM6pNBzetkH5qmVgXakkStkWRbHShVC4WAHkL5gXIo+ALkGP+BgdoiPjEBEajfBnUXjxMBJP74fj\nSWAYHvq+wItHkShftTQc6trCqUE5VGtkh2qNymeJMgu++xyfdemBc3fSK5XXiirSMA+PH0v3UufO\nwJQpprUzfv4cGDEC8PaWkV3t2xs/5vJlYNMmYOdO2TKgTRugRQvZvqBOndT11oxBSrfX+fOyHtmR\nI9L91qUL4OICtG5tXJk9eyZbVN+8CWzerB6ZlpaLF+X7dXcHTGk5YCFoyiaXsGjEPjwNeolfdvTM\ntjWI+NgE3LvxVIY3+4bi6f1whD1+hcgXMTLEOU4HvZ7Imy8PChSSYc5FSxVESeuiKF2uKKwqloSt\nQ0mUr1oGtg6lkDdf1smZEK/D2V13sW/xBQRceYx63cth4V5XBN4LSB7j5ORk9uKpGpnk2TO5/lC3\nrlzbyG9iD6e9e6UFUbu2LIRp6oQdEAAcPSpDiy9cAG7f/ndNpnx5WciyWDEpBynDm1++lEECDx7I\ntaMSJYD69RFQowZcr11DcGws7CtUMB5so9fLQIexY6VimjRJPeghLTduyLWohQtNt4IshBxXNkKI\nHwA4A2gEoByA30n+YeSY/7yyiY/T4bcO61HeqTSGL/4YefL8NyKrgm4+xaGVV3Dk76uwr14WHw1p\ngBbdayJ/wXwWF1Gn8ZpERsqKyXFx0gIpY2IQS2ysTOqcOlU2Nvv554w3D0tIAO7fBwIDgUePpOUT\nGSkj0YSQ0WMlSwLW1kDFikCVKkCpUqqBKooPPaRsqDZunFRi8+dLq8pUrlyRCnn6dKmkchk5HiAA\n4CaAMwAWANAB+NWEY7JynSrX8io8hj+2WMlpfbarNjx7Ewh9GMGds704stFS9rObxZVjDvH+7adZ\ndn5L7F2kkUh8PPnDD7IUjVK7Z0O8fCnL19jayrpou3eb3vQsk5hUVzEuTvbaefddsmZN2bY5o8EK\nR4/KYAO1AqW5AJirNhqAvAD0mrLJGDFRcfyz51aObLSUwT7GG46ZgiVMvqGPIrh38Xn+3GYNe5aa\nxhn9d/LCAd8sjyqz9IRWjUQ2bpR1zebMyXiyYnQ0uWKFnNzt7WW024UL2ZL0aLBi/I0b5M8/ywTN\nFi3Ibdsyp/yWLJGFSU1pQGfBaMomF6LX6+k+5yx7l53OrdNOMS42809v5pp89Xo9g2495dZpp/hj\ni5XsWXIqp36+jae23WRMVMYqBWQES63wraGAj49UGG3bkoGBmTvHtWvk2LGyAGilSrKC85Yt5OOs\nqWquej+VKCGrJIweLWXIDJGR5JdfSmvozp0skdecaMomFxPs85y/dVzPgY5zeXDFpUwpnYxOvq9j\nBUWERvHU9ltcMGwPBzrOZX/7WZw3ZDfP7bnLuJiccQtaau8iDRXi42U+SdmyshK0Qil+k9DrpaUx\nYwbZsaMsMePoKMvHTJggLalz52RbAEN5K3q9dNfdvEnu3Uv/8ePpVLx46oe10qXpv3376+X1nDkj\n+/r07y9L9rwBqCmbbI9GE0LkBRAPLUDgtbl27B42TTqBe9efot2gemjTv67JhSpNqQCdRIYWQwGE\nPozA7TMPcOPkfVw/dg8hd0NR470KqN+2Chq0r4LKdWxyvIRMRouQalgId+/KUOfgYFnu5aOPTAuR\nVkOvl2VnLl2SlZLv3pXBAffvy7DqYsXkq0ABGcKckCBzdl6+lIv7dnbJ1QQCbG3heuoUQmJjYWdK\nNJohwsNlKZ+NG2XV5x49Mv8eLYzXikYTQnwAwMOE63iSTNWAXFM2Wc+9G09wcPllHN9wAyWti6Bx\np2qo96Ej3mpir5rfkpHJV21snz59MHPyAgRee5KYxPkQvucfIuZVPN5qao9azSui9vuVUP1de+Qv\noFAJNwfJqMLUsCBIYNcuWZrf3h744w+ZJ5PV6HRy0o+MlJFxpCzxX7iwjEhTq2v2OiQkAKtXA66u\nMuJs6lRZn+0N4nWVTSEAlUy4ThTJB2mOzZCy+e2335L/7+zsDGdnZxMu+99Ep9Pjjlcwzu/1wZUj\ngQi8+gR21crA8R1bVKhRFuWdSsO6UkmUsSuO0MjH6NSlo+rkSxLRETJ5s0u3jjh38Uy661nlqYIO\n5b6Bw9s2cHzHBk4NyqNqw/Io71Ra1XJRK6KZE2gh07mcpIl50iTZfmDMGJnkmBsLrep0sl/PhAky\nz8fNDWjc2NxSZQmenp6pvCYTJkzIvLJ5HTTLJueIi0lA4LUnCLz6GA9uP8cj/xd4GvQSoQ8jEfE8\nGhHxz3A3zxHEIhJF8pXAO8U+QmGWQXxMAmKj4lGgcD4UL1MYZ15twJ3Qs+nO36vn59i4aYPJ8mjW\nhUaWEB8v3U1ubtICGTZM9rYxtUimOQkPlwpzzhxZMfrXX2WOUG5UmCZitgoCmrKxHOJjExDzKh7x\nsQnQ6wgIIF/+vChQKB8KFs2fXLEgq5SEtm6ikaWQwPHjsvLAvn1y0nZxkdZOdri8MoteD5w8KasH\nbNsmKwGMHClbFfwHUFM2RnqQvtYFGwJwgIxGA4BaQohuiX/vIZm+jZ5GtpK/YD7kL2j8K3d0dISH\nh8dru6CCg4MVt4eEhGToPBoaAKQ10KqVfIWGyjpjs2bJYp3t2gEdO8p/1doSZCcxMVIR/vOPbI1Q\nujTQt6+sh1a+fM7LY4FkZ7malQD6q+x2JBmkcIxm2bxBaJaNRo7w5Amwe7esn3bkiCw18/77QJMm\nsupz7drGG7dl5poXLsi2zidOyKrMb78NdOoka5nVrJm118tFaIU4NXIcbc1GI8fR6YBr16Qb6+xZ\nWTnZ3x9wdASqVZO1zipWlNaPtTVQqpQMfS5USEaikXKNKCZGrrc8f/5vUc7AQFmY89YtWaetQQPg\n3Xele6xlSxnBpqEpGw3zoEWEaZidmBiZX+PjI6tA378v2zI/ewa8eCFDn2NipKISQubXFC4su3aW\nKSOjx+ztZb5N1aqyI6i9/Ru9yP86aMpGQ0NDQyPbUVM2WtN2DQ0NDY1sR1M2GhoaGhrZjqZsNDQ0\nNDSyHU3ZaGhoaGhkO5qy0dDQ0NDIdjRlk4MEBASgb9++aN26Nfr27YuAgABzi6ShoZGI9vvMXrTQ\n5xxCS3DU0LBctN9n1qGFPpsZV1fXVDcyAPj5+cHV1dVMEmloaCSh/T6zH03Z5BBaUUoNDctF+31m\nP9mibIQQ1YQQ84QQN4QQEUKIECGEuxCibnZcLzdgb2+vuN3OHBVqNTQ0UqH9PrOfbFmzEUIMBzAU\nwCoAFwCUBDAGQD0AzUleUjlOW7PR0NDIcbTfZ9aRo7XRhBBlSIam2VYCQCCAXSQHqBz3xiobQCtK\nqaFhyWi/z6zBIgpxCiG8AESQbKuy3+KVjaenJ5ydnc0thkE0GbOO3CCnJmPWoMmYNZg9Gk0IURpA\nHQA3c+qa2YGnp6e5RTCKJmPWkRvk1GTMGjQZs5ecjEabn/jvnBy8poaGhoaGBWCSshFCfCCE0Jvw\nOqJy/M8APgcwnKR/Vr4BDQ0NDQ3Lx6Q1GyFEIQCVTDhfFMkHaY4dCmAhgHEk/zRyHctesNHQ0NDQ\nMEqOBwgIIfpBhj+7kRyTbRfS0NDQ0LBosk3ZCCE+BbAZwDKSw7LlIhoaGhoauYLsyrN5H8ABANcB\nfAtAn2J3LMnLWX5RDQ0NDQ2LJbui0VoDKACgAYCTAE6neG03dnBuKXcjhPhBCLErUT69EOJXM8pS\nQQixVQgRJoR4KYTYJoSoaC55lBBC2Cd+r6eFEK8SPzNT1gJzDCFEdyHEDiFEkBAiSghxWwgxRQhR\nzNyyJSGEaCeEOCyEeCiEiBFC3BdCbBJC1DS3bIYQQuxP/M7/MLcsACCEaKUS6BRq/OicRwjRUQhx\nLHFOfCmEOCeEcDa3XKaSLcqG5ASSeVVeVUw4RTsAzgBWAOgMYBgAawBeQoj62SFzJvkKUq4dAMwW\n3CCEKAzgKIDqAPoB6AugGoAjifsshaoAugMIBXAcZvzMDDAKQAKAsQA+ggxuGQbgoDmFSkMZAOcB\nDAfQFlLW2gDOWNoDRhJCiN4A6sLyvnMCGAGgaYrXh2aVSAEhxBAAOwF4A/gE8ne0BUARc8qVIUha\n3AtAGYVtJSAnqVXmlk9BtryQrsJfzXT97wDEA3BMsc0hcdtIc38+KjIPAqADUMncsqSRq6zCtn6J\nsjqbWz4DcldPvAe/N7csCrKVBvAQQK9EGf8wt0yJcrVK/F7bmFsWI3JWBhAF4Btzy/I6L4tsMcA0\nddUSt4UDuAtAuTzrf5vOALxIJrcWJBkI4BSAruYSKjdC8rnCZm8AApZ97yX9ZhLMKoUyUwFcJbnJ\n3IIokC5E1wJJejD7y9yCvA4WqWyUeFPK3WQTtSGDMdJyA0CtHJblTcQZ0t1yy8xypEIIkUcIkV8I\nUQ1yIgoBsMHMYqVCCNEC0q073NyyGGCdECJBCPFMCLHOAl2RzQHcBtBbCOErhIgXQvgIIb42t2AZ\nIZ+5BcgAWrkbdcoAeKGwPRTShaGRSYQQ9gAmAPAgedHc8qThLICGiX/7APiA5DMzypMKIUR+AIsB\nTCfpa255FHgJwA3AMQDhAOoD+AXAaSFEfQv6LO0SX9MA/AzAH0APAPOFEHlJzjOncKaSI5ZNbih3\n87oyarx5CCGKAnAHEAdgoJnFUaIvgCYAekNOlocsLLpvDIBCAKaYWxAlSF4m+RPJPSRPkJwLGRRS\nDsA3ZhYvJXkAFAMwmOQKkp4khwPYD6l8cgU5ZdmcAlDDhHFRaTcklruZDFnuZnVWC5aCTMtoAbyA\nsgWjZvFoGCGxRNNuyECL90laXH9gkncS//QWQuyH7Bc1FoDZ3SuJrqhxkOsNhRI/z6T1kYJCiJKQ\n7Ub0aucwByQvCSHuAnjX3LKk4DlkJOehNNsPAmgvhLAl+TjnxcoYOaJsSMZALu5niMRyNwsgzXCD\nddVel8zKaCHcgFy3SUstaGtcGUYIkQ/ANsg8sQ9JWvxnSPKlEMIXclKyBKoAKAhgLVIvwhPAjwBG\nQ7qtrua8aLmOG5AWbK7GYgMEEsvdrACwhFpdNWPsAtBUCOGQtCHx7+aQbiANExFCCADrIYMCupL0\nNq9EpiGEsIW0zC1lbeQSZHJ3a8jPMuklAPyd+LelyJqMEKIRgLcAeJlblhTsSPy3fZrtHQA8yA1W\nDWChAQKJ5W7WA7gMYI0QIqVWt5hyN0KIhpBulryJm2oJIbol/r0n0VrKCZZCRvu4CyFcE7f9AeAe\ngCU5JINJpPh8GkFOPB2FEE8BPCV53HySJbMQMmFuEoDoNPfeA5LB5hHrX4QQ2wFchLQKwiEnx5GQ\na0szzShaMompCum+T6nLcY/kiRwXKr0sfwPwg1SM4ZCW7FgA9wFYzKI7yb1CCE8AfwkhrCEDBHpC\nJp8OMKNoGcPciT4qSUy/QcaVK738zS1fCjlXGpAzR5MVAVSAzCgOg4yy2ZbTMpgop17l8zpibtkS\n5Qsw8J2aJWlXQcYfIXN/QgFEQoZkL7TE71tBdh2ACeaWI1GWsZAPtC8AxEI+nC0CYGtu2RRkLQap\nAB8CiEmUu5e55crIK1tbDGhoaGhoaAAWvGajoaGhofHmoCkbDQ0NDY1sR1M2GhoaGhrZjqZsNDQ0\nNDSyHU3ZaGhoaGhkO5qy0dDQ0NDIdjRlo6GhoaGR7WjKRkNDQ0Mj29GUjYaGhoZGtvP/Lk7Alowk\nA9EAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Parameters after running EM to convergence\n", + "results = EM(data, initial_means, initial_covs, initial_weights)\n", + "plot_contours(data, results['means'], results['covs'], 'Final clusters')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fill in the following code block to visualize the set of parameters we get after running EM for 12 iterations." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n", + "Iteration 4\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAELCAYAAAAP/iu7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VMXXgN9JaKGTAGm0EHoXEEEpiRTrB4oUJYi9Yu+K\nEZSfjaqigmIXxAJIB6mh995LEkgjJIRU0rPn++NuQpLdTYFsCsz7PPdJduq5s3fvuefMmblKRNBo\nNBqNxp44lLUAGo1Go7n+0cpGo9FoNHZHKxuNRqPR2B2tbDQajUZjd7Sy0Wg0Go3d0cpGo9FoNHZH\nK5sKgFLqF6WUSSnVpKxluR5QSrVRSi1TSl0wj+u+spapPKCUmmAej75lLUtJoJR61Hw+Y8paFo1W\nNmWGUqqHWYmcUUpdNh8nlFLfKaVuyVdczEdpyWZSSq0vrf5KE6WUA7AIuB34F5gAzDTnBSilTGUn\nnYFSys98HexRSqWav4+hNspWV0qNVkr9pZQ6qZRKVkrFms/lwWJ2bXGdKaX6mfv/4GrPx14opZqa\nZfvJRpFS/d1oCqZSWQtwo2G+2U0HXgTSgHXAQiALaAGMAJ5USo0RkbllJuj1S3OgFTBTRMbmyysv\nN6f/AU2AaCASaFxA2T7Ab8BFjGtpPtAQGAr8oZS6VUReKmK/M4B5QMhVyl3eWAhsB86XtSAarWzK\ngk8xFM1uYJiIhObOVErVAN4G6paBbDcCHua/F8pUioJ5AjglImFKqfFAQVZFJDAa+FtEMrMTlVLv\nAbuAsUqp30RkT2Gdisgl4FK+ZFVs6UuPAmUTkUQgsZRk0RSGiOijlA4MyyUT40bnXEjZyrn+/xnD\n8mmSK20CYAL6Wqn7iDlvTL70AcBqIAJIxXjiWw+MNOf3M9fLMv/NfYzJ1Y4CngJ2YPyYE4GtwP1W\nZPnFXN8LeBM4Zu57mjm/DvAxcBxIAuKAk8BsoF4RxrQ28A6wyXw+acA5YBbgmq9ssJXzy8o1XtaO\nn/K14QuswLAkUoCjGA8Hjra+A2CIeXwSgX3FvGbGm2UcehXX2zvmuq8VsXyea8rct7XrIf+1WAvD\nGjtuHpOLGC7KTlb6OAsEYTxMfQuEYvwmBuca35/M10ASkGAeuxE2xteabH3zlRljRY6nMB74svvY\nBNxX0JgAo4B9QDLGb+gLoJqVOsPN7UWZxyMMWA4MKIv7Tnk5tGVTujyGcaOeJcZTpE1EJKOQtgpz\n+eT3vd8LLMa4IS8GYgA3oDvwAPAXxo1ggvk4i6EosjmQ6/8/MX5QR3OVuQdYoJR6WURmWJHzG3Nf\ny4ElGDccgDVAVwwluBiojKGYRmK4G2MLOEeAthhP/uuBfzB+3J2Bp4GBSqmuIhJvLjsd6AI8CgSY\nD4D95nN+DMN9NYErT805562UegH4EsO9tcgsW28Ma/VmYFg+2QR4EOhvPudNlK43IQPjPDILK2gm\n/zW1AWiK5XgJxkMBSikXYDPQ2lx+GeCCcU0NVEr1F5Gd+fqoivF9OWEoJbhiUb2F8f3vAMIBZ2Aw\n8KdSyk1EvjKX249xs38F4ztalKuPs/n6y4NS6lvgWXO5WUAVDPf1QqXUmyIy1cqYvAjcgXGNrgfu\nBF4yn+vDudoei+GOPIPxO0nEsKZvAwYBa/PLc8NQ1truRjowLtIswKeY9axZNtlPvLYsmyzyWiML\nMG7ELlbK18v32QSstyHLM+b8rwCVK90J4waRArjlk92EYVW452urozlvipV+nICqRRibWkBdK+mj\nzG2/ly8923r7wEqdDUCWjX7aAekYT9k18+XNIJ/1wZWn6gygzzVcM1dl2WAE/xzCUDTtitlX31xp\nNsfLnD/PXCe/5dEcQyEdzJcebC6/FKhipb0mVtKcMBRKLLksCQxFaGF9FvI7yD6ffYBTrnQ3DGsl\nDfDKNyYmDGXYIld6VeCE+fvNfb3vxbDWLK7d/L+zG+3Q0Wili5v5b3gZ9Z+B8ePLg4gUZj3kZizG\nTeQ1Mf+CzG2kABMxfoT5I6cEmCQitiZqU63IlCIiaYUJIyKJIhJnJWsehntkQGFtFJFnAUfgZRFJ\nypf3nvmvteivhSKyuYRkKA7/Azpg3IiP2aMDs1UzHFgpIn/nzhORIAxXaAelVDsr1d8SkfT8iSJi\nEZxgvrZ+xXCZ9rhGsR/FuB4nmNvN7iMSmIphefpZqfeFiJzJVT4N4xpzALrlK5uOFYuqmL+z6w7t\nRrtx+Au4DziilJqHYWVtFZGEojaglHIC2mNEK41TymJ+tqH5bxsr1fdaSTsGHAHeUUrdhOGC2SQi\nR4sqk1mu/hjulJsx3BqOubLdi9NWAfTAuIH8n1LqnvwiYFh0RT1vu6KUehZjvmYPxrjYi5sxbrY1\nzIEM+Wlr/tsG47vOJlVEjltrUClVC2MObDCGdVQ9V7Zw7d9nJ/PfTVbyAjC+y8750gXDEspPmPlv\n7mCevzDcqkeUUn+a29yeW7HdqGhlU7pEYvi2PYHTpdmxiPytlEoHXsO4Ab0GZCmlVgGvikhgEZqp\nh/FjbILtCCkBalhJt4j+EpEspZQP8CGGj/9OQCmlwoHJcsU/bxOl1EjgDwwrZhWGHz77h/0qhqVV\nEjhjnPv7BZSpbiWtVKPelFJPYsyP7QcGiUiyHbtzNv/taz5skf96iLJWSClVGUMJdMJQ0j9juK+y\nMObahnDt32dtINOGNRyZq0x+rD2UZc+F5TzciMgkpVQMhiU8DuN6SVNKzQdeFxGr534joJVN6bIN\n8MFYUBhwjW1lLz609h3WsVZBRBYBi8xPj70xJkUfAVorpdpLrtBZG2T/4HaKyK3FlNdqMIMYgRIv\nAi+a3S0DMCZepyul4kXk10La/QBDuXQVkeDcGUqpt4spY0EkYFakRXHvmSntxbhPYUx4HwIG2rih\nliTZ18PnIvJegSXzYmtMhmBYFd+JyHO5M5RSb5nzr5UEoJJSqq6V8XHNVeaqEZEfgR/NbsZ+GBGJ\nfkAjjGi7GxI9Z1O6/IKhJJ5WSjkXVFApVaWQtrL9v55W8roWVNE8z7FSRB7DiK5pwRWXB2YZHa3U\nS8KYFG1nXg9UoojIMbM18wCGFTG4CNWaA8esKJquGBPLxSHLXNfa+o1dZpny7+5QLsilaI4A/aWQ\naMdikD3HZ3E9YIQOC9CzhPryNre31EpebytpBclmi+zoQmuWmE++MteEiMSIyEIRuc/cZl/zg94N\niVY2pYh5gnEKxtzGCmt7nSmlaiqlPsZYB1AQuzFufmNy3xyVUr0wIrHyt9vbvHtB7jQFNDB/zD1J\nfwnjKcwaMzDcDN8ppSxcGkqpdkqpBpbVLDFvN2Jtv7fsQIqi+LlDgJZKqfq52q2NEaJcXLJv0NZW\n7H+LoYRnKKUs5g2UUg2VUtbmbOyO2XU2C2NeZEAJKhooYExE5ALGjgX9zGHh1mQrzj5rIRjX9G35\n2hgK3GulfCyGcipoh4X8/GbuY7xSKsftqZRyA97ACKL5oxjt5cHa+ZrnOutguN0sAnRuFLQbrfR5\nD6iG4To6pZRai3GTMGE82Q3ECOd92GYLgIjsVEptxXDJbVdKbcIIBR2MsaYjf0TYDMDNXOcsxg/O\nF8NtsVREcs8hrQeGK6X+xfD9ZwFLROSwiMw0KzQ/oI95D7VIjInbjhi+9V4Ya1EKowvG2pydGAsC\nL2DMB92HEYI6o4C62XyNsd5iv1JqAYZP/y6MiL+IItTPzXqMtTILlVIrMRTwQRFZJiJHlFIvmmU6\npZRajjGO9TAswz4Y/vkTudq7qtX3SqknuPIk38XczgtKqf8zpy0SkcXmsr7Ad+b0zcDzVgyzABHZ\neDWyYJxPBPCgec4vDOMG/5UYK/Sfw5iH/FIp9RiwE2OhZBMMi6ch1ueyrLEUQ+G8rZTqYO67Pcb6\nloXku6ZF5LJSajeGxfAbxjyoCfhNruzMofLV2aiUmokxp3LYfI1nr7NpALyZ30ouhPyDvVgpFYcx\nDucwfut3Ac2AGXaeQyvflHXs9Y16YEQ3/YTxA0nCWJV8Evge6Jav7M8YT0VN8qXXM+dFm9vYirGA\n0Nr6guEYi8yy+7uI4Rp6HqiUr11XjLDOC1wJl86/G8FDGHtxxWBYIGeBlRiLKZ0Kk92c5wl8gjGX\nFWkeg0CMp88OxRjL5zDcR5cxfuBTMSalg4HAfGX7mc/H30o7jhiRRMEYyi4Lyx0EbsGIOArHUEYR\nZvnHAY1ylbP4DopxPtnrqmwdH1jpp0jlC+nX6totjKiz9Rgh79lt5l7z5YQR/bYXYxFjgvlangsM\nydeWxXeSL98LY03YBSAe2Igxj2d1PDEU/VLzdZhtOfTNNzbWdhB4grw7CATkl7WgMbHVPsY6tEUY\ni5aTzeexCRhVlveb8nAo8wBpNBqNRmM39JyNRqPRaOyOVjYajUajsTta2Wg0Go3G7mhlo9FoNBq7\nU65Cn5VSOlpBo9FoKjgiYhF/X+4sm7IOzyvsGD9+fJnLoGXUcmoZtYzl9bBFuVM2Go1Go7n+0MpG\no9FoNHZHK5ti4uPjU9YiFIqWseSoCHJqGUsGLaN9KVc7CCilpDzJo9FoNJrioZRCKkKAgEaj0Wiu\nP7Sy0Wg0Go3d0cpGo9FoNHZHKxuNRqPR2B2tbK5zgoODGT16NL6+vowePZrg4OK8F0qj0WhKBh2N\ndh0THBzMwIEDCQwMzEnz9vZmzZo1eHl5laFkGo3mekVHo92A+Pv751E0AIGBgfj7+5eRRBqN5kZF\nK5vrmPDwcKvpERERpSyJRqO50dHK5jrG09PTarqHh0cpS6LRaG509JzNdYyes9FoNKWNrTkbuysb\npdTdwNtAV8AEnATeEpEAK2W1silhgoOD8ff3JyIiAg8PDyZOnKgVjUajsRtlomyUUs8AM4CvgJUY\nbrsuwFERWWGlvFY2Go1GU4EpdWWjlGoKHAfeFpEZRayjlY1Go9FUYGwpG3u+FvoJIAv4zo59aOxE\nRlom8ReTSY5PI/VyBhlpmYhJUA6KylUr4VSzMjWdnahdvzqOjjrORKPRFIw9lc1twAngIaWUP9AU\nOAtMF5Fv7divpogkxaVy9tAFQo5GE3YyhsigWKLOxhMdmkDa5XRquVSnRp2qVKtZhcpVHXFwdEBM\nQnpqJqlJ6SReSuFyXCr13Gvh3qIeTTs0pEVXN9r1boxb83ooZfFwo9FoblDs6UY7DngAqcC7QBAw\nHHgOeNmaa0270exHZkYWgfsiOb4tlBPbwzi9+zwJF5Np2rEhTdo3oFFrF9y86+HmVReXRrWp7eJU\nJGWRmZHFxbAEwk9d4tzhKE7vjuDo5hAqV6tEzyGt6TeqAy27u2vFo9HcIJTFnM1JoAUwVEQW50pf\nAXQREYvFHlrZlBwiQtjJGPauPMP+NcEc3xpKw2Z1aHdbY9r0akSrHh54tHTBwaHklYCIcPZwFNsW\nnmDD74epUacq97/Rkz4j22uXm0ZznVMWymYbcAtQW0Qu50p/BZgKeIjIhXx1ZPz48TmffXx8KvRr\nUEsbk0k4vi2UbQtPsHPxKTLTs+h2lzdd7/Cmo09TartULxOZ9q46w98fbyElMZ1nv7mLDn2alLoc\nGo3GPgQEBBAQEJDz+cMPPyx1ZTMbeJxiKhtt2dgme81MeHg4np6eTJw4kWbNmhG4L5INcw6z+e9j\n1HZx4tYH2tBzSGu8OruWG/eViLB1wXG+f3k1t4/pyMP/89VWjkZzHVIWls3dwFJguIgszJX+H9BG\nRJpaqVMhlY01JVDSCyet7Qbg6uLJgHrPUM1UD9/RHej7UAcat6lfpPZEhIthCUScvsSF4DguhiUQ\nG3mZpEspJCem50SfOVZyoGr1ytSsV4167jVx86pHo7b1ad7Zleq1qxb7POKjLzPpoX+pWr0S7/w9\njCrV7BmjotFoSpuyWtS5DugEvI8RIDACw9p5VER+t1K+wimb0toSZvTo0cydO9ci/e4BQ1i2+t8C\nLRgR4UJwHOv+3c6X300m8kIkJFeja927adOuFa5edanfuDb13GpSy9kJp1pVqFKtEspBkZVpIvVy\nBkmxqVyKSORCcBwhx6I5dzgKj5bOdL3Tm97D2uHd1a3IVlRmRhaTR/2LmIR3/hlml3kjjUZTNpSV\nsqkJfAoMA+phhEJ/KiJ/2Shf4ZSNLSXg5+fHnDlzSqSPrEwTN3fuyf5juy3yfH19Wb9+vUV6Qkwy\ne1cFsn91EAfXBZOQHs2m5B+5dPmK57IwpViQxZaZkcXp3RHsWnaazX8do3rtKjzw1q30Gdm+SMoj\nIz2Lcf1/p/vdLRjxbu+iDoVGoynn2FI2iEi5OQxxKhY+Pj4CWBy+vr7X3HZ6aoas/H6vPOk9Q9rW\n72m1Hz8/v5zy0WHxsuiLHfJ2319keO3P5aPBf8ryb3dL2KmLMmrUqELr5yYoKEi8vb3zlPX29pag\noCCLsllZJtm1/JS8dsuP8nK32RK4/3yRzi8qJE4ecpks4adjrm6ANBpNucN8H7e4v+tdn68Re1g2\nmRlZrPnpAH9/vIXG7RowYlxvajTKsuquW7Z4OeF7Uln32yEC90XSc0grbn2gLV0GeFHVqXJOWV9f\n3zwRI9m0dO/ImB7juByfRnpKJiaTULmKIyuDZnPk/LZinZeIsPaXg/z81joenzyAAY92LvRc503c\nxIWgOF75eXARRkaj0ZR3ymK7mhuCiRMnsmPHDgslMHHixGK3ZTIJm/8+yu/jAnBrXpd3/hlG61uu\nvJNmzZo1OTs413aqRzfne5nQZwltb23M3c91o8e9rQg/H2q4vqaF4+HhwfOPvkr8GYgLzrLap3P9\netw+phPV61SjavXKODgoMtKzWPfCLDhvWX53wGEC95/H+yZ3izylFAMf60KbXo0Yf+cfZGWauOPJ\nmwo857uf687TLb7m6S/vuKqAA41GU0GwZu6U1UEFdKOJGC4nPz8/8fX1FT8/P6uupsI4tjVEXu3x\ng7zcbbYcWGe9vslkkj0rT8u4Ab/Lw+7TZM74AIkOjc8jR/PmzfO4vmpVcpFxD3wnv3y6VNxdPS3c\naE2aNLEqr5+fn1W3262dBsijjb+QcQN+l6CDkTbPJ+zURfFrOFWObw8t9NzfHzRHti48XoRR0mg0\n5R1suNHKXMHkEaaCKptr4dL5RJky+l8Z4zld1v12ULKyTBZlsrJMsvmfo/JC5+9kbMdZsvbXA5Ke\nlpknf/+aQOnq1bfAeZnBgwdbzb+9112yYe4h2bHkpJzYESZx0ZcLnLPJSM+U5d/ullENpsjCqdvF\nZLKUWURk019HZGzHWVbPKTdzJwTIL++uu4ZR1Gg05QVbyka70coIk0lY9d1e5nywkYGPd2bWiedx\nqlklTxkRYdey0/z+/gYqV3Fk9EQfetzbMifEOPZCEqt/2M9/s/dTs1410h2TrPZ1eM9JvnpyKfvW\nn7Safy4olF1LT5OSmE5sZBLnz1yiWs0qDOv2Bvvcl5HueJlGjfJGo939XHe6392Cjwb/RcLFZB75\n5HaLdnsPb8fCydvZvfw0t/xfK5tj4epVl/2rg4o0bhqNpmKilU0ZEH46hi8fX4opS/g04GGatm9o\nUeb0ngh+fH0NCTEpjPnYl1sGt8pRMiHHolk4ZTvb/z3JbcPa8t7C4bTo6s7o0Zs4cmafRVuO6dXx\n7upO59C2hK22VDg9B3TmrTlDcz6LCJFBsRxcdxaHP2sQduIiI4b3pkmTvOtwGzatyyfrH+b1W36i\neRdX+oxonydfKcXAx7uw5e9jBSobp1pVSU1KL3jQNBpNxcaauVNWB9e5G81kMsnSr3fJQy6TZdEX\nO6y6l+KikuTLJ5bIw+7TZNXsfZKZmZWTF3woUj5+4G/xazhV5k3cJPEXL4uI4UY7uD5Y3rt/ltRQ\nzjbDla25xpo3b17oHFPAsp3StkFPaVK3rYwYNtKi/LFtoTLGc7qkp2ZY1A05Hi1PNJ9RcPvzDstn\nI+YXWEaj0VQM0G60siX2QhJfPLaUhIvJTN72GJ6tXPLkizls+Nd31tNvVAdmnXg+Jzor6lwcv78f\nwP7VQQx9sxev/TqEajWqkJyYxpKvdrHs691UrupoWBHvbGTKV58RERGBm6sbY+57nv0LIll48CBh\nJy7SIXYkqSwjTSXh5FCLZsG349/rXxq1dqFNr0b0vK81rW/xzLGigoODeeLlUQRGG9F2IfOPs2ff\nbtauXZvjUmvbqxGN2tRnx+KTFtaNW/N6RIfEIyI2dxi4FJFEXbeaJTreGo2mfKGVTSlweOM5pvj9\ny+1jOuH3YT8qVXbMkx8dGs9XTy4j4WIyH656KCesODU5g/mfbWX5N3u4Z2x3vj8zluq1qpJ4KYX5\nnwew4ts9dLq9GS//9H+0u60xSiliLyQx6rZX2LnkFMeWhfLfmRO06dWITrc34+7nu9OwaR3qNPgo\nR4asTBOxkUmEHIvm6OYQpj+ymGo1q/DUF3fQoU8T/P3984R1AwQFBeHv759nvU3P+1qzf02whbKp\nVNkBU5YJk0lwdLSubEKORtOyu2UotUajuX7QysaOiAiLpu9kwaRtvPrrELrd4W1RZvPfR5n1wiru\nffFmRrzbG8dKxk7I+1YH8s2zK2jZ3Z2vDjxFg8Z1SE3O4K+PN7N4+k563teaqTsfx93bmaxME9sX\nneS/2fs5sS2U7ve0ZODjXXhz3lBq1q1WoIyOlRyo36g29RvVpusgb/w+9GHbguNMGrmAke/3ITw8\n3Gq9sLC86Y3buLBtwXGLcskJaVStXrnAHZ6Pbg7h/168uUA5NRpNxUYrGzuRnprJjKeWEXI0mmk7\nH6dh07oW+d+//B8H159lwoqHaNndeJdccmIaP7y2hgNrghg762663dkCEWHLP8f48Y21tOrhweTt\nj+HZ0oXU5AwWf7mTRdN2Ur9RLe56thvvzh9GtepXdg7ISM8i4nQMUefiSYxJISvThFOtKrg2q0uz\njg2pXDXvJeDgoOg9vB0turvzdp9fcWpT2+r51ahcJ8/nSlUrkZluuXA07GQM7i2cbY5T+OkYUpPS\nadbJteAB1Wg0FRq7KRulVD9gg5WsOBGxffe5Dki8lMLEIX9Rz60mn295NM/NHyAqJJ5Phv6Du3c9\nvtz7ZM7czKndEUx6cCGdfJvy9eFnqF6rKtGh8Xz9zAqiQ+J5/fchdOjblMyMLJZ9s5u/P95C656e\nvDt/GK1uNpSViHByVzi7lpziwLpgzh68QP3GtXH1qkft+k44VnIgOSGN84GxRJ2Np+d9rRk1oS9u\nXvXyyOjmVY8npw3k98/T8fY+mseV5lzTFb+7ns5TPj7qMnUaWL6c7diWUFr39LRIz2bTvKP0GtpG\n7/ys0Vzn2NuyEeBFYE+utEw791mmRIfG4z9oLj3+rxWPftbf4iZ6cmc4Hw/9hyGv9GDoG72y9xFi\n5ay9zB2/kee+vYvew9oBEPDHYWa/spp7X7yZ9xeNoHIVRw5tOMvMsStxrJdCfJctrI2N5fiXS3jr\nlXc5sTqW1T8ewLGSotfQNoz52JfWt3hSrUYVa6ISF3WZld/t5bUeP/HewuEWb9DsdX8bvnx8KUu2\nL+eTzycSERGBh4cHHrG34uHWOE/ZoP2RNO1gGcK9c/FJ7n+9p9X+MzOy+G/2fj5YOrLI46vRaCoo\n1kLUSuIA+gFZwO3FqGOXULzSIvx0jDzW9EtZOHW71fwdi0/IQ/WnyM6lJ3PSMtIzZcbTy+S59jNz\ndj9OS8mQL59YIs+0/kZO740QEZHLCany1VNL5dHGX8j8mWssQphrKGfxH/G9nNwVbnNFvy32/ndG\nxnhOl9TkdIu8x5t9JRFn8u7K/GKX7+TEjrA8aS91/V4Obgi2GI9RDaZYDYkWEVn76wF51/e3Ysmq\n0WjKN5RR6PMN4xuJOHOJ93x/50H/Ptz5dFeLd8Hc3XUUKyadYMKKh3JcXilJ6Xw6bD4Ojoop2x+j\neq2qxEYmMXHIXzRsWodpu5+geq2qBB2M5LPhC2jYuTIpvXbw/PhPiIqKytP/ZblEUOWNtLr5qWLJ\nHRwczLTfxrM5aS/33bOBb3/8Iiek2WQSEi4mU8vlinss9kISF4LjaH6T25U2Dl0gNvIy7XvntYwW\nTdvBoCdvspgXAshIy2Teh5t56cd7iyWvRqOpoFjTQCVxYFg2Joy9gzOBi8BcoHEBdeytdO3ChXNx\n8miTL2Xld3tFxPriyZqOLrL5v905dZLiUuSNW3+S6Y8tlswMY+Fm+OkYedzrK5k7ISDHOtky/5g8\nVH+K/DF9hUWb+Y/ivkOnsHfWnNgZJs+0+SanrJ+fn7RvfpN09eqbZ2HnZL+F8tfHm/O0fT7wkjzo\nPFliLyRZ7Xv+pK0y4Z55xZJXo9GUfyjtjTiBLsAk4B6gD/AScAEIBerbqGP3gShpEmKS5Zk238i/\n0664zmztmJy9IWZKUpq8cetP8u3zK3J2EQg9ES1jPKfnKCwRkeXf7pYxntPlzL4Im21aaz8tJUMO\nbzwr6+cckgPrgvLsQpAbW20OGTJE/Pz8pIV7R7m10wDZuHGjTaUUuP+8+DWcKpfjU/O0PXHIn/Ln\n/zZZ7TcyOFYecpksYacuXv3AazSacoktZWM3N5qIHAAO5ErarJTaDOzCCBoYb6++S4uM9Cw+vv9v\nbr6nJfe9emUS3NbalIiICLIyTXw6fAGerVx4ZsadODgoLoYl4D/oD0ZP9GHgY10AWPX9PuZ/vo3P\nNz2CW/N6NtvMxtvbm/ff+4C54wNY/s0e3Lzr4da8HqHHL9KojQtv//mARR1bba5evZqUlBQAzpw/\nzD337CApKe8mn4GBgYwb9z5ugbfz8Me+ed5Fs+WfY4SdjOHtvyz7NJmEL59YytA3e+HZ0sUiX6PR\nXJ+U6jobEdmvlDoF9LBVZsKECTn/+/j44OPjY3/BrpLvX/6PGnWr8dikAXnSPT2th/p6eHjw4xtr\nMGWZeHH2vTg4KFKTM/jo//7knrHdcxTNnpVn+GPCRj7fbCgagOqOday26erqyoABA3jj5Xf4ZlQA\nnq2ceWXBAL6aPYX94eHUdKtL1PYugOWN35ac2Yomm/yKJpvlS1YyulM3Bj7eJSctKiSeWS+swn/p\nSKtzNQtdHEB4AAAgAElEQVQmbSMzPYv73+hltU2NRlOxCAgIsPoWYAusmTv2PICjwEobeXYz7Uqa\n9XMOydOtvrZwH4mInD51RupUbWDhdvprxn/yRPMZkhibklP2i8eXyGS/hTlzNNGh8eLXcKoc3RKS\nUyYu+rLc1+A9aeTexOb8ymS/hfLD66slMDDQwuXl3qCR1c02AwMDxaWWW56y1apVK9Rdl/to1tQr\np+20lAx5tccPMn/SVqtjdnB9sPi5TpWokLirHndrZM8n+fj4XPXL6zQaTclAeXh5GtAdI1hgvI18\nOw5ByXE+6JI8VH+KBO4/bzX/j482ygu3TZNRo0blvL1z/87D4tdwqpzaHZ5TbteyU/JE8xmSnJiW\nkzZxyJ8yd0JAnva+eW65zHppVYFvBH2l+2z55/OtMnTIsALnc7LJyjLJdy+vksc6fCIjRzyY02b3\ndr2t1q9axanAuaKsLJNMGrVQPh3+j9XQ6/DTMeLnOlX2ry1ZRVBYkINGoyldSl3ZAL8DE4AhgC/w\nOhANBAPONurYfSCuFZPJJO/6/mbz6T3kWJQ8VH9Kntc1i4hMGrVQfn5nbc7njPRMebLF17L3vzM5\nace2hcpjTb/Msy7lckKqjKjzucRFWY/qyub49lB5u+8vUr9y00Ij1ZIT0+TT4f/IG7f+JImXknPO\n669PNsuIRuOlWVOvPHXr13aTgIAAadiwodW2fXx85Mc31sjrvX6yulYnLipJnmr5tayYtUdEStYS\nKSwYQ6PRlC5loWzewQgQiAXSgHPATMC1gDr2HodrZt1vB+XlbrOtRngFBQVJB/dbpUOLrnluomf2\nRcjD7tMkJemKBbP2lwPy7u15FzROGf2vLPpiR560/WuD5K0+vxRJtqCgIKlZs2aBN98TO8Pkmdbf\nyPTHFktaiqHU0tOMhaVjO86Si+EJEhQUJMMfGCmNarWW7i36yZkzgSIict+9D1ht+9YO/eX5DjMl\nISbZQqakuBR5udts+W3c+hwZS9IS8fHxKZEwcI1GUzKUCzdaYUd5VzYpSWnysMd0Ob491CIvKChI\nGnk0tXoT/WzE/Dyh0SIib9z6k+xYcmUnAZPJJA86T5bosLwW0fZFJ4q8HsXWU37NmjXl4O4j8u3z\nK8TPdaps/PNITp3zQZfktZ4/ykeD/8yZfzp3NEqe9J4hv41bn+MSO7EzTIbUf0/cGzTK03aDuu7i\n1+Ijq+tpLsenyuu9fpJvx67IaaekLRFt2Wg05QutbEqA+ZO2yifD/rGaZ+umN2LYSBle+3NJirsS\nFBB/8bIMr/25pKdl5qTFRSXJyHqT8rQZFBQkQ4cMk4aVvGXkiAcLffq39ZTf3L2tPOQyWWa+sDLH\n+sjKMsnK7/fKQ/WnyIIp23KUQcC8w/JQ/Smy9tcDOe1u/ueoPFR/iuxYfCKPC6ybdz95rMMnEhd9\n2UKWhJhkee2WH+XrZ5fneSNpSVsies5Goylf2FI2+hUDRSQjLZPF03fy4apRVvNPHD9pNf3IgeM8\n5Hs/Nepcea9M0IELeHV2pXIVR6t1goODeeWVV1i9ejWpqakA/PV3ILt272LduitvyMyPrVBm55qu\nTPvviZydnc/sO8/3L/1HTGIkyT12M2PZMv7e5UaLLF+iDmUwcfUovG9yJyvTxO/+G9j4x1E++m8U\nLboaLzj77psf+HzkQlRLeOefYTjVzLvR58XwBMbf+Qdd7/Dm8ckD8ryhs6Cw8KvBy8uLNWvW4O/v\nn7NR6MSJE22OkUajKSOsaaCyOijHlk3AvMPyXv/fbeY3dHa3+sTuXKuhxcacm/46YmEhmUwm8XOd\nKtvW7S1wW5oerX1lx5KTEnI8Wi6GJ8iFc3FyZl+EbF1wTKa99IfUc8o7ie/l1TznKT/0RLRMGrVQ\n/Fynys//WyLNmze3CAQ4dviEiBir/N/s/bO8P3BOnuCEkGNR8nSrr2XmCytzttnJTfChSHm0yZfy\n96dbrEalaUtEo7m+QVs210bAnCMMeLSTzfwqphpW051UbTxa5n19T7WaVUiOT8uTppRi0BNdeP7x\nVwg8l/c1zLlJSo9j+Td7iAyKJSUxHcdKDtR0rkbDpnVo0r4hP0yfy19rfyA6JgoPDw8++ugjUiIq\n8elb8zkccI7BL/dg7Ky7efq5JwgKCsrT9sWESP736Uc8cvsb/PLOeoa+2Yuhb/TKeU3ChjmHmP3q\nGh6b1D9nAWpudi07xZePL+XpL++g30MdrMqvLRGN5gbFmgYqq4NyatkkJ6bJsJqfWV3AmY13ze5W\nLZF2rr1k3+rAPGUvhifIyHqT8szZiBgBCJ41Wtm0aijGxHdUSJwsmLxNnu8wU55q+bUs/nKnHDt8\nQvz8/OS2Xn2kllMdq+03rdtWXur6vQQdjMxpKykuRaY8/K880/obCTxgubYoK8skf3y4UcZ4Wg+e\n0Gg0Nw5oy+bqObE9DK8urnn2/8pPiwwfTF6XCA6+Yi14e3tzT+vRxEVdzlPWxaMW3l3dWf/bIe54\n8qac9Go1qnDrnTfxz4JTVvvw9vZm4sSJVvOSE9M4tSuCwxvOsndVIBeC4+h5X2uemXEnHfs15ezZ\ns/j63M65kLMFnmsTr8ZM2/kEjpUcANi3OpAZTy2n213efLH3SYsXscVfTGbamMWkJKQxffcTOLvX\nKrB9jUZzY6KVTREIOhBJi27uBZapZqrLqpWr+Gjih3ncQ3v/Oc+JbWH4+nXMU/6xSf0Zf+cftL21\nEU3aNchJ/3zyp+w7sCfPa5grqcq0adyVJwe/ysFFFzjIBVKS0omPSibqXBxhJ2KICU+keRdX2vdt\nwuNTBtDutsaEhoUwbtw4Tr0cyJnTgcSnXCzwHJo19eLXBbNwrORAfPRlfnxjLUc2nuPF2ffQdZC3\nRfkD64L54tEl9H2oPWM+9qVSZesBDxqNRqOVTRGIOhuPZ+uCdyiu6eyEc01X5syZkye92gN1eL3n\nzzzy2e1Ur3XFMmrR1Z0npw9iXP85vPbbEG4a2BywnNNoWN+V0fc+i8Q7ERuZxIWz8SgF1WpUxr1F\nPTr5NsWztQuerVxybvYiwrpFOxj12ANEx58vUO4aVWrTsVMHvFt7MXHiRJo0bsqyb3Yz78NN+D7c\niW+OPGsRbZaWksGv765n6/zjvPLz4BzZNRqNxhZa2RSBpLhUatarVmCZJu0bEHzgAvU9a+dJd/d2\npttd3sz9YCNPTR+UJ8/XryP13Gry5WNLaNHdnfte60m72xrj5eVlobQKIyYikSObznFwbTB7Vgay\nPXEu0YkFKxqA+4b/H3PmzEFE2LPiDJPv/Y66bjX5eN1omnV0tSh/ZNM5vnpyGS26uTPj4NPUzvUW\nT41Go7GFVjZFwMFBISYpsEzXO7zZvugkN9/T0iLvyWmDeK3HjzRq48Jdz3TLk9elvxezTj7Pqu/2\nMePJZaQlZ9C5vxfeXd3waOVCPbcaVK9dFcdKDmSmZ5GSmE5c1GUuhiZwPjCWkKPRBO6LJC05g3a9\nG9Pp9mYMfbMXDz+7mDMBBZ+Xt7c3H330EYc2nGXOBwEkXUrhkc/60+PelnnWxgAkxCTz67vr2bPi\nDM/MuJNb729TpLHTaDQaAGUED5QPlFJSnuTJZvarq3H2qMkDb95qs0xsZBLPtZvJN0eexcXDcpI8\n4swl/AfNpdf9bRjzsS9VqlnqeREh7MRFDm8MIehAJOfPxBJ3IYmUxHSyMk1UquKIU60q1K5fnQaN\na+PmXY8m7Rrg1dkVd+96OQrCZBKG3DWUZasXWfTRrFkzvLy8cHd3Z8SAJ9n2cwiXzifxoH9vfPw6\n4ujokKd8VpaJNT8dYI5/ALcNa8uYj33zLFDVaDSa3CilEBFlkV5aN3el1CpgEPA/EfnARplyqWxW\nfreX49vCeO3XIRZ5wcHB+Pv7Ex4eTlq0Iz3dBzN19YsWlgEYkVszn1/B6d3nGTGuN/1GdaBa9col\nImPshSQObTjLgTXB7FlxBlONJNZemkVUbEROGW9vb5YtWUHI9sss/mInykEx7O1b6TOifU70WW4O\nrg/mx9fXUK1GFZ6ZcQfeNxUcJKHRaDRlqmyUUg8BUwFX4OOKpmzCTl5kXP85/Bzycs4CRzAUzcCB\nA/NEjtWp2oD3HpvGm9/6WVU4YMx7zP98Gye2h9HtrhZ0vaM5rXp44tHS2cKyyO4nW6F5eHjwynNv\nUymlJmcPRxG0P5ITO8JJuJhM+z6NuWlgc7rd1QKPFs459SIiIqhdvR49Gg7myNKLtOrhwZBXbqHL\nAC+rMgbuP89v4wIIPxnDI5/60nt4O5vnotFoNLkpM2WjlKoHHANeAeZRAS0bgJdu+p5HPutPtzuu\nhACPHj2auXPnWpRtVbcHY4f58+yMO626y7K5dD6RHYtPcXjDWU7tjiD2fBIunrWo62rM01Sq4sjF\nxEh+2/EJcSlROfVqOrowuvs7dOreHu+u7rS62Z3G7RpYKKpL5xPZ/PcxAuYcJiYiiQGPdmLQEzfl\nvGo6P0EHI/nzo82c2B7G8Pd6c+fTXW3u36bRaDTWKEtl8z3QVETuUEqZqKDKZsOcQyz/di+Ttjya\nY934+vpaffd23z79uNv9RYIPXeDpL+/gpoHNi2QZpKVkEB0ST3x0MsnxaWRmZPHh9Df5b9Myi7LN\nmjVj/fr1ebZ5ERHCTsawe9lpdiw6ybmj0dwyuBX9RnWgywAvq1YTwLGtofzz2VbO7DnP0Dd7cdez\n3UrMvafRaG4sbCkbu0ajKaV6A6MB25uKVRD6PtSBpTN2s2LmHu4dezNgewfjxk0a8dbvQ9mx+CSz\nXlhF7frVuef5bvS8r43FmpXcVHWqTKPW9WnU+kpa2pdJVsuePXuWgQMH8seP80k8pziyMYQDa4MR\nk9D97hYMf+82uvT3onJV619xZkYWOxadZNH0ncRduMzQN3ry7j/DCrTENBqN5mqxm2WjlKoM7AcW\niMh4c1qFtWwAwk/F8FbvX3j77wfo5NPM6pyNt7c3a9asybE4srJM7Fx8kv9+OMCxLSG0692Ejv2a\n0KKbO007NKSua40CrR5brrpsvJy68vS979K+b1M6396Mxm3rF9jexfAE1vx4gFXf78PVqy5DXrmF\nnve1tmn1aDQaTXEodTeaUup94FGgvYikmdMqtLIBI0Lr85ELeWPufXQd5J1nEr6wHYyTYlM4uP4s\nx7aEcmbveY4fPsmBxBVkVE6mTnVnfLwfwKW2O2ISMtIySUlMJ+JCKP9FzSSZS1bb9PX1Zf369QXK\nnJ6aya6lp1j7y0FObA+jz8j23P1cN7w6WS7a1Gg0mmuhVJWNUqoxcBJ4AliRnQxcAiYDnwCJImLK\nV0/Gjx+f89nHxwcfH58Sl+9aObI5hM9HLODeF7oz7O3brIYNF4Y1q6iRRxNmfvobjTybULmqI041\nq1DT2Ym4lCjuuHMQZ8+etWjHz8/P6m4DGelZHFwXzJa/j7Fj8Uma3+RG/0c6cdsDbS0209RoNJqr\nJSAgIM/c9YcffliqyqYfkP24nbtTMX8W4CYROZSvXrm3bLK5GJbAF48tIT46mSemDqTz7c2KFR5s\nyz1mS3kUxWUXfzGZ/asD2bX0NHtXBdK4bX36jGjHbcPbWmyjo9FoNPagtC2b2oDl27UgAPgd+AHY\nKyLJ+epVGGUDRvTXln+O8fv7AdRyceLeF26m1/1tihTJZSuSrSC3WH6X3Ttvvk9qRCUOB5zl0Pqz\nhJ+6REefptx8T0t6/F9Lvd2/RqMpdUo1Gk1EEoBN1oQAzonIZnv0W9oopegzoj23PtCWnYtPsur7\n/cwau5IuA5vT7U5v2vdtgkcLZ6sWj61INg8PD6vp8ReTSQpxYESPlwjcd57Te87zYe/FtOjuTod+\nTXli6kBa92yk18VoNJpySanujaaUysIIEBhvI79CWTbWiIu6zK5lpzm4Noijm0NJSUqnWceGeLZy\npkGTOtRzr0ktZydiEi8wdtwjhEWE5NT1dG3MJ6/NpIaqR2zkZWLCErhwNo7zZ2IxZZlobN4Hzfsm\nN1p0d6dZx4b6HTIajaZcUeZ7oxWF60HZ5Ccu6jLnjkQRcfoSF0MTiI1MIvFSCimJ6UTFRrDl3L9c\nzoijllM9BnV4kMaeTanlUp26rjWo36gWrs3q4t7CmToNqustYzQaTblHKxuNRqPR2B1bykav5NNo\nNBqN3dHKRqPRaDR2RysbjUaj0dgdrWw0Go1GY3e0stFoNBqN3dHKRqPRaDR2RysbjUaj0dgdrWw0\nGo1GY3e0stFoNBqN3bGbslFKDVJKrVNKnVdKpSqlQpVSfyml2tqrT03FITg4mNGjR+Pr68vo0aMJ\nDg4ua5E0Go0dseebOh8EbgJ2AtFAE+BdoBHQUURCrdTR29XcABTl3TwajaZiUi72RlNKtQJOAK+L\nyHQr+VrZ3AAU98VxGo2m4lBe9ka7ZP6bWcr9asoR4eHhVtMjIiJKWRKNRlNa2F3ZKKUclFKVlVIt\nge+ACGCevfvVlF+K++I4jUZT8bG7G00ptRvoZv54GhgsIidtlNVutBsAPWej0Vy/lNmcjVKqNVAb\naA68AbgBt4lIiJWyWtncIAQHB+Pv709ERAQeHh5MnDhRKxqN5jqgvAQI1AHOAvNE5Hkr+VrZaDQa\nTQXGlrKpVJpCiEi8UuoM0MJWmQkTJuT87+Pjg4+Pj/0F02g0Gs1VERAQQEBAQKHlStuycQXOAL9r\ny0aj0WiuP0rdslFKLQT2AYeABKA18AqQDkyzV78ajUajKX/Y0422HRgBvAZUAUKBDcBn1oIDNBqN\nRnP9UqputMLQbjSNRqOp2JSXHQQ0Go1GcwOilY1Go9Fo7I5WNhqNRqOxO1rZaDQajcbulOqiTo2m\n3CICGRnGX6WgUiVw0M9iGk1JoZWN5vomLg5On4bAQDh3DkJD4fx5iIyEmBiIjYXEREhJAUdH4zCZ\nIDMTqlaFWrWgXj1wdQVPT/DygpYtoX176NgRqlcv6zPUaCoEOvRZc32QmQnHj8O+fbB/Pxw+DMeO\nQVKSoRyaN4dmzaBxY0NpuLpC/fpQt66hUJycDEWTjQikpkJCgqGQLlyAsDAIDoZTp4z2T56ENm2g\nXz8YNAh8faFatTIbAo2mPFAuNuIsDK1sNEUmIQG2bDGObdtg715wd4fu3eGmmwyro317aNTIcIvl\nI3vX6fDwcDw9Pa9u1+m0NKPfDRtg1SpDAd1zDzz6KPTvr91wmhsSrWw0FZv0dEOprF4Na9caVkz3\n7tC3L/TqBbfcYri7ioDd3qcTFQV//QU//mi45d58Ex55BCpXvvo2NZoKhlY2mopHdDQsXw5LlsD6\n9dCqFdxxBwwYAD17GnMqV8Ho0aOZO3euRbqfnx9z5sy5VqkNF9zGjfDxx4bbbdo0GDz42tvVaCoA\n5eIVAxpNoZw/D/Pnw4IFcOCAoVjuuw9mzYKGDUuki/DwcKvpERERJdI+SoGPj3GsXg0vvABz5hjn\n4OxcMn1oNBUMuzmVlVLDlFL/KqVClFLJSqkTSqlPlFI17dWnpoISGwuzZxsT7O3awe7d8NprRsTY\n/PkwZkyJKRoAT09Pq+keHh4l1kcOgwbBoUPg4QHduhn/24ng4GBGjx6Nr68vo0ePJjg42G59aTTF\nRkTscmDs+vwPMAroC7wExALbCqgjmhuEzEyRlStFRowQqVNH5IEHRBYuFElJKXITQUFB4ufnJz4+\nPuLn5ydBQUFFruft7S1AzuHt7V3k+lfNvHkiDRqIbN5c4k2X2TlpNPkw38ct7+/WEkviAFyspD0M\nZAE+NurYdRA05YDQUJHx40UaNxbp3l3km29EYmKK3cy13lyzFZWvr2+xFNU1s3q1SIMGErRkyVUp\nSlv4+fnlGYvsw8/Pr4QE12iKhi1lY7c5GxGJsZK8G1CAdT+G5vpEBAIC4OuvjTDhBx80Jv27dLnq\nJv39/fNEkwEEBgbi//LLzHnhBQgJgYgII0IsJgbi4yE5OWeXAK9KlZjj5GSstalTB/74w1iw2bq1\n4cpzcrrGk7bBwIEET5jAwPvvJzArKyd5x44d1xQNZ/d5KI3mGintAAEfjCeu46Xcr6YsSEszbuLT\npxuLLl94AX75xVhEeY2Enz1rNT1i9Wq4fBmaNjXmSVq3BhcXqF0batQwwpCVMpROSoqhhKKjDcW0\neLERUn3mDLRta0zw33WXsWizBMOX/bdty6NowKwo/f2vOhquVOehNJqroNSUjVLKE/gQWCMi+0qr\nX00ZEBcHM2fCjBnQqRNMmQIDB1pdXFlkwsKM8OeNG2HLFjyDgqwW8xg2zIj8uhZSU43FmuvWwXvv\nwdmzMGoUjB1r7EZwjdjDCpk4cSI7duywWDs0ceLEq25ToylJSmWJs1KqBrAYSAceL40+NWVAVBS8\n+y54exsWwn//ETxzJqN/+w3f228vXoRUerqxePO11wwro0sXWLoUunaFf/5h4vHjeHt756lSYjfX\natXgttvggw9g1y7YscPYA+3WW8HPz1A+14A9rBAvLy/WrFmDn58fvr6++Pn5XfsiVY2mBLH7ok6l\nVDVgJdAR6CsixwooK+PHj8/57OPjg4+Pj13l05QAUVEwebKxcv7BB+Gtt6BZs+Kv1E9JMbZ9mT8f\nVqwwFnHee6/hyura1WL7l+wtZyIiIvDw8Li6LWeKQ2KisUDzq6/g/ffh5Zevaksau+1goLmuKZEt\nluxAQEAAAQEBOZ8//PBDq4s67RaNZlZilYDlQDxwcxHK2ytAQmMPLl0SefddEWdnkbFjjUizXBQp\nQiozU2TNGpExY0Tq1hXx9RX59luRiIhSPplicOaMSM+eIvfdJ5KUdFVN5ETDeXmJX8uWOkRZUyAV\nKbQdG9FodrNslFIK+Au4B7hHRAIKrqG3q6kwpKQY8zGTJ8OQIYa7qUkTi2K+vr55nnhyp6//8Uf4\n6ScjYKBBA2Ph5siRxmaaFYH0dHjqKQgKMqyxGjWurp3Dh40dEvJF1mmuHhEhMimSkPgQziedJ/py\nNHGpcSSmJ5KamUqWyQjOqOxYGadKTtSuWpt6TvVoWKMhHrU8aFqnKfWcirbPXmlh9y2WSpCy2K7m\nW2AY8D8gRSl1S668MBGxPkuqKb+YTDB3LowbBzffDJs3G1vs28Dm3MSJE0b90aONvc86dSq+LBcv\nwtGjxnb/QUFX3lNz8aIRYZaaCllZhpurWjXjVQKuroZSbN3amAO65RYjSu1qqFIFfv4ZHn/cOI+F\nC68uAKJ9e7h0yXBFluAuCTcKl9MvsydiD7sjdrM/cj9Ho45y+tJpalSuQZM6TfCo5UGD6g1wdnKm\nRpUaODs5U8nBuO2lZ6WTkpHCufhz7I/cT9TlKMITwzkXdw5HB0daubSiQ4MOdHbrTHeP7nR170q1\nSmXzConrIbTdnsrmTgxzb5z5yM2HwEd27FtT0mzbZsxRODrCvHnGBHohWI2QqlqVia++aoRBF3Ut\nS0oK7NxpyLBzpxEplpho3KjbtDHeVTNokGEVZa+bcXIy3raZlWXUj4sz3klz7pwRvLB0qfHem86d\n4YEHjIn/4t7sHRzg+++hTx/49lsjWq24ODgY53H8uFY2RcAkJnaF72LF6RWsDVrLoQuH6OjakZs9\nbmZg84G82vNVWrm0onbVq3yIwLCMYlJiOHnxJIejDnMg8gC/HvyVExdPcJPbTfg28+WOFnfQs1HP\nHMVlb66L0HZrvrWyOtBzNmWOxRYwO3aIjB4t4ukpMmeOSFZW0Ru7cEGCnn9e/KpUEd8GDcRv0CAJ\nCgwsvJ7JJHLwoMinnxpzODVqiPToIfLaayJ//y0SGGiUsSZvcXzYKSkiK1aIPPKIMV/05JMW805F\n4tgxERcXkejo4tcVERk50hhbjVVMJpNsDdkqY5ePFbcpbtL+m/by1uq3ZG3gWklOTy41ORLTEmX1\nmdXyzpp3pMusLuL8ubM8vPBhWXJiiaRlptm17+thzqbMFUweYbSyKVOsXtAODhL0zDMiiYlFb2fH\nDvFr3Vp8HB3Fr0ULCdqwofBKWVkiW7eKvPKKSNOmIl5eIi+8ILJ0qUhCQtHlvdof4MWLIu+9ZyiN\n6dNzlFmReeopYxueq+Hpp0Vmzry6utcxl5IvydRtU6XVjFbSekZrmbhxopy6eKqsxcohND5UZuyc\nIb1/6i0un7vI2OVj5cD5A3brr8y2WComWtloCuWa99eKipKgJ54QbweHoiuAEyeMiLamTUXatTNu\n2IcOFelmb5f9wE6fFrnlFpHhw4u1KagcPCjSpEnxlZSIyDPPGBF4GhExbuIvrXhJ6n1WT0YtGCVb\nzm0R09WMaykSHBss4zeMl8bTGsutP94qfx35SzKyMsparDLBlrLR763V5BAeGmo1vdBJyKQk+PBD\naNMG/02bCDSZ8mRnb8WSQ2oq/P67MdfRr58R2bV4MRw5AhMmGK90LsJke1EmTYu97X6LFsYuBVlZ\nxpqhfNvK2KRjR2NLm8OHi1Y+N5cvX30023VE1OUoXlr5Ep1ndaayY2UOP3eYuUPncluT21DXsvtE\nKdCsbjMm+Ewg6OUgXu/1Ol/u/JI2X7fhh30/kJGVUdbilQu0stEYbN+O5/79VrNsTkJmZcEPPxiL\nL0+dgj17CLcxkRkREWHsP/b++8a+ZXPmGLsDhIYa29l07ly4gomJMSLgfvoJxo/HMyzMuryhofDp\npwR/9x0DfX2ZO3cuAQEBzJ07l4EDBxaucKpWNYIg4uLg008LLpuNUkbQxK5dRSufm8jIGzo4ICMr\ng6nbptLum3YAHB97nCmDpuBZu+Lt11vJoRJD2w5l6+Nb+XnIz/x55E/aftOWeYfnYRJT4Q1cx+jX\nQt/opKXB+PHwyy8E+/szcPr0PNFjNWvWpH379rRo0SLviuUtW+Cll4wn8mnTjFBmClgP0Lw5c2Jj\njT3GXnrJUFAFkZVlRItt3GhEoe3aZYQ0t29v1G3alODKlRn4zTcEXriQU83b1ZU1zz+PV1ISo+fM\nYcrwT8IAACAASURBVO7585ayFHVtQliYESK9e7exI3RhfPyxESX32WeFl81N8+awcqURkn2DsTt8\nN08seQL3Wu7MuGsGrVwKuS6KgIgQEh/C8YvHOXPpDKHxoZxPOk9MSgyJaYmkZaVhEhMOyoFqlapR\nu2ptnJ2ccavhRpM6TfB29qZN/TY0qdMEB2X7ebyoK/o3BG/grbVv4agcmXHXDG72vPmaz7E8Y2ud\njVY2NzLHjxs3/yZNjBBeV9ecH1BgYCBHjhwhKSkpp7i3tzdr5s3D6+uvjU0xJ00yXE25LBKrW7E4\nOLDmxRfx8vc3dmC2RXy8se5m6VLjdcpubsbOy717E+zujv/s2YRHROT5YRe0ZY3NRaV9+rB+06ai\njdG4cYZcX39deNnvvzcU0+zZRWsbICHBCNmOjzdCtW8QMk2Z/G/T/5i5ZybTBk1jVMdRV+0qy8jK\nYHvYdtYHr2dr6Fb2ROzBqZIT7Rq0o6Vzy5z1Ns5OztSqWotqlarhqBzJkixSM1NJSEsgJjmG80nn\nCYkPITA2kOPRx0lIS6Cre1d6NepF36Z96du0LzWqGO7O4m45ZBITvx38jXfWvsPwdsP5pP8n1Kp6\n7bufl0dsKZsyDwrIfaADBEoHk0lk1iyR+vVFvv/e6qS2zcn3qlWNEGRzhFhQUJAMGTJEGjZsKA0b\nNpTBgwfLxnnzxM/LS3wrVxa/Ll0k6PBh27KkpBjhzIMHi9SqJXLPPYZMYWE5Ra426szmOdSoIVKQ\nTLkJDjbGKTOz8LKzZ4s8/njR2s1mzRqR3r2LV6eCcz7xvPT7uZ8M+G2AhCeEX1UbaZlpsuj4Ihm1\nYJTU/ayu3DTrJnlz9Zuy5MQSuZB0oUTkjL4cLatOr5IP1n8gfX/uKzU/qSkDfxso3+76VoaOGHpV\nwSkxyTHy6KJHpdkXzSQgOKBE5CxvoKPRNCIiEhdnRFp17mxEgtnAx8fH6o/Jt3v3nDJBQUHSuHFj\nizJNlJKgl14SiY+3Lcfx4yIvvWSEGt9+u8jPPxuyWeFqo85sKqlp00RcXQs8/zy0amVEmxXGlClG\n6HZxePddkXHjilenArMnfI80mtZIxm8YL5lZlgq8sHVTwbHB8ubqN6XBpAbS+6fe8u2ubyUioXT2\n0UtITZD5R+fLqAWjxLG5o/Xfh69vkdpadnKZuE9xl3Hrxl13UWta2WhEDhwQadFC5NlnCw3rLcoN\n3lYZa4ogKChI/EaNEp9OncTPzU2CXFyMdS3BwYWKbVPxFeGHvXHjRmnUqJFUrlxZqlatKv379zdu\nYN99J9Kxo0h6eqFtyP33G9ZXYbz8ssjkyYWXy03HjiJbthSvTgVl5emVUn9SfZl/dL7V/IIs2GNR\nx2TUglHi8rmLvP7f63I65nQpS5+XkQ+OvOaw+8jESBnw2wDx/cVXopKi7Cht6aKVzY3O778b7qAi\nrlQP2rVLvKtXL9B1ZUsJ5FcEQWfOiLera962mjcv8qI0m4pv2LAC17XYtLyaNDF2Mujf33B9FcaT\nTxrKqTAGDBBZvrxI5yQihnXn4VE0F10FZ+GxhdJwckPZGrLVZhlb37N3X29pMKmBfLr5U4lPLcBa\nLoQsU5bEpsRKSFyInIk5I2dizkhofKjEp8YXex2PNcXo4Owgr//5uiSlFX0n8MysTHlnzTvS7Itm\ncvhCEV275RxbyubGmZG8UcnMhLffNtaxrF9vrAcpjLVr8XrkEdaMGYN/XBwRFy5Yvi8mORnPyEib\nTXh4/H975x0Wxbn98e9gRVFUmoCogBossUSNPUIUjRolRk1i0MSY6o25SX4a402uicZoFLElttg1\n9q6xaxR7752ya0MsCIpI3/3+/niBC+zMFgR20fk8zz4xM+/MnBl23zPnvKd4ACSwfTtGBAcjKj4+\n1/4ojUa5DfKdOyIK7dgx4MwZjL54EUcB5KyL7FuyJEZv2yYqRrdoAXTrJoIdKlXKHjNixAjckskd\nunnzJkb89BOWDB0q8oM++cT489DpRE04U2NOnACaNTM+LieLFwN9+5o+dzHn72t/Y9CWQdgevB1N\n3JsojlPKm0p7nIbwr8JRqWwl2f15ydBn4NzdczgWfQxn757F1dir0D7S4l7iPdiXskeF0hVQukRp\nAMgOEEjXp8Ojgge8K3nDz9kPjdwaoblnczR0ayhb/yyrWV3O4JQB3w7AHO0cvDTtJfzW4Tf0a9jP\nZNBDCbsS+K3jb2jg2gCvL3odq/usRvua7c26z2KHnAYqiA8ATwB/ADgM4CkAPYDqJo4pZJ37gvHo\nEdm5MxkYSD58aHp8RgY5YoR42/7nH+Vxhw6RtWtT0707vTw95S2HzZtFXTM/P/o3aGDc+tHryVOn\nxPpF/fqiP05QEDl+PLlzJ3n7NjWRkYalOvR6MiaGXL1a1BdzchJurExLwaTllZpK2tuTT58afy7d\nupEbNxofc/gw2aCB6WecRUoKWbWqqKv2HHPwxkG6hLjw+O3jJsc+S0WI+OR4LjyzkD1X9KTjb46s\nP70+P974Macdm8Y9mj3UxmuN1i9LSktixMMI7ojcwSlHpnDAhgGsN70eK/5Wkd2XdeesE7MY8yTG\nrHs+cusIm/7ZlO0XtLeovM7uqN10CXHh5mubzT7GFkFRu9EAtAcQA2AzRKdOnapsihCtVpR/GTyY\nTDdjAfLBA+EGCggg796VH5OWJtZZ3NzIdetI/i8azc3NjW5ubuzRpQs1/fqRrq6iBEt6uvIk8vbb\nQqH4+ZE+PuT335NHjuTfrRQRQbZrR/bqRWZkmLemVKuW6UABHx/h8jLG0KGWLfQvWiSe93OMNl7L\nqqFVuS1im1njNRoNPap7GHXd5kSv1/PgjYN8f+37dPzNkUHLg7jo7CLefaLw/c0H9xPvc9n5Zey7\npi8rjavEjos7cvmF5SYLb2boMjj5yGQ6jXfi9OPTzXbTHb11lK4TXLkl3AJ3rI1R5MqGuZXIx6qy\nKUJOnhTWydSp5o0/e5asWZMcNkxZMWm1ombYG28IayIver1YRHd3FwEIOSwp2YXfChWoqVCB/Ogj\nYSkVVO2rlBSxFjNypPE1m6wJrH59UYtNiZgYURFaQQFqNBoG9+1L/9KlGdytm3nrUDqduO727fm4\nweJBcnoyX/nzFU46PMnsYxafXczK31dmQPcAk8Umd0XtYut5rek71ZeTj0zmwyQzLPdnJCktiSsu\nrODri16ne6g7x+4fa3IN6eqDq2wyqwl7rexl9nrTkVtH6BLiwn3X9xWE2EWOqmxeFHbuJF1csi0P\nk2zcKAIHli1THrNli7BUQkOzWwzkClHt1YuaN94QFsrhw7Kn0Gg0DO7WjQHOzgwuW5aaIUNEpeXC\n4MYNsnJlMiHB0PLq0SP3BObmliunx4D584WlJEO+q04vXy5aJth4ccln4Ztt3/DtlW+b/Ub/+9Hf\nWX1ydV66f8nouIiHEeyypAtr/V6LS88vlQ2fNkZqRipjnsQwKi6K4bHh1MZr+TDpIXV6C1pnkDx/\n9zyD1wbTJcSFEw5NYEp6iuLYlPQUfrbpM9adVpdRcWa02KBQpq4TXHn5fvFzs6rK5kVg9WqhFPbv\nN2/8lCnCAjp2TH6/Tkf+8ovoZZMjPFd2knV0pEbJ1RQTI5IdXVzEmoqpNZKCoEMH0Z7AGA8ekBUr\nGu/RExgolIMM+VpjSE0Vrrtdu8y4ieLJvuv76DnR02xrY8bxGfSe4s3r8dcVx+j0Ok48PJFO4504\n4dAEs/rHXI+/zoVnFnLQ5kFsO78tXSe4suQvJekS4sKaU2rSd6ovq0+uTsffHFl6dGn6TPXhG0ve\n4Pe7vuf6K+sZ+9T0y9Dl+5fZfVl31vq9FndG7jQ69o9jf9A91J2n7pwyeV6SXHBmAX2n+haJ1VaQ\nqMrmeWfhQuHCOnPG9FidTqwx1K2rnOeSlES+8w7ZsiV5J3fSnNmTbEYG+ccfYuF+6FDFpM1C4Ysv\nyOnTjY9ZuZLs0kV5f0SEsPqS5Bt05Sv/Z+JE49cs5qRmpNJvmh/XXTbPsl5/ZT09JnoYfeOPS4pj\nlyVd2Hpea5OWgTZey1Fho1h/en26hLjw3dXvcvKRydyr3cvbj28rWjDJ6cm8FnuNG69u5Mi9I9n5\nr86s+FtFtprbihMOTeDtx0asX5Jbwrew+uTq/HTTp0ZDn7NCwI/cOmL0fFl8s+0bdlvazWLLy5qo\nyuZ5Zu5cYX2YWsQmhQL46COhRJQi1B48IFu1It97Tzb5079tW9OTbHg42bq1WLAvwIgrsztzDhhg\nOoemVy/j+TNffCECIhQIfv99yyyb6GihvMz5OxVTflz7I91bu5vVOfXivYt0DnHmiegTimO08Vq+\n9MdL/Hrb10zLUE7APRF9gj1X9GSV8VU4eMtgHrp56Jkn6JT0FO6I3MGBGway8rjKDFoexP3Xlb0G\nj1Me84P1H7DutLpG3V9bw7fSJcTFLAsnLSONLee2tGjty9oUG2Xz888/Z3/2mtPh8UVn3jyyWjUx\nuZsiLU2ECHfsSCYqvH3dvCnWXr7/Xt69FBHB4AoVjE+yixaJSXXKFMvaSJvAojWSpk3JAweUT3b7\ntlj4V7K2NBoRgn1fObN737BhdLCkUVzv3kaVV3Hn/NXztKti3vNISktiven1OP/0fMXzhceGs9qk\navz96O+KY249vsV3Vr9Dz4menHp0qkUJlZbwJPUJZxyfQd+pvvRf6G80lHve6Xl0CXHhjsgdimPW\nXl5L91B3auJMB5RExUXROcTZ5HqWtdi7d2+uebvYKBsVC1i2TKy5mFPjKz1d1ETr0kW5VE1kpOiY\nGRoqv//4cbJqVWp++UV+0r96VXSdfOkloxFeZlsneVBy37m6uuY+T3S0UCQpyou2/Ppr43XM+vQh\nR45UvodTp+hbInd9LAcHB+7bpxBBtHq1eC4KLrnngcaBjc229L7b+R37rOqjGEBw+/Ft1phcg3NO\nKVunC88spHOIM0fsGcGnaeavA6ZlpPF+4n3efHST0QnRfJL6xOxAhnRdOuecmkP3UHd+uulTxifH\ny447cOMAXSe4csWFFYrnmnp0KhvMaGCWgpxxfAZbz2tdLNxpqrJ53ti8WURSmVO9WKcj+/UTCZ5K\niiYqivTyImfOlN+/b59Y4M9MbjToh37mDNm+vajenFkRWg5Z66RaNVG4s2NHUfSyQQPyyy8N8n2M\nJWnmeov+6Sfys8+Un0dkJDUVKzKoc+dc1aqzldWOHSIU3EggQ3CNGua70O7cEX+rI+b56Ysj6bp0\nlq5V2qw1rIv3LtIlxEWxOnNyejKb/tmUY/aPkd2flpHGTzd9yrrT6vLcXeMFUtN16Vx+YDkbdGjA\nynUr0/4Ve9p9Y0en8U70nOjJqqFVaf+rPR3GOrDxrMYcsGEA55yawxuPbhg976PkRxy0eRC9Jnkp\nutbO3z3PqqFVueqifF09vV7PARsGsP+6/kavRYoAiRZzWnDBmQUmx1obqygbAL0yPzMhKgh8kfn/\nrymML+zn8Hxw5IhwUx09anqsXi8m7tdeU548b90Sk+uMGfL79+8X11OKoLp7VxSU/PprkwmZisEF\nfn5CgV6+LKoJfPmlWFcy49hc5+nVSwQkKLkV9Xpq2rWjV8WKBsdWr16dmnPnhHVnLAdm1Sr629ub\nFxyg04mItp9+Mvpcijsbr26kcwtnsxRwt6XdOOXIFMVzDd4ymL1X9Za1NpLTk9l1aVd2W9qNCSnK\nLzW3Ht/isJ3D6DTciaWdcytBH5m6fPHJ8Tx++zhnnpjJvmv60mm8E1vMacFZJ2YZtTy2hG+h2wQ3\nTjs2TXb/2ZizdAlx4V7tXtn9iamJ9Jvmx+UX5CMec3L01lF6TPSwyIqzBtZSNvpMiybvZ4/C+MJ+\nDsWfyEhR5mSzmSUtxo4lGzZUXpuIixMJhuPHy+8/dUpYNEqK5v59EdU2cqRZeSOmIriyXWzt2zNY\nkoRrLhM5q8jgPFWritYFSsyezeDKlZWVVc2axq0ijYZ0cWFw587mWTa//ir61ZhTxaEY02dVH/66\n8VeTa2onok/Qa5KXYl7KXu1eVptUTdY9la5LZ/dl3fnO6ncUy/I/Sn7Eb7Z9wyrjq/Cbbd/wzV5v\nmm+B5rnW1vCtDFoeRJcQF447MI7J6fJegai4KPpN8+MPu3+QVZC7o3bTbYIbtfFa2eOP3z5O1wmu\nfPD0gVGZSLL3qt4MORhicpw1saobzdyPqmxMEB8vFu+VLJC8rFolXGPRCg2q0tJEeZqvv5bff/06\nNS4uDG7XTn59JTGRbNbMokXv4N69FX/85gQAZCkjtzxVpLPP4+CQncxpsC50/jzp7Ez/V19VVlbl\nyilbgMnJ5CuvkJMmmRessHOnCEc3ljT6HPA07Skr/laRsU9jDd2reSyI99e+z9BD8muCGboMNpjR\ngGsvr5XdP2THEHZc3FExKi1MG0avSV78ZOMn2S66Z2lPkcXl+5fZc0VP+kz14R7NHtkxD54+YONZ\njfnjP/IliyYensgWc1ooyv7vrf/m539/blKWLNeckuKzBVRlU9zJyBCL+4MHmzf+zBnh+jKWdzNo\nEPnmm/Kur6dPqfHzo6+Tk/yEqteLPJwPPjA7E14TGckezs4sm2dhPeucliRJyk72dnbUrF8vv69m\nTWq8vMi//jLqjnN1cpIPWtDryf79RTRf5v1qNBr26NGDbm5udHV1ZVBQ0P+Oi4wUCbYvQETltoht\nbDe/nclxcUlxdPzNkXFJcbL7l5xbwrbz28paBzsid9BrkpdiguPcU3PpNsEtuw5b1vfJ1dU1X5aN\nHJuvbabHRA+O2DNCdqH+fuJ91vmjDmefnG2wT6fXMXBxIMfuHyt77rikOLqEuJhVMaDLki6cd3qe\nxfIXFaqyKe6MGCEW4M1p9hUXR3p7kyuUI2G4eLFYjFdyrw0cyOCaNZV/qDNmkE2amGzCloVGozHo\naWNvb59rgrb0LTT7LbpVKwaXKyc6cNLIulDdutnHydVMM2qljB0rrJocIeOK1s3Zs8K1aCqp9Dnh\n+13f8+e9P5scN//0fL698m3ZfXq9no1mNpIt2pmcnkzvKd7cHiG/jjbv9DxWn1yd12KvkTTtbjWr\npJACd5/cZZt5bfjemvdkrZRrsdfoEuLCk9EnDfZp47WsMr6KYqWEsfvHMnitaSW4JXwLm89ubrnw\nRYSqbIoz27eLpE2lasw50evJt98mv/pKeUxWZnyeVsfZrqcGDRjs4MCWzZvLT/6tWolFeAuSE01a\nLXfvMrh2baMuNtlw6Zs3RfmXSf9LelNUWv7+ue41KCiIbs7OLKMwKWXLtmQJWb26gTtM8Z7c3Iw/\n/+eMgIUBZlV2fnvl21x0dpHsvpPRJ+kz1UfWYph6dCrfXPam7HEHbxyk6wTXbEVDKv9dnF2c2axz\nM7b7qR0rNKvAEj4lWKJRCbr8IFpMD9kxhP9o/jEZXpyUlsSuS7uy75q+smOXX1jOutPqyq5Ljdgz\ngh+s/0D2vI+SH7HK+Cq8+eim0etn6DLoMdHDZvNuVGVTXImJEQEBRtwxuSbiFi2o8fNTzjHR6URm\n/5QpBufI+zbo4OAgP5nWrCksLQtQVAD165Pvv09WqsR9b7/NkiVL5tpfsmRJLl++XN6C2LVLRI5N\nnJjrWma74x4+JBs1or9CGHNAQMD/ipBevGj+PTk7vxDdN0lhkVQZX8Vkrxe9Xk+n8U6KZV+G7Rwm\nu96h0+tYc0pNHrttWL8vOT2ZPlN9uPFq7l5DSn+XEj4lGDQziK7VcrvWanjX4F9hf/GXsF/YeFZj\nek/x5txTc40W+UxKS2Lrea05KmyU7L12X9ad4w6MM9j3KPkRncY7KSZzfrnlS7OsxG+3f2vWOGug\nKpviiF4v1lSMLMAr5q0ouQmmTyfbtDHI7FeaoPNO/r7Vq1Pj6Eg+tqw9r6IC8PQUMj18qDimppI7\nr0wZURNO7pl4ext3nTx8KNxiQ4Yol53p0EFE4inkxyje07vvWvRsijMPkx6y4m8VTSZFauI09Jzo\nqbi/8azGsi2j92r3stHMRrLHhB4KZdDyIIPtSn+XXu/2MutF5NDNQ2w7vy1bzW1lNN/mTsIdVg2t\nyqO3DFMQrsVeo+MwR/Z5r4+BNT50x1AO3TFU9pwnok/Qd6qvyecZpg3jK3++YnSMtVCVTXFk/nyy\ncWNRKVgBiyoPP3woJk+ZRFBTCZNZls6+Dz/Ml4vInOgtJRkqVaokb0E0aSJ/sQcPqGnShME1azKg\nfXvDBf+YGJEX9N13Iu9GTjYPD2oqVTJpURoc5+2d7/WA4sjZmLNsMMN0h9Kt4VsZuDhQdt/TtKe0\n/9Ve1u00ZMcQWeshQ5fBapOq8fSd0wb7jH3XzF0X1Ol1DDkYQo+JHkYX7ZecW8Jms5sZKAeNRkMH\nNwdZGa4+uMqqoVVlLSe9Xs+aU2ry/F0jPZYoCp5WGFvBJitCq8qmuHH3rlAMJqo4W7SoPnSoKC4p\ngzkJkwAY7OxM7t6dr1vKGRYbFBTEHj165Hrrs9iykVOoFy+Svr6ixbRCbTf6+orWCTkmiFwhu/7+\nJhVN9nFRUQxu0IAB5cqJvj4vkKIhRQ6J/0J/2X053bvN32jOd/58R3bcmZgzrD+9vuy+VnNbySZE\nHrxxkA1nNlSU62rEVVZoVoH1mtfL9bJhaVuIhWcWssbkGoqTuk6vY+NZjQ1aOZu6TqOZjXjghnzt\nvkGbBymGh+ckcHEgN13dZHJcUaMqm+JG//7izdsEZv94HjwQDcUUcj404eEGtb5klViJEuJcz4DS\nm+e+ffvkt+/dS18XF+NuMVLUH3N2FoVA5Th8WKx/zZqlLNzKlWKN5pChS8cAvV64OOvXJ+/Jl155\n3tl4dSO7Le1msF3ub1zJvZKsMt58bTO7LJFvu1BpXCXZZMcx+8dwyI4hinLNOz2Pnf7qZJZcpqLT\nBm8ZzI83fqy4f/7p+eyxvEeubaZeAoftHKa45rLs/DLFqL2c/LD7B/60x/YqU6jKpjhx+LCIPnvy\nxORQjUZD3zy5BLI/njFjRAMzJfbvp6Zu3ey3e0Vrws7umYtJGlOQBkmB69aRLVoIt1jXrvLJgsnJ\nIv/I21u0xJZ7TqGhDC5Thv4NGyoX/5w6VTz3c8brbZEUVtM33wg3p5HK0M8766+sN5hoScssiCXn\nlrDvmr4G21PSU1jql1Ky6xf91/U3WjG681+dFZNDTSWe5uVR8iNWHldZMbjhUfIjOox1yJVoaer+\nN1zZoKhgrz64Su8p3kZlIoVS6r2qt8lxRY2qbIoBGo2Gwe+/T/+KFRncsqXZ/ew13t4M7tBB+cej\n15M+PqJqsxKjRws3Ww5ZZN8Aq1V75v40Zrn+rlwRSaMeHmLtSqlVwdmzYv2ld29RYSEvaWnUDBhA\n37yBDjkVckaGqKJgrJlcTtLTyQ8/FD1/4uQTFF8UtoRv4RtL3jDYbq57V6PRsFWXVnRt4Grw3X2U\n/IgVxlaQve6by940iELLSbVJ1Yx2/rSU/uv6c8Zx5codr/z5Sq6GaKYsqMiHkawxuYbsudJ16Sw9\nurTJbqTHbh+zySABJWVjBxWbQKvVIjAwEEuXLUNYQgKWHj2KwMBAaLVa4wdu3w7vypWxZNcuzJs3\nDwAwcOBA9OvX73/Hnj4NlCgBNGumfJ7Ll4GGDbP/19vbG7t27UJwcDACAgLQo0cPNGjQAAP1evR7\n5x3TchnB09NTdruHhwdw6hTw7rtAu3ZA48ZAeDjw0UeAXZ6valoaMGoU0LEjMGQIsGoVUKlS7jG3\nbgH+/hixcyeiMjJy7YqKisKIESOAx4+BHj2ACxeAQ4eAmjWNC//0KdCzJ3D/PrBrF1C5soV3/3xR\nsUxFPE55bLDd6N84k6zv/JFtR3D/4n0sXbo013fevpQ9kjOSs15Ec1HKrhTSdemKcqXp0lCmZBlL\nb0eRpu5NcenBJcX9tavUhiZek/3/Wb+fdt3awameE4KDg7Fr1y54e3sDALwcvRD9JBp66g3OVdKu\nJFzLu+LOkztGZfKo4IGYJzH5vCMrIKeBCuoDoBqANQAeAXgMYC0ALyPjC1fl2jD56mdPkkFB5Jw5\nxt+kxowx3ruFFJWJFSodWxxebQLZ87m6UvPKK6KWW2io0TYF3LePrFdPhIXfuiU/Zt06sfby22/K\nb9mvvip6zPzrX+ZVZrh7V9SC+/BD88a/AITHhsu6fGTzttwccn1nzPnOVxlfhXefGCYzf7nlS04+\nMllRrmazmykuwOeHP0/+yU82fqK4/5ONn/DPk4ZdX/do9rD9gvayx5QfU16xcvXLM17mmRjjwUGJ\nqYks+2tZo2OsAYraspEkyR7AXgB1APQH0A9AbQB7Mvep5CA6Olp2+507Rt5u4uOBvXuBd97BiBEj\nEBUVlWt39tv70aNAmzbGBShZEkiXf1OUPfft2xgxYIDxcyrg7e2NXRs3Ivi11xDg5obgUqWwy88P\n3j/+CGg0wlKpUMHwwFu3gPffB/r1E1bNpk1AtWq5xyQkAAMHAkOHAhs2AMOHK79lnzsHfPcdMH06\nUKqUcaEvXABatgS6dQMWLDA9/gXBy9ELd57cQYY+t+WY1zIODAqE97+9s9/sAfO+83Wd6+Li/YsG\nY5pUbYLj0ccV5ero3RHrr6y39HYUiXgYgRqVaijuT8pIgn1Jw2lNTz3sJPlptoRdCeiok91XpmQZ\npOnSjMpkX8oeKRkpspafLVKYbrTPANQEEETyb5J/A+iRue3zQrxuscQct4MB27YB7dsDFSsa/+Fe\nuwbUq6d4Gq1Wi34REQj49tvc7rdMFM994oRQYvPnC0Wg9KUnxf7Nm4GffwYCAuDdsiWWlCiBPT/+\niCU3b8J73z7g7beF0stLfDwwfLhwq9WuDVy5AvTuDUhS7nHbtwMvvywUwdmzQKtWAIDRo0fD19c3\n11DfkiUxetUq4OOPFZ9LNps2AR06AGPGACNHGl73BaZsybLwrOiJyLhIg33e3t5YsmQJ9uzZvkG5\nagAAIABJREFUg1UrVkEDTS6lZM53vrVXaxy4ecBgTKBvIHZG7VSckD9v9jkWnVtUIG4mPfXYcG0D\nOvl2UhyjidfIKqPYpFg4lXMy2E4SSelJKF+qvOz50nXpKGVn/IVGQjH7HsqZOwXxAbAbwAGZ7WEA\n9iocU1iWnc2jOX6cvpJkUUgmBw4k//iDpAmXhKOj4kK2OaGgiufu25dcs0a0UHZ1JatUEb1z2rcX\nrQtatiRr1ybt7UXIcWCgyH/ZssW4myyLuDjy559FHbZPPlEu1X/vHhkcLBrA7dypeJ/B3boxoHx5\nBnt5iWKZptDpRD6Op6d5jepeUHqt7MWl55eaHOc3zS9XEqY5370wbZhiBYH2C9pz2fllitcbsWcE\nX1/0umJZf3OZeWImW89rrZjV/yT1iaJLbPS+0Ry2c5jB9vuJ91l5XGXFa9aYXINRcVFG5UpKS2KZ\n0WVMSF/0oKij0QDEAJgps306gHsKxxTqQ7Bppkyh5q23LArJZP365Gnx4zX6wy1XTnFyN8dvblZu\ngl4v1jROnyb37BGJnwcPiqgycxRLTm7cIIcMEcprwACRiClHejo5bZrIrRk6NFdF5lzodKIWnLMz\nOWeOeS0R4uPJ7t1FHbk7dyyT/wUj5GAIv9zypclxX2750qBeWFYYcv3m9Vm1VVWD73yGLoNek7xk\nKwVsDd/KutPqKjZSy9BlsMfyHuyxvIfRbpvGCNOG0TnE2WQVgc5/dc51P1nJygGTA7LbQufcFxgU\nyEZj5ZVohi6DZUaXYVKa8RSD6IRouk1wy9d9FSbWUDapAMbKbB8NIE3hmEJ9CDbNa6+Rf/9t/vj0\ndLJMmVwl/hXzBzw9xQQugyUhqhYpQkvR6YSC6t1bJJ9++62izCRF59CXXyb9/WXL72QTFSXGtG6t\nrLTycvKkCBX/6iujpYJUBCeiT9Bvmp/JcdsjtrPl3Jay+56mPWXlcZV567FhwMf4g+Nl83D0ej0D\nFwfKFrzMIjUjlQM2DOBLf7zEfdf3mZQxiwxdBqcdm0aXEBf+o/lHcZxOr2PTP5ty/RX5PkpSFYmn\nLp2S3VexakXZ31Hkw0h6TfIyKeOJ6BNsPKux2fdUVKjKxpaJjycdHCxLlrx9W3SBNAd/f8VIM0XL\n5r33zJflWYiIIEeNEpP7yy8LS8WYJXT6NNm5s2grsHatKBcj13ogPV20HXByEtFt5lRh1uvJyZOF\nBbRqVcHc3wuATq9j1dCqDI8NNzouLSONLiEujHgor/QHbxnM4buGG2xPSEmg2wQ3nrpzymDf9fjr\ndAlx4cEbB2XbUOS0nMo3Lc+WIS259PxSxfIzd5/c5Z8n/2SDGQ3YZl4bXn1wVXZcFvNPz2ez2c2o\n0+uMegksiTZddXGVbKJsXlZeXMmeK3qaHFfUKCkbmdXYAiMegFwSQpXMfbKMHDky+9/+/v7w9/cv\naLlsjwMHgBYtAHsLgvQSEoCKFc0b264dsHs30Lmzwa7Ro0fj6NGjuaLNfB0cMPrcOeDkSeO5OfmB\nBM6fF8EC69YBt28D77wDrFghrqW0+H7xIvDLL8DBg8APPwCffQZtdDQCAwNzyb5x40bUr1EDte7c\nweiXXoL3kSMiqMAU9++LfJ4HD4BjxwAfnwK64ecfO8kOPf16YvXl1fih3Q+K40qVKIUPG32IWSdn\nIbRTqMH+/2v1f2g2pxmGth6aa1G9QpkKGPP6GHyx+Qsc/vgwStr9b9qqUakGFvdcjKCZQSi3ohxu\nXb+VvW///v2QJAk3b97M3qa9p8XcUnPxxeYv4FreFdUdq6N86fJISk+CNl6LuOQ4BPoGIjQwFJ18\nO0EyEgxyLfYavt/9PXb23wk7yc5okI6Yg+X3abVajBgxAtHR0fD09ITd63ZoXae14nWzuHDvAuq7\n1Dc5rrAJCwtDWFiY6YFyGqggPgD+AbBfZvteqAECufnvfy3uD8MrV0SnTXO4dEks0Cv0uDFwkUVF\nkQsWCMvpzTfJTZuU++OYIj2dPH+enD1bLOK7uwsr5t//Fms76fL+9myOHxfN4FxdyZCQXOsypoqH\nmt2RcdMmIdfw4Wr+TD45eOMgX/rjJZOl8bXxWjqNd+KjZPkOsYM2D+JXWw2riuv1enb6q5NszxuS\nbN21tdHvAvJYE+m6dF55cIW7o3Zz49WN3Bm5k1cfXDXawyYnNx/dpM9Un1ztmfNj2fTo0cPAvVbS\nqSQ3H9ts5OqCTn91MlpFwVrACm60rwGkAaiZY1vNzG3fKBxTyI/BcAHPJqr0BgWJIpKWEBMj3D3m\n0r07OX68ZddIShJKok0bsmJFsmNHctgwsci+dauo4XbqlFjjOHCA3LyZnDePHDmS/OADsnlzsnx5\nEZHWv784V2Sk6etmZJAbNwr3n5eXWNx/+tRgmDltEYwmxcbHkx99JGqq7d9v2bNRyYVer2e96fWM\nrm9k8cH6DxQLSD54+oCuE1x5/LZhaaW7T+6y2qRqXH3J8Ldiznch66PUZtxczsScYfXJ1Tnp8KRc\n240F0ijtCwoKkpXx/fffNypDVouB2Kexz3QvhYE1lE05AOEAzkHk1/QAcBZABIByCscU6kPIT8XX\nIuHll7OjysxGpxPrPHL1wOSIjBTKydLrZBEbKwIYfv1VTNCdO5MtWohClE2aiDphXboIJfPjj0Lp\nHDpkWZO1e/eEQvT2Fpn6S5YYtTSUmp6ZNbFs3kxWqyZaLlgaLaciy6wTsxTbN+dEG69llfFVFAtb\nLr+wnH7T/GQjyE7fOU2XEBfujMwd4m5uiwyTLyBGSMtIY+ihUDqHOHPFhRWyY65FXKNrS1fWaFzD\n4GVWo9GwWedmrFy3cvY+i1qE5GCPZg+b/tk0X/dR2BS5shHXRDUAq5G7XE11I+ML9SHkuyRMYePq\nmr/w2vbthYVhLqtXi8i0SzbUuzw1Vbix3n5b5AMNGEAeM2wBnAu9nty5k5qGDelburRlE8u9e6IN\ntY8P+Y/pt3AV80lKS6J7qLtsmHJefvznR/ZZ1Udx/4ANA9h3TV9Zt9z+6/vpEuLCDVc2ZG+Te5FE\nRbCcc7lnfrlMy0jjsvPL6DfNjx0Xd2TkQ3nrXKfXsf+6/nxz2Zuy7riYJzF0CXHJ1Rgtv3PS4C2D\nOXrfaIvuo6iwirKx9FPYyia/bxGFTrlyZrUTMGD8ePKzz4wOMXAbTpokmrKtWZNPYQuA1FRyxw7y\n009FtFibNsLF9kjej5+NXi/Co197TaxXLVtGTWQkg4OD2bJlSzo4yHdGJCkswTlzxL0PHSrrllN5\ndn4/+rti6fycJKUlsc4fdbJzUOT2N5vdTLHny4noE/SY6MFxB8ZlK6S8a49bd21lvbb1aOdgxxIV\nSrBOqzpce2ityWrKpAjF/kfzD7/Z9g3dQ93ZfkF7bovYprgmlZqRyn7r+rH9gvayFplOr2OXJV0M\n1pzy421JzUilS4iLotKzNqqyoQ1bNvlVNrdvi5wUS6sDrF0r1lF69BCdLYuC6GjR1Ozdd8lKlYQL\nbsIE8vp108fqdML6adVKKJnFi2UDCxRzgU6dEse2aGGy86nKs5Gakcpav9fi9gj5UPucHLt9jK4T\nXKmN18ruv/vkLn2n+ioW3Lz56CZbzGnBLku6GLjk5L77ju6O9PvFj/a/2rPxrMZ8a8Vb/OLvLzhk\nxxAO2TGEn//9Od9a8RYbzGjAcmPKscWcFhy5dySvPLhi9D7uJNxhu/ntGLQ8iE/T5F9ifgn7ha3m\ntpKtZqDRaNi9d3eW9C3Jnu/0NGl5Lb+wnAELrfyCbARV2dCG12zc3MRknB8+/lixo6dR5ZqcLKK7\nXF3JTp3IpUtNWxbmkpEhet4sXCgsLz8/UQ2gVy9hXZjrMkxKEuPr1RPrQitXmpcvk8X9++L6bm7i\nPEo9cVQKlM3XNrPW77VMZsCT5MTDE/nKn68oTtI3Ht2gz1Qfjtk/RtaqSMtI4897f6ZziDOnHJmS\nPZkb++4npibyRPQJrrm0htOPT2fIwRCGHAzh9OPTuebSGp6+czpXIzQl9Ho9l51fRrcJbhy5d6Ri\nJNuis4tYfXJ1RifI/8b1ej07Lu7ICYcmmHXN5rObc93ldSbHWgtV2WRS6Jnw+aFxY+ONzYwREyMU\nhkztLrPchsnJYiG+WzcRcNCihQhLnj1bhCZfuyaCA1JShBtLpxNK4N498upVUe5/6VIROPDhh+Sr\nr4oINB8fYcVMmSKCEixREjduiBpqLi4i6GDXLvNKzGSRkiKsJicn0RTtBW9wZg36rOrD73aabmuu\n1+vZf11/9lzRU3Gyjk6IZsOZDfnppk8VXWCX7l9ip7860XeqL+ednsf27dsXqsv80M1DbL+gPRvO\nbMijt5Tr5i0+u5hVQ6saLXfz+9Hf2Xx2c8WyOznZFrGNdafVpU5vuy9OqrKxZfr2FXkt+WXDBhFZ\nlae8i8Vuw6Qkcu9eYfEMGEC2a0f6+gq3V6lS4usCiDI5zs7CFdemjeiomRUSffBg/iyktDRy/Xqh\n9KpUEQrv2jXLzqHTCcVZs6YI9b5i3P2hUnjcS7xH91B3hmnDTI5NSU9hh0Ud+PHGjxUn0YSUBAYt\nD2LLuS2NduDcq93LwMWBLNukbIG7zJPSkrj8wnK2m9+ONSbX4JxTcxQVpF6v57gD4+g1yYuX7isH\n5By9ddRoVYWcZOgy2GhmI9nQb1tCVTa2zOTJYrH8WZgyRYQMh/+vZEiBuw0tsS7MPd/Jk6Kxm5ub\nUFwLFli+eK/Xi7DsRo2EZRVmeoJTKXy2RWxjtUnVZJuf5eVJ6hO2mdeGH2/8WHEC1+l1nHBoAl1C\nXDjv9DyjCaQ7Tuygo7tjru9+Va+qPH7RfA+CTq/j1QdXOffUXPZZ1YeOvzmy4+KOXHVxlVErJC4p\njr1X9WbTP5vK1nrLQhuvpcdED266uskseWadmMW289uaTJy1NkrKRhL7bANJkmhL8hQZ164Br78O\n3Lwp2jfnlzlzgB9/BGbNEr1hgOxSGHfu3IGHhwdGjx6dq4FVkUMC584Ba9YAq1cDGRlAcLBoiFan\njuwhect5ZN8DKVoz//QTkJgIjB4NvPWW2m/Ghvhp708Iux6G3R/sRukSpY2OfZL6BG+tfAtV7Ktg\n8VuLYV9KvnzTubvn8PGmj1G+dHlMfWMqGldtLDtOq9Xiv//9L65qryK9fDocOjvgiu4KypQogzpO\ndVCtYjU4l3OGQ2kHlJBKIF2fjoTUBNx/eh83Ht/AtdhrqGJfBW2qt0EH7w7oVrsb3BzcjN7D1oit\n+GLzF+jxUg+EdgpF2ZJlZcfFPIlB+4Xt8dWrX+GrFl8ZPScARCdEo8mfTbD7g91o6NbQ5HhrIkkS\nSBr8CFVlYyu88gowbhzQSblBk1kcPQp88AHQoAEQEgLUqlUw8j0LycnAvn3A1q3A338DdnZCGfbp\nAzRvblQ5ZPWpz1W7zdcXu/7zH3jPnQs8fgyMGCHqqz2LolYpFPTU4+2Vb8OxrCMWBi00WmsMAFIz\nUvHRxo8QFR+F9e+uh0cF+eaBOr0Os0/Nxqh9o9DRpyP++9p/4efsZ1Iekoh+Eo3IuEhEJ0QjNikW\niWmJ0FGHUnalUKFMBbiWd0UNxxqo41QHle3lyjsacvnBZQzfPRxXYq9gVrdZ6ODTQXHsjUc3EPhX\nIAY2GYjhbYebPLeeenRZ2gWtqrXCSP+RZsljTZSUjdVdZzk/eFHdaKTIuO/QoWDOlZQkFuydnEQC\n4+HDBe8CM0ZKili7GTNG3JODA9m2rfj/8+ctkkVx3cnRkVyxwrLAAxWrkJiayFfnvMphO4eZ5QLS\n6/X8dd+vdA91566oXUbHPk55zNH7RtMlxIVBy4O4M3JnkS2e6/V6Hr11lH1W9aFLiAtDD4UyJd14\nDcGT0SfpOdGTU49ONfs6Y/ePZet5rc0KILAFoK7Z2DhpaaJsviUVAUwRHy+ismrXFuf+7jsR2aXU\nZCw/JCWJPJb588nBg0U0W7lyZNOmYi1m48ZnCqlWjKjz9y+4e1ApdGKfxrL+9PqKSZpy7I7aTc+J\nnvx2+7eKodFZPE17ylknZrHRzEasMbkGh+8azuO3jxeK4rnx6AYnHp7IxrMa02eqDycfmcwnqcbz\n5PR6PeednkfnEGeLwpa3hG+he6i70bUfW0NJ2ahuNFti+3bgiy/EmoajY8GdlwROnwY2bRKtBs6c\nAXx9gZdfFm626tUBNzegShXAwQEoXVq4unQ64QJLTATi4oDYWCAmBrh1C7h+HYiMBO7eFedo2FC4\nAps1E5/y8r3VLSI8HP169MDSa9cMdgUHB2PJkiXPfg2VIuNe4j10WNwB3et0x9gOY0261ADgYdJD\nDN42GCeiT2B61+noXMuwTUZezt49i5UXV2LDtQ2IS47D696vo61XWzTzaIYGrg1QvrT5302SuPH4\nBk7eOYlDNw9hz/U9iE6IRo+XeiD45WAEeAfATrIzeo7YpFj8a8u/cPnBZazqswr1XOqZde3TMafR\neUlnbHxvI1p7mW45YCuoazbFhcGDxWS+bl3hrUGkpor+MJcuAVFRIjDh3j3g0SOhWNLSAL0eKFkS\nKFtWKKBKlQAXF6BqVcDLC6hZUyiZmjXFuIIiPV0oxZkzgQsXoO3VC4FbtyLqxo3sIb6+vti1a5d1\nAx1U8kVsUiy6LO2Chq4NMevNWShVopRZx22N2Iqvtn2F+i71Ma7jOLMnbG28Fnuv78XhW4dxKuYU\nrsZezV6Tca/gDid7JziUdkApu1IgiOT0ZDxOfYz7T+/jdsJtRMVHoWKZimhStQn8SvjhwooLSH2U\nimqe1UwG2+ipx+JzizF893AEvxyMX1//VTHoIS+X7l9Cx786YkbXGehZt6dZx9gKRa5sJEn6PwD+\nAJoBqApgJMlfTByjKpu0NKBLF2F5zJolLIwXgcuXgQULgL/+Al56Cfj8c6BXL6BMGduLqFN5JhLT\nEvHumneRpkvDyt4rUcW+ilnHpWakYtrxaRh/aDw6+XbCf9r+B/VdLWselqHPwK3Ht3D90XXcTbyL\nuOQ4JKYlIl2fDgkSypYsC8eyjnAp5wIvRy/4VPZBpbKVlANVZF56SGJn1E78sOcHlLIrhWldp6GZ\nh/lNCM/dPYcuS7tgQuAEBDcMtuj+bIEiDxAAcBnAEQDTAegA/GTGMQXsPSymJCSInJP33xcZ/s8r\nMTEiP6hZM9LDg/z+e8sTOY1gk72LVEiS6bp0/t/2/6PPVB/Zds/GeJzymGP2j6HbBDd2WdKFm69t\nNrvpWX4xJ0E6LSONqy+t5qtzXmXdaXW58uJKi9eM9mr30iXERbFAaXEA1goQAFACgF5VNhby9CnZ\np4+YiCNMZxebg01MvnfvkjNnkgEBojLBBx+ICtAFHFVms3XwVHKx4sIKOoc4c+rRqRYnKyanJ3P+\n6fl8dc6r9JzoyWE7h/HUnVOFkvRorPTTpfuX+J/d/6HHRA+2nd+Way+vzZfym31yNl0nuJrVgM6W\nUZVNcUSvJ6dOFSHMISGiNH8+sdrkq9eLsjEhIcJac3Qk33uPXLdORLIVEjZb4VvFgIiHEXx1zqsM\nXBxotBSNMS7cu8Dhu4az1u+1WH1ydX7+9+dcfWk17yXeKxAZlb5PFZtVZLVJ1Th0x1BeuHchX+dO\nTE3kRxs+Yt1pdXkttuAse2uhKpviTHg42bWrKG45f36+lI6lk+8zWUFxcUKZDBokSuhkdcTcskXk\n4BQBNtu7SEWWdF06x+4fS6fxTpx4eKJsKX5z0Ov1vHT/EicensiuS7vS8TdHek/xZu9VvTkqbBRX\nXFjB47eP807CHaN5K3q9no9THvPy/cvcGr6V/137X1aoWiHXd6myR2WuO7zumcKrj9w6wjp/1OEH\n6z8wGT5dXFBSNoUejSZJUgkA6VADBJ6dffuAX38VUWQDB4pKAQolXvISEBCAsLAw2e179uzJtc2S\nxVAAIhz6yBHg4EEhY3g40Lo1EBgIdO4sqhkUcQmZfv36YenSpQbb1ZBp2yb8YTgGbx2M6CfRCA0M\nxRu13jArRFoJPfW4FnsNZ+6ewcX7FxH+MBzXH13HrYRbeJj0EA6lHeBQ2gGlS5SGnWSHDH0GktKT\n8Dj1MUrZlYJHBQ/UqFQDdarUgVu6Gw4tOmR2NJoxElIT8NPen7Di4gr80eUP9KnfJ9/3aGs8U4AA\ngA4Q1ompzx6ZY1XLpqC5eJH89luyalWyYUPyhx9Ei2MjBSwtsWwUx77/PqnVikZmv/xC9uxJenmJ\nKs1du4oKAQcPPpO7r6BQ12yKL3q9nhuubGCdP+owYGEAD9w4UCjXydBlMC4pjjcf3WTkw0hGPIyg\nNl7Lu0/umtXPJj+k69I599Rcuoe6c+CGgXzw9EGhXMea4FksG0mSygKoboZSSyJ5O8+xFlk2P//8\nc/b/+/v7w9/f34zLvqDodKIW2tatwJ49wPnzQO3aQKNGgJ+fCJ+uXh3w8IA2MRGBPXooWysk8OQJ\nEBeHgF69EHb6tMHlAuzssMfdXVgqjRqJJM6mTcV1FN4+FYtoFgFqyHTxJkOfgUVnF+HXA7+iZqWa\n+L7N9+js2/mZLB1rodPrsPryaozaNwqu5V0RGhiK5p7NrS1WgRAWFpbLazJq1ChZy0Z1oz1PpKQA\nFy4IpXP1KqDRiITNmBggNhbajAyMsLPDHQAeJUtitIMDvElxXFISYG8PODmhX2IilsbFGZw++J13\nsGTlSrPFsdgdp6IiQ7ouHSsurkDokVCk6dIwqNkg9G/Y3+wimdYkITUBi84uwtRjU+Hm4IafXvsJ\nnXw7FUuFaS5WqyCgKhsbIjUVePpU/FenE9ZIqVKiSkD58tkVCwpKSajrJioFCUnsv7Efs07NwraI\nbejk2wnBLwejc63OiqX8rYGeehy8eRCLzy3G2itr0dGnI75p8Q3aVG9jbdGKBCVlU4B1Rgwu2BRA\nTYg1GwCoJ0lSr8x/byGZUljXVlGgTBnxMYG3tzd27dr1zC6o6Oho2e137tyx6DwqKoCYxNrXbI/2\nNdsjLjkOqy6twuSjk/Hhhg/RybcTutbuik6+nRTbEhQmKRkp2H9jP/6+9jfWX12PyvaV0e/lfrj8\nr8twr+Be5PLYIoVZrmYBgA8UdnuTvClzjGrZPEeolo1KUXD/6X1sDt+MrRFbsUe7By7lXfBa9dfQ\noloLNHVvivqu9U02bsvPNU/dOYVj0cdw4OYBHI8+jpddX8abdd5ET7+eqOtSt0CvV5xQC3GqFDnq\nmo1KUaPT63Dh/gUcvHkQx6KP4XTMaWjiNfCu5I3aTrXhU8kHXo5e8KjgAZdyLqhUthIcSjugbMmy\nKGlXEgSRrktHSkYKElIT8DD5YXZRzuuPriMqPgpXHlxBqi4Vr7i/glc9XkWb6m3Qrno7OJYtwErt\nxRhV2ahYBTUiTMXapGSkIPxhOCIeRkD7SItbj28hJjEGsUmxiE+JR2JaIlIyUqDT6yBJEkrZlYJ9\nKXtUKF0BVeyrwLW8KzwreKJGpRqoVaUW/Jz94FnB87le5H8WVGWjoqKiolLoKCmbF6R+vYqKioqK\nNVGVjYqKiopKoaMqGxUVFRWVQkdVNioqKioqhY6qbFRUVFRUCh1V2RQhWq0W/fr1Q0BAAPr16wet\nVmttkVRUVDJRf5+Fixr6XESoCY4qKraL+vssONTQZyszYsSIXF9kAIiKisKIESOsJJGKikoW6u+z\n8FGVTRGhFqVUUbFd1N9n4VMoykaSpNqSJP0hSdIlSZKeSJJ0R5KkjZIkNSyM6xUHPD09Zbd7eBR9\nhVoVFZXcqL/PwqdQ1mwkSfoSwBcAFgI4BcARwPcAGgNoQ/KMwnHqmo2KikqRo/4+C44irY0mSVIV\nknF5tlUEcB3AJpIDFI57bpUNoBalVFGxZdTfZ8FgE4U4JUk6CuAJyUCF/TavbMLCwuDv729tMYyi\nylhwFAc5VRkLBlXGgsHq0WiSJFUG0ADA5aK6ZmEQFhZmbRFMospYcBQHOVUZCwZVxsKlKKPRpmX+\nd2oRXlNFRUVFxQYwS9lIktRBkiS9GZ89Csf/B8B7AL4kqSnIG1BRUVFRsX3MWrORJKksgOpmnC+J\n5O08x34BYAaAH0iOM3Ed216wUVFRUVExSZEHCEiS1B8i/DmU5PeFdiEVFRUVFZum0JSNJEk9AawC\nMJfkoEK5iIqKiopKsaCw8mxeA7ADwEUA/wagz7E7leTZAr+oioqKiorNUljRaAEASgN4BcBBAIdz\nfNaZOri4lLuRJOn/JEnalCmfXpKkn6woSzVJktZIkvRIkqTHkiStlSTJy1ryyCFJkmfm3/WwJElP\nM5+ZOWuBRYYkSb0lSVovSdJNSZKSJEm6KknSWEmSHKwtWxaSJHWSJOkfSZJiJElKkSTpliRJKyVJ\nqmtt2YwhSdL2zL/5L9aWBQAkSWqvEOgUZ/rookeSpK6SJO3LnBMfS5J0XJIkf2vLZS6FomxIjiJZ\nQuHjY8YpOgHwBzAfQHcAgwC4ADgqSVKTwpA5n3wCIdd6AFYLbpAkyR7AXgB1APQH0A9AbQB7MvfZ\nCrUA9AYQB2A/rPjMjDAEQAaA4QDegAhuGQRgpzWFykMVACcBfAkgEELW+gCO2NoLRhaSJPUF0BC2\n9zcngMEAWub4dLSqRDJIkvQ5gA0ATgB4C+J3tBpAOWvKZREkbe4DoIrMtooQk9RCa8snI1sJCFfh\nT1a6/tcA0gF459hWM3PbN9Z+PgoyfwxAB6C6tWXJI5eTzLb+mbL6W1s+I3LXyfwOfmttWWRkqwwg\nBsC7mTL+Ym2ZMuVqn/l3fd3aspiQswaAJABfWVuWZ/nYZIsB5qmrlrktAUA4APnyrC823QEcJZnd\nWpDkdQCHAARZS6jiCMmHMptPAJBg29+9rN9MhlWlkGc8gPMkV1pbEBkMQnRtkKwXsz+tLcizYJPK\nRo7npdxNIVEfIhgjL5cA1CtiWZ5H/CHcLVesLEcuJEmykySplCRJtSEmojsAlltZrFwkhZ1yAAAD\nx0lEQVRIktQWwq37pbVlMcJSSZIyJEmKlSRpqQ26ItsAuAqgryRJkZIkpUuSFCFJ0r+sLZgllLS2\nABaglrtRpgqAeJntcRAuDJV8IkmSJ4BRAHaRPG1tefJwDEDTzH9HAOhAMtaK8uRCkqRSAGYBmEAy\n0tryyPAYQCiAfQASADQB8COAw5IkNbGhZ+mR+QkB8B8AGgB9AEyTJKkEyT+sKZy5FIllUxzK3Tyr\njCrPH5IklQewEUAagIFWFkeOfgBaAOgLMVnutrHovu8BlAUw1tqCyEHyLMlhJLeQPEDyd4igkKoA\nvrKyeDmxA+AA4DOS80mGkfwSwHYI5VMsKCrL5hAAPzPGJeXdkFnuZgxEuZtFBS1YDvItow0QD3kL\nRsniUTFBZommzRCBFq+RtLn+wCSvZf7zhCRJ2yH6RQ0HYHX3SqYr6geI9Yaymc8za32kjCRJjhDt\nRvRK57AGJM9IkhQO4FVry5KDhxCRnLvzbN8JoLMkSW4k7xW9WJZRJMqGZArE4r5FZJa7mQ5hhhut\nq/as5FdGG+ESxLpNXupBXeOyGEmSSgJYC5En1pGkzT9Dko8lSYqEmJRsAR8AZQAsQe5FeAL4DsBQ\nCLfV+aIXrdhxCcKCLdbYbIBAZrmb+QBmU62rZopNAFpKklQza0Pmv9tAuIFUzESSJAnAMoiggCCS\nJ6wrkXlIkuQGYZnbytrIGYjk7gCIZ5n1kQD8lflvW5E1G0mSmgF4CcBRa8uSg/WZ/+2cZ3sXALeL\ng1UD2GiAQGa5m2UAzgJYLElSTq1uM+VuJElqCuFmKZG5qZ4kSb0y/70l01oqCuZARPtslCRpROa2\nXwDcADC7iGQwixzPpxnExNNVkqQHAB6Q3G89ybKZAZEw9yuA5Dzfvdsko60j1v+QJGkdgNMQVkEC\nxOT4DcTa0iQripZNZqqCwd9T6HLcIHmgyIUylOUvAFEQijEBwpIdDuAWAJtZdCe5VZKkMAB/SpLk\nAhEg8A5E8ukAK4pmGdZO9FFIYvoZIq5c7qOxtnw55FxgRM4iTVYEUA0io/gRRJTN2qKWwUw59QrP\na4+1ZcuUT2vkb2qVpF0ZGb+DyP2JA5AIEZI9wxb/3jKy6wCMsrYcmbIMh3ihjQeQCvFyNhOAm7Vl\nk5HVAUIBxgBIyZT7XWvLZcmnUFsMqKioqKioADa8ZqOioqKi8vygKhsVFRUVlUJHVTYqKioqKoWO\nqmxUVFRUVAodVdmoqKioqBQ6qrJRUVFRUSl0VGWjoqKiolLoqMpGRUVFRaXQUZWNioqKikqh8/81\nfVUrtGdP1gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# YOUR CODE HERE\n", + "results = EM(data, init_means, init_covariances, init_weights, maxiter=12)\n", + "\n", + "plot_contours(data, results['means'], results['covs'], 'Clusters after 12 iterations')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Quiz Question**: Plot the loglikelihood that is observed at each iteration. Is the loglikelihood plot monotonically increasing, monotonically decreasing, or neither [multiple choice]? " + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n", + "Iteration 5\n", + "Iteration 10\n", + "Iteration 15\n", + "Iteration 20\n", + "Iteration 22\n" + ] + } + ], + "source": [ + "results = EM(data, initial_means, initial_covs, initial_weights)\n", + "\n", + "# YOUR CODE HERE\n", + "loglikelihoods = results['loglik']" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEICAYAAABmqDIrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXGWZ/vHvTSCEsCaEJAgEUASGCLKpAQL0kFFkFAEH\nfqKyO4IjKio6SDIMwcHgwigiKAjiwo6ICrLI2oCggTGI7LgQAgQC2ZDsJP38/nhPpasrVV1VXVVd\nXV3357rOVVXnvHXqOV2dPP2uRxGBmZlZo6zV7ADMzGxwc6IxM7OGcqIxM7OGcqIxM7OGcqIxM7OG\ncqIxM7OGaolEI2kDSddK+oukRZIWSJou6eMlyn9S0lOSlkl6WtJJJcodKmmGpKWSZkqaIqklfiZm\nZq1i7WYHUKGhwJvANGAmsC7wEeBySaMi4ru5gpI+CVwEfA24C5gEfF8SEXFxXrkDgeuBS4AvALsB\n5wAbAKf3wzWZmbUFtfKETUkPAutHxDuz10OA2cDNEXFCXrkfAQcDm0fEqmzfDGBhRByQV+4MYAow\nLiJe7b8rMTMbvFq9mWgesDLv9V7AKODKgnKXA5sCEwEkbQnsClxRpNxQ4KBGBGtm1o5aLtFIGiJp\npKQTgfcB3847PD57fLzgbU8AAnbKKxfZ/tUiYiawJK+cmZnVqFX6aACQdDLwvezlCuCUiMivvYzM\nHhcUvHV+wfFS5XL7RhbZb2ZmfdCUGo2kSZK6KtjuLnjrNcCewPuBS4ELss5/MzMboJpVo3kA2LGC\nckvyX0TEPFK/DMDtktYHzpV0WdbJn6uhjADm5L01V0PJ1WzyyxUakVeuB0mtO3LCzKyPIkK1vL8p\nNZqIWBYRz1awvVjmVP9HGo48Jnud64sZX1Au1+fyZG/lJG0NDM8rVyz2tt3OPPPMpsfga/f1+/r7\nd6uHlhsMUKADWATkhiL/HpgLFE7kPJpUE3oAICJeAB4tUW4FcGtjwjUzaz8tMRggG2E2AbgTeJE0\nVPkjwIeB0yJiJUBErMzmwlwoaXZWfhJwHPCZXLnMZOAmSRcBVwO7k+bQnBeeQ2NmVjctkWiAx4AP\nAd8i9bfMBZ4CPhARt+UXjIiLJXUBpwJfAmYBJ0feqgBZuVslHQ6cCRxL6tM5m7T6gBXR0dHR7BCa\npp2vHXz97X79tWrplQH6m6Twz8vM2km2fFfrDQYwM7P24URjZmYN5URjZmYN5URjZmYN5URjZmYN\n5URjZmYN5URjZmYN1SoTNs2sRSxfDk8+CW+8AStWpNe5rbfXK1bAypWwalX3lv+62LGuLojofiy3\ndXWVjrtVp8htsw1cfXWzo+idE42Z1WTBAnjwQfjd79L28MMpcVj/eP31ZkdQnhONmVUsAmbOTAnl\ngQfS4xNPlH2btTknGjMrKQL+/Ge4997u5DJ7drOjslbjRGNma1i6FK65Br73PXjkkerfv9VWsPXW\nsO66MHRoeix8Xvh6nXXSNmRI97b22r0/X2uttEnlt/xypfR2bKBab71mR1CeE42Zrfb88/CDH8Cl\nl8K8eeXLQ/rPeZddYJ99YOLE9DhuXGPjtNbiRGPW5iLgnnvgggvg17/ufWQWpL+g3/OelFQmToQJ\nE2DjjfsnVmtNTjRmbWrRIrjiipRgeuvQl+DAA+G9702JZbfdUhOXWaWcaMzazF//ChdeCD/+ce9D\nY0eMgE98Aj79adh22/6LzwYfJxqzQW7VqtShf/fdcPvt6bG3yYm77AKf/Sx87GMwfHj/xWmDlxON\n2SATkZrC7r47bZ2d5Sf1DRkChx2WEsy++7bm6CsbuJxozFpcBPztb92J5e674bXXKnvvZpvBiSfC\npz4FW27Z2DitfTnRmLWQVatg1ix45pm0zZiRRoy98EJ153nXu1Lt5YgjYNiwxsRqluNEYzYALVzY\nnUzyt7/8pW/riG26KfzzP8MBB6Rthx3qH7NZKU40Zk00bx489lha5uXxx+Hpp1NCefXV2s674Yaw\n//7diWXnndPMeLNmcKIx6wfLlsFTT3UnlcceS9vLL9fn/MOGpTkuucSyxx5pmRazgcC/imZ11tUF\nd90F06d3J5a//CX1r9TDppumpq/cNmFC2tZdtz7nN6s3JxqzOomA226D00+HRx+t7VzrrANve1vP\nhJLbRo2qT7xm/cWJxqwOpk+Hr3wlzVmpxjrrwE47pT6UnXdOz3fYIc3Ed9OXDRb+VTarwTPPwJQp\n8ItflC+79dZp1n0uqey8M2y/vdcNs8HPicasD2bPhrPOgh/9qHTfyxFHwKRJKaG84x2w0Ub9G6PZ\nQNESAx4lbSDpWkl/kbRI0gJJ0yV9vEjZTkldBdsqSZ8rUvZQSTMkLZU0U9IUSS3xM7HmWLgQJk+G\n7baDH/6weJI58MA0kfK66+Ckk2DvvZ1krL21So1mKPAmMA2YCawLfAS4XNKoiPhuXtkAHgVOBPJX\nbJqZf0JJBwLXA5cAXwB2A84BNgBOb8RFWOtatiyteDxtGsyfX7zMnnvCN76RhhebWTdFb8u4DnCS\nHgTWj4h35u27BxgSEfuVee8MYGFEHJC37wxgCjAuItaYMicpWvnnZdVbsQKuvBLOPLP0Mi/bbZcS\n0OGHezFKG3wkERE1/Wa3ejPRPGBltW+StCWwK3BFwaHLSbWng2oPzVrZ66/DuefCW98KJ5xQPMmM\nGZNue/zkk6k/xknGrLhWaTpbTdIQYGPgcOB9wAlFiu0maSEwHHgK+G5EXJZ3fDypia3HfQUjYqak\nJcBOjYjdBr4XXoDzz4eLL4Y33iheZsMN4bTT4POfh/XX79/4zFpRSyUaSScD38tergBOiYgrC4rd\nS6qpPAtsAhwDXCppbERMy8qMzB4XFPmYBXnHrU08+miqwVxzDawsUUceOjTdbXLKFE+aNKtGUxKN\npEnAHRUU7czvQwGuAX4PjAI+BFwgaVVEXJIrEBFTC85xk6QbgMmSzouIJbVFb4NFBNx5Z0owt99e\nutx666Xmsy99CbbZpt/CMxs0mlWjeQDYsYJyPZJCRMwj9csA3C5pfeBcSZdFRG8rSV0NHALsDEyn\nuyYzokjZEUCJcUUwderU1c87Ojro6Ojo/QpswHnzTbj22pRgelsqZrPN0j1bPv3ptL6YWTvo7Oyk\ns9olLspo9VFnJwPnA1tFxOxeyh1Bqg3tHRHTJW0FPA/8e37fjaStgeeA4yPip0XO41FnLSgCXnwR\n/vCHtFTMtdem16Vsvz2ceiocfXSqzZi1s3qMOmupPpoiOoBFQLm7dxwFLAUeA4iIFyQ9CnwcyB8k\ncDSp7+fWukdq/WbxYvjjH1NiySWX2SX/DOm2zz7w5S/DwQf73i1m9dQSiUbSicAE4E7gRWBT0oTN\nDwOnRcTKrNxE4MvADcAs0mCA44APZuXym+Imk/pvLiI1re1OmkNzXrE5NDYwdXXBs8/2TCqPPVb5\nkvwSHHZY6n/Za6/GxmrWrlqi6UzSXqQksBtpRNhc0rDlb0fEbXnl3kZqStuFNGDgTeDPwPkRcV2R\n8x4KnEnqL5pDWiVgWqn2MTed9b+ItOzLzJnw/PPpMX/7+99LD0PuzbBhcPzx8MUvpgmXZlZcPZrO\nWiLRDBRONPW3YkW6y+Ts2WmbNWvNZPKPf9T+OcOGpbtOTpgA73lPWuxypAexm5XlPhobsFauTPe9\nzyWQYttLL8HcuY35/O23Twkll1h22cXL8Zs1ixONVWXJklQDeeWV9Fjq+Wuvpf6T/rDJJj2Tyrvf\n7eHIZgOJE42xcmVKDK+80nObM6fn65dfrk8zVrWGDUs3Ddtmm+LbmDFeZ8xsIHOiGaSWLElNV6++\nmpJI4fP8JPLaa6nTvRmklCje8pa0bbGFE4nZYFM20Ug6ppoTRsTP+h6OlbJiRerPyCWMYlt+Qlky\nABba2XTT7gSSSyL5r9/ylpRE1vafO2aDWtlRZ5IKW9pzb1CRfUTEkPqENvA0ctTZ8uVp3a2HH061\njcIksnBhQz62auusA2PHpm3zzbsfC5+PGZMWoTSz1tZfo862zXu+JXAVcDNpSZc5wBjgo6R7uHy0\nlmDazbJl8NvfwvXXw403Nqf/I2fUqO4Ekr+NGdP9uPnmaUiwZ82bWTWqmkcj6VfAMxFxWpFj3wTe\nHhGH1TG+AaUeNZolS+C221JyuekmWLSoTsEVGDoURo9OC0OOHt295b/O1UI228xDf82suGbMo5kE\nXFDi2O3Ap2oJZrBavBhuuSUll5tvTq+rtdZaqdaRnzRyiWOzzVKNI3/fRhu5A93MBoZqE81yYE/S\nmmOF3kVakNJIS9H/4hcpudxyCyxdWv49o0endbfGj18zoYwcCUMGbe+XmQ1m1Saa64CpklYBP6e7\nj+b/kdYM+1F9w2tNK1fCfvulRR7LGTsW/u3f0j3nJ050MjGzwafaPpr1gB+SOv0LR51dBZwYEcvq\nGuEAUmkfzZ13wnvfW/r4FlvA4Yenbe+93bluZgNXv/fRRMRS4GhJ/0Natn8s8DIwPSKerSWQweRv\nf1tz37hx3cnlPe9xcjGz9tGnqXJZUnFiKWHOnJ6vTz4Zvvc9d86bWXuqOtFIGg6cAOxPujfMfOAe\n4MdZjaftvfJKz9dvf7uTjJm1r6oacCSNBWaQbi62JzA8e7wAmCFpTN0jbEGFiWbs2ObEYWY2EFTb\nU/BNYASwb0RsGxF7RcS2wETSbZO/Ue8AW1Fh09kYp18za2PVJpqDgNMj4oH8nRHxIPBfwAfqFVgr\nc43GzKxbtYlmA2B2iWMvZsfbXmGNxonGzNpZtYnmGeDoEseOAp6uLZzWt2hRzyVmhg6FjTduXjxm\nZs1W7aizc4GfZZ3+V5Hm0IwFjgT+hdJJqG0UazbziDMza2fVTti8Ihve/FXg0rxDc4BPRcRV9Qyu\nFXkggJlZT1XPo4mIH0q6FNiB7nk0z0RE4Q3S2pIHApiZ9dTXlQG6gKfqHMug4ERjZtZT1StuSdpZ\n0vWSXpO0Mnu8TtLOjQiw1bjpzMysp6pqNJLeBdwLLAVuBF4hDQY4GPiApP0i4o91j7KFuEZjZtZT\ntU1n5wCPA5Mi4o3cTkkbkm6Gdg7wvvqF13o8h8bMrKdqm84mAOfkJxmA7PU3gL3qFVirKqzRuOnM\nzNpdtYmm3F2/Kr+LWg0kHSmpS9KsEsc/KekpScskPS3ppBLlDpU0Q9JSSTMlTZFU051i3HRmZtZT\ntf+pTgcmZ01lq0laHzgNqODmxbWRtDHwHdJk0WLHPwlcRLrV9IGk209/vzDZSDoQuJ50Te8HziOt\n1/a1vsYW4cEAZmaFqr2V87uBTmAZ8Bu6Vwb4V9ItAzoi4uH6h9kjhh8CW5EGIkyKiHF5x4aQ1mK7\nOSJOyNv/I9KAhc0jYlW2bwawMCIOyCt3BjAFGBcRrxb57F5v5bxwIYwY0f16+PC0JI1XBjCzVlWP\nWzlXVaOJiIdI/TR3k2oLXyTVBu4BJvRDktkH+BhwcokiewGjgCsL9l8ObEq6nQGStgR2Ba4oUm4o\naZXqqnn5GTOzNfVlZYA/A4c3IJZeSVobuBj4ZkT8XcX/Bx+fPT5esP8JQMBOpOHZ40n9SU/kF4qI\nmZKWZOWq5mYzM7M11dTx3c++QqptfL2XMiOzxwUF++cXHC9VLrdvZJH9ZXkggJnZmqqu0UjaH/go\nMA4YVnA4ImJSBeeYBNxRwcd1RsQBkrYDJgOHRMSKamOup6lTp65+3tHRQUdHx+rXnkNjZq2us7OT\nzs7Oup6z2pUBTgJ+QKohPAssLyxS4akeAHasoNyS7PF84C7goWzUmUi1G2Wvl0fEMrprKCNIK0rn\n5GoouZpNfrlCI/LKrSE/0RTyHBoza3WFf0CfddZZNZ+z2hrNqaT70JxQS80iSwrPVvGWfyLVoIo1\ndc0HvksamJDrixlPz0ST63N5MnvMLzc9V0jS1qTRc0/SB246MzNbU7WJZgvgx01ovvoIazbTnQ7s\nThqY8FK27/fAXODjpJFxOUcD80g1KSLiBUmPZuUuKyi3Ari1L0F6MICZ2ZqqTTR/BN5KasbqN9mw\n6h4kHU9qMrs/r9zKbC7MhZJmk9ZfmwQcB3wmIlbmnWIycJOki4CrSUlrCnBesTk0lXCNxsxsTdUm\nms8BV0p6JiLua0RAVVpj9mREXCypi9TM9yVgFnByRFxcUO5WSYcDZwLHkprazgam9TUYDwYwM1tT\n2ZUBJL1Az//QNwY2IHXUF/aZRERsXdcIB5DeVgbo6oJ114WVeXWmJUtgvfX6KTgzswaox8oAldRo\n7qKfFstsZfPn90wyG23kJGNmBhUkmog4rh/iaHkeCGBmVlwrrQwwoHkggJlZcWVrNJKOIa2GPC97\n3quI+FldImsxTjRmZsVV0kfzE9KKzfOy570JoC0TjZvOzMyKqyTRbEv3Tca2bWAsLc01GjOz4ioZ\nDPB8sefWk+fQmJkV58EAdeIFNc3MiqtkMMBzVD6PJiLibbWF1JrcdGZmVlwlfTT34gmbZXkwgJlZ\ncWWXoLFupZagWbUKhg5Ny9DkLFuWlqQxM2tl9ViCxn00dfDaaz2TzMiRTjJmZjlVJxpJu0m6QdJc\nSSsl7Z7tnybp/fUPceBzs5mZWWlVJRpJE0k3F9uRdKfN/Pd3AZ+qX2itwwMBzMxKq7ZG83Xgt6Rb\nIH+x4NgM0s3D2o7n0JiZlVbtjc92Bz4cESGpsFd8LrBZfcJqLZ5DY2ZWWrU1mmXA8BLHNgdery2c\n1uSmMzOz0qpNNL8DPi9pSN6+XM3mE8DddYmqxXgwgJlZadU2nZ0BPAA8ClxPSjLHSvo2sAfwrvqG\n1xpcozEzK62qGk1EPArsB8wBpgACPpMd3j8inqlveK3BgwHMzErr88oAkoYBI4GFEbGkrlENUKVW\nBhg1CubN6349ezZsvnk/BmZm1iD9vjKApANyzyNiWUTMzk8ykr5USzCt6M03eyYZCTZry7F3ZmbF\nVTsY4AZJ7yx2QNIXSfNs2sqrr/Z8vdlmsHa1PV9mZoNYtYnmOuA2Sdvk75T0eeBbwOfqE1br8Bwa\nM7PeVZtoPgVMB+6QNApA0ueAbwNfiIjv1zm+Ac8jzszMelftqLMu4EjSqLPbJH0Z+A5wakSc34D4\nBjzPoTEz613VqzdHxDLgg8AwUp/Mf0bEd+odWKtwjcbMrHeV3Mr5ZyUOzQFGA+/MKxMRcWy9gmsF\nnkNjZta7SsZH7UfpWzkvBvbNe90vt+uUdCTpNgUvRsS4gmOdpJjzBakP6fyCsocC/w38EylxXgKc\nkzURVsSDAczMelc20UTENv0QR8UkbUzqF3q5RJEgLZFzImnlgpyZBec5kLSMziXAF4DdgHOADYDT\nK43HTWdmZr1rxRkf3wL+BLwCTCpR5o2IeLjMec4B7ouI/8he3ytpQ2CKpO9ExKu9vHc1DwYwM+td\n2cEAksZJWifvea9bI4OVtA/wMeDkGs+zJbArcEXBocuBocBBlZ7LNRozs95VUqN5DtgLeIjU/FSu\nH2ZImeN9Imlt4GLgmxHxd6nXpXd2k7SQdO+cp4DvRsRlecfHk67jifw3RcRMSUuAnSqJadkyeD3v\nDjxDhsCmm1byTjOz9lFJojkB+Fve837p8C/iK6TaRrllbu4l1VSeBTYBjgEulTQ2IqZlZUZmjwuK\nvH9B3vFeFTabjR4Na1U9YNzMbHCrZDDAT/Oe/6QeHyppEnBHBUU7I+IASdsBk4FDImJFb2+IiKkF\nu26SdAMwWdJ5ta40PXVq9+lHj+4AOla/drOZmbW6zs5OOjs763rOPt8moKYPTbcYqKQ/Z0lEvCjp\nFmAVcFTuFMCFpGHM7wCWZxNJS33eEcA1wN4RMV3S+4Gbc68Lyi4CLoyI04qcp8dtAm68EQ45pPv4\nQQfBLbdUcFVmZi2iHrcJqGTC5mXlyuSJiPhEBYWWkZq2KvVPpMRUrKlrPvBd4ItVnO8JUrIaT1q7\nDQBJW5P6dZ6s5CSeQ2NmVl4lfTQHUHm/TKOqRx8hLXmT73Rgd+Bw4KUy7z8KWAo8BhARL0h6FPg4\nkJ9IjwZWALdWEpRHnJmZldcSEzYj4qHCfZKOJzWZ3Z+3byLwZeAGYBZpMMBxpLXZTivon5lM6r+5\nCLialLSmAOd5Do2ZWf204oTNfIU1qJdJ13Q2MAp4E/gz8NGIuK7HGyNulXQ4cCZwLGkJmrOBaVTI\nNRozs/L6nGgkrQX8FTg4Ip4oV77eIuL4Ivv+BnyginP8CvhVX2PwgppmZuXVMutDwDbAuvUJpfV4\nMICZWXmeXlgDN52ZmZXnRNNHixbB4sXdr4cOhU02aV48ZmYDVZ8TTUSsAo4nrYXWdoqNOOt9+TUz\ns/ZU06iz/OVp2o2bzczMKlNVopF0TC+Hu4DXgUci4sWaomoBnkNjZlaZams0P6F77kp+Q1H+vi5J\n1wLHl1sAs5W5RmNmVplq+2j2AZ4HLgD2B3bMHr9Pmon/AdJy/ocBU+sW5QDkOTRmZpWptkbzJeCa\niJict+9Z4H5JbwAnRsRhkjYmrSM2udhJBgPPoTEzq0y1NZr3AXeVOHY3MCl7fh+wRV+DagVuOjMz\nq0y1iWY5sEeJY3uQVj7OnXdxiXKDggcDmJlVptqms58DZ0laBVwPvAqMBo4g9cnkltzfFXimTjEO\nSK7RmJlVpqo7bEpaD7gE+GiRw1cBn4yIZZI+ALwREffVJ8yBIXeHzQgYPhyW5d3T8x//gA03bF5s\nZmaNUI87bPbpVs6StgcmAGNJS/M/FBGDugYD3Ynm9dd7Ljez3nppORqvDGBmg02/3Mq5mIh4lupu\nxTyoFGs2c5IxMyuu6kQjaThwAmn+zEhgPnAP8OOIWFrf8AYmz6ExM6tcVaPOJI0FZgDnA3sCw7PH\nC4AZktpi7JXn0JiZVa7a4c3fBEYA+0bEthGxV0RsC0wENgG+Ue8AByKPODMzq1y1ieYg4PSIeCB/\nZ0Q8CPwXVdxGuZV5Do2ZWeWqTTQbALNLHHsxOz7ouUZjZla5ahPNM8DRJY4dBTxdWzitwYMBzMwq\nV+2os3OBn2Wd/leR5tCMBY4E/oXSSWhQ8WAAM7PKVZVoIuKKbHjzV4FL8w7NAU6KiKvqGdxA5aYz\nM7PK9XVlgLWAHeieR/MMcADw7YjYpa4RDiCSYtWqYNgwePPN7v2LF6claczMBptmrgzQBTxVEMzG\nwPhagmkFCxb0TDIbbugkY2bWm2oHA7Q9N5uZmVXHiaZKnkNjZladlkk0kmZK6irYVkn6UJGyn5T0\nlKRlkp6WdFKJcx4qaYakpdn5p2T9TyW5RmNmVp2yfTSS3lrhuRr9X24At5FusJavx+0JJH0SuAj4\nGum205OA72cdWhfnlTuQdPO2S4AvALsB55AmnZ5eKgjPoTEzq04lgwH+SvpPvhxVWK4WcyPioZIB\nSEOAs4GfRsR/Z7vvlbQF8D+SLo2IVdn+c4D7IuI/8sptCEyR9J2IeLXYZ3gOjZlZdSpJNMc3PIr6\n2QsYBVxZsP9y4DjS4p/3StqSdLvpfy9S7izSmm4/LfYBbjozM6tO2UQTEUX/w22SgyUtBoYAjwBf\nj4hf5x3PDa9+vOB9T5BqXDsB92blItu/WkTMlLQkK1eUm87MzKrTMoMBgBuBzwLvAz4GLAV+Kelj\neWVGZo8LCt47v+B4qXK5fSOL7AfcdGZmVq0+TdislaRJwB0VFO2MiAMAIuKUgnP8CvgDMI207lq/\ncI3GzKw6TUk0wAPAjhWUW1LqQER0Sfo58HVJYyJiDt01lBGk9ddycjWUXM0mv1yhEXnl1vDKK1Pz\nXnUwenRHyeDNzFpNZ2cnnZ2ddT1nUxJNRCwDnm3AqXN9MePpmWhyfS5PFik3PVdI0tak21M/SUlT\nVz8bMQLWXbfmmM3MBoyOjg46OjpWvz7rrLNqPmcr9dH0kA1lPhKYldVmAH4PzAU+XlD8aGAeqSZF\nRLwAPFqi3Arg1kpicLOZmVl5zWo6q4qkI4EPArcALwGbAyeThigfmSsXESslnQFcKGk2cCdpwuZx\nwGciYmXeaScDN0m6CLga2B2YApxXag5NIQ8EMDMrryUSDfAcaeWB/yX1tywG/g84MCLuzC8YERdL\n6gJOBb4EzAJOzl8VICt3q6TDgTOBY0lNbWeTBhdUxDUaM7Py+nQ/mnYlKfIXPzjlFDjvvCYGZGbW\nYPW4H03L9tEMBK7RmJmV50RTAycaM7PynGhq4MEAZmblOdHUwDUaM7PynGhq4ERjZlaeR51VIX/U\nmQQrVsDarTJA3MysDzzqrIlGjXKSMTOrhBNNH3kggJlZZZxo+sj9M2ZmlXGi6SMnGjOzyjjR9JGb\nzszMKuNE00eu0ZiZVcaJpo+caMzMKuNE00duOjMzq4wTTR+5RmNmVhknmj5yjcbMrDJegqYKuSVo\nhgyB5cthyJBmR2Rm1lhegqZJRo92kjEzq5QTTR+42czMrHJONH3ggQBmZpVzoukDJxozs8o50fSB\nm87MzCrnRNMHrtGYmVXOiaYPXKMxM6ucE00fuEZjZlY5J5o+cKIxM6ucE00fuOnMzKxyXoKmCpJi\nnXWC5ctBNS3IYGbWGtpqCRpJMyV1FWyrJH2ooFxniXKfK3LOQyXNkLQ0O/8USb3+TMaMcZIxM6vG\n2s0OoAoB3AZMLdj/TJFyjwInAvkpYWZ+IUkHAtcDlwBfAHYDzgE2AE4vFcQee1Qdt5lZW2uZpjNJ\nzwH3R8QxZcrdAwyJiP3KlJsBLIyIA/L2nQFMAcZFxKtF3hOt8vMyM6uHtmo6qydJWwK7AlcUHLoc\nGAoc1O9BtYDOzs5mh9A07Xzt4Otv9+uvVaslmoMlLZa0TNLvJR1SotxukhZKWiHpUUknFBwfT2pi\neyJ/Z0TMBJYAO9U98kGgnf+xtfO1g6+/3a+/Vq3UR3Mj8DDwHDAG+AzwS0lHRcRVeeXuJdVUngU2\nAY4BLpU0NiKmZWVGZo8LinzOgrzjZmZWo6YkGkmTgDsqKNqZ60OJiFMKzvEr4A/ANGB1oomIqQXn\nuEnSDcBkSedFxJJaYjczs+o0ZTCApGHAuAqKLomIF3s5z5eBrwNviYg5vZQ7ArgG2Dsipkt6P3Bz\n7nVB2UXwEvVEAAAIrklEQVTAhRFxWpHzeCSAmbWdWgcDNKVGExHLSE1bzfIEaejzeGB1opG0NTAc\neLLYm2r9YZuZtaNWGwywmqQhwJHArN5qM5mjgKXAYwAR8QJprs3HC8odDawAbq1vtGZm7aslBgNI\nOhL4IHAL8BKwOXAyaYjykXnlJgJfBm4AZpEGAxyXvfe0gv6ZyaT+m4uAq4HdSXNozis2h8bMzPqm\nJRINaaTZWOB/SSPCFgP/BxwYEXfmlXuZdE1nA6OAN4E/Ax+NiOvyTxgRt0o6HDgTOBaYk71vGmZm\nVj8R4a2XDdiStFTNQuB14BfAVs2Oq5+ufX+gq8g2v9mxNeBatwC+BzxI+kOmi7RCRGG5TYBLgdeA\nRaTRk+9odvz9cf3A1iV+H1YBGzX7Gmq49sOBX5JaQZYAT5P+4NxgsH/3lVx7Pb73VqnRNIWk9YB7\nSP07R2e7vwbcLWmXiFjatOD6TwCfJdUgc1Y2KZZG2o70j+6PwH3A+0qU+w1pxOTJpD8+JgP3SHpn\nRMzuj0AbpNLrh/Rv4KaCfW80KK7+cCrwIvCV7HFX4CygA9g7r9xg/O4rvXao5XtvdkYdyBtwCqn5\nbdu8fdtk+z7f7Pj64fr3J/3VckCzY+nn6/5Edt2Ff9Efku3fL2/fRsA8Ut9e02Nv8PXn/rI9odkx\n1vl6Ny2y7+jsZ9AxmL/7Cq+95u+9ZUed9ZODgT9ExHO5HZGWqXmA9IvXDjyku9vBwOyIuC+3IyL+\nQforr11+HwadiJhXZPfDpN/9LbLXg/K7r/Daa+ZE07vxwONF9j9Be62HdqWklZLmSrpS0lbNDqhJ\nevt9GCdpeD/H0yznSHozW0/w15Le0eyAGqCD1Gycm1PXTt99B+nanyrY3+fv3X00vRtJ8fXQ5gMj\n+jmWZngdOJe0ftw/SPfsmQI8KGm3iJjbzOCaYCRpBGSh+dnjCFKH6mC1HLgIuJ3UIb4j6ffhAUnv\niohmTsKuG0lbkPop7oiIR7LdbfHdF1z7jGx3zd+7E42VFBF/Av6Ut+t+SfcDD5EGCJzZlMCsKSLi\nFeDTebsekPRb0l/1U0jTBFqapPWBX5Mmbheu+j6olbr2enzvTjS9W0Dxmkupms6gFxGPSHoWeHez\nY2mC3n4fcsfbSkS8KOl3DILfh2wNxt+QBvzsFz1Hkg3q777Mta+h2u/dfTS9e4LUNltoJ0qsh2aD\nWm+/D7PCK4O3LElrk+bI7Q4cFBGF/74H7XdfwbXXzImmdzcCEyRtk9uRPd+HVMVsO5L2BHYg3aKh\n3dwIbCFp39wOSRuRRiS16+/DOGAiLfz7IEmkW410AIdExMNFig3K777Cay/2vqq+96bcJqBVZCNJ\n/kSasHlGtvurwPrAO1v5r5hKSLoc+BvwCGkwwO6kiV2LgD0iYn4vb285kv4te/ovwEmkdunXgNci\n4r7sH+XvSKtF/Cdp0t7pwDtIvw8v9X/U9VPB9Z9Lmk/xB1In+I6k34cNgQkR8Zf+j7p2kn5Aut6z\nSbcPyfdiRLw0WL/7Cq+99u+92ROGBvpG+sX6OT2XoFljaZLBuGW/TH8itT8vB54HfgCMaXZsDbre\n3LIahdvdeWVyy5DMJSXc22nxZUgqvX7geNJtNeZlvw+zgcuBtzc79hqv+7kS170K+O/B/N1Xcu31\n+N5dozEzs4ZyH42ZmTWUE42ZmTWUE42ZmTWUE42ZmTWUE42ZmTWUE42ZmTWUE42ZmTWUE41ZBSQd\nK6lL0luz16dIOqyJ8Wws6UxJuxY5do+ku5sRl1kxXr3ZrHL5s5s/D9wP/LJJsWxCuk3DC/S8lQPA\nf/R/OGalOdGYDRCShkbEikqLlzoQEU/XKSSzunDTmVmVJD0HbA0clTWndUm6LO/4OyXdKGm+pCWS\nfidpYsE5fiLpBUkTJD0gaQnwjezYRyTdJelVSW9ImiHpmLz3bg38nVTDujT7/FW5MpI6C5vOJG0v\n6ZeSFmQx/V7SgQVlpmbn2k7Sb7LPninpDMxq4ERjVr1DgVeA24D3ABOA/wGQtDvwAKlp69+BD5MW\nI7xT0m555whgY+Bq0jLt788eAd5GapI7CjiEtET9JZJOzI6/nJ1XwNeyz9+L7tV3eyxgKGnzLKad\nSSsyH0FaKPXmgmSTe98NwF3ZZ/8SOEtSy98905rHTWdmVYqIRyUtB+bGmvfv+BYwE/jniFgFkHfb\n2zNICSJnfeBjEfGbgvNPyz3Plqe/F3gLqe/lhxGxQlLuXvbPRcRDZUI+lZTU3h0Rz2XnvZV0876v\nAb/N/3jg3Ij4Wfb6bkmTgI8CPy3zOWZFuUZjVifZ7XD3A67PXg+RNAQYAtyZHcv3JmveA4Ss6epq\nSS9mZd4k1Y526GNo+wJ/yCUZgIjoItWmdpW0QUH5WwpePw6M6+NnmznRmNXRSFJSOYPuBPEmsAL4\nDKk5Ld9rUXCfDknrk5LSzqQbbE0E9gQuA9atIa6Xi+x/hdT8NqJgf+EN7ZYDw/r42WZuOjOro4Wk\nm4ddQGpmKjkyLFPsZlB7AVsBEyPi97mdktapIa75wNgi+zfPYlhQw7nNynKiMeub5cB6+TsiYomk\n+0m39n2k+NvKGp49rsztkDQC+FCRz6cwhhLuBU6RNC4iZmXnXAv4CDAjIhb1MVazijjRmFUuv4by\nJLCvpA+QmqDmRsTzwBeBeyXdDvyI1GQ1CtgdWCsiJpf5jAeBN4ALJU0FNgCmAK8BG+WVm0MazXak\npMeAxaSBAYXNXgDfAY4F7sjO+QZp9Nl2wL9Wdulmfec+GrPK5Td1nQ48A1wLPESapU9Wk3kX6b7y\n3yWN6DoPeAdwXy/nI3v/XNLw6SHAz0mjwi4BriwoF8AnSP0rd2QxfLDYuSPiZVJfzxPA94HrSP1F\n/xoRd5SLqcx+s7JU0BdpZmZWV67RmJlZQznRmJlZQznRmJlZQznRmJlZQznRmJlZQznRmJlZQznR\nmJlZQznRmJlZQ/1/lyjT09fmSBYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(range(len(loglikelihoods)), loglikelihoods, linewidth=4)\n", + "plt.xlabel('Iteration')\n", + "plt.ylabel('Log-likelihood')\n", + "plt.rcParams.update({'font.size':16})\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fitting a Gaussian mixture model for image data\n", + "\n", + "Now that we're confident in our implementation of the EM algorithm, we'll apply it to cluster some more interesting data. In particular, we have a set of images that come from four categories: sunsets, rivers, trees and forests, and cloudy skies. For each image we are given the average intensity of its red, green, and blue pixels, so we have a 3-dimensional representation of our data. Our goal is to find a good clustering of these images using our EM implementation; ideally our algorithm would find clusters that roughly correspond to the four image categories.\n", + "\n", + "To begin with, we'll take a look at the data and get it in a form suitable for input to our algorithm. The data are provided in SFrame format:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", + "}));\n", + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"https://static.turi.com/products/graphlab-create/2.1/canvas/css/canvas.css\"\n", + "}));\n", + "\n", + " (function(){\n", + "\n", + " var e = null;\n", + " if (typeof element == 'undefined') {\n", + " var scripts = document.getElementsByTagName('script');\n", + " var thisScriptTag = scripts[scripts.length-1];\n", + " var parentDiv = thisScriptTag.parentNode;\n", + " e = document.createElement('div');\n", + " parentDiv.appendChild(e);\n", + " } else {\n", + " e = element[0];\n", + " }\n", + "\n", + " if (typeof requirejs !== 'undefined') {\n", + " // disable load timeout; ipython_app.js is large and can take a while to load.\n", + " requirejs.config({waitSeconds: 0});\n", + " }\n", + "\n", + " require(['https://static.turi.com/products/graphlab-create/2.1/canvas/js/ipython_app.js'], function(IPythonApp){\n", + " var app = new IPythonApp();\n", + " app.attachView('sframe','Summary', {\"ipython\": true, \"sketch\": {\"blue\": {\"std\": 0.18454488372045472, \"complete\": true, \"min\": 0.012413068328822194, \"max\": 0.9524234190826288, \"quantile\": [0.012413068328822194, 0.03595010080645161, 0.05637369791666667, 0.07418464781746031, 0.09278945053499821, 0.10888055762543468, 0.11765058370591157, 0.12942280575895507, 0.1374814039923576, 0.14755347686733555, 0.1573432806407655, 0.1657578737478223, 0.17619520399305555, 0.18352957589285715, 0.18639658011642157, 0.1967742435515873, 0.20344822078933789, 0.20911791252367423, 0.2145844171125644, 0.2188612008385056, 0.2228684093012379, 0.22794157432929985, 0.23845473174366616, 0.2436806949400337, 0.24824802869380075, 0.254119388640873, 0.26148689766517635, 0.26863015909000815, 0.27642079095848426, 0.2797966343765524, 0.285086830720583, 0.2882738022678422, 0.2928050219233056, 0.29739183218564663, 0.3015509517609127, 0.30653652778330615, 0.3110139384251359, 0.31741034836065574, 0.3200353411036737, 0.32541216525591526, 0.3297635323660714, 0.33489808268319865, 0.33945746527777776, 0.34343980690150616, 0.34693849354197714, 0.351550294426422, 0.3555542663301428, 0.359411135953071, 0.36526329521255424, 0.36923652564940207, 0.3731988727918358, 0.377153087797619, 0.38215972420408423, 0.38842741414603127, 0.39442939814814815, 0.39810699205166417, 0.40173159153140997, 0.40660864006659925, 0.41227278974943277, 0.4169499669659118, 0.4220769684550422, 0.42502699219838397, 0.43069885227182264, 0.4385880741724357, 0.44239963673621463, 0.44858043569777406, 0.4544812207967055, 0.46293180534638556, 0.4676571814456036, 0.4705618668650241, 0.47783059393224103, 0.4840906392477204, 0.4875989695233548, 0.49397742796820665, 0.5000755191047129, 0.5093109868198463, 0.5138315581091032, 0.5191078643076066, 0.5278660531519536, 0.5350464170392449, 0.541809375995104, 0.5499370620086556, 0.5528044680512453, 0.5619764002446884, 0.5698368314676617, 0.5798289602654938, 0.5872267817338693, 0.6014121607730263, 0.6168796125118793, 0.627062946711412, 0.6431389884671069, 0.6527557075438841, 0.669431941721729, 0.699817359041232, 0.7157458378088077, 0.7332856503211462, 0.7541306507699951, 0.7723329768105158, 0.7909352490064581, 0.8663176916515806, 0.9524234190826288], \"median\": 0.3731988727918358, \"numeric\": true, \"num_unique\": 1331, \"num_undefined\": 0, \"var\": 0.03405681410739615, \"progress\": 1.0, \"size\": 1328, \"frequent_items\": {\"0.29760313034057617\": {\"frequency\": 1, \"value\": 0.29760313034057617}, \"0.1357421875\": {\"frequency\": 1, \"value\": 0.1357421875}, \"0.3297635323660714\": {\"frequency\": 1, \"value\": 0.3297635323660714}, \"0.3110139384251359\": {\"frequency\": 1, \"value\": 0.3110139384251359}, \"0.7336604628227211\": {\"frequency\": 1, \"value\": 0.7336604628227211}, \"0.48147821638588684\": {\"frequency\": 1, \"value\": 0.48147821638588684}, \"0.5788290550595238\": {\"frequency\": 1, \"value\": 0.5788290550595238}, \"0.5510082299948578\": {\"frequency\": 1, \"value\": 0.5510082299948578}, \"0.22388249813710878\": {\"frequency\": 1, \"value\": 0.22388249813710878}, \"0.4653315586419753\": {\"frequency\": 1, \"value\": 0.4653315586419753}, \"0.4538978382607571\": {\"frequency\": 1, \"value\": 0.4538978382607571}, \"0.8449950322901143\": {\"frequency\": 1, \"value\": 0.8449950322901143}, \"0.35290480212355213\": {\"frequency\": 1, \"value\": 0.35290480212355213}, \"0.36882794463738405\": {\"frequency\": 1, \"value\": 0.36882794463738405}, \"0.40755037568306013\": {\"frequency\": 1, \"value\": 0.40755037568306013}, \"0.6934030716668647\": {\"frequency\": 1, \"value\": 0.6934030716668647}, \"0.17643058655753968\": {\"frequency\": 1, \"value\": 0.17643058655753968}, \"0.5594351438492063\": {\"frequency\": 1, \"value\": 0.5594351438492063}, \"0.480988033234127\": {\"frequency\": 1, \"value\": 0.480988033234127}, \"0.6583006141036102\": {\"frequency\": 1, \"value\": 0.6583006141036102}, \"0.1365808887276078\": {\"frequency\": 1, \"value\": 0.1365808887276078}, \"0.5502741366466698\": {\"frequency\": 1, \"value\": 0.5502741366466698}, \"0.38261993181049236\": {\"frequency\": 1, \"value\": 0.38261993181049236}, \"0.11890787117094861\": {\"frequency\": 1, \"value\": 0.11890787117094861}, \"0.26148689766517635\": {\"frequency\": 1, \"value\": 0.26148689766517635}, \"0.6434705292134161\": {\"frequency\": 1, \"value\": 0.6434705292134161}, \"0.32541216525591526\": {\"frequency\": 1, \"value\": 0.32541216525591526}, \"0.31102372362462427\": {\"frequency\": 1, \"value\": 0.31102372362462427}, \"0.3796051857220735\": {\"frequency\": 1, \"value\": 0.3796051857220735}, \"0.26863015909000815\": {\"frequency\": 1, \"value\": 0.26863015909000815}, \"0.2836028461946604\": {\"frequency\": 1, \"value\": 0.2836028461946604}, \"0.458643449019025\": {\"frequency\": 1, \"value\": 0.458643449019025}, \"0.5507135649528068\": {\"frequency\": 1, \"value\": 0.5507135649528068}, \"0.6728995684979899\": {\"frequency\": 1, \"value\": 0.6728995684979899}, \"0.47783059393224103\": {\"frequency\": 1, \"value\": 0.47783059393224103}, \"0.46141243232254614\": {\"frequency\": 1, \"value\": 0.46141243232254614}, \"0.41867150341854936\": {\"frequency\": 1, \"value\": 0.41867150341854936}, \"0.2128710224680657\": {\"frequency\": 1, \"value\": 0.2128710224680657}, \"0.1282016114008942\": {\"frequency\": 1, \"value\": 0.1282016114008942}, \"0.042252044665592424\": {\"frequency\": 1, \"value\": 0.042252044665592424}, \"0.359411135953071\": {\"frequency\": 1, \"value\": 0.359411135953071}, \"0.32279612208147046\": {\"frequency\": 1, \"value\": 0.32279612208147046}, \"0.3028175163495838\": {\"frequency\": 1, \"value\": 0.3028175163495838}, \"0.3477273149524376\": {\"frequency\": 1, \"value\": 0.3477273149524376}, \"0.7873281424143216\": {\"frequency\": 1, \"value\": 0.7873281424143216}, \"0.29383029246109144\": {\"frequency\": 1, \"value\": 0.29383029246109144}, \"0.5525204276211042\": {\"frequency\": 1, \"value\": 0.5525204276211042}, \"0.1584040014273494\": {\"frequency\": 1, \"value\": 0.1584040014273494}, \"0.5046759008179755\": {\"frequency\": 1, \"value\": 0.5046759008179755}, \"0.6090010585419735\": {\"frequency\": 1, \"value\": 0.6090010585419735}, \"0.2876930421013413\": {\"frequency\": 1, \"value\": 0.2876930421013413}, \"0.7210410014820562\": {\"frequency\": 1, \"value\": 0.7210410014820562}, \"0.1841315726625005\": {\"frequency\": 1, \"value\": 0.1841315726625005}, \"0.39740469079628227\": {\"frequency\": 1, \"value\": 0.39740469079628227}, \"0.3124983743311534\": {\"frequency\": 1, \"value\": 0.3124983743311534}, \"0.4253179046590773\": {\"frequency\": 1, \"value\": 0.4253179046590773}, \"0.7062280601912666\": {\"frequency\": 1, \"value\": 0.7062280601912666}, \"0.4400297619047619\": {\"frequency\": 1, \"value\": 0.4400297619047619}, \"0.26671960168496855\": {\"frequency\": 1, \"value\": 0.26671960168496855}, \"0.08062640399180963\": {\"frequency\": 1, \"value\": 0.08062640399180963}, \"0.29786791755157765\": {\"frequency\": 1, \"value\": 0.29786791755157765}, \"0.5191078643076066\": {\"frequency\": 1, \"value\": 0.5191078643076066}, \"0.23016936785891703\": {\"frequency\": 1, \"value\": 0.23016936785891703}, \"0.24297696552579365\": {\"frequency\": 1, \"value\": 0.24297696552579365}, \"0.19406325843478953\": {\"frequency\": 1, \"value\": 0.19406325843478953}, \"0.3198381929656092\": {\"frequency\": 1, \"value\": 0.3198381929656092}, \"0.31348862742040867\": {\"frequency\": 1, \"value\": 0.31348862742040867}, \"0.5513294304862596\": {\"frequency\": 1, \"value\": 0.5513294304862596}, \"0.663183024691358\": {\"frequency\": 1, \"value\": 0.663183024691358}, \"0.4908045789930556\": {\"frequency\": 1, \"value\": 0.4908045789930556}, \"0.5499370620086556\": {\"frequency\": 1, \"value\": 0.5499370620086556}, \"0.1665824187748016\": {\"frequency\": 1, \"value\": 0.1665824187748016}, \"0.5133266982695139\": {\"frequency\": 1, \"value\": 0.5133266982695139}, \"0.057012412359974576\": {\"frequency\": 1, \"value\": 0.057012412359974576}, \"0.6600816798712122\": {\"frequency\": 1, \"value\": 0.6600816798712122}, \"0.5258360460069444\": {\"frequency\": 1, \"value\": 0.5258360460069444}, \"0.2674104253783353\": {\"frequency\": 1, \"value\": 0.2674104253783353}, \"0.6367757880261796\": {\"frequency\": 1, \"value\": 0.6367757880261796}, \"0.3337617206905117\": {\"frequency\": 1, \"value\": 0.3337617206905117}, \"0.5784268974546432\": {\"frequency\": 1, \"value\": 0.5784268974546432}, \"0.17103608008838986\": {\"frequency\": 1, \"value\": 0.17103608008838986}, \"0.3577239823816821\": {\"frequency\": 1, \"value\": 0.3577239823816821}, \"0.5453546675357243\": {\"frequency\": 1, \"value\": 0.5453546675357243}, \"0.10888055762543468\": {\"frequency\": 1, \"value\": 0.10888055762543468}, \"0.41256284704255064\": {\"frequency\": 1, \"value\": 0.41256284704255064}, \"0.4693847025583706\": {\"frequency\": 1, \"value\": 0.4693847025583706}, \"0.14379215044466404\": {\"frequency\": 1, \"value\": 0.14379215044466404}, \"0.5135720435609209\": {\"frequency\": 1, \"value\": 0.5135720435609209}, \"0.5242622559948474\": {\"frequency\": 1, \"value\": 0.5242622559948474}, \"0.7588017672636046\": {\"frequency\": 1, \"value\": 0.7588017672636046}, \"0.4245663035806593\": {\"frequency\": 1, \"value\": 0.4245663035806593}, \"0.48734768811376417\": {\"frequency\": 1, \"value\": 0.48734768811376417}, \"0.7072494732167734\": {\"frequency\": 1, \"value\": 0.7072494732167734}, \"0.3086001033897969\": {\"frequency\": 1, \"value\": 0.3086001033897969}, \"0.2385254681299603\": {\"frequency\": 1, \"value\": 0.2385254681299603}, \"0.25107530381944443\": {\"frequency\": 1, \"value\": 0.25107530381944443}, \"0.5838526018116373\": {\"frequency\": 1, \"value\": 0.5838526018116373}, \"0.2880304227209395\": {\"frequency\": 1, \"value\": 0.2880304227209395}, \"0.28591743827160493\": {\"frequency\": 1, \"value\": 0.28591743827160493}, \"0.38842741414603127\": {\"frequency\": 1, \"value\": 0.38842741414603127}, \"0.6090535449604743\": {\"frequency\": 1, \"value\": 0.6090535449604743}, \"0.18639658011642157\": {\"frequency\": 1, \"value\": 0.18639658011642157}, \"0.3594541932966706\": {\"frequency\": 1, \"value\": 0.3594541932966706}, \"0.24820075757575757\": {\"frequency\": 1, \"value\": 0.24820075757575757}, \"0.33539842585692997\": {\"frequency\": 1, \"value\": 0.33539842585692997}, \"0.2087737518628912\": {\"frequency\": 1, \"value\": 0.2087737518628912}, \"0.33416442073532904\": {\"frequency\": 1, \"value\": 0.33416442073532904}, \"0.5547011826812085\": {\"frequency\": 1, \"value\": 0.5547011826812085}, \"0.18352957589285715\": {\"frequency\": 1, \"value\": 0.18352957589285715}, \"0.20746628786748617\": {\"frequency\": 1, \"value\": 0.20746628786748617}, \"0.5333412506209637\": {\"frequency\": 1, \"value\": 0.5333412506209637}, \"0.014591095380029806\": {\"frequency\": 1, \"value\": 0.014591095380029806}, \"0.5457154146754282\": {\"frequency\": 1, \"value\": 0.5457154146754282}, \"0.5367802018679876\": {\"frequency\": 1, \"value\": 0.5367802018679876}, \"0.6196730409216086\": {\"frequency\": 1, \"value\": 0.6196730409216086}, \"0.8118739969135802\": {\"frequency\": 1, \"value\": 0.8118739969135802}, \"0.645530785410779\": {\"frequency\": 1, \"value\": 0.645530785410779}, \"0.22610851275083613\": {\"frequency\": 1, \"value\": 0.22610851275083613}, \"0.5691862965300465\": {\"frequency\": 1, \"value\": 0.5691862965300465}, \"0.6255758679318127\": {\"frequency\": 1, \"value\": 0.6255758679318127}, \"0.2774258101575555\": {\"frequency\": 1, \"value\": 0.2774258101575555}, \"0.5616210393540623\": {\"frequency\": 1, \"value\": 0.5616210393540623}, \"0.21064337339361025\": {\"frequency\": 1, \"value\": 0.21064337339361025}, \"0.7134436074513394\": {\"frequency\": 1, \"value\": 0.7134436074513394}, \"0.32573776084165906\": {\"frequency\": 1, \"value\": 0.32573776084165906}, \"0.27642079095848426\": {\"frequency\": 1, \"value\": 0.27642079095848426}, \"0.5106602647569445\": {\"frequency\": 1, \"value\": 0.5106602647569445}, \"0.18584808122205662\": {\"frequency\": 1, \"value\": 0.18584808122205662}, \"0.5786562927886809\": {\"frequency\": 1, \"value\": 0.5786562927886809}, \"0.4177023654513889\": {\"frequency\": 1, \"value\": 0.4177023654513889}, \"0.32783322466467957\": {\"frequency\": 1, \"value\": 0.32783322466467957}, \"0.7815202266714886\": {\"frequency\": 1, \"value\": 0.7815202266714886}, \"0.18359204624306105\": {\"frequency\": 1, \"value\": 0.18359204624306105}, \"0.41143446180555554\": {\"frequency\": 1, \"value\": 0.41143446180555554}, \"0.5032590436303387\": {\"frequency\": 1, \"value\": 0.5032590436303387}, \"0.4403614684502249\": {\"frequency\": 1, \"value\": 0.4403614684502249}, \"0.22877439424683696\": {\"frequency\": 1, \"value\": 0.22877439424683696}, \"0.30658297960964775\": {\"frequency\": 1, \"value\": 0.30658297960964775}, \"0.29178294212617983\": {\"frequency\": 1, \"value\": 0.29178294212617983}, \"0.6800027943368108\": {\"frequency\": 1, \"value\": 0.6800027943368108}, \"0.2302595641121032\": {\"frequency\": 1, \"value\": 0.2302595641121032}, \"0.6044556476651763\": {\"frequency\": 1, \"value\": 0.6044556476651763}, \"0.24810191669486129\": {\"frequency\": 1, \"value\": 0.24810191669486129}, \"0.5188807127460914\": {\"frequency\": 1, \"value\": 0.5188807127460914}, \"0.38924265710382516\": {\"frequency\": 1, \"value\": 0.38924265710382516}, \"0.4116721695188492\": {\"frequency\": 1, \"value\": 0.4116721695188492}, \"0.5132665021112767\": {\"frequency\": 1, \"value\": 0.5132665021112767}, \"0.6200977464564421\": {\"frequency\": 1, \"value\": 0.6200977464564421}, \"0.5187064326689113\": {\"frequency\": 1, \"value\": 0.5187064326689113}, \"0.1368419513987883\": {\"frequency\": 1, \"value\": 0.1368419513987883}, \"0.6752011284103508\": {\"frequency\": 1, \"value\": 0.6752011284103508}, \"0.41848088864006516\": {\"frequency\": 1, \"value\": 0.41848088864006516}, \"0.452619252532447\": {\"frequency\": 1, \"value\": 0.452619252532447}, \"0.3664883075703528\": {\"frequency\": 1, \"value\": 0.3664883075703528}, \"0.42984360420968\": {\"frequency\": 1, \"value\": 0.42984360420968}, \"0.21306559439202102\": {\"frequency\": 1, \"value\": 0.21306559439202102}, \"0.44414109002976193\": {\"frequency\": 1, \"value\": 0.44414109002976193}, \"0.29739183218564663\": {\"frequency\": 1, \"value\": 0.29739183218564663}, \"0.3958324795081967\": {\"frequency\": 1, \"value\": 0.3958324795081967}, \"0.2821164629036417\": {\"frequency\": 1, \"value\": 0.2821164629036417}, \"0.6522387295081967\": {\"frequency\": 1, \"value\": 0.6522387295081967}, \"0.5347281731246896\": {\"frequency\": 1, \"value\": 0.5347281731246896}, \"0.7167984298501373\": {\"frequency\": 1, \"value\": 0.7167984298501373}, \"0.3439822823660714\": {\"frequency\": 1, \"value\": 0.3439822823660714}, \"0.6327859236989735\": {\"frequency\": 1, \"value\": 0.6327859236989735}, \"0.14905598958333333\": {\"frequency\": 1, \"value\": 0.14905598958333333}, \"0.31649762834821427\": {\"frequency\": 1, \"value\": 0.31649762834821427}, \"0.2492565834176487\": {\"frequency\": 1, \"value\": 0.2492565834176487}, \"0.7881711821587788\": {\"frequency\": 1, \"value\": 0.7881711821587788}, \"0.2416169676476417\": {\"frequency\": 1, \"value\": 0.2416169676476417}, \"0.3138748913313463\": {\"frequency\": 1, \"value\": 0.3138748913313463}, \"0.8967427133503164\": {\"frequency\": 1, \"value\": 0.8967427133503164}, \"0.14755347686733555\": {\"frequency\": 1, \"value\": 0.14755347686733555}, \"0.38860540699110674\": {\"frequency\": 1, \"value\": 0.38860540699110674}, \"0.2891897631448413\": {\"frequency\": 1, \"value\": 0.2891897631448413}, \"0.3182941158234127\": {\"frequency\": 1, \"value\": 0.3182941158234127}, \"0.36033982851913743\": {\"frequency\": 1, \"value\": 0.36033982851913743}, \"0.06403069416996048\": {\"frequency\": 1, \"value\": 0.06403069416996048}, \"0.41172868932188733\": {\"frequency\": 1, \"value\": 0.41172868932188733}, \"0.5602141805266805\": {\"frequency\": 1, \"value\": 0.5602141805266805}, \"0.6242133570313122\": {\"frequency\": 1, \"value\": 0.6242133570313122}, \"0.32235176369760776\": {\"frequency\": 1, \"value\": 0.32235176369760776}, \"0.4131604151817534\": {\"frequency\": 1, \"value\": 0.4131604151817534}, \"0.7693876241968111\": {\"frequency\": 1, \"value\": 0.7693876241968111}, \"0.20526709202682564\": {\"frequency\": 1, \"value\": 0.20526709202682564}, \"0.06020476810515873\": {\"frequency\": 1, \"value\": 0.06020476810515873}, \"0.3015800435977066\": {\"frequency\": 1, \"value\": 0.3015800435977066}, \"0.3089037661450571\": {\"frequency\": 1, \"value\": 0.3089037661450571}, \"0.7246049894436165\": {\"frequency\": 1, \"value\": 0.7246049894436165}, \"0.3668435344099169\": {\"frequency\": 1, \"value\": 0.3668435344099169}, \"0.18439982008932124\": {\"frequency\": 1, \"value\": 0.18439982008932124}, \"0.44446606832837304\": {\"frequency\": 1, \"value\": 0.44446606832837304}, \"0.228147484097085\": {\"frequency\": 1, \"value\": 0.228147484097085}, \"0.19826767588227104\": {\"frequency\": 1, \"value\": 0.19826767588227104}, \"0.7044302542419023\": {\"frequency\": 1, \"value\": 0.7044302542419023}, \"0.4091432851702509\": {\"frequency\": 1, \"value\": 0.4091432851702509}, \"0.2575603292598456\": {\"frequency\": 1, \"value\": 0.2575603292598456}, \"0.3551102210630899\": {\"frequency\": 1, \"value\": 0.3551102210630899}, \"0.6107336619543651\": {\"frequency\": 1, \"value\": 0.6107336619543651}, \"0.3712759784360944\": {\"frequency\": 1, \"value\": 0.3712759784360944}, \"0.5093109868198463\": {\"frequency\": 1, \"value\": 0.5093109868198463}, \"0.35859889655395455\": {\"frequency\": 1, \"value\": 0.35859889655395455}, \"0.39879770891069194\": {\"frequency\": 1, \"value\": 0.39879770891069194}, \"0.31740446748534884\": {\"frequency\": 1, \"value\": 0.31740446748534884}, \"0.398424107585216\": {\"frequency\": 1, \"value\": 0.398424107585216}, \"0.33101667287630404\": {\"frequency\": 1, \"value\": 0.33101667287630404}, \"0.3792376117734724\": {\"frequency\": 1, \"value\": 0.3792376117734724}, \"0.1615994503862151\": {\"frequency\": 1, \"value\": 0.1615994503862151}, \"0.5013965768480942\": {\"frequency\": 1, \"value\": 0.5013965768480942}, \"0.33791192475124376\": {\"frequency\": 1, \"value\": 0.33791192475124376}, \"0.2627943368107303\": {\"frequency\": 1, \"value\": 0.2627943368107303}, \"0.6181964108296075\": {\"frequency\": 1, \"value\": 0.6181964108296075}, \"0.24898193359375\": {\"frequency\": 1, \"value\": 0.24898193359375}, \"0.3455966331845238\": {\"frequency\": 1, \"value\": 0.3455966331845238}, \"0.5237261574074074\": {\"frequency\": 1, \"value\": 0.5237261574074074}, \"0.4347642299107143\": {\"frequency\": 1, \"value\": 0.4347642299107143}, \"0.636079551108546\": {\"frequency\": 1, \"value\": 0.636079551108546}, \"0.7325916646349958\": {\"frequency\": 1, \"value\": 0.7325916646349958}, \"0.4517601376488095\": {\"frequency\": 1, \"value\": 0.4517601376488095}, \"0.20576904480898164\": {\"frequency\": 1, \"value\": 0.20576904480898164}, \"0.3435426607341878\": {\"frequency\": 1, \"value\": 0.3435426607341878}, \"0.34678431919642855\": {\"frequency\": 1, \"value\": 0.34678431919642855}, \"0.6415769374068554\": {\"frequency\": 1, \"value\": 0.6415769374068554}, \"0.09287204502257068\": {\"frequency\": 1, \"value\": 0.09287204502257068}, \"0.2880379231770833\": {\"frequency\": 1, \"value\": 0.2880379231770833}, \"0.06461685071946026\": {\"frequency\": 1, \"value\": 0.06461685071946026}, \"0.2419290415870932\": {\"frequency\": 1, \"value\": 0.2419290415870932}, \"0.25733460441468253\": {\"frequency\": 1, \"value\": 0.25733460441468253}, \"0.764913733804681\": {\"frequency\": 1, \"value\": 0.764913733804681}, \"0.33489808268319865\": {\"frequency\": 1, \"value\": 0.33489808268319865}, \"0.7453061908458669\": {\"frequency\": 1, \"value\": 0.7453061908458669}, \"0.37444516890213614\": {\"frequency\": 1, \"value\": 0.37444516890213614}, \"0.4486292295653552\": {\"frequency\": 1, \"value\": 0.4486292295653552}, \"0.699817359041232\": {\"frequency\": 1, \"value\": 0.699817359041232}, \"0.1766802964990899\": {\"frequency\": 1, \"value\": 0.1766802964990899}, \"0.8663176916515806\": {\"frequency\": 1, \"value\": 0.8663176916515806}, \"0.3720978213028169\": {\"frequency\": 1, \"value\": 0.3720978213028169}, \"0.43546423471520124\": {\"frequency\": 1, \"value\": 0.43546423471520124}, \"0.3866525607638889\": {\"frequency\": 1, \"value\": 0.3866525607638889}, \"0.20718005068504\": {\"frequency\": 1, \"value\": 0.20718005068504}, \"0.13536314791716164\": {\"frequency\": 1, \"value\": 0.13536314791716164}, \"0.04202873666188883\": {\"frequency\": 1, \"value\": 0.04202873666188883}, \"0.2447428184581857\": {\"frequency\": 1, \"value\": 0.2447428184581857}, \"0.29159471761748307\": {\"frequency\": 1, \"value\": 0.29159471761748307}, \"0.6278230636518329\": {\"frequency\": 1, \"value\": 0.6278230636518329}, \"0.804993342251543\": {\"frequency\": 1, \"value\": 0.804993342251543}, \"0.4946179104997215\": {\"frequency\": 1, \"value\": 0.4946179104997215}, \"0.24824802869380075\": {\"frequency\": 1, \"value\": 0.24824802869380075}, \"0.5158335692151839\": {\"frequency\": 1, \"value\": 0.5158335692151839}, \"0.06341543209876543\": {\"frequency\": 1, \"value\": 0.06341543209876543}, \"0.17456178695436508\": {\"frequency\": 1, \"value\": 0.17456178695436508}, \"0.44494280911570316\": {\"frequency\": 1, \"value\": 0.44494280911570316}, \"0.8252882501389606\": {\"frequency\": 1, \"value\": 0.8252882501389606}, \"0.1515276513427401\": {\"frequency\": 1, \"value\": 0.1515276513427401}, \"0.5523578680392469\": {\"frequency\": 1, \"value\": 0.5523578680392469}, \"0.4544812207967055\": {\"frequency\": 1, \"value\": 0.4544812207967055}, \"0.221891452092991\": {\"frequency\": 1, \"value\": 0.221891452092991}, \"0.22067208246630995\": {\"frequency\": 1, \"value\": 0.22067208246630995}, \"0.781990963832942\": {\"frequency\": 1, \"value\": 0.781990963832942}, \"0.21499751984126983\": {\"frequency\": 1, \"value\": 0.21499751984126983}, \"0.21004377794336812\": {\"frequency\": 1, \"value\": 0.21004377794336812}, \"0.11474796634376552\": {\"frequency\": 1, \"value\": 0.11474796634376552}, \"0.45150850297914596\": {\"frequency\": 1, \"value\": 0.45150850297914596}, \"0.2103544381188612\": {\"frequency\": 1, \"value\": 0.2103544381188612}, \"0.467087668613769\": {\"frequency\": 1, \"value\": 0.467087668613769}, \"0.22056638291517325\": {\"frequency\": 1, \"value\": 0.22056638291517325}, \"0.1954287574404762\": {\"frequency\": 1, \"value\": 0.1954287574404762}, \"0.329195839661128\": {\"frequency\": 1, \"value\": 0.329195839661128}, \"0.2394734535390308\": {\"frequency\": 1, \"value\": 0.2394734535390308}, \"0.3604134153289734\": {\"frequency\": 1, \"value\": 0.3604134153289734}, \"0.38090334699453554\": {\"frequency\": 1, \"value\": 0.38090334699453554}, \"0.1488491218319806\": {\"frequency\": 1, \"value\": 0.1488491218319806}, \"0.4131066644145482\": {\"frequency\": 1, \"value\": 0.4131066644145482}, \"0.3946359121086009\": {\"frequency\": 1, \"value\": 0.3946359121086009}, \"0.7810880837059115\": {\"frequency\": 1, \"value\": 0.7810880837059115}, \"0.503460377660291\": {\"frequency\": 1, \"value\": 0.503460377660291}, \"0.7909352490064581\": {\"frequency\": 1, \"value\": 0.7909352490064581}, \"0.2981914138687657\": {\"frequency\": 1, \"value\": 0.2981914138687657}, \"0.09550511483501174\": {\"frequency\": 1, \"value\": 0.09550511483501174}, \"0.7685033999015278\": {\"frequency\": 1, \"value\": 0.7685033999015278}, \"0.2831536395248402\": {\"frequency\": 1, \"value\": 0.2831536395248402}, \"0.20863639641521445\": {\"frequency\": 1, \"value\": 0.20863639641521445}, \"0.7128606996144774\": {\"frequency\": 1, \"value\": 0.7128606996144774}, \"0.24621366854822738\": {\"frequency\": 1, \"value\": 0.24621366854822738}, \"0.14887685185185184\": {\"frequency\": 1, \"value\": 0.14887685185185184}, \"0.38816784649776453\": {\"frequency\": 1, \"value\": 0.38816784649776453}, \"0.37371112710869736\": {\"frequency\": 1, \"value\": 0.37371112710869736}, \"0.12352430555555556\": {\"frequency\": 1, \"value\": 0.12352430555555556}, \"0.5118994504470938\": {\"frequency\": 1, \"value\": 0.5118994504470938}, \"0.45577267266151406\": {\"frequency\": 1, \"value\": 0.45577267266151406}, \"0.45078598484848487\": {\"frequency\": 1, \"value\": 0.45078598484848487}, \"0.30287699960862413\": {\"frequency\": 1, \"value\": 0.30287699960862413}, \"0.9017016702286973\": {\"frequency\": 1, \"value\": 0.9017016702286973}, \"0.2882738022678422\": {\"frequency\": 1, \"value\": 0.2882738022678422}, \"0.20370184940094735\": {\"frequency\": 1, \"value\": 0.20370184940094735}, \"0.4988214884500745\": {\"frequency\": 1, \"value\": 0.4988214884500745}, \"0.4238926091269841\": {\"frequency\": 1, \"value\": 0.4238926091269841}, \"0.05414093017578125\": {\"frequency\": 1, \"value\": 0.05414093017578125}, \"0.22219109156356234\": {\"frequency\": 1, \"value\": 0.22219109156356234}, \"0.3579699919274714\": {\"frequency\": 1, \"value\": 0.3579699919274714}, \"0.6137106274801587\": {\"frequency\": 1, \"value\": 0.6137106274801587}, \"0.5801572668719898\": {\"frequency\": 1, \"value\": 0.5801572668719898}, \"0.40644585460448057\": {\"frequency\": 1, \"value\": 0.40644585460448057}, \"0.5810823818660518\": {\"frequency\": 1, \"value\": 0.5810823818660518}, \"0.5847864042482295\": {\"frequency\": 1, \"value\": 0.5847864042482295}, \"0.7337876207933169\": {\"frequency\": 1, \"value\": 0.7337876207933169}, \"0.4969862494276557\": {\"frequency\": 1, \"value\": 0.4969862494276557}, \"0.39215039741679086\": {\"frequency\": 1, \"value\": 0.39215039741679086}, \"0.4198045686792978\": {\"frequency\": 1, \"value\": 0.4198045686792978}, \"0.38214063246001434\": {\"frequency\": 1, \"value\": 0.38214063246001434}, \"0.717679731670051\": {\"frequency\": 1, \"value\": 0.717679731670051}, \"0.6484577589418778\": {\"frequency\": 1, \"value\": 0.6484577589418778}, \"0.4406849113343254\": {\"frequency\": 1, \"value\": 0.4406849113343254}, \"0.4823292464888199\": {\"frequency\": 1, \"value\": 0.4823292464888199}, \"0.09743532478415692\": {\"frequency\": 1, \"value\": 0.09743532478415692}, \"0.3058592060445502\": {\"frequency\": 1, \"value\": 0.3058592060445502}, \"0.04522268453588764\": {\"frequency\": 1, \"value\": 0.04522268453588764}, \"0.31741034836065574\": {\"frequency\": 1, \"value\": 0.31741034836065574}, \"0.5528044680512453\": {\"frequency\": 1, \"value\": 0.5528044680512453}, \"0.5224547371031746\": {\"frequency\": 1, \"value\": 0.5224547371031746}, \"0.17619520399305555\": {\"frequency\": 1, \"value\": 0.17619520399305555}, \"0.48520672314704716\": {\"frequency\": 1, \"value\": 0.48520672314704716}, \"0.3088100413694015\": {\"frequency\": 1, \"value\": 0.3088100413694015}, \"0.22976890216981508\": {\"frequency\": 1, \"value\": 0.22976890216981508}, \"0.49397742796820665\": {\"frequency\": 1, \"value\": 0.49397742796820665}, \"0.7300500904540047\": {\"frequency\": 1, \"value\": 0.7300500904540047}, \"0.31287622640337803\": {\"frequency\": 1, \"value\": 0.31287622640337803}, \"0.43069885227182264\": {\"frequency\": 1, \"value\": 0.43069885227182264}, \"0.34693849354197714\": {\"frequency\": 1, \"value\": 0.34693849354197714}, \"0.20492667116754198\": {\"frequency\": 1, \"value\": 0.20492667116754198}, \"0.3846076761586842\": {\"frequency\": 1, \"value\": 0.3846076761586842}, \"0.6347477520490172\": {\"frequency\": 1, \"value\": 0.6347477520490172}, \"0.12890330001192415\": {\"frequency\": 1, \"value\": 0.12890330001192415}, \"0.4705618668650241\": {\"frequency\": 1, \"value\": 0.4705618668650241}, \"0.3241745063338301\": {\"frequency\": 1, \"value\": 0.3241745063338301}, \"0.388879781420765\": {\"frequency\": 1, \"value\": 0.388879781420765}, \"0.4489537537257824\": {\"frequency\": 1, \"value\": 0.4489537537257824}, \"0.46835549257048387\": {\"frequency\": 1, \"value\": 0.46835549257048387}, \"0.2517674180327869\": {\"frequency\": 1, \"value\": 0.2517674180327869}, \"0.5127749267316618\": {\"frequency\": 1, \"value\": 0.5127749267316618}, \"0.24996698288690475\": {\"frequency\": 1, \"value\": 0.24996698288690475}, \"0.11102125248385494\": {\"frequency\": 1, \"value\": 0.11102125248385494}, \"0.5491421385991058\": {\"frequency\": 1, \"value\": 0.5491421385991058}, \"0.18179279992548436\": {\"frequency\": 1, \"value\": 0.18179279992548436}, \"0.3963248817531659\": {\"frequency\": 1, \"value\": 0.3963248817531659}, \"0.6860780901865998\": {\"frequency\": 1, \"value\": 0.6860780901865998}, \"0.0760566615887746\": {\"frequency\": 1, \"value\": 0.0760566615887746}, \"0.5176341725457074\": {\"frequency\": 1, \"value\": 0.5176341725457074}, \"0.27818251676602085\": {\"frequency\": 1, \"value\": 0.27818251676602085}, \"0.4153921422909235\": {\"frequency\": 1, \"value\": 0.4153921422909235}, \"0.4664778816791995\": {\"frequency\": 1, \"value\": 0.4664778816791995}, \"0.5766923664160102\": {\"frequency\": 1, \"value\": 0.5766923664160102}, \"0.4771845177974366\": {\"frequency\": 1, \"value\": 0.4771845177974366}, \"0.488580715974333\": {\"frequency\": 1, \"value\": 0.488580715974333}, \"0.49048782685424536\": {\"frequency\": 1, \"value\": 0.49048782685424536}, \"0.3306553496025832\": {\"frequency\": 1, \"value\": 0.3306553496025832}, \"0.295807136656746\": {\"frequency\": 1, \"value\": 0.295807136656746}, \"0.44334889852689924\": {\"frequency\": 1, \"value\": 0.44334889852689924}, \"0.6524262709620258\": {\"frequency\": 1, \"value\": 0.6524262709620258}, \"0.38215972420408423\": {\"frequency\": 1, \"value\": 0.38215972420408423}, \"0.13411705818880176\": {\"frequency\": 1, \"value\": 0.13411705818880176}, \"0.38673235493870156\": {\"frequency\": 1, \"value\": 0.38673235493870156}, \"0.45318032843956396\": {\"frequency\": 1, \"value\": 0.45318032843956396}, \"0.44239963673621463\": {\"frequency\": 1, \"value\": 0.44239963673621463}, \"0.25749711256295355\": {\"frequency\": 1, \"value\": 0.25749711256295355}, \"0.7523891579731744\": {\"frequency\": 1, \"value\": 0.7523891579731744}, \"0.19784939494153786\": {\"frequency\": 1, \"value\": 0.19784939494153786}, \"0.4587721994535519\": {\"frequency\": 1, \"value\": 0.4587721994535519}, \"0.23982096587292115\": {\"frequency\": 1, \"value\": 0.23982096587292115}, \"0.3294912754595132\": {\"frequency\": 1, \"value\": 0.3294912754595132}, \"0.3272713603670635\": {\"frequency\": 1, \"value\": 0.3272713603670635}, \"0.31768013871750983\": {\"frequency\": 1, \"value\": 0.31768013871750983}, \"0.4685313886429651\": {\"frequency\": 1, \"value\": 0.4685313886429651}, \"0.33750810185185187\": {\"frequency\": 1, \"value\": 0.33750810185185187}, \"0.34339930613176234\": {\"frequency\": 1, \"value\": 0.34339930613176234}, \"0.48543276454842177\": {\"frequency\": 1, \"value\": 0.48543276454842177}, \"0.3003782242063492\": {\"frequency\": 1, \"value\": 0.3003782242063492}, \"0.7055838531373517\": {\"frequency\": 1, \"value\": 0.7055838531373517}, \"0.4720477079617519\": {\"frequency\": 1, \"value\": 0.4720477079617519}, \"0.397513530305895\": {\"frequency\": 1, \"value\": 0.397513530305895}, \"0.37561597622198006\": {\"frequency\": 1, \"value\": 0.37561597622198006}, \"0.5339110339506172\": {\"frequency\": 1, \"value\": 0.5339110339506172}, \"0.26677384220577705\": {\"frequency\": 1, \"value\": 0.26677384220577705}, \"0.22324438027819177\": {\"frequency\": 1, \"value\": 0.22324438027819177}, \"0.3081289755659664\": {\"frequency\": 1, \"value\": 0.3081289755659664}, \"0.4108765679334327\": {\"frequency\": 1, \"value\": 0.4108765679334327}, \"0.3525454043171379\": {\"frequency\": 1, \"value\": 0.3525454043171379}, \"0.3578464032432809\": {\"frequency\": 1, \"value\": 0.3578464032432809}, \"0.24346001164288544\": {\"frequency\": 1, \"value\": 0.24346001164288544}, \"0.1573432806407655\": {\"frequency\": 1, \"value\": 0.1573432806407655}, \"0.44279720876800793\": {\"frequency\": 1, \"value\": 0.44279720876800793}, \"0.1374814039923576\": {\"frequency\": 1, \"value\": 0.1374814039923576}, \"0.4229978576751118\": {\"frequency\": 1, \"value\": 0.4229978576751118}, \"0.47700431569796325\": {\"frequency\": 1, \"value\": 0.47700431569796325}, \"0.16069020061728395\": {\"frequency\": 1, \"value\": 0.16069020061728395}, \"0.5051372585778491\": {\"frequency\": 1, \"value\": 0.5051372585778491}, \"0.3033080369581658\": {\"frequency\": 1, \"value\": 0.3033080369581658}, \"0.403588679639859\": {\"frequency\": 1, \"value\": 0.403588679639859}, \"0.21128673735119047\": {\"frequency\": 1, \"value\": 0.21128673735119047}, \"0.4220769684550422\": {\"frequency\": 1, \"value\": 0.4220769684550422}, \"0.2158449811127829\": {\"frequency\": 1, \"value\": 0.2158449811127829}, \"0.42745893329817297\": {\"frequency\": 1, \"value\": 0.42745893329817297}, \"0.8497249781077101\": {\"frequency\": 1, \"value\": 0.8497249781077101}, \"0.4505454595120788\": {\"frequency\": 1, \"value\": 0.4505454595120788}, \"0.3065213611525087\": {\"frequency\": 1, \"value\": 0.3065213611525087}, \"0.5773265958768008\": {\"frequency\": 1, \"value\": 0.5773265958768008}, \"0.2753444020119225\": {\"frequency\": 1, \"value\": 0.2753444020119225}, \"0.7624712607408727\": {\"frequency\": 1, \"value\": 0.7624712607408727}, \"0.15557733444940477\": {\"frequency\": 1, \"value\": 0.15557733444940477}, \"0.358297022399793\": {\"frequency\": 1, \"value\": 0.358297022399793}, \"0.6429200819672131\": {\"frequency\": 1, \"value\": 0.6429200819672131}, \"0.44853142169648524\": {\"frequency\": 1, \"value\": 0.44853142169648524}, \"0.41243985615079365\": {\"frequency\": 1, \"value\": 0.41243985615079365}, \"0.1280917096860826\": {\"frequency\": 1, \"value\": 0.1280917096860826}, \"0.2797966343765524\": {\"frequency\": 1, \"value\": 0.2797966343765524}, \"0.3431297884661071\": {\"frequency\": 1, \"value\": 0.3431297884661071}, \"0.5914350247524752\": {\"frequency\": 1, \"value\": 0.5914350247524752}, \"0.5659170845829561\": {\"frequency\": 1, \"value\": 0.5659170845829561}, \"0.7723329768105158\": {\"frequency\": 1, \"value\": 0.7723329768105158}, \"0.25715831470442124\": {\"frequency\": 1, \"value\": 0.25715831470442124}, \"0.3953963380648038\": {\"frequency\": 1, \"value\": 0.3953963380648038}, \"0.351749565325385\": {\"frequency\": 1, \"value\": 0.351749565325385}, \"0.09278945053499821\": {\"frequency\": 1, \"value\": 0.09278945053499821}, \"0.3982967509920635\": {\"frequency\": 1, \"value\": 0.3982967509920635}, \"0.31517092156589577\": {\"frequency\": 1, \"value\": 0.31517092156589577}, \"0.5352054394694438\": {\"frequency\": 1, \"value\": 0.5352054394694438}, \"0.21819420570340325\": {\"frequency\": 1, \"value\": 0.21819420570340325}, \"0.05637369791666667\": {\"frequency\": 1, \"value\": 0.05637369791666667}, \"0.5150903068262727\": {\"frequency\": 1, \"value\": 0.5150903068262727}, \"0.16121067639949868\": {\"frequency\": 1, \"value\": 0.16121067639949868}, \"0.5383306368939137\": {\"frequency\": 1, \"value\": 0.5383306368939137}, \"0.36580531234475905\": {\"frequency\": 1, \"value\": 0.36580531234475905}, \"0.29866556541814276\": {\"frequency\": 1, \"value\": 0.29866556541814276}, \"0.4651271528358001\": {\"frequency\": 1, \"value\": 0.4651271528358001}, \"0.43194214786464524\": {\"frequency\": 1, \"value\": 0.43194214786464524}, \"0.401750130942997\": {\"frequency\": 1, \"value\": 0.401750130942997}, \"0.4657335714659017\": {\"frequency\": 1, \"value\": 0.4657335714659017}, \"0.2720847803805278\": {\"frequency\": 1, \"value\": 0.2720847803805278}, \"0.46775405048935914\": {\"frequency\": 1, \"value\": 0.46775405048935914}, \"0.3281608072916667\": {\"frequency\": 1, \"value\": 0.3281608072916667}, \"0.5210508258817685\": {\"frequency\": 1, \"value\": 0.5210508258817685}, \"0.5390683128720238\": {\"frequency\": 1, \"value\": 0.5390683128720238}, \"0.2766665676724479\": {\"frequency\": 1, \"value\": 0.2766665676724479}, \"0.3947580325464312\": {\"frequency\": 1, \"value\": 0.3947580325464312}, \"0.3668144215753561\": {\"frequency\": 1, \"value\": 0.3668144215753561}, \"0.3727761386468529\": {\"frequency\": 1, \"value\": 0.3727761386468529}, \"0.541809375995104\": {\"frequency\": 1, \"value\": 0.541809375995104}, \"0.4778556098502852\": {\"frequency\": 1, \"value\": 0.4778556098502852}, \"0.785841561107464\": {\"frequency\": 1, \"value\": 0.785841561107464}, \"0.377153087797619\": {\"frequency\": 1, \"value\": 0.377153087797619}, \"0.2432706008295536\": {\"frequency\": 1, \"value\": 0.2432706008295536}, \"0.36698184688093544\": {\"frequency\": 1, \"value\": 0.36698184688093544}, \"0.4154356032504402\": {\"frequency\": 1, \"value\": 0.4154356032504402}, \"0.6014121607730263\": {\"frequency\": 1, \"value\": 0.6014121607730263}, \"0.6431389884671069\": {\"frequency\": 1, \"value\": 0.6431389884671069}, \"0.49555020771329367\": {\"frequency\": 1, \"value\": 0.49555020771329367}, \"0.8097637747283366\": {\"frequency\": 1, \"value\": 0.8097637747283366}, \"0.3737905550065876\": {\"frequency\": 1, \"value\": 0.3737905550065876}, \"0.2228684093012379\": {\"frequency\": 1, \"value\": 0.2228684093012379}, \"0.46293180534638556\": {\"frequency\": 1, \"value\": 0.46293180534638556}, \"0.5449410551298804\": {\"frequency\": 1, \"value\": 0.5449410551298804}, \"0.44172065852033104\": {\"frequency\": 1, \"value\": 0.44172065852033104}, \"0.40401750238397965\": {\"frequency\": 1, \"value\": 0.40401750238397965}, \"0.3362728898106151\": {\"frequency\": 1, \"value\": 0.3362728898106151}, \"0.3257371737487069\": {\"frequency\": 1, \"value\": 0.3257371737487069}, \"0.374415863801054\": {\"frequency\": 1, \"value\": 0.374415863801054}, \"0.35406094393462423\": {\"frequency\": 1, \"value\": 0.35406094393462423}, \"0.5302883575286464\": {\"frequency\": 1, \"value\": 0.5302883575286464}, \"0.6005433734774908\": {\"frequency\": 1, \"value\": 0.6005433734774908}, \"0.5533186141304348\": {\"frequency\": 1, \"value\": 0.5533186141304348}, \"0.5477517799924372\": {\"frequency\": 1, \"value\": 0.5477517799924372}, \"0.11500386846714167\": {\"frequency\": 1, \"value\": 0.11500386846714167}, \"0.3125455958433902\": {\"frequency\": 1, \"value\": 0.3125455958433902}, \"0.563622693425893\": {\"frequency\": 1, \"value\": 0.563622693425893}, \"0.30794607717529754\": {\"frequency\": 1, \"value\": 0.30794607717529754}, \"0.028134223090277778\": {\"frequency\": 1, \"value\": 0.028134223090277778}, \"0.3282707342154822\": {\"frequency\": 1, \"value\": 0.3282707342154822}, \"0.33846742021276593\": {\"frequency\": 1, \"value\": 0.33846742021276593}, \"0.11765058370591157\": {\"frequency\": 1, \"value\": 0.11765058370591157}, \"0.4082863941106544\": {\"frequency\": 1, \"value\": 0.4082863941106544}, \"0.773000125164395\": {\"frequency\": 1, \"value\": 0.773000125164395}, \"0.4929712034405311\": {\"frequency\": 1, \"value\": 0.4929712034405311}, \"0.49131959912291123\": {\"frequency\": 1, \"value\": 0.49131959912291123}, \"0.34539860760060503\": {\"frequency\": 1, \"value\": 0.34539860760060503}, \"0.2168789351575555\": {\"frequency\": 1, \"value\": 0.2168789351575555}, \"0.4021093285339017\": {\"frequency\": 1, \"value\": 0.4021093285339017}, \"0.6911898926033914\": {\"frequency\": 1, \"value\": 0.6911898926033914}, \"0.11019459136528209\": {\"frequency\": 1, \"value\": 0.11019459136528209}, \"0.174071820924408\": {\"frequency\": 1, \"value\": 0.174071820924408}, \"0.37479299816686484\": {\"frequency\": 1, \"value\": 0.37479299816686484}, \"0.030814964657738097\": {\"frequency\": 1, \"value\": 0.030814964657738097}, \"0.14407586056095825\": {\"frequency\": 1, \"value\": 0.14407586056095825}, \"0.6525920758928572\": {\"frequency\": 1, \"value\": 0.6525920758928572}, \"0.5250107183689025\": {\"frequency\": 1, \"value\": 0.5250107183689025}, \"0.4686407955109127\": {\"frequency\": 1, \"value\": 0.4686407955109127}, \"0.3914347362895257\": {\"frequency\": 1, \"value\": 0.3914347362895257}, \"0.2267126179831098\": {\"frequency\": 1, \"value\": 0.2267126179831098}, \"0.4239857868039247\": {\"frequency\": 1, \"value\": 0.4239857868039247}, \"0.5354551303708415\": {\"frequency\": 1, \"value\": 0.5354551303708415}, \"0.3407860184991639\": {\"frequency\": 1, \"value\": 0.3407860184991639}, \"0.17157802409339296\": {\"frequency\": 1, \"value\": 0.17157802409339296}, \"0.2693427292213734\": {\"frequency\": 1, \"value\": 0.2693427292213734}, \"0.3759596535047566\": {\"frequency\": 1, \"value\": 0.3759596535047566}, \"0.5464805569417677\": {\"frequency\": 1, \"value\": 0.5464805569417677}, \"0.8380056839101621\": {\"frequency\": 1, \"value\": 0.8380056839101621}, \"0.5986334312138671\": {\"frequency\": 1, \"value\": 0.5986334312138671}, \"0.36526329521255424\": {\"frequency\": 1, \"value\": 0.36526329521255424}, \"0.8521025832091406\": {\"frequency\": 1, \"value\": 0.8521025832091406}, \"0.30530448003369004\": {\"frequency\": 1, \"value\": 0.30530448003369004}, \"0.4840906392477204\": {\"frequency\": 1, \"value\": 0.4840906392477204}, \"0.4158581415168018\": {\"frequency\": 1, \"value\": 0.4158581415168018}, \"0.12734472378027065\": {\"frequency\": 1, \"value\": 0.12734472378027065}, \"0.2457576167853466\": {\"frequency\": 1, \"value\": 0.2457576167853466}, \"0.5580777219742064\": {\"frequency\": 1, \"value\": 0.5580777219742064}, \"0.3512565617042651\": {\"frequency\": 1, \"value\": 0.3512565617042651}, \"0.627062946711412\": {\"frequency\": 1, \"value\": 0.627062946711412}, \"0.5655440397622311\": {\"frequency\": 1, \"value\": 0.5655440397622311}, \"0.3842445169764757\": {\"frequency\": 1, \"value\": 0.3842445169764757}, \"0.39241345317933435\": {\"frequency\": 1, \"value\": 0.39241345317933435}, \"0.4010730962643678\": {\"frequency\": 1, \"value\": 0.4010730962643678}, \"0.26403351314484125\": {\"frequency\": 1, \"value\": 0.26403351314484125}, \"0.27948947482638886\": {\"frequency\": 1, \"value\": 0.27948947482638886}, \"0.12406645275297619\": {\"frequency\": 1, \"value\": 0.12406645275297619}, \"0.13827853328365625\": {\"frequency\": 1, \"value\": 0.13827853328365625}, \"0.1657578737478223\": {\"frequency\": 1, \"value\": 0.1657578737478223}, \"0.49562199758562325\": {\"frequency\": 1, \"value\": 0.49562199758562325}, \"0.012413068328822194\": {\"frequency\": 1, \"value\": 0.012413068328822194}, \"0.17001895065398334\": {\"frequency\": 1, \"value\": 0.17001895065398334}, \"0.7356108809495525\": {\"frequency\": 1, \"value\": 0.7356108809495525}, \"0.30901475694444447\": {\"frequency\": 1, \"value\": 0.30901475694444447}, \"0.3092145520264117\": {\"frequency\": 1, \"value\": 0.3092145520264117}, \"0.4100862346572372\": {\"frequency\": 1, \"value\": 0.4100862346572372}, \"0.05480174231150794\": {\"frequency\": 1, \"value\": 0.05480174231150794}, \"0.7537454784958006\": {\"frequency\": 1, \"value\": 0.7537454784958006}, \"0.13517950037797405\": {\"frequency\": 1, \"value\": 0.13517950037797405}, \"0.5016869734473224\": {\"frequency\": 1, \"value\": 0.5016869734473224}, \"0.199928383862497\": {\"frequency\": 1, \"value\": 0.199928383862497}, \"0.4174315550844083\": {\"frequency\": 1, \"value\": 0.4174315550844083}, \"0.6609172067901234\": {\"frequency\": 1, \"value\": 0.6609172067901234}, \"0.5445999355733968\": {\"frequency\": 1, \"value\": 0.5445999355733968}, \"0.6567246180044183\": {\"frequency\": 1, \"value\": 0.6567246180044183}, \"0.29464825364375274\": {\"frequency\": 1, \"value\": 0.29464825364375274}, \"0.20434485084100285\": {\"frequency\": 1, \"value\": 0.20434485084100285}, \"0.41125543648543805\": {\"frequency\": 1, \"value\": 0.41125543648543805}, \"0.3700154670963635\": {\"frequency\": 1, \"value\": 0.3700154670963635}, \"0.11180429785455559\": {\"frequency\": 1, \"value\": 0.11180429785455559}, \"0.5619425084832623\": {\"frequency\": 1, \"value\": 0.5619425084832623}, \"0.9080704962832862\": {\"frequency\": 1, \"value\": 0.9080704962832862}, \"0.3617490191497567\": {\"frequency\": 1, \"value\": 0.3617490191497567}, \"0.5735055493551587\": {\"frequency\": 1, \"value\": 0.5735055493551587}, \"0.28956099991545314\": {\"frequency\": 1, \"value\": 0.28956099991545314}, \"0.18530808221726192\": {\"frequency\": 1, \"value\": 0.18530808221726192}, \"0.6580843268753105\": {\"frequency\": 1, \"value\": 0.6580843268753105}, \"0.47298928812750907\": {\"frequency\": 1, \"value\": 0.47298928812750907}, \"0.18601713942403375\": {\"frequency\": 1, \"value\": 0.18601713942403375}, \"0.36236211419753084\": {\"frequency\": 1, \"value\": 0.36236211419753084}, \"0.5370671106557378\": {\"frequency\": 1, \"value\": 0.5370671106557378}, \"0.5704335530598958\": {\"frequency\": 1, \"value\": 0.5704335530598958}, \"0.07836123511904762\": {\"frequency\": 1, \"value\": 0.07836123511904762}, \"0.9485040400887779\": {\"frequency\": 1, \"value\": 0.9485040400887779}, \"0.21329139107709078\": {\"frequency\": 1, \"value\": 0.21329139107709078}, \"0.4218252447956056\": {\"frequency\": 1, \"value\": 0.4218252447956056}, \"0.2556953125\": {\"frequency\": 1, \"value\": 0.2556953125}, \"0.3759116759170844\": {\"frequency\": 1, \"value\": 0.3759116759170844}, \"0.25402721734068384\": {\"frequency\": 1, \"value\": 0.25402721734068384}, \"0.23659102626217451\": {\"frequency\": 1, \"value\": 0.23659102626217451}, \"0.323297098355706\": {\"frequency\": 1, \"value\": 0.323297098355706}, \"0.2839127486381439\": {\"frequency\": 1, \"value\": 0.2839127486381439}, \"0.07039728033369043\": {\"frequency\": 1, \"value\": 0.07039728033369043}, \"0.5113360305059523\": {\"frequency\": 1, \"value\": 0.5113360305059523}, \"0.250517578125\": {\"frequency\": 1, \"value\": 0.250517578125}, \"0.18402962470449172\": {\"frequency\": 1, \"value\": 0.18402962470449172}, \"0.3048435171385991\": {\"frequency\": 1, \"value\": 0.3048435171385991}, \"0.42184054404402416\": {\"frequency\": 1, \"value\": 0.42184054404402416}, \"0.1301800474456911\": {\"frequency\": 1, \"value\": 0.1301800474456911}, \"0.7157458378088077\": {\"frequency\": 1, \"value\": 0.7157458378088077}, \"0.24575720893012154\": {\"frequency\": 1, \"value\": 0.24575720893012154}, \"0.2951867935505319\": {\"frequency\": 1, \"value\": 0.2951867935505319}, \"0.026079876612103176\": {\"frequency\": 1, \"value\": 0.026079876612103176}, \"0.3713545547690015\": {\"frequency\": 1, \"value\": 0.3713545547690015}, \"0.4128396261559635\": {\"frequency\": 1, \"value\": 0.4128396261559635}, \"0.21474020429706905\": {\"frequency\": 1, \"value\": 0.21474020429706905}, \"0.07531722780257936\": {\"frequency\": 1, \"value\": 0.07531722780257936}, \"0.4927229643529528\": {\"frequency\": 1, \"value\": 0.4927229643529528}, \"0.15953372734642318\": {\"frequency\": 1, \"value\": 0.15953372734642318}, \"0.7479145061728395\": {\"frequency\": 1, \"value\": 0.7479145061728395}, \"0.498406684674615\": {\"frequency\": 1, \"value\": 0.498406684674615}, \"0.46760163483796297\": {\"frequency\": 1, \"value\": 0.46760163483796297}, \"0.21985297309027776\": {\"frequency\": 1, \"value\": 0.21985297309027776}, \"0.5567909012657724\": {\"frequency\": 1, \"value\": 0.5567909012657724}, \"0.2578241613760299\": {\"frequency\": 1, \"value\": 0.2578241613760299}, \"0.4655495673648247\": {\"frequency\": 1, \"value\": 0.4655495673648247}, \"0.6480695789865872\": {\"frequency\": 1, \"value\": 0.6480695789865872}, \"0.42549071659215104\": {\"frequency\": 1, \"value\": 0.42549071659215104}, \"0.28182695293094884\": {\"frequency\": 1, \"value\": 0.28182695293094884}, \"0.26946387674564337\": {\"frequency\": 1, \"value\": 0.26946387674564337}, \"0.7066652382776738\": {\"frequency\": 1, \"value\": 0.7066652382776738}, \"0.18352031548400574\": {\"frequency\": 1, \"value\": 0.18352031548400574}, \"0.22270577197687377\": {\"frequency\": 1, \"value\": 0.22270577197687377}, \"0.3820713105372963\": {\"frequency\": 1, \"value\": 0.3820713105372963}, \"0.3794848736702128\": {\"frequency\": 1, \"value\": 0.3794848736702128}, \"0.4297817765255009\": {\"frequency\": 1, \"value\": 0.4297817765255009}, \"0.27698455459770116\": {\"frequency\": 1, \"value\": 0.27698455459770116}, \"0.5518116616989568\": {\"frequency\": 1, \"value\": 0.5518116616989568}, \"0.36331163194444444\": {\"frequency\": 1, \"value\": 0.36331163194444444}, \"0.20047371770988573\": {\"frequency\": 1, \"value\": 0.20047371770988573}, \"0.6930391484543171\": {\"frequency\": 1, \"value\": 0.6930391484543171}, \"0.6527557075438841\": {\"frequency\": 1, \"value\": 0.6527557075438841}, \"0.5627651962312901\": {\"frequency\": 1, \"value\": 0.5627651962312901}, \"0.7080774027906884\": {\"frequency\": 1, \"value\": 0.7080774027906884}, \"0.705574246980497\": {\"frequency\": 1, \"value\": 0.705574246980497}, \"0.23952769561258608\": {\"frequency\": 1, \"value\": 0.23952769561258608}, \"0.5153046404292849\": {\"frequency\": 1, \"value\": 0.5153046404292849}, \"0.38019343020367613\": {\"frequency\": 1, \"value\": 0.38019343020367613}, \"0.18316912042749672\": {\"frequency\": 1, \"value\": 0.18316912042749672}, \"0.04072066992894957\": {\"frequency\": 1, \"value\": 0.04072066992894957}, \"0.033094985875706216\": {\"frequency\": 1, \"value\": 0.033094985875706216}, \"0.41974614953586165\": {\"frequency\": 1, \"value\": 0.41974614953586165}, \"0.2874628197963239\": {\"frequency\": 1, \"value\": 0.2874628197963239}, \"0.3385834591244935\": {\"frequency\": 1, \"value\": 0.3385834591244935}, \"0.2436806949400337\": {\"frequency\": 1, \"value\": 0.2436806949400337}, \"0.38674413189269746\": {\"frequency\": 1, \"value\": 0.38674413189269746}, \"0.43299304520615994\": {\"frequency\": 1, \"value\": 0.43299304520615994}, \"0.17740654495777447\": {\"frequency\": 1, \"value\": 0.17740654495777447}, \"0.4249853999572105\": {\"frequency\": 1, \"value\": 0.4249853999572105}, \"0.3774028933808958\": {\"frequency\": 1, \"value\": 0.3774028933808958}, \"0.11920314828614009\": {\"frequency\": 1, \"value\": 0.11920314828614009}, \"0.42997836285012336\": {\"frequency\": 1, \"value\": 0.42997836285012336}, \"0.3279279396333254\": {\"frequency\": 1, \"value\": 0.3279279396333254}, \"0.12422977857468123\": {\"frequency\": 1, \"value\": 0.12422977857468123}, \"0.4222047317436662\": {\"frequency\": 1, \"value\": 0.4222047317436662}, \"0.3644859725871954\": {\"frequency\": 1, \"value\": 0.3644859725871954}, \"0.36622368666169897\": {\"frequency\": 1, \"value\": 0.36622368666169897}, \"0.6102080233134921\": {\"frequency\": 1, \"value\": 0.6102080233134921}, \"0.5350464170392449\": {\"frequency\": 1, \"value\": 0.5350464170392449}, \"0.5692634490352348\": {\"frequency\": 1, \"value\": 0.5692634490352348}, \"0.15679428941240586\": {\"frequency\": 1, \"value\": 0.15679428941240586}, \"0.024833395823433912\": {\"frequency\": 1, \"value\": 0.024833395823433912}, \"0.3567202053606817\": {\"frequency\": 1, \"value\": 0.3567202053606817}, \"0.7486217808382757\": {\"frequency\": 1, \"value\": 0.7486217808382757}, \"0.17922573584202683\": {\"frequency\": 1, \"value\": 0.17922573584202683}, \"0.2865766269249876\": {\"frequency\": 1, \"value\": 0.2865766269249876}, \"0.1967742435515873\": {\"frequency\": 1, \"value\": 0.1967742435515873}, \"0.07773175804623979\": {\"frequency\": 1, \"value\": 0.07773175804623979}, \"0.4851007450208086\": {\"frequency\": 1, \"value\": 0.4851007450208086}, \"0.35053598793933843\": {\"frequency\": 1, \"value\": 0.35053598793933843}, \"0.3469007010503369\": {\"frequency\": 1, \"value\": 0.3469007010503369}, \"0.22516734972677596\": {\"frequency\": 1, \"value\": 0.22516734972677596}, \"0.2556062934674615\": {\"frequency\": 1, \"value\": 0.2556062934674615}, \"0.7795729637145996\": {\"frequency\": 1, \"value\": 0.7795729637145996}, \"0.3970654013239039\": {\"frequency\": 1, \"value\": 0.3970654013239039}, \"0.2859663816718371\": {\"frequency\": 1, \"value\": 0.2859663816718371}, \"0.23860508258817684\": {\"frequency\": 1, \"value\": 0.23860508258817684}, \"0.41664155350813176\": {\"frequency\": 1, \"value\": 0.41664155350813176}, \"0.4595341700085579\": {\"frequency\": 1, \"value\": 0.4595341700085579}, \"0.2783866729200167\": {\"frequency\": 1, \"value\": 0.2783866729200167}, \"0.3427674801291605\": {\"frequency\": 1, \"value\": 0.3427674801291605}, \"0.16047221603287778\": {\"frequency\": 1, \"value\": 0.16047221603287778}, \"0.40102243835330176\": {\"frequency\": 1, \"value\": 0.40102243835330176}, \"0.4739116360008757\": {\"frequency\": 1, \"value\": 0.4739116360008757}, \"0.29459524633953305\": {\"frequency\": 1, \"value\": 0.29459524633953305}, \"0.39362097283560116\": {\"frequency\": 1, \"value\": 0.39362097283560116}, \"0.1938792493268393\": {\"frequency\": 1, \"value\": 0.1938792493268393}, \"0.14377326055805437\": {\"frequency\": 1, \"value\": 0.14377326055805437}, \"0.3731988727918358\": {\"frequency\": 1, \"value\": 0.3731988727918358}, \"0.18455570044709388\": {\"frequency\": 1, \"value\": 0.18455570044709388}, \"0.22441602168915692\": {\"frequency\": 1, \"value\": 0.22441602168915692}, \"0.669431941721729\": {\"frequency\": 1, \"value\": 0.669431941721729}, \"0.2859467358098157\": {\"frequency\": 1, \"value\": 0.2859467358098157}, \"0.13793790799267602\": {\"frequency\": 1, \"value\": 0.13793790799267602}, \"0.48724051477893693\": {\"frequency\": 1, \"value\": 0.48724051477893693}, \"0.4719184736098396\": {\"frequency\": 1, \"value\": 0.4719184736098396}, \"0.44877232142857143\": {\"frequency\": 1, \"value\": 0.44877232142857143}, \"0.38418139058164885\": {\"frequency\": 1, \"value\": 0.38418139058164885}, \"0.6674714311835768\": {\"frequency\": 1, \"value\": 0.6674714311835768}, \"0.6740472358569765\": {\"frequency\": 1, \"value\": 0.6740472358569765}, \"0.4560850975764407\": {\"frequency\": 1, \"value\": 0.4560850975764407}, \"0.3568835382513661\": {\"frequency\": 1, \"value\": 0.3568835382513661}, \"0.3530550130208333\": {\"frequency\": 1, \"value\": 0.3530550130208333}, \"0.07272550788078024\": {\"frequency\": 1, \"value\": 0.07272550788078024}, \"0.4858725201669054\": {\"frequency\": 1, \"value\": 0.4858725201669054}, \"0.4279679192772156\": {\"frequency\": 1, \"value\": 0.4279679192772156}, \"0.7349796567557918\": {\"frequency\": 1, \"value\": 0.7349796567557918}, \"0.2145844171125644\": {\"frequency\": 1, \"value\": 0.2145844171125644}, \"0.44450105676328505\": {\"frequency\": 1, \"value\": 0.44450105676328505}, \"0.46195961530846597\": {\"frequency\": 1, \"value\": 0.46195961530846597}, \"0.22736889903129656\": {\"frequency\": 1, \"value\": 0.22736889903129656}, \"0.3200353411036737\": {\"frequency\": 1, \"value\": 0.3200353411036737}, \"0.38995100680201333\": {\"frequency\": 1, \"value\": 0.38995100680201333}, \"0.5100331636444708\": {\"frequency\": 1, \"value\": 0.5100331636444708}, \"0.3379365375062096\": {\"frequency\": 1, \"value\": 0.3379365375062096}, \"0.33831514644008115\": {\"frequency\": 1, \"value\": 0.33831514644008115}, \"0.3472896990878889\": {\"frequency\": 1, \"value\": 0.3472896990878889}, \"0.3225550285218254\": {\"frequency\": 1, \"value\": 0.3225550285218254}, \"0.4688692250372578\": {\"frequency\": 1, \"value\": 0.4688692250372578}, \"0.44006587921626983\": {\"frequency\": 1, \"value\": 0.44006587921626983}, \"0.1350033376800795\": {\"frequency\": 1, \"value\": 0.1350033376800795}, \"0.39692809089781744\": {\"frequency\": 1, \"value\": 0.39692809089781744}, \"0.31809963728456\": {\"frequency\": 1, \"value\": 0.31809963728456}, \"0.22794157432929985\": {\"frequency\": 1, \"value\": 0.22794157432929985}, \"0.558607142414784\": {\"frequency\": 1, \"value\": 0.558607142414784}, \"0.27799989908970246\": {\"frequency\": 1, \"value\": 0.27799989908970246}, \"0.18546337954762568\": {\"frequency\": 1, \"value\": 0.18546337954762568}, \"0.46928480079888335\": {\"frequency\": 1, \"value\": 0.46928480079888335}, \"0.5930002170138889\": {\"frequency\": 1, \"value\": 0.5930002170138889}, \"0.18932805646929823\": {\"frequency\": 1, \"value\": 0.18932805646929823}, \"0.29898383528705286\": {\"frequency\": 1, \"value\": 0.29898383528705286}, \"0.2943897478887233\": {\"frequency\": 1, \"value\": 0.2943897478887233}, \"0.44654568427496416\": {\"frequency\": 1, \"value\": 0.44654568427496416}, \"0.27868714347718254\": {\"frequency\": 1, \"value\": 0.27868714347718254}, \"0.44817801477893693\": {\"frequency\": 1, \"value\": 0.44817801477893693}, \"0.15303946769394577\": {\"frequency\": 1, \"value\": 0.15303946769394577}, \"0.35624601958364843\": {\"frequency\": 1, \"value\": 0.35624601958364843}, \"0.42502699219838397\": {\"frequency\": 1, \"value\": 0.42502699219838397}, \"0.3224032180756198\": {\"frequency\": 1, \"value\": 0.3224032180756198}, \"0.4175647754673732\": {\"frequency\": 1, \"value\": 0.4175647754673732}, \"0.19814052409339294\": {\"frequency\": 1, \"value\": 0.19814052409339294}, \"0.6503480009555213\": {\"frequency\": 1, \"value\": 0.6503480009555213}, \"0.46838739189939704\": {\"frequency\": 1, \"value\": 0.46838739189939704}, \"0.5680263264973958\": {\"frequency\": 1, \"value\": 0.5680263264973958}, \"0.2156465784898162\": {\"frequency\": 1, \"value\": 0.2156465784898162}, \"0.17801810678167757\": {\"frequency\": 1, \"value\": 0.17801810678167757}, \"0.15834285203637372\": {\"frequency\": 1, \"value\": 0.15834285203637372}, \"0.37119376081702077\": {\"frequency\": 1, \"value\": 0.37119376081702077}, \"0.36018422067901235\": {\"frequency\": 1, \"value\": 0.36018422067901235}, \"0.3583574342533386\": {\"frequency\": 1, \"value\": 0.3583574342533386}, \"0.5128992178210464\": {\"frequency\": 1, \"value\": 0.5128992178210464}, \"0.14463682432432431\": {\"frequency\": 1, \"value\": 0.14463682432432431}, \"0.315611804520616\": {\"frequency\": 1, \"value\": 0.315611804520616}, \"0.10362962334387682\": {\"frequency\": 1, \"value\": 0.10362962334387682}, \"0.46782353250643693\": {\"frequency\": 1, \"value\": 0.46782353250643693}, \"0.2299372347072358\": {\"frequency\": 1, \"value\": 0.2299372347072358}, \"0.21520662568306012\": {\"frequency\": 1, \"value\": 0.21520662568306012}, \"0.3398421975906607\": {\"frequency\": 1, \"value\": 0.3398421975906607}, \"0.48750141466727026\": {\"frequency\": 1, \"value\": 0.48750141466727026}, \"0.27861455298210147\": {\"frequency\": 1, \"value\": 0.27861455298210147}, \"0.28012910719262624\": {\"frequency\": 1, \"value\": 0.28012910719262624}, \"0.43550792600406\": {\"frequency\": 1, \"value\": 0.43550792600406}, \"0.486647161941678\": {\"frequency\": 1, \"value\": 0.486647161941678}, \"0.3012353515625\": {\"frequency\": 1, \"value\": 0.3012353515625}, \"0.3012489597823927\": {\"frequency\": 1, \"value\": 0.3012489597823927}, \"0.13466227334823647\": {\"frequency\": 1, \"value\": 0.13466227334823647}, \"0.4075106724913426\": {\"frequency\": 1, \"value\": 0.4075106724913426}, \"0.4950433122205663\": {\"frequency\": 1, \"value\": 0.4950433122205663}, \"0.376548086539227\": {\"frequency\": 1, \"value\": 0.376548086539227}, \"0.40665126447676175\": {\"frequency\": 1, \"value\": 0.40665126447676175}, \"0.38840404713522\": {\"frequency\": 1, \"value\": 0.38840404713522}, \"0.3300316691505216\": {\"frequency\": 1, \"value\": 0.3300316691505216}, \"0.19840295925400667\": {\"frequency\": 1, \"value\": 0.19840295925400667}, \"0.2511562965029762\": {\"frequency\": 1, \"value\": 0.2511562965029762}, \"0.7311287047371032\": {\"frequency\": 1, \"value\": 0.7311287047371032}, \"0.1697385496088229\": {\"frequency\": 1, \"value\": 0.1697385496088229}, \"0.6766732656710034\": {\"frequency\": 1, \"value\": 0.6766732656710034}, \"0.17515282150175063\": {\"frequency\": 1, \"value\": 0.17515282150175063}, \"0.6686216157476403\": {\"frequency\": 1, \"value\": 0.6686216157476403}, \"0.23355335771276595\": {\"frequency\": 1, \"value\": 0.23355335771276595}, \"0.495652960298111\": {\"frequency\": 1, \"value\": 0.495652960298111}, \"0.507341224923377\": {\"frequency\": 1, \"value\": 0.507341224923377}, \"0.3404448426590765\": {\"frequency\": 1, \"value\": 0.3404448426590765}, \"0.7987221082051595\": {\"frequency\": 1, \"value\": 0.7987221082051595}, \"0.20881607165892674\": {\"frequency\": 1, \"value\": 0.20881607165892674}, \"0.27077178821516673\": {\"frequency\": 1, \"value\": 0.27077178821516673}, \"0.6559244018274333\": {\"frequency\": 1, \"value\": 0.6559244018274333}, \"0.4503535442677368\": {\"frequency\": 1, \"value\": 0.4503535442677368}, \"0.425277518285896\": {\"frequency\": 1, \"value\": 0.425277518285896}, \"0.4504746618110002\": {\"frequency\": 1, \"value\": 0.4504746618110002}, \"0.516720344576955\": {\"frequency\": 1, \"value\": 0.516720344576955}, \"0.024585368901956124\": {\"frequency\": 1, \"value\": 0.024585368901956124}, \"0.48852078419811323\": {\"frequency\": 1, \"value\": 0.48852078419811323}, \"0.21830119846000995\": {\"frequency\": 1, \"value\": 0.21830119846000995}, \"0.3405477676353701\": {\"frequency\": 1, \"value\": 0.3405477676353701}, \"0.138286984886011\": {\"frequency\": 1, \"value\": 0.138286984886011}, \"0.7301188392093911\": {\"frequency\": 1, \"value\": 0.7301188392093911}, \"0.5668486048640687\": {\"frequency\": 1, \"value\": 0.5668486048640687}, \"0.26256886285340936\": {\"frequency\": 1, \"value\": 0.26256886285340936}, \"0.17893978204172875\": {\"frequency\": 1, \"value\": 0.17893978204172875}, \"0.21887380464480874\": {\"frequency\": 1, \"value\": 0.21887380464480874}, \"0.4032843565905744\": {\"frequency\": 1, \"value\": 0.4032843565905744}, \"0.49016718675346393\": {\"frequency\": 1, \"value\": 0.49016718675346393}, \"0.7474391455538997\": {\"frequency\": 1, \"value\": 0.7474391455538997}, \"0.20911791252367423\": {\"frequency\": 1, \"value\": 0.20911791252367423}, \"0.5159170785027745\": {\"frequency\": 1, \"value\": 0.5159170785027745}, \"0.34048986797456515\": {\"frequency\": 1, \"value\": 0.34048986797456515}, \"0.5799168092982526\": {\"frequency\": 1, \"value\": 0.5799168092982526}, \"0.3897758680752037\": {\"frequency\": 1, \"value\": 0.3897758680752037}, \"0.19151111525086936\": {\"frequency\": 1, \"value\": 0.19151111525086936}, \"0.04492599354957428\": {\"frequency\": 1, \"value\": 0.04492599354957428}, \"0.15365936769917637\": {\"frequency\": 1, \"value\": 0.15365936769917637}, \"0.36983149102393614\": {\"frequency\": 1, \"value\": 0.36983149102393614}, \"0.4189655465351918\": {\"frequency\": 1, \"value\": 0.4189655465351918}, \"0.28634143691008446\": {\"frequency\": 1, \"value\": 0.28634143691008446}, \"0.626495221634558\": {\"frequency\": 1, \"value\": 0.626495221634558}, \"0.3317516349583829\": {\"frequency\": 1, \"value\": 0.3317516349583829}, \"0.41335949143070044\": {\"frequency\": 1, \"value\": 0.41335949143070044}, \"0.7604247149299173\": {\"frequency\": 1, \"value\": 0.7604247149299173}, \"0.5211454452309985\": {\"frequency\": 1, \"value\": 0.5211454452309985}, \"0.03595010080645161\": {\"frequency\": 1, \"value\": 0.03595010080645161}, \"0.5666059027777778\": {\"frequency\": 1, \"value\": 0.5666059027777778}, \"0.2176324981371088\": {\"frequency\": 1, \"value\": 0.2176324981371088}, \"0.734691722972973\": {\"frequency\": 1, \"value\": 0.734691722972973}, \"0.6478115173347132\": {\"frequency\": 1, \"value\": 0.6478115173347132}, \"0.6759752608298952\": {\"frequency\": 1, \"value\": 0.6759752608298952}, \"0.2448109654017857\": {\"frequency\": 1, \"value\": 0.2448109654017857}, \"0.3899622498764822\": {\"frequency\": 1, \"value\": 0.3899622498764822}, \"0.20271077478805566\": {\"frequency\": 1, \"value\": 0.20271077478805566}, \"0.6238454475308642\": {\"frequency\": 1, \"value\": 0.6238454475308642}, \"0.5804789182811724\": {\"frequency\": 1, \"value\": 0.5804789182811724}, \"0.35064774279682065\": {\"frequency\": 1, \"value\": 0.35064774279682065}, \"0.2332414663652821\": {\"frequency\": 1, \"value\": 0.2332414663652821}, \"0.440369423504696\": {\"frequency\": 1, \"value\": 0.440369423504696}, \"0.39648700703527545\": {\"frequency\": 1, \"value\": 0.39648700703527545}, \"0.46269148284313727\": {\"frequency\": 1, \"value\": 0.46269148284313727}, \"0.5020187886677409\": {\"frequency\": 1, \"value\": 0.5020187886677409}, \"0.16380564856150795\": {\"frequency\": 1, \"value\": 0.16380564856150795}, \"0.6039425091052024\": {\"frequency\": 1, \"value\": 0.6039425091052024}, \"0.13639983438768202\": {\"frequency\": 1, \"value\": 0.13639983438768202}, \"0.28159278448001274\": {\"frequency\": 1, \"value\": 0.28159278448001274}, \"0.4826924189238944\": {\"frequency\": 1, \"value\": 0.4826924189238944}, \"0.4560841907813557\": {\"frequency\": 1, \"value\": 0.4560841907813557}, \"0.42237323506430163\": {\"frequency\": 1, \"value\": 0.42237323506430163}, \"0.5000755191047129\": {\"frequency\": 1, \"value\": 0.5000755191047129}, \"0.46265730281411016\": {\"frequency\": 1, \"value\": 0.46265730281411016}, \"0.306182037026558\": {\"frequency\": 1, \"value\": 0.306182037026558}, \"0.7210801866319444\": {\"frequency\": 1, \"value\": 0.7210801866319444}, \"0.39906674785057517\": {\"frequency\": 1, \"value\": 0.39906674785057517}, \"0.10276364543518077\": {\"frequency\": 1, \"value\": 0.10276364543518077}, \"0.22471984306876733\": {\"frequency\": 1, \"value\": 0.22471984306876733}, \"0.7103532608695652\": {\"frequency\": 1, \"value\": 0.7103532608695652}, \"0.3551571814456036\": {\"frequency\": 1, \"value\": 0.3551571814456036}, \"0.5024958922371032\": {\"frequency\": 1, \"value\": 0.5024958922371032}, \"0.3133903843765524\": {\"frequency\": 1, \"value\": 0.3133903843765524}, \"0.3184006851438492\": {\"frequency\": 1, \"value\": 0.3184006851438492}, \"0.6985671123074474\": {\"frequency\": 1, \"value\": 0.6985671123074474}, \"0.23845473174366616\": {\"frequency\": 1, \"value\": 0.23845473174366616}, \"0.2481724942891895\": {\"frequency\": 1, \"value\": 0.2481724942891895}, \"0.2928050219233056\": {\"frequency\": 1, \"value\": 0.2928050219233056}, \"0.7060355073701196\": {\"frequency\": 1, \"value\": 0.7060355073701196}, \"0.7892867455290611\": {\"frequency\": 1, \"value\": 0.7892867455290611}, \"0.37100255803944593\": {\"frequency\": 1, \"value\": 0.37100255803944593}, \"0.4924430163530466\": {\"frequency\": 1, \"value\": 0.4924430163530466}, \"0.47414893617021275\": {\"frequency\": 1, \"value\": 0.47414893617021275}, \"0.29717347160218255\": {\"frequency\": 1, \"value\": 0.29717347160218255}, \"0.19637772817460317\": {\"frequency\": 1, \"value\": 0.19637772817460317}, \"0.3087604720744681\": {\"frequency\": 1, \"value\": 0.3087604720744681}, \"0.5121792722305017\": {\"frequency\": 1, \"value\": 0.5121792722305017}, \"0.328763195479384\": {\"frequency\": 1, \"value\": 0.328763195479384}, \"0.8821468874007936\": {\"frequency\": 1, \"value\": 0.8821468874007936}, \"0.5248199881935074\": {\"frequency\": 1, \"value\": 0.5248199881935074}, \"0.5845064114505713\": {\"frequency\": 1, \"value\": 0.5845064114505713}, \"0.42931659049974125\": {\"frequency\": 1, \"value\": 0.42931659049974125}, \"0.25551326141879527\": {\"frequency\": 1, \"value\": 0.25551326141879527}, \"0.31902415651777216\": {\"frequency\": 1, \"value\": 0.31902415651777216}, \"0.34644443926974666\": {\"frequency\": 1, \"value\": 0.34644443926974666}, \"0.30530567097855493\": {\"frequency\": 1, \"value\": 0.30530567097855493}, \"0.5501244078908292\": {\"frequency\": 1, \"value\": 0.5501244078908292}, \"0.34707463984103326\": {\"frequency\": 1, \"value\": 0.34707463984103326}, \"0.29171950843478955\": {\"frequency\": 1, \"value\": 0.29171950843478955}, \"0.7226864346590909\": {\"frequency\": 1, \"value\": 0.7226864346590909}, \"0.22276189145553899\": {\"frequency\": 1, \"value\": 0.22276189145553899}, \"0.5250015500992063\": {\"frequency\": 1, \"value\": 0.5250015500992063}, \"0.414274169921875\": {\"frequency\": 1, \"value\": 0.414274169921875}, \"0.3612141732626444\": {\"frequency\": 1, \"value\": 0.3612141732626444}, \"0.34038726806640623\": {\"frequency\": 1, \"value\": 0.34038726806640623}, \"0.3517425794833582\": {\"frequency\": 1, \"value\": 0.3517425794833582}, \"0.3788991734601449\": {\"frequency\": 1, \"value\": 0.3788991734601449}, \"0.5872267817338693\": {\"frequency\": 1, \"value\": 0.5872267817338693}, \"0.4768157859893482\": {\"frequency\": 1, \"value\": 0.4768157859893482}, \"0.5072132699950322\": {\"frequency\": 1, \"value\": 0.5072132699950322}, \"0.3227724284022609\": {\"frequency\": 1, \"value\": 0.3227724284022609}, \"0.3220508879781421\": {\"frequency\": 1, \"value\": 0.3220508879781421}, \"0.1837094821162444\": {\"frequency\": 1, \"value\": 0.1837094821162444}, \"0.11020228794642857\": {\"frequency\": 1, \"value\": 0.11020228794642857}, \"0.6971849601795755\": {\"frequency\": 1, \"value\": 0.6971849601795755}, \"0.285086830720583\": {\"frequency\": 1, \"value\": 0.285086830720583}, \"0.27390702620466967\": {\"frequency\": 1, \"value\": 0.27390702620466967}, \"0.4823436076958106\": {\"frequency\": 1, \"value\": 0.4823436076958106}, \"0.39456876240079364\": {\"frequency\": 1, \"value\": 0.39456876240079364}, \"0.40780886159829566\": {\"frequency\": 1, \"value\": 0.40780886159829566}, \"0.31979521276595746\": {\"frequency\": 1, \"value\": 0.31979521276595746}, \"0.40173159153140997\": {\"frequency\": 1, \"value\": 0.40173159153140997}, \"0.10960455085740431\": {\"frequency\": 1, \"value\": 0.10960455085740431}, \"0.07974710131448412\": {\"frequency\": 1, \"value\": 0.07974710131448412}, \"0.5988347129216269\": {\"frequency\": 1, \"value\": 0.5988347129216269}, \"0.0366005502925606\": {\"frequency\": 1, \"value\": 0.0366005502925606}, \"0.12521324769633405\": {\"frequency\": 1, \"value\": 0.12521324769633405}, \"0.458796704588425\": {\"frequency\": 1, \"value\": 0.458796704588425}, \"0.24400149031296572\": {\"frequency\": 1, \"value\": 0.24400149031296572}, \"0.448410715170432\": {\"frequency\": 1, \"value\": 0.448410715170432}, \"0.4184155209246275\": {\"frequency\": 1, \"value\": 0.4184155209246275}, \"0.3642522951977401\": {\"frequency\": 1, \"value\": 0.3642522951977401}, \"0.10838859437003968\": {\"frequency\": 1, \"value\": 0.10838859437003968}, \"0.312428083506738\": {\"frequency\": 1, \"value\": 0.312428083506738}, \"0.1857445741949608\": {\"frequency\": 1, \"value\": 0.1857445741949608}, \"0.3732519946808511\": {\"frequency\": 1, \"value\": 0.3732519946808511}, \"0.2671683277446597\": {\"frequency\": 1, \"value\": 0.2671683277446597}, \"0.7541306507699951\": {\"frequency\": 1, \"value\": 0.7541306507699951}, \"0.5924405427223051\": {\"frequency\": 1, \"value\": 0.5924405427223051}, \"0.6870736452132936\": {\"frequency\": 1, \"value\": 0.6870736452132936}, \"0.6507640182563338\": {\"frequency\": 1, \"value\": 0.6507640182563338}, \"0.4275352647569444\": {\"frequency\": 1, \"value\": 0.4275352647569444}, \"0.20344822078933789\": {\"frequency\": 1, \"value\": 0.20344822078933789}, \"0.1850786653903162\": {\"frequency\": 1, \"value\": 0.1850786653903162}, \"0.08761002863545816\": {\"frequency\": 1, \"value\": 0.08761002863545816}, \"0.8822160873965544\": {\"frequency\": 1, \"value\": 0.8822160873965544}, \"0.6570317157228018\": {\"frequency\": 1, \"value\": 0.6570317157228018}, \"0.03805656369360229\": {\"frequency\": 1, \"value\": 0.03805656369360229}, \"0.2936390771818761\": {\"frequency\": 1, \"value\": 0.2936390771818761}, \"0.532155933432512\": {\"frequency\": 1, \"value\": 0.532155933432512}, \"0.8779847056517252\": {\"frequency\": 1, \"value\": 0.8779847056517252}, \"0.5207438776220993\": {\"frequency\": 1, \"value\": 0.5207438776220993}, \"0.26091644371779626\": {\"frequency\": 1, \"value\": 0.26091644371779626}, \"0.6040925327743296\": {\"frequency\": 1, \"value\": 0.6040925327743296}, \"0.28204700695479384\": {\"frequency\": 1, \"value\": 0.28204700695479384}, \"0.01985498353823506\": {\"frequency\": 1, \"value\": 0.01985498353823506}, \"0.26728949329359164\": {\"frequency\": 1, \"value\": 0.26728949329359164}, \"0.43039068995981156\": {\"frequency\": 1, \"value\": 0.43039068995981156}, \"0.27822503905783547\": {\"frequency\": 1, \"value\": 0.27822503905783547}, \"0.1453710596586401\": {\"frequency\": 1, \"value\": 0.1453710596586401}, \"0.4699936468823389\": {\"frequency\": 1, \"value\": 0.4699936468823389}, \"0.29220527508693495\": {\"frequency\": 1, \"value\": 0.29220527508693495}, \"0.22609429334326875\": {\"frequency\": 1, \"value\": 0.22609429334326875}, \"0.14312820434570311\": {\"frequency\": 1, \"value\": 0.14312820434570311}, \"0.5209044936412849\": {\"frequency\": 1, \"value\": 0.5209044936412849}, \"0.34586479547236587\": {\"frequency\": 1, \"value\": 0.34586479547236587}, \"0.290958024691358\": {\"frequency\": 1, \"value\": 0.290958024691358}, \"0.06567814403666986\": {\"frequency\": 1, \"value\": 0.06567814403666986}, \"0.29804656553277875\": {\"frequency\": 1, \"value\": 0.29804656553277875}, \"0.2485732926090067\": {\"frequency\": 1, \"value\": 0.2485732926090067}, \"0.33023796359411695\": {\"frequency\": 1, \"value\": 0.33023796359411695}, \"0.3739418777943368\": {\"frequency\": 1, \"value\": 0.3739418777943368}, \"0.4673437873000716\": {\"frequency\": 1, \"value\": 0.4673437873000716}, \"0.41227278974943277\": {\"frequency\": 1, \"value\": 0.41227278974943277}, \"0.45615957215598607\": {\"frequency\": 1, \"value\": 0.45615957215598607}, \"0.15765457387155196\": {\"frequency\": 1, \"value\": 0.15765457387155196}, \"0.5755986794968754\": {\"frequency\": 1, \"value\": 0.5755986794968754}, \"0.5818936457628467\": {\"frequency\": 1, \"value\": 0.5818936457628467}, \"0.4324626742676034\": {\"frequency\": 1, \"value\": 0.4324626742676034}, \"0.4010616470223325\": {\"frequency\": 1, \"value\": 0.4010616470223325}, \"0.2450542449951172\": {\"frequency\": 1, \"value\": 0.2450542449951172}, \"0.05773578369422441\": {\"frequency\": 1, \"value\": 0.05773578369422441}, \"0.42391063102149207\": {\"frequency\": 1, \"value\": 0.42391063102149207}, \"0.19725023872045835\": {\"frequency\": 1, \"value\": 0.19725023872045835}, \"0.17093788752480157\": {\"frequency\": 1, \"value\": 0.17093788752480157}, \"0.5619764002446884\": {\"frequency\": 1, \"value\": 0.5619764002446884}, \"0.20716475317299277\": {\"frequency\": 1, \"value\": 0.20716475317299277}, \"0.20960425556517068\": {\"frequency\": 1, \"value\": 0.20960425556517068}, \"0.2816663185077558\": {\"frequency\": 1, \"value\": 0.2816663185077558}, \"0.42350112002912865\": {\"frequency\": 1, \"value\": 0.42350112002912865}, \"0.30816117113760555\": {\"frequency\": 1, \"value\": 0.30816117113760555}, \"0.21082495032290113\": {\"frequency\": 1, \"value\": 0.21082495032290113}, \"0.6196284035449829\": {\"frequency\": 1, \"value\": 0.6196284035449829}, \"0.10257640165441176\": {\"frequency\": 1, \"value\": 0.10257640165441176}, \"0.5661442033035271\": {\"frequency\": 1, \"value\": 0.5661442033035271}, \"0.40177475259224615\": {\"frequency\": 1, \"value\": 0.40177475259224615}, \"0.050403489243190505\": {\"frequency\": 1, \"value\": 0.050403489243190505}, \"0.11040246212121212\": {\"frequency\": 1, \"value\": 0.11040246212121212}, \"0.6690078590029762\": {\"frequency\": 1, \"value\": 0.6690078590029762}, \"0.5504703310493188\": {\"frequency\": 1, \"value\": 0.5504703310493188}, \"0.32180629015974377\": {\"frequency\": 1, \"value\": 0.32180629015974377}, \"0.36550738249386233\": {\"frequency\": 1, \"value\": 0.36550738249386233}, \"0.2769595286885246\": {\"frequency\": 1, \"value\": 0.2769595286885246}, \"0.6455147082523405\": {\"frequency\": 1, \"value\": 0.6455147082523405}, \"0.5798289602654938\": {\"frequency\": 1, \"value\": 0.5798289602654938}, \"0.54780815325385\": {\"frequency\": 1, \"value\": 0.54780815325385}, \"0.4823627388447919\": {\"frequency\": 1, \"value\": 0.4823627388447919}, \"0.7332856503211462\": {\"frequency\": 1, \"value\": 0.7332856503211462}, \"0.5401487208485113\": {\"frequency\": 1, \"value\": 0.5401487208485113}, \"0.40660864006659925\": {\"frequency\": 1, \"value\": 0.40660864006659925}, \"0.20214944771027293\": {\"frequency\": 1, \"value\": 0.20214944771027293}, \"0.35737549677098857\": {\"frequency\": 1, \"value\": 0.35737549677098857}, \"0.3072970920138889\": {\"frequency\": 1, \"value\": 0.3072970920138889}, \"0.43445813152011925\": {\"frequency\": 1, \"value\": 0.43445813152011925}, \"0.5379917524529316\": {\"frequency\": 1, \"value\": 0.5379917524529316}, \"0.5401983180253155\": {\"frequency\": 1, \"value\": 0.5401983180253155}, \"0.2581363877856745\": {\"frequency\": 1, \"value\": 0.2581363877856745}, \"0.19631504848241862\": {\"frequency\": 1, \"value\": 0.19631504848241862}, \"0.16024747975849446\": {\"frequency\": 1, \"value\": 0.16024747975849446}, \"0.5294685304551606\": {\"frequency\": 1, \"value\": 0.5294685304551606}, \"0.20176221746150025\": {\"frequency\": 1, \"value\": 0.20176221746150025}, \"0.3383486245653254\": {\"frequency\": 1, \"value\": 0.3383486245653254}, \"0.4861332000248016\": {\"frequency\": 1, \"value\": 0.4861332000248016}, \"0.6364948718618206\": {\"frequency\": 1, \"value\": 0.6364948718618206}, \"0.7304620845734127\": {\"frequency\": 1, \"value\": 0.7304620845734127}, \"0.31862521056282206\": {\"frequency\": 1, \"value\": 0.31862521056282206}, \"0.4345630401234568\": {\"frequency\": 1, \"value\": 0.4345630401234568}, \"0.4680162224337617\": {\"frequency\": 1, \"value\": 0.4680162224337617}, \"0.28035891051413253\": {\"frequency\": 1, \"value\": 0.28035891051413253}, \"0.44215428840106674\": {\"frequency\": 1, \"value\": 0.44215428840106674}, \"0.0830412806492059\": {\"frequency\": 1, \"value\": 0.0830412806492059}, \"0.22504609860248448\": {\"frequency\": 1, \"value\": 0.22504609860248448}, \"0.5948750412525237\": {\"frequency\": 1, \"value\": 0.5948750412525237}, \"0.83054519007222\": {\"frequency\": 1, \"value\": 0.83054519007222}, \"0.6569008861383182\": {\"frequency\": 1, \"value\": 0.6569008861383182}, \"0.4243797084125287\": {\"frequency\": 1, \"value\": 0.4243797084125287}, \"0.3405903549382716\": {\"frequency\": 1, \"value\": 0.3405903549382716}, \"0.7678153676835318\": {\"frequency\": 1, \"value\": 0.7678153676835318}, \"0.8753781396246142\": {\"frequency\": 1, \"value\": 0.8753781396246142}, \"0.3727979866600791\": {\"frequency\": 1, \"value\": 0.3727979866600791}, \"0.440592650968336\": {\"frequency\": 1, \"value\": 0.440592650968336}, \"0.016814556018922563\": {\"frequency\": 1, \"value\": 0.016814556018922563}, \"0.23254859561011904\": {\"frequency\": 1, \"value\": 0.23254859561011904}, \"0.5507807835449589\": {\"frequency\": 1, \"value\": 0.5507807835449589}, \"0.278357301737686\": {\"frequency\": 1, \"value\": 0.278357301737686}, \"0.5441341515743371\": {\"frequency\": 1, \"value\": 0.5441341515743371}, \"0.19126571626571626\": {\"frequency\": 1, \"value\": 0.19126571626571626}, \"0.7241714532056371\": {\"frequency\": 1, \"value\": 0.7241714532056371}, \"0.18959999403198854\": {\"frequency\": 1, \"value\": 0.18959999403198854}, \"0.764682783100786\": {\"frequency\": 1, \"value\": 0.764682783100786}, \"0.533956780923994\": {\"frequency\": 1, \"value\": 0.533956780923994}, \"0.5822684926835318\": {\"frequency\": 1, \"value\": 0.5822684926835318}, \"0.07206392821659215\": {\"frequency\": 1, \"value\": 0.07206392821659215}, \"0.2522078838045635\": {\"frequency\": 1, \"value\": 0.2522078838045635}, \"0.25256650604470804\": {\"frequency\": 1, \"value\": 0.25256650604470804}, \"0.2992128228865607\": {\"frequency\": 1, \"value\": 0.2992128228865607}, \"0.4408582560221354\": {\"frequency\": 1, \"value\": 0.4408582560221354}, \"0.3675938943718523\": {\"frequency\": 1, \"value\": 0.3675938943718523}, \"0.1806344696969697\": {\"frequency\": 1, \"value\": 0.1806344696969697}, \"0.4695021018872977\": {\"frequency\": 1, \"value\": 0.4695021018872977}, \"0.5120786956910958\": {\"frequency\": 1, \"value\": 0.5120786956910958}, \"0.2114833585515481\": {\"frequency\": 1, \"value\": 0.2114833585515481}, \"0.43189693705735316\": {\"frequency\": 1, \"value\": 0.43189693705735316}, \"0.6096465847332015\": {\"frequency\": 1, \"value\": 0.6096465847332015}, \"0.343087925041129\": {\"frequency\": 1, \"value\": 0.343087925041129}, \"0.26642776912590055\": {\"frequency\": 1, \"value\": 0.26642776912590055}, \"0.2587138521119211\": {\"frequency\": 1, \"value\": 0.2587138521119211}, \"0.43588007938442863\": {\"frequency\": 1, \"value\": 0.43588007938442863}, \"0.6438446335565476\": {\"frequency\": 1, \"value\": 0.6438446335565476}, \"0.20093229974834886\": {\"frequency\": 1, \"value\": 0.20093229974834886}, \"0.4225914749432791\": {\"frequency\": 1, \"value\": 0.4225914749432791}, \"0.10921991257440476\": {\"frequency\": 1, \"value\": 0.10921991257440476}, \"0.4774594930442224\": {\"frequency\": 1, \"value\": 0.4774594930442224}, \"0.43988444042809377\": {\"frequency\": 1, \"value\": 0.43988444042809377}, \"0.3967566655227978\": {\"frequency\": 1, \"value\": 0.3967566655227978}, \"0.5875897292598112\": {\"frequency\": 1, \"value\": 0.5875897292598112}, \"0.34712185152425123\": {\"frequency\": 1, \"value\": 0.34712185152425123}, \"0.22232491629464285\": {\"frequency\": 1, \"value\": 0.22232491629464285}, \"0.01402436388339921\": {\"frequency\": 1, \"value\": 0.01402436388339921}, \"0.26587070823424497\": {\"frequency\": 1, \"value\": 0.26587070823424497}, \"0.26986517324888226\": {\"frequency\": 1, \"value\": 0.26986517324888226}, \"0.19446449639841032\": {\"frequency\": 1, \"value\": 0.19446449639841032}, \"0.3785432644038649\": {\"frequency\": 1, \"value\": 0.3785432644038649}, \"0.34595285338461235\": {\"frequency\": 1, \"value\": 0.34595285338461235}, \"0.2878567181926278\": {\"frequency\": 1, \"value\": 0.2878567181926278}, \"0.20962414893669928\": {\"frequency\": 1, \"value\": 0.20962414893669928}, \"0.29364862151368665\": {\"frequency\": 1, \"value\": 0.29364862151368665}, \"0.3422368975888628\": {\"frequency\": 1, \"value\": 0.3422368975888628}, \"0.1550519879691916\": {\"frequency\": 1, \"value\": 0.1550519879691916}, \"0.579236074654807\": {\"frequency\": 1, \"value\": 0.579236074654807}, \"0.1834680176752606\": {\"frequency\": 1, \"value\": 0.1834680176752606}, \"0.09997919771485345\": {\"frequency\": 1, \"value\": 0.09997919771485345}, \"0.39909565687613846\": {\"frequency\": 1, \"value\": 0.39909565687613846}, \"0.46306743584026955\": {\"frequency\": 1, \"value\": 0.46306743584026955}, \"0.14711303662369699\": {\"frequency\": 1, \"value\": 0.14711303662369699}, \"0.5535168633944746\": {\"frequency\": 1, \"value\": 0.5535168633944746}, \"0.11137694729431198\": {\"frequency\": 1, \"value\": 0.11137694729431198}, \"0.10185862208147044\": {\"frequency\": 1, \"value\": 0.10185862208147044}, \"0.0889148176201509\": {\"frequency\": 1, \"value\": 0.0889148176201509}, \"0.13405396174863388\": {\"frequency\": 1, \"value\": 0.13405396174863388}, \"0.2958313957093254\": {\"frequency\": 1, \"value\": 0.2958313957093254}, \"0.5065938120039682\": {\"frequency\": 1, \"value\": 0.5065938120039682}, \"0.6171238512170889\": {\"frequency\": 1, \"value\": 0.6171238512170889}, \"0.024483399272882806\": {\"frequency\": 1, \"value\": 0.024483399272882806}, \"0.29189696659215103\": {\"frequency\": 1, \"value\": 0.29189696659215103}, \"0.2690329832099944\": {\"frequency\": 1, \"value\": 0.2690329832099944}, \"0.08326970157299575\": {\"frequency\": 1, \"value\": 0.08326970157299575}, \"0.5801509012186188\": {\"frequency\": 1, \"value\": 0.5801509012186188}, \"0.10967703683035715\": {\"frequency\": 1, \"value\": 0.10967703683035715}, \"0.05108413480675079\": {\"frequency\": 1, \"value\": 0.05108413480675079}, \"0.4478575305114586\": {\"frequency\": 1, \"value\": 0.4478575305114586}, \"0.38875036056735895\": {\"frequency\": 1, \"value\": 0.38875036056735895}, \"0.5341811816939891\": {\"frequency\": 1, \"value\": 0.5341811816939891}, \"0.46621917918988853\": {\"frequency\": 1, \"value\": 0.46621917918988853}, \"0.48941165756564053\": {\"frequency\": 1, \"value\": 0.48941165756564053}, \"0.22399874174425083\": {\"frequency\": 1, \"value\": 0.22399874174425083}, \"0.19800181843745024\": {\"frequency\": 1, \"value\": 0.19800181843745024}, \"0.5728559674615002\": {\"frequency\": 1, \"value\": 0.5728559674615002}, \"0.34343980690150616\": {\"frequency\": 1, \"value\": 0.34343980690150616}, \"0.3517186724950397\": {\"frequency\": 1, \"value\": 0.3517186724950397}, \"0.18190498925757936\": {\"frequency\": 1, \"value\": 0.18190498925757936}, \"0.7548918447381423\": {\"frequency\": 1, \"value\": 0.7548918447381423}, \"0.35522427781235855\": {\"frequency\": 1, \"value\": 0.35522427781235855}, \"0.11839423502526458\": {\"frequency\": 1, \"value\": 0.11839423502526458}, \"0.5597620749910707\": {\"frequency\": 1, \"value\": 0.5597620749910707}, \"0.4247697963913424\": {\"frequency\": 1, \"value\": 0.4247697963913424}, \"0.46499720982142856\": {\"frequency\": 1, \"value\": 0.46499720982142856}, \"0.43523862596027546\": {\"frequency\": 1, \"value\": 0.43523862596027546}, \"0.014841499006458023\": {\"frequency\": 1, \"value\": 0.014841499006458023}, \"0.44858043569777406\": {\"frequency\": 1, \"value\": 0.44858043569777406}, \"0.5531651674937965\": {\"frequency\": 1, \"value\": 0.5531651674937965}, \"0.21495125434674614\": {\"frequency\": 1, \"value\": 0.21495125434674614}, \"0.40359868893678164\": {\"frequency\": 1, \"value\": 0.40359868893678164}, \"0.4464880619721808\": {\"frequency\": 1, \"value\": 0.4464880619721808}, \"0.4020361699015192\": {\"frequency\": 1, \"value\": 0.4020361699015192}, \"0.33535138785394936\": {\"frequency\": 1, \"value\": 0.33535138785394936}, \"0.5333328780594405\": {\"frequency\": 1, \"value\": 0.5333328780594405}, \"0.18926035457029308\": {\"frequency\": 1, \"value\": 0.18926035457029308}, \"0.27509252359662195\": {\"frequency\": 1, \"value\": 0.27509252359662195}, \"0.39810699205166417\": {\"frequency\": 1, \"value\": 0.39810699205166417}, \"0.09735483606067845\": {\"frequency\": 1, \"value\": 0.09735483606067845}, \"0.14755364371966262\": {\"frequency\": 1, \"value\": 0.14755364371966262}, \"0.5190471063989863\": {\"frequency\": 1, \"value\": 0.5190471063989863}, \"0.9524234190826288\": {\"frequency\": 1, \"value\": 0.9524234190826288}, \"0.3874607517092747\": {\"frequency\": 1, \"value\": 0.3874607517092747}, \"0.5691100037257825\": {\"frequency\": 1, \"value\": 0.5691100037257825}, \"0.2622770508353789\": {\"frequency\": 1, \"value\": 0.2622770508353789}, \"0.12942280575895507\": {\"frequency\": 1, \"value\": 0.12942280575895507}, \"0.46518939733030956\": {\"frequency\": 1, \"value\": 0.46518939733030956}, \"0.3012819739382239\": {\"frequency\": 1, \"value\": 0.3012819739382239}, \"0.3286563614744352\": {\"frequency\": 1, \"value\": 0.3286563614744352}, \"0.2487866512345679\": {\"frequency\": 1, \"value\": 0.2487866512345679}, \"0.3357625470669838\": {\"frequency\": 1, \"value\": 0.3357625470669838}, \"0.6220007958036068\": {\"frequency\": 1, \"value\": 0.6220007958036068}, \"0.08214141113222943\": {\"frequency\": 1, \"value\": 0.08214141113222943}, \"0.498569416492745\": {\"frequency\": 1, \"value\": 0.498569416492745}, \"0.47949879174750554\": {\"frequency\": 1, \"value\": 0.47949879174750554}, \"0.46411530271066354\": {\"frequency\": 1, \"value\": 0.46411530271066354}, \"0.07387815139095877\": {\"frequency\": 1, \"value\": 0.07387815139095877}, \"0.27451174358417396\": {\"frequency\": 1, \"value\": 0.27451174358417396}, \"0.08203451375626641\": {\"frequency\": 1, \"value\": 0.08203451375626641}, \"0.4169499669659118\": {\"frequency\": 1, \"value\": 0.4169499669659118}, \"0.3340992237615823\": {\"frequency\": 1, \"value\": 0.3340992237615823}, \"0.28644995955699354\": {\"frequency\": 1, \"value\": 0.28644995955699354}, \"0.3485735142934998\": {\"frequency\": 1, \"value\": 0.3485735142934998}, \"0.4385880741724357\": {\"frequency\": 1, \"value\": 0.4385880741724357}, \"0.42277865747640336\": {\"frequency\": 1, \"value\": 0.42277865747640336}, \"0.2887985027763088\": {\"frequency\": 1, \"value\": 0.2887985027763088}, \"0.17076889822134386\": {\"frequency\": 1, \"value\": 0.17076889822134386}, \"0.62019358544461\": {\"frequency\": 1, \"value\": 0.62019358544461}, \"0.47105579835531525\": {\"frequency\": 1, \"value\": 0.47105579835531525}, \"0.29028362518628914\": {\"frequency\": 1, \"value\": 0.29028362518628914}, \"0.48649018316462\": {\"frequency\": 1, \"value\": 0.48649018316462}, \"0.13672116068940118\": {\"frequency\": 1, \"value\": 0.13672116068940118}, \"0.3199133365712267\": {\"frequency\": 1, \"value\": 0.3199133365712267}, \"0.551389324784792\": {\"frequency\": 1, \"value\": 0.551389324784792}, \"0.590314595752608\": {\"frequency\": 1, \"value\": 0.590314595752608}, \"0.10049464676073132\": {\"frequency\": 1, \"value\": 0.10049464676073132}, \"0.3848432849702381\": {\"frequency\": 1, \"value\": 0.3848432849702381}, \"0.5798853545702931\": {\"frequency\": 1, \"value\": 0.5798853545702931}, \"0.41740196535022356\": {\"frequency\": 1, \"value\": 0.41740196535022356}, \"0.5424760509672619\": {\"frequency\": 1, \"value\": 0.5424760509672619}, \"0.36923652564940207\": {\"frequency\": 1, \"value\": 0.36923652564940207}, \"0.4852400393254534\": {\"frequency\": 1, \"value\": 0.4852400393254534}, \"0.1352187083300163\": {\"frequency\": 1, \"value\": 0.1352187083300163}, \"0.33476954483358173\": {\"frequency\": 1, \"value\": 0.33476954483358173}, \"0.3599597791366477\": {\"frequency\": 1, \"value\": 0.3599597791366477}, \"0.605277415548932\": {\"frequency\": 1, \"value\": 0.605277415548932}, \"0.16046556756085445\": {\"frequency\": 1, \"value\": 0.16046556756085445}, \"0.1254648858926305\": {\"frequency\": 1, \"value\": 0.1254648858926305}, \"0.3204255691093327\": {\"frequency\": 1, \"value\": 0.3204255691093327}, \"0.7610064731520917\": {\"frequency\": 1, \"value\": 0.7610064731520917}, \"0.28914910515264897\": {\"frequency\": 1, \"value\": 0.28914910515264897}, \"0.5473362208147045\": {\"frequency\": 1, \"value\": 0.5473362208147045}, \"0.29545083664060634\": {\"frequency\": 1, \"value\": 0.29545083664060634}, \"0.4396250914251881\": {\"frequency\": 1, \"value\": 0.4396250914251881}, \"0.35515112704918034\": {\"frequency\": 1, \"value\": 0.35515112704918034}, \"0.18938707278984643\": {\"frequency\": 1, \"value\": 0.18938707278984643}, \"0.5148071676587301\": {\"frequency\": 1, \"value\": 0.5148071676587301}, \"0.29337245404868356\": {\"frequency\": 1, \"value\": 0.29337245404868356}, \"0.38953513102334825\": {\"frequency\": 1, \"value\": 0.38953513102334825}, \"0.5839545539387286\": {\"frequency\": 1, \"value\": 0.5839545539387286}, \"0.4064572482638889\": {\"frequency\": 1, \"value\": 0.4064572482638889}, \"0.08181206597222222\": {\"frequency\": 1, \"value\": 0.08181206597222222}, \"0.3268156753992214\": {\"frequency\": 1, \"value\": 0.3268156753992214}, \"0.40170890468893045\": {\"frequency\": 1, \"value\": 0.40170890468893045}, \"0.5271303468186522\": {\"frequency\": 1, \"value\": 0.5271303468186522}, \"0.43587130791457784\": {\"frequency\": 1, \"value\": 0.43587130791457784}, \"0.39442939814814815\": {\"frequency\": 1, \"value\": 0.39442939814814815}, \"0.5785583367332723\": {\"frequency\": 1, \"value\": 0.5785583367332723}, \"0.3723189061260904\": {\"frequency\": 1, \"value\": 0.3723189061260904}, \"0.4945824807787698\": {\"frequency\": 1, \"value\": 0.4945824807787698}, \"0.8820926086178086\": {\"frequency\": 1, \"value\": 0.8820926086178086}, \"0.4433549118231495\": {\"frequency\": 1, \"value\": 0.4433549118231495}, \"0.4015214223710317\": {\"frequency\": 1, \"value\": 0.4015214223710317}, \"0.37163491187236414\": {\"frequency\": 1, \"value\": 0.37163491187236414}, \"0.37904162009438647\": {\"frequency\": 1, \"value\": 0.37904162009438647}, \"0.2144307452008796\": {\"frequency\": 1, \"value\": 0.2144307452008796}, \"0.3022797368198464\": {\"frequency\": 1, \"value\": 0.3022797368198464}, \"0.36791356184798807\": {\"frequency\": 1, \"value\": 0.36791356184798807}, \"0.48100886485280997\": {\"frequency\": 1, \"value\": 0.48100886485280997}, \"0.27714271299056137\": {\"frequency\": 1, \"value\": 0.27714271299056137}, \"0.5138315581091032\": {\"frequency\": 1, \"value\": 0.5138315581091032}, \"0.5902446709026952\": {\"frequency\": 1, \"value\": 0.5902446709026952}, \"0.7921570747455848\": {\"frequency\": 1, \"value\": 0.7921570747455848}, \"0.14990881609405457\": {\"frequency\": 1, \"value\": 0.14990881609405457}, \"0.24777982178340785\": {\"frequency\": 1, \"value\": 0.24777982178340785}, \"0.21577039930555555\": {\"frequency\": 1, \"value\": 0.21577039930555555}, \"0.25464208101098856\": {\"frequency\": 1, \"value\": 0.25464208101098856}, \"0.3604455143195478\": {\"frequency\": 1, \"value\": 0.3604455143195478}, \"0.2305722191220238\": {\"frequency\": 1, \"value\": 0.2305722191220238}, \"0.33945746527777776\": {\"frequency\": 1, \"value\": 0.33945746527777776}, \"0.40615719325122956\": {\"frequency\": 1, \"value\": 0.40615719325122956}, \"0.6354505091902632\": {\"frequency\": 1, \"value\": 0.6354505091902632}, \"0.5351175342315806\": {\"frequency\": 1, \"value\": 0.5351175342315806}, \"0.4011773606097271\": {\"frequency\": 1, \"value\": 0.4011773606097271}, \"0.15947474660818015\": {\"frequency\": 1, \"value\": 0.15947474660818015}, \"0.5915926943616493\": {\"frequency\": 1, \"value\": 0.5915926943616493}, \"0.6168796125118793\": {\"frequency\": 1, \"value\": 0.6168796125118793}, \"0.3096056735412775\": {\"frequency\": 1, \"value\": 0.3096056735412775}, \"0.776707084402602\": {\"frequency\": 1, \"value\": 0.776707084402602}, \"0.6296233258928572\": {\"frequency\": 1, \"value\": 0.6296233258928572}, \"0.22119030986090413\": {\"frequency\": 1, \"value\": 0.22119030986090413}, \"0.5410763362982102\": {\"frequency\": 1, \"value\": 0.5410763362982102}, \"0.14528067560854446\": {\"frequency\": 1, \"value\": 0.14528067560854446}, \"0.479623275566998\": {\"frequency\": 1, \"value\": 0.479623275566998}, \"0.5342680389965226\": {\"frequency\": 1, \"value\": 0.5342680389965226}, \"0.31746502520101105\": {\"frequency\": 1, \"value\": 0.31746502520101105}, \"0.49669190084782866\": {\"frequency\": 1, \"value\": 0.49669190084782866}, \"0.4938855952029157\": {\"frequency\": 1, \"value\": 0.4938855952029157}, \"0.11159256456519145\": {\"frequency\": 1, \"value\": 0.11159256456519145}, \"0.4876485655737705\": {\"frequency\": 1, \"value\": 0.4876485655737705}, \"0.3269757823400439\": {\"frequency\": 1, \"value\": 0.3269757823400439}, \"0.4990576053317677\": {\"frequency\": 1, \"value\": 0.4990576053317677}, \"0.5340506240685544\": {\"frequency\": 1, \"value\": 0.5340506240685544}, \"0.351550294426422\": {\"frequency\": 1, \"value\": 0.351550294426422}, \"0.35793953440844234\": {\"frequency\": 1, \"value\": 0.35793953440844234}, \"0.5512787536283749\": {\"frequency\": 1, \"value\": 0.5512787536283749}, \"0.28600665983606555\": {\"frequency\": 1, \"value\": 0.28600665983606555}, \"0.5433327404171476\": {\"frequency\": 1, \"value\": 0.5433327404171476}, \"0.35154469209558825\": {\"frequency\": 1, \"value\": 0.35154469209558825}, \"0.5166853731992052\": {\"frequency\": 1, \"value\": 0.5166853731992052}, \"0.5566894094634873\": {\"frequency\": 1, \"value\": 0.5566894094634873}, \"0.5278660531519536\": {\"frequency\": 1, \"value\": 0.5278660531519536}, \"0.4012795328235083\": {\"frequency\": 1, \"value\": 0.4012795328235083}, \"0.03954077190224097\": {\"frequency\": 1, \"value\": 0.03954077190224097}, \"0.5332381031092753\": {\"frequency\": 1, \"value\": 0.5332381031092753}, \"0.7682499192666932\": {\"frequency\": 1, \"value\": 0.7682499192666932}, \"0.8090743885869566\": {\"frequency\": 1, \"value\": 0.8090743885869566}, \"0.378331508019008\": {\"frequency\": 1, \"value\": 0.378331508019008}, \"0.5698368314676617\": {\"frequency\": 1, \"value\": 0.5698368314676617}, \"0.15944032175041775\": {\"frequency\": 1, \"value\": 0.15944032175041775}, \"0.07418464781746031\": {\"frequency\": 1, \"value\": 0.07418464781746031}, \"0.29929124751614505\": {\"frequency\": 1, \"value\": 0.29929124751614505}, \"0.353353825136612\": {\"frequency\": 1, \"value\": 0.353353825136612}, \"0.3015509517609127\": {\"frequency\": 1, \"value\": 0.3015509517609127}, \"0.34587260802469133\": {\"frequency\": 1, \"value\": 0.34587260802469133}, \"0.23408345752608048\": {\"frequency\": 1, \"value\": 0.23408345752608048}, \"0.15834121297346224\": {\"frequency\": 1, \"value\": 0.15834121297346224}, \"0.5150424808941158\": {\"frequency\": 1, \"value\": 0.5150424808941158}, \"0.8938259182717102\": {\"frequency\": 1, \"value\": 0.8938259182717102}, \"0.3415824187748016\": {\"frequency\": 1, \"value\": 0.3415824187748016}, \"0.5100929986964137\": {\"frequency\": 1, \"value\": 0.5100929986964137}, \"0.36649402950187\": {\"frequency\": 1, \"value\": 0.36649402950187}, \"0.5033840535813796\": {\"frequency\": 1, \"value\": 0.5033840535813796}, \"0.7676522136090435\": {\"frequency\": 1, \"value\": 0.7676522136090435}, \"0.7805563813537396\": {\"frequency\": 1, \"value\": 0.7805563813537396}, \"0.5868756188303547\": {\"frequency\": 1, \"value\": 0.5868756188303547}, \"0.633164586438152\": {\"frequency\": 1, \"value\": 0.633164586438152}, \"0.22659622190872192\": {\"frequency\": 1, \"value\": 0.22659622190872192}, \"0.28233108040900773\": {\"frequency\": 1, \"value\": 0.28233108040900773}, \"0.777993014764052\": {\"frequency\": 1, \"value\": 0.777993014764052}, \"0.30653652778330615\": {\"frequency\": 1, \"value\": 0.30653652778330615}, \"0.4676571814456036\": {\"frequency\": 1, \"value\": 0.4676571814456036}, \"0.36183664610176314\": {\"frequency\": 1, \"value\": 0.36183664610176314}, \"0.4708690387481371\": {\"frequency\": 1, \"value\": 0.4708690387481371}, \"0.3042990909383926\": {\"frequency\": 1, \"value\": 0.3042990909383926}, \"0.41229305179577186\": {\"frequency\": 1, \"value\": 0.41229305179577186}, \"0.48025498323397914\": {\"frequency\": 1, \"value\": 0.48025498323397914}, \"0.38903267797436614\": {\"frequency\": 1, \"value\": 0.38903267797436614}, \"0.4371663096125186\": {\"frequency\": 1, \"value\": 0.4371663096125186}, \"0.28015935037117384\": {\"frequency\": 1, \"value\": 0.28015935037117384}, \"0.33177349680878476\": {\"frequency\": 1, \"value\": 0.33177349680878476}, \"0.3137656017138599\": {\"frequency\": 1, \"value\": 0.3137656017138599}, \"0.34440479438628463\": {\"frequency\": 1, \"value\": 0.34440479438628463}, \"0.6238483596600825\": {\"frequency\": 1, \"value\": 0.6238483596600825}, \"0.24992405287281222\": {\"frequency\": 1, \"value\": 0.24992405287281222}, \"0.3330054644808743\": {\"frequency\": 1, \"value\": 0.3330054644808743}, \"0.4065520535663762\": {\"frequency\": 1, \"value\": 0.4065520535663762}, \"0.6184746802036761\": {\"frequency\": 1, \"value\": 0.6184746802036761}, \"0.7012278891509434\": {\"frequency\": 1, \"value\": 0.7012278891509434}, \"0.7620675028858018\": {\"frequency\": 1, \"value\": 0.7620675028858018}, \"0.21626280737704917\": {\"frequency\": 1, \"value\": 0.21626280737704917}, \"0.2188612008385056\": {\"frequency\": 1, \"value\": 0.2188612008385056}, \"0.37696312313988095\": {\"frequency\": 1, \"value\": 0.37696312313988095}, \"0.3387881324404762\": {\"frequency\": 1, \"value\": 0.3387881324404762}, \"0.23927471032739336\": {\"frequency\": 1, \"value\": 0.23927471032739336}, \"0.19389479423031122\": {\"frequency\": 1, \"value\": 0.19389479423031122}, \"0.4864042782442369\": {\"frequency\": 1, \"value\": 0.4864042782442369}, \"0.6156715988586157\": {\"frequency\": 1, \"value\": 0.6156715988586157}, \"0.49664014960060254\": {\"frequency\": 1, \"value\": 0.49664014960060254}, \"0.4875989695233548\": {\"frequency\": 1, \"value\": 0.4875989695233548}, \"0.6099478857750099\": {\"frequency\": 1, \"value\": 0.6099478857750099}, \"0.4721029565786331\": {\"frequency\": 1, \"value\": 0.4721029565786331}, \"0.3469434811079743\": {\"frequency\": 1, \"value\": 0.3469434811079743}, \"0.47962520867284075\": {\"frequency\": 1, \"value\": 0.47962520867284075}, \"0.22895546626589824\": {\"frequency\": 1, \"value\": 0.22895546626589824}, \"0.5623581097863884\": {\"frequency\": 1, \"value\": 0.5623581097863884}, \"0.14488291015625\": {\"frequency\": 1, \"value\": 0.14488291015625}, \"0.9190251543209876\": {\"frequency\": 1, \"value\": 0.9190251543209876}, \"0.34701015980887306\": {\"frequency\": 1, \"value\": 0.34701015980887306}, \"0.2918220623146139\": {\"frequency\": 1, \"value\": 0.2918220623146139}, \"0.27189968668329767\": {\"frequency\": 1, \"value\": 0.27189968668329767}, \"0.17581724478067906\": {\"frequency\": 1, \"value\": 0.17581724478067906}, \"0.2970780907755874\": {\"frequency\": 1, \"value\": 0.2970780907755874}, \"0.4282437439049875\": {\"frequency\": 1, \"value\": 0.4282437439049875}, \"0.3453620550463737\": {\"frequency\": 1, \"value\": 0.3453620550463737}, \"0.5775155779068846\": {\"frequency\": 1, \"value\": 0.5775155779068846}, \"0.22200041421207659\": {\"frequency\": 1, \"value\": 0.22200041421207659}, \"0.32387958829365077\": {\"frequency\": 1, \"value\": 0.32387958829365077}, \"0.3214872968389433\": {\"frequency\": 1, \"value\": 0.3214872968389433}, \"0.2334923093469006\": {\"frequency\": 1, \"value\": 0.2334923093469006}, \"0.5203871519538048\": {\"frequency\": 1, \"value\": 0.5203871519538048}, \"0.5395252821180555\": {\"frequency\": 1, \"value\": 0.5395252821180555}, \"0.15377258755588674\": {\"frequency\": 1, \"value\": 0.15377258755588674}, \"0.21445565940572384\": {\"frequency\": 1, \"value\": 0.21445565940572384}, \"0.40684105440206736\": {\"frequency\": 1, \"value\": 0.40684105440206736}, \"0.35723148921779263\": {\"frequency\": 1, \"value\": 0.35723148921779263}, \"0.3101859010183805\": {\"frequency\": 1, \"value\": 0.3101859010183805}, \"0.2041533935668157\": {\"frequency\": 1, \"value\": 0.2041533935668157}, \"0.254119388640873\": {\"frequency\": 1, \"value\": 0.254119388640873}, \"0.34999262605563836\": {\"frequency\": 1, \"value\": 0.34999262605563836}, \"0.06893965463789682\": {\"frequency\": 1, \"value\": 0.06893965463789682}, \"0.3343239969135802\": {\"frequency\": 1, \"value\": 0.3343239969135802}, \"0.3194052449448712\": {\"frequency\": 1, \"value\": 0.3194052449448712}, \"0.7337775142609126\": {\"frequency\": 1, \"value\": 0.7337775142609126}, \"0.3557519870839543\": {\"frequency\": 1, \"value\": 0.3557519870839543}, \"0.3555542663301428\": {\"frequency\": 1, \"value\": 0.3555542663301428}, \"0.21992790517824462\": {\"frequency\": 1, \"value\": 0.21992790517824462}, \"0.3802078927924611\": {\"frequency\": 1, \"value\": 0.3802078927924611}, \"0.62914390884349\": {\"frequency\": 1, \"value\": 0.62914390884349}, \"0.6004103818199921\": {\"frequency\": 1, \"value\": 0.6004103818199921}, \"0.25854149148688454\": {\"frequency\": 1, \"value\": 0.25854149148688454}, \"0.3697523030440234\": {\"frequency\": 1, \"value\": 0.3697523030440234}, \"0.36942910587086397\": {\"frequency\": 1, \"value\": 0.36942910587086397}, \"0.4871591315003961\": {\"frequency\": 1, \"value\": 0.4871591315003961}, \"0.245456681179831\": {\"frequency\": 1, \"value\": 0.245456681179831}, \"0.9231891618847992\": {\"frequency\": 1, \"value\": 0.9231891618847992}, \"0.26888086810730255\": {\"frequency\": 1, \"value\": 0.26888086810730255}, \"0.095465948198913\": {\"frequency\": 1, \"value\": 0.095465948198913}}, \"mean\": 0.3887497418265544}, \"image\": {\"progress\": 1.0, \"num_undefined\": 0, \"complete\": true, \"samples\": [{\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUTEhIVFhUXFRUVFxUYGBcXGBcVFxUXFhUVFxUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGxAQGy0lHyUtLS0tLS0tLS8tLS0tLS0tLS0tLS01LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAMIBAwMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAACAwABBAUGB//EAEIQAAEDAQMJBQYDBgYDAQAAAAEAAhEDBCExEkFRYXGBkaGxBRMiwdEGMkJS4fAUYpIVI0NygqIzU7LC4vEWY9KD/8QAGgEAAwEBAQEAAAAAAAAAAAAAAQIDAAQFBv/EADERAAICAAUBBgUEAgMAAAAAAAABAhEDEiExQVEEEzJhkaEicYGx8BRCUtHB8TNi4f/aAAwDAQACEQMRAD8A+WtCa0IGobQ+BAxNwXoXRKi7N4nF+bAea2BJotAAGhMTR2FaGBWlogUQUHKMOSwVZWsbKE8pSNDCFhyBNTA1LBTKZWsNJbjYQkJrURYtZkjOnMRBmpMYxCzNLcXkqwE3IVQiLVsoBUWo1SBRA5CIMVtREpbGrQW5iWaacSrDUbAkZ+6VFi0OCAhYF0Zy1UWLQWKd2mQjaMwYpkrQWoCERDO5iU5q3ZCRWuWMZu6UULiosAyMKUzxPJzNuG1XVfkgnhtTbNTyQBx2qb3orHVDWhEqhGAjYyiU0IslW0I2haw5UwA1HkpjWoslaw1QDQpCbkImLAW5myUTAtBp50IELWar1CYU1gQNIR94iK72LDU0BJY69aW3oNjRjZQCFwTwlOS5indi1RCZCEhbMbu6BCpzkRCEhCw5UCCiVAKwEbFohKGURYhyUcyEeG+QXOVF6hYgLUykI4MmWrCoU0bWgYpiaRYKTVCa6oFlq1FjA92rSTVUWMc8tyngZm3nbmW1oSLFT8MnFxk+S1hoULOqEQAjDVGhG0I2NlKDUYCIBSFrCo0HlKByAhWGo2khXBtjmuVghIyUbaR0oZ0FYcuAstAXoxQRNpQg8RDxwWLD9Skp2QUbaaTvB+5AYEymSmMorRTooKbHeEhQOlWVr7kQgNJDPZlh0ZJKkLSaCNtBbMbIZA1AWrY9mhUGJswrw7MgarATzSQFG7Fy0LKoNWju0mo2FsyNle4slUVL0L6iZEmq3IUFQq8UBKaxEugsuOhKeJzBOlRy1mysxkHQFFpuVI2gZZdTMwIw3UiAVsEKOY6u7oU1plaKbVTU+mFpTDh4VMFoRhqjL0xqRyKKBQpIe7TZUy0LDlsAU0cFECiCFjKJGjTemh7QghQUydBQtcmqXAfeAqslHToLa2wmJQeIhlhS3ZlpTmW6lQJVUaELW2q0CJC1t7G+GO5mfSICQV0CQUkWWSkztbj5E9ULpUJFyayzkYnitlKwEXynVKF0kjiErct+B45Nr1OXUs4zEFUbMuiyxggkEbCRPCUirRgTKVYnFjPC0s59VoAuWYCVqeG4JJphdMZVucs4t7APhC+jnT2ADC9DUcSmzIl3ckYqzVmjWt1RupJNPQE+dIm8KT3EhyWWpxpqBgWzm7t8GbJ2qi1aS3ahICZTQjhIz5CifKpHMhMkjK2kAiLIz9FTbMT8Tt4HqoaTc7xdmvXP9fY7r02r6hNBmMU5tIi+9LZSbmJ2wUxrBp5Qlb/KHivL3IKZk4wjLdCOnT0dD6JjWJHMosMU2mUbKZ0J2TqRtYdCV4gyw0KZSH3cnBgRCmnMbqQzdRsvQUykNMLZZrOJvhAAtTbOBEuAJzSJQckMovcIPANzRxhOa8mb41FZqdINnxTObP8AVG3vpukDXPMrZI8Cd5JaPXyRdWnBiEttATM3rVTYSJcBxPoibQ3rPEy7MZYedaoTZ6ZypW2pTLrxkzowQspE4CeJXQbZZAxB2KOJjN6lsLs6imkZGUjEHHaiZZ3tNwHI/wDS2UqJNzjxITmWPG87PF5BRl2hpUyvcQuzMLO7Ezy6grFabHfedkei67WsNz8NBnNtAlCbNTOmNWSehWjOjSV7nAPYusLIOyqgN1y9iykBg+kQMQXCY/lnFHSDTjkxMe9k47WqyxMTn3IOOFx7Hj3dkuAk3lZKtmcPhIXtK1nI+GP6soHlftXJt5nHy8lTDxW3QmJhqrPNvs4GJSi0Le+y5ToBvVVOy8nErqvzOL5I5b2jT1Wdy6L7MBr3o6dFmhMqEbbOZkom0ZXRNMfKobM4xAP0RtAabOZ+HVrousR0c1SOZCZWcJoac46I6ViBN581tGS34J23qzVAuFPhHopOcv2/4LKEN5tejKa0AXJVRjybsPvStVCq4H/Ddrw9FoLNJH3rUMzi9TqSU46f0Z6VF0CTzHknGg6bt+CZQZfoGe7HeU8MvxHD1UZSdnRGKoR3OlE2lsWgMH3CY1uxI5lFFMzspk4D73JoonQtVP7+wmZAObf9UucfIYcmMUYoh188CtzbOBfd96SDemspTmG2IPNK8dx1Q36dT0ZkpWRuvbJWqjZvleRpzHinijAwH3sS2ZfyA7DelfaJPkK7Nhxe3ov6NFAHDJa4aYM7yMUwgfL15pTbRk3lrm7buoRNc6peKhjRAJ4qLm7t6fnkVUVHY1WaoIu5EeaaXtJvcAdo9FjNkn4snXgesclTezW5q88+iTNhvd+wkm+EdKmwTIqAnRj5gq3tIwLduQIG7HmueyysNwfJGMZSdSqNaQ0vf/Kcs8iFtOLf0Fae7NnfEjEEaR4dxDplV3jYxjgOYhYrQwTi7geUhKfSGPinP4SCd5TxNkibnWoCDcf5SQd6VaO1muwpiRiZEn0QU7CXCRA2gDzQfhWzDntBHHkVeLoRwj1Atfaz8kAMiNc8QuJWq1HXlw4A8oXdo9luqGKYe/WGujiSuxZfYaIdWrBoxLQTwkmFeDbei9jmxpYeGtZe54+yNd8LSTsA6LtWTsGvUBL2ZI13HmvY0nWCjAa+i0jO0if1DFYbX7YWOm64Pd+ZoBHN08l1xw3yzzZ9rX7Is8paPZiqDdSJA+I4LPW7Kqs96nGyF6er7dUB7lN7hrhvU+Sz1PbIVLhQjXl/QJ6S5JrFnJ+A8rVo1BhSOox0uWGvZ65xEbTHJelt3aAqXGG7fVcOs5k++3iELXUt8XSjn/s2roHFWtJrUvmKia/MGvT89TiPLjiAjp0Jvkg719dfZJ96llTjOTdsELNV7Gsp96hwY8/6Qpd8mQUmt7PmDbNrJ3ou7jTxJ6r6TZ/Z2xg+5ud6EArPafZCg93gqlmhoiOam5JnRHtFcHgaVAe849fJaKT2HA/e9emtPsPUbeHl4/Kwk8Mpcev2ZUpnJd4cSMsFsxnGUFKSUuTrw+0R8hUgf9eafTbOcffNJoMcTAGUdUHhAWsUqkx3RJ0EG/dnUJQZ2QxolNiYnr5haWsCS9tVuNFjSNLSN16dQc4iS0ac133tUpQdf+l4YsW9vYaynfdyAT203n4btOVJ6Qsf4kjGlPGPqns7UYMzhsAx4woywcThWF9ph1o0Ch+Xm7yPkm0KOYDmkWbtKnMxUnHNOwX+S1HtRsgEln89Nx5hy554eKtKYjx09UPp2Fx0t1iD5KqrKTbnVRIxGUJ4BwhF+06IxeXH8oePols7Yoi9rKhPzOIk6pJMJYQxH+1/b7kXjMz0q9FwJDXkDG+/fJvG9ONagIuaNEg8hCjO3W5qIB0g47blnt/ahIgUg0nPeDyhX7qbdZWvqGM29zW+o1umc0BxMcFqdQYWzlumBdGH6jC8xZKxyr3RtvW2paqQM4nTeEZYOR1uP4laZuGQJywSNbg0f2kxwV2PtGjSJcLOC6bnGq6BscWQsP48OP36KVADfceAPE4p4YkoboMsLOtW/X+jp/8AlVXKJbSpmBcDL4zTlBwGcZlzbV27VdJLmNcRJ/dU9kS4fcIQ2m73jdoyjdumArFGiPdJ4TzVP1T2afoSXZIRf+zC/tO1OuNV0ajA3ZMRuXPtD3vvLnHSTJ54rumtSvABJ1egWV9pb7opu33eSrHtc3+0D7JhI5jKbSL5nT5QipG+I68VpfbQ0QWCfLbPkstS1iZa27XhyVFOct17gyYcNn7Dm0b74G1uPVXUoRhIOqQsj7aTFw6prLa+PdG8gcAUso4m48Z4L0F1KDY8Uk6z5rO5jZROqVHFR1l0v/tJVFJx8TJNKXhiBDNPJRWGDOTwj/aVE2bzFyvojezta2j46v6D6J7O16/xufrmmD1XgKvt284GqNjsnoUt3tq44urHa7/krd23ukeR3kFs2fTbP2o5xA7wNOujP+mV022uk4BtVwdqbSqt5L44fatpxFTfB80I9qGDBr+Xqg+z3yFY8eh90oWuzNF2WIu8IqtHKFdu7Xszm5L5cMQCHdDiviVP20LcDWGx0dHJtX24LxkvfVI/Nf8A7lL9LO/EOsfD6H0+q6wFw/ckzjLgwDgt9XtYMbNGuWZg11Vj27g83L5GPaakR72GbJIPIXqP9pqN3j4MPOGpn2Zvkbv4Vqj6x+3K7/C6tZHTpqPbxyCAuXaqAkudXswPytdUfvGS13VfOR7UUfnd+l3on0faOk6f3kR80jhOO5L+ma5GjjxW2h7Y12i4OBGeA7/c0IhaKfy3659V41vb1E/xWaMY+9qY3t6gf47d5Ql2ZHXDtjXKPX07VSBnIv1T6ro0rW1wvO4sBjZIJXhqfbFPNWYdj2+q02ft2nmr0/1t9Vz4nZXw2dEO0Qluj29lslFxuLrtoA3ZK6bez2Eg96RdENDAdxJ8l4al2sMe/pxrqs6Fy61i9oWMGV3tIDCRUp8LnY6l5+PhY3ErHlBNfC6PR2vsBpaAH1LpgOflcAAfJY7P2HF4FZ2xtNn+snoEyh7YUMmTXpAYSajBftla3+1llAE2qgP/ANaZ645lxd72mKytM5W8aGlWcPtLsyqXQLM9puv9+dpYA1ZR7P1/8py9H/5ZZcku/FU4094yOqqt7Q2aJNopZjJe2NM+8FWPa+0RVKP3GjiT/j9zzrexao+AnePVEbFUGNI7nN9V0qntPZXERWoE5oqMJOy8lCe2KTvdqNN2ZzT5qi7RjveP3OqE5VsjkmkM7SNo9YCE0yTcJ2ZA6Ero1LYDhUgbQ3rcs5cSf8UkH83/AMlXjiS5LGWrZYvMgfzMHQEyowtF5AMaYPPJWruyc8jTLo4qfhpHvsG0nzTd5a1NSM7q2iP0u9EBq3GGtB2GN2VhuWj8IALqlMjb9FBSaLi6dTQ7rctmjwZUYH2oj+E064PkFmNqdf4Y/p+q7ThRjB2+/lKUH2b5XbftyeOJH+IjT6nLFouvaMM8LM60OnBoG76rrvp2Yz43CfyzzIKwVqNmHxPO5o6wqQlFvZ+hOcpVuYHWh0+8OXootBFm/wDZwaor3H+L9COaXX3PlIRBqoQrBC9Y+dLDArDAiDVBr6LBorIGgKd2NA4I3btt/oqa05+iwaKFMaBwCvuxoCJyJsaUApC+6bo5K+5GgcEYbrHFER9grDZRYojQOCLuG6AiyhrRZOhrRuWCkB+HbnaFYs7dA2JjKeoEaifQJrGj5Ovmg2OomYWdvyBELM35E6odIARd9d6NB5oDpJACyNwyRO3kiFkb8o4+SrvRhgdBamwDdBGwEeqVoopLgzvsrR8M8eqv8IyPd6pwoCLhI0wCdkKxSGYCcflu1YIaG1MzrG35DwceaE2Bv+WfvaVpNOMCBvN2q6VYo3zn1EmeMJtBGr4Mj7AwfCBtxKX+FZ8oXVNBsSXgff3ck92B8RJzRyOCyaFlA5/4Nvyj71JjqRF3iwiJdhoicFpeeMah1KU+Pm5iTvTaE2qENbFwJGxxHKVTqIOIJ1kkprm33k7zPRU4j8x4+qakTbYg0W6OqJlPJ92RsJHQoi/RI1Xqy+cSefVakCyhUdf436/G6/nehc8/M8/1OPmqedZ4FBcM54LUgOTLg6XcT6q0N2l3BRGkC2CNnJQbOQTQ8T7ztRMJ1IzdIO3J8ylsZREsePlM7JRC0auUJ9SxuAyjd+n1Wcl32QhaY9NEyzoPRDUrHM2NpJv0pznSPdM7vRBGaFjNdBbLQ4HNwlGyrJv6Dop3f2CEYsx0HkFrRlGYeQYzHYCUDIGIP6QrbZgdA3+sIH2c6CULQzTWtDAWm4XcOiYGRjdtb9Uim57c5HA9Vbsk+8Tt+ysFNdP8DiCJ8WTsEeaGnRBH+INh8kunaAMMrZd6prba8e7cPzQeE4LahTi9yqZIwDuFx/tWhtR0T4t0fRJPaRxxdpLbuE47ldK1gmXztAb5CUNegycVopEFpM35X+noVpZaHR4coXfndPJMFqpkwC2NJZJnZEp9O0k+FryBnOQY3Nu6qbl5Fox/7fnqYm13TeHiM8O6SnPflGIqDWQWzuF6c0vvDazQMIcx7QdkuInaVodRqsF2Q7cW77seaVzQ6gzJUYwA+NwiCJJG3agYxpwJuzlrzO8XJptNRp/eNa3WHOPEAFLd2l/7G36G9ZBKZWCTiG6hAk33ZpDp2XXLAKQMl4IP5p3fFPJa3VmO96s0HYRzIWd7b5bUa44XvGGgTm1J42RnT2I+k2AQy7+rzlLDSbwCBqw6GFK/fXQ0XaIKVlVTMkaxAPIpkyUq6eww0wTAAJz4nmIVOs4FxLAdrugWUh+GGqAOaru6hzk7/qnIt+RpNKLg9vEzsMhD3A+I8XdICU2zvGadl/QqnXYwDovngVgGhtCmc7vvRclGiJOO8/8AFDTIOf8At81TjrHMdVg6B/hxpVIAHaeYURB9B1STd4AdcE8Ukhwvhv6R5rLSf4veI1ro2SgCJku2OAjaPqp2hlbAZajoG0DJPJG15OBIO37JT20WzgNoeSeAaUp7agJycpo/nHohaHVrcjbG8+9IGtC6yuBuI2wPRJcSP4gnceYCjXvxDzuW16mtdPc0Mouwyo3RzzIu7cNB/qnzWV9WqcSTtAPkqZaqjcHEbh6LZX1G7yK4ZoNmeT7rv1fRG6ykC8j+49Fn/G1DjVP3uRC0fnO/6BCpBjKH+zR+AbE3HbLeqB1JmbIGvH/chYC7Eztv8kbbI0/CdseVyF1uylX4YoECmP4nDJnhik1Krcz3cPOVodRpC4zO4dWqmtpDEu/t53BFNeYjjLbT1ZjdVGYE7Y8ks1HHPGxdT9yficOfIJgsVNwuqRt/7Rzx5sXuJvZr1OO3K0lPFV8RA3XHktwsUYknc8cwYVufTzMyv63dDetnjwZYM1u6OcWOOM9VbaZGDiN5C2vqU87Y2ud6eauaJzDnHNqObyN3WviXqShaKggd6QNcHmUNS2VSCO8fAx8fol2ilTH8N2o5jvASRQc7BgA2eZxSqtxm5L4b92RtVwuLnX7b+KI2k09F/wAzQbtN4KZZ7PEXls4SBedREcimOsWU4AvE6yeAknqi5IRQlRTKtUgQY1hjh0AC1Mtjh72USPl16QUFfsaoAPFO0j1lZ/2c9pm/aBI6rJxGkprhmlz6MiaU63OyQNZh16W9wi91GNAc8cQDG8ojYCR7x3t8iULOzHOMZbBtaPKUbQjUuhVWlTgGWbiXEby+CsxFP5x97ky09mFgkkcMVmFnb8zdhJB53JkxJJ3sMbTBzg/enJVmBiOf1SjZ/wCWNIk9EJYwZ+APmtYPoH3zdA4fVUplN0Hgosa/kYrPUh8i7HmtT7TOJc7UbhwkrHSHivuxWxtnBwe1LoBXwCXt+Qja67oox4nNwnqqfZzrO4oRQOgrB+Loa21WnMN7Y6InGLx3Q4g81nFmcM5G4hCZac29CkUztbo1/iHaafXqj8RvyGnWCsQftGw/VRkTceSGUZYj5/PU2EgY0XIA7O2jxkqMq1BgVDbT8TGO3eaFP8Y7lHl19EPp1XzJpjcDy8Vy0sGVj3o2jKHIyuWLYczQNk9ZQOtROInb9EHBsKx4rzOs6zs+Jw3ktPAgoDSpDO39f0XNFqd8zhsK0Uqj/wDMeNt44Ewg4NbsZY0JPSJvpWWmcHD9QPRG59Omb6pGxpJ4wVzhVJudXcOMcilmg74ZOsIZG93+fUfvqXwx/Pkmdj9p0g2CHEa2jpcs761lec42g/WOS5n4GofgO9WbG4XQOIRWHFbMSWPiy3hp8mddvZlI3tDo0ggpzOy2D4QRmNxK5Nnoll+XkHfJ4Are2tUgEFlQDSDI3EJJKXEisJQ5hRsbQjOTsmN+ZR4Mxku2kGByhIbb3jGmANZyeGUo7tBhuMzoDr+sKeWRZzhWgh9AZUlwOs3jhlJoJzOhup2TPETwRttDBeZb/MWg8jJRu7RZonb6lPb6E6itboxOouN7ZA0mDO1z3GeCSXPFziyNBm/p0Wir2g35OAYed6zttRJ8EtGYBgEbwFVWQk48MZZh8rG6zkiOTlKtSLsof0wI3B1/BZrS8uudVJGiPsJbKFxgADSY803zJN8JGsUs+UQDmu6OiVltNRrTdSE6XRxgXJRcALyTsMdQgdWGb75p6JOWgxlWfhaNd4HJVWePlG2Skmsc5ISw4aOKwmYd+K1DiVEidQUWNmYkYro2ZgjAYFUol4GjuHSumFK5gGNKiiHI3BnyyQZJTLOfEFaiMtjQ3QXaLQCIEXZrlnYVSi0PCHF8bCcUsuOkqKJkSkHSTSrUQe5SOwdI3IbRUN154qKJF4iz/wCM39msDh4gDdnE9U99Bobc1ov0BWoozfxHThpZEzHbRDRGfFOsVMZGA4KKJv2CL/l+hz7S4tvaSDquT+zrS8vaC9xGjKKpRUkvhIwbWIehtf8Ahk54xXIdgooufD2OzG8RyapvSziooutHly3GMeb7yrNQkXk8VFETXoUGjQjtOAUUQe4VszLKtwVqIkiigUUWMyKKKLBP/9k=\\n\", \"height\": 194, \"channels\": 3, \"width\": 259, \"type\": \"image\", \"id\": 4908206352}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxISEhUSExMVFhUVFRUVFxUYFxgYFxUWFhUXFxUVFRUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGxAQGy0lHyUtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAMIBAwMBEQACEQEDEQH/xAAcAAACAgMBAQAAAAAAAAAAAAADBAIFAAEGBwj/xABBEAABAwEFBQUFBQgCAgMBAAABAAIRAwQFEiExBkFRYXETIoGRoTJCUrHRFFOSwfAHFSNDYnKC4RaiM2Mkg/EX/8QAGgEAAwEBAQEAAAAAAAAAAAAAAQIDAAQFBv/EADQRAAICAQMDAQYEBwADAQAAAAABAhEDBBIhMUFREwUUIkJhoTJSgZEVI3Gx0eHwYsHxM//aAAwDAQACEQMRAD8A8Ta1wStploxlHksbHa2wcQBO5c2TG+x24skWuQbaTXb4zyy/NM5OINqkWFgsMHXLn8lz5cvBTHj5L6nd9Km0VHEPkZNnIdQuF5sk3tXB2LDCK3MrLQGEy0EctV0w3VUiE9nYgCiISBQMTBQCbBQCSCBiQQCbWMbCDCEalYTZQMCeU6FYAlOIzYKxjYcsYm0pWEJKATRcsYgXI0AwFYxMIGJhAYI0JbCTAQsJkLWYi4LWYgQjZiGFGwUU1azBhLXOEjUa+q7YzclaRKePY6bAWdrMQxDLfGRjlzVJuVcMSCjfI52DS44CMO6cjHylR3NL4upRxTfw9C0sV3squwtrNbp7W/jAC5smWUFbj+xaGHd0ZO9bsNEA9o140kbkuHOsjqqDlwSxq7KkvC6qOY3jWoxIFCghKbCRKVtIdJs2EDEwlYSYQCYsY2EDBGpWEm4IGF6hVEKwBKcQ2sY2FjBGJGEmgEg4ogIogJBAxMFAYI1KwoO0JGMgkIBNFYxEhYxEhExCEwDkn2nkvWUDilkFnViTKoopHO8jbCMtJ4oOCKRyvuSFoPFLsQ6yOxz7S6IkwpemrstvbVWQbVg6E+KLjYE0mPMtri0tIEdNOig8SUrRb1G41RptUnu7kXFLkCD0+amxhmzUS8wIHNxDR5kqcpKPUKi30GaljcJgtcBvaZnpvU1kQ7gyL7OW6/OR5rKaYNrRnZGJjJbcjUZgWs1EmtQsNGPCyAxWsVWJNi+JPQpvEtRjYctRibaiVoJLtEKNYN1RMkCzA9agEw5Cgk2pQjFIJGx0MsapNjomgE0iY0QsAg5EwNMajigwr2rPN2N9TZprWFwI9mjYnphaTAlk2VjFIYaApOyiDsZO5I3Q6QyKA4qe8psGKTGxqpybsooqgopU9zs0m6fg2yPkBKcmHY8hI0hk2FbUStBsJ2p4pdo1mByFGCNQYUResjMRrq8SMhZVJmLGNhAxNqDCbcUEjMgmATCVmCNSsIem1I2OkOUmKLY6QYBIMYiY0sYiUTA3FFABpjHJhy9ajkBuKZCtsgQmEaZEIirgkOqAyTsK1xStIdWbBchUQ/EbY53FZpBTYWnWSOIUy2sdWj75d4fmuTJHJ8p0w2fMx231qTiDTy/p3eCjijkXEimTY+YgGZp2ToKAlsNBWUSdyRyQyiTYErCkbqDJZGZXWgrogRkAJVCZorGNhYxKUAkHFFCs1KJqJByFGC0ykYyH7NTJUJsrFWWFmsj3GGtJI1gadeChKcY9WUjBslXstRphzXAnQRrOiEZxatMLg0RrUHNcWkZt1HDr5oqSatAcWuCLaLiYDTPRbckbay3s1xDCXVHhp3Dj9FzT1PNRR0RwLuZSuZmehzAEmRxJ+QQeokMsECxp7OUoEtceY08FJ6uVjejjPLfsZjRfSeqr6nm+mCdZGp1kYjxxAusnBOsgjxA/spTeohPRM+zHetvN6QRlnSuZRQGGUlNyKKIcWMuHd14KfqpdR/TvoCN2vG5P68WL6LB/ZH6QU3qRF9NhqNB3DRJKcRlBjdOnUmQouUCiUh4MfAULjZSmXV20qhgh2Y0kSB0C4s0orsXimW7KFM/+ZrDHAwfRc++S/DYzgn1N1zY2iRTiNJEj1WTzS7g2xXU4u+XMxS3eSV62n3VyceZLsVeJdVHOPXZdlWu4NpjEeE6DiQo5csMauQ8YOXQubbshUo03PqVGBzfczzzzzOmWei5oa6M5bUmV9B1ZzL3RlK70jnZoU3GIGpgdeEo3FdTbWy3u3Z81HtY6vSZIJOZLmxuIgCfFcuXVqMW1FstHTybq0BpXUcbmlwhriJkd4De0HXJNLOtqaBHC7pnd3Rs/dz6YhznOje7CZ3yOO7yXlZdTnUuS6xLsuBu0bGtdJoOAzmDuy0BCmtVL5uTNKJ1V20admogOABgYjEl3M89Vzye58iTUskvh6C9W9KLs2tY4tzBPdz5ZJdtFY4Zd2c/eF6PzLRSE5aZx1IzVIQXcslRX0q5Ob6obBzGExnuy8VVx8IZNk7VVspHeqknkCEIxyJ8IzafUVFSgDlWcPAn5J6yP5QWl3LYX9Q+8P4XKPu8/A26J5oSYhe9wcNsWfSVVIRo1TrhvugrSg5dzRmo9hjtmO0GaTbJdR90WKPjgqqyToEXCU9CtjVGmCpSdFIjTKYUWyqGGAqbY6Y3R5gKUiiaDsotPuhTc2u41J9hunSb8IUpSfkZJBmWZpOYU3OQaRYmwVMgGkAiRA1HHJR3rqG0EfdtPe6HDj+YWWWRqEbysdJwJxGeo+SriyTi+gsopnN3ls3X7PtmtOA6T7R5gcJXpYdZj3bH1OOeFu2iNHY+1OpioGgg54Z70fFHBM9fhUtovu8qLO5Lc+xYeya2q9wlzQDjmdMQnIdAoZYrO25Oki+xY411sfr7eV3Nwus1PE4DNwMET8J6jekWhhd7iV12YepczqwZaBQa0jCWtYwNbIzONriZMxu3KHvOy4WXeKFryZXuK01ZdV7NpMDugN8/l4ILU44fhv9RljvqEp7FimxxqVIJ9mB8yhPXNtUhYY4t0hB2ydZuEhxcMyTMQOh1Kp79CXVUH0a6MZslF9MT2TnRqC0iOqlOSk+o6TXYtxenZsa2nSwu35GBKjs3PlmcSJrWmqOvHd5rVBM1UuEQpXFXJHeblnmRnyTepHwK5UWQukl7H1Kbe5wM4oGU8eKn6lJpA3J9x600aLwWvDc+XKNYyU02uUzVIr37O2fgfNP6813CuexllsFlEtFIkiZJzCEsk3zYXF9inq2KnJhpj+1UWSVdSmxHItsDnbsP92S9Z5lE5VjbNsuCq52Frmfi3cYWerhFW0ze7zbGrDs0GvJquY5rfdBmTz4BTy65uNQTTHhpadyLB1CyvMOptA0BykeS5lPPHlSZdxxvqiuvC4LOx4AquEmc2yAOBOJdOLWZZRvaRlpoJ9SpvC6KVJ3frNM5hrBJI6nRdeLUzyL4Y/uQyaeMH8UidkslF7gGPLdx358ZMJcmTJFXJBjihJ/CzVpaGPLQ6QMpiM9+XVaDco20CaUZUbZUQcTWWtnu2uWhwpPggkGNQNVzTy406tFIphhRe0hrmuBIkAjUKbcXymOrL257CKrTLQ2NXE5zwDVyZZuL4ZRMs7tslnaf4lSI3GM8+HRSlKTBNzX4VZaULbRnJ1V2RADQAGgnnvgBLVEZQyPwI2i4TVxPpF2Z9mo2HERqHTDj5KkZBebbxP7FpQ2bs9nouqVQ0tDZeXwSPAaBM98uhyvUuctsTxy/Nqa32p1SnVOAPOFgJwBoOQA5j5r28GixvElKPNde489RKEuHwdrd37SrO+kO0ogVGhzS33SDpHHx5rz8vszJGVR5XkMXCVtSaLazUKNV7atns9Q9oSQYAYAAQRIyGpC4p7/wyZ0KWyPxtDd62FgJdXoMGDC8HESIA4QJ0OSWMpR+GLfIMclNcOxy7dqLFX/h0jLgAcGTZ6EwPzTzwTxq5RaOZ4sm61JMtjTmCaJ5Q5p/NS48E91cKf9yut1va1wFWgf6Yzcf1n5IKmdGPG6uEx1pcQMFNsRvPluS9exN0n8UhK126kw4awFMnnI8cskVFy6IpGMq3Qd/YqK1+WJs/xi8jg0+iotPkfYrvn9EVz9rqQkNpEg8TvVVpJ92bcvIGrtZIhrIO7PRFaR92NuiKO2krYtYj3eif3aNG9ReDprDb2VGhwc0E6tLgPRccoOLodit62ptPU6jKNB5TCOODl0HTS6lBVvEyRTe+MpM59Oi644kl8SQrd9Af2t33z0di/KC35OeFF7syT5rv3RjwiNSZd061NoaGjdE/VcUoyk22XjSQteVrfhhgg8eqphxxv4gTk0uCrslmqglzz+ty6sk8fSJCMZ3bKnaK8Kj3YSfLf1XZpMMIq0jn1OWT4KbCTvkrstI5Kb6sv7mY9rg/4cyfquDUOMltO7CmnZZ3lftKq0A0WhwOTgSJ6gcVzYdJkxu1LgtkzwkqaKeheb2uxNIb0H1ldcsEWqZzLK0+DpW7aWltLC2sZJz0kDllkuBaDHuuuC0skWraTYqdo7Q4y6q885T+6Y10Rlla6Fpd170hGI1D8QxZH81y5dPPtRaOReS5o3nYsU9kTxJefPiud4stG/X7HRWO9KJIFKQCMtDEajMLnlGUeqFeOTXLs6qg9rxIdh3AmCJ1yhMnu7nmTTg6as5T9pFKpSsdR9Oq54cMLwXANDSRoBrwhdGnivVimy+DIpWnFJroeCmmDOYBX0ttE6strnu8OIAhxyMZga5z4Lk1GZxVvg6MOJN+T2v7NaBZ6QstZtNsDJ7cg2M4MAyOeq+cjNbn6lv+gZuG9px5PKv2jbTVa9UUO17QUoGJowgvjvQ0E5ZjyXv+z9MlH1ZLr58E80lD4IKjnbvv6pReHBrMoBBaTmJ7xz1z3cF1ZdJDJGm2Lj1MoPoenXVf1aowveXsbhDxhkd2BiOeRyk5AL53NgUJKEXb6HpKMZLdQz//AEMdo9rmtfTBIY6DPImU70EnFPucahjvh0KWzbbExwY5zXjNriNeXL/S0NDJNbuhW8fY5K0259Rxe9xc47yV6EcSgqSJuVgu2R2gsJTr5pXAKZe3RQFTNonj16rizzcOGdWKFq0O2yxPMjCf7sp1mJUceWK7jvE2bq2ZtOnAbiMzJzz5ILI5y5Y7gorgFRqE5udJPH5QmkvCMl5MNFlP+I8gNmDHA71lKU/hj1M4qPLDEWQ59oEv89cUCoMuH2SxsiYaCYBJynqoKeWfQT4kroAbNY3ujE0HTkU27MvI1vwar3RTEBnexbkFml1Y0Wq5RXXrs+7snNYRJ8MuCvh1SU05CtKUWkc9WuppaAacPAgk+8RwXdHUNStS4JPEmqa5Kyns5UZ3sK6pa6EuLOdaZrksbxsnZUXEj2oEc/0Fz4cnqZEl2Lzjtg2cqykSV6jkkjg2tsL9gqE5NJ6CUvrQXVh9OQSndtY5Cm8noUrz413QVjl4GKV21/u3/hKnLPi8odY5eC2slwWsx/BfnyIXNPU4l3HUWWlPZ61NzNFx5RK55aiD4soq8oYtlC1ODQbO4YcgQwiPIKcPTTfxDOR0uxlntnaF9TG1rQJBnvAkCI3rny7fkJZ5wcalV9jrr9uWjWs1RtoMU83zk0tMe1w808ITx/zF2POx5n6iUV14PnW3XK7tHNou7RoPtDgdCfqvexapbE5qmdc8D3UjoLguutY6naVQ0MGsnJwO5omSYBXBqs8NRHbDqdGHHLG+S1/aRtQy0WdtKg6Qx0PIJECNI3yY3blP2dppRyXkXbglOOyMmnyzzGzVcLg6MwZHCea96cbVHHCVOx+ndlSu89m2SSDA172nqoPPDFH4mV9Jzdo9U2fuJzbBUNWqKQczsacmIzDXOzOpzECF4GfKpZlKKvmzrc2msS/UHS2GsxyFrGnFpM7zA3Jnrsn5RHGuzKe2bC2tpdgaKjRo5pAkcQ0mV0Q12NrngR0u5YXfsDLQatdrSR7DBiIPAmYHqoZPaKX4EPsa7D1HYCiGQ6pUL8+80ANjdkZ0Upe0Z3wuA0isr7Elvs1g6NRhg84zKde0b6xKrCmW933aLNSIaXEuzLjA3bhO5cmbM807Z0QjtVFPbLbDjhqB3+f5SujHitcqv0M50IvvQjV3geCstOn2EeUhTvbIuwOLQcyB3QeZ3Jnpu18i+t9AVr2jLxhNNuFPDRKLu+RJai+xWOtYn2GrpWN+SXqLwdfWrNrCXMwgZjMEfReRGMsTqLs9PbuXJKz2mnQaX4GzrJPhuGq0oTyySsm4qKsEza9kd5sRph/2nfs+XZk1lgWFgv42icNJ2ntYgMxoM1HLpvS/FIaEr/CL2mo7EA+kNdcUnlwRjFV8Mh3fgsKTy8tHYuIGsZn0/NR2pdxW6B3lctKu3vGoyM4NMmPIKuHNLE+OSc/iX+yitF02Oj7Vbf8ACQfIhdaz55/hQqhFdS4u+/brogN75PHCoy02efMl9xJOfytFjS21scEtDmncXMyPiDklejyrsJslJ/Ezna219vxEsBwk93+HOumcZrqjpsVcvn+pmo30JWXbO303Q9zi6MmuYPMjIpnp4dYv7i+lCS5iEftvbHOxCpAG4AQeoS+gvIfRxrjaWdbbq2Pjs6Y03Ncc43eYKn6fmQq02JdrAVb/AL3aIcKwnP8A8UcN+FPUPzfc0cWFvhI6i87AaNAirWr1q1opNZgMuaHEgugCAG6DPh1SZUoVT5dMjgn6k7UUoxbPL71uy12eoX1P4LAWMJaeoJ7vLFwC68WTFOOxcvk6rb+JPgpdsrXLwA8vAAcCYgg6HU59Y1XXoMdRbqiOpnz1Ofr2xzpGgJkgZCQImF3RxqJySy2BpVIIKdq0JGVM9y/Zbc1nfSbXORLQC0xk5p9qTqCcxEL5nWSbzOE3wjtzZZQgvTXU6vavZ6nbaYYH4S2S2DIxHe4BSxyWOW6JzYckoWpLqcef2fhjS7tSKgEDNrWkxxjT9c071cnw1wdkckb4LSz3eAwMq2mH6nCRLeAB081yvbutIs8s+0RO0UqjXzSr0zI952cDk12uqy2V8SHUm+wS0UaGD+JXEkTnXc0c4DVobr+FfawOUr6FPVrWCnkawOZ9g1HHrJyXRszy6R+yNv4/2Tsu0l3UfZFRxOrnAE9JccvBGWlzz6k3O+/9zdbbKwTPZOP+DMvMoLQ6jz9zbl5FrRtLdrjLqIceJptn1CaOj1S4Tr9R98PJF22lla3C1lTDuADGiOEIfw3PJ22rG9aCKK1XtZHyRQmeYGvRdcNPqI8bhXPE+xWG9aG6hT8XO+q6vd8v5n+yJepD8ozUr1WSBnEbzGXzUlGEjocpxBMvytMEMdB3tafmE70mOrTa/Um9RN8M6O6rxr14As7HQd7W+WY+S87Nhx4vnZaM3LqjsbJd/cBLWUz0AzXmuTb6meVRdLkHaNmKVZ2OpDjkAO0IA8G71THqJ441HgnPMn1TGbNs66mIY4saMyG1HeMudJWlkcnbSbJvUQ6c/sXFlu0hsE+Zc4+ZMpKb5OeeeN8ETdon2BrmS0blqkhvXT6v7i/7rrFxc3EQMogZjrwRUZvoU94xUlKhmxXLWDpLnxrhMQOipHHN9iOXV4qpJFsywO31KvSVVYX3bON549ooYo2FrTilx65/NVjh2u+SUszkqpCtuuyymXVLO0yYJ7NnqdfFPLalbsbHky3UZfdnM3qbCx7GU2dmZgvDHYWE5Aye6c9emqhke/mPQ9HAs6i3N34GNmrwDnv7aswik6PYgOBHdOKSN+nJaGyMlKXQXU45bahHl/Yubxt9nqScebWnMEQCZAPUZptTmx5ZWvBz4MGaHFdWeIbf2x3a4Q4ObGWm4mM9cp9V3+zcacbPQzyaVHC13lxJO/8AWi9qKSVI8+bbAEJyLRqERaLC7L0q0XAscY3t1aRwLTkVDNghlVSR04s0oHZ1rRa3UxaKdWqWO3DEDTESAYMQBvXjxjgU3jkkmvuehLft3LoVdepaci9tXOC0uDs+BBK6Ixw9q+xO5i1W3VQcy7EDvmQfFVjig1xQu+RBtodrJHii4RNuYOtaHRqjGCvoCUuCvfXf8RXSoR8EHKRDtSN58UdqBuNOr80VADnXcj2hPvI7UuwNzl3AGqRvT7UReVrubFY8UNqCssgrWu/QS2iy3UdpdtJ5qdnUmJiNR/peLmlFQ3RPVgpbqkXdXYqoassADdQdwK5I+0FsqRpRhdpnW3JsxWpEE1RA1Eb1xZcqydictVBKupe1LLTMh9Rpnk3I8uCjVdyCyTXMYv7nL3w20WeoHfa6DWQSJZGmgIAJJXXjWOa27W39C8Zb43VCdp24b2fZugkD+XAY+fAOHin9ym3x0+vU0YY4vcLWbb1/ag4C1mha094wOeXoqvQNR4fIrjCSqjprJtl2j8LQ8OIypkYjpqC0+Oa5Z4skFuvgT3OFUzorDeVRzmse8AkSe7hnkASljlk3VnLm08Ixcoqy3tFWo0AMaXmNSYHiup5MkeI8nFCMJO5Oilq3rbqYJqWYOb/63d4Cd88kHmy18X/fsda0+mk/gnz9QtS/CcuyrNkZOaRlO/Pf1CR6ptc3+5loq6Siylva4LTaw3/5RGRADqRaTmPaIdG6ZCbG4t21b+pZaiGG0o/s7OKtWxltY+KkhgdnUbL44ODRBK6XmhFdOS8M0cn4WasVx2qqHikXuzyxHMjiZOXTmpPLjbVotKSxq5MeGz9q7CoaxLA2YDcPegez3TopucIyTiv3As0ZPbfJ5neYGIgkkzny6Fe7hvbwc+Rc8lXUDea6lZCSQuQqEGjWFazbQ9nsxc4NGpIA8Uk5qKbZSGNt0e5bCWVlCi3G+IEQXbznPRfI6vLvytno5oSUFCKOir26zmQ40iImSQR5Ln+Lsjnjiyrnk5S/rVdxGJzaTiNwa6fQxC6cK1PSHB0xg1+N/c5irbLucSewYAObxPRodC7lDVx+YasPcobwtNmJIp0AOZfUPpiXdihmX45/ZEMksfyoqjG5rfX8yupX5IOvAB1EJ1JibQf2dqbexdiCU6DOCVzl5KRxw8BfsdI6pfVmhvRxvqCN3s4lN60vAvu2OwwsbPiPmk9WXgqsUTvn/tCY1v8ADszA7LvOO/mAF4sfZTv4pFpZU+7KW8dtbTVgy1pGhYCPzhdWP2bij9f6i+s0qihF9/2qr3TUe88BMzxgalWWkww5pIyzTfCAO+0tEllYA6kteB5kJ6wt8NfYW8i8jtnuq21mgijVc3dOWR3tDiJ8FGWfT43Tkkxqm1yaNAUXGjXp1e11DQ4CJEgwAZR3PIt+NqgpJfiQWzMFRs06dSZjFLQBG7dmkm9j+JoeKvomWt2XvVsmJtKi4OdmZ73kRqPErmyYI56cpdAypcNAX3pbwW1IrQXd0ljoJB0BIzORyVFptPVcAc74R0Fi2nvWiYqUqzu0ADQ6m4GdMsvRReDDXwTr9SLxYp8tLjwXrtsLx7PKxEQIlxz1j2TBmVKor4XkJrSYXKyktu0N5+040qQOXedTEb9HOkJo4sLfVv8A7+hdYoJUl/cXrXtbnNE2ug0f01qQPUgGfJMsOJfK/uHbH8v2LbZt9pqOfjr03ta3RlRriXHSY8deG9c2phCMfhTT+oXJLt9i47INPddhLgTIOQ5yuMfduXKujTLG/DD6hJzJg5HyWb5tA9SKfCOFtewh7z3vEOJII3akT6L1o+06SSRvSjJs5y8rjpMe3OGmAYmAchOefNd2HVzlF8ciTwRTL27NibOW4nPLpGQGR65rize1MqdJUPHTQRS3lsu+k8kNBbu1z/2uvDr45I03yJLT07Rly3T2rhAwEEGTyOa2p1Ppx8jY8VneXncbKrQ1lcUwP6C6Z035LxsGo2NykrLTc2qSOdt+zDaTZdapB4Uz8sa78eu3yqMPv/oT0pVyJ1dmxEivP/1nf/lPoqrW/wDj9ze7SFqmz0Ak1WiBOhj0k+iday3SiwPS0uWVJsg07al5v8/YXYp/+L+3+SHpLygDqH/spx/d+UT6J1L6P9hHj+qIOox77DzDtfSUVL6MDx/VEeyEe23p3voju+gPT+qCNpAe+3wxH8krk32HUEu4Q2dkZVB5FLvfgb015BuY0e8PCfomTb7AcUu4EhvxehT8+BaXkI620R7NNzub3adAyPmlWLI+rS/ov8m9XEukX+r/AMEqN6taZFCn/liePImPMISwNqnJ/pwZZ4p2ooyte1V5nEQPgZ3GAcmtgIxwQiqr9Xy/uZ5pP/RKhedZpltaqD/e7y1Syw42qcV+xlkl2YVl7V/vqv4z9Uj0+L8q/YdZZ+Swo7TWsODu3qT/AHHPqN6i9HhqtqDvvqCqXvWqOlzzz0E9SEVp4RXCH9Rvgds99vZ7NRzd8tJBnjI3qMtMpdUPvXQhar6tTvYrVoOZGN0Tx1TwwYl+JISVvmKFGVrU7uh1Z05xieZ5xKo1hXLS+wtTJE2hgM42g65kT1S/yZvihv5iROjZKzhiDXEcYKWWTFF1YyjNhhd9oP8ALfH9pS+tiXdB2SLzZ+7rYJZTY9ofGI94ZeELk1GXDLlu6GVRXxUdLeVlr0qbWHFGQBjMH9dV50XGUraHxzhP8IGwW2tnTLpcOMTqjkhH8SXA+yPci/tqmJoxc9fRZbI0w1FFHbNnqhdIpvcSZOWZ6Bd2PVxqronKMetlvYbntQaP4TgdwXNknBsyy411ki3/AHBWa3E55LjHd3DkueU12QkNVCUqK9tzVZw4NOg1T+si3qY0rsyrdNpya4HLTNZZYLmjLLjfckLpqObDhPNL6yTtDepDpZztSxvNUtMQNDy58l3rLFQtBSbZNtgc4HvZN8zlu5IPMotcdRttlReWzTnQ/GydCCQDlvOeZXXh1yXw0zmyaXc7sRqbLv3Z85y9Fda+Pcm9E+wahsu4+05oSS167Jjx0XlhHbMsbrVHp9Uvv8n8o3ucV3Mds0B7+R0ymVvfr7B9zXkXtFzMbkakdQqQ1UpfKLLTRXcqLRSpNn+KD0C7ISnL5TmnHHHrIC5lP7weSe5/lEax/mRZUtjrUYloHXd5Lml7TwLuGOimON2JqjV7PPTwUX7Vx9kysdC/JY2TZPCMMguIzz+XJc2T2jbvsdMNLGKN/wDB3wJcwcSTkFv4rG+jJe7Roesuw1H36zj/AGMceucKUvamR/hj+7B6MV2LY7N2NlPu0KlVw/xJ5y6Aub33PKXM0htlcUiqN20w+P3dUwjeXOGfM6R4rp9XJtv1VZqjdUWFipUKfeq0LKw6huJ73DP3oaR6qE5TlxGcmGn4/sPm3sy7M0WNiHA03Z8xDQo+m/mv7f5Ntkl5/U1UvBwEtdZCdMOJzDr/AFACEVhi+u79gW1xTHLIx9VrTUdRzzwsDHCORJ9YUpbYSaV/2M5UuP8A2XNKlTa3DB6yGnwwxClfJztzb6/b/Jp7XN0LxyMO18Eb+gVUvBqzWd+naO4kAkeec+S1mySiuaBW26HVCO+6BGrnHTqjFtBhqIQXQ3QuujTM4HE/FmT6rObfDM805dGiNpt9nYS11RgPDEcQ5kLLHJq0mZKbr/QvaK1MFru/mRDhmfmhFN8FlGdVwNMtbZkPeXDKC3Eek4oQJPFKuiobs7ATJdU13yB0iIQIzbSpJDLnRI9TH5LE0r5FXBo3jPLUgoFlbELU8GW6EDXXoh9Tpxprk5e2vdT72ESDEzrul3gu7GlPizpboFc9EF1TGZzBBBBkcwMp0T6iTSjtNGzV83NSrPDu1wd3Md05DfrkUdNqp441tsWWPc+Tn6131KTSRWY4DUNdmd2nRehHNDI0nFr+qJOM4rhiDryluGAAN4nFw9omVdYKdk3lbVCtS8GN952XP5Roqxwyl2JyzRjy2BtO1r4hsndLjMJ4ezo3bOXL7WUeI8lBabxqVDLnFd8MMIdEeXl1uXI+WKlyqcrk31MlYFnq9ndVd7Tqg4ZD818pNQj0SPt0pPqW1LGBnnGcw3Mx01XI9rfBaimq1a2PGHHXXKf9BdkY49u1ojLddl+y0VMOZBPMgea4HCO7gp2GKNZ+8jTcQpSjHsCitrPwvLpe4ZgDEcMneYK6oq41SX6AaVjtGi1477s+R/MzKjKTi/hRqMr3DSqZtcWzu3eC0NXOHDVk5fUpL0u+nT7odVqOBzwwB0ld2HNKfLSQrjwMXdQY9s1KBbhdIAklwjQyZKlmnKLqErsZRtcotxYz2ZJeWCY4EDUQPyXLvW7hWNaugdgvhrKwp43PnUVCMgNSOJ0yVJ4JOG+q/oTnBP4e4TaHbwNpPFNsPAGEkAyTyVNPopZJLd07nL7vHFbbsnsTtY6uD27Whw0IMAjfIS63SrBJbOUB4nkj8J1pvSnE4mx1XFbI+7T6UI27aGk3IQ7xTKEn0RbHpJPlujyzaCxNq1H1e1DXOM5mABwJXuaXLLHBQ22XyYU+boNdd7PstPs/tVIiZAd3oB4SlzYFnnu9NirbBfFJDti2+caverURT3tAAnxKnk9mNY/hi7JxyYJSpyX7lnU/aDSZMVmEboMn0XPH2ZmfysactJ1cl+5U1/2hg4ix4kmc5A8AumPsifG5A9501Umjn7RtbXeS77TBgxnHkPou6Ps/HHjYSeqglxJIUO2dpDS01WkmO8GjFllExnoq/wAMw3e37kv4jS5kiutO0tV0gvLgREbl0Q0OONUiE/abvjlC1O+HNHdc4TqJVHpoy6pCL2jtXFm61+1HiHEmBGqEdJCLtAl7TlJU0JPtrjvV1iijlnrJvoD+0O4ptkSXvGTyQc4nUopUTlOUurIoimLGMWMYsY9Nq36SO6A08ZmV8zHSJPnk+1ed9ht16VgwF1Mwd8ZQdFJafG5cMfdNK2hH99n4R0VvdPqJ630NVL8ByLPUj5Ix0rXRmeZPsS/5I5ohrQBzJPoh7iny2D1/CA1NoXEQQE60STsHrEqV/O5IS0aCsxL9/VJ1zQ9zgH1Wbbfr95lB6SJvVYF20Dm6Tx1TrRJivNQnbNqqjgGnQcXFXx+zoJ2c89XRV19oDMw2eImfNdUdGqo5J+0Yp/UVtV/PeIMepVYaSMWc2T2k2uEEuq83F4NSqabRqWwHHkMifQpc2Bbfhjb+o2m1bnL+ZPal46l1bdoiGGnStFMsPGkH1OpqPpzPQrlxaXm5w5/rS+zO3NqcfyZP7/8Aw5q2PgAi0YyZkAPBHUnLyXfjVunCv2PLzzpWstvxyV7qhO8roSSOB5JPqyMoi22YsbkyVgWZKxjSxjFjGLGMWMYsYxYxixjFjGLGMWMYsYxYx6YyrZ6Yww2eJzIO4hfNOOabs+5Xpx4JVL7OWFzTxnJBaXyh3mXZlTeFsaZdhYXb89fBdeHFLpbo5s049eLKStbhugcl2xws82eqgu4rUvBVWE5p66K6C7rcdyosSOaWul2RjLxqDQ+izwwYi1+ZdGE/e1Xj6BL7vAp/Es1A3XhUPvJvRh4JvXZn3AOruOrj5p1FLsQlmyS6tkCU1E22+ppYBixjYWCiYCA6TNuQDKwZCYm0Ep05SuRXHi3KzHNWTNKDTNNYs2CONN1Y/Qulz8wQoS1Cj1O6Hs9y6Mm64K3wpffMfkL9l5OwN9y1Rq0plqoPuI/ZuRETdFTgj7zAz9nZANWxPbqCqLLFkZ6PJEH9lfE4THFHfHyT92ydaB4E1ktrujZplawvG0RIRFaaNLAMWMbhY1GljFkLRPvLm2V2PZWpUvmA1rQ7iqRgjmzamafDF3VXHUlOopdDklmnLqyCYmZhK1m2s0sAxYxixjFjGLGMWMYsYkGHghaGUJPohmwWJ9V7abGkucQGjiToAkyZIwi5M6MGCU5VR6zs7+xmtUaXWiaRjJuRJ67gvLy6nUyv0cf78fsei56PFS/E/p0GL2/ZRSs1LtatWIBhjc3Pf7rWz6qGTU6vH/8Aokr+v/pF8OTT5p7cUG/+7nBf8QqEy5zRJ0G76Lo/iUEuEF+y90m2x+x7LtpnvHFy/NQye0HNccHTi0MMY7UuagdWZqC1WVdGXenxvqhEbPUgdFf32bRJaPHfQap3VTb7MjxIUnqJvqVWCK6BTQcB3Xfml3pvlDbGlwyLnuiCJ6//AIslG+A8g32g/CmUF5A2BdX/AKQnUfqK39BK0NDsi3JXg3HlMlOKlw0J/YWD3Z6q3rSfch7vjXNEX2VnworJLyZ4YeBU3aCdYVfXaOaWihJ8j1juQQXYSRxOQUMmqd1Z04tBjSvaV9qhmWAA5hdELlzZzZtuPhRRWVHldKR5E5ysEnIBGMKVtFoQn2J9i4obkinoZJdSf2eNyXeV91pcoIyzzuSudFY6fcugN1lcmWREZaTJ1RKldr3cEJZ4oMPZ+WQyy53b1J6mJ0x9mPuwrLm4pXqi0fZsO4UXGCk97Y/8NxsnS2dnUoPWmj7Kx9x6hs0zeCVCWul2Lw9mYV2GqezlMZ4VKWtn5LR0GFdIj9C6GD3Queepk+50RwRXYsbHdzWkENGXJc+TPKS5ZaONLojtbFtPaWNDQ85ZCc/muZajPDiORpf1OXJ7N085bnEWtzrTaO8Q93OD6KG9OW6crf1ZSCwYFti0iprXfUb7THDwKsskezKqUZdGhZ1HknUhqBmkm3GoE6mmUgUCcwJ0wUBc0J02CgZCYFA3tTIDQF0J1YoEgck/IKRF1McvMIpsFI22nTkh3D2gcgfzRbn1RtsejNMdRb/UZ6Qs1kl9DLYgv2weEaD0Sekx96OUvN8vJ4kr1sKqNHi6ttuyvLFezzJQbI9mjYnpseaxQbPWjjoM1vJK2XjH6ExQlLvG9O+oelQjQpHMpGFdA1OypHkHWMapWZRlMooDLLOpuZRRGKdnCm5jKIzTs44KTmx1EOyiEjkPQdjFNsag9Jp+GfBTk15CWFDF91P+P+lCVfmM2h6jaC3+VH+ChKF/N9yUoJ9/uP0bcRmaX/UBRcPqQlhT43fcOb14tcP1wS+mS908NETeVM6tcfE/VH0pDe7TXRr/AL9BS0V6R90/rxTxjNdy8IZV3EqhpfCqrf5LpT7sRrMpnfCvFzHpdxOpQb8SvGb8CuKFn2YfEqKf0FcUAfZeaosgjgL1LH1VFlFcBd1i6qiyiemCfZUyyCuAF1lTrIK4EDQTbxdoN1nCbexdpo0zxK24IvVs2LVUjkonLGpdQJsap6onopEDZSj6grwjlO3O4N8lF4o+TqWaXgap3gfhb5KTwryyizvwO0rzG+m3yCjLB9WUWf6DdK8qW+m38Ki8E+0n+4/qx8DTLwofdM/CFJ4cv5n+43qR8BmXjR+6Z+EfRI8GX8z/AHNviMU71pfdt/CPopvT5PP3NuQxSvSjvaPw/QKctPk8/cFoap3nZ+A8j9FJ4M3kHPZhG2qyHc3yP0S7M6F+PyGp1LOdGNPj9UrWZdWGsn5h+z1APZot8MKhK+8iM4vvNjTLdH8uPJI4/Ui8F/MH+2l3LyS1RP0VEXr4j77fED6plRSFLsJ1HuGpCdJM6IxixN9TiqpHQog3hsap1usKsSqgbjKtEahZzTwKqmK0DNJ3wu8im3LyAGaTvhd5FMmvIOSBpO4ecD5o2gAnjmPxD6p0AGSN7h5pqZrBuLPiHr9EyUvALQF5Zx9CnSkK2gfasG//AKg/Mptsn/8ARdyNG1N4D8Dfqj6b/wCZt6/5AX12Hd/1aPzTqEhHJEO2b+g36I7WbegT7Y34R5N+idY35B6q8A/tjfgHk36I+m/JvVXgHTspyzGfVM8iMsTLGhYGxJePRc8sz7IvHDHuxltmot1eznmJ8pU9+R9ExtkF3Qdv2Qa1B6/RTfr+A3h8kjXsg3uPQH84Q2ahm34l0Cstdk+F/p9Ujx6jygb4eA4tVk3Nf+vFJ6eo8oKkggtVl+B368Uvp5/KDuRNlqs3wO/XilePN5NYdtrofdn9eKR48v5jck23lRGlMeX+0voZH8wOfIxTvumNKQSPSzfzCvG33GKe0g+AJHo5eSb06fcn/wAiaf5QQ90f5jLTP8zAm82nPsPIlN6DXzFVjmvmIVLwZ9z/ANiisL/MMoTXzGm3i37o/in8lngf5jOM33JOvZo/lEeP+kFp3+YX05eSDr64M9f9JlpfLN6YvVv07mjzKeOkXdh2UI171edwHn9VeOnihuRKpaXnirLHFC8gC5x4qlJApsgWO4JriDawTmOTJoG1kXN5opgcQTm8DKdMXaBeCnVCOLIGeBRNtYJxPwlOqEcX4IPc6Iwjqikr6malXQWcHKqontZrsjxHmjuQdjMqvM6lCKVBk3ZFyKFZNiDMuoekkY6CApAoM154nzSNIewrXHilaGJh54lLSCgjHniUrSGQZjjxKRpDDVF54nzUpJDpjdleZ1PmpySoKZjXGUGuBkM0NSpSHiONGQ6qXcJsME6DQIW6MRI18EQhHbvBKgdwNraJGSbG3QQVdgnQeSpFs1AXDJOupgdQpkBirzmqpcCCloec8z5qsUicmxFzjxVqJMg5MBm6eizMheuc1SJOQu4qgjMnJbuG+AVYpoiyAOKoiLbBEpiLbP/Z\\n\", \"height\": 194, \"channels\": 3, \"width\": 259, \"type\": \"image\", \"id\": 4908207312}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxISEhUSEhAVFRUPDw8QDw8SFRIQFQ8PFRUWFhUVFRUYHSggGBolGxUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGi0lHR0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIALcBEwMBEQACEQEDEQH/xAAbAAADAQEBAQEAAAAAAAAAAAACAwQBBQAGB//EADwQAAIBAgIIAwYFBAEEAwAAAAABAgMRBCEFEjFBUWFxkRNSoQYUIoHR8DJCkrHBU2Ki8UMVM+HyFiNj/8QAGQEAAwEBAQAAAAAAAAAAAAAAAQIDAAQF/8QANBEAAgIBAQYDBgYCAwEAAAAAAAECEQMSBBMhMUFRBWGRFCJCUqHwFXGBsdHhwfEjMpJT/9oADAMBAAIRAxEAPwD8Z8QQ9DeWMpz5mHhJPgUxo62wybRSUUyiOGtsY2oXQiujV1OojVlIvSUQx7BoGcrLqOmJJWFcQHo4ttmo2k6dPFt2SiLRqLVQk/ibtbiLYdIijifjzldIJqLY49XsnbmCjaTu0q8FC6mm2uIgmnicu0pytHvuMUqjt4PDKnG8pIFk5ceQDx1NO7mnbcYOngMpaYTeUTC7sojWlP8ALbm8gWBxSF4vSdOivilnwVma30NHHZyaftJGTyeXMLtFVhRDpPT+rslfowxVmePScDFY7xM8+5VKgUc2cG3kmxrNQt6y3BBQDqsPAWjfGZgUNjj5pbX3NpQtDKelKq2Sa6G0o1MJaSqyf45P5sGlA4llHS9SP/I788xdKNY2t7UVUrJt8wbtBsCh7T1lnKKfUzxoN+RNpD2lrT2NxXBNoCww6oZZJLgmcuppetb/ALku7H3UOwN5PuLWmq39SXcbdxF1SPnqdEDmDHgZRDC5i7w6VsvU7OCwasHXYZYtI+ejpWusw6xdDIqlG20axaFZhswyKZrDRTh2t4rGSR1IY2EV8N78SdPqPw6F2H8ev8K2CSlGPMZY5S5HcpaD1KblJXaW3ciW+i3zNu5LofLVKMpSduJ0WqE0nb0boaTzk++wSUw8jv0aMYLOolboSuxReKrxqfDC8uZkFRApaLhBa1R6q4MOo35G+9winqJLg2Y1Ea0nWV71Mt2xBpB0I5GPqubu38x48A0cqpNrJDgoCNNvaGwND3h7Lb8gWbSZKo4q17dDUmC2TTxQdIti3ry/Kw8EZ2DPCz3q3XIKkhWhaoy4NhtAoop4aflA2jaWV0lGKzauLZqJZqLdxhWga1S+zsjIFCXTlvfqG0ajIwvuuYwMsNxyNZjPdocTWwEFPCtEHI9OGHSWQopCluCGRxKWzIoonLkyJh+/y4j0RCjOMvxPPmbkBItjo+mlrOa6J3F1sOlENSCbtF5DGPSwMrX3G1BoWqbW0Nmooo4yUdja6COKYybR0I6erPJ1JNcHmuxH2eHNIss0+46lpXO79EhtFchG75lVDHyqSspW6u1gNUZRs7EI4eKvOtrPeln6iW3yM4tFuE0tBZUaV+drivhzF3TkbXpTrZ1GorhfMykkZQo42Pw6TtB39R0xkiSej61tZxslvY2tGoRq327g2GiSrQzCpCtB0aS25hsWj1bFxWUU2+LMk2Ahq3lnJ2HQo/DeEtzbA7MdTDw1soqxNhOitDK15yS+YusAuc8PS4SaD7zMczG46pW+GlTy4r6jpJcxeJJHQlV51JKK66z7B3i6G0BrRKX4YTn1yBrNpDWiqm+OouZtaBpKKGioc5vgtgHNm0IOpo6exKnBfJsGtG0k1XRSWcnrc3khlMGgR7vT8y/SG2LpR80q3AppKqbDptveCkNrbBUMw2LzPThbYwpgo2EJGtG0sJyfEAaH0ZCspFB+8MIGOpScum8VtIZRbOnQw0LZ55XsiUplY4ZS5IRWw9/wrsrm1pc2FYJy5IjqUJRdmmuuQ8Zp8gTwyg6kqZqg/wDRtQqiOtJflfzFsfSNpYupHZJroK1F8x1a6lD0pUX55dzLHHsJKbLcLpaUFdu74WX7iSih0rXEtXtDGS+NSfJWsJol0G0wE/8AU4ydlTsnv3jU+omlF2HwsZK9m78PqI8lG3b6EGIwErtXtfdtKxyKrElBkNTRrWSu3zQ6mTcSWvgbfils3DqQrRB47WURqXUFspoYyotkmugGkC2U06Vapvk+7FbijaWU0NBVJtJu3JsV5Ug6D6PB+znhrWnUSiudiMso0I6nSHz8OK+FRmuImux9y9SixFfSjSstVPckkaKfNjzhC9MVfmcXEuc225FVkjQHsuRPTQmlh6zeV7cVl6ja4k54pR5nq1NwzlJLq7hTvkT00czFY+O+blyRRRYjaI/fo+T1Y2li2j5+NQtQqkMjVBQ9hxqAChsZgGGpviCw0bFcQWMkuo2nC4G6HjCy2lNRX4UyEk5PmduOccaukw44uTyUFZ2vzA8aXNjraZS4KKplSxNlsSy2Jq5HRbOtZajVJfkTLETvk2V0xricu9yp+6Z4rbvL4rcRlFLkQlKcn73FlFLGarukl0RmhQ62O1nnmDSEU5mGcWwHTuHULumOp23q4G+w0YNcx8sRTSyp58W7k0pN8WWeiuCJ1iXfL0HpE2n0KKfjS2awPcQrUymGHrxWs5avV5i7zG3RnhyVYXvskvimnbixqXRE3B9WR18RGf4nfklZDq0TaRVhMHh3nObXJL+QOclyBoRfLD4SyUZJcW7tk9cxli48SylOEI2p5/3NpInqbfEd4epHKjeWvKsk/LFtlFLhVE3FA47S0EtV524t3EeFzL7PtG5vhzI6ntHGyio5cF9R8eBxF2jOskrPYfSdN56tvviGeNtVYmHMoS1UFLSFNZrttFjgotl2yc+pDi8dUqbJNLsWjBI45SbOZWoPa5N9SqkTaJJ0+CGsTSB4UvL6B1I2k5CRWyaiHFAsdIbAVlEUU4t7BG6Kxg5chmo+AupDbt9UFqW2mUrBKDRniMekRtlmGjrL+CM5aWduDFvFwGyo2/MulxFO+hd4NPNoCLGJJtDnVE0ldbYu4wtDoQW99hW2MkjzS3AtjaTyNYVE8rmsOkYr7rgtB0PoFToyk9hrSFpllFwpZyab4bRXcjXR7Fabk1aMVHmtoY4l1Jym+hz6lSTV3J5lEl0JSb6ksp8yhMxTMCzXiHxNQLM8ZmoNhe9y4s2lCuQTx07WTsbSgahV1+ZsPHoCkJnNbgqxXQKqPmEAfjviCkbiMhjGt4NILGRxMX+O75LIFPoHh1L8NpajDZRv1YjxyfUOpFP/AMmW6jT7C7jzNrPg0zuORMJSAx02NixWVQ6mxGWi2iqnirEnjs6YbQ0N8dSWYulorvYzXEBxQ6kyEscXyNiHmKlXIbcUrzNQApBxiBsdRGKKFsooIJAsZRDUAWMoDIwA2UUBtOKW1XEk2+TKwik+Ksrp1Y8LdCElPpxOuLhVVRurB/m+V7G3k10J7jE3dia+Hp8ezuPDJPsLkwYUuZFJJbF8zoTs86eOiaoUTISximPZLRQDuGxXFmGsXSwXcIrTBzCLQajJgtIKjJm+7viga0NuZHpYdpXyfRm1pheGSVi7hJ0C0GwaTLGsGk80azUA2GxaM1jAOamVOdNBJgHTGRYGUTGRFZRDYoVsokNiIyyQ6CFbKqNlWHsnn+xKTZ04kk+IOIqzTva8Xvt/I0FGq6k80sildWvy/wAjIz3qy/c1dw6nVrgapcWu6yNXkZTSdNofRpxlsafR/wAEptx6HVijCfJodHD5iPJwLLCrpjJYSSEWZMd7O0eVNrcHVYVCug1J8BLRan2PajNqBpBUb7xrYqpmb9nzDaEpti50XuT7DKaJzxPohFWm1tVrlYu+Ry5Fp5oTJIemc7nFgeGGwaUY4BsVxFyiMiUkDbkGxNLPZmsKizLGs2hnrAsOhntU1m0AuBtQHjBcA6hd2Y4GsVwAcQ2I4g2CLpOSi5xoNMA6DiwFExkZitFExqkLRRNjYMRlolMJIm0Xi0OhJCstFldGs104biM4JnXizSjy5FCnF5OEbdEScWuTZ0b1S4SivQVPRtGWzWj0d0FZ8sfMV7Js8+lAx0NHdV9A+1S6oH4di6NjKejqq2VVbqwPaovmgx2Bx5SKKeGrL86fzJvPjfNFY4MkfjDhDELcn1aYryYWFRyR+JMrpqb/ABQt0asScoLk/UtG/iDlSb3fshd4hriB4FuHS6DvbAkuhsEty2fMVyfVjOKRysbpKqm1q6ueWX2jtxYMTV8zzdoz5otpKjlyqva5Xb3tndGlwo8mak+LfEdgsBOVp3dm8hMm0xj7pTZ/D8k6yHQrYaMfzN5Z2zz6kIZZS6HoZNmxw5t2ROOdv3aR0XwOFpXSZ5UJN2Sv0zFeRLiwrBOTpcQJRae/55DKVoSUNLoxINgUWeaFsfQAw2BxMZrBQLDYjR6xrBQEg2I0CNZNowNi8Djxgy9nEoMYoMWx1B9Q1AFjqIcYAsdRGxgK2VjFjoU1xJuRZRobGK4gbHSHUxGWiimHQmzoiPiTZeNDIisuh0CUi8B8STLoYhQsJCim2NZrPWMazNU1ms1ZG5m5nptNZpPqrmXDkDSTzpQt/wBuPZFFKV8wOEa5Ho1FFWUUktiG06nbYlqKpInrqMs3FX53a7Foao8E+Bz5I48nGSV+YVKEfLG64KwsnPu6KQhi6RVryoL4nwS4JoHuruxv+R8qSFVcO27truUjlS4IhPZ3J6m0TyolNZB4gHQfBjaxHj8gXQl5X2YVNdxHB9hcqL4MZSRNwYDpPgOpIi4SBcA6hd3QEkYVoVJDpkZICwSdHORUghkRWUVBqKBbHSXcfSpRe2VudhJSfRFYxj3KfAp6t/Eblf8ACo5W6k9c75cCumFcwI0k9/e/8BtmpBOnbY7/ACt+4LGSGQpv/bSA2UiiqFF+ZfJknI6Ioop0XxXck5HTBD4U2Tcjpgh0IciTZ0RQ5REbHsZFCtithqItiNhagLBqNdM2o2oHUDYdRmoaw6gZQCmFMBxGTGsW6Q6nRKUbPRw62tx+buNvSTxjo1ILbCL6K1xHqfUO7HLG0lsoR+eYm7m/iEeKXzGvSkP6MOxlgfzMV45fMxc9MPdCC6RKLZ11bF0ebJp6TnwXZFFhgD3kKqaRqPh2GWKCEbkIlipPaVUIok5MF1uNvUbSTbEznH7uOkybEtQ33H4knQuUobod2Hj3JuuwvWXlQwnDscJHUecgkAohkRWOkHEVlFEOLAUSGxYrKKIyKFsqsY2MGK5IosTGwTEbRaMGimmyTOiESqkyMjqgiumyLOqPIdFCMzGwQjEY2KFbEbGKAtiORrpgsGoHUDYdRjgGw6hcojJjJi2hh0wdQNjWZqBs1maprDYDiGzcAZRGTA4i5QYyaJuDFSTKJolKLFSTHTRCUZCpJjpojKLFSbHVEmmA2NZNoBoaxHEBoNk3EHV5hsXSchQOizhWNDIU1xFciscce42MI8RW2WjCAerHdf0FtldMFyDikBjpIbG3AR2USXYbFIVtlUkOhFCNsvGKHxjyJtllHyHQguAjbLRgiiFIk5FljodFCMpQ6AjEZRTSZN2Sk2V08PyIuZCWQso4XkSlkOeWUf7jyJ74nvxTwXIfej74XUwttwyyWPHLZHVhyLRZeMgY4ZvcF5EgvKkelhzazLILlR5DKQ6mLlTGTHUhUkMh0wJDDIBoIwuUBkxXFMXKiOpk3isB0Bt4TeAVKjyHUyUsNCZ0h1IjLEhUqYykRljFygOpEXAW0hrZNpHH1Trs83QGlzFKJcOYcRWWir5DYillaGQfIVloPyHxlHa8ibT6HQpY0rlwHU3TavrfwI9a6F4SwSV2UqnBO2tZk7l2OnRiTpviOpU09ktm0nKTXNFYQg+T5FFOkTciiSRXQoJuzkllclKbSuhZzaVpWUPD0k7SrZvyx1u7TyJ68jVqJLeZHxUfrX+B1LB029VVbNK92kl31tokss0rcfv0JyzZErcfv0KsLgYTv/8Aavh2vVaSfUlPNKPw8yGTPONe7z8y7RMIOUo+KrwdrOLesuMWiGdyUU9PM59plNRUtPPz/c+goUqN7KqtZWvG2eausjzpSyc3HgeTOWZK3HgWRoRaumnue36EXJp8SDnJOmhPuMm38Dta+tZtd0i61adVMpv4pc+JBpLBtWtUp/Em4xs9ZpbWlfcVxZO6Z1bPmT+F8PQhp4WMPxLN8mr/ACLPI5cjplllLlyPVJR2W2brGSYIqRJWxEFla99mTX7otGEmXhjkyCpXT/0XUGjqjBomnUjx68iqiy0YsXOUeIyTGSYj3im9kr9Mym7muaMpp8mA8RDjbqmv3Du5BU13ETx8Er522XsUWGTdCPacaWq+AqnpKnK/xWtull24jS2fJHoJj27BO+NV34E89L076t3zexLuVWyzqyEvFMKlpF1NIQeyaGWCa5oSe34pcpCKuNirXd7q6azuUjhbOee2RilfXkST0iuD9PqWWzs4pben0F++3Wxj7mmT9stWL975eo26JPa2cb3lcH3Ords8f2uNU0wlio8GDdsdbZj7MOOLjwfoB433KR22HysYsXHyv0F3Uu5Zbbi+VjY42HlYjxS7l47fgXwMb79T8j7i7iXcv+JYHX/G/UesfS3Ql82v4F3GTui/4psq5Y3+tD4aSo76cueaEezZPmRaPjGy/wDyf0KIaWorZTl3X1JvZMr+JFY+N7PHljf0/koWmMO9tKTyttX1J+x5ukkF+OYX8L9F/I6lpnDrPwp919RJbFmfxIP43j6J+i/kdHTWG/p1O8fqI9iz/MvqH8bj2fov5KKem8Jvp1e8fqI9h2j5o/UV+MX/AK/spo+0GEX/AB1u8V/JKXh+0P4o/UV+Jauv0/sroe0WCX/BUfzWfZkJ+H7U/jX3+gHtc5cp/Qupe0+CWyjVs7XV8nbNX+IhLw7ausl9/oLeSXxr0/o7GE9r8K3fUr3lFxykpWb3xu9vM5V4dli6m1p8v9E34fmmqjKPDya9eB3sbpzBOjrycnNx1dS7dnHPVdst+4b2fA8ajHXvOl1SV/s15ehw4th2xZtKpJdfz6nx2M9oaMVehScZJfDUc87P8Sa3plMexZJP35cO1eh7cdkyV/yzTXal+hxMX7VVXt1stmcrL1O/H4Zj6UBywYvgf0OTi9Ouo7znPr+J/K75I7MewKC91IX8SwwVRi0vKgYe0GrFR+N242/2F+H274A/FsK+Ft/oTV9Ozk8pSWzJFYbBFc6Iz8Wi/wDrFr0ET0xJ/mlv+ZRbFHyJvxf8yaWNll8cvh/DtyLLZ12RzS8Rk64vgLeMluqS47WsxvZ49Uif4hNcpSAniZPbOT66wywxXJInLbZy5yYpT5vPqPoJe0fmA2+L9Q6RHmMUms036mcLAs1O02DKX3Zh0geWwXL7sHSK8lg5cfQNMGuPUyTW5vsZJgc49AL8/QNC6kc8oeaeMY3WBQdTNU2ahlNo1VWakHeyCVaX2gaUNvZmqvL7RtKDvpm+8yNpRt/I1YuQNCD7RI1Y2fE2hB9qmEsfPiDdoZbVMNaRny7A3aG9qn2GR0pU4LsDdodbXPsMjpepwFeJdyi2yXy/foNhpqflFeBdy0dvkvhHQ03Ph+5OWzrudMPEJdjoUNPygticnyeSOWeyKb8j08fiKxx4q2ynD+0U3GSaV9q2kp7FFNNHXg8QjNSbXFcjnVNMz4HTHZonmZdulfITLS8+H7lVgRzS22XYVLScnuXqOsaRGW1N9AHj35f3G0Enm8jPfnw9A6RN75APHPguzG0ivIY8c+XZh0ivKe9+fLszaQbwx418uz+gdIHlZnvsuXZ/Q1A3gLxkuXZmozyMz3uXFfpYaQuuX2jHipcV+k1I2uX2gXiJeb/E1IVzl3+gHjT83+IaQNUu/wBDzqy83+JqQNUu/wBAfGl5vQ1IGuXf6Ew5zBJAGSCUQWUUEMjBC2VjjQyMEK2WjBBqCBZRQQaggWOsaDjTFciiwpjFSQuplVgiNjRX2hdY62ZdxkaC+0gPIOtlXcbGigbwZbIOhh19oV5Si2Ox8MIuC7CPOii2FjoYHkhHtCKx2CX3/odDR/Jdn9BHnTKx2GS419H/AAF/0/71Qb9fbG9jl9o9DAW/9WLLMmv7Hhssou/8MXVwH3qsaOdCZNilfD9mTTwb4ehZZkcs9jl2+gmWG5eg6yohLZH2foLeG5DbxE/Zn2YMsP1DvBXs/wCYPgdRtYvs/wCfob4C59jaxXg/P0PeB1DrFeH8wfB69htYu6XmedHm/Q2pg3S7mOibUDdruA6PMOoXQu4DpPj6B1G3a7i3TfmRtXkLo8wXT/uQdXkDQu4Oo/MbV5A0+ZmrLig35A0vuckueUaYxqbAMmwlJgpFFKYalIFIopZA1OXBC0h1PJ2DVSXBApFFkydg41peUGlFFlyLoGsS/K/X6C6EOton2DjjH/Tf38gbtdw+1T+VjIY7/wDOQHiXceO2T+VjY6QXkkK8XmVW2y7D4aSXll6CvCiq219iinpVeWXp9Sb2dFoeINckUU9KryT7EpbPHudUPEZ/KyiOmP7J/pZN7Ku5deJy+V+gx6aitql+li+x+Y/4pXNMU9PR4S7W/cPsXmL+LLsDLTUX+V94/UK2SuoJeKWv+v7CZ6Ujwfp9Si2bzIy8R8v2FPHp7mOsBCW3X0BeMXPtcbci+2LzFSxkf7v0y+gd0xHtcfP0MWKjz/TL6B3TB7XH7QaxMePozbtm9qiF4y4m0MHtEWe10HQxd9Exs2lm3iBbNTA5oBsahLQDZuIHQDDxFdAsIKQthFqJgQUjjJnTR4ikEpGodSCjLkLRSMl2GKXIWiqkuwafIBVNdgl0AOq7BroAoq7DI24IV2Vjp6oZG3BC8Sy0fKHGK4IW33HSh8o2PQV2UWn5RsLcP3Fd9yqcfl+/UfBL7bEbZVKHy/V/yVUorgSdl46F0KaSXAjKzrxuHYtpKPBdiErOyKg+g5pW2R/SmJb8x93F9EKlQj5af6EOpvu/Um9ni+kfQmq4OPkpfOCKxyvu/UjPZIvpD/yR1MHwVJdIyX7Mssv5+pyz2Pto9H/JLVwkt3h/5r+Sscq8/ocuTYpvk4fUR7vU4Q/VMpvIef0Od7HmXy+rAlTn5Yd2Mpw7sm8GdfDH1/sHUf8ATXyb+odS7k3jyLnBff6nvD/s9X9Q35iOD6w/f+TVQXC3zl9Q6vMTdeX7meB17sOpg3SPeE+L/U/obUDdLv8AX+jdTm+7BqG3ddfqYzWbT5/UFsNgoFsIGDJmFdgNhFdg3CazjnUeGaYISYo8WMixWWixiYCqYSFKJhIBRMZFisrFjIisshsWKUQcWBlEhsGKyqjIopsmy0YyKYMk6OhRl3KaLZOVHRjWTuVQ1uPp/wCSL0nUo5O/0/sd8XL7+YnuldOSun3+oubly9RlpJS3vkJm5cUUWki3kfVE9RviUVE5a+6JqknyKJI5pyyd0LcmNSJ6snkLk2OqJvWDcPAX3zbm4Aes9c3Am1IxsbgI1J9gWw2hdMvICUhrRNwkLlJ8u4eBNxl2AcnwXcPAV6+wLk+AeAr1dgW3wDwBx7At8ggt9jLmFs5J0njmgCgkYZBxFZWIaFKqg0AogkAdBxYrKxYyLBRVMZFitFVJDIsWiikkNixWiimh9OQjRWORFFORNxLxy+ZTSkSki0Z+ZXTqcyMonZDK+4brdBdBR5n1AlVGUBHmXUTOqh1FkpZosnnUKKLISyoROZRRIyyJinIZIk5gSkMkI5gphoXWgkzUK5nmw0I8hjDpE3gLDpNvAWjaRXlBaGoXeMBo1A1gMNCuYLCK5IFhFsENC2co6TxjTGNQBkHEBVBoUog0wFUwkAdBxYrKJhxYKKKQyLFospIYmLQ6mMixWh1ND6YjRRTiyiArsonHsPpyROSZaM4roURqIm4s6I5IBuqhNDKPNECVRDKLElkTEzkOkRlJdCeb6FUiEpNiJ3KKjnlq6ANsZUTbkgNZhpCOcj1w0LqZusaga2e1w0DWz2saga2ZrBoXUY5GNYDkagWA5BoFgthBYDZgGBAYYByzoPKPGMagBQSAUQaAUQaAUQSAOrCQBkEgDoOLFHT7DEwDpsbFsA1sdC4rHVjo9RWh02Nh1EZaLHRELI9cA1guTDQupgOTDSFbkLk3xGVE25dxck+I6olKwGMJxMYUKzLGFNMA9cID1zAMuYxkmYwDYQAtmAC2EwLZgAuQQWDrBFs//9k=\\n\", \"height\": 183, \"channels\": 3, \"width\": 275, \"type\": \"image\", \"id\": 4908207184}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUSEhMVFRUVFRUVFRYVFxcVFRUVFRUWFhUVFRUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGyslHyUtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIALcBFAMBEQACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAACAwABBAUGB//EAEYQAAEDAQQGBgUJBQkBAQAAAAEAAhEDBBIhMQVBUWFxkQYTgaGx0RQiUpLBFRYyQmJyouHwIyRTwtIHM0NjgpOjstNzNP/EABsBAAMBAQEBAQAAAAAAAAAAAAABAgMEBQYH/8QAOhEAAgEDAQUFBgYBAwUBAAAAAAECAxESBBMhMUFRBRRhkaEVUoGx0eEiMkJxwfDxJDPiIzSCwtJD/9oADAMBAAIRAxEAPwDCzpTTjIk7hA71953Rt7mVtEbKenWEYDvHxUPSSRWaOjSrgichvXPKDTsUmW6mXD1HR2YIUkvzIALTQc0XnPJAzyAThNN2SA8zpKuy9eDmt/E4nhC9GlFqNmZyaNWiNL0hhUfekZOaLo7VjXoye+HzHGa5ktlust6QXkziKYAHva0QhWtbd8RuUbjq9oqXBUs5NOmc3PuyTxMkqVCOWNTfLwuN3tuNNLTLqDP3txcXYsDLt4jI5RAWUtPGpL/pK1uNwyxW83VdM2VtMVBUAkYAYv7WrFaes5OLX0HkrXMHzupNi66pUwyLWtE8c1r3GUuNl5sW0RjbpO02p91tUUmk4BpDTzzK3dCjQjdxv6/YLt8wrXaK9K8KtsGByb67iRqIAw7SlCFKe+NP+BO65l6H6Sw43mVHzrNxoHAah2pVtJkt1l5gpnoa+naTGhz/AFZyEtM8CDC4Y6WcnaP8lOSRzG9L2FwHVOgmJkHtgBdHs+SX5kJTPRsqAtvYxE4gg8lwNNOxZzzplmJDSQ3My1oHGTuXR3aW674iuc216aq1ARRFICDMuvu7GjyXRDSwg/xt+VkTd8jyjHtLjg0xJJAIy4r07biUwKhDxdGeqB+SdrBxEVrA6nBe0gHKdazi0+DE424nT0Q2i4GGQ4b8eKieS4MqNgLbZBitIyJaOdUspCu6IxAFnOpK4Ysa0vGEmNyd0OzBJhVkAs1QjNCE1nTqWU5t8AsLaxSmwsNDVtFyCxc71aArrN6WRNzJTrEZLjjVaCxoo2xw1rWNS/EN51qWnS0ANAkZk4k9mSHThJ72Vmzb87qoGAa7iMuKxlpKXHeVtGJf0pc8RUaHDZACI0KcXeN0G0fMXW0jZnNgUC122ZnwhXGM07uV1+wZRfI5ForAABoElzR3ye4FGpqJRSXNpfy/RElCsQZyVbVhY6Ng0w5pAcA5gn1SMMdYOYKJRjPfwfUpSaMlvtTqrzUeZJ5AbBuQkorGInvMpdClzaFYgcUs2x2GNOucVrF2XERXallJhYjuKG2h2TLZTkwksp8wshj2dWQQ4znhIIVNWXENxodpmuQG9dVgfbPjKzVOF7qK8huQdn6oiXudM4tOZG0Gc+K1eXIFbmMfbAx80GNgfRLhedlnngpxbjaXoPg9wNSq9zcWtGsw3EneVaVt4bzLScWukTn2p35CSaPWMs1mqNv1axvgSWvN4jlMjguGU60ZYxhu6o13MXYbXZ2uhzSQJF9rHY7DGYTqRqNXT+AKyOjesLx/ex94OZ4hc+Wpj+kNwLNF2V5AZWmdknmdSp6itFXlEMUah0ZaMQ4cp+Kz783yHiNdoxl3Fow+sfVUqvLLcx2ODbtDMkXXh05Qu2nqG1+JEuJx9IaPFM4weGPgumnJTV0Q1YxObsWlhXEOJUu6JYpxO1TlJCA61LasViutCnahYFrzqUpvkBL5SYXIEt4DBirW/cAbmARBPJU4W4MNw0OvNujMLT80bDMj6R6xjfvO5CP5l59RN6inD935K38gaX0zGS7ZRdh2FN4LOIWJik2wBISYyrpSCxAChSDEYBgtUxWBuKB2GswWkXYOBby1W1Fg2BeGxRmkInAIzV9wWNNOq4CAGjfGPNXkUkHTL2xDuRlU7vigSsS0tukS0yRMmRjuhS5cwaJY7RF6WtMiBM4b8DiUruQLcen6J6Vq/wB02ixzdZGDsdeJgrh1dGL/AByk0XFs9jXosAHqUwThi0GewLzIyk+bNDJbdHXiKggPbxiPgtadbFOL4MBVp0U52LnEkYgCABuyVw1EY7khWHWSwAYEug/VJkKKla+9AN9AuB3VtAkap81G2zazYzwun7WS+HAMMYgmZO1e1p4qMbp3M5M4Bq8Fq6ljOwt1ZLagLfUlQ5iEPKxlIYu8s8hGmmw7F2R3ciLGjqQY2rVwiwGDRuF7GBuUOnG/ErECnZHHFrSRuTxigswxZnAw5pHEQmrMdmeu0R0cp1WAtLQ/WJkDsXDW1bpS3rcaqCOdZOjRqW+tQFQTQoU8YwDqjr0R92F5/tBPVbS25Rt/IlH8R1X6DrUhjTa8Zb+OS71q6VTg2i7NHFtFibMBjmDVePPVkuyMt29p/sS0Zvk9zMXUiRtcCG+8EZQluTDGxgqUhKbgnwJA6neFGzCxBTlCigszT6O0MOD7+qIuxv1qsB28DM6iRnI44KFAQbDAMZrRNJBYAWVxxDSYzIy5rKzbDEB1JPBg0UAkkxBBypBcfSthEYZbMFpmnuHkzp2h1S1OaBUGwNcZIJ1SBjlrWOMaUW0v3Ks5HMtFiew4h3ukeITy6byXBimPIOWOrMeCM30Cx6jQfXPdTJkADAh0D1ctRxxOYWFZwUX1LSZ9DpvBGYleG00WU57cpzTSYCX2qm03XPAO/wCJVKnOSukBxdMVw50UqjMc3MqNv5Ygg5Bduni0rzT+K3CPCaY0U9jvWmXY6ieYXoxaqK8WZuJzeqRZixCbZiTEJqAWZ0PkQayZwgXZBnfKMYlYHOtejy3GNf6wUzpLkQ0YTTK5XEVj0ln0Y52RncCB3r0ZVFHiNRGHQ7hq5kfEpKtHqGBpodbTMjUDndOGRwOfBRLCasyldBDSrwDDGgnNwBaTxAwSdCLfFhkzM+0PfmJ4fBaKMY8BXbKZpaq2A1xaGmWxqO1J0YNttXuGTORofStXr7RWD3B1RzQSCZIbeAmN0LyOzoQqVa0mt17L4XEpb7nXp6crB14VKk/eMcjgvWdCk1bFeRWYdp09VqulzzOotgRwIxUw09OCskPI0WfTzgLr3OqMiC1x+JnFTLTQbvFJMakY69pacQ0Eb4EDZIAWyTSC5krMk+q3VtlUIZS0XVMQzE5Th3nBZ7SK5jxZpo2Sux0AAuAwgiB/qBiUOpGUd/ALMqvonGalWneOJF+SPvGO5QqilwTt+w7BNsllY2TXl2BgNLuwAxzKm8090fUNyMta3NGFNzy32XYA8QFsmuLtcm/QGhpA+yyJ9hp7MdSW6XXzGmwarw7MMb90QrUUg4g09EvfJEEDePis5WT3iwLZYAD6xIGtWoBijuaDZZm/Sqlrp9QwAQdpcTAXPqNra0Y7uZUbI9j6a0U2lpp1cILr4zA1wDj5rydk3J3vHwt/gs8x0gt1cT+xa0SIcGyO9ua9HT06fKV30v8AciTfI88NLWgOkPunc1o+C6HSi1Zr5kXkXaNNWpzr5e4GIlvqYf6YUKlGKtju8x3YFHStfE33nj6w5FNQi1wBXKfpGvBl7oOYyB4jJOyW+w7MzC0OBkEp7QVmaLLaMZdfjd+avK6KR6HRFnp2hhBc2m8YgubBcJ9vKe9c9apKlLJJtf3kWgNIdHc3Bx+9Hq+8iGqUnb/PkDicmnaqlEmkZZjBeL18cJIwwC3tGdm9/wAjPetx3dB2OzVGuNZ5fjtggbSJlc2pq1oNKmikkzXW6L2UkkVQ0HECRly4rFayqlZwu/2BxRpsukGQA4BriMjGPbkpnRlxW9FWHVWscMQCN0BRFyi9wOJiqaPon1g0kbAAeS2VapwbFgjJU0TrZDRsuye0Xe4rVaj3v76kuHQZS0G8iA8Nn7HgSMFMtVFcvUeBmtnRUspvqdaPUa55kamgn4KZ9opRe4nCyPK9FtEk0OsIPrON3eGwJ53uS5+yVhSbfNipwurnRfo9w+qe0L1849S9mw26MdGMDX+gltEGzZdm0Q9xAEMBMXn+qOWZUTrRj4hs2amaJa0kPeHAGJZkeEjJTtm1uXmUqZ0R0d9WQCdhBDcTkMcise+K9nuHgKboCqTFx+BzN2PHFW9XTSvcWAdtsD4itUuBuGDYJ3er2ZqYVYv8ivfxBx6l2bQdkw/aS7WKjKobzEKJVq1/y7vBoMUa29H7E5smvSbEzde2MDnjisnqa8XbB+QbjnWfo2yqS9tRvVAmX+qIGowHEnuW1TU47nH8XTf9AsjFU0dRa+6DUc2YlrWgRxc5bxlNxvZL4/YVjfW0XZbt4Wm6fZeySDxZIWca9e9nC/in9QtY59osoAgV2O3XHfFq6Izk3+Vr4r6iOZVYcjjwWpLRmdQOpQ4vkKw6nVe2Lrrp1xgdypq63gb36XrOEPqVHDe4+aiNGmt6il8BqTMjqoIWjQ73BU2YBNqIHcIVE7jI56BO4F9Fxbw320gAEnDIJXih3ZKdsdGDiAcwDnxR+F77BdiH1AU73EKaIylJKxNgusO9VkxGX0neuTNhkMZbCAQCQDnBwTyHmPoW0iIeRGwlWrPiGZ7Cy6XZ1Yc11JpGd6GzhiWj6RK5pUHlvTt4f2xrmrFHpOCMKjWnbcnxKO57969RZrqee6Q9NHOovpCox3WMdTIaG4BwumTmDBK8/WVNLTg4xd34O9vUiVTdZHHp9Na7abKQZTDGNa1oF8GGiBJvYrhpdobNWUUSqrSsi7F0hNSoGupNMziHOwgTkc8tutejpO051qqp48b/AA3FKo296O3R0tEeqMMsSvXcEzZTNLtLkmQBOYJAvc81GySKyHDpNWyEdoBHJYvTUx3NNLpdWaIhnuxjtwWT0lN9fMN3MK09Marm3WgCWlpMmZOF4AQAlHR007huPM1HEnEk8yuu7RNkPs1vcwgguMaiSRwIRZNWaFwNFa10ajrzqRYdd0y0wPZwgogpRVsr/uKy5jBphwaQ2GzgXBrZI3lN0ot3YXEm31HfSquw5clcacFwSF8TTVtzOruQHOmb5aAeAgpKnLPK9l0uDaOS+vvW9zMadIm4GXWYT611t4gxgTnhHepUVlld+e4MnYyPrqrom4s1UZILhCqTkP1xU5XKV+QYdtCMikgoUuReJEsh2CASyKxIWqXJjwRVxLIMEUaYRuFgiixUmS4i3MQ2Q4lAKkybE6tOwsTnNC5FYzSCmFVxlB6FJCFVLbjDZcd2Q4nJc0+0N+NJOT8OHxZLEuouf9N2Hsty7TrXPLTVtR/vzsvdj9QsOp0GgQGiDnv4rrhpaFOOEYqzHYwMoAVWtIBAnVmIMEjWfJeHT06hrI05JNL1Vna4HUpBrTLWgcAAvoYUqVN3hFL9kMd161zHcIVylcrJhttCCs2MFdLiUqgQtCEVtCGuUxbQjaxRcMmQ1U7g5EFQnUlkF2WXFPNoGixUOtUqgWLLk8x2Qt91GRDSEv3JORDQCm4rBtcdqdxq5YedpScik2EHKXIpBioVLZomwusKnIq7LDilkPexgPBFyywi47FOKpSIYpxKeRmwCU8iGiryeQrGCVgZFFAgHUZzMjZkO3aspUs3+N3XTl8eorBtYBuW0IqKstw7EhWKxEAYqjorA7h4fmvGqSUddd+HyFzNy9m5W8iYFhAwgU0AV5MYQci4Fh6LjCvouMIOSuh7y53pXQ94TSnce8KUZDsVCWQYlEIyFiAQjIWIJCLisVCLhYsBTcqwbWqWykhrQpyNFEYApyNFEsBLMaiXdRkPEkIyDEAhPIhxFuKrIhoC8nkQS8ncVjEAkc5cJjLhMAYSFYkICxIQBgcJrRu/lXktKWuafT+CbbzWyYg5jDyK9OnJ2s+KANaXKIEXAtFxkRcCwUXGWEXAIIbKQYSuMNoRcpIYAi5WIYYlcpRCuJXLxJcU5DwKLEZiwBNNPMWzALUZEYFAIyDEY0KXI1jEc0KHI1URgaocjRQLuqMi1Au4lmPAotTzJcASxVkS4CntVKRk4CrirIzwBup5E4nOvq8jhuEHIyGggi7KCBRkMsIyKsXdTuFjntH7wf19ReVF/wCtf95Gdvx2NzqeM9h+H63r0W7SuW4F9WruPAlxPIWJLqLhiSE7hYkIuOwQCLhYIBFx2DDUXKSGMapuWkOY1S5G0Yoa1ilyNFBBimpczRUwuqUuZeyJ1SjMrZFGijaC2ID6KaqGbpCjSVZkbMgYlmCgNaFDmaxiOa1ZuZvGAwNUOZqoF3VOZWAJahTJcAXBWpmbgJc1aKRhKAssVZEOAJYjMnA40HYu2x4xYSsNBBOxSCBSKuG1FigwnYZzqX/6T2/9V5MP+9f95Ga/3DrQvUsdCLupMonVqbjxBNJFxYAmmjInAq4qyDEsNRkGIQYnkGIbWJZFqI1rVLkaKI1rFLkaqI5lNZuRvGmxzaazcjeNIa2iVm5o2VIMWcrN1UaKiELMVLqotUS/RCp2wbAU+xHYmqxD0wv0Pcntie7Btsil1i46YeywlZOsbLToM2E7FO2K2IBsx2I2obKwt1EpqoS6YDqB2JqoiHSEupHYtFUMJUGA6mVSqmTovoLLVe0I2Zx/1mvaPnbEI3IbHYotKm7CxUKbjsWCi4wwUXKObQP7we3/AKryKb/1r+PyMo/7h2A9etc6UMa4KGzRDWwobNIpDWsClyNVAMUgocjRU7l+jhLMrYFGzI2gu7g+jI2ou7srqYT2hOyaCaxGZSgMY1S5GsYoewBQ2dEUh7GjasZSZurGhjVk2axHNCzZqhjVDKTDDhsKzd+pQYc1LeFwppwZz1buO1K7Jd77jJWInDyVoYdCqokijYyuNiyaE4hCow5hTvC0gXClsSvMLTIaVLbCMpivPoJdZqZ+srzkPf0BNmbqM96ebKQBot9kJ5sMUfOg9fWXPz5MY2qi5akOZWTuWmmOEHWk2aKzCFMFTctRuX6Olkitkcax05tRb9p/cD5Lx6Uv9W34s5qcL1sf3PQCwlek6iPRWlkGLEdil1EWtLLoMZYys3URrHSyY9lics3WRvHSTNdKwncsZV0dUNK1xNAsJ1LN1zXYBDRz9ijboNiWNHu2JOuh7LxLOjXbEtuDpIU/RpGoq1qBbBCnWLiqVcnu4Asye2FsRrKKh1C1TGtonYoczVQGNYdihzLURzQsnIpIa1o/UKXIdg7gU5DL6oFLMQp9m4frsTVQE0LZTE5durwTcijXSLdnespXJkmHDVF5E/iKLGoykO8hTw1aJspXE3WqrsZTqYRcBDqY2qrgfPzTX1Fz8/wLuFO4YssAoyHZjWyjI0SY9hKLmiHsJUs2Vzi6Of8AvZP2qn8y8ijv1L/dnLRdq9/3PUsthC9B00z2IaqUTQzSB1hZOijpjrnzQ9mkd3gsZUTojrF0NdG3t2eC55UpHRHUwZuo2hu7uWEoSNck+ZqZWG5ZOLJa8RwrjYFDgyMfEIWn9QpwYsEQ2o7k8ECpxBfazsahUylTQPpG1o5p4PqGHiAarfZTtLqVi+oB6rZB4IvMEpA9UzUWpOcuhV30G0A0HEtjcQolKTW4Um2txsNOiR9IDkufKouRz5VVyEOpMH1gVSnJ8jVSm+QJDE7zKvMU5g1KlJlpvmKfT4qlItSM9WitFJFp3KptQyh7QVk2upm2hhGGRn9aoUX8SefEz1J2LSL8TVWFhhVZA7AvaVSZNjO5p3q8icTyfoFT2HRtIIC+i2sep8d3Wr7rDp6PqnJhPDFDrQXFlLS1nwiW6wVB9JpbxwPJJVYvgwemqL8ysV6Md3MJ5onZSHssbjk108BHOVO1XM1jppvgjRT0XWz6sxtwjxSeop9TWOkrdPkea0TScbYWgS69VwkZi9OPNeXRmlXcnw3nnaenKWoxS37z1forxmwcwfBeg6sXwZ7C09RcYjDTjNjB/qHhKjPxNcLcYoNrGazyE/FS5T5FqNPqMZZg76Lp7APis5VWuKNFRjLgxVSi4T62AMas01JPkQ4SjzLvEZPB5qbJ8ik2uEg22p2sqXTRarPmNbaAfrdxWbg0axqJ8xgfvU2NFJdR7HfaUNFoc1h2hQ2irDRScpbQwhRKnJDuTqCpzQXRDZtynaoeSANjKW2iPaIv0Vyl1oj2kSxZ3alLrRDaR5jmWaoM2HxWUq9PqZurTfM0MsVQ5MdyWL1EFzMnXpri0G7RtQj6DuSnvMFzJWppr9SMx0XVH1Hcir73B8zbvVN/qRqs9gqZ3XcisJ6iJhPUU1uujX6C+PonkfJYbeN+Jjt4X4nMtFFwOI7iumFaL5nZCcWtzKNOArVW7HkmzLUK6YyNomZxWtzTEqz1Xj6QA98z2l8jkvTko8v76HlpTtvI+0vkfsqbve5yU8Vbe2J5cjSKNNzQXUrp1gesBwnUVllOLsmaYNrek/3AdQswj9g446mv/UKs6nvGEqUfd9DZSFmOAoxhjep6wcsR2rNyqLi/UpQbQ5posxbTgzHqNg9yHnLmPGSPmXRNw+VCTkX2nUTmKmoYrON77j53R/8Aebusj6NWsjHOm86Nhb8StVOSR9Ir23oBujaIEEudxz7Ix7E3VqN7icd1rGd2iaZN4PgeyWEjvdKrbStZkYb7ht0dTMiWf7R+LvBTtJ/1jcU/0hP0fT2UAP8A5u/9EbWXj5kbHwEPsbWDA0o4Vsd8Neqzb6+n0Gk1wMtoF0XooQZgftATBjWVcd+7f6DeS6EsulW5Os1I6pxaOOMpTovlJmeTY52lKE42YDhdPiFOxnb8w8muIIttA4im8bgKceCTpz6msZvkhVW2MP0Q4e4B+EIVNrizSNRjLPam/WvDgQe6FE4Pkaqo2bG2mn/mcYHmsXGXgVlLwNFmtNE5ue3i2fAlZThPlYmW05JP4nSszqB/xDOyCCea5KkavQ5qm3902OfTGEEdkHvWGym+Zgo1XzNNK10dbSeQ8FjKhPqZSo1+TGOtdA/4Z4zCnYzXMhUdQv1DaGkaLRAY48XeQUOh1InpqsndyXkaG6TpxN10CJ9bbksnSSZk9LO9rryGjS1EGHAg73Dht3FLZw8TPutZ74v0ZpbXpOzYY+1EatZ4hKKgv6jFwqR5+RYtFJhi60cLnwTlOnHj/wCotnVmr3fqaGWmmR9HuaVUatG35fSJm6dRPj8zJVrUjmAexp+KwTp3un6fc2jGquD+Zit1Szkes0e7dPctk78PodNGOoi7p+tzh2qy2dwwDBuDnf8Amt4Smt9z0qdXURe+/kv/AKOZV0ZSnAHsqYdk0l0qvJI7I6mtb/j/AMjx1O2P2jwX1zpRPLjWqX5By6M3TxBHKFNo3NcajXMFrn6nEdsJ4x6CSnykOaauqofeHmoahzRpGnVfCXqG1lX+J+MZe9ipvDoaKhW94aG1sIqTt9ZuH4sUXp80U6Nbkzw3Rku9N9X6U1ccNjpx5rjpY57+B83oMnqt3Hee5NauNZ7vguzGkz6TGuuQPpNbeezyQ4UxJVugYtFfYfdUY0+pSVXoLe+qc73IiOGxVaHgGMyXqu1/bKLQBQn4lGiTtPZ+SLpFbIr0Td3JbQfd0yxYknVK7shg0WVLrh3ePUYNFP3c1G3QbKK5kGiamzvS28QUI9Sxoyp7Kl1olKMVzGM0dW1N7x5rN1YFZR6lmwVRm08x5pbWD5lRnHqEGVBt5qW4s0TgxlJ7zkTz81EsUU1BcUMbUftPMallJIhxgNo1j7cLCpFpcCZQXGx1KNGR/es5meQXnVKkk/ys4p1LP8rNdPRzTnUMHc4hc0tRPoc8tS1wj8jUzQzRldd95r57isHqJPiYPWyfG6/Zr6GqzaLaMw2eJ8JWUqrvvMKmqk+FzpWbRrdQPMLOEXUlZK/xRyz1MjY3Rg2d/wCS612ZUnwjb/yT/gwepfUxWvRPDmuSenrUZWdvM6KWrsciv0fc7KOa2pVJ3svmd0O0YR4iqfRj25n7LwP5StnqnHdYuXal/wAvqvuE7oyJwLwPvz3woevmifaTfFLyPgbNORq71+kPUQZ48dZJchw6Su2R2qNtSN12pUL+ce0eCe2ph7TlzQ6n0pIyHKEnOkzaPbNSPBDqfS3d4eSn/ovmartya5DW9Mfsz2jyRjS6l+3Xziee0Bbuqr9bEw18xvBkripWzV+B5Gk1Gxrqrbhf1PSjpeNbTzXbjT6ntrt2POIR6Ws9l3vJYQ6le3afuso9LGfb5oxh1D25S91kHSyn9pLCHUr27S6MYzpdTHtfFJ04PmP25S5ph/O+kfa5fkjZQ6jXbdDoy29LKW13L8ktlHkyl21p+jLPSujrvcvyRsl1H7a0/iV86aO1w4CEbFdUHtnTeILulFLUXcvzT2MeqE+2aHK5Xzqp/a5AfFLYR6i9t0ejC+ddOZunuPiUtguoe2qPRlfOqnqaeYHglsPFDfbVHlFgnpZ9n/kPkju66oj21D3PX7FjpYfZ/wCT8lPd49Q9sR9xef2LHSs6mj/cPkpenXUftiL/AELz+xD0qnNjfe/JR3dLmNdrpcI+pB0o+w3mVMqHiWu1o9BrOlP2G96xlpr8y12lBmuj0tH8On+LzXLPQ3/UylqaUub9PodSz9NGj/ApHfNT+pcc+y0/1v0BUac//wBJen0OhZ+nUf4NLnU/qXPLsmHVjfZdOfCo/T6HasXT/bRb2Od8U1QVF5Qir/u/qc1XsC63Tfkj0lh6WUniSLp4ysX2vVpu0qXk/qjya3ZNWD3byaR6SNa2826eK5n2tXrVLQgkvHeFDs1zlaVzyVr/ALRKoP8Ads7JC73p6lWzcrfskj2o9gUUruTOfV/tQqjOlTPa4JS7JdT8036GU+ytLD9b9DK7+1Wp/Ap+87yU+wY++/JGD0mmX635Hxw6RGpp7V9vLtSCX4YHzVjDWqFxkn8uC8qpVlUllIZsZpKAAWgwM5z35L0afajjFJwT8RFu0mdTG9uKJdrS5QXz+gwflN3ss5HzU+1Knux8n9QJ8pu9hnI+aXtOfuR8vuAiz2osMgA4EY5QRBXFTquElK1/3Ad8on2Gcj5rs9pT92PkBfykfYp8j5pe0Z84R8vuO4bdJDXSb4LRdpL9VNf34BcY3SNPXT5QtV2jp+dP5BdDm2ugdUcW+QW8dZopcVb4DuhrXUTkWduHit4y0UuDiG4c2zNOQYeAn4rZaWlL8uP9+Iy/Qxsby/NPuUei8vuFixZBsby/NPuMfDy+4F+iDY3kfNHco9F/fiMnoY2N7/NHcY9F/fiG4sWJuzx81D0Ef7/ke4Z6AzYeZU9wXU0tEoaPZv5/kl3CIJRCOjmbj735JdwT5jxS4fyV8nN/U+aH2cnzCyINFN2lS+zV1KUEOp6Mp6754OAHe0qJdmvlI2goc7+f2Dbo2n/me83+lZPs6fven3NkqXR+f2DGjqf+Z77f6Fm+zanVeX3LTp8r+f2GMsLP8z32/wBCxl2fU6ryN4Sj4+Y6nZYODiBtPreELnnoJ9TvpVrcDpULPGPWg/6XLkno59D06ep3bzZTvD67fxD+Vck9FL3TXbU3xXy+outaKmWfApLRNcIlKVJbzmWqhVOTDzHmt40WuRzairJ7onJr2St7B7j8V0RpvoeNWjVfIxOslX+G/wB0rXCXQ4HGpf8AKzzC5jxSkARAEQBEARAFoAiAIgCkAWgCIAiALBQt3AB1O11Bk9w7THJbR1FWPCT8xptDflOr7Z7vJa9+1HvsebINJ1fbPd5I7/qPfYZMsaSq+2e7yT7/AKj32LJhjSlX2zyb5J+0NR779B5MsaUq+2fdb5J+0NR779PoPNlnStb2z7rfGEd/1D/W/T6BnIpulKwyqO7vJLv2o99jVSS4MP5YrfxPws/pTWv1C/X8voPbTfP5FjTNf2/ws/pT9oan3/RfQNtPr8jQ7S9qYReJbsD6TBPNmKXf67/V8voaqvVj/hfQ7eiulVIM/eOsc6cqVCzBsfefiT2BYvU6hvdL1ZvHXS/V8kbx01srfo2Uv/8AoKTedwI7xX5zfmbLtCK/R8voL+flMnGwUY+y+6f+ih1ar4TfmN9oK1lH1+38mSn0opAuIszheM42mqQDuAAhS51H+p/34hHWfD4v6ma19IXPBAaGAnU+qTGz1nkdyi8ucmaLWPqZPTztKlo2Wsa5h1LfgkkXU1t1xMz7ZKtHJPV3W8S+1mIvHgCrTOSdeT5ifST7R5p5Mw2supzlmc5SALQBUIAkIAiAIgCIAiAIgCIAiAKQBaAIgCIAiAIgC0ARAElAFygB1e1OfF67hgLrGM53GieJTyZcpuVr/IVeRcgsEbEXGWHIuFwryYwgUDQV5A7hB6RWRfWIsVmyzUQN1G0AXIsZtlFArgFBJnCRJEARAElAEQBaALhAEhAFQgCFAEhAFQgCIAiAKQBEAWgCIAiAIgCIAiALQBEARAEQBaALDkAWKhQO4QqFO4XL61Fx3J1iLhcovQFyi9Aii9FwP//Z\\n\", \"height\": 183, \"channels\": 3, \"width\": 276, \"type\": \"image\", \"id\": 4908206800}]}, \"rgb\": {\"complete\": true, \"numeric\": false, \"num_unique\": 3922, \"num_undefined\": 0, \"progress\": 1.0, \"frequent_items\": {\"0.443019\": {\"frequency\": 1, \"value\": \"0.443019\"}, \"0.29172\": {\"frequency\": 2, \"value\": \"0.29172\"}, \"0.418481\": {\"frequency\": 1, \"value\": \"0.418481\"}, \"0.442012\": {\"frequency\": 1, \"value\": \"0.442012\"}, \"0.0570124\": {\"frequency\": 1, \"value\": \"0.0570124\"}, \"0.56007\": {\"frequency\": 1, \"value\": \"0.56007\"}, \"0.489568\": {\"frequency\": 1, \"value\": \"0.489568\"}, \"0.282047\": {\"frequency\": 1, \"value\": \"0.282047\"}, \"0.512445\": {\"frequency\": 1, \"value\": \"0.512445\"}, \"0.262569\": {\"frequency\": 1, \"value\": \"0.262569\"}, \"0.281666\": {\"frequency\": 1, \"value\": \"0.281666\"}, \"0.222325\": {\"frequency\": 1, \"value\": \"0.222325\"}, \"0.320569\": {\"frequency\": 1, \"value\": \"0.320569\"}, \"0.443385\": {\"frequency\": 1, \"value\": \"0.443385\"}, \"0.412983\": {\"frequency\": 1, \"value\": \"0.412983\"}, \"0.301257\": {\"frequency\": 1, \"value\": \"0.301257\"}, \"0.407554\": {\"frequency\": 1, \"value\": \"0.407554\"}, \"0.230705\": {\"frequency\": 1, \"value\": \"0.230705\"}, \"0.293263\": {\"frequency\": 1, \"value\": \"0.293263\"}, \"0.596432\": {\"frequency\": 1, \"value\": \"0.596432\"}, \"0.464167\": {\"frequency\": 1, \"value\": \"0.464167\"}, \"0.485101\": {\"frequency\": 1, \"value\": \"0.485101\"}, \"0.592441\": {\"frequency\": 1, \"value\": \"0.592441\"}, \"0.446114\": {\"frequency\": 1, \"value\": \"0.446114\"}, \"0.442548\": {\"frequency\": 1, \"value\": \"0.442548\"}, \"0.594875\": {\"frequency\": 1, \"value\": \"0.594875\"}, \"0.344405\": {\"frequency\": 1, \"value\": \"0.344405\"}, \"0.505428\": {\"frequency\": 1, \"value\": \"0.505428\"}, \"0.645861\": {\"frequency\": 1, \"value\": \"0.645861\"}, \"0.270942\": {\"frequency\": 1, \"value\": \"0.270942\"}, \"0.272522\": {\"frequency\": 1, \"value\": \"0.272522\"}, \"0.272033\": {\"frequency\": 1, \"value\": \"0.272033\"}, \"0.155577\": {\"frequency\": 1, \"value\": \"0.155577\"}, \"0.714999\": {\"frequency\": 1, \"value\": \"0.714999\"}, \"0.66893\": {\"frequency\": 1, \"value\": \"0.66893\"}, \"0.170769\": {\"frequency\": 1, \"value\": \"0.170769\"}, \"0.515491\": {\"frequency\": 1, \"value\": \"0.515491\"}, \"0.596583\": {\"frequency\": 1, \"value\": \"0.596583\"}, \"0.721041\": {\"frequency\": 1, \"value\": \"0.721041\"}, \"0.351174\": {\"frequency\": 1, \"value\": \"0.351174\"}, \"0.515834\": {\"frequency\": 1, \"value\": \"0.515834\"}, \"0.216879\": {\"frequency\": 1, \"value\": \"0.216879\"}, \"0.153659\": {\"frequency\": 1, \"value\": \"0.153659\"}, \"0.351173\": {\"frequency\": 1, \"value\": \"0.351173\"}, \"0.312711\": {\"frequency\": 1, \"value\": \"0.312711\"}, \"0.233589\": {\"frequency\": 1, \"value\": \"0.233589\"}, \"0.413744\": {\"frequency\": 1, \"value\": \"0.413744\"}, \"0.255131\": {\"frequency\": 1, \"value\": \"0.255131\"}, \"0.2579\": {\"frequency\": 1, \"value\": \"0.2579\"}, \"0.0947498\": {\"frequency\": 1, \"value\": \"0.0947498\"}, \"0.353934\": {\"frequency\": 1, \"value\": \"0.353934\"}, \"0.479043\": {\"frequency\": 1, \"value\": \"0.479043\"}, \"0.361212\": {\"frequency\": 1, \"value\": \"0.361212\"}, \"0.478061\": {\"frequency\": 1, \"value\": \"0.478061\"}, \"0.569427\": {\"frequency\": 1, \"value\": \"0.569427\"}, \"0.385158\": {\"frequency\": 1, \"value\": \"0.385158\"}, \"0.361214\": {\"frequency\": 2, \"value\": \"0.361214\"}, \"0.322555\": {\"frequency\": 1, \"value\": \"0.322555\"}, \"0.274111\": {\"frequency\": 1, \"value\": \"0.274111\"}, \"0.347347\": {\"frequency\": 1, \"value\": \"0.347347\"}, \"0.446488\": {\"frequency\": 1, \"value\": \"0.446488\"}, \"0.311492\": {\"frequency\": 1, \"value\": \"0.311492\"}, \"0.530348\": {\"frequency\": 1, \"value\": \"0.530348\"}, \"0.371289\": {\"frequency\": 1, \"value\": \"0.371289\"}, \"0.549142\": {\"frequency\": 1, \"value\": \"0.549142\"}, \"0.542837\": {\"frequency\": 1, \"value\": \"0.542837\"}, \"0.789543\": {\"frequency\": 1, \"value\": \"0.789543\"}, \"0.331532\": {\"frequency\": 1, \"value\": \"0.331532\"}, \"0.514728\": {\"frequency\": 1, \"value\": \"0.514728\"}, \"0.621522\": {\"frequency\": 1, \"value\": \"0.621522\"}, \"0.71768\": {\"frequency\": 1, \"value\": \"0.71768\"}, \"0.587177\": {\"frequency\": 1, \"value\": \"0.587177\"}, \"0.372098\": {\"frequency\": 1, \"value\": \"0.372098\"}, \"0.600965\": {\"frequency\": 1, \"value\": \"0.600965\"}, \"0.528277\": {\"frequency\": 1, \"value\": \"0.528277\"}, \"0.495361\": {\"frequency\": 1, \"value\": \"0.495361\"}, \"0.613711\": {\"frequency\": 1, \"value\": \"0.613711\"}, \"0.609386\": {\"frequency\": 1, \"value\": \"0.609386\"}, \"0.306204\": {\"frequency\": 1, \"value\": \"0.306204\"}, \"0.27708\": {\"frequency\": 1, \"value\": \"0.27708\"}, \"0.479623\": {\"frequency\": 1, \"value\": \"0.479623\"}, \"0.268881\": {\"frequency\": 1, \"value\": \"0.268881\"}, \"0.0145911\": {\"frequency\": 1, \"value\": \"0.0145911\"}, \"0.63356\": {\"frequency\": 1, \"value\": \"0.63356\"}, \"0.345597\": {\"frequency\": 1, \"value\": \"0.345597\"}, \"0.250528\": {\"frequency\": 1, \"value\": \"0.250528\"}, \"0.487634\": {\"frequency\": 1, \"value\": \"0.487634\"}, \"0.571554\": {\"frequency\": 1, \"value\": \"0.571554\"}, \"0.185079\": {\"frequency\": 1, \"value\": \"0.185079\"}, \"0.524603\": {\"frequency\": 1, \"value\": \"0.524603\"}, \"0.358297\": {\"frequency\": 1, \"value\": \"0.358297\"}, \"0.521051\": {\"frequency\": 1, \"value\": \"0.521051\"}, \"0.438588\": {\"frequency\": 1, \"value\": \"0.438588\"}, \"0.422779\": {\"frequency\": 1, \"value\": \"0.422779\"}, \"0.439852\": {\"frequency\": 1, \"value\": \"0.439852\"}, \"0.350775\": {\"frequency\": 1, \"value\": \"0.350775\"}, \"0.521059\": {\"frequency\": 1, \"value\": \"0.521059\"}, \"0.338583\": {\"frequency\": 1, \"value\": \"0.338583\"}, \"0.573888\": {\"frequency\": 1, \"value\": \"0.573888\"}, \"0.323074\": {\"frequency\": 1, \"value\": \"0.323074\"}, \"0.289682\": {\"frequency\": 1, \"value\": \"0.289682\"}, \"0.696983\": {\"frequency\": 1, \"value\": \"0.696983\"}, \"0.436052\": {\"frequency\": 1, \"value\": \"0.436052\"}, \"0.643139\": {\"frequency\": 1, \"value\": \"0.643139\"}, \"0.416884\": {\"frequency\": 1, \"value\": \"0.416884\"}, \"0.355477\": {\"frequency\": 1, \"value\": \"0.355477\"}, \"0.587004\": {\"frequency\": 1, \"value\": \"0.587004\"}, \"0.331621\": {\"frequency\": 1, \"value\": \"0.331621\"}, \"0.332539\": {\"frequency\": 1, \"value\": \"0.332539\"}, \"0.475663\": {\"frequency\": 1, \"value\": \"0.475663\"}, \"0.522\": {\"frequency\": 1, \"value\": \"0.522\"}, \"0.0999792\": {\"frequency\": 1, \"value\": \"0.0999792\"}, \"0.192909\": {\"frequency\": 1, \"value\": \"0.192909\"}, \"0.420969\": {\"frequency\": 1, \"value\": \"0.420969\"}, \"0.57469\": {\"frequency\": 1, \"value\": \"0.57469\"}, \"0.453496\": {\"frequency\": 1, \"value\": \"0.453496\"}, \"0.324175\": {\"frequency\": 1, \"value\": \"0.324175\"}, \"0.412766\": {\"frequency\": 1, \"value\": \"0.412766\"}, \"0.36182\": {\"frequency\": 1, \"value\": \"0.36182\"}, \"0.346901\": {\"frequency\": 1, \"value\": \"0.346901\"}, \"0.416869\": {\"frequency\": 1, \"value\": \"0.416869\"}, \"0.422596\": {\"frequency\": 1, \"value\": \"0.422596\"}, \"0.221557\": {\"frequency\": 1, \"value\": \"0.221557\"}, \"0.454319\": {\"frequency\": 1, \"value\": \"0.454319\"}, \"0.341582\": {\"frequency\": 1, \"value\": \"0.341582\"}, \"0.265298\": {\"frequency\": 1, \"value\": \"0.265298\"}, \"0.811874\": {\"frequency\": 1, \"value\": \"0.811874\"}, \"0.457516\": {\"frequency\": 1, \"value\": \"0.457516\"}, \"0.28645\": {\"frequency\": 1, \"value\": \"0.28645\"}, \"0.288643\": {\"frequency\": 1, \"value\": \"0.288643\"}, \"0.580296\": {\"frequency\": 1, \"value\": \"0.580296\"}, \"0.346478\": {\"frequency\": 1, \"value\": \"0.346478\"}, \"0.553991\": {\"frequency\": 1, \"value\": \"0.553991\"}, \"0.401022\": {\"frequency\": 1, \"value\": \"0.401022\"}, \"0.30876\": {\"frequency\": 1, \"value\": \"0.30876\"}, \"0.448178\": {\"frequency\": 1, \"value\": \"0.448178\"}, \"0.34065\": {\"frequency\": 1, \"value\": \"0.34065\"}, \"0.331752\": {\"frequency\": 1, \"value\": \"0.331752\"}, \"0.348629\": {\"frequency\": 1, \"value\": \"0.348629\"}, \"0.567978\": {\"frequency\": 1, \"value\": \"0.567978\"}, \"0.662744\": {\"frequency\": 1, \"value\": \"0.662744\"}, \"0.298544\": {\"frequency\": 1, \"value\": \"0.298544\"}, \"0.338349\": {\"frequency\": 1, \"value\": \"0.338349\"}, \"0.618702\": {\"frequency\": 1, \"value\": \"0.618702\"}, \"0.723998\": {\"frequency\": 1, \"value\": \"0.723998\"}, \"0.22752\": {\"frequency\": 1, \"value\": \"0.22752\"}, \"0.388868\": {\"frequency\": 1, \"value\": \"0.388868\"}, \"0.352605\": {\"frequency\": 1, \"value\": \"0.352605\"}, \"0.316498\": {\"frequency\": 2, \"value\": \"0.316498\"}, \"0.388427\": {\"frequency\": 1, \"value\": \"0.388427\"}, \"0.395396\": {\"frequency\": 1, \"value\": \"0.395396\"}, \"0.493103\": {\"frequency\": 1, \"value\": \"0.493103\"}, \"0.39941\": {\"frequency\": 1, \"value\": \"0.39941\"}, \"0.576692\": {\"frequency\": 1, \"value\": \"0.576692\"}, \"0.41075\": {\"frequency\": 1, \"value\": \"0.41075\"}, \"0.577743\": {\"frequency\": 1, \"value\": \"0.577743\"}, \"0.673454\": {\"frequency\": 1, \"value\": \"0.673454\"}, \"0.444501\": {\"frequency\": 1, \"value\": \"0.444501\"}, \"0.342237\": {\"frequency\": 1, \"value\": \"0.342237\"}, \"0.0634154\": {\"frequency\": 1, \"value\": \"0.0634154\"}, \"0.600172\": {\"frequency\": 1, \"value\": \"0.600172\"}, \"0.723959\": {\"frequency\": 1, \"value\": \"0.723959\"}, \"0.730462\": {\"frequency\": 1, \"value\": \"0.730462\"}, \"0.598349\": {\"frequency\": 1, \"value\": \"0.598349\"}, \"0.330575\": {\"frequency\": 1, \"value\": \"0.330575\"}, \"0.48599\": {\"frequency\": 1, \"value\": \"0.48599\"}, \"0.454083\": {\"frequency\": 1, \"value\": \"0.454083\"}, \"0.647709\": {\"frequency\": 1, \"value\": \"0.647709\"}, \"0.534613\": {\"frequency\": 1, \"value\": \"0.534613\"}, \"0.445291\": {\"frequency\": 1, \"value\": \"0.445291\"}, \"0.715746\": {\"frequency\": 1, \"value\": \"0.715746\"}, \"0.191775\": {\"frequency\": 1, \"value\": \"0.191775\"}, \"0.288799\": {\"frequency\": 1, \"value\": \"0.288799\"}, \"0.534619\": {\"frequency\": 1, \"value\": \"0.534619\"}, \"0.635559\": {\"frequency\": 1, \"value\": \"0.635559\"}, \"0.450786\": {\"frequency\": 1, \"value\": \"0.450786\"}, \"0.356032\": {\"frequency\": 1, \"value\": \"0.356032\"}, \"0.118908\": {\"frequency\": 1, \"value\": \"0.118908\"}, \"0.52237\": {\"frequency\": 1, \"value\": \"0.52237\"}, \"0.403223\": {\"frequency\": 1, \"value\": \"0.403223\"}, \"0.359763\": {\"frequency\": 1, \"value\": \"0.359763\"}, \"0.28474\": {\"frequency\": 1, \"value\": \"0.28474\"}, \"0.223882\": {\"frequency\": 1, \"value\": \"0.223882\"}, \"0.448954\": {\"frequency\": 1, \"value\": \"0.448954\"}, \"0.0260799\": {\"frequency\": 1, \"value\": \"0.0260799\"}, \"0.450545\": {\"frequency\": 1, \"value\": \"0.450545\"}, \"0.413107\": {\"frequency\": 1, \"value\": \"0.413107\"}, \"0.544683\": {\"frequency\": 1, \"value\": \"0.544683\"}, \"0.207165\": {\"frequency\": 1, \"value\": \"0.207165\"}, \"0.377422\": {\"frequency\": 1, \"value\": \"0.377422\"}, \"0.40405\": {\"frequency\": 1, \"value\": \"0.40405\"}, \"0.415994\": {\"frequency\": 1, \"value\": \"0.415994\"}, \"0.298168\": {\"frequency\": 1, \"value\": \"0.298168\"}, \"0.429109\": {\"frequency\": 1, \"value\": \"0.429109\"}, \"0.212817\": {\"frequency\": 1, \"value\": \"0.212817\"}, \"0.604093\": {\"frequency\": 1, \"value\": \"0.604093\"}, \"0.395156\": {\"frequency\": 1, \"value\": \"0.395156\"}, \"0.511228\": {\"frequency\": 1, \"value\": \"0.511228\"}, \"0.265127\": {\"frequency\": 1, \"value\": \"0.265127\"}, \"0.604095\": {\"frequency\": 1, \"value\": \"0.604095\"}, \"0.440757\": {\"frequency\": 1, \"value\": \"0.440757\"}, \"0.395889\": {\"frequency\": 1, \"value\": \"0.395889\"}, \"0.303469\": {\"frequency\": 1, \"value\": \"0.303469\"}, \"0.483849\": {\"frequency\": 1, \"value\": \"0.483849\"}, \"0.268704\": {\"frequency\": 1, \"value\": \"0.268704\"}, \"0.434775\": {\"frequency\": 1, \"value\": \"0.434775\"}, \"0.541565\": {\"frequency\": 1, \"value\": \"0.541565\"}, \"0.451544\": {\"frequency\": 1, \"value\": \"0.451544\"}, \"0.358965\": {\"frequency\": 1, \"value\": \"0.358965\"}, \"0.47665\": {\"frequency\": 1, \"value\": \"0.47665\"}, \"0.398406\": {\"frequency\": 1, \"value\": \"0.398406\"}, \"0.626425\": {\"frequency\": 1, \"value\": \"0.626425\"}, \"0.592624\": {\"frequency\": 1, \"value\": \"0.592624\"}, \"0.13018\": {\"frequency\": 1, \"value\": \"0.13018\"}, \"0.389776\": {\"frequency\": 1, \"value\": \"0.389776\"}, \"0.825288\": {\"frequency\": 1, \"value\": \"0.825288\"}, \"0.128092\": {\"frequency\": 1, \"value\": \"0.128092\"}, \"0.533911\": {\"frequency\": 1, \"value\": \"0.533911\"}, \"0.377558\": {\"frequency\": 1, \"value\": \"0.377558\"}, \"0.447858\": {\"frequency\": 1, \"value\": \"0.447858\"}, \"0.429524\": {\"frequency\": 1, \"value\": \"0.429524\"}, \"0.695401\": {\"frequency\": 1, \"value\": \"0.695401\"}, \"0.428187\": {\"frequency\": 1, \"value\": \"0.428187\"}, \"0.303064\": {\"frequency\": 1, \"value\": \"0.303064\"}, \"0.641808\": {\"frequency\": 1, \"value\": \"0.641808\"}, \"0.386944\": {\"frequency\": 1, \"value\": \"0.386944\"}, \"0.386946\": {\"frequency\": 1, \"value\": \"0.386946\"}, \"0.303068\": {\"frequency\": 1, \"value\": \"0.303068\"}, \"0.24346\": {\"frequency\": 1, \"value\": \"0.24346\"}, \"0.456309\": {\"frequency\": 1, \"value\": \"0.456309\"}, \"0.476868\": {\"frequency\": 1, \"value\": \"0.476868\"}, \"0.402957\": {\"frequency\": 1, \"value\": \"0.402957\"}, \"0.397714\": {\"frequency\": 1, \"value\": \"0.397714\"}, \"0.539525\": {\"frequency\": 1, \"value\": \"0.539525\"}, \"0.431187\": {\"frequency\": 1, \"value\": \"0.431187\"}, \"0.844995\": {\"frequency\": 1, \"value\": \"0.844995\"}, \"0.35511\": {\"frequency\": 1, \"value\": \"0.35511\"}, \"0.402036\": {\"frequency\": 1, \"value\": \"0.402036\"}, \"0.431181\": {\"frequency\": 1, \"value\": \"0.431181\"}, \"0.480586\": {\"frequency\": 2, \"value\": \"0.480586\"}, \"0.269385\": {\"frequency\": 1, \"value\": \"0.269385\"}, \"0.148807\": {\"frequency\": 1, \"value\": \"0.148807\"}, \"0.356344\": {\"frequency\": 1, \"value\": \"0.356344\"}, \"0.734692\": {\"frequency\": 1, \"value\": \"0.734692\"}, \"0.334062\": {\"frequency\": 1, \"value\": \"0.334062\"}, \"0.470541\": {\"frequency\": 1, \"value\": \"0.470541\"}, \"0.224441\": {\"frequency\": 1, \"value\": \"0.224441\"}, \"0.385383\": {\"frequency\": 1, \"value\": \"0.385383\"}, \"0.373252\": {\"frequency\": 1, \"value\": \"0.373252\"}, \"0.413359\": {\"frequency\": 1, \"value\": \"0.413359\"}, \"0.522777\": {\"frequency\": 1, \"value\": \"0.522777\"}, \"0.473892\": {\"frequency\": 1, \"value\": \"0.473892\"}, \"0.233378\": {\"frequency\": 1, \"value\": \"0.233378\"}, \"0.440576\": {\"frequency\": 1, \"value\": \"0.440576\"}, \"0.591565\": {\"frequency\": 1, \"value\": \"0.591565\"}, \"0.34595\": {\"frequency\": 1, \"value\": \"0.34595\"}, \"0.489577\": {\"frequency\": 1, \"value\": \"0.489577\"}, \"0.414641\": {\"frequency\": 1, \"value\": \"0.414641\"}, \"0.289492\": {\"frequency\": 1, \"value\": \"0.289492\"}, \"0.244001\": {\"frequency\": 1, \"value\": \"0.244001\"}, \"0.468598\": {\"frequency\": 1, \"value\": \"0.468598\"}, \"0.397003\": {\"frequency\": 1, \"value\": \"0.397003\"}, \"0.486404\": {\"frequency\": 1, \"value\": \"0.486404\"}, \"0.406309\": {\"frequency\": 1, \"value\": \"0.406309\"}, \"0.409837\": {\"frequency\": 1, \"value\": \"0.409837\"}, \"0.724508\": {\"frequency\": 1, \"value\": \"0.724508\"}, \"0.222868\": {\"frequency\": 1, \"value\": \"0.222868\"}, \"0.419364\": {\"frequency\": 1, \"value\": \"0.419364\"}, \"0.285139\": {\"frequency\": 1, \"value\": \"0.285139\"}, \"0.423986\": {\"frequency\": 1, \"value\": \"0.423986\"}, \"0.3086\": {\"frequency\": 1, \"value\": \"0.3086\"}, \"0.411672\": {\"frequency\": 1, \"value\": \"0.411672\"}, \"0.231071\": {\"frequency\": 1, \"value\": \"0.231071\"}, \"0.359213\": {\"frequency\": 1, \"value\": \"0.359213\"}, \"0.435353\": {\"frequency\": 1, \"value\": \"0.435353\"}, \"0.248248\": {\"frequency\": 1, \"value\": \"0.248248\"}, \"0.552121\": {\"frequency\": 1, \"value\": \"0.552121\"}, \"0.435357\": {\"frequency\": 1, \"value\": \"0.435357\"}, \"0.442154\": {\"frequency\": 1, \"value\": \"0.442154\"}, \"0.443947\": {\"frequency\": 1, \"value\": \"0.443947\"}, \"0.464391\": {\"frequency\": 1, \"value\": \"0.464391\"}, \"0.299361\": {\"frequency\": 1, \"value\": \"0.299361\"}, \"0.535118\": {\"frequency\": 1, \"value\": \"0.535118\"}, \"0.383515\": {\"frequency\": 1, \"value\": \"0.383515\"}, \"0.448943\": {\"frequency\": 1, \"value\": \"0.448943\"}, \"0.620933\": {\"frequency\": 1, \"value\": \"0.620933\"}, \"0.564625\": {\"frequency\": 1, \"value\": \"0.564625\"}, \"0.673052\": {\"frequency\": 1, \"value\": \"0.673052\"}, \"0.311726\": {\"frequency\": 1, \"value\": \"0.311726\"}, \"0.233625\": {\"frequency\": 1, \"value\": \"0.233625\"}, \"0.442444\": {\"frequency\": 1, \"value\": \"0.442444\"}, \"0.219025\": {\"frequency\": 1, \"value\": \"0.219025\"}, \"0.281434\": {\"frequency\": 1, \"value\": \"0.281434\"}, \"0.272028\": {\"frequency\": 1, \"value\": \"0.272028\"}, \"0.565049\": {\"frequency\": 1, \"value\": \"0.565049\"}, \"0.626796\": {\"frequency\": 1, \"value\": \"0.626796\"}, \"0.199905\": {\"frequency\": 1, \"value\": \"0.199905\"}, \"0.358653\": {\"frequency\": 1, \"value\": \"0.358653\"}, \"0.578427\": {\"frequency\": 1, \"value\": \"0.578427\"}, \"0.507341\": {\"frequency\": 1, \"value\": \"0.507341\"}, \"0.19725\": {\"frequency\": 1, \"value\": \"0.19725\"}, \"0.330032\": {\"frequency\": 1, \"value\": \"0.330032\"}, \"0.452337\": {\"frequency\": 1, \"value\": \"0.452337\"}, \"0.617023\": {\"frequency\": 1, \"value\": \"0.617023\"}, \"0.443957\": {\"frequency\": 1, \"value\": \"0.443957\"}, \"0.672485\": {\"frequency\": 1, \"value\": \"0.672485\"}, \"0.375803\": {\"frequency\": 1, \"value\": \"0.375803\"}, \"0.546481\": {\"frequency\": 1, \"value\": \"0.546481\"}, \"0.461512\": {\"frequency\": 1, \"value\": \"0.461512\"}, \"0.321487\": {\"frequency\": 1, \"value\": \"0.321487\"}, \"0.297603\": {\"frequency\": 1, \"value\": \"0.297603\"}, \"0.297358\": {\"frequency\": 1, \"value\": \"0.297358\"}, \"0.239704\": {\"frequency\": 1, \"value\": \"0.239704\"}, \"0.421346\": {\"frequency\": 1, \"value\": \"0.421346\"}, \"0.457477\": {\"frequency\": 1, \"value\": \"0.457477\"}, \"0.551279\": {\"frequency\": 1, \"value\": \"0.551279\"}, \"0.297173\": {\"frequency\": 1, \"value\": \"0.297173\"}, \"0.571258\": {\"frequency\": 1, \"value\": \"0.571258\"}, \"0.66397\": {\"frequency\": 1, \"value\": \"0.66397\"}, \"0.566144\": {\"frequency\": 1, \"value\": \"0.566144\"}, \"0.77203\": {\"frequency\": 1, \"value\": \"0.77203\"}, \"0.449566\": {\"frequency\": 1, \"value\": \"0.449566\"}, \"0.352985\": {\"frequency\": 1, \"value\": \"0.352985\"}, \"0.239528\": {\"frequency\": 1, \"value\": \"0.239528\"}, \"0.426903\": {\"frequency\": 1, \"value\": \"0.426903\"}, \"0.266653\": {\"frequency\": 1, \"value\": \"0.266653\"}, \"0.155497\": {\"frequency\": 1, \"value\": \"0.155497\"}, \"0.427083\": {\"frequency\": 1, \"value\": \"0.427083\"}, \"0.376548\": {\"frequency\": 1, \"value\": \"0.376548\"}, \"0.179381\": {\"frequency\": 1, \"value\": \"0.179381\"}, \"0.373711\": {\"frequency\": 1, \"value\": \"0.373711\"}, \"0.310536\": {\"frequency\": 1, \"value\": \"0.310536\"}, \"0.413646\": {\"frequency\": 1, \"value\": \"0.413646\"}, \"0.49169\": {\"frequency\": 1, \"value\": \"0.49169\"}, \"0.413642\": {\"frequency\": 1, \"value\": \"0.413642\"}, \"0.0248334\": {\"frequency\": 1, \"value\": \"0.0248334\"}, \"0.798722\": {\"frequency\": 1, \"value\": \"0.798722\"}, \"0.207203\": {\"frequency\": 1, \"value\": \"0.207203\"}, \"0.285087\": {\"frequency\": 1, \"value\": \"0.285087\"}, \"0.305895\": {\"frequency\": 1, \"value\": \"0.305895\"}, \"0.313875\": {\"frequency\": 1, \"value\": \"0.313875\"}, \"0.319405\": {\"frequency\": 1, \"value\": \"0.319405\"}, \"0.313871\": {\"frequency\": 1, \"value\": \"0.313871\"}, \"0.531849\": {\"frequency\": 1, \"value\": \"0.531849\"}, \"0.38737\": {\"frequency\": 1, \"value\": \"0.38737\"}, \"0.180634\": {\"frequency\": 1, \"value\": \"0.180634\"}, \"0.345362\": {\"frequency\": 1, \"value\": \"0.345362\"}, \"0.534442\": {\"frequency\": 1, \"value\": \"0.534442\"}, \"0.307946\": {\"frequency\": 1, \"value\": \"0.307946\"}, \"0.680514\": {\"frequency\": 1, \"value\": \"0.680514\"}, \"0.550781\": {\"frequency\": 1, \"value\": \"0.550781\"}, \"0.143128\": {\"frequency\": 1, \"value\": \"0.143128\"}, \"0.450977\": {\"frequency\": 1, \"value\": \"0.450977\"}, \"0.364271\": {\"frequency\": 1, \"value\": \"0.364271\"}, \"0.538331\": {\"frequency\": 1, \"value\": \"0.538331\"}, \"0.32388\": {\"frequency\": 1, \"value\": \"0.32388\"}, \"0.408549\": {\"frequency\": 1, \"value\": \"0.408549\"}, \"0.147113\": {\"frequency\": 1, \"value\": \"0.147113\"}, \"0.90807\": {\"frequency\": 1, \"value\": \"0.90807\"}, \"0.497811\": {\"frequency\": 1, \"value\": \"0.497811\"}, \"0.188547\": {\"frequency\": 1, \"value\": \"0.188547\"}, \"0.36426\": {\"frequency\": 1, \"value\": \"0.36426\"}, \"0.358357\": {\"frequency\": 1, \"value\": \"0.358357\"}, \"0.398383\": {\"frequency\": 1, \"value\": \"0.398383\"}, \"0.476787\": {\"frequency\": 1, \"value\": \"0.476787\"}, \"0.236894\": {\"frequency\": 1, \"value\": \"0.236894\"}, \"0.703315\": {\"frequency\": 1, \"value\": \"0.703315\"}, \"0.37111\": {\"frequency\": 1, \"value\": \"0.37111\"}, \"0.39608\": {\"frequency\": 1, \"value\": \"0.39608\"}, \"0.404006\": {\"frequency\": 1, \"value\": \"0.404006\"}, \"0.573323\": {\"frequency\": 1, \"value\": \"0.573323\"}, \"0.382071\": {\"frequency\": 1, \"value\": \"0.382071\"}, \"0.407495\": {\"frequency\": 1, \"value\": \"0.407495\"}, \"0.401521\": {\"frequency\": 3, \"value\": \"0.401521\"}, \"0.419981\": {\"frequency\": 1, \"value\": \"0.419981\"}, \"0.422589\": {\"frequency\": 1, \"value\": \"0.422589\"}, \"0.430268\": {\"frequency\": 1, \"value\": \"0.430268\"}, \"0.335929\": {\"frequency\": 1, \"value\": \"0.335929\"}, \"0.472948\": {\"frequency\": 1, \"value\": \"0.472948\"}, \"0.371494\": {\"frequency\": 1, \"value\": \"0.371494\"}, \"0.329922\": {\"frequency\": 1, \"value\": \"0.329922\"}, \"0.339171\": {\"frequency\": 1, \"value\": \"0.339171\"}, \"0.472946\": {\"frequency\": 1, \"value\": \"0.472946\"}, \"0.326816\": {\"frequency\": 1, \"value\": \"0.326816\"}, \"0.747915\": {\"frequency\": 1, \"value\": \"0.747915\"}, \"0.675201\": {\"frequency\": 1, \"value\": \"0.675201\"}, \"0.429737\": {\"frequency\": 1, \"value\": \"0.429737\"}, \"0.316692\": {\"frequency\": 1, \"value\": \"0.316692\"}, \"0.838006\": {\"frequency\": 1, \"value\": \"0.838006\"}, \"0.438448\": {\"frequency\": 1, \"value\": \"0.438448\"}, \"0.246214\": {\"frequency\": 3, \"value\": \"0.246214\"}, \"0.425801\": {\"frequency\": 1, \"value\": \"0.425801\"}, \"0.371693\": {\"frequency\": 1, \"value\": \"0.371693\"}, \"0.291822\": {\"frequency\": 1, \"value\": \"0.291822\"}, \"0.542934\": {\"frequency\": 1, \"value\": \"0.542934\"}, \"0.355665\": {\"frequency\": 1, \"value\": \"0.355665\"}, \"0.401458\": {\"frequency\": 1, \"value\": \"0.401458\"}, \"0.587833\": {\"frequency\": 1, \"value\": \"0.587833\"}, \"0.455129\": {\"frequency\": 1, \"value\": \"0.455129\"}, \"0.277724\": {\"frequency\": 1, \"value\": \"0.277724\"}, \"0.688355\": {\"frequency\": 1, \"value\": \"0.688355\"}, \"0.470047\": {\"frequency\": 1, \"value\": \"0.470047\"}, \"0.787328\": {\"frequency\": 1, \"value\": \"0.787328\"}, \"0.483292\": {\"frequency\": 1, \"value\": \"0.483292\"}, \"0.569263\": {\"frequency\": 1, \"value\": \"0.569263\"}, \"0.707836\": {\"frequency\": 1, \"value\": \"0.707836\"}, \"0.432993\": {\"frequency\": 1, \"value\": \"0.432993\"}, \"0.252758\": {\"frequency\": 1, \"value\": \"0.252758\"}, \"0.511831\": {\"frequency\": 1, \"value\": \"0.511831\"}, \"0.486396\": {\"frequency\": 1, \"value\": \"0.486396\"}, \"0.560407\": {\"frequency\": 1, \"value\": \"0.560407\"}, \"0.414831\": {\"frequency\": 1, \"value\": \"0.414831\"}, \"0.698567\": {\"frequency\": 1, \"value\": \"0.698567\"}, \"0.633287\": {\"frequency\": 1, \"value\": \"0.633287\"}, \"0.171578\": {\"frequency\": 1, \"value\": \"0.171578\"}, \"0.439884\": {\"frequency\": 1, \"value\": \"0.439884\"}, \"0.044926\": {\"frequency\": 1, \"value\": \"0.044926\"}, \"0.495096\": {\"frequency\": 1, \"value\": \"0.495096\"}, \"0.225586\": {\"frequency\": 1, \"value\": \"0.225586\"}, \"0.0563737\": {\"frequency\": 1, \"value\": \"0.0563737\"}, \"0.27319\": {\"frequency\": 1, \"value\": \"0.27319\"}, \"0.287322\": {\"frequency\": 1, \"value\": \"0.287322\"}, \"0.476334\": {\"frequency\": 1, \"value\": \"0.476334\"}, \"0.526049\": {\"frequency\": 1, \"value\": \"0.526049\"}, \"0.518706\": {\"frequency\": 1, \"value\": \"0.518706\"}, \"0.302818\": {\"frequency\": 1, \"value\": \"0.302818\"}, \"0.368828\": {\"frequency\": 1, \"value\": \"0.368828\"}, \"0.138279\": {\"frequency\": 1, \"value\": \"0.138279\"}, \"0.425027\": {\"frequency\": 1, \"value\": \"0.425027\"}, \"0.249329\": {\"frequency\": 1, \"value\": \"0.249329\"}, \"0.777993\": {\"frequency\": 1, \"value\": \"0.777993\"}, \"0.372798\": {\"frequency\": 1, \"value\": \"0.372798\"}, \"0.269761\": {\"frequency\": 1, \"value\": \"0.269761\"}, \"0.353055\": {\"frequency\": 1, \"value\": \"0.353055\"}, \"0.41445\": {\"frequency\": 1, \"value\": \"0.41445\"}, \"0.572057\": {\"frequency\": 1, \"value\": \"0.572057\"}, \"0.591593\": {\"frequency\": 1, \"value\": \"0.591593\"}, \"0.581082\": {\"frequency\": 1, \"value\": \"0.581082\"}, \"0.416453\": {\"frequency\": 1, \"value\": \"0.416453\"}, \"0.379656\": {\"frequency\": 1, \"value\": \"0.379656\"}, \"0.573057\": {\"frequency\": 1, \"value\": \"0.573057\"}, \"0.210777\": {\"frequency\": 1, \"value\": \"0.210777\"}, \"0.513884\": {\"frequency\": 1, \"value\": \"0.513884\"}, \"0.270553\": {\"frequency\": 1, \"value\": \"0.270553\"}, \"0.41477\": {\"frequency\": 1, \"value\": \"0.41477\"}, \"0.923189\": {\"frequency\": 1, \"value\": \"0.923189\"}, \"0.465761\": {\"frequency\": 1, \"value\": \"0.465761\"}, \"0.652756\": {\"frequency\": 1, \"value\": \"0.652756\"}, \"0.674047\": {\"frequency\": 1, \"value\": \"0.674047\"}, \"0.430286\": {\"frequency\": 1, \"value\": \"0.430286\"}, \"0.0359501\": {\"frequency\": 1, \"value\": \"0.0359501\"}, \"0.619282\": {\"frequency\": 1, \"value\": \"0.619282\"}, \"0.653187\": {\"frequency\": 1, \"value\": \"0.653187\"}, \"0.343982\": {\"frequency\": 1, \"value\": \"0.343982\"}, \"0.477123\": {\"frequency\": 1, \"value\": \"0.477123\"}, \"0.295451\": {\"frequency\": 1, \"value\": \"0.295451\"}, \"0.498671\": {\"frequency\": 1, \"value\": \"0.498671\"}, \"0.440369\": {\"frequency\": 1, \"value\": \"0.440369\"}, \"0.226596\": {\"frequency\": 1, \"value\": \"0.226596\"}, \"0.374269\": {\"frequency\": 1, \"value\": \"0.374269\"}, \"0.668622\": {\"frequency\": 1, \"value\": \"0.668622\"}, \"0.428244\": {\"frequency\": 1, \"value\": \"0.428244\"}, \"0.394569\": {\"frequency\": 1, \"value\": \"0.394569\"}, \"0.315941\": {\"frequency\": 1, \"value\": \"0.315941\"}, \"0.579917\": {\"frequency\": 1, \"value\": \"0.579917\"}, \"0.781991\": {\"frequency\": 1, \"value\": \"0.781991\"}, \"0.553319\": {\"frequency\": 1, \"value\": \"0.553319\"}, \"0.357117\": {\"frequency\": 1, \"value\": \"0.357117\"}, \"0.407662\": {\"frequency\": 1, \"value\": \"0.407662\"}, \"0.106113\": {\"frequency\": 1, \"value\": \"0.106113\"}, \"0.479625\": {\"frequency\": 1, \"value\": \"0.479625\"}, \"0.165905\": {\"frequency\": 1, \"value\": \"0.165905\"}, \"0.410848\": {\"frequency\": 1, \"value\": \"0.410848\"}, \"0.388168\": {\"frequency\": 1, \"value\": \"0.388168\"}, \"0.287693\": {\"frequency\": 3, \"value\": \"0.287693\"}, \"0.300075\": {\"frequency\": 1, \"value\": \"0.300075\"}, \"0.589381\": {\"frequency\": 1, \"value\": \"0.589381\"}, \"0.561753\": {\"frequency\": 1, \"value\": \"0.561753\"}, \"0.383679\": {\"frequency\": 1, \"value\": \"0.383679\"}, \"0.365201\": {\"frequency\": 1, \"value\": \"0.365201\"}, \"0.600543\": {\"frequency\": 1, \"value\": \"0.600543\"}, \"0.129423\": {\"frequency\": 1, \"value\": \"0.129423\"}, \"0.329491\": {\"frequency\": 1, \"value\": \"0.329491\"}, \"0.408371\": {\"frequency\": 1, \"value\": \"0.408371\"}, \"0.61675\": {\"frequency\": 1, \"value\": \"0.61675\"}, \"0.427706\": {\"frequency\": 1, \"value\": \"0.427706\"}, \"0.29263\": {\"frequency\": 1, \"value\": \"0.29263\"}, \"0.268173\": {\"frequency\": 1, \"value\": \"0.268173\"}, \"0.444084\": {\"frequency\": 1, \"value\": \"0.444084\"}, \"0.184132\": {\"frequency\": 1, \"value\": \"0.184132\"}, \"0.565544\": {\"frequency\": 1, \"value\": \"0.565544\"}, \"0.293649\": {\"frequency\": 1, \"value\": \"0.293649\"}, \"0.342909\": {\"frequency\": 1, \"value\": \"0.342909\"}, \"0.331973\": {\"frequency\": 1, \"value\": \"0.331973\"}, \"0.369752\": {\"frequency\": 1, \"value\": \"0.369752\"}, \"0.498419\": {\"frequency\": 1, \"value\": \"0.498419\"}, \"0.391405\": {\"frequency\": 1, \"value\": \"0.391405\"}, \"0.513267\": {\"frequency\": 1, \"value\": \"0.513267\"}, \"0.628263\": {\"frequency\": 1, \"value\": \"0.628263\"}, \"0.25756\": {\"frequency\": 1, \"value\": \"0.25756\"}, \"0.722686\": {\"frequency\": 1, \"value\": \"0.722686\"}, \"0.666863\": {\"frequency\": 1, \"value\": \"0.666863\"}, \"0.299778\": {\"frequency\": 1, \"value\": \"0.299778\"}, \"0.465385\": {\"frequency\": 1, \"value\": \"0.465385\"}, \"0.435508\": {\"frequency\": 1, \"value\": \"0.435508\"}, \"0.433953\": {\"frequency\": 1, \"value\": \"0.433953\"}, \"0.0602048\": {\"frequency\": 1, \"value\": \"0.0602048\"}, \"0.620784\": {\"frequency\": 1, \"value\": \"0.620784\"}, \"0.201182\": {\"frequency\": 1, \"value\": \"0.201182\"}, \"0.522013\": {\"frequency\": 1, \"value\": \"0.522013\"}, \"0.51592\": {\"frequency\": 1, \"value\": \"0.51592\"}, \"0.43147\": {\"frequency\": 1, \"value\": \"0.43147\"}, \"0.448597\": {\"frequency\": 1, \"value\": \"0.448597\"}, \"0.498528\": {\"frequency\": 1, \"value\": \"0.498528\"}, \"0.301235\": {\"frequency\": 1, \"value\": \"0.301235\"}, \"0.543048\": {\"frequency\": 1, \"value\": \"0.543048\"}, \"0.183169\": {\"frequency\": 1, \"value\": \"0.183169\"}, \"0.211287\": {\"frequency\": 1, \"value\": \"0.211287\"}, \"0.525002\": {\"frequency\": 1, \"value\": \"0.525002\"}, \"0.166582\": {\"frequency\": 1, \"value\": \"0.166582\"}, \"0.403781\": {\"frequency\": 1, \"value\": \"0.403781\"}, \"0.39545\": {\"frequency\": 1, \"value\": \"0.39545\"}, \"0.321159\": {\"frequency\": 1, \"value\": \"0.321159\"}, \"0.431084\": {\"frequency\": 1, \"value\": \"0.431084\"}, \"0.394746\": {\"frequency\": 1, \"value\": \"0.394746\"}, \"0.377153\": {\"frequency\": 1, \"value\": \"0.377153\"}, \"0.482363\": {\"frequency\": 1, \"value\": \"0.482363\"}, \"0.513467\": {\"frequency\": 1, \"value\": \"0.513467\"}, \"0.197268\": {\"frequency\": 1, \"value\": \"0.197268\"}, \"0.367914\": {\"frequency\": 1, \"value\": \"0.367914\"}, \"0.135219\": {\"frequency\": 1, \"value\": \"0.135219\"}, \"0.270641\": {\"frequency\": 1, \"value\": \"0.270641\"}, \"0.344109\": {\"frequency\": 1, \"value\": \"0.344109\"}, \"0.381234\": {\"frequency\": 1, \"value\": \"0.381234\"}, \"0.304414\": {\"frequency\": 1, \"value\": \"0.304414\"}, \"0.541901\": {\"frequency\": 1, \"value\": \"0.541901\"}, \"0.360391\": {\"frequency\": 1, \"value\": \"0.360391\"}, \"0.299603\": {\"frequency\": 1, \"value\": \"0.299603\"}, \"0.448629\": {\"frequency\": 1, \"value\": \"0.448629\"}, \"0.447445\": {\"frequency\": 1, \"value\": \"0.447445\"}, \"0.200932\": {\"frequency\": 1, \"value\": \"0.200932\"}, \"0.364486\": {\"frequency\": 1, \"value\": \"0.364486\"}, \"0.63608\": {\"frequency\": 1, \"value\": \"0.63608\"}, \"0.187007\": {\"frequency\": 1, \"value\": \"0.187007\"}, \"0.238731\": {\"frequency\": 1, \"value\": \"0.238731\"}, \"0.194063\": {\"frequency\": 1, \"value\": \"0.194063\"}, \"0.433779\": {\"frequency\": 1, \"value\": \"0.433779\"}, \"0.581894\": {\"frequency\": 1, \"value\": \"0.581894\"}, \"0.215615\": {\"frequency\": 1, \"value\": \"0.215615\"}, \"0.581891\": {\"frequency\": 1, \"value\": \"0.581891\"}, \"0.552467\": {\"frequency\": 1, \"value\": \"0.552467\"}, \"0.476528\": {\"frequency\": 1, \"value\": \"0.476528\"}, \"0.452303\": {\"frequency\": 1, \"value\": \"0.452303\"}, \"0.394636\": {\"frequency\": 1, \"value\": \"0.394636\"}, \"0.283913\": {\"frequency\": 1, \"value\": \"0.283913\"}, \"0.367356\": {\"frequency\": 1, \"value\": \"0.367356\"}, \"0.493496\": {\"frequency\": 1, \"value\": \"0.493496\"}, \"0.297188\": {\"frequency\": 1, \"value\": \"0.297188\"}, \"0.524571\": {\"frequency\": 1, \"value\": \"0.524571\"}, \"0.499522\": {\"frequency\": 1, \"value\": \"0.499522\"}, \"0.435239\": {\"frequency\": 1, \"value\": \"0.435239\"}, \"0.523726\": {\"frequency\": 1, \"value\": \"0.523726\"}, \"0.478511\": {\"frequency\": 1, \"value\": \"0.478511\"}, \"0.484892\": {\"frequency\": 1, \"value\": \"0.484892\"}, \"0.377085\": {\"frequency\": 1, \"value\": \"0.377085\"}, \"0.369237\": {\"frequency\": 1, \"value\": \"0.369237\"}, \"0.706228\": {\"frequency\": 1, \"value\": \"0.706228\"}, \"0.34639\": {\"frequency\": 1, \"value\": \"0.34639\"}, \"0.707249\": {\"frequency\": 1, \"value\": \"0.707249\"}, \"0.367597\": {\"frequency\": 1, \"value\": \"0.367597\"}, \"0.367594\": {\"frequency\": 1, \"value\": \"0.367594\"}, \"0.468586\": {\"frequency\": 1, \"value\": \"0.468586\"}, \"0.347896\": {\"frequency\": 1, \"value\": \"0.347896\"}, \"0.365841\": {\"frequency\": 1, \"value\": \"0.365841\"}, \"0.280359\": {\"frequency\": 1, \"value\": \"0.280359\"}, \"0.130025\": {\"frequency\": 1, \"value\": \"0.130025\"}, \"0.213291\": {\"frequency\": 1, \"value\": \"0.213291\"}, \"0.196484\": {\"frequency\": 1, \"value\": \"0.196484\"}, \"0.610734\": {\"frequency\": 1, \"value\": \"0.610734\"}, \"0.232763\": {\"frequency\": 1, \"value\": \"0.232763\"}, \"0.226109\": {\"frequency\": 1, \"value\": \"0.226109\"}, \"0.462642\": {\"frequency\": 1, \"value\": \"0.462642\"}, \"0.252208\": {\"frequency\": 1, \"value\": \"0.252208\"}, \"0.609179\": {\"frequency\": 1, \"value\": \"0.609179\"}, \"0.31979\": {\"frequency\": 1, \"value\": \"0.31979\"}, \"0.306952\": {\"frequency\": 1, \"value\": \"0.306952\"}, \"0.730119\": {\"frequency\": 1, \"value\": \"0.730119\"}, \"0.280596\": {\"frequency\": 1, \"value\": \"0.280596\"}, \"0.385683\": {\"frequency\": 1, \"value\": \"0.385683\"}, \"0.429844\": {\"frequency\": 1, \"value\": \"0.429844\"}, \"0.53678\": {\"frequency\": 1, \"value\": \"0.53678\"}, \"0.315555\": {\"frequency\": 1, \"value\": \"0.315555\"}, \"0.555945\": {\"frequency\": 1, \"value\": \"0.555945\"}, \"0.484091\": {\"frequency\": 1, \"value\": \"0.484091\"}, \"0.332087\": {\"frequency\": 1, \"value\": \"0.332087\"}, \"0.347952\": {\"frequency\": 1, \"value\": \"0.347952\"}, \"0.257335\": {\"frequency\": 1, \"value\": \"0.257335\"}, \"0.613916\": {\"frequency\": 1, \"value\": \"0.613916\"}, \"0.256689\": {\"frequency\": 1, \"value\": \"0.256689\"}, \"0.529253\": {\"frequency\": 1, \"value\": \"0.529253\"}, \"0.600898\": {\"frequency\": 1, \"value\": \"0.600898\"}, \"0.35658\": {\"frequency\": 1, \"value\": \"0.35658\"}, \"0.157343\": {\"frequency\": 1, \"value\": \"0.157343\"}, \"0.772333\": {\"frequency\": 1, \"value\": \"0.772333\"}, \"0.0548017\": {\"frequency\": 1, \"value\": \"0.0548017\"}, \"0.368245\": {\"frequency\": 1, \"value\": \"0.368245\"}, \"0.345399\": {\"frequency\": 1, \"value\": \"0.345399\"}, \"0.534454\": {\"frequency\": 1, \"value\": \"0.534454\"}, \"0.429904\": {\"frequency\": 1, \"value\": \"0.429904\"}, \"0.605277\": {\"frequency\": 1, \"value\": \"0.605277\"}, \"0.306521\": {\"frequency\": 1, \"value\": \"0.306521\"}, \"0.266538\": {\"frequency\": 1, \"value\": \"0.266538\"}, \"0.349016\": {\"frequency\": 1, \"value\": \"0.349016\"}, \"0.305424\": {\"frequency\": 1, \"value\": \"0.305424\"}, \"0.278097\": {\"frequency\": 1, \"value\": \"0.278097\"}, \"0.569837\": {\"frequency\": 1, \"value\": \"0.569837\"}, \"0.382246\": {\"frequency\": 1, \"value\": \"0.382246\"}, \"0.327237\": {\"frequency\": 1, \"value\": \"0.327237\"}, \"0.559435\": {\"frequency\": 1, \"value\": \"0.559435\"}, \"0.471442\": {\"frequency\": 1, \"value\": \"0.471442\"}, \"0.51607\": {\"frequency\": 1, \"value\": \"0.51607\"}, \"0.297765\": {\"frequency\": 1, \"value\": \"0.297765\"}, \"0.48824\": {\"frequency\": 1, \"value\": \"0.48824\"}, \"0.521109\": {\"frequency\": 1, \"value\": \"0.521109\"}, \"0.22119\": {\"frequency\": 1, \"value\": \"0.22119\"}, \"0.618475\": {\"frequency\": 1, \"value\": \"0.618475\"}, \"0.379466\": {\"frequency\": 1, \"value\": \"0.379466\"}, \"0.16069\": {\"frequency\": 1, \"value\": \"0.16069\"}, \"0.393353\": {\"frequency\": 1, \"value\": \"0.393353\"}, \"0.520945\": {\"frequency\": 1, \"value\": \"0.520945\"}, \"0.30454\": {\"frequency\": 1, \"value\": \"0.30454\"}, \"0.316701\": {\"frequency\": 1, \"value\": \"0.316701\"}, \"0.465549\": {\"frequency\": 1, \"value\": \"0.465549\"}, \"0.540185\": {\"frequency\": 1, \"value\": \"0.540185\"}, \"0.363459\": {\"frequency\": 1, \"value\": \"0.363459\"}, \"0.253799\": {\"frequency\": 1, \"value\": \"0.253799\"}, \"0.733778\": {\"frequency\": 1, \"value\": \"0.733778\"}, \"0.337912\": {\"frequency\": 1, \"value\": \"0.337912\"}, \"0.607788\": {\"frequency\": 1, \"value\": \"0.607788\"}, \"0.236864\": {\"frequency\": 1, \"value\": \"0.236864\"}, \"0.331773\": {\"frequency\": 1, \"value\": \"0.331773\"}, \"0.409143\": {\"frequency\": 1, \"value\": \"0.409143\"}, \"0.534051\": {\"frequency\": 1, \"value\": \"0.534051\"}, \"0.27696\": {\"frequency\": 1, \"value\": \"0.27696\"}, \"0.619673\": {\"frequency\": 1, \"value\": \"0.619673\"}, \"0.767652\": {\"frequency\": 1, \"value\": \"0.767652\"}, \"0.315171\": {\"frequency\": 1, \"value\": \"0.315171\"}, \"0.198403\": {\"frequency\": 1, \"value\": \"0.198403\"}, \"0.4867\": {\"frequency\": 1, \"value\": \"0.4867\"}, \"0.376758\": {\"frequency\": 1, \"value\": \"0.376758\"}, \"0.411255\": {\"frequency\": 1, \"value\": \"0.411255\"}, \"0.294648\": {\"frequency\": 1, \"value\": \"0.294648\"}, \"0.579431\": {\"frequency\": 1, \"value\": \"0.579431\"}, \"0.453943\": {\"frequency\": 1, \"value\": \"0.453943\"}, \"0.339842\": {\"frequency\": 1, \"value\": \"0.339842\"}, \"0.354125\": {\"frequency\": 1, \"value\": \"0.354125\"}, \"0.265927\": {\"frequency\": 1, \"value\": \"0.265927\"}, \"0.0452227\": {\"frequency\": 1, \"value\": \"0.0452227\"}, \"0.425237\": {\"frequency\": 1, \"value\": \"0.425237\"}, \"0.357231\": {\"frequency\": 1, \"value\": \"0.357231\"}, \"0.406157\": {\"frequency\": 1, \"value\": \"0.406157\"}, \"0.267208\": {\"frequency\": 1, \"value\": \"0.267208\"}, \"0.611604\": {\"frequency\": 1, \"value\": \"0.611604\"}, \"0.426901\": {\"frequency\": 1, \"value\": \"0.426901\"}, \"0.354907\": {\"frequency\": 1, \"value\": \"0.354907\"}, \"0.458451\": {\"frequency\": 1, \"value\": \"0.458451\"}, \"0.580437\": {\"frequency\": 1, \"value\": \"0.580437\"}, \"0.348773\": {\"frequency\": 1, \"value\": \"0.348773\"}, \"0.443488\": {\"frequency\": 1, \"value\": \"0.443488\"}, \"0.350244\": {\"frequency\": 1, \"value\": \"0.350244\"}, \"0.595204\": {\"frequency\": 1, \"value\": \"0.595204\"}, \"0.590315\": {\"frequency\": 1, \"value\": \"0.590315\"}, \"0.440864\": {\"frequency\": 1, \"value\": \"0.440864\"}, \"0.236264\": {\"frequency\": 1, \"value\": \"0.236264\"}, \"0.374284\": {\"frequency\": 1, \"value\": \"0.374284\"}, \"0.252567\": {\"frequency\": 1, \"value\": \"0.252567\"}, \"0.295594\": {\"frequency\": 1, \"value\": \"0.295594\"}, \"0.264528\": {\"frequency\": 1, \"value\": \"0.264528\"}, \"0.660917\": {\"frequency\": 1, \"value\": \"0.660917\"}, \"0.278\": {\"frequency\": 1, \"value\": \"0.278\"}, \"0.404018\": {\"frequency\": 1, \"value\": \"0.404018\"}, \"0.326553\": {\"frequency\": 1, \"value\": \"0.326553\"}, \"0.374445\": {\"frequency\": 1, \"value\": \"0.374445\"}, \"0.400556\": {\"frequency\": 1, \"value\": \"0.400556\"}, \"0.318294\": {\"frequency\": 1, \"value\": \"0.318294\"}, \"0.354634\": {\"frequency\": 1, \"value\": \"0.354634\"}, \"0.767815\": {\"frequency\": 1, \"value\": \"0.767815\"}, \"0.421791\": {\"frequency\": 1, \"value\": \"0.421791\"}, \"0.298984\": {\"frequency\": 1, \"value\": \"0.298984\"}, \"0.579844\": {\"frequency\": 1, \"value\": \"0.579844\"}, \"0.455579\": {\"frequency\": 1, \"value\": \"0.455579\"}, \"0.481657\": {\"frequency\": 1, \"value\": \"0.481657\"}, \"0.289327\": {\"frequency\": 1, \"value\": \"0.289327\"}, \"0.422591\": {\"frequency\": 1, \"value\": \"0.422591\"}, \"0.561692\": {\"frequency\": 1, \"value\": \"0.561692\"}, \"0.350592\": {\"frequency\": 1, \"value\": \"0.350592\"}, \"0.532248\": {\"frequency\": 1, \"value\": \"0.532248\"}, \"0.554213\": {\"frequency\": 1, \"value\": \"0.554213\"}, \"0.446867\": {\"frequency\": 1, \"value\": \"0.446867\"}, \"0.383046\": {\"frequency\": 1, \"value\": \"0.383046\"}, \"0.334258\": {\"frequency\": 1, \"value\": \"0.334258\"}, \"0.194312\": {\"frequency\": 1, \"value\": \"0.194312\"}, \"0.526022\": {\"frequency\": 1, \"value\": \"0.526022\"}, \"0.377403\": {\"frequency\": 1, \"value\": \"0.377403\"}, \"0.511899\": {\"frequency\": 1, \"value\": \"0.511899\"}, \"0.424985\": {\"frequency\": 1, \"value\": \"0.424985\"}, \"0.499295\": {\"frequency\": 1, \"value\": \"0.499295\"}, \"0.48649\": {\"frequency\": 1, \"value\": \"0.48649\"}, \"0.735611\": {\"frequency\": 1, \"value\": \"0.735611\"}, \"0.313003\": {\"frequency\": 1, \"value\": \"0.313003\"}, \"0.512498\": {\"frequency\": 1, \"value\": \"0.512498\"}, \"0.386768\": {\"frequency\": 1, \"value\": \"0.386768\"}, \"0.505151\": {\"frequency\": 1, \"value\": \"0.505151\"}, \"0.660629\": {\"frequency\": 1, \"value\": \"0.660629\"}, \"0.40175\": {\"frequency\": 1, \"value\": \"0.40175\"}, \"0.595841\": {\"frequency\": 1, \"value\": \"0.595841\"}, \"0.245757\": {\"frequency\": 1, \"value\": \"0.245757\"}, \"0.245758\": {\"frequency\": 1, \"value\": \"0.245758\"}, \"0.50436\": {\"frequency\": 1, \"value\": \"0.50436\"}, \"0.354755\": {\"frequency\": 1, \"value\": \"0.354755\"}, \"0.3564\": {\"frequency\": 1, \"value\": \"0.3564\"}, \"0.356747\": {\"frequency\": 1, \"value\": \"0.356747\"}, \"0.410877\": {\"frequency\": 1, \"value\": \"0.410877\"}, \"0.61241\": {\"frequency\": 1, \"value\": \"0.61241\"}, \"0.204927\": {\"frequency\": 1, \"value\": \"0.204927\"}, \"0.425165\": {\"frequency\": 1, \"value\": \"0.425165\"}, \"0.126829\": {\"frequency\": 1, \"value\": \"0.126829\"}, \"0.223999\": {\"frequency\": 1, \"value\": \"0.223999\"}, \"0.5624\": {\"frequency\": 1, \"value\": \"0.5624\"}, \"0.385917\": {\"frequency\": 1, \"value\": \"0.385917\"}, \"0.490478\": {\"frequency\": 1, \"value\": \"0.490478\"}, \"0.253411\": {\"frequency\": 1, \"value\": \"0.253411\"}, \"0.416537\": {\"frequency\": 1, \"value\": \"0.416537\"}, \"0.577327\": {\"frequency\": 1, \"value\": \"0.577327\"}, \"0.388173\": {\"frequency\": 1, \"value\": \"0.388173\"}, \"0.39167\": {\"frequency\": 1, \"value\": \"0.39167\"}, \"0.513981\": {\"frequency\": 1, \"value\": \"0.513981\"}, \"0.660489\": {\"frequency\": 1, \"value\": \"0.660489\"}, \"0.185745\": {\"frequency\": 1, \"value\": \"0.185745\"}, \"0.327446\": {\"frequency\": 1, \"value\": \"0.327446\"}, \"0.29093\": {\"frequency\": 1, \"value\": \"0.29093\"}, \"0.469994\": {\"frequency\": 1, \"value\": \"0.469994\"}, \"0.432944\": {\"frequency\": 1, \"value\": \"0.432944\"}, \"0.135387\": {\"frequency\": 1, \"value\": \"0.135387\"}, \"0.498407\": {\"frequency\": 1, \"value\": \"0.498407\"}, \"0.514433\": {\"frequency\": 1, \"value\": \"0.514433\"}, \"0.51672\": {\"frequency\": 1, \"value\": \"0.51672\"}, \"0.286778\": {\"frequency\": 1, \"value\": \"0.286778\"}, \"0.293654\": {\"frequency\": 1, \"value\": \"0.293654\"}, \"0.456674\": {\"frequency\": 1, \"value\": \"0.456674\"}, \"0.282214\": {\"frequency\": 1, \"value\": \"0.282214\"}, \"0.546244\": {\"frequency\": 1, \"value\": \"0.546244\"}, \"0.667471\": {\"frequency\": 1, \"value\": \"0.667471\"}, \"0.498797\": {\"frequency\": 1, \"value\": \"0.498797\"}, \"0.470562\": {\"frequency\": 1, \"value\": \"0.470562\"}, \"0.497772\": {\"frequency\": 1, \"value\": \"0.497772\"}, \"0.440918\": {\"frequency\": 1, \"value\": \"0.440918\"}, \"0.391479\": {\"frequency\": 1, \"value\": \"0.391479\"}, \"0.299291\": {\"frequency\": 1, \"value\": \"0.299291\"}, \"0.460369\": {\"frequency\": 1, \"value\": \"0.460369\"}, \"0.517199\": {\"frequency\": 1, \"value\": \"0.517199\"}, \"0.258219\": {\"frequency\": 1, \"value\": \"0.258219\"}, \"0.706036\": {\"frequency\": 1, \"value\": \"0.706036\"}, \"0.366982\": {\"frequency\": 1, \"value\": \"0.366982\"}, \"0.485738\": {\"frequency\": 1, \"value\": \"0.485738\"}, \"0.410472\": {\"frequency\": 1, \"value\": \"0.410472\"}, \"0.385863\": {\"frequency\": 1, \"value\": \"0.385863\"}, \"0.575599\": {\"frequency\": 1, \"value\": \"0.575599\"}, \"0.465151\": {\"frequency\": 1, \"value\": \"0.465151\"}, \"0.440593\": {\"frequency\": 1, \"value\": \"0.440593\"}, \"0.365507\": {\"frequency\": 1, \"value\": \"0.365507\"}, \"0.303686\": {\"frequency\": 1, \"value\": \"0.303686\"}, \"0.492009\": {\"frequency\": 1, \"value\": \"0.492009\"}, \"0.326976\": {\"frequency\": 1, \"value\": \"0.326976\"}, \"0.467602\": {\"frequency\": 1, \"value\": \"0.467602\"}, \"0.262712\": {\"frequency\": 1, \"value\": \"0.262712\"}, \"0.397846\": {\"frequency\": 1, \"value\": \"0.397846\"}, \"0.343088\": {\"frequency\": 1, \"value\": \"0.343088\"}, \"0.451509\": {\"frequency\": 1, \"value\": \"0.451509\"}, \"0.44858\": {\"frequency\": 1, \"value\": \"0.44858\"}, \"0.384576\": {\"frequency\": 1, \"value\": \"0.384576\"}, \"0.312035\": {\"frequency\": 1, \"value\": \"0.312035\"}, \"0.347727\": {\"frequency\": 1, \"value\": \"0.347727\"}, \"0.394002\": {\"frequency\": 1, \"value\": \"0.394002\"}, \"0.189387\": {\"frequency\": 1, \"value\": \"0.189387\"}, \"0.38888\": {\"frequency\": 1, \"value\": \"0.38888\"}, \"0.513327\": {\"frequency\": 1, \"value\": \"0.513327\"}, \"0.481123\": {\"frequency\": 1, \"value\": \"0.481123\"}, \"0.648458\": {\"frequency\": 1, \"value\": \"0.648458\"}, \"0.377367\": {\"frequency\": 1, \"value\": \"0.377367\"}, \"0.362185\": {\"frequency\": 1, \"value\": \"0.362185\"}, \"0.459869\": {\"frequency\": 1, \"value\": \"0.459869\"}, \"0.607005\": {\"frequency\": 1, \"value\": \"0.607005\"}, \"0.371262\": {\"frequency\": 1, \"value\": \"0.371262\"}, \"0.300245\": {\"frequency\": 1, \"value\": \"0.300245\"}, \"0.202691\": {\"frequency\": 1, \"value\": \"0.202691\"}, \"0.45624\": {\"frequency\": 1, \"value\": \"0.45624\"}, \"0.351692\": {\"frequency\": 1, \"value\": \"0.351692\"}, \"0.363325\": {\"frequency\": 1, \"value\": \"0.363325\"}, \"0.296812\": {\"frequency\": 1, \"value\": \"0.296812\"}, \"0.700166\": {\"frequency\": 1, \"value\": \"0.700166\"}, \"0.507595\": {\"frequency\": 1, \"value\": \"0.507595\"}, \"0.547752\": {\"frequency\": 1, \"value\": \"0.547752\"}, \"0.1844\": {\"frequency\": 1, \"value\": \"0.1844\"}, \"0.186017\": {\"frequency\": 1, \"value\": \"0.186017\"}, \"0.238236\": {\"frequency\": 1, \"value\": \"0.238236\"}, \"0.343399\": {\"frequency\": 1, \"value\": \"0.343399\"}, \"0.414594\": {\"frequency\": 1, \"value\": \"0.414594\"}, \"0.251156\": {\"frequency\": 1, \"value\": \"0.251156\"}, \"0.480966\": {\"frequency\": 1, \"value\": \"0.480966\"}, \"0.468641\": {\"frequency\": 1, \"value\": \"0.468641\"}, \"0.125213\": {\"frequency\": 1, \"value\": \"0.125213\"}, \"0.373088\": {\"frequency\": 1, \"value\": \"0.373088\"}, \"0.384181\": {\"frequency\": 1, \"value\": \"0.384181\"}, \"0.283926\": {\"frequency\": 1, \"value\": \"0.283926\"}, \"0.582245\": {\"frequency\": 1, \"value\": \"0.582245\"}, \"0.460467\": {\"frequency\": 1, \"value\": \"0.460467\"}, \"0.479032\": {\"frequency\": 1, \"value\": \"0.479032\"}, \"0.471215\": {\"frequency\": 1, \"value\": \"0.471215\"}, \"0.418102\": {\"frequency\": 1, \"value\": \"0.418102\"}, \"0.364926\": {\"frequency\": 1, \"value\": \"0.364926\"}, \"0.234271\": {\"frequency\": 1, \"value\": \"0.234271\"}, \"0.210354\": {\"frequency\": 1, \"value\": \"0.210354\"}, \"0.336534\": {\"frequency\": 1, \"value\": \"0.336534\"}, \"0.503278\": {\"frequency\": 1, \"value\": \"0.503278\"}, \"0.624213\": {\"frequency\": 1, \"value\": \"0.624213\"}, \"0.627973\": {\"frequency\": 1, \"value\": \"0.627973\"}, \"0.316195\": {\"frequency\": 1, \"value\": \"0.316195\"}, \"0.302638\": {\"frequency\": 1, \"value\": \"0.302638\"}, \"0.297405\": {\"frequency\": 1, \"value\": \"0.297405\"}, \"0.176195\": {\"frequency\": 1, \"value\": \"0.176195\"}, \"0.45094\": {\"frequency\": 1, \"value\": \"0.45094\"}, \"0.418672\": {\"frequency\": 1, \"value\": \"0.418672\"}, \"0.484175\": {\"frequency\": 1, \"value\": \"0.484175\"}, \"0.186535\": {\"frequency\": 1, \"value\": \"0.186535\"}, \"0.364582\": {\"frequency\": 1, \"value\": \"0.364582\"}, \"0.423501\": {\"frequency\": 1, \"value\": \"0.423501\"}, \"0.314177\": {\"frequency\": 1, \"value\": \"0.314177\"}, \"0.462657\": {\"frequency\": 1, \"value\": \"0.462657\"}, \"0.0927895\": {\"frequency\": 1, \"value\": \"0.0927895\"}, \"0.372606\": {\"frequency\": 1, \"value\": \"0.372606\"}, \"0.218194\": {\"frequency\": 1, \"value\": \"0.218194\"}, \"0.66373\": {\"frequency\": 1, \"value\": \"0.66373\"}, \"0.08761\": {\"frequency\": 1, \"value\": \"0.08761\"}, \"0.472548\": {\"frequency\": 1, \"value\": \"0.472548\"}, \"0.603943\": {\"frequency\": 1, \"value\": \"0.603943\"}, \"0.33704\": {\"frequency\": 1, \"value\": \"0.33704\"}, \"0.556689\": {\"frequency\": 1, \"value\": \"0.556689\"}, \"0.755001\": {\"frequency\": 1, \"value\": \"0.755001\"}, \"0.431942\": {\"frequency\": 1, \"value\": \"0.431942\"}, \"0.52776\": {\"frequency\": 1, \"value\": \"0.52776\"}, \"0.582268\": {\"frequency\": 1, \"value\": \"0.582268\"}, \"0.18219\": {\"frequency\": 1, \"value\": \"0.18219\"}, \"0.585963\": {\"frequency\": 1, \"value\": \"0.585963\"}, \"0.515468\": {\"frequency\": 1, \"value\": \"0.515468\"}, \"0.479499\": {\"frequency\": 1, \"value\": \"0.479499\"}, \"0.452791\": {\"frequency\": 1, \"value\": \"0.452791\"}, \"0.597013\": {\"frequency\": 1, \"value\": \"0.597013\"}, \"0.310277\": {\"frequency\": 1, \"value\": \"0.310277\"}, \"0.273976\": {\"frequency\": 1, \"value\": \"0.273976\"}, \"0.27865\": {\"frequency\": 1, \"value\": \"0.27865\"}, \"0.345389\": {\"frequency\": 1, \"value\": \"0.345389\"}, \"0.690259\": {\"frequency\": 1, \"value\": \"0.690259\"}, \"0.239473\": {\"frequency\": 1, \"value\": \"0.239473\"}, \"0.345542\": {\"frequency\": 1, \"value\": \"0.345542\"}, \"0.415404\": {\"frequency\": 1, \"value\": \"0.415404\"}, \"0.427865\": {\"frequency\": 1, \"value\": \"0.427865\"}, \"0.415408\": {\"frequency\": 1, \"value\": \"0.415408\"}, \"0.465189\": {\"frequency\": 1, \"value\": \"0.465189\"}, \"0.551638\": {\"frequency\": 1, \"value\": \"0.551638\"}, \"0.381979\": {\"frequency\": 1, \"value\": \"0.381979\"}, \"0.551329\": {\"frequency\": 1, \"value\": \"0.551329\"}, \"0.547576\": {\"frequency\": 1, \"value\": \"0.547576\"}, \"0.414971\": {\"frequency\": 1, \"value\": \"0.414971\"}, \"0.297883\": {\"frequency\": 1, \"value\": \"0.297883\"}, \"0.263819\": {\"frequency\": 1, \"value\": \"0.263819\"}, \"0.737731\": {\"frequency\": 1, \"value\": \"0.737731\"}, \"0.559426\": {\"frequency\": 1, \"value\": \"0.559426\"}, \"0.412755\": {\"frequency\": 1, \"value\": \"0.412755\"}, \"0.479145\": {\"frequency\": 1, \"value\": \"0.479145\"}, \"0.393105\": {\"frequency\": 1, \"value\": \"0.393105\"}, \"0.26863\": {\"frequency\": 1, \"value\": \"0.26863\"}, \"0.377985\": {\"frequency\": 1, \"value\": \"0.377985\"}, \"0.570434\": {\"frequency\": 1, \"value\": \"0.570434\"}, \"0.290352\": {\"frequency\": 1, \"value\": \"0.290352\"}, \"0.136721\": {\"frequency\": 1, \"value\": \"0.136721\"}, \"0.419078\": {\"frequency\": 1, \"value\": \"0.419078\"}, \"0.373468\": {\"frequency\": 1, \"value\": \"0.373468\"}, \"0.313923\": {\"frequency\": 1, \"value\": \"0.313923\"}, \"0.339394\": {\"frequency\": 1, \"value\": \"0.339394\"}, \"0.322882\": {\"frequency\": 1, \"value\": \"0.322882\"}, \"0.593\": {\"frequency\": 1, \"value\": \"0.593\"}, \"0.346444\": {\"frequency\": 1, \"value\": \"0.346444\"}, \"0.409795\": {\"frequency\": 1, \"value\": \"0.409795\"}, \"0.0889148\": {\"frequency\": 1, \"value\": \"0.0889148\"}, \"0.550124\": {\"frequency\": 1, \"value\": \"0.550124\"}, \"0.487159\": {\"frequency\": 1, \"value\": \"0.487159\"}, \"0.540198\": {\"frequency\": 1, \"value\": \"0.540198\"}, \"0.0124131\": {\"frequency\": 1, \"value\": \"0.0124131\"}, \"0.378163\": {\"frequency\": 1, \"value\": \"0.378163\"}, \"0.253145\": {\"frequency\": 1, \"value\": \"0.253145\"}, \"0.78152\": {\"frequency\": 1, \"value\": \"0.78152\"}, \"0.155052\": {\"frequency\": 1, \"value\": \"0.155052\"}, \"0.295853\": {\"frequency\": 1, \"value\": \"0.295853\"}, \"0.522455\": {\"frequency\": 1, \"value\": \"0.522455\"}, \"0.233667\": {\"frequency\": 1, \"value\": \"0.233667\"}, \"0.294673\": {\"frequency\": 1, \"value\": \"0.294673\"}, \"0.382613\": {\"frequency\": 1, \"value\": \"0.382613\"}, \"0.457985\": {\"frequency\": 1, \"value\": \"0.457985\"}, \"0.500283\": {\"frequency\": 1, \"value\": \"0.500283\"}, \"0.570237\": {\"frequency\": 1, \"value\": \"0.570237\"}, \"0.558595\": {\"frequency\": 1, \"value\": \"0.558595\"}, \"0.426154\": {\"frequency\": 1, \"value\": \"0.426154\"}, \"0.324305\": {\"frequency\": 1, \"value\": \"0.324305\"}, \"0.333702\": {\"frequency\": 1, \"value\": \"0.333702\"}, \"0.584394\": {\"frequency\": 1, \"value\": \"0.584394\"}, \"0.474012\": {\"frequency\": 2, \"value\": \"0.474012\"}, \"0.673407\": {\"frequency\": 1, \"value\": \"0.673407\"}, \"0.466549\": {\"frequency\": 1, \"value\": \"0.466549\"}, \"0.354931\": {\"frequency\": 1, \"value\": \"0.354931\"}, \"0.241059\": {\"frequency\": 1, \"value\": \"0.241059\"}, \"0.421219\": {\"frequency\": 1, \"value\": \"0.421219\"}, \"0.601412\": {\"frequency\": 1, \"value\": \"0.601412\"}, \"0.334973\": {\"frequency\": 1, \"value\": \"0.334973\"}, \"0.389799\": {\"frequency\": 1, \"value\": \"0.389799\"}, \"0.877985\": {\"frequency\": 1, \"value\": \"0.877985\"}, \"0.359289\": {\"frequency\": 1, \"value\": \"0.359289\"}, \"0.303308\": {\"frequency\": 1, \"value\": \"0.303308\"}, \"0.125465\": {\"frequency\": 1, \"value\": \"0.125465\"}, \"0.346938\": {\"frequency\": 1, \"value\": \"0.346938\"}, \"0.374985\": {\"frequency\": 1, \"value\": \"0.374985\"}, \"0.191266\": {\"frequency\": 1, \"value\": \"0.191266\"}, \"0.882093\": {\"frequency\": 1, \"value\": \"0.882093\"}, \"0.417836\": {\"frequency\": 1, \"value\": \"0.417836\"}, \"0.21473\": {\"frequency\": 1, \"value\": \"0.21473\"}, \"0.21474\": {\"frequency\": 1, \"value\": \"0.21474\"}, \"0.57521\": {\"frequency\": 1, \"value\": \"0.57521\"}, \"0.333939\": {\"frequency\": 1, \"value\": \"0.333939\"}, \"0.271683\": {\"frequency\": 1, \"value\": \"0.271683\"}, \"0.302877\": {\"frequency\": 1, \"value\": \"0.302877\"}, \"0.399096\": {\"frequency\": 1, \"value\": \"0.399096\"}, \"0.519108\": {\"frequency\": 1, \"value\": \"0.519108\"}, \"0.376963\": {\"frequency\": 1, \"value\": \"0.376963\"}, \"0.501397\": {\"frequency\": 1, \"value\": \"0.501397\"}, \"0.275344\": {\"frequency\": 1, \"value\": \"0.275344\"}, \"0.213066\": {\"frequency\": 1, \"value\": \"0.213066\"}, \"0.315047\": {\"frequency\": 1, \"value\": \"0.315047\"}, \"0.486043\": {\"frequency\": 1, \"value\": \"0.486043\"}, \"0.444466\": {\"frequency\": 1, \"value\": \"0.444466\"}, \"0.418004\": {\"frequency\": 1, \"value\": \"0.418004\"}, \"0.250957\": {\"frequency\": 1, \"value\": \"0.250957\"}, \"0.611104\": {\"frequency\": 1, \"value\": \"0.611104\"}, \"0.158343\": {\"frequency\": 1, \"value\": \"0.158343\"}, \"0.158341\": {\"frequency\": 1, \"value\": \"0.158341\"}, \"0.317028\": {\"frequency\": 1, \"value\": \"0.317028\"}, \"0.328271\": {\"frequency\": 1, \"value\": \"0.328271\"}, \"0.440164\": {\"frequency\": 1, \"value\": \"0.440164\"}, \"0.458844\": {\"frequency\": 1, \"value\": \"0.458844\"}, \"0.246149\": {\"frequency\": 1, \"value\": \"0.246149\"}, \"0.314023\": {\"frequency\": 1, \"value\": \"0.314023\"}, \"0.596872\": {\"frequency\": 1, \"value\": \"0.596872\"}, \"0.33789\": {\"frequency\": 1, \"value\": \"0.33789\"}, \"0.4521\": {\"frequency\": 1, \"value\": \"0.4521\"}, \"0.389962\": {\"frequency\": 1, \"value\": \"0.389962\"}, \"0.0797471\": {\"frequency\": 1, \"value\": \"0.0797471\"}, \"0.455106\": {\"frequency\": 1, \"value\": \"0.455106\"}, \"0.4251\": {\"frequency\": 1, \"value\": \"0.4251\"}, \"0.293408\": {\"frequency\": 1, \"value\": \"0.293408\"}, \"0.239411\": {\"frequency\": 1, \"value\": \"0.239411\"}, \"0.248102\": {\"frequency\": 1, \"value\": \"0.248102\"}, \"0.410864\": {\"frequency\": 1, \"value\": \"0.410864\"}, \"0.208774\": {\"frequency\": 1, \"value\": \"0.208774\"}, \"0.305304\": {\"frequency\": 1, \"value\": \"0.305304\"}, \"0.429317\": {\"frequency\": 1, \"value\": \"0.429317\"}, \"0.769388\": {\"frequency\": 1, \"value\": \"0.769388\"}, \"0.357687\": {\"frequency\": 1, \"value\": \"0.357687\"}, \"0.554626\": {\"frequency\": 1, \"value\": \"0.554626\"}, \"0.30158\": {\"frequency\": 1, \"value\": \"0.30158\"}, \"0.54961\": {\"frequency\": 1, \"value\": \"0.54961\"}, \"0.541333\": {\"frequency\": 1, \"value\": \"0.541333\"}, \"0.378343\": {\"frequency\": 1, \"value\": \"0.378343\"}, \"0.585562\": {\"frequency\": 1, \"value\": \"0.585562\"}, \"0.586494\": {\"frequency\": 1, \"value\": \"0.586494\"}, \"0.359685\": {\"frequency\": 1, \"value\": \"0.359685\"}, \"0.726304\": {\"frequency\": 1, \"value\": \"0.726304\"}, \"0.379742\": {\"frequency\": 1, \"value\": \"0.379742\"}, \"0.356884\": {\"frequency\": 1, \"value\": \"0.356884\"}, \"0.440293\": {\"frequency\": 1, \"value\": \"0.440293\"}, \"0.185463\": {\"frequency\": 1, \"value\": \"0.185463\"}, \"0.348928\": {\"frequency\": 1, \"value\": \"0.348928\"}, \"0.390847\": {\"frequency\": 1, \"value\": \"0.390847\"}, \"0.495451\": {\"frequency\": 1, \"value\": \"0.495451\"}, \"0.252793\": {\"frequency\": 1, \"value\": \"0.252793\"}, \"0.54318\": {\"frequency\": 1, \"value\": \"0.54318\"}, \"0.515305\": {\"frequency\": 1, \"value\": \"0.515305\"}, \"0.20259\": {\"frequency\": 1, \"value\": \"0.20259\"}, \"0.502517\": {\"frequency\": 1, \"value\": \"0.502517\"}, \"0.502513\": {\"frequency\": 1, \"value\": \"0.502513\"}, \"0.502044\": {\"frequency\": 1, \"value\": \"0.502044\"}, \"0.0420287\": {\"frequency\": 1, \"value\": \"0.0420287\"}, \"0.322796\": {\"frequency\": 1, \"value\": \"0.322796\"}, \"0.2719\": {\"frequency\": 1, \"value\": \"0.2719\"}, \"0.462302\": {\"frequency\": 1, \"value\": \"0.462302\"}, \"0.626301\": {\"frequency\": 1, \"value\": \"0.626301\"}, \"0.497162\": {\"frequency\": 1, \"value\": \"0.497162\"}, \"0.54646\": {\"frequency\": 1, \"value\": \"0.54646\"}, \"0.692704\": {\"frequency\": 1, \"value\": \"0.692704\"}, \"0.276667\": {\"frequency\": 1, \"value\": \"0.276667\"}, \"0.160472\": {\"frequency\": 1, \"value\": \"0.160472\"}, \"0.541326\": {\"frequency\": 1, \"value\": \"0.541326\"}, \"0.523706\": {\"frequency\": 1, \"value\": \"0.523706\"}, \"0.506609\": {\"frequency\": 1, \"value\": \"0.506609\"}, \"0.372202\": {\"frequency\": 1, \"value\": \"0.372202\"}, \"0.254027\": {\"frequency\": 1, \"value\": \"0.254027\"}, \"0.299754\": {\"frequency\": 1, \"value\": \"0.299754\"}, \"0.425573\": {\"frequency\": 1, \"value\": \"0.425573\"}, \"0.498874\": {\"frequency\": 1, \"value\": \"0.498874\"}, \"0.34729\": {\"frequency\": 1, \"value\": \"0.34729\"}, \"0.625576\": {\"frequency\": 1, \"value\": \"0.625576\"}, \"0.56911\": {\"frequency\": 1, \"value\": \"0.56911\"}, \"0.383232\": {\"frequency\": 1, \"value\": \"0.383232\"}, \"0.516392\": {\"frequency\": 1, \"value\": \"0.516392\"}, \"0.1364\": {\"frequency\": 1, \"value\": \"0.1364\"}, \"0.465127\": {\"frequency\": 1, \"value\": \"0.465127\"}, \"0.24778\": {\"frequency\": 1, \"value\": \"0.24778\"}, \"0.0640307\": {\"frequency\": 1, \"value\": \"0.0640307\"}, \"0.386592\": {\"frequency\": 1, \"value\": \"0.386592\"}, \"0.263102\": {\"frequency\": 1, \"value\": \"0.263102\"}, \"0.134117\": {\"frequency\": 1, \"value\": \"0.134117\"}, \"0.0818121\": {\"frequency\": 1, \"value\": \"0.0818121\"}, \"0.281998\": {\"frequency\": 1, \"value\": \"0.281998\"}, \"0.603073\": {\"frequency\": 1, \"value\": \"0.603073\"}, \"0.402856\": {\"frequency\": 1, \"value\": \"0.402856\"}, \"0.494093\": {\"frequency\": 1, \"value\": \"0.494093\"}, \"0.447395\": {\"frequency\": 1, \"value\": \"0.447395\"}, \"0.315749\": {\"frequency\": 1, \"value\": \"0.315749\"}, \"0.514709\": {\"frequency\": 1, \"value\": \"0.514709\"}, \"0.421846\": {\"frequency\": 1, \"value\": \"0.421846\"}, \"0.459873\": {\"frequency\": 1, \"value\": \"0.459873\"}, \"0.781088\": {\"frequency\": 1, \"value\": \"0.781088\"}, \"0.421841\": {\"frequency\": 1, \"value\": \"0.421841\"}, \"0.389033\": {\"frequency\": 1, \"value\": \"0.389033\"}, \"0.20269\": {\"frequency\": 1, \"value\": \"0.20269\"}, \"0.541809\": {\"frequency\": 1, \"value\": \"0.541809\"}, \"0.586036\": {\"frequency\": 1, \"value\": \"0.586036\"}, \"0.312039\": {\"frequency\": 1, \"value\": \"0.312039\"}, \"0.395832\": {\"frequency\": 1, \"value\": \"0.395832\"}, \"0.249679\": {\"frequency\": 1, \"value\": \"0.249679\"}, \"0.543118\": {\"frequency\": 1, \"value\": \"0.543118\"}, \"0.183709\": {\"frequency\": 1, \"value\": \"0.183709\"}, \"0.258442\": {\"frequency\": 1, \"value\": \"0.258442\"}, \"0.43588\": {\"frequency\": 1, \"value\": \"0.43588\"}, \"0.324833\": {\"frequency\": 1, \"value\": \"0.324833\"}, \"0.433848\": {\"frequency\": 1, \"value\": \"0.433848\"}, \"0.4424\": {\"frequency\": 1, \"value\": \"0.4424\"}, \"0.438898\": {\"frequency\": 1, \"value\": \"0.438898\"}, \"0.365405\": {\"frequency\": 1, \"value\": \"0.365405\"}, \"0.281195\": {\"frequency\": 1, \"value\": \"0.281195\"}, \"0.514876\": {\"frequency\": 1, \"value\": \"0.514876\"}, \"0.528656\": {\"frequency\": 1, \"value\": \"0.528656\"}, \"0.446733\": {\"frequency\": 1, \"value\": \"0.446733\"}, \"0.241617\": {\"frequency\": 1, \"value\": \"0.241617\"}, \"0.6389\": {\"frequency\": 1, \"value\": \"0.6389\"}, \"0.425036\": {\"frequency\": 1, \"value\": \"0.425036\"}, \"0.286341\": {\"frequency\": 1, \"value\": \"0.286341\"}, \"0.499744\": {\"frequency\": 1, \"value\": \"0.499744\"}, \"0.410073\": {\"frequency\": 1, \"value\": \"0.410073\"}, \"0.414568\": {\"frequency\": 1, \"value\": \"0.414568\"}, \"0.229937\": {\"frequency\": 1, \"value\": \"0.229937\"}, \"0.227369\": {\"frequency\": 1, \"value\": \"0.227369\"}, \"0.347375\": {\"frequency\": 1, \"value\": \"0.347375\"}, \"0.327928\": {\"frequency\": 1, \"value\": \"0.327928\"}, \"0.480712\": {\"frequency\": 1, \"value\": \"0.480712\"}, \"0.479553\": {\"frequency\": 1, \"value\": \"0.479553\"}, \"0.434441\": {\"frequency\": 1, \"value\": \"0.434441\"}, \"0.185848\": {\"frequency\": 1, \"value\": \"0.185848\"}, \"0.249257\": {\"frequency\": 1, \"value\": \"0.249257\"}, \"0.830545\": {\"frequency\": 1, \"value\": \"0.830545\"}, \"0.267481\": {\"frequency\": 1, \"value\": \"0.267481\"}, \"0.471225\": {\"frequency\": 1, \"value\": \"0.471225\"}, \"0.398107\": {\"frequency\": 1, \"value\": \"0.398107\"}, \"0.147553\": {\"frequency\": 1, \"value\": \"0.147553\"}, \"0.703783\": {\"frequency\": 1, \"value\": \"0.703783\"}, \"0.643699\": {\"frequency\": 1, \"value\": \"0.643699\"}, \"0.233015\": {\"frequency\": 1, \"value\": \"0.233015\"}, \"0.412819\": {\"frequency\": 1, \"value\": \"0.412819\"}, \"0.343254\": {\"frequency\": 1, \"value\": \"0.343254\"}, \"0.397877\": {\"frequency\": 1, \"value\": \"0.397877\"}, \"0.442051\": {\"frequency\": 1, \"value\": \"0.442051\"}, \"0.153183\": {\"frequency\": 1, \"value\": \"0.153183\"}, \"0.314168\": {\"frequency\": 1, \"value\": \"0.314168\"}, \"0.196315\": {\"frequency\": 1, \"value\": \"0.196315\"}, \"0.259959\": {\"frequency\": 1, \"value\": \"0.259959\"}, \"0.671842\": {\"frequency\": 1, \"value\": \"0.671842\"}, \"0.384608\": {\"frequency\": 1, \"value\": \"0.384608\"}, \"0.371003\": {\"frequency\": 1, \"value\": \"0.371003\"}, \"0.494768\": {\"frequency\": 1, \"value\": \"0.494768\"}, \"0.462666\": {\"frequency\": 1, \"value\": \"0.462666\"}, \"0.23026\": {\"frequency\": 1, \"value\": \"0.23026\"}, \"0.118394\": {\"frequency\": 1, \"value\": \"0.118394\"}, \"0.45244\": {\"frequency\": 1, \"value\": \"0.45244\"}, \"0.488094\": {\"frequency\": 1, \"value\": \"0.488094\"}, \"0.429815\": {\"frequency\": 1, \"value\": \"0.429815\"}, \"0.414308\": {\"frequency\": 1, \"value\": \"0.414308\"}, \"0.50999\": {\"frequency\": 1, \"value\": \"0.50999\"}, \"0.658046\": {\"frequency\": 1, \"value\": \"0.658046\"}, \"0.136842\": {\"frequency\": 1, \"value\": \"0.136842\"}, \"0.534995\": {\"frequency\": 1, \"value\": \"0.534995\"}, \"0.32157\": {\"frequency\": 1, \"value\": \"0.32157\"}, \"0.339944\": {\"frequency\": 1, \"value\": \"0.339944\"}, \"0.46196\": {\"frequency\": 1, \"value\": \"0.46196\"}, \"0.377294\": {\"frequency\": 1, \"value\": \"0.377294\"}, \"0.585913\": {\"frequency\": 1, \"value\": \"0.585913\"}, \"0.413473\": {\"frequency\": 1, \"value\": \"0.413473\"}, \"0.42477\": {\"frequency\": 1, \"value\": \"0.42477\"}, \"0.130299\": {\"frequency\": 1, \"value\": \"0.130299\"}, \"0.521407\": {\"frequency\": 1, \"value\": \"0.521407\"}, \"0.35672\": {\"frequency\": 1, \"value\": \"0.35672\"}, \"0.355151\": {\"frequency\": 1, \"value\": \"0.355151\"}, \"0.556361\": {\"frequency\": 1, \"value\": \"0.556361\"}, \"0.15944\": {\"frequency\": 1, \"value\": \"0.15944\"}, \"0.370267\": {\"frequency\": 1, \"value\": \"0.370267\"}, \"0.566359\": {\"frequency\": 1, \"value\": \"0.566359\"}, \"0.14436\": {\"frequency\": 1, \"value\": \"0.14436\"}, \"0.196774\": {\"frequency\": 1, \"value\": \"0.196774\"}, \"0.27854\": {\"frequency\": 1, \"value\": \"0.27854\"}, \"0.48497\": {\"frequency\": 1, \"value\": \"0.48497\"}, \"0.409012\": {\"frequency\": 1, \"value\": \"0.409012\"}, \"0.310596\": {\"frequency\": 1, \"value\": \"0.310596\"}, \"0.520387\": {\"frequency\": 1, \"value\": \"0.520387\"}, \"0.524807\": {\"frequency\": 1, \"value\": \"0.524807\"}, \"0.565917\": {\"frequency\": 1, \"value\": \"0.565917\"}, \"0.448731\": {\"frequency\": 1, \"value\": \"0.448731\"}, \"0.701228\": {\"frequency\": 1, \"value\": \"0.701228\"}, \"0.289406\": {\"frequency\": 1, \"value\": \"0.289406\"}, \"0.494313\": {\"frequency\": 1, \"value\": \"0.494313\"}, \"0.144637\": {\"frequency\": 1, \"value\": \"0.144637\"}, \"0.527826\": {\"frequency\": 1, \"value\": \"0.527826\"}, \"0.484768\": {\"frequency\": 1, \"value\": \"0.484768\"}, \"0.0715975\": {\"frequency\": 1, \"value\": \"0.0715975\"}, \"0.340387\": {\"frequency\": 1, \"value\": \"0.340387\"}, \"0.578656\": {\"frequency\": 1, \"value\": \"0.578656\"}, \"0.1896\": {\"frequency\": 1, \"value\": \"0.1896\"}, \"0.535455\": {\"frequency\": 1, \"value\": \"0.535455\"}, \"0.281173\": {\"frequency\": 1, \"value\": \"0.281173\"}, \"0.435871\": {\"frequency\": 1, \"value\": \"0.435871\"}, \"0.377789\": {\"frequency\": 1, \"value\": \"0.377789\"}, \"0.318613\": {\"frequency\": 1, \"value\": \"0.318613\"}, \"0.453361\": {\"frequency\": 1, \"value\": \"0.453361\"}, \"0.490329\": {\"frequency\": 1, \"value\": \"0.490329\"}, \"0.412192\": {\"frequency\": 1, \"value\": \"0.412192\"}, \"0.570402\": {\"frequency\": 1, \"value\": \"0.570402\"}, \"0.367622\": {\"frequency\": 1, \"value\": \"0.367622\"}, \"0.427459\": {\"frequency\": 1, \"value\": \"0.427459\"}, \"0.487703\": {\"frequency\": 1, \"value\": \"0.487703\"}, \"0.421115\": {\"frequency\": 1, \"value\": \"0.421115\"}, \"0.350648\": {\"frequency\": 1, \"value\": \"0.350648\"}, \"0.256336\": {\"frequency\": 1, \"value\": \"0.256336\"}, \"0.691917\": {\"frequency\": 1, \"value\": \"0.691917\"}, \"0.0244834\": {\"frequency\": 1, \"value\": \"0.0244834\"}, \"0.733286\": {\"frequency\": 1, \"value\": \"0.733286\"}, \"0.337937\": {\"frequency\": 1, \"value\": \"0.337937\"}, \"0.280159\": {\"frequency\": 1, \"value\": \"0.280159\"}, \"0.680144\": {\"frequency\": 1, \"value\": \"0.680144\"}, \"0.441373\": {\"frequency\": 1, \"value\": \"0.441373\"}, \"0.515042\": {\"frequency\": 1, \"value\": \"0.515042\"}, \"0.511593\": {\"frequency\": 1, \"value\": \"0.511593\"}, \"0.503579\": {\"frequency\": 1, \"value\": \"0.503579\"}, \"0.491123\": {\"frequency\": 1, \"value\": \"0.491123\"}, \"0.547418\": {\"frequency\": 1, \"value\": \"0.547418\"}, \"0.314133\": {\"frequency\": 1, \"value\": \"0.314133\"}, \"0.438401\": {\"frequency\": 1, \"value\": \"0.438401\"}, \"0.408424\": {\"frequency\": 1, \"value\": \"0.408424\"}, \"0.495653\": {\"frequency\": 1, \"value\": \"0.495653\"}, \"0.452619\": {\"frequency\": 1, \"value\": \"0.452619\"}, \"0.451942\": {\"frequency\": 1, \"value\": \"0.451942\"}, \"0.406841\": {\"frequency\": 1, \"value\": \"0.406841\"}, \"0.413922\": {\"frequency\": 1, \"value\": \"0.413922\"}, \"0.204671\": {\"frequency\": 1, \"value\": \"0.204671\"}, \"0.257696\": {\"frequency\": 1, \"value\": \"0.257696\"}, \"0.111377\": {\"frequency\": 1, \"value\": \"0.111377\"}, \"0.214998\": {\"frequency\": 1, \"value\": \"0.214998\"}, \"0.426928\": {\"frequency\": 1, \"value\": \"0.426928\"}, \"0.653159\": {\"frequency\": 1, \"value\": \"0.653159\"}, \"0.382134\": {\"frequency\": 1, \"value\": \"0.382134\"}, \"0.401177\": {\"frequency\": 1, \"value\": \"0.401177\"}, \"0.454992\": {\"frequency\": 1, \"value\": \"0.454992\"}, \"0.64292\": {\"frequency\": 1, \"value\": \"0.64292\"}, \"0.30898\": {\"frequency\": 1, \"value\": \"0.30898\"}, \"0.526892\": {\"frequency\": 1, \"value\": \"0.526892\"}, \"0.73005\": {\"frequency\": 1, \"value\": \"0.73005\"}, \"0.470935\": {\"frequency\": 1, \"value\": \"0.470935\"}, \"0.718721\": {\"frequency\": 1, \"value\": \"0.718721\"}, \"0.431897\": {\"frequency\": 1, \"value\": \"0.431897\"}, \"0.392976\": {\"frequency\": 1, \"value\": \"0.392976\"}, \"0.270431\": {\"frequency\": 1, \"value\": \"0.270431\"}, \"0.503817\": {\"frequency\": 1, \"value\": \"0.503817\"}, \"0.484417\": {\"frequency\": 1, \"value\": \"0.484417\"}, \"0.463389\": {\"frequency\": 1, \"value\": \"0.463389\"}, \"0.44629\": {\"frequency\": 1, \"value\": \"0.44629\"}, \"0.637128\": {\"frequency\": 1, \"value\": \"0.637128\"}, \"0.467254\": {\"frequency\": 1, \"value\": \"0.467254\"}, \"0.495043\": {\"frequency\": 1, \"value\": \"0.495043\"}, \"0.511686\": {\"frequency\": 1, \"value\": \"0.511686\"}, \"0.386601\": {\"frequency\": 1, \"value\": \"0.386601\"}, \"0.608117\": {\"frequency\": 1, \"value\": \"0.608117\"}, \"0.371355\": {\"frequency\": 1, \"value\": \"0.371355\"}, \"0.264348\": {\"frequency\": 1, \"value\": \"0.264348\"}, \"0.450321\": {\"frequency\": 1, \"value\": \"0.450321\"}, \"0.526438\": {\"frequency\": 1, \"value\": \"0.526438\"}, \"0.430949\": {\"frequency\": 1, \"value\": \"0.430949\"}, \"0.450985\": {\"frequency\": 1, \"value\": \"0.450985\"}, \"0.323297\": {\"frequency\": 1, \"value\": \"0.323297\"}, \"0.392572\": {\"frequency\": 1, \"value\": \"0.392572\"}, \"0.346943\": {\"frequency\": 1, \"value\": \"0.346943\"}, \"0.400201\": {\"frequency\": 1, \"value\": \"0.400201\"}, \"0.271692\": {\"frequency\": 1, \"value\": \"0.271692\"}, \"0.2851\": {\"frequency\": 1, \"value\": \"0.2851\"}, \"0.636776\": {\"frequency\": 1, \"value\": \"0.636776\"}, \"0.291783\": {\"frequency\": 1, \"value\": \"0.291783\"}, \"0.421066\": {\"frequency\": 1, \"value\": \"0.421066\"}, \"0.284874\": {\"frequency\": 1, \"value\": \"0.284874\"}, \"0.461661\": {\"frequency\": 1, \"value\": \"0.461661\"}, \"0.38216\": {\"frequency\": 1, \"value\": \"0.38216\"}, \"0.399247\": {\"frequency\": 1, \"value\": \"0.399247\"}, \"0.308904\": {\"frequency\": 1, \"value\": \"0.308904\"}, \"0.414927\": {\"frequency\": 1, \"value\": \"0.414927\"}, \"0.664748\": {\"frequency\": 1, \"value\": \"0.664748\"}, \"0.386744\": {\"frequency\": 1, \"value\": \"0.386744\"}, \"0.368341\": {\"frequency\": 1, \"value\": \"0.368341\"}, \"0.322694\": {\"frequency\": 1, \"value\": \"0.322694\"}, \"0.514316\": {\"frequency\": 1, \"value\": \"0.514316\"}, \"0.506594\": {\"frequency\": 1, \"value\": \"0.506594\"}, \"0.492486\": {\"frequency\": 1, \"value\": \"0.492486\"}, \"0.442103\": {\"frequency\": 1, \"value\": \"0.442103\"}, \"0.461069\": {\"frequency\": 1, \"value\": \"0.461069\"}, \"0.526383\": {\"frequency\": 1, \"value\": \"0.526383\"}, \"0.389951\": {\"frequency\": 1, \"value\": \"0.389951\"}, \"0.407419\": {\"frequency\": 1, \"value\": \"0.407419\"}, \"0.407417\": {\"frequency\": 1, \"value\": \"0.407417\"}, \"0.326625\": {\"frequency\": 1, \"value\": \"0.326625\"}, \"0.400373\": {\"frequency\": 1, \"value\": \"0.400373\"}, \"0.189294\": {\"frequency\": 1, \"value\": \"0.189294\"}, \"0.398446\": {\"frequency\": 1, \"value\": \"0.398446\"}, \"0.308525\": {\"frequency\": 1, \"value\": \"0.308525\"}, \"0.513832\": {\"frequency\": 1, \"value\": \"0.513832\"}, \"0.469285\": {\"frequency\": 1, \"value\": \"0.469285\"}, \"0.497375\": {\"frequency\": 1, \"value\": \"0.497375\"}, \"0.469287\": {\"frequency\": 1, \"value\": \"0.469287\"}, \"0.209366\": {\"frequency\": 1, \"value\": \"0.209366\"}, \"0.648614\": {\"frequency\": 1, \"value\": \"0.648614\"}, \"0.217772\": {\"frequency\": 1, \"value\": \"0.217772\"}, \"0.335464\": {\"frequency\": 1, \"value\": \"0.335464\"}, \"0.464538\": {\"frequency\": 1, \"value\": \"0.464538\"}, \"0.620194\": {\"frequency\": 1, \"value\": \"0.620194\"}, \"0.757161\": {\"frequency\": 1, \"value\": \"0.757161\"}, \"0.551988\": {\"frequency\": 1, \"value\": \"0.551988\"}, \"0.202452\": {\"frequency\": 1, \"value\": \"0.202452\"}, \"0.253435\": {\"frequency\": 1, \"value\": \"0.253435\"}, \"0.624168\": {\"frequency\": 1, \"value\": \"0.624168\"}, \"0.304087\": {\"frequency\": 1, \"value\": \"0.304087\"}, \"0.39109\": {\"frequency\": 1, \"value\": \"0.39109\"}, \"0.306582\": {\"frequency\": 1, \"value\": \"0.306582\"}, \"0.306583\": {\"frequency\": 1, \"value\": \"0.306583\"}, \"0.365912\": {\"frequency\": 1, \"value\": \"0.365912\"}, \"0.712821\": {\"frequency\": 1, \"value\": \"0.712821\"}, \"0.40755\": {\"frequency\": 1, \"value\": \"0.40755\"}, \"0.597642\": {\"frequency\": 1, \"value\": \"0.597642\"}, \"0.329196\": {\"frequency\": 1, \"value\": \"0.329196\"}, \"0.240399\": {\"frequency\": 1, \"value\": \"0.240399\"}, \"0.514224\": {\"frequency\": 1, \"value\": \"0.514224\"}, \"0.508744\": {\"frequency\": 1, \"value\": \"0.508744\"}, \"0.135363\": {\"frequency\": 1, \"value\": \"0.135363\"}, \"0.937482\": {\"frequency\": 1, \"value\": \"0.937482\"}, \"0.327661\": {\"frequency\": 1, \"value\": \"0.327661\"}, \"0.656272\": {\"frequency\": 1, \"value\": \"0.656272\"}, \"0.315284\": {\"frequency\": 1, \"value\": \"0.315284\"}, \"0.477004\": {\"frequency\": 1, \"value\": \"0.477004\"}, \"0.432929\": {\"frequency\": 1, \"value\": \"0.432929\"}, \"0.177979\": {\"frequency\": 1, \"value\": \"0.177979\"}, \"0.390103\": {\"frequency\": 1, \"value\": \"0.390103\"}, \"0.515917\": {\"frequency\": 1, \"value\": \"0.515917\"}, \"0.310893\": {\"frequency\": 1, \"value\": \"0.310893\"}, \"0.743109\": {\"frequency\": 1, \"value\": \"0.743109\"}, \"0.203876\": {\"frequency\": 1, \"value\": \"0.203876\"}, \"0.263731\": {\"frequency\": 1, \"value\": \"0.263731\"}, \"0.362459\": {\"frequency\": 1, \"value\": \"0.362459\"}, \"0.208163\": {\"frequency\": 1, \"value\": \"0.208163\"}, \"0.413317\": {\"frequency\": 1, \"value\": \"0.413317\"}, \"0.288972\": {\"frequency\": 1, \"value\": \"0.288972\"}, \"0.0709851\": {\"frequency\": 1, \"value\": \"0.0709851\"}, \"0.478238\": {\"frequency\": 1, \"value\": \"0.478238\"}, \"0.160466\": {\"frequency\": 1, \"value\": \"0.160466\"}, \"0.24095\": {\"frequency\": 1, \"value\": \"0.24095\"}, \"0.244653\": {\"frequency\": 1, \"value\": \"0.244653\"}, \"0.627087\": {\"frequency\": 1, \"value\": \"0.627087\"}, \"0.625581\": {\"frequency\": 1, \"value\": \"0.625581\"}, \"0.260916\": {\"frequency\": 1, \"value\": \"0.260916\"}, \"0.301915\": {\"frequency\": 2, \"value\": \"0.301915\"}, \"0.333762\": {\"frequency\": 1, \"value\": \"0.333762\"}, \"0.377202\": {\"frequency\": 1, \"value\": \"0.377202\"}, \"0.357544\": {\"frequency\": 1, \"value\": \"0.357544\"}, \"0.470745\": {\"frequency\": 1, \"value\": \"0.470745\"}, \"0.399067\": {\"frequency\": 1, \"value\": \"0.399067\"}, \"0.686078\": {\"frequency\": 1, \"value\": \"0.686078\"}, \"0.643845\": {\"frequency\": 1, \"value\": \"0.643845\"}, \"0.158404\": {\"frequency\": 1, \"value\": \"0.158404\"}, \"0.492062\": {\"frequency\": 1, \"value\": \"0.492062\"}, \"0.286459\": {\"frequency\": 1, \"value\": \"0.286459\"}, \"0.371694\": {\"frequency\": 1, \"value\": \"0.371694\"}, \"0.514133\": {\"frequency\": 1, \"value\": \"0.514133\"}, \"0.657874\": {\"frequency\": 1, \"value\": \"0.657874\"}, \"0.293781\": {\"frequency\": 1, \"value\": \"0.293781\"}, \"0.335398\": {\"frequency\": 1, \"value\": \"0.335398\"}, \"0.442261\": {\"frequency\": 1, \"value\": \"0.442261\"}, \"0.238455\": {\"frequency\": 1, \"value\": \"0.238455\"}, \"0.467159\": {\"frequency\": 1, \"value\": \"0.467159\"}, \"0.531231\": {\"frequency\": 1, \"value\": \"0.531231\"}, \"0.435068\": {\"frequency\": 1, \"value\": \"0.435068\"}, \"0.363276\": {\"frequency\": 1, \"value\": \"0.363276\"}, \"0.44832\": {\"frequency\": 1, \"value\": \"0.44832\"}, \"0.402689\": {\"frequency\": 1, \"value\": \"0.402689\"}, \"0.267036\": {\"frequency\": 1, \"value\": \"0.267036\"}, \"0.593541\": {\"frequency\": 1, \"value\": \"0.593541\"}, \"0.470869\": {\"frequency\": 1, \"value\": \"0.470869\"}, \"0.467395\": {\"frequency\": 1, \"value\": \"0.467395\"}, \"0.52129\": {\"frequency\": 1, \"value\": \"0.52129\"}, \"0.35494\": {\"frequency\": 1, \"value\": \"0.35494\"}, \"0.456084\": {\"frequency\": 1, \"value\": \"0.456084\"}, \"0.490631\": {\"frequency\": 1, \"value\": \"0.490631\"}, \"0.567559\": {\"frequency\": 1, \"value\": \"0.567559\"}, \"0.435464\": {\"frequency\": 1, \"value\": \"0.435464\"}, \"0.569589\": {\"frequency\": 1, \"value\": \"0.569589\"}, \"0.255974\": {\"frequency\": 1, \"value\": \"0.255974\"}, \"0.606219\": {\"frequency\": 1, \"value\": \"0.606219\"}, \"0.233241\": {\"frequency\": 1, \"value\": \"0.233241\"}, \"0.417406\": {\"frequency\": 1, \"value\": \"0.417406\"}, \"0.595213\": {\"frequency\": 1, \"value\": \"0.595213\"}, \"0.563712\": {\"frequency\": 1, \"value\": \"0.563712\"}, \"0.380193\": {\"frequency\": 1, \"value\": \"0.380193\"}, \"0.314801\": {\"frequency\": 1, \"value\": \"0.314801\"}, \"0.330856\": {\"frequency\": 1, \"value\": \"0.330856\"}, \"0.272771\": {\"frequency\": 1, \"value\": \"0.272771\"}, \"0.549937\": {\"frequency\": 1, \"value\": \"0.549937\"}, \"0.502496\": {\"frequency\": 1, \"value\": \"0.502496\"}, \"0.299816\": {\"frequency\": 1, \"value\": \"0.299816\"}, \"0.515861\": {\"frequency\": 1, \"value\": \"0.515861\"}, \"0.676731\": {\"frequency\": 1, \"value\": \"0.676731\"}, \"0.409904\": {\"frequency\": 1, \"value\": \"0.409904\"}, \"0.410064\": {\"frequency\": 1, \"value\": \"0.410064\"}, \"0.469719\": {\"frequency\": 1, \"value\": \"0.469719\"}, \"0.503384\": {\"frequency\": 1, \"value\": \"0.503384\"}, \"0.100495\": {\"frequency\": 1, \"value\": \"0.100495\"}, \"0.304526\": {\"frequency\": 1, \"value\": \"0.304526\"}, \"0.475213\": {\"frequency\": 1, \"value\": \"0.475213\"}, \"0.288118\": {\"frequency\": 1, \"value\": \"0.288118\"}, \"0.493447\": {\"frequency\": 1, \"value\": \"0.493447\"}, \"0.584572\": {\"frequency\": 1, \"value\": \"0.584572\"}, \"0.480877\": {\"frequency\": 1, \"value\": \"0.480877\"}, \"0.424437\": {\"frequency\": 1, \"value\": \"0.424437\"}, \"0.356963\": {\"frequency\": 1, \"value\": \"0.356963\"}, \"0.467088\": {\"frequency\": 1, \"value\": \"0.467088\"}, \"0.464061\": {\"frequency\": 1, \"value\": \"0.464061\"}, \"0.283949\": {\"frequency\": 1, \"value\": \"0.283949\"}, \"0.547882\": {\"frequency\": 1, \"value\": \"0.547882\"}, \"0.279489\": {\"frequency\": 1, \"value\": \"0.279489\"}, \"0.447038\": {\"frequency\": 1, \"value\": \"0.447038\"}, \"0.501668\": {\"frequency\": 1, \"value\": \"0.501668\"}, \"0.439112\": {\"frequency\": 1, \"value\": \"0.439112\"}, \"0.31768\": {\"frequency\": 1, \"value\": \"0.31768\"}, \"0.3598\": {\"frequency\": 1, \"value\": \"0.3598\"}, \"0.503259\": {\"frequency\": 1, \"value\": \"0.503259\"}, \"0.340445\": {\"frequency\": 1, \"value\": \"0.340445\"}, \"0.111804\": {\"frequency\": 1, \"value\": \"0.111804\"}, \"0.272979\": {\"frequency\": 1, \"value\": \"0.272979\"}, \"0.42085\": {\"frequency\": 1, \"value\": \"0.42085\"}, \"0.508425\": {\"frequency\": 1, \"value\": \"0.508425\"}, \"0.128903\": {\"frequency\": 1, \"value\": \"0.128903\"}, \"0.408588\": {\"frequency\": 1, \"value\": \"0.408588\"}, \"0.296957\": {\"frequency\": 1, \"value\": \"0.296957\"}, \"0.439625\": {\"frequency\": 1, \"value\": \"0.439625\"}, \"0.481478\": {\"frequency\": 1, \"value\": \"0.481478\"}, \"0.49032\": {\"frequency\": 1, \"value\": \"0.49032\"}, \"0.36262\": {\"frequency\": 1, \"value\": \"0.36262\"}, \"0.460835\": {\"frequency\": 1, \"value\": \"0.460835\"}, \"0.460834\": {\"frequency\": 1, \"value\": \"0.460834\"}, \"0.468531\": {\"frequency\": 1, \"value\": \"0.468531\"}, \"0.380978\": {\"frequency\": 1, \"value\": \"0.380978\"}, \"0.45318\": {\"frequency\": 1, \"value\": \"0.45318\"}, \"0.183468\": {\"frequency\": 1, \"value\": \"0.183468\"}, \"0.163894\": {\"frequency\": 1, \"value\": \"0.163894\"}, \"0.535205\": {\"frequency\": 1, \"value\": \"0.535205\"}, \"0.343284\": {\"frequency\": 1, \"value\": \"0.343284\"}, \"0.46741\": {\"frequency\": 1, \"value\": \"0.46741\"}, \"0.619928\": {\"frequency\": 1, \"value\": \"0.619928\"}, \"0.387489\": {\"frequency\": 1, \"value\": \"0.387489\"}, \"0.313766\": {\"frequency\": 1, \"value\": \"0.313766\"}, \"0.313568\": {\"frequency\": 1, \"value\": \"0.313568\"}, \"0.319062\": {\"frequency\": 1, \"value\": \"0.319062\"}, \"0.464997\": {\"frequency\": 1, \"value\": \"0.464997\"}, \"0.42401\": {\"frequency\": 1, \"value\": \"0.42401\"}, \"0.245457\": {\"frequency\": 1, \"value\": \"0.245457\"}, \"0.35606\": {\"frequency\": 1, \"value\": \"0.35606\"}, \"0.373199\": {\"frequency\": 1, \"value\": \"0.373199\"}, \"0.377838\": {\"frequency\": 1, \"value\": \"0.377838\"}, \"0.618196\": {\"frequency\": 1, \"value\": \"0.618196\"}, \"0.42889\": {\"frequency\": 1, \"value\": \"0.42889\"}, \"0.412338\": {\"frequency\": 1, \"value\": \"0.412338\"}, \"0.622001\": {\"frequency\": 1, \"value\": \"0.622001\"}, \"0.655063\": {\"frequency\": 1, \"value\": \"0.655063\"}, \"0.724605\": {\"frequency\": 1, \"value\": \"0.724605\"}, \"0.384706\": {\"frequency\": 1, \"value\": \"0.384706\"}, \"0.482435\": {\"frequency\": 1, \"value\": \"0.482435\"}, \"0.472633\": {\"frequency\": 1, \"value\": \"0.472633\"}, \"0.374343\": {\"frequency\": 1, \"value\": \"0.374343\"}, \"0.442885\": {\"frequency\": 1, \"value\": \"0.442885\"}, \"0.41695\": {\"frequency\": 1, \"value\": \"0.41695\"}, \"0.462793\": {\"frequency\": 1, \"value\": \"0.462793\"}, \"0.29439\": {\"frequency\": 1, \"value\": \"0.29439\"}, \"0.305452\": {\"frequency\": 1, \"value\": \"0.305452\"}, \"0.547554\": {\"frequency\": 1, \"value\": \"0.547554\"}, \"0.563881\": {\"frequency\": 1, \"value\": \"0.563881\"}, \"0.414798\": {\"frequency\": 1, \"value\": \"0.414798\"}, \"0.453424\": {\"frequency\": 1, \"value\": \"0.453424\"}, \"0.627637\": {\"frequency\": 1, \"value\": \"0.627637\"}, \"0.480454\": {\"frequency\": 1, \"value\": \"0.480454\"}, \"0.502924\": {\"frequency\": 1, \"value\": \"0.502924\"}, \"0.484856\": {\"frequency\": 1, \"value\": \"0.484856\"}, \"0.241929\": {\"frequency\": 1, \"value\": \"0.241929\"}, \"0.792157\": {\"frequency\": 1, \"value\": \"0.792157\"}, \"0.255695\": {\"frequency\": 1, \"value\": \"0.255695\"}, \"0.367145\": {\"frequency\": 1, \"value\": \"0.367145\"}, \"0.479946\": {\"frequency\": 1, \"value\": \"0.479946\"}, \"0.410086\": {\"frequency\": 1, \"value\": \"0.410086\"}, \"0.717927\": {\"frequency\": 1, \"value\": \"0.717927\"}, \"0.419321\": {\"frequency\": 1, \"value\": \"0.419321\"}, \"0.434563\": {\"frequency\": 1, \"value\": \"0.434563\"}, \"0.379238\": {\"frequency\": 1, \"value\": \"0.379238\"}, \"0.422238\": {\"frequency\": 1, \"value\": \"0.422238\"}, \"0.33477\": {\"frequency\": 1, \"value\": \"0.33477\"}, \"0.170938\": {\"frequency\": 1, \"value\": \"0.170938\"}, \"0.47836\": {\"frequency\": 1, \"value\": \"0.47836\"}, \"0.355157\": {\"frequency\": 1, \"value\": \"0.355157\"}, \"0.416031\": {\"frequency\": 1, \"value\": \"0.416031\"}, \"0.22472\": {\"frequency\": 1, \"value\": \"0.22472\"}, \"0.63507\": {\"frequency\": 1, \"value\": \"0.63507\"}, \"0.216263\": {\"frequency\": 1, \"value\": \"0.216263\"}, \"0.577177\": {\"frequency\": 1, \"value\": \"0.577177\"}, \"0.236832\": {\"frequency\": 1, \"value\": \"0.236832\"}, \"0.340641\": {\"frequency\": 1, \"value\": \"0.340641\"}, \"0.520486\": {\"frequency\": 1, \"value\": \"0.520486\"}, \"0.436135\": {\"frequency\": 1, \"value\": \"0.436135\"}, \"0.472989\": {\"frequency\": 1, \"value\": \"0.472989\"}, \"0.216176\": {\"frequency\": 1, \"value\": \"0.216176\"}, \"0.209624\": {\"frequency\": 1, \"value\": \"0.209624\"}, \"0.26008\": {\"frequency\": 1, \"value\": \"0.26008\"}, \"0.252436\": {\"frequency\": 1, \"value\": \"0.252436\"}, \"0.211483\": {\"frequency\": 1, \"value\": \"0.211483\"}, \"0.619628\": {\"frequency\": 1, \"value\": \"0.619628\"}, \"0.396133\": {\"frequency\": 1, \"value\": \"0.396133\"}, \"0.295831\": {\"frequency\": 1, \"value\": \"0.295831\"}, \"0.515443\": {\"frequency\": 1, \"value\": \"0.515443\"}, \"0.38775\": {\"frequency\": 1, \"value\": \"0.38775\"}, \"0.37024\": {\"frequency\": 1, \"value\": \"0.37024\"}, \"0.305859\": {\"frequency\": 1, \"value\": \"0.305859\"}, \"0.427535\": {\"frequency\": 1, \"value\": \"0.427535\"}, \"0.392413\": {\"frequency\": 1, \"value\": \"0.392413\"}, \"0.357472\": {\"frequency\": 1, \"value\": \"0.357472\"}, \"0.430391\": {\"frequency\": 1, \"value\": \"0.430391\"}, \"0.382141\": {\"frequency\": 1, \"value\": \"0.382141\"}, \"0.17668\": {\"frequency\": 1, \"value\": \"0.17668\"}, \"0.561976\": {\"frequency\": 1, \"value\": \"0.561976\"}, \"0.377749\": {\"frequency\": 1, \"value\": \"0.377749\"}, \"0.445964\": {\"frequency\": 1, \"value\": \"0.445964\"}, \"0.433983\": {\"frequency\": 1, \"value\": \"0.433983\"}, \"0.30881\": {\"frequency\": 1, \"value\": \"0.30881\"}, \"0.882147\": {\"frequency\": 1, \"value\": \"0.882147\"}, \"0.592977\": {\"frequency\": 1, \"value\": \"0.592977\"}, \"0.392964\": {\"frequency\": 1, \"value\": \"0.392964\"}, \"0.733438\": {\"frequency\": 1, \"value\": \"0.733438\"}, \"0.457942\": {\"frequency\": 1, \"value\": \"0.457942\"}, \"0.215922\": {\"frequency\": 1, \"value\": \"0.215922\"}, \"0.6729\": {\"frequency\": 1, \"value\": \"0.6729\"}, \"0.466363\": {\"frequency\": 1, \"value\": \"0.466363\"}, \"0.31562\": {\"frequency\": 1, \"value\": \"0.31562\"}, \"0.546268\": {\"frequency\": 1, \"value\": \"0.546268\"}, \"0.57892\": {\"frequency\": 1, \"value\": \"0.57892\"}, \"0.846608\": {\"frequency\": 1, \"value\": \"0.846608\"}, \"0.358043\": {\"frequency\": 1, \"value\": \"0.358043\"}, \"0.326507\": {\"frequency\": 1, \"value\": \"0.326507\"}, \"0.599086\": {\"frequency\": 1, \"value\": \"0.599086\"}, \"0.433641\": {\"frequency\": 1, \"value\": \"0.433641\"}, \"0.30425\": {\"frequency\": 1, \"value\": \"0.30425\"}, \"0.298205\": {\"frequency\": 1, \"value\": \"0.298205\"}, \"0.372319\": {\"frequency\": 1, \"value\": \"0.372319\"}, \"0.318551\": {\"frequency\": 1, \"value\": \"0.318551\"}, \"0.952423\": {\"frequency\": 1, \"value\": \"0.952423\"}, \"0.411113\": {\"frequency\": 1, \"value\": \"0.411113\"}, \"0.392561\": {\"frequency\": 1, \"value\": \"0.392561\"}, \"0.264594\": {\"frequency\": 1, \"value\": \"0.264594\"}, \"0.376907\": {\"frequency\": 1, \"value\": \"0.376907\"}, \"0.470175\": {\"frequency\": 1, \"value\": \"0.470175\"}, \"0.321048\": {\"frequency\": 1, \"value\": \"0.321048\"}, \"0.357375\": {\"frequency\": 1, \"value\": \"0.357375\"}, \"0.179226\": {\"frequency\": 1, \"value\": \"0.179226\"}, \"0.40106\": {\"frequency\": 1, \"value\": \"0.40106\"}, \"0.353659\": {\"frequency\": 1, \"value\": \"0.353659\"}, \"0.492278\": {\"frequency\": 1, \"value\": \"0.492278\"}, \"0.723321\": {\"frequency\": 1, \"value\": \"0.723321\"}, \"0.573019\": {\"frequency\": 1, \"value\": \"0.573019\"}, \"0.415946\": {\"frequency\": 1, \"value\": \"0.415946\"}, \"0.492471\": {\"frequency\": 1, \"value\": \"0.492471\"}, \"0.212976\": {\"frequency\": 1, \"value\": \"0.212976\"}, \"0.483128\": {\"frequency\": 1, \"value\": \"0.483128\"}, \"0.40358\": {\"frequency\": 1, \"value\": \"0.40358\"}, \"0.440104\": {\"frequency\": 1, \"value\": \"0.440104\"}, \"0.283603\": {\"frequency\": 1, \"value\": \"0.283603\"}, \"0.478145\": {\"frequency\": 1, \"value\": \"0.478145\"}, \"0.30398\": {\"frequency\": 1, \"value\": \"0.30398\"}, \"0.581441\": {\"frequency\": 1, \"value\": \"0.581441\"}, \"0.3473\": {\"frequency\": 1, \"value\": \"0.3473\"}, \"0.198218\": {\"frequency\": 1, \"value\": \"0.198218\"}, \"0.494618\": {\"frequency\": 1, \"value\": \"0.494618\"}, \"0.400366\": {\"frequency\": 1, \"value\": \"0.400366\"}, \"0.156794\": {\"frequency\": 1, \"value\": \"0.156794\"}, \"0.510093\": {\"frequency\": 1, \"value\": \"0.510093\"}, \"0.353783\": {\"frequency\": 1, \"value\": \"0.353783\"}, \"0.391207\": {\"frequency\": 1, \"value\": \"0.391207\"}, \"0.387442\": {\"frequency\": 1, \"value\": \"0.387442\"}, \"0.544277\": {\"frequency\": 1, \"value\": \"0.544277\"}, \"0.582935\": {\"frequency\": 1, \"value\": \"0.582935\"}, \"0.545496\": {\"frequency\": 1, \"value\": \"0.545496\"}, \"0.497365\": {\"frequency\": 1, \"value\": \"0.497365\"}, \"0.322403\": {\"frequency\": 1, \"value\": \"0.322403\"}, \"0.226713\": {\"frequency\": 1, \"value\": \"0.226713\"}, \"0.473912\": {\"frequency\": 1, \"value\": \"0.473912\"}, \"0.109677\": {\"frequency\": 1, \"value\": \"0.109677\"}, \"0.220672\": {\"frequency\": 1, \"value\": \"0.220672\"}, \"0.417565\": {\"frequency\": 1, \"value\": \"0.417565\"}, \"0.378367\": {\"frequency\": 1, \"value\": \"0.378367\"}, \"0.509535\": {\"frequency\": 1, \"value\": \"0.509535\"}, \"0.219928\": {\"frequency\": 1, \"value\": \"0.219928\"}, \"0.278615\": {\"frequency\": 1, \"value\": \"0.278615\"}, \"0.123524\": {\"frequency\": 1, \"value\": \"0.123524\"}, \"0.49018\": {\"frequency\": 1, \"value\": \"0.49018\"}, \"0.327474\": {\"frequency\": 1, \"value\": \"0.327474\"}, \"0.300981\": {\"frequency\": 1, \"value\": \"0.300981\"}, \"0.366814\": {\"frequency\": 1, \"value\": \"0.366814\"}, \"0.225167\": {\"frequency\": 1, \"value\": \"0.225167\"}, \"0.366816\": {\"frequency\": 1, \"value\": \"0.366816\"}, \"0.0741846\": {\"frequency\": 1, \"value\": \"0.0741846\"}, \"0.4471\": {\"frequency\": 1, \"value\": \"0.4471\"}, \"0.391842\": {\"frequency\": 1, \"value\": \"0.391842\"}, \"0.283041\": {\"frequency\": 1, \"value\": \"0.283041\"}, \"0.303505\": {\"frequency\": 1, \"value\": \"0.303505\"}, \"0.518746\": {\"frequency\": 1, \"value\": \"0.518746\"}, \"0.656267\": {\"frequency\": 1, \"value\": \"0.656267\"}, \"0.550235\": {\"frequency\": 1, \"value\": \"0.550235\"}, \"0.844614\": {\"frequency\": 1, \"value\": \"0.844614\"}, \"0.0395408\": {\"frequency\": 1, \"value\": \"0.0395408\"}, \"0.756158\": {\"frequency\": 1, \"value\": \"0.756158\"}, \"0.214456\": {\"frequency\": 1, \"value\": \"0.214456\"}, \"0.403183\": {\"frequency\": 1, \"value\": \"0.403183\"}, \"0.182126\": {\"frequency\": 1, \"value\": \"0.182126\"}, \"0.267242\": {\"frequency\": 1, \"value\": \"0.267242\"}, \"0.469385\": {\"frequency\": 1, \"value\": \"0.469385\"}, \"0.224416\": {\"frequency\": 1, \"value\": \"0.224416\"}, \"0.505579\": {\"frequency\": 1, \"value\": \"0.505579\"}, \"0.34092\": {\"frequency\": 1, \"value\": \"0.34092\"}, \"0.39001\": {\"frequency\": 1, \"value\": \"0.39001\"}, \"0.378565\": {\"frequency\": 1, \"value\": \"0.378565\"}, \"0.443691\": {\"frequency\": 1, \"value\": \"0.443691\"}, \"0.509403\": {\"frequency\": 1, \"value\": \"0.509403\"}, \"0.171036\": {\"frequency\": 1, \"value\": \"0.171036\"}, \"0.0954659\": {\"frequency\": 1, \"value\": \"0.0954659\"}, \"0.561621\": {\"frequency\": 1, \"value\": \"0.561621\"}, \"0.587227\": {\"frequency\": 1, \"value\": \"0.587227\"}, \"0.34701\": {\"frequency\": 1, \"value\": \"0.34701\"}, \"0.43451\": {\"frequency\": 1, \"value\": \"0.43451\"}, \"0.504437\": {\"frequency\": 1, \"value\": \"0.504437\"}, \"0.482526\": {\"frequency\": 1, \"value\": \"0.482526\"}, \"0.434704\": {\"frequency\": 1, \"value\": \"0.434704\"}, \"0.368134\": {\"frequency\": 1, \"value\": \"0.368134\"}, \"0.408109\": {\"frequency\": 1, \"value\": \"0.408109\"}, \"0.537152\": {\"frequency\": 1, \"value\": \"0.537152\"}, \"0.626219\": {\"frequency\": 1, \"value\": \"0.626219\"}, \"0.542068\": {\"frequency\": 1, \"value\": \"0.542068\"}, \"0.761006\": {\"frequency\": 1, \"value\": \"0.761006\"}, \"0.126597\": {\"frequency\": 1, \"value\": \"0.126597\"}, \"0.456047\": {\"frequency\": 1, \"value\": \"0.456047\"}, \"0.509395\": {\"frequency\": 1, \"value\": \"0.509395\"}, \"0.498569\": {\"frequency\": 1, \"value\": \"0.498569\"}, \"0.660215\": {\"frequency\": 1, \"value\": \"0.660215\"}, \"0.377358\": {\"frequency\": 1, \"value\": \"0.377358\"}, \"0.63889\": {\"frequency\": 1, \"value\": \"0.63889\"}, \"0.780556\": {\"frequency\": 1, \"value\": \"0.780556\"}, \"0.305105\": {\"frequency\": 1, \"value\": \"0.305105\"}, \"0.478874\": {\"frequency\": 1, \"value\": \"0.478874\"}, \"0.483556\": {\"frequency\": 1, \"value\": \"0.483556\"}, \"0.464184\": {\"frequency\": 1, \"value\": \"0.464184\"}, \"0.39348\": {\"frequency\": 1, \"value\": \"0.39348\"}, \"0.413276\": {\"frequency\": 1, \"value\": \"0.413276\"}, \"0.181905\": {\"frequency\": 1, \"value\": \"0.181905\"}, \"0.557346\": {\"frequency\": 1, \"value\": \"0.557346\"}, \"0.503356\": {\"frequency\": 1, \"value\": \"0.503356\"}, \"0.137938\": {\"frequency\": 1, \"value\": \"0.137938\"}, \"0.468387\": {\"frequency\": 1, \"value\": \"0.468387\"}, \"0.54431\": {\"frequency\": 1, \"value\": \"0.54431\"}, \"0.345865\": {\"frequency\": 1, \"value\": \"0.345865\"}, \"0.380162\": {\"frequency\": 1, \"value\": \"0.380162\"}, \"0.370976\": {\"frequency\": 1, \"value\": \"0.370976\"}, \"0.351743\": {\"frequency\": 1, \"value\": \"0.351743\"}, \"0.320126\": {\"frequency\": 1, \"value\": \"0.320126\"}, \"0.468016\": {\"frequency\": 1, \"value\": \"0.468016\"}, \"0.360413\": {\"frequency\": 1, \"value\": \"0.360413\"}, \"0.371087\": {\"frequency\": 1, \"value\": \"0.371087\"}, \"0.31339\": {\"frequency\": 1, \"value\": \"0.31339\"}, \"0.515893\": {\"frequency\": 1, \"value\": \"0.515893\"}, \"0.0504035\": {\"frequency\": 1, \"value\": \"0.0504035\"}, \"0.31331\": {\"frequency\": 1, \"value\": \"0.31331\"}, \"0.531647\": {\"frequency\": 1, \"value\": \"0.531647\"}, \"0.252158\": {\"frequency\": 1, \"value\": \"0.252158\"}, \"0.531313\": {\"frequency\": 1, \"value\": \"0.531313\"}, \"0.31334\": {\"frequency\": 1, \"value\": \"0.31334\"}, \"0.414096\": {\"frequency\": 1, \"value\": \"0.414096\"}, \"0.352959\": {\"frequency\": 1, \"value\": \"0.352959\"}, \"0.489412\": {\"frequency\": 1, \"value\": \"0.489412\"}, \"0.399467\": {\"frequency\": 1, \"value\": \"0.399467\"}, \"0.456138\": {\"frequency\": 1, \"value\": \"0.456138\"}, \"0.697185\": {\"frequency\": 1, \"value\": \"0.697185\"}, \"0.153039\": {\"frequency\": 1, \"value\": \"0.153039\"}, \"0.449689\": {\"frequency\": 1, \"value\": \"0.449689\"}, \"0.498167\": {\"frequency\": 1, \"value\": \"0.498167\"}, \"0.531799\": {\"frequency\": 1, \"value\": \"0.531799\"}, \"0.731129\": {\"frequency\": 1, \"value\": \"0.731129\"}, \"0.647842\": {\"frequency\": 1, \"value\": \"0.647842\"}, \"0.251767\": {\"frequency\": 1, \"value\": \"0.251767\"}, \"0.26672\": {\"frequency\": 1, \"value\": \"0.26672\"}, \"0.322751\": {\"frequency\": 1, \"value\": \"0.322751\"}, \"0.306363\": {\"frequency\": 1, \"value\": \"0.306363\"}, \"0.394758\": {\"frequency\": 1, \"value\": \"0.394758\"}, \"0.505599\": {\"frequency\": 1, \"value\": \"0.505599\"}, \"0.415347\": {\"frequency\": 1, \"value\": \"0.415347\"}, \"0.453375\": {\"frequency\": 1, \"value\": \"0.453375\"}, \"0.560142\": {\"frequency\": 1, \"value\": \"0.560142\"}, \"0.466174\": {\"frequency\": 1, \"value\": \"0.466174\"}, \"0.233078\": {\"frequency\": 1, \"value\": \"0.233078\"}, \"0.529615\": {\"frequency\": 1, \"value\": \"0.529615\"}, \"0.484105\": {\"frequency\": 1, \"value\": \"0.484105\"}, \"0.652592\": {\"frequency\": 1, \"value\": \"0.652592\"}, \"0.336273\": {\"frequency\": 1, \"value\": \"0.336273\"}, \"0.67239\": {\"frequency\": 1, \"value\": \"0.67239\"}, \"0.277426\": {\"frequency\": 1, \"value\": \"0.277426\"}, \"0.435107\": {\"frequency\": 1, \"value\": \"0.435107\"}, \"0.415548\": {\"frequency\": 1, \"value\": \"0.415548\"}, \"0.411434\": {\"frequency\": 1, \"value\": \"0.411434\"}, \"0.495876\": {\"frequency\": 1, \"value\": \"0.495876\"}, \"0.0962303\": {\"frequency\": 1, \"value\": \"0.0962303\"}, \"0.543333\": {\"frequency\": 1, \"value\": \"0.543333\"}, \"0.397527\": {\"frequency\": 1, \"value\": \"0.397527\"}, \"0.267757\": {\"frequency\": 1, \"value\": \"0.267757\"}, \"0.319261\": {\"frequency\": 1, \"value\": \"0.319261\"}, \"0.282777\": {\"frequency\": 1, \"value\": \"0.282777\"}, \"0.161599\": {\"frequency\": 1, \"value\": \"0.161599\"}, \"0.160715\": {\"frequency\": 1, \"value\": \"0.160715\"}, \"0.57536\": {\"frequency\": 1, \"value\": \"0.57536\"}, \"0.259684\": {\"frequency\": 1, \"value\": \"0.259684\"}, \"0.403325\": {\"frequency\": 1, \"value\": \"0.403325\"}, \"0.248527\": {\"frequency\": 1, \"value\": \"0.248527\"}, \"0.491575\": {\"frequency\": 1, \"value\": \"0.491575\"}, \"0.402675\": {\"frequency\": 1, \"value\": \"0.402675\"}, \"0.474842\": {\"frequency\": 1, \"value\": \"0.474842\"}, \"0.0753172\": {\"frequency\": 1, \"value\": \"0.0753172\"}, \"0.237375\": {\"frequency\": 1, \"value\": \"0.237375\"}, \"0.255513\": {\"frequency\": 1, \"value\": \"0.255513\"}, \"0.439749\": {\"frequency\": 1, \"value\": \"0.439749\"}, \"0.251691\": {\"frequency\": 1, \"value\": \"0.251691\"}, \"0.446755\": {\"frequency\": 1, \"value\": \"0.446755\"}, \"0.446972\": {\"frequency\": 1, \"value\": \"0.446972\"}, \"0.479513\": {\"frequency\": 1, \"value\": \"0.479513\"}, \"0.652187\": {\"frequency\": 1, \"value\": \"0.652187\"}, \"0.377023\": {\"frequency\": 1, \"value\": \"0.377023\"}, \"0.429911\": {\"frequency\": 1, \"value\": \"0.429911\"}, \"0.504159\": {\"frequency\": 1, \"value\": \"0.504159\"}, \"0.42894\": {\"frequency\": 1, \"value\": \"0.42894\"}, \"0.676673\": {\"frequency\": 1, \"value\": \"0.676673\"}, \"0.462932\": {\"frequency\": 1, \"value\": \"0.462932\"}, \"0.415437\": {\"frequency\": 1, \"value\": \"0.415437\"}, \"0.415436\": {\"frequency\": 1, \"value\": \"0.415436\"}, \"0.28919\": {\"frequency\": 1, \"value\": \"0.28919\"}, \"0.472622\": {\"frequency\": 1, \"value\": \"0.472622\"}, \"0.311043\": {\"frequency\": 1, \"value\": \"0.311043\"}, \"0.322772\": {\"frequency\": 1, \"value\": \"0.322772\"}, \"0.315971\": {\"frequency\": 1, \"value\": \"0.315971\"}, \"0.432024\": {\"frequency\": 1, \"value\": \"0.432024\"}, \"0.332596\": {\"frequency\": 1, \"value\": \"0.332596\"}, \"0.214841\": {\"frequency\": 1, \"value\": \"0.214841\"}, \"0.528364\": {\"frequency\": 1, \"value\": \"0.528364\"}, \"0.352432\": {\"frequency\": 1, \"value\": \"0.352432\"}, \"0.247153\": {\"frequency\": 1, \"value\": \"0.247153\"}, \"0.446579\": {\"frequency\": 1, \"value\": \"0.446579\"}, \"0.253209\": {\"frequency\": 1, \"value\": \"0.253209\"}, \"0.373841\": {\"frequency\": 1, \"value\": \"0.373841\"}, \"0.587262\": {\"frequency\": 1, \"value\": \"0.587262\"}, \"0.332358\": {\"frequency\": 1, \"value\": \"0.332358\"}, \"0.515521\": {\"frequency\": 1, \"value\": \"0.515521\"}, \"0.299921\": {\"frequency\": 1, \"value\": \"0.299921\"}, \"0.525663\": {\"frequency\": 1, \"value\": \"0.525663\"}, \"0.441579\": {\"frequency\": 1, \"value\": \"0.441579\"}, \"0.18318\": {\"frequency\": 1, \"value\": \"0.18318\"}, \"0.251075\": {\"frequency\": 1, \"value\": \"0.251075\"}, \"0.339724\": {\"frequency\": 1, \"value\": \"0.339724\"}, \"0.529182\": {\"frequency\": 1, \"value\": \"0.529182\"}, \"0.682789\": {\"frequency\": 1, \"value\": \"0.682789\"}, \"0.367536\": {\"frequency\": 1, \"value\": \"0.367536\"}, \"0.439969\": {\"frequency\": 1, \"value\": \"0.439969\"}, \"0.473463\": {\"frequency\": 1, \"value\": \"0.473463\"}, \"0.47828\": {\"frequency\": 1, \"value\": \"0.47828\"}, \"0.401775\": {\"frequency\": 1, \"value\": \"0.401775\"}, \"0.486459\": {\"frequency\": 1, \"value\": \"0.486459\"}, \"0.13518\": {\"frequency\": 1, \"value\": \"0.13518\"}, \"0.393445\": {\"frequency\": 1, \"value\": \"0.393445\"}, \"0.339457\": {\"frequency\": 1, \"value\": \"0.339457\"}, \"0.254642\": {\"frequency\": 1, \"value\": \"0.254642\"}, \"0.513775\": {\"frequency\": 1, \"value\": \"0.513775\"}, \"0.239336\": {\"frequency\": 1, \"value\": \"0.239336\"}, \"0.336106\": {\"frequency\": 1, \"value\": \"0.336106\"}, \"0.477573\": {\"frequency\": 1, \"value\": \"0.477573\"}, \"0.269343\": {\"frequency\": 1, \"value\": \"0.269343\"}, \"0.503661\": {\"frequency\": 1, \"value\": \"0.503661\"}, \"0.19681\": {\"frequency\": 1, \"value\": \"0.19681\"}, \"0.36034\": {\"frequency\": 1, \"value\": \"0.36034\"}, \"0.754892\": {\"frequency\": 1, \"value\": \"0.754892\"}, \"0.647053\": {\"frequency\": 1, \"value\": \"0.647053\"}, \"0.312428\": {\"frequency\": 1, \"value\": \"0.312428\"}, \"0.274512\": {\"frequency\": 1, \"value\": \"0.274512\"}, \"0.415247\": {\"frequency\": 1, \"value\": \"0.415247\"}, \"0.285078\": {\"frequency\": 1, \"value\": \"0.285078\"}, \"0.304844\": {\"frequency\": 1, \"value\": \"0.304844\"}, \"0.127345\": {\"frequency\": 1, \"value\": \"0.127345\"}, \"0.426768\": {\"frequency\": 1, \"value\": \"0.426768\"}, \"0.454712\": {\"frequency\": 1, \"value\": \"0.454712\"}, \"0.558383\": {\"frequency\": 1, \"value\": \"0.558383\"}, \"0.388716\": {\"frequency\": 1, \"value\": \"0.388716\"}, \"0.354761\": {\"frequency\": 1, \"value\": \"0.354761\"}, \"0.468869\": {\"frequency\": 1, \"value\": \"0.468869\"}, \"0.393407\": {\"frequency\": 1, \"value\": \"0.393407\"}, \"0.126125\": {\"frequency\": 1, \"value\": \"0.126125\"}, \"0.384843\": {\"frequency\": 1, \"value\": \"0.384843\"}, \"0.0703973\": {\"frequency\": 1, \"value\": \"0.0703973\"}, \"0.350206\": {\"frequency\": 1, \"value\": \"0.350206\"}, \"0.306109\": {\"frequency\": 1, \"value\": \"0.306109\"}, \"0.391298\": {\"frequency\": 1, \"value\": \"0.391298\"}, \"0.584506\": {\"frequency\": 1, \"value\": \"0.584506\"}, \"0.537949\": {\"frequency\": 1, \"value\": \"0.537949\"}, \"0.390526\": {\"frequency\": 1, \"value\": \"0.390526\"}, \"0.374793\": {\"frequency\": 1, \"value\": \"0.374793\"}, \"0.646634\": {\"frequency\": 1, \"value\": \"0.646634\"}, \"0.516685\": {\"frequency\": 1, \"value\": \"0.516685\"}, \"0.349568\": {\"frequency\": 1, \"value\": \"0.349568\"}, \"0.533408\": {\"frequency\": 1, \"value\": \"0.533408\"}, \"0.488521\": {\"frequency\": 1, \"value\": \"0.488521\"}, \"0.629292\": {\"frequency\": 1, \"value\": \"0.629292\"}, \"0.492723\": {\"frequency\": 1, \"value\": \"0.492723\"}, \"0.388958\": {\"frequency\": 1, \"value\": \"0.388958\"}, \"0.578052\": {\"frequency\": 1, \"value\": \"0.578052\"}, \"0.406961\": {\"frequency\": 1, \"value\": \"0.406961\"}, \"0.246377\": {\"frequency\": 1, \"value\": \"0.246377\"}, \"0.413875\": {\"frequency\": 1, \"value\": \"0.413875\"}, \"0.198174\": {\"frequency\": 1, \"value\": \"0.198174\"}, \"0.504676\": {\"frequency\": 1, \"value\": \"0.504676\"}, \"0.391052\": {\"frequency\": 1, \"value\": \"0.391052\"}, \"0.470109\": {\"frequency\": 1, \"value\": \"0.470109\"}, \"0.239144\": {\"frequency\": 1, \"value\": \"0.239144\"}, \"0.389535\": {\"frequency\": 1, \"value\": \"0.389535\"}, \"0.241395\": {\"frequency\": 1, \"value\": \"0.241395\"}, \"0.461648\": {\"frequency\": 1, \"value\": \"0.461648\"}, \"0.519179\": {\"frequency\": 1, \"value\": \"0.519179\"}, \"0.135742\": {\"frequency\": 1, \"value\": \"0.135742\"}, \"0.465734\": {\"frequency\": 1, \"value\": \"0.465734\"}, \"0.421311\": {\"frequency\": 1, \"value\": \"0.421311\"}, \"0.780946\": {\"frequency\": 1, \"value\": \"0.780946\"}, \"0.485873\": {\"frequency\": 1, \"value\": \"0.485873\"}, \"0.353314\": {\"frequency\": 1, \"value\": \"0.353314\"}, \"0.415934\": {\"frequency\": 1, \"value\": \"0.415934\"}, \"0.331125\": {\"frequency\": 1, \"value\": \"0.331125\"}, \"0.346982\": {\"frequency\": 1, \"value\": \"0.346982\"}, \"0.518881\": {\"frequency\": 1, \"value\": \"0.518881\"}, \"0.308645\": {\"frequency\": 1, \"value\": \"0.308645\"}, \"0.48441\": {\"frequency\": 1, \"value\": \"0.48441\"}, \"0.595803\": {\"frequency\": 1, \"value\": \"0.595803\"}, \"0.212871\": {\"frequency\": 1, \"value\": \"0.212871\"}, \"0.483137\": {\"frequency\": 1, \"value\": \"0.483137\"}, \"0.0140244\": {\"frequency\": 1, \"value\": \"0.0140244\"}, \"0.335102\": {\"frequency\": 1, \"value\": \"0.335102\"}, \"0.458819\": {\"frequency\": 1, \"value\": \"0.458819\"}, \"0.134662\": {\"frequency\": 1, \"value\": \"0.134662\"}, \"0.743875\": {\"frequency\": 1, \"value\": \"0.743875\"}, \"0.451106\": {\"frequency\": 1, \"value\": \"0.451106\"}, \"0.374314\": {\"frequency\": 1, \"value\": \"0.374314\"}, \"0.246111\": {\"frequency\": 1, \"value\": \"0.246111\"}, \"0.388483\": {\"frequency\": 1, \"value\": \"0.388483\"}, \"0.406815\": {\"frequency\": 1, \"value\": \"0.406815\"}, \"0.542476\": {\"frequency\": 1, \"value\": \"0.542476\"}, \"0.410065\": {\"frequency\": 1, \"value\": \"0.410065\"}, \"0.468461\": {\"frequency\": 1, \"value\": \"0.468461\"}, \"0.368924\": {\"frequency\": 1, \"value\": \"0.368924\"}, \"0.396325\": {\"frequency\": 1, \"value\": \"0.396325\"}, \"0.198002\": {\"frequency\": 1, \"value\": \"0.198002\"}, \"0.356142\": {\"frequency\": 1, \"value\": \"0.356142\"}, \"0.440487\": {\"frequency\": 1, \"value\": \"0.440487\"}, \"0.367773\": {\"frequency\": 1, \"value\": \"0.367773\"}, \"0.388605\": {\"frequency\": 1, \"value\": \"0.388605\"}, \"0.4041\": {\"frequency\": 1, \"value\": \"0.4041\"}, \"0.679271\": {\"frequency\": 1, \"value\": \"0.679271\"}, \"0.330814\": {\"frequency\": 1, \"value\": \"0.330814\"}, \"0.157788\": {\"frequency\": 1, \"value\": \"0.157788\"}, \"0.491135\": {\"frequency\": 1, \"value\": \"0.491135\"}, \"0.313177\": {\"frequency\": 1, \"value\": \"0.313177\"}, \"0.585336\": {\"frequency\": 1, \"value\": \"0.585336\"}, \"0.591435\": {\"frequency\": 1, \"value\": \"0.591435\"}, \"0.356879\": {\"frequency\": 1, \"value\": \"0.356879\"}, \"0.328656\": {\"frequency\": 1, \"value\": \"0.328656\"}, \"0.454956\": {\"frequency\": 1, \"value\": \"0.454956\"}, \"0.279701\": {\"frequency\": 1, \"value\": \"0.279701\"}, \"0.348574\": {\"frequency\": 1, \"value\": \"0.348574\"}, \"0.875378\": {\"frequency\": 1, \"value\": \"0.875378\"}, \"0.117651\": {\"frequency\": 1, \"value\": \"0.117651\"}, \"0.432905\": {\"frequency\": 1, \"value\": \"0.432905\"}, \"0.329222\": {\"frequency\": 1, \"value\": \"0.329222\"}, \"0.409092\": {\"frequency\": 1, \"value\": \"0.409092\"}, \"0.208816\": {\"frequency\": 1, \"value\": \"0.208816\"}, \"0.429506\": {\"frequency\": 1, \"value\": \"0.429506\"}, \"0.349993\": {\"frequency\": 1, \"value\": \"0.349993\"}, \"0.533333\": {\"frequency\": 1, \"value\": \"0.533333\"}, \"0.641053\": {\"frequency\": 1, \"value\": \"0.641053\"}, \"0.324419\": {\"frequency\": 1, \"value\": \"0.324419\"}, \"0.269397\": {\"frequency\": 1, \"value\": \"0.269397\"}, \"0.302843\": {\"frequency\": 1, \"value\": \"0.302843\"}, \"0.309215\": {\"frequency\": 1, \"value\": \"0.309215\"}, \"0.331937\": {\"frequency\": 1, \"value\": \"0.331937\"}, \"0.546207\": {\"frequency\": 1, \"value\": \"0.546207\"}, \"0.351186\": {\"frequency\": 1, \"value\": \"0.351186\"}, \"0.807453\": {\"frequency\": 1, \"value\": \"0.807453\"}, \"0.764683\": {\"frequency\": 1, \"value\": \"0.764683\"}, \"0.518223\": {\"frequency\": 1, \"value\": \"0.518223\"}, \"0.208636\": {\"frequency\": 1, \"value\": \"0.208636\"}, \"0.295208\": {\"frequency\": 1, \"value\": \"0.295208\"}, \"0.324609\": {\"frequency\": 1, \"value\": \"0.324609\"}, \"0.325737\": {\"frequency\": 1, \"value\": \"0.325737\"}, \"0.948504\": {\"frequency\": 1, \"value\": \"0.948504\"}, \"0.61688\": {\"frequency\": 1, \"value\": \"0.61688\"}, \"0.512899\": {\"frequency\": 1, \"value\": \"0.512899\"}, \"0.373942\": {\"frequency\": 1, \"value\": \"0.373942\"}, \"0.325738\": {\"frequency\": 1, \"value\": \"0.325738\"}, \"0.325412\": {\"frequency\": 1, \"value\": \"0.325412\"}, \"0.194464\": {\"frequency\": 1, \"value\": \"0.194464\"}, \"0.390133\": {\"frequency\": 1, \"value\": \"0.390133\"}, \"0.333988\": {\"frequency\": 1, \"value\": \"0.333988\"}, \"0.43118\": {\"frequency\": 1, \"value\": \"0.43118\"}, \"0.271504\": {\"frequency\": 1, \"value\": \"0.271504\"}, \"0.490279\": {\"frequency\": 1, \"value\": \"0.490279\"}, \"0.160247\": {\"frequency\": 1, \"value\": \"0.160247\"}, \"0.56434\": {\"frequency\": 1, \"value\": \"0.56434\"}, \"0.388496\": {\"frequency\": 1, \"value\": \"0.388496\"}, \"0.319838\": {\"frequency\": 1, \"value\": \"0.319838\"}, \"0.0689397\": {\"frequency\": 1, \"value\": \"0.0689397\"}, \"0.657032\": {\"frequency\": 1, \"value\": \"0.657032\"}, \"0.460196\": {\"frequency\": 1, \"value\": \"0.460196\"}, \"0.3807\": {\"frequency\": 1, \"value\": \"0.3807\"}, \"0.508924\": {\"frequency\": 1, \"value\": \"0.508924\"}, \"0.383711\": {\"frequency\": 1, \"value\": \"0.383711\"}, \"0.513811\": {\"frequency\": 1, \"value\": \"0.513811\"}, \"0.664051\": {\"frequency\": 1, \"value\": \"0.664051\"}, \"0.483904\": {\"frequency\": 1, \"value\": \"0.483904\"}, \"0.536929\": {\"frequency\": 1, \"value\": \"0.536929\"}, \"0.296087\": {\"frequency\": 1, \"value\": \"0.296087\"}, \"0.337241\": {\"frequency\": 1, \"value\": \"0.337241\"}, \"0.442797\": {\"frequency\": 1, \"value\": \"0.442797\"}, \"0.370892\": {\"frequency\": 1, \"value\": \"0.370892\"}, \"0.747556\": {\"frequency\": 1, \"value\": \"0.747556\"}, \"0.372491\": {\"frequency\": 1, \"value\": \"0.372491\"}, \"0.535046\": {\"frequency\": 1, \"value\": \"0.535046\"}, \"0.40867\": {\"frequency\": 1, \"value\": \"0.40867\"}, \"0.520904\": {\"frequency\": 1, \"value\": \"0.520904\"}, \"0.39333\": {\"frequency\": 1, \"value\": \"0.39333\"}, \"0.597271\": {\"frequency\": 1, \"value\": \"0.597271\"}, \"0.606238\": {\"frequency\": 1, \"value\": \"0.606238\"}, \"0.366494\": {\"frequency\": 1, \"value\": \"0.366494\"}, \"0.628528\": {\"frequency\": 1, \"value\": \"0.628528\"}, \"0.406567\": {\"frequency\": 1, \"value\": \"0.406567\"}, \"0.204153\": {\"frequency\": 1, \"value\": \"0.204153\"}, \"0.312228\": {\"frequency\": 1, \"value\": \"0.312228\"}, \"0.408788\": {\"frequency\": 1, \"value\": \"0.408788\"}, \"0.45278\": {\"frequency\": 1, \"value\": \"0.45278\"}, \"0.313365\": {\"frequency\": 1, \"value\": \"0.313365\"}, \"0.658084\": {\"frequency\": 1, \"value\": \"0.658084\"}, \"0.398297\": {\"frequency\": 1, \"value\": \"0.398297\"}, \"0.221891\": {\"frequency\": 1, \"value\": \"0.221891\"}, \"0.251436\": {\"frequency\": 1, \"value\": \"0.251436\"}, \"0.345873\": {\"frequency\": 1, \"value\": \"0.345873\"}, \"0.893826\": {\"frequency\": 1, \"value\": \"0.893826\"}, \"0.583981\": {\"frequency\": 1, \"value\": \"0.583981\"}, \"0.308885\": {\"frequency\": 1, \"value\": \"0.308885\"}, \"0.387388\": {\"frequency\": 1, \"value\": \"0.387388\"}, \"0.262666\": {\"frequency\": 1, \"value\": \"0.262666\"}, \"0.577516\": {\"frequency\": 1, \"value\": \"0.577516\"}, \"0.390125\": {\"frequency\": 1, \"value\": \"0.390125\"}, \"0.286731\": {\"frequency\": 1, \"value\": \"0.286731\"}, \"0.448475\": {\"frequency\": 1, \"value\": \"0.448475\"}, \"0.794386\": {\"frequency\": 1, \"value\": \"0.794386\"}, \"0.684691\": {\"frequency\": 1, \"value\": \"0.684691\"}, \"0.326195\": {\"frequency\": 1, \"value\": \"0.326195\"}, \"0.468355\": {\"frequency\": 1, \"value\": \"0.468355\"}, \"0.762471\": {\"frequency\": 1, \"value\": \"0.762471\"}, \"0.397405\": {\"frequency\": 1, \"value\": \"0.397405\"}, \"0.475231\": {\"frequency\": 1, \"value\": \"0.475231\"}, \"0.10363\": {\"frequency\": 1, \"value\": \"0.10363\"}, \"0.0830413\": {\"frequency\": 1, \"value\": \"0.0830413\"}, \"0.496906\": {\"frequency\": 1, \"value\": \"0.496906\"}, \"0.375866\": {\"frequency\": 1, \"value\": \"0.375866\"}, \"0.267168\": {\"frequency\": 1, \"value\": \"0.267168\"}, \"0.169739\": {\"frequency\": 1, \"value\": \"0.169739\"}, \"0.3525\": {\"frequency\": 1, \"value\": \"0.3525\"}, \"0.655865\": {\"frequency\": 1, \"value\": \"0.655865\"}, \"0.276142\": {\"frequency\": 1, \"value\": \"0.276142\"}, \"0.174072\": {\"frequency\": 1, \"value\": \"0.174072\"}, \"0.550944\": {\"frequency\": 1, \"value\": \"0.550944\"}, \"0.418416\": {\"frequency\": 1, \"value\": \"0.418416\"}, \"0.398159\": {\"frequency\": 1, \"value\": \"0.398159\"}, \"0.498289\": {\"frequency\": 1, \"value\": \"0.498289\"}, \"0.178018\": {\"frequency\": 1, \"value\": \"0.178018\"}, \"0.366012\": {\"frequency\": 1, \"value\": \"0.366012\"}, \"0.300378\": {\"frequency\": 1, \"value\": \"0.300378\"}, \"0.366016\": {\"frequency\": 1, \"value\": \"0.366016\"}, \"0.69119\": {\"frequency\": 1, \"value\": \"0.69119\"}, \"0.152263\": {\"frequency\": 1, \"value\": \"0.152263\"}, \"0.31741\": {\"frequency\": 1, \"value\": \"0.31741\"}, \"0.666325\": {\"frequency\": 1, \"value\": \"0.666325\"}, \"0.259964\": {\"frequency\": 1, \"value\": \"0.259964\"}, \"0.110195\": {\"frequency\": 1, \"value\": \"0.110195\"}, \"0.563955\": {\"frequency\": 1, \"value\": \"0.563955\"}, \"0.472509\": {\"frequency\": 1, \"value\": \"0.472509\"}, \"0.547336\": {\"frequency\": 1, \"value\": \"0.547336\"}, \"0.601194\": {\"frequency\": 1, \"value\": \"0.601194\"}, \"0.503522\": {\"frequency\": 1, \"value\": \"0.503522\"}, \"0.528594\": {\"frequency\": 1, \"value\": \"0.528594\"}, \"0.479694\": {\"frequency\": 1, \"value\": \"0.479694\"}, \"0.238652\": {\"frequency\": 1, \"value\": \"0.238652\"}, \"0.579642\": {\"frequency\": 1, \"value\": \"0.579642\"}, \"0.109605\": {\"frequency\": 1, \"value\": \"0.109605\"}, \"0.42425\": {\"frequency\": 1, \"value\": \"0.42425\"}, \"0.355224\": {\"frequency\": 1, \"value\": \"0.355224\"}, \"0.347904\": {\"frequency\": 1, \"value\": \"0.347904\"}, \"0.361655\": {\"frequency\": 1, \"value\": \"0.361655\"}, \"0.493736\": {\"frequency\": 1, \"value\": \"0.493736\"}, \"0.282995\": {\"frequency\": 1, \"value\": \"0.282995\"}, \"0.702599\": {\"frequency\": 1, \"value\": \"0.702599\"}, \"0.203702\": {\"frequency\": 1, \"value\": \"0.203702\"}, \"0.385011\": {\"frequency\": 1, \"value\": \"0.385011\"}, \"0.243271\": {\"frequency\": 1, \"value\": \"0.243271\"}, \"0.399857\": {\"frequency\": 1, \"value\": \"0.399857\"}, \"0.569384\": {\"frequency\": 1, \"value\": \"0.569384\"}, \"0.0366006\": {\"frequency\": 1, \"value\": \"0.0366006\"}, \"0.643365\": {\"frequency\": 1, \"value\": \"0.643365\"}, \"0.485207\": {\"frequency\": 1, \"value\": \"0.485207\"}, \"0.809074\": {\"frequency\": 1, \"value\": \"0.809074\"}, \"0.650764\": {\"frequency\": 1, \"value\": \"0.650764\"}, \"0.551368\": {\"frequency\": 1, \"value\": \"0.551368\"}, \"0.919025\": {\"frequency\": 1, \"value\": \"0.919025\"}, \"0.203448\": {\"frequency\": 1, \"value\": \"0.203448\"}, \"0.659578\": {\"frequency\": 1, \"value\": \"0.659578\"}, \"0.490359\": {\"frequency\": 1, \"value\": \"0.490359\"}, \"0.31819\": {\"frequency\": 1, \"value\": \"0.31819\"}, \"0.322352\": {\"frequency\": 1, \"value\": \"0.322352\"}, \"0.408522\": {\"frequency\": 1, \"value\": \"0.408522\"}, \"0.493886\": {\"frequency\": 1, \"value\": \"0.493886\"}, \"0.39664\": {\"frequency\": 1, \"value\": \"0.39664\"}, \"0.144883\": {\"frequency\": 1, \"value\": \"0.144883\"}, \"0.804993\": {\"frequency\": 1, \"value\": \"0.804993\"}, \"0.609054\": {\"frequency\": 1, \"value\": \"0.609054\"}, \"0.849725\": {\"frequency\": 1, \"value\": \"0.849725\"}, \"0.312546\": {\"frequency\": 1, \"value\": \"0.312546\"}, \"0.41832\": {\"frequency\": 1, \"value\": \"0.41832\"}, \"0.493888\": {\"frequency\": 1, \"value\": \"0.493888\"}, \"0.148877\": {\"frequency\": 1, \"value\": \"0.148877\"}, \"0.0821414\": {\"frequency\": 1, \"value\": \"0.0821414\"}, \"0.457417\": {\"frequency\": 1, \"value\": \"0.457417\"}, \"0.290311\": {\"frequency\": 1, \"value\": \"0.290311\"}, \"0.472295\": {\"frequency\": 1, \"value\": \"0.472295\"}, \"0.333359\": {\"frequency\": 1, \"value\": \"0.333359\"}, \"0.151975\": {\"frequency\": 1, \"value\": \"0.151975\"}, \"0.47782\": {\"frequency\": 1, \"value\": \"0.47782\"}, \"0.48276\": {\"frequency\": 1, \"value\": \"0.48276\"}, \"0.338467\": {\"frequency\": 1, \"value\": \"0.338467\"}, \"0.401744\": {\"frequency\": 1, \"value\": \"0.401744\"}, \"0.200839\": {\"frequency\": 1, \"value\": \"0.200839\"}, \"0.832085\": {\"frequency\": 1, \"value\": \"0.832085\"}, \"0.591181\": {\"frequency\": 1, \"value\": \"0.591181\"}, \"0.289561\": {\"frequency\": 1, \"value\": \"0.289561\"}, \"0.487599\": {\"frequency\": 1, \"value\": \"0.487599\"}, \"0.41788\": {\"frequency\": 1, \"value\": \"0.41788\"}, \"0.453719\": {\"frequency\": 1, \"value\": \"0.453719\"}, \"0.27004\": {\"frequency\": 1, \"value\": \"0.27004\"}, \"0.6245\": {\"frequency\": 1, \"value\": \"0.6245\"}, \"0.487591\": {\"frequency\": 1, \"value\": \"0.487591\"}, \"0.535006\": {\"frequency\": 1, \"value\": \"0.535006\"}, \"0.177407\": {\"frequency\": 1, \"value\": \"0.177407\"}, \"0.37988\": {\"frequency\": 1, \"value\": \"0.37988\"}, \"0.412487\": {\"frequency\": 1, \"value\": \"0.412487\"}, \"0.352905\": {\"frequency\": 1, \"value\": \"0.352905\"}, \"0.141854\": {\"frequency\": 1, \"value\": \"0.141854\"}, \"0.535828\": {\"frequency\": 1, \"value\": \"0.535828\"}, \"0.422077\": {\"frequency\": 1, \"value\": \"0.422077\"}, \"0.705584\": {\"frequency\": 1, \"value\": \"0.705584\"}, \"0.355554\": {\"frequency\": 1, \"value\": \"0.355554\"}, \"0.507276\": {\"frequency\": 1, \"value\": \"0.507276\"}, \"0.422071\": {\"frequency\": 1, \"value\": \"0.422071\"}, \"0.442273\": {\"frequency\": 1, \"value\": \"0.442273\"}, \"0.257164\": {\"frequency\": 1, \"value\": \"0.257164\"}, \"0.554009\": {\"frequency\": 1, \"value\": \"0.554009\"}, \"0.471042\": {\"frequency\": 1, \"value\": \"0.471042\"}, \"0.577736\": {\"frequency\": 1, \"value\": \"0.577736\"}, \"0.175817\": {\"frequency\": 1, \"value\": \"0.175817\"}, \"0.416166\": {\"frequency\": 1, \"value\": \"0.416166\"}, \"0.310146\": {\"frequency\": 1, \"value\": \"0.310146\"}, \"0.537957\": {\"frequency\": 1, \"value\": \"0.537957\"}, \"0.210825\": {\"frequency\": 1, \"value\": \"0.210825\"}, \"0.354061\": {\"frequency\": 1, \"value\": \"0.354061\"}, \"0.331017\": {\"frequency\": 1, \"value\": \"0.331017\"}, \"0.408733\": {\"frequency\": 1, \"value\": \"0.408733\"}, \"0.551389\": {\"frequency\": 1, \"value\": \"0.551389\"}, \"0.149909\": {\"frequency\": 1, \"value\": \"0.149909\"}, \"0.302122\": {\"frequency\": 1, \"value\": \"0.302122\"}, \"0.386653\": {\"frequency\": 1, \"value\": \"0.386653\"}, \"0.44496\": {\"frequency\": 1, \"value\": \"0.44496\"}, \"0.374416\": {\"frequency\": 1, \"value\": \"0.374416\"}, \"0.222612\": {\"frequency\": 1, \"value\": \"0.222612\"}, \"0.209604\": {\"frequency\": 1, \"value\": \"0.209604\"}, \"0.578027\": {\"frequency\": 1, \"value\": \"0.578027\"}, \"0.516455\": {\"frequency\": 1, \"value\": \"0.516455\"}, \"0.493896\": {\"frequency\": 1, \"value\": \"0.493896\"}, \"0.222706\": {\"frequency\": 1, \"value\": \"0.222706\"}, \"0.668576\": {\"frequency\": 1, \"value\": \"0.668576\"}, \"0.198164\": {\"frequency\": 1, \"value\": \"0.198164\"}, \"0.669008\": {\"frequency\": 1, \"value\": \"0.669008\"}, \"0.773\": {\"frequency\": 1, \"value\": \"0.773\"}, \"0.425318\": {\"frequency\": 1, \"value\": \"0.425318\"}, \"0.375327\": {\"frequency\": 1, \"value\": \"0.375327\"}, \"0.334898\": {\"frequency\": 1, \"value\": \"0.334898\"}, \"0.388858\": {\"frequency\": 1, \"value\": \"0.388858\"}, \"0.526994\": {\"frequency\": 1, \"value\": \"0.526994\"}, \"0.349509\": {\"frequency\": 1, \"value\": \"0.349509\"}, \"0.40128\": {\"frequency\": 1, \"value\": \"0.40128\"}, \"0.279029\": {\"frequency\": 1, \"value\": \"0.279029\"}, \"0.459534\": {\"frequency\": 1, \"value\": \"0.459534\"}, \"0.38229\": {\"frequency\": 1, \"value\": \"0.38229\"}, \"0.445194\": {\"frequency\": 1, \"value\": \"0.445194\"}, \"0.386732\": {\"frequency\": 1, \"value\": \"0.386732\"}, \"0.332625\": {\"frequency\": 1, \"value\": \"0.332625\"}, \"0.660392\": {\"frequency\": 1, \"value\": \"0.660392\"}, \"0.378899\": {\"frequency\": 1, \"value\": \"0.378899\"}, \"0.402198\": {\"frequency\": 1, \"value\": \"0.402198\"}, \"0.595185\": {\"frequency\": 1, \"value\": \"0.595185\"}, \"0.374303\": {\"frequency\": 1, \"value\": \"0.374303\"}, \"0.400432\": {\"frequency\": 1, \"value\": \"0.400432\"}, \"0.295149\": {\"frequency\": 1, \"value\": \"0.295149\"}, \"0.558607\": {\"frequency\": 1, \"value\": \"0.558607\"}, \"0.534754\": {\"frequency\": 1, \"value\": \"0.534754\"}, \"0.486647\": {\"frequency\": 1, \"value\": \"0.486647\"}, \"0.626495\": {\"frequency\": 1, \"value\": \"0.626495\"}, \"0.114748\": {\"frequency\": 1, \"value\": \"0.114748\"}, \"0.787521\": {\"frequency\": 1, \"value\": \"0.787521\"}, \"0.184423\": {\"frequency\": 1, \"value\": \"0.184423\"}, \"0.497342\": {\"frequency\": 1, \"value\": \"0.497342\"}, \"0.407357\": {\"frequency\": 1, \"value\": \"0.407357\"}, \"0.304299\": {\"frequency\": 1, \"value\": \"0.304299\"}, \"0.145281\": {\"frequency\": 1, \"value\": \"0.145281\"}, \"0.424132\": {\"frequency\": 1, \"value\": \"0.424132\"}, \"0.534999\": {\"frequency\": 1, \"value\": \"0.534999\"}, \"0.352695\": {\"frequency\": 1, \"value\": \"0.352695\"}, \"0.37402\": {\"frequency\": 1, \"value\": \"0.37402\"}, \"0.176431\": {\"frequency\": 1, \"value\": \"0.176431\"}, \"0.404558\": {\"frequency\": 1, \"value\": \"0.404558\"}, \"0.675975\": {\"frequency\": 1, \"value\": \"0.675975\"}, \"0.44003\": {\"frequency\": 1, \"value\": \"0.44003\"}, \"0.474547\": {\"frequency\": 1, \"value\": \"0.474547\"}, \"0.265995\": {\"frequency\": 1, \"value\": \"0.265995\"}, \"0.218301\": {\"frequency\": 1, \"value\": \"0.218301\"}, \"0.216416\": {\"frequency\": 1, \"value\": \"0.216416\"}, \"0.482344\": {\"frequency\": 1, \"value\": \"0.482344\"}, \"0.210643\": {\"frequency\": 1, \"value\": \"0.210643\"}, \"0.25089\": {\"frequency\": 1, \"value\": \"0.25089\"}, \"0.415858\": {\"frequency\": 3, \"value\": \"0.415858\"}, \"0.334373\": {\"frequency\": 1, \"value\": \"0.334373\"}, \"0.423893\": {\"frequency\": 1, \"value\": \"0.423893\"}, \"0.579885\": {\"frequency\": 1, \"value\": \"0.579885\"}, \"0.367405\": {\"frequency\": 1, \"value\": \"0.367405\"}, \"0.428598\": {\"frequency\": 1, \"value\": \"0.428598\"}, \"0.249924\": {\"frequency\": 1, \"value\": \"0.249924\"}, \"0.193879\": {\"frequency\": 1, \"value\": \"0.193879\"}, \"0.428592\": {\"frequency\": 1, \"value\": \"0.428592\"}, \"0.361386\": {\"frequency\": 1, \"value\": \"0.361386\"}, \"0.533341\": {\"frequency\": 1, \"value\": \"0.533341\"}, \"0.391046\": {\"frequency\": 1, \"value\": \"0.391046\"}, \"0.637818\": {\"frequency\": 1, \"value\": \"0.637818\"}, \"0.549453\": {\"frequency\": 1, \"value\": \"0.549453\"}, \"0.564678\": {\"frequency\": 1, \"value\": \"0.564678\"}, \"0.633804\": {\"frequency\": 1, \"value\": \"0.633804\"}, \"0.539068\": {\"frequency\": 1, \"value\": \"0.539068\"}, \"0.325231\": {\"frequency\": 1, \"value\": \"0.325231\"}, \"0.394272\": {\"frequency\": 1, \"value\": \"0.394272\"}, \"0.402109\": {\"frequency\": 1, \"value\": \"0.402109\"}, \"0.620098\": {\"frequency\": 1, \"value\": \"0.620098\"}, \"0.513156\": {\"frequency\": 1, \"value\": \"0.513156\"}, \"0.417432\": {\"frequency\": 1, \"value\": \"0.417432\"}, \"0.461365\": {\"frequency\": 1, \"value\": \"0.461365\"}, \"0.628082\": {\"frequency\": 1, \"value\": \"0.628082\"}, \"0.378543\": {\"frequency\": 1, \"value\": \"0.378543\"}, \"0.226609\": {\"frequency\": 1, \"value\": \"0.226609\"}, \"0.298006\": {\"frequency\": 1, \"value\": \"0.298006\"}, \"0.174562\": {\"frequency\": 1, \"value\": \"0.174562\"}, \"0.202711\": {\"frequency\": 1, \"value\": \"0.202711\"}, \"0.461697\": {\"frequency\": 1, \"value\": \"0.461697\"}, \"0.233492\": {\"frequency\": 1, \"value\": \"0.233492\"}, \"0.498617\": {\"frequency\": 1, \"value\": \"0.498617\"}, \"0.40494\": {\"frequency\": 1, \"value\": \"0.40494\"}, \"0.314652\": {\"frequency\": 1, \"value\": \"0.314652\"}, \"0.0727255\": {\"frequency\": 1, \"value\": \"0.0727255\"}, \"0.283154\": {\"frequency\": 1, \"value\": \"0.283154\"}, \"0.357724\": {\"frequency\": 1, \"value\": \"0.357724\"}, \"0.466659\": {\"frequency\": 1, \"value\": \"0.466659\"}, \"0.428771\": {\"frequency\": 1, \"value\": \"0.428771\"}, \"0.536595\": {\"frequency\": 1, \"value\": \"0.536595\"}, \"0.402071\": {\"frequency\": 1, \"value\": \"0.402071\"}, \"0.512179\": {\"frequency\": 3, \"value\": \"0.512179\"}, \"0.480255\": {\"frequency\": 1, \"value\": \"0.480255\"}, \"0.467344\": {\"frequency\": 1, \"value\": \"0.467344\"}, \"0.262277\": {\"frequency\": 1, \"value\": \"0.262277\"}, \"0.512775\": {\"frequency\": 1, \"value\": \"0.512775\"}, \"0.366488\": {\"frequency\": 1, \"value\": \"0.366488\"}, \"0.406552\": {\"frequency\": 1, \"value\": \"0.406552\"}, \"0.440879\": {\"frequency\": 1, \"value\": \"0.440879\"}, \"0.175153\": {\"frequency\": 1, \"value\": \"0.175153\"}, \"0.443788\": {\"frequency\": 1, \"value\": \"0.443788\"}, \"0.580853\": {\"frequency\": 1, \"value\": \"0.580853\"}, \"0.618821\": {\"frequency\": 1, \"value\": \"0.618821\"}, \"0.124066\": {\"frequency\": 1, \"value\": \"0.124066\"}, \"0.254119\": {\"frequency\": 1, \"value\": \"0.254119\"}, \"0.0541409\": {\"frequency\": 1, \"value\": \"0.0541409\"}, \"0.351808\": {\"frequency\": 1, \"value\": \"0.351808\"}, \"0.0720639\": {\"frequency\": 1, \"value\": \"0.0720639\"}, \"0.456629\": {\"frequency\": 1, \"value\": \"0.456629\"}, \"0.524379\": {\"frequency\": 1, \"value\": \"0.524379\"}, \"0.603595\": {\"frequency\": 1, \"value\": \"0.603595\"}, \"0.151528\": {\"frequency\": 1, \"value\": \"0.151528\"}, \"0.656855\": {\"frequency\": 1, \"value\": \"0.656855\"}, \"0.536861\": {\"frequency\": 1, \"value\": \"0.536861\"}, \"0.468348\": {\"frequency\": 1, \"value\": \"0.468348\"}, \"0.266774\": {\"frequency\": 1, \"value\": \"0.266774\"}, \"0.396928\": {\"frequency\": 1, \"value\": \"0.396928\"}, \"0.0783612\": {\"frequency\": 1, \"value\": \"0.0783612\"}, \"0.424468\": {\"frequency\": 1, \"value\": \"0.424468\"}, \"0.18403\": {\"frequency\": 1, \"value\": \"0.18403\"}, \"0.463067\": {\"frequency\": 1, \"value\": \"0.463067\"}, \"0.512512\": {\"frequency\": 1, \"value\": \"0.512512\"}, \"0.583955\": {\"frequency\": 1, \"value\": \"0.583955\"}, \"0.476546\": {\"frequency\": 1, \"value\": \"0.476546\"}, \"0.347075\": {\"frequency\": 1, \"value\": \"0.347075\"}, \"0.476816\": {\"frequency\": 1, \"value\": \"0.476816\"}, \"0.513572\": {\"frequency\": 1, \"value\": \"0.513572\"}, \"0.596187\": {\"frequency\": 1, \"value\": \"0.596187\"}, \"0.532966\": {\"frequency\": 1, \"value\": \"0.532966\"}, \"0.56085\": {\"frequency\": 1, \"value\": \"0.56085\"}, \"0.250614\": {\"frequency\": 1, \"value\": \"0.250614\"}, \"0.340835\": {\"frequency\": 1, \"value\": \"0.340835\"}, \"0.362249\": {\"frequency\": 1, \"value\": \"0.362249\"}, \"0.335763\": {\"frequency\": 1, \"value\": \"0.335763\"}, \"0.381639\": {\"frequency\": 1, \"value\": \"0.381639\"}, \"0.345569\": {\"frequency\": 1, \"value\": \"0.345569\"}, \"0.367532\": {\"frequency\": 1, \"value\": \"0.367532\"}, \"0.176881\": {\"frequency\": 1, \"value\": \"0.176881\"}, \"0.443097\": {\"frequency\": 1, \"value\": \"0.443097\"}, \"0.34059\": {\"frequency\": 1, \"value\": \"0.34059\"}, \"0.498812\": {\"frequency\": 1, \"value\": \"0.498812\"}, \"0.440048\": {\"frequency\": 1, \"value\": \"0.440048\"}, \"0.752389\": {\"frequency\": 1, \"value\": \"0.752389\"}, \"0.439653\": {\"frequency\": 1, \"value\": \"0.439653\"}, \"0.340239\": {\"frequency\": 1, \"value\": \"0.340239\"}, \"0.281827\": {\"frequency\": 1, \"value\": \"0.281827\"}, \"0.531097\": {\"frequency\": 1, \"value\": \"0.531097\"}, \"0.549877\": {\"frequency\": 1, \"value\": \"0.549877\"}, \"0.364713\": {\"frequency\": 1, \"value\": \"0.364713\"}, \"0.472048\": {\"frequency\": 1, \"value\": \"0.472048\"}, \"0.0760567\": {\"frequency\": 1, \"value\": \"0.0760567\"}, \"0.366224\": {\"frequency\": 1, \"value\": \"0.366224\"}, \"0.416581\": {\"frequency\": 1, \"value\": \"0.416581\"}, \"0.349341\": {\"frequency\": 1, \"value\": \"0.349341\"}, \"0.281005\": {\"frequency\": 1, \"value\": \"0.281005\"}, \"0.201762\": {\"frequency\": 1, \"value\": \"0.201762\"}, \"0.337508\": {\"frequency\": 1, \"value\": \"0.337508\"}, \"0.397504\": {\"frequency\": 1, \"value\": \"0.397504\"}, \"0.115004\": {\"frequency\": 1, \"value\": \"0.115004\"}, \"0.223244\": {\"frequency\": 2, \"value\": \"0.223244\"}, \"0.524684\": {\"frequency\": 1, \"value\": \"0.524684\"}, \"0.687858\": {\"frequency\": 1, \"value\": \"0.687858\"}, \"0.402655\": {\"frequency\": 1, \"value\": \"0.402655\"}, \"0.42438\": {\"frequency\": 1, \"value\": \"0.42438\"}, \"0.298191\": {\"frequency\": 1, \"value\": \"0.298191\"}, \"0.42846\": {\"frequency\": 1, \"value\": \"0.42846\"}, \"0.286388\": {\"frequency\": 1, \"value\": \"0.286388\"}, \"0.415326\": {\"frequency\": 1, \"value\": \"0.415326\"}, \"0.32112\": {\"frequency\": 1, \"value\": \"0.32112\"}, \"0.484342\": {\"frequency\": 1, \"value\": \"0.484342\"}, \"0.415329\": {\"frequency\": 1, \"value\": \"0.415329\"}, \"0.558078\": {\"frequency\": 1, \"value\": \"0.558078\"}, \"0.62139\": {\"frequency\": 1, \"value\": \"0.62139\"}, \"0.567863\": {\"frequency\": 1, \"value\": \"0.567863\"}, \"0.297078\": {\"frequency\": 1, \"value\": \"0.297078\"}, \"0.214951\": {\"frequency\": 1, \"value\": \"0.214951\"}, \"0.527866\": {\"frequency\": 1, \"value\": \"0.527866\"}, \"0.311024\": {\"frequency\": 1, \"value\": \"0.311024\"}, \"0.632786\": {\"frequency\": 1, \"value\": \"0.632786\"}, \"0.345265\": {\"frequency\": 1, \"value\": \"0.345265\"}, \"0.372149\": {\"frequency\": 1, \"value\": \"0.372149\"}, \"0.50346\": {\"frequency\": 1, \"value\": \"0.50346\"}, \"0.503172\": {\"frequency\": 1, \"value\": \"0.503172\"}, \"0.307881\": {\"frequency\": 1, \"value\": \"0.307881\"}, \"0.540494\": {\"frequency\": 1, \"value\": \"0.540494\"}, \"0.231696\": {\"frequency\": 1, \"value\": \"0.231696\"}, \"0.169504\": {\"frequency\": 1, \"value\": \"0.169504\"}, \"0.490167\": {\"frequency\": 1, \"value\": \"0.490167\"}, \"0.463683\": {\"frequency\": 1, \"value\": \"0.463683\"}, \"0.441684\": {\"frequency\": 1, \"value\": \"0.441684\"}, \"0.4934\": {\"frequency\": 1, \"value\": \"0.4934\"}, \"0.187089\": {\"frequency\": 1, \"value\": \"0.187089\"}, \"0.554294\": {\"frequency\": 1, \"value\": \"0.554294\"}, \"0.333325\": {\"frequency\": 1, \"value\": \"0.333325\"}, \"0.788171\": {\"frequency\": 1, \"value\": \"0.788171\"}, \"0.39472\": {\"frequency\": 1, \"value\": \"0.39472\"}, \"0.610208\": {\"frequency\": 1, \"value\": \"0.610208\"}, \"0.41244\": {\"frequency\": 1, \"value\": \"0.41244\"}, \"0.297453\": {\"frequency\": 1, \"value\": \"0.297453\"}, \"0.663183\": {\"frequency\": 1, \"value\": \"0.663183\"}, \"0.482365\": {\"frequency\": 1, \"value\": \"0.482365\"}, \"0.481334\": {\"frequency\": 1, \"value\": \"0.481334\"}, \"0.291985\": {\"frequency\": 1, \"value\": \"0.291985\"}, \"0.294156\": {\"frequency\": 1, \"value\": \"0.294156\"}, \"0.454481\": {\"frequency\": 1, \"value\": \"0.454481\"}, \"0.274372\": {\"frequency\": 1, \"value\": \"0.274372\"}, \"0.341962\": {\"frequency\": 1, \"value\": \"0.341962\"}, \"0.278387\": {\"frequency\": 1, \"value\": \"0.278387\"}, \"0.706665\": {\"frequency\": 1, \"value\": \"0.706665\"}, \"0.387461\": {\"frequency\": 1, \"value\": \"0.387461\"}, \"0.340165\": {\"frequency\": 1, \"value\": \"0.340165\"}, \"0.500076\": {\"frequency\": 1, \"value\": \"0.500076\"}, \"0.207387\": {\"frequency\": 1, \"value\": \"0.207387\"}, \"0.0973548\": {\"frequency\": 1, \"value\": \"0.0973548\"}, \"0.28803\": {\"frequency\": 1, \"value\": \"0.28803\"}, \"0.427968\": {\"frequency\": 1, \"value\": \"0.427968\"}, \"0.541238\": {\"frequency\": 1, \"value\": \"0.541238\"}, \"0.578102\": {\"frequency\": 1, \"value\": \"0.578102\"}, \"0.401357\": {\"frequency\": 1, \"value\": \"0.401357\"}, \"0.519047\": {\"frequency\": 1, \"value\": \"0.519047\"}, \"0.266428\": {\"frequency\": 1, \"value\": \"0.266428\"}, \"0.310418\": {\"frequency\": 1, \"value\": \"0.310418\"}, \"0.222191\": {\"frequency\": 1, \"value\": \"0.222191\"}, \"0.382495\": {\"frequency\": 1, \"value\": \"0.382495\"}, \"0.460886\": {\"frequency\": 1, \"value\": \"0.460886\"}, \"0.475777\": {\"frequency\": 1, \"value\": \"0.475777\"}, \"0.705574\": {\"frequency\": 1, \"value\": \"0.705574\"}, \"0.305306\": {\"frequency\": 1, \"value\": \"0.305306\"}, \"0.550714\": {\"frequency\": 1, \"value\": \"0.550714\"}, \"0.550716\": {\"frequency\": 1, \"value\": \"0.550716\"}, \"0.502019\": {\"frequency\": 1, \"value\": \"0.502019\"}, \"0.486508\": {\"frequency\": 1, \"value\": \"0.486508\"}, \"0.195429\": {\"frequency\": 1, \"value\": \"0.195429\"}, \"0.412293\": {\"frequency\": 1, \"value\": \"0.412293\"}, \"0.422998\": {\"frequency\": 1, \"value\": \"0.422998\"}, \"0.450276\": {\"frequency\": 1, \"value\": \"0.450276\"}, \"0.687074\": {\"frequency\": 1, \"value\": \"0.687074\"}, \"0.291216\": {\"frequency\": 1, \"value\": \"0.291216\"}, \"0.382371\": {\"frequency\": 1, \"value\": \"0.382371\"}, \"0.618147\": {\"frequency\": 1, \"value\": \"0.618147\"}, \"0.101154\": {\"frequency\": 1, \"value\": \"0.101154\"}, \"0.471674\": {\"frequency\": 1, \"value\": \"0.471674\"}, \"0.551008\": {\"frequency\": 1, \"value\": \"0.551008\"}, \"0.629706\": {\"frequency\": 1, \"value\": \"0.629706\"}, \"0.355582\": {\"frequency\": 1, \"value\": \"0.355582\"}, \"0.393553\": {\"frequency\": 1, \"value\": \"0.393553\"}, \"0.159475\": {\"frequency\": 1, \"value\": \"0.159475\"}, \"0.361749\": {\"frequency\": 1, \"value\": \"0.361749\"}, \"0.269033\": {\"frequency\": 1, \"value\": \"0.269033\"}, \"0.599054\": {\"frequency\": 1, \"value\": \"0.599054\"}, \"0.289373\": {\"frequency\": 1, \"value\": \"0.289373\"}, \"0.52482\": {\"frequency\": 1, \"value\": \"0.52482\"}, \"0.333789\": {\"frequency\": 1, \"value\": \"0.333789\"}, \"0.594566\": {\"frequency\": 1, \"value\": \"0.594566\"}, \"0.453672\": {\"frequency\": 1, \"value\": \"0.453672\"}, \"0.41316\": {\"frequency\": 1, \"value\": \"0.41316\"}, \"0.37745\": {\"frequency\": 1, \"value\": \"0.37745\"}, \"0.411161\": {\"frequency\": 1, \"value\": \"0.411161\"}, \"0.393886\": {\"frequency\": 1, \"value\": \"0.393886\"}, \"0.507168\": {\"frequency\": 1, \"value\": \"0.507168\"}, \"0.453898\": {\"frequency\": 1, \"value\": \"0.453898\"}, \"0.464427\": {\"frequency\": 1, \"value\": \"0.464427\"}, \"0.389379\": {\"frequency\": 1, \"value\": \"0.389379\"}, \"0.33331\": {\"frequency\": 1, \"value\": \"0.33331\"}, \"0.489062\": {\"frequency\": 1, \"value\": \"0.489062\"}, \"0.699763\": {\"frequency\": 1, \"value\": \"0.699763\"}, \"0.250922\": {\"frequency\": 1, \"value\": \"0.250922\"}, \"0.413185\": {\"frequency\": 1, \"value\": \"0.413185\"}, \"0.450018\": {\"frequency\": 1, \"value\": \"0.450018\"}, \"0.510442\": {\"frequency\": 1, \"value\": \"0.510442\"}, \"0.554701\": {\"frequency\": 1, \"value\": \"0.554701\"}, \"0.474422\": {\"frequency\": 1, \"value\": \"0.474422\"}, \"0.732592\": {\"frequency\": 1, \"value\": \"0.732592\"}, \"0.350536\": {\"frequency\": 1, \"value\": \"0.350536\"}, \"0.492443\": {\"frequency\": 1, \"value\": \"0.492443\"}, \"0.424566\": {\"frequency\": 1, \"value\": \"0.424566\"}, \"0.505137\": {\"frequency\": 1, \"value\": \"0.505137\"}, \"0.590245\": {\"frequency\": 1, \"value\": \"0.590245\"}, \"0.629144\": {\"frequency\": 1, \"value\": \"0.629144\"}, \"0.165758\": {\"frequency\": 1, \"value\": \"0.165758\"}, \"0.534181\": {\"frequency\": 1, \"value\": \"0.534181\"}, \"0.420555\": {\"frequency\": 1, \"value\": \"0.420555\"}, \"0.635451\": {\"frequency\": 3, \"value\": \"0.635451\"}, \"0.39958\": {\"frequency\": 1, \"value\": \"0.39958\"}, \"0.500695\": {\"frequency\": 1, \"value\": \"0.500695\"}, \"0.533516\": {\"frequency\": 1, \"value\": \"0.533516\"}, \"0.324355\": {\"frequency\": 1, \"value\": \"0.324355\"}, \"0.359926\": {\"frequency\": 1, \"value\": \"0.359926\"}, \"0.257158\": {\"frequency\": 1, \"value\": \"0.257158\"}, \"0.430699\": {\"frequency\": 1, \"value\": \"0.430699\"}, \"0.718299\": {\"frequency\": 1, \"value\": \"0.718299\"}, \"0.678477\": {\"frequency\": 1, \"value\": \"0.678477\"}, \"0.535613\": {\"frequency\": 1, \"value\": \"0.535613\"}, \"0.353737\": {\"frequency\": 1, \"value\": \"0.353737\"}, \"0.294484\": {\"frequency\": 1, \"value\": \"0.294484\"}, \"0.392114\": {\"frequency\": 1, \"value\": \"0.392114\"}, \"0.26741\": {\"frequency\": 1, \"value\": \"0.26741\"}, \"0.483681\": {\"frequency\": 1, \"value\": \"0.483681\"}, \"0.511336\": {\"frequency\": 1, \"value\": \"0.511336\"}, \"0.451706\": {\"frequency\": 1, \"value\": \"0.451706\"}, \"0.378332\": {\"frequency\": 1, \"value\": \"0.378332\"}, \"0.374114\": {\"frequency\": 1, \"value\": \"0.374114\"}, \"0.43854\": {\"frequency\": 1, \"value\": \"0.43854\"}, \"0.244811\": {\"frequency\": 1, \"value\": \"0.244811\"}, \"0.498478\": {\"frequency\": 1, \"value\": \"0.498478\"}, \"0.519551\": {\"frequency\": 1, \"value\": \"0.519551\"}, \"0.304042\": {\"frequency\": 1, \"value\": \"0.304042\"}, \"0.416591\": {\"frequency\": 1, \"value\": \"0.416591\"}, \"0.712861\": {\"frequency\": 1, \"value\": \"0.712861\"}, \"0.244864\": {\"frequency\": 1, \"value\": \"0.244864\"}, \"0.418087\": {\"frequency\": 1, \"value\": \"0.418087\"}, \"0.461596\": {\"frequency\": 1, \"value\": \"0.461596\"}, \"0.408384\": {\"frequency\": 1, \"value\": \"0.408384\"}, \"0.307653\": {\"frequency\": 1, \"value\": \"0.307653\"}, \"0.416753\": {\"frequency\": 1, \"value\": \"0.416753\"}, \"0.383175\": {\"frequency\": 1, \"value\": \"0.383175\"}, \"0.635682\": {\"frequency\": 1, \"value\": \"0.635682\"}, \"0.244363\": {\"frequency\": 1, \"value\": \"0.244363\"}, \"0.253903\": {\"frequency\": 1, \"value\": \"0.253903\"}, \"0.300602\": {\"frequency\": 1, \"value\": \"0.300602\"}, \"0.624004\": {\"frequency\": 1, \"value\": \"0.624004\"}, \"0.440066\": {\"frequency\": 1, \"value\": \"0.440066\"}, \"0.253818\": {\"frequency\": 1, \"value\": \"0.253818\"}, \"0.458903\": {\"frequency\": 1, \"value\": \"0.458903\"}, \"0.529959\": {\"frequency\": 1, \"value\": \"0.529959\"}, \"0.656725\": {\"frequency\": 1, \"value\": \"0.656725\"}, \"0.288022\": {\"frequency\": 1, \"value\": \"0.288022\"}, \"0.495622\": {\"frequency\": 1, \"value\": \"0.495622\"}, \"0.588316\": {\"frequency\": 1, \"value\": \"0.588316\"}, \"0.541076\": {\"frequency\": 1, \"value\": \"0.541076\"}, \"0.264034\": {\"frequency\": 1, \"value\": \"0.264034\"}, \"0.346014\": {\"frequency\": 1, \"value\": \"0.346014\"}, \"0.467824\": {\"frequency\": 1, \"value\": \"0.467824\"}, \"0.546885\": {\"frequency\": 1, \"value\": \"0.546885\"}, \"0.482975\": {\"frequency\": 1, \"value\": \"0.482975\"}, \"0.293347\": {\"frequency\": 1, \"value\": \"0.293347\"}, \"0.033095\": {\"frequency\": 1, \"value\": \"0.033095\"}, \"0.537054\": {\"frequency\": 1, \"value\": \"0.537054\"}, \"0.656901\": {\"frequency\": 1, \"value\": \"0.656901\"}, \"0.0955051\": {\"frequency\": 1, \"value\": \"0.0955051\"}, \"0.308161\": {\"frequency\": 1, \"value\": \"0.308161\"}, \"0.722454\": {\"frequency\": 1, \"value\": \"0.722454\"}, \"0.220137\": {\"frequency\": 1, \"value\": \"0.220137\"}, \"0.417402\": {\"frequency\": 1, \"value\": \"0.417402\"}, \"0.246185\": {\"frequency\": 1, \"value\": \"0.246185\"}, \"0.696041\": {\"frequency\": 1, \"value\": \"0.696041\"}, \"0.536016\": {\"frequency\": 1, \"value\": \"0.536016\"}, \"0.482387\": {\"frequency\": 1, \"value\": \"0.482387\"}, \"0.335351\": {\"frequency\": 1, \"value\": \"0.335351\"}, \"0.456948\": {\"frequency\": 1, \"value\": \"0.456948\"}, \"0.399022\": {\"frequency\": 1, \"value\": \"0.399022\"}, \"0.300815\": {\"frequency\": 1, \"value\": \"0.300815\"}, \"0.443462\": {\"frequency\": 1, \"value\": \"0.443462\"}, \"0.29383\": {\"frequency\": 1, \"value\": \"0.29383\"}, \"0.332811\": {\"frequency\": 1, \"value\": \"0.332811\"}, \"0.377256\": {\"frequency\": 1, \"value\": \"0.377256\"}, \"0.329559\": {\"frequency\": 1, \"value\": \"0.329559\"}, \"0.176599\": {\"frequency\": 1, \"value\": \"0.176599\"}, \"0.483378\": {\"frequency\": 1, \"value\": \"0.483378\"}, \"0.466466\": {\"frequency\": 1, \"value\": \"0.466466\"}, \"0.713444\": {\"frequency\": 3, \"value\": \"0.713444\"}, \"0.328044\": {\"frequency\": 1, \"value\": \"0.328044\"}, \"0.213765\": {\"frequency\": 1, \"value\": \"0.213765\"}, \"0.51504\": {\"frequency\": 1, \"value\": \"0.51504\"}, \"0.0510841\": {\"frequency\": 1, \"value\": \"0.0510841\"}, \"0.144941\": {\"frequency\": 1, \"value\": \"0.144941\"}, \"0.262794\": {\"frequency\": 1, \"value\": \"0.262794\"}, \"0.407019\": {\"frequency\": 1, \"value\": \"0.407019\"}, \"0.440361\": {\"frequency\": 1, \"value\": \"0.440361\"}, \"0.276092\": {\"frequency\": 1, \"value\": \"0.276092\"}, \"0.423476\": {\"frequency\": 1, \"value\": \"0.423476\"}, \"0.468481\": {\"frequency\": 1, \"value\": \"0.468481\"}, \"0.440685\": {\"frequency\": 1, \"value\": \"0.440685\"}, \"0.480243\": {\"frequency\": 1, \"value\": \"0.480243\"}, \"0.553165\": {\"frequency\": 1, \"value\": \"0.553165\"}, \"0.485358\": {\"frequency\": 1, \"value\": \"0.485358\"}, \"0.0407207\": {\"frequency\": 1, \"value\": \"0.0407207\"}, \"0.493542\": {\"frequency\": 1, \"value\": \"0.493542\"}, \"0.479031\": {\"frequency\": 1, \"value\": \"0.479031\"}, \"0.359454\": {\"frequency\": 1, \"value\": \"0.359454\"}, \"0.389245\": {\"frequency\": 1, \"value\": \"0.389245\"}, \"0.389243\": {\"frequency\": 1, \"value\": \"0.389243\"}, \"0.239901\": {\"frequency\": 1, \"value\": \"0.239901\"}, \"0.427261\": {\"frequency\": 1, \"value\": \"0.427261\"}, \"0.337172\": {\"frequency\": 1, \"value\": \"0.337172\"}, \"0.465263\": {\"frequency\": 1, \"value\": \"0.465263\"}, \"0.350867\": {\"frequency\": 1, \"value\": \"0.350867\"}, \"0.444141\": {\"frequency\": 1, \"value\": \"0.444141\"}, \"0.301551\": {\"frequency\": 1, \"value\": \"0.301551\"}, \"0.460084\": {\"frequency\": 1, \"value\": \"0.460084\"}, \"0.24877\": {\"frequency\": 1, \"value\": \"0.24877\"}, \"0.51066\": {\"frequency\": 1, \"value\": \"0.51066\"}, \"0.528194\": {\"frequency\": 1, \"value\": \"0.528194\"}, \"0.267148\": {\"frequency\": 1, \"value\": \"0.267148\"}, \"0.425804\": {\"frequency\": 1, \"value\": \"0.425804\"}, \"0.442134\": {\"frequency\": 1, \"value\": \"0.442134\"}, \"0.238525\": {\"frequency\": 1, \"value\": \"0.238525\"}, \"0.60041\": {\"frequency\": 1, \"value\": \"0.60041\"}, \"0.375912\": {\"frequency\": 1, \"value\": \"0.375912\"}, \"0.317885\": {\"frequency\": 1, \"value\": \"0.317885\"}, \"0.463054\": {\"frequency\": 1, \"value\": \"0.463054\"}, \"0.693403\": {\"frequency\": 1, \"value\": \"0.693403\"}, \"0.309545\": {\"frequency\": 1, \"value\": \"0.309545\"}, \"0.277879\": {\"frequency\": 1, \"value\": \"0.277879\"}, \"0.309015\": {\"frequency\": 1, \"value\": \"0.309015\"}, \"0.647812\": {\"frequency\": 1, \"value\": \"0.647812\"}, \"0.182662\": {\"frequency\": 1, \"value\": \"0.182662\"}, \"0.675778\": {\"frequency\": 1, \"value\": \"0.675778\"}, \"0.471271\": {\"frequency\": 1, \"value\": \"0.471271\"}, \"0.693153\": {\"frequency\": 1, \"value\": \"0.693153\"}, \"0.362234\": {\"frequency\": 1, \"value\": \"0.362234\"}, \"0.205267\": {\"frequency\": 1, \"value\": \"0.205267\"}, \"0.286577\": {\"frequency\": 1, \"value\": \"0.286577\"}, \"0.326301\": {\"frequency\": 1, \"value\": \"0.326301\"}, \"0.111593\": {\"frequency\": 1, \"value\": \"0.111593\"}, \"0.394429\": {\"frequency\": 1, \"value\": \"0.394429\"}, \"0.512699\": {\"frequency\": 1, \"value\": \"0.512699\"}, \"0.351167\": {\"frequency\": 1, \"value\": \"0.351167\"}, \"0.342682\": {\"frequency\": 1, \"value\": \"0.342682\"}, \"0.285651\": {\"frequency\": 1, \"value\": \"0.285651\"}, \"0.299213\": {\"frequency\": 1, \"value\": \"0.299213\"}, \"0.43319\": {\"frequency\": 1, \"value\": \"0.43319\"}, \"0.569635\": {\"frequency\": 1, \"value\": \"0.569635\"}, \"0.34049\": {\"frequency\": 1, \"value\": \"0.34049\"}, \"0.111021\": {\"frequency\": 1, \"value\": \"0.111021\"}, \"0.462737\": {\"frequency\": 1, \"value\": \"0.462737\"}, \"0.563623\": {\"frequency\": 1, \"value\": \"0.563623\"}, \"0.710353\": {\"frequency\": 1, \"value\": \"0.710353\"}, \"0.277143\": {\"frequency\": 1, \"value\": \"0.277143\"}, \"0.277414\": {\"frequency\": 1, \"value\": \"0.277414\"}, \"0.614802\": {\"frequency\": 1, \"value\": \"0.614802\"}, \"0.364768\": {\"frequency\": 1, \"value\": \"0.364768\"}, \"0.654461\": {\"frequency\": 1, \"value\": \"0.654461\"}, \"0.0168146\": {\"frequency\": 1, \"value\": \"0.0168146\"}, \"0.512079\": {\"frequency\": 1, \"value\": \"0.512079\"}, \"0.790935\": {\"frequency\": 1, \"value\": \"0.790935\"}, \"0.284614\": {\"frequency\": 1, \"value\": \"0.284614\"}, \"0.423058\": {\"frequency\": 1, \"value\": \"0.423058\"}, \"0.373791\": {\"frequency\": 1, \"value\": \"0.373791\"}, \"0.397514\": {\"frequency\": 1, \"value\": \"0.397514\"}, \"0.50929\": {\"frequency\": 1, \"value\": \"0.50929\"}, \"0.283723\": {\"frequency\": 1, \"value\": \"0.283723\"}, \"0.52713\": {\"frequency\": 3, \"value\": \"0.52713\"}, \"0.382674\": {\"frequency\": 1, \"value\": \"0.382674\"}, \"0.359261\": {\"frequency\": 1, \"value\": \"0.359261\"}, \"0.703641\": {\"frequency\": 1, \"value\": \"0.703641\"}, \"0.65894\": {\"frequency\": 1, \"value\": \"0.65894\"}, \"0.729738\": {\"frequency\": 1, \"value\": \"0.729738\"}, \"0.408187\": {\"frequency\": 1, \"value\": \"0.408187\"}, \"0.248573\": {\"frequency\": 1, \"value\": \"0.248573\"}, \"0.455925\": {\"frequency\": 1, \"value\": \"0.455925\"}, \"0.319024\": {\"frequency\": 1, \"value\": \"0.319024\"}, \"0.313972\": {\"frequency\": 1, \"value\": \"0.313972\"}, \"0.623392\": {\"frequency\": 1, \"value\": \"0.623392\"}, \"0.145385\": {\"frequency\": 1, \"value\": \"0.145385\"}, \"0.447149\": {\"frequency\": 1, \"value\": \"0.447149\"}, \"0.439062\": {\"frequency\": 1, \"value\": \"0.439062\"}, \"0.523489\": {\"frequency\": 1, \"value\": \"0.523489\"}, \"0.616128\": {\"frequency\": 1, \"value\": \"0.616128\"}, \"0.422205\": {\"frequency\": 1, \"value\": \"0.422205\"}, \"0.367458\": {\"frequency\": 1, \"value\": \"0.367458\"}, \"0.299507\": {\"frequency\": 1, \"value\": \"0.299507\"}, \"0.766\": {\"frequency\": 1, \"value\": \"0.766\"}, \"0.579091\": {\"frequency\": 1, \"value\": \"0.579091\"}, \"0.438753\": {\"frequency\": 1, \"value\": \"0.438753\"}, \"0.102576\": {\"frequency\": 1, \"value\": \"0.102576\"}, \"0.367736\": {\"frequency\": 1, \"value\": \"0.367736\"}, \"0.651747\": {\"frequency\": 1, \"value\": \"0.651747\"}, \"0.449271\": {\"frequency\": 1, \"value\": \"0.449271\"}, \"0.433079\": {\"frequency\": 1, \"value\": \"0.433079\"}, \"0.311014\": {\"frequency\": 1, \"value\": \"0.311014\"}, \"0.385001\": {\"frequency\": 1, \"value\": \"0.385001\"}, \"0.584786\": {\"frequency\": 1, \"value\": \"0.584786\"}, \"0.560021\": {\"frequency\": 1, \"value\": \"0.560021\"}, \"0.527875\": {\"frequency\": 1, \"value\": \"0.527875\"}, \"0.882216\": {\"frequency\": 1, \"value\": \"0.882216\"}, \"0.415665\": {\"frequency\": 1, \"value\": \"0.415665\"}, \"0.396778\": {\"frequency\": 1, \"value\": \"0.396778\"}, \"0.453465\": {\"frequency\": 1, \"value\": \"0.453465\"}, \"0.490378\": {\"frequency\": 1, \"value\": \"0.490378\"}, \"0.297868\": {\"frequency\": 1, \"value\": \"0.297868\"}, \"0.319795\": {\"frequency\": 1, \"value\": \"0.319795\"}, \"0.345732\": {\"frequency\": 1, \"value\": \"0.345732\"}, \"0.226263\": {\"frequency\": 1, \"value\": \"0.226263\"}, \"0.586876\": {\"frequency\": 1, \"value\": \"0.586876\"}, \"0.355379\": {\"frequency\": 1, \"value\": \"0.355379\"}, \"0.541936\": {\"frequency\": 1, \"value\": \"0.541936\"}, \"0.41815\": {\"frequency\": 1, \"value\": \"0.41815\"}, \"0.539387\": {\"frequency\": 1, \"value\": \"0.539387\"}, \"0.794881\": {\"frequency\": 1, \"value\": \"0.794881\"}, \"0.367673\": {\"frequency\": 1, \"value\": \"0.367673\"}, \"0.419746\": {\"frequency\": 1, \"value\": \"0.419746\"}, \"0.773542\": {\"frequency\": 1, \"value\": \"0.773542\"}, \"0.35155\": {\"frequency\": 1, \"value\": \"0.35155\"}, \"0.935239\": {\"frequency\": 1, \"value\": \"0.935239\"}, \"0.257497\": {\"frequency\": 1, \"value\": \"0.257497\"}, \"0.258714\": {\"frequency\": 1, \"value\": \"0.258714\"}, \"0.653457\": {\"frequency\": 1, \"value\": \"0.653457\"}, \"0.611013\": {\"frequency\": 1, \"value\": \"0.611013\"}, \"0.319905\": {\"frequency\": 1, \"value\": \"0.319905\"}, \"0.0738782\": {\"frequency\": 1, \"value\": \"0.0738782\"}, \"0.317465\": {\"frequency\": 1, \"value\": \"0.317465\"}, \"0.369701\": {\"frequency\": 1, \"value\": \"0.369701\"}, \"0.629623\": {\"frequency\": 1, \"value\": \"0.629623\"}, \"0.567676\": {\"frequency\": 1, \"value\": \"0.567676\"}, \"0.488155\": {\"frequency\": 1, \"value\": \"0.488155\"}, \"0.470477\": {\"frequency\": 1, \"value\": \"0.470477\"}, \"0.437175\": {\"frequency\": 1, \"value\": \"0.437175\"}, \"0.247683\": {\"frequency\": 1, \"value\": \"0.247683\"}, \"0.202149\": {\"frequency\": 1, \"value\": \"0.202149\"}, \"0.365258\": {\"frequency\": 2, \"value\": \"0.365258\"}, \"0.433738\": {\"frequency\": 1, \"value\": \"0.433738\"}, \"0.558843\": {\"frequency\": 1, \"value\": \"0.558843\"}, \"0.319981\": {\"frequency\": 1, \"value\": \"0.319981\"}, \"0.553348\": {\"frequency\": 1, \"value\": \"0.553348\"}, \"0.558536\": {\"frequency\": 1, \"value\": \"0.558536\"}, \"0.637275\": {\"frequency\": 1, \"value\": \"0.637275\"}, \"0.392842\": {\"frequency\": 1, \"value\": \"0.392842\"}, \"0.559002\": {\"frequency\": 1, \"value\": \"0.559002\"}, \"0.18762\": {\"frequency\": 1, \"value\": \"0.18762\"}, \"0.407955\": {\"frequency\": 1, \"value\": \"0.407955\"}, \"0.393529\": {\"frequency\": 1, \"value\": \"0.393529\"}, \"0.191511\": {\"frequency\": 1, \"value\": \"0.191511\"}, \"0.493977\": {\"frequency\": 1, \"value\": \"0.493977\"}, \"0.441788\": {\"frequency\": 1, \"value\": \"0.441788\"}, \"0.579684\": {\"frequency\": 1, \"value\": \"0.579684\"}, \"0.275633\": {\"frequency\": 1, \"value\": \"0.275633\"}, \"0.102764\": {\"frequency\": 1, \"value\": \"0.102764\"}, \"0.401433\": {\"frequency\": 1, \"value\": \"0.401433\"}, \"0.285223\": {\"frequency\": 1, \"value\": \"0.285223\"}, \"0.338315\": {\"frequency\": 1, \"value\": \"0.338315\"}, \"0.450264\": {\"frequency\": 1, \"value\": \"0.450264\"}, \"0.422235\": {\"frequency\": 1, \"value\": \"0.422235\"}, \"0.12423\": {\"frequency\": 1, \"value\": \"0.12423\"}, \"0.392922\": {\"frequency\": 1, \"value\": \"0.392922\"}, \"0.560481\": {\"frequency\": 1, \"value\": \"0.560481\"}, \"0.4382\": {\"frequency\": 1, \"value\": \"0.4382\"}, \"0.355599\": {\"frequency\": 1, \"value\": \"0.355599\"}, \"0.339263\": {\"frequency\": 1, \"value\": \"0.339263\"}, \"0.680003\": {\"frequency\": 1, \"value\": \"0.680003\"}, \"0.463865\": {\"frequency\": 1, \"value\": \"0.463865\"}, \"0.708077\": {\"frequency\": 1, \"value\": \"0.708077\"}, \"0.76825\": {\"frequency\": 1, \"value\": \"0.76825\"}, \"0.466488\": {\"frequency\": 1, \"value\": \"0.466488\"}, \"0.500208\": {\"frequency\": 1, \"value\": \"0.500208\"}, \"0.331679\": {\"frequency\": 1, \"value\": \"0.331679\"}, \"0.363514\": {\"frequency\": 1, \"value\": \"0.363514\"}, \"0.563117\": {\"frequency\": 1, \"value\": \"0.563117\"}, \"0.298047\": {\"frequency\": 1, \"value\": \"0.298047\"}, \"0.298245\": {\"frequency\": 1, \"value\": \"0.298245\"}, \"0.436577\": {\"frequency\": 1, \"value\": \"0.436577\"}, \"0.418966\": {\"frequency\": 1, \"value\": \"0.418966\"}, \"0.429992\": {\"frequency\": 1, \"value\": \"0.429992\"}, \"0.474632\": {\"frequency\": 1, \"value\": \"0.474632\"}, \"0.290281\": {\"frequency\": 1, \"value\": \"0.290281\"}, \"0.535114\": {\"frequency\": 1, \"value\": \"0.535114\"}, \"0.019855\": {\"frequency\": 1, \"value\": \"0.019855\"}, \"0.290284\": {\"frequency\": 1, \"value\": \"0.290284\"}, \"0.354428\": {\"frequency\": 1, \"value\": \"0.354428\"}, \"0.643471\": {\"frequency\": 1, \"value\": \"0.643471\"}, \"0.57344\": {\"frequency\": 1, \"value\": \"0.57344\"}, \"0.344853\": {\"frequency\": 1, \"value\": \"0.344853\"}, \"0.731565\": {\"frequency\": 1, \"value\": \"0.731565\"}, \"0.289149\": {\"frequency\": 1, \"value\": \"0.289149\"}, \"0.474149\": {\"frequency\": 1, \"value\": \"0.474149\"}, \"0.511874\": {\"frequency\": 1, \"value\": \"0.511874\"}, \"0.709257\": {\"frequency\": 1, \"value\": \"0.709257\"}, \"0.378142\": {\"frequency\": 1, \"value\": \"0.378142\"}, \"0.313844\": {\"frequency\": 1, \"value\": \"0.313844\"}, \"0.290299\": {\"frequency\": 1, \"value\": \"0.290299\"}, \"0.406651\": {\"frequency\": 1, \"value\": \"0.406651\"}, \"0.377652\": {\"frequency\": 1, \"value\": \"0.377652\"}, \"0.362483\": {\"frequency\": 1, \"value\": \"0.362483\"}, \"0.361938\": {\"frequency\": 1, \"value\": \"0.361938\"}, \"0.369429\": {\"frequency\": 1, \"value\": \"0.369429\"}, \"0.520814\": {\"frequency\": 1, \"value\": \"0.520814\"}, \"0.510694\": {\"frequency\": 1, \"value\": \"0.510694\"}, \"0.432845\": {\"frequency\": 1, \"value\": \"0.432845\"}, \"0.042252\": {\"frequency\": 1, \"value\": \"0.042252\"}, \"0.593812\": {\"frequency\": 1, \"value\": \"0.593812\"}, \"0.706436\": {\"frequency\": 1, \"value\": \"0.706436\"}, \"0.0656781\": {\"frequency\": 1, \"value\": \"0.0656781\"}, \"0.445443\": {\"frequency\": 1, \"value\": \"0.445443\"}, \"0.49929\": {\"frequency\": 1, \"value\": \"0.49929\"}, \"0.0826562\": {\"frequency\": 1, \"value\": \"0.0826562\"}, \"0.294348\": {\"frequency\": 1, \"value\": \"0.294348\"}, \"0.535608\": {\"frequency\": 1, \"value\": \"0.535608\"}, \"0.534731\": {\"frequency\": 1, \"value\": \"0.534731\"}, \"0.298666\": {\"frequency\": 1, \"value\": \"0.298666\"}, \"0.58759\": {\"frequency\": 1, \"value\": \"0.58759\"}, \"0.243681\": {\"frequency\": 1, \"value\": \"0.243681\"}, \"0.406849\": {\"frequency\": 1, \"value\": \"0.406849\"}, \"0.0148415\": {\"frequency\": 1, \"value\": \"0.0148415\"}, \"0.566606\": {\"frequency\": 1, \"value\": \"0.566606\"}, \"0.461766\": {\"frequency\": 1, \"value\": \"0.461766\"}, \"0.503752\": {\"frequency\": 1, \"value\": \"0.503752\"}, \"0.636495\": {\"frequency\": 1, \"value\": \"0.636495\"}, \"0.55185\": {\"frequency\": 1, \"value\": \"0.55185\"}, \"0.276421\": {\"frequency\": 1, \"value\": \"0.276421\"}, \"0.378322\": {\"frequency\": 1, \"value\": \"0.378322\"}, \"0.285917\": {\"frequency\": 1, \"value\": \"0.285917\"}, \"0.516546\": {\"frequency\": 1, \"value\": \"0.516546\"}, \"0.331201\": {\"frequency\": 1, \"value\": \"0.331201\"}, \"0.474567\": {\"frequency\": 1, \"value\": \"0.474567\"}, \"0.580151\": {\"frequency\": 1, \"value\": \"0.580151\"}, \"0.486133\": {\"frequency\": 1, \"value\": \"0.486133\"}, \"0.284996\": {\"frequency\": 1, \"value\": \"0.284996\"}, \"0.558965\": {\"frequency\": 1, \"value\": \"0.558965\"}, \"0.16725\": {\"frequency\": 1, \"value\": \"0.16725\"}, \"0.288038\": {\"frequency\": 1, \"value\": \"0.288038\"}, \"0.709655\": {\"frequency\": 1, \"value\": \"0.709655\"}, \"0.500537\": {\"frequency\": 1, \"value\": \"0.500537\"}, \"0.245054\": {\"frequency\": 1, \"value\": \"0.245054\"}, \"0.35852\": {\"frequency\": 1, \"value\": \"0.35852\"}, \"0.419816\": {\"frequency\": 1, \"value\": \"0.419816\"}, \"0.300949\": {\"frequency\": 1, \"value\": \"0.300949\"}, \"0.536673\": {\"frequency\": 1, \"value\": \"0.536673\"}, \"0.537992\": {\"frequency\": 1, \"value\": \"0.537992\"}, \"0.461169\": {\"frequency\": 1, \"value\": \"0.461169\"}, \"0.25998\": {\"frequency\": 1, \"value\": \"0.25998\"}, \"0.553954\": {\"frequency\": 1, \"value\": \"0.553954\"}, \"0.198141\": {\"frequency\": 1, \"value\": \"0.198141\"}, \"0.424804\": {\"frequency\": 1, \"value\": \"0.424804\"}, \"0.482961\": {\"frequency\": 1, \"value\": \"0.482961\"}, \"0.606396\": {\"frequency\": 1, \"value\": \"0.606396\"}, \"0.578829\": {\"frequency\": 1, \"value\": \"0.578829\"}, \"0.451602\": {\"frequency\": 1, \"value\": \"0.451602\"}, \"0.390779\": {\"frequency\": 1, \"value\": \"0.390779\"}, \"0.578827\": {\"frequency\": 1, \"value\": \"0.578827\"}, \"0.460563\": {\"frequency\": 1, \"value\": \"0.460563\"}, \"0.537046\": {\"frequency\": 1, \"value\": \"0.537046\"}, \"0.101859\": {\"frequency\": 1, \"value\": \"0.101859\"}, \"0.324657\": {\"frequency\": 1, \"value\": \"0.324657\"}, \"0.473826\": {\"frequency\": 1, \"value\": \"0.473826\"}, \"0.44376\": {\"frequency\": 1, \"value\": \"0.44376\"}, \"0.219853\": {\"frequency\": 1, \"value\": \"0.219853\"}, \"0.615672\": {\"frequency\": 1, \"value\": \"0.615672\"}, \"0.482097\": {\"frequency\": 1, \"value\": \"0.482097\"}, \"0.4496\": {\"frequency\": 1, \"value\": \"0.4496\"}, \"0.4321\": {\"frequency\": 1, \"value\": \"0.4321\"}, \"0.407718\": {\"frequency\": 1, \"value\": \"0.407718\"}, \"0.210617\": {\"frequency\": 1, \"value\": \"0.210617\"}, \"0.443418\": {\"frequency\": 1, \"value\": \"0.443418\"}, \"0.327271\": {\"frequency\": 1, \"value\": \"0.327271\"}, \"0.408286\": {\"frequency\": 1, \"value\": \"0.408286\"}, \"0.248982\": {\"frequency\": 1, \"value\": \"0.248982\"}, \"0.401186\": {\"frequency\": 1, \"value\": \"0.401186\"}, \"0.406356\": {\"frequency\": 1, \"value\": \"0.406356\"}, \"0.360184\": {\"frequency\": 1, \"value\": \"0.360184\"}, \"0.466478\": {\"frequency\": 1, \"value\": \"0.466478\"}, \"0.444312\": {\"frequency\": 1, \"value\": \"0.444312\"}, \"0.348341\": {\"frequency\": 1, \"value\": \"0.348341\"}, \"0.280129\": {\"frequency\": 1, \"value\": \"0.280129\"}, \"0.357193\": {\"frequency\": 1, \"value\": \"0.357193\"}, \"0.220566\": {\"frequency\": 1, \"value\": \"0.220566\"}, \"0.827147\": {\"frequency\": 1, \"value\": \"0.827147\"}, \"0.360189\": {\"frequency\": 1, \"value\": \"0.360189\"}, \"0.514168\": {\"frequency\": 1, \"value\": \"0.514168\"}, \"0.471918\": {\"frequency\": 1, \"value\": \"0.471918\"}, \"0.434035\": {\"frequency\": 1, \"value\": \"0.434035\"}, \"0.423911\": {\"frequency\": 1, \"value\": \"0.423911\"}, \"0.312498\": {\"frequency\": 1, \"value\": \"0.312498\"}, \"0.440858\": {\"frequency\": 1, \"value\": \"0.440858\"}, \"0.602257\": {\"frequency\": 1, \"value\": \"0.602257\"}, \"0.356243\": {\"frequency\": 1, \"value\": \"0.356243\"}, \"0.467326\": {\"frequency\": 1, \"value\": \"0.467326\"}, \"0.356246\": {\"frequency\": 1, \"value\": \"0.356246\"}, \"0.471915\": {\"frequency\": 1, \"value\": \"0.471915\"}, \"0.283205\": {\"frequency\": 1, \"value\": \"0.283205\"}, \"0.602702\": {\"frequency\": 1, \"value\": \"0.602702\"}, \"0.249344\": {\"frequency\": 1, \"value\": \"0.249344\"}, \"0.329764\": {\"frequency\": 1, \"value\": \"0.329764\"}, \"0.507213\": {\"frequency\": 1, \"value\": \"0.507213\"}, \"0.461412\": {\"frequency\": 1, \"value\": \"0.461412\"}, \"0.396238\": {\"frequency\": 1, \"value\": \"0.396238\"}, \"0.451512\": {\"frequency\": 1, \"value\": \"0.451512\"}, \"0.510873\": {\"frequency\": 1, \"value\": \"0.510873\"}, \"0.487649\": {\"frequency\": 1, \"value\": \"0.487649\"}, \"0.410389\": {\"frequency\": 1, \"value\": \"0.410389\"}, \"0.357607\": {\"frequency\": 1, \"value\": \"0.357607\"}, \"0.334164\": {\"frequency\": 1, \"value\": \"0.334164\"}, \"0.505248\": {\"frequency\": 1, \"value\": \"0.505248\"}, \"0.444173\": {\"frequency\": 1, \"value\": \"0.444173\"}, \"0.092872\": {\"frequency\": 1, \"value\": \"0.092872\"}, \"0.465254\": {\"frequency\": 1, \"value\": \"0.465254\"}, \"0.321377\": {\"frequency\": 1, \"value\": \"0.321377\"}, \"0.264179\": {\"frequency\": 1, \"value\": \"0.264179\"}, \"0.434327\": {\"frequency\": 1, \"value\": \"0.434327\"}, \"0.559762\": {\"frequency\": 1, \"value\": \"0.559762\"}, \"0.434458\": {\"frequency\": 1, \"value\": \"0.434458\"}, \"0.301282\": {\"frequency\": 1, \"value\": \"0.301282\"}, \"0.365646\": {\"frequency\": 1, \"value\": \"0.365646\"}, \"0.646045\": {\"frequency\": 1, \"value\": \"0.646045\"}, \"0.347648\": {\"frequency\": 1, \"value\": \"0.347648\"}, \"0.568026\": {\"frequency\": 1, \"value\": \"0.568026\"}, \"0.477831\": {\"frequency\": 1, \"value\": \"0.477831\"}, \"0.553225\": {\"frequency\": 1, \"value\": \"0.553225\"}, \"0.242822\": {\"frequency\": 1, \"value\": \"0.242822\"}, \"0.030815\": {\"frequency\": 1, \"value\": \"0.030815\"}, \"0.390198\": {\"frequency\": 1, \"value\": \"0.390198\"}, \"0.381618\": {\"frequency\": 1, \"value\": \"0.381618\"}, \"0.423063\": {\"frequency\": 1, \"value\": \"0.423063\"}, \"0.227106\": {\"frequency\": 1, \"value\": \"0.227106\"}, \"0.218874\": {\"frequency\": 1, \"value\": \"0.218874\"}, \"0.333524\": {\"frequency\": 1, \"value\": \"0.333524\"}, \"0.410615\": {\"frequency\": 1, \"value\": \"0.410615\"}, \"0.582151\": {\"frequency\": 1, \"value\": \"0.582151\"}, \"0.406446\": {\"frequency\": 1, \"value\": \"0.406446\"}, \"0.476831\": {\"frequency\": 1, \"value\": \"0.476831\"}, \"0.490717\": {\"frequency\": 1, \"value\": \"0.490717\"}, \"0.236591\": {\"frequency\": 1, \"value\": \"0.236591\"}, \"0.56228\": {\"frequency\": 1, \"value\": \"0.56228\"}, \"0.411711\": {\"frequency\": 1, \"value\": \"0.411711\"}, \"0.536993\": {\"frequency\": 1, \"value\": \"0.536993\"}, \"0.481042\": {\"frequency\": 1, \"value\": \"0.481042\"}, \"0.384245\": {\"frequency\": 1, \"value\": \"0.384245\"}, \"0.773048\": {\"frequency\": 1, \"value\": \"0.773048\"}, \"0.607164\": {\"frequency\": 1, \"value\": \"0.607164\"}, \"0.571541\": {\"frequency\": 1, \"value\": \"0.571541\"}, \"0.425435\": {\"frequency\": 1, \"value\": \"0.425435\"}, \"0.623014\": {\"frequency\": 1, \"value\": \"0.623014\"}, \"0.370596\": {\"frequency\": 1, \"value\": \"0.370596\"}, \"0.442236\": {\"frequency\": 1, \"value\": \"0.442236\"}, \"0.456085\": {\"frequency\": 1, \"value\": \"0.456085\"}, \"0.762068\": {\"frequency\": 3, \"value\": \"0.762068\"}, \"0.334099\": {\"frequency\": 1, \"value\": \"0.334099\"}, \"0.49132\": {\"frequency\": 1, \"value\": \"0.49132\"}, \"0.501408\": {\"frequency\": 1, \"value\": \"0.501408\"}, \"0.350663\": {\"frequency\": 1, \"value\": \"0.350663\"}, \"0.380903\": {\"frequency\": 1, \"value\": \"0.380903\"}, \"0.327833\": {\"frequency\": 1, \"value\": \"0.327833\"}, \"0.212533\": {\"frequency\": 1, \"value\": \"0.212533\"}, \"0.493708\": {\"frequency\": 1, \"value\": \"0.493708\"}, \"0.423049\": {\"frequency\": 1, \"value\": \"0.423049\"}, \"0.302412\": {\"frequency\": 1, \"value\": \"0.302412\"}, \"0.77456\": {\"frequency\": 1, \"value\": \"0.77456\"}, \"0.578558\": {\"frequency\": 1, \"value\": \"0.578558\"}, \"0.402635\": {\"frequency\": 1, \"value\": \"0.402635\"}, \"0.809261\": {\"frequency\": 1, \"value\": \"0.809261\"}, \"0.478138\": {\"frequency\": 1, \"value\": \"0.478138\"}, \"0.403728\": {\"frequency\": 1, \"value\": \"0.403728\"}, \"0.617124\": {\"frequency\": 1, \"value\": \"0.617124\"}, \"0.573506\": {\"frequency\": 1, \"value\": \"0.573506\"}, \"0.347795\": {\"frequency\": 1, \"value\": \"0.347795\"}, \"0.214584\": {\"frequency\": 1, \"value\": \"0.214584\"}, \"0.423286\": {\"frequency\": 1, \"value\": \"0.423286\"}, \"0.418517\": {\"frequency\": 1, \"value\": \"0.418517\"}, \"0.571266\": {\"frequency\": 1, \"value\": \"0.571266\"}, \"0.446936\": {\"frequency\": 1, \"value\": \"0.446936\"}, \"0.366119\": {\"frequency\": 1, \"value\": \"0.366119\"}, \"0.416642\": {\"frequency\": 1, \"value\": \"0.416642\"}, \"0.736345\": {\"frequency\": 1, \"value\": \"0.736345\"}, \"0.562765\": {\"frequency\": 1, \"value\": \"0.562765\"}, \"0.560214\": {\"frequency\": 1, \"value\": \"0.560214\"}, \"0.258136\": {\"frequency\": 1, \"value\": \"0.258136\"}, \"0.38875\": {\"frequency\": 1, \"value\": \"0.38875\"}, \"0.317833\": {\"frequency\": 1, \"value\": \"0.317833\"}, \"0.225046\": {\"frequency\": 1, \"value\": \"0.225046\"}, \"0.31515\": {\"frequency\": 1, \"value\": \"0.31515\"}, \"0.487101\": {\"frequency\": 1, \"value\": \"0.487101\"}, \"0.479394\": {\"frequency\": 1, \"value\": \"0.479394\"}, \"0.262456\": {\"frequency\": 1, \"value\": \"0.262456\"}, \"0.504357\": {\"frequency\": 1, \"value\": \"0.504357\"}, \"0.488321\": {\"frequency\": 1, \"value\": \"0.488321\"}, \"0.291434\": {\"frequency\": 1, \"value\": \"0.291434\"}, \"0.386247\": {\"frequency\": 1, \"value\": \"0.386247\"}, \"0.552358\": {\"frequency\": 1, \"value\": \"0.552358\"}, \"0.55047\": {\"frequency\": 1, \"value\": \"0.55047\"}, \"0.530449\": {\"frequency\": 1, \"value\": \"0.530449\"}, \"0.414274\": {\"frequency\": 1, \"value\": \"0.414274\"}, \"0.542337\": {\"frequency\": 1, \"value\": \"0.542337\"}, \"0.499058\": {\"frequency\": 1, \"value\": \"0.499058\"}, \"0.427342\": {\"frequency\": 1, \"value\": \"0.427342\"}, \"0.18352\": {\"frequency\": 1, \"value\": \"0.18352\"}, \"0.18353\": {\"frequency\": 1, \"value\": \"0.18353\"}, \"0.226276\": {\"frequency\": 1, \"value\": \"0.226276\"}, \"0.148849\": {\"frequency\": 1, \"value\": \"0.148849\"}, \"0.557719\": {\"frequency\": 1, \"value\": \"0.557719\"}, \"0.525836\": {\"frequency\": 1, \"value\": \"0.525836\"}, \"0.376203\": {\"frequency\": 1, \"value\": \"0.376203\"}, \"0.475284\": {\"frequency\": 1, \"value\": \"0.475284\"}, \"0.452414\": {\"frequency\": 1, \"value\": \"0.452414\"}, \"0.681291\": {\"frequency\": 1, \"value\": \"0.681291\"}, \"0.237243\": {\"frequency\": 1, \"value\": \"0.237243\"}, \"0.595363\": {\"frequency\": 1, \"value\": \"0.595363\"}, \"0.281593\": {\"frequency\": 1, \"value\": \"0.281593\"}, \"0.524263\": {\"frequency\": 1, \"value\": \"0.524263\"}, \"0.524262\": {\"frequency\": 1, \"value\": \"0.524262\"}, \"0.571461\": {\"frequency\": 1, \"value\": \"0.571461\"}, \"0.311316\": {\"frequency\": 1, \"value\": \"0.311316\"}, \"0.393191\": {\"frequency\": 1, \"value\": \"0.393191\"}, \"0.197849\": {\"frequency\": 1, \"value\": \"0.197849\"}, \"0.393621\": {\"frequency\": 1, \"value\": \"0.393621\"}, \"0.484815\": {\"frequency\": 1, \"value\": \"0.484815\"}, \"0.500833\": {\"frequency\": 1, \"value\": \"0.500833\"}, \"0.473626\": {\"frequency\": 1, \"value\": \"0.473626\"}, \"0.330649\": {\"frequency\": 1, \"value\": \"0.330649\"}, \"0.652239\": {\"frequency\": 1, \"value\": \"0.652239\"}, \"0.437768\": {\"frequency\": 1, \"value\": \"0.437768\"}, \"0.255606\": {\"frequency\": 1, \"value\": \"0.255606\"}, \"0.419805\": {\"frequency\": 1, \"value\": \"0.419805\"}, \"0.633165\": {\"frequency\": 1, \"value\": \"0.633165\"}, \"0.239579\": {\"frequency\": 1, \"value\": \"0.239579\"}, \"0.403284\": {\"frequency\": 1, \"value\": \"0.403284\"}, \"0.437166\": {\"frequency\": 1, \"value\": \"0.437166\"}, \"0.540612\": {\"frequency\": 1, \"value\": \"0.540612\"}, \"0.31355\": {\"frequency\": 1, \"value\": \"0.31355\"}, \"0.277355\": {\"frequency\": 1, \"value\": \"0.277355\"}, \"0.42902\": {\"frequency\": 1, \"value\": \"0.42902\"}, \"0.328748\": {\"frequency\": 1, \"value\": \"0.328748\"}, \"0.529128\": {\"frequency\": 1, \"value\": \"0.529128\"}, \"0.379955\": {\"frequency\": 1, \"value\": \"0.379955\"}, \"0.228955\": {\"frequency\": 1, \"value\": \"0.228955\"}, \"0.257824\": {\"frequency\": 1, \"value\": \"0.257824\"}, \"0.364514\": {\"frequency\": 1, \"value\": \"0.364514\"}, \"0.730174\": {\"frequency\": 1, \"value\": \"0.730174\"}, \"0.396806\": {\"frequency\": 1, \"value\": \"0.396806\"}, \"0.398209\": {\"frequency\": 1, \"value\": \"0.398209\"}, \"0.332264\": {\"frequency\": 1, \"value\": \"0.332264\"}, \"0.12636\": {\"frequency\": 1, \"value\": \"0.12636\"}, \"0.760425\": {\"frequency\": 1, \"value\": \"0.760425\"}, \"0.437217\": {\"frequency\": 1, \"value\": \"0.437217\"}, \"0.348417\": {\"frequency\": 1, \"value\": \"0.348417\"}, \"0.273275\": {\"frequency\": 1, \"value\": \"0.273275\"}, \"0.257555\": {\"frequency\": 1, \"value\": \"0.257555\"}, \"0.376515\": {\"frequency\": 1, \"value\": \"0.376515\"}, \"0.493967\": {\"frequency\": 1, \"value\": \"0.493967\"}, \"0.467563\": {\"frequency\": 1, \"value\": \"0.467563\"}, \"0.453078\": {\"frequency\": 1, \"value\": \"0.453078\"}, \"0.407929\": {\"frequency\": 1, \"value\": \"0.407929\"}, \"0.264775\": {\"frequency\": 1, \"value\": \"0.264775\"}, \"0.480208\": {\"frequency\": 1, \"value\": \"0.480208\"}, \"0.500238\": {\"frequency\": 1, \"value\": \"0.500238\"}, \"0.530713\": {\"frequency\": 1, \"value\": \"0.530713\"}, \"0.164498\": {\"frequency\": 1, \"value\": \"0.164498\"}, \"0.486304\": {\"frequency\": 1, \"value\": \"0.486304\"}, \"0.379317\": {\"frequency\": 1, \"value\": \"0.379317\"}, \"0.435774\": {\"frequency\": 1, \"value\": \"0.435774\"}, \"0.416112\": {\"frequency\": 1, \"value\": \"0.416112\"}, \"0.143773\": {\"frequency\": 1, \"value\": \"0.143773\"}, \"0.437305\": {\"frequency\": 1, \"value\": \"0.437305\"}, \"0.418927\": {\"frequency\": 1, \"value\": \"0.418927\"}, \"0.466316\": {\"frequency\": 1, \"value\": \"0.466316\"}, \"0.340786\": {\"frequency\": 1, \"value\": \"0.340786\"}, \"0.520549\": {\"frequency\": 1, \"value\": \"0.520549\"}, \"0.745878\": {\"frequency\": 1, \"value\": \"0.745878\"}, \"0.547964\": {\"frequency\": 1, \"value\": \"0.547964\"}, \"0.386661\": {\"frequency\": 1, \"value\": \"0.386661\"}, \"0.295807\": {\"frequency\": 1, \"value\": \"0.295807\"}, \"0.642041\": {\"frequency\": 1, \"value\": \"0.642041\"}, \"0.348577\": {\"frequency\": 1, \"value\": \"0.348577\"}, \"0.54135\": {\"frequency\": 1, \"value\": \"0.54135\"}, \"0.340548\": {\"frequency\": 1, \"value\": \"0.340548\"}, \"0.338788\": {\"frequency\": 1, \"value\": \"0.338788\"}, \"0.45176\": {\"frequency\": 1, \"value\": \"0.45176\"}, \"0.381877\": {\"frequency\": 1, \"value\": \"0.381877\"}, \"0.517931\": {\"frequency\": 1, \"value\": \"0.517931\"}, \"0.38498\": {\"frequency\": 1, \"value\": \"0.38498\"}, \"0.426434\": {\"frequency\": 1, \"value\": \"0.426434\"}, \"0.426721\": {\"frequency\": 1, \"value\": \"0.426721\"}, \"0.318625\": {\"frequency\": 1, \"value\": \"0.318625\"}, \"0.37945\": {\"frequency\": 1, \"value\": \"0.37945\"}, \"0.401732\": {\"frequency\": 1, \"value\": \"0.401732\"}, \"0.226094\": {\"frequency\": 1, \"value\": \"0.226094\"}, \"0.346784\": {\"frequency\": 1, \"value\": \"0.346784\"}, \"0.294595\": {\"frequency\": 1, \"value\": \"0.294595\"}, \"0.313088\": {\"frequency\": 1, \"value\": \"0.313088\"}, \"0.455268\": {\"frequency\": 1, \"value\": \"0.455268\"}, \"0.265781\": {\"frequency\": 1, \"value\": \"0.265781\"}, \"0.5446\": {\"frequency\": 1, \"value\": \"0.5446\"}, \"0.194003\": {\"frequency\": 1, \"value\": \"0.194003\"}, \"0.564357\": {\"frequency\": 1, \"value\": \"0.564357\"}, \"0.228774\": {\"frequency\": 1, \"value\": \"0.228774\"}, \"0.320426\": {\"frequency\": 1, \"value\": \"0.320426\"}, \"0.378685\": {\"frequency\": 1, \"value\": \"0.378685\"}, \"0.355862\": {\"frequency\": 1, \"value\": \"0.355862\"}, \"0.331906\": {\"frequency\": 1, \"value\": \"0.331906\"}, \"0.758618\": {\"frequency\": 1, \"value\": \"0.758618\"}, \"0.46555\": {\"frequency\": 1, \"value\": \"0.46555\"}, \"0.443473\": {\"frequency\": 1, \"value\": \"0.443473\"}, \"0.21577\": {\"frequency\": 1, \"value\": \"0.21577\"}, \"0.455981\": {\"frequency\": 1, \"value\": \"0.455981\"}, \"0.159534\": {\"frequency\": 1, \"value\": \"0.159534\"}, \"0.396757\": {\"frequency\": 1, \"value\": \"0.396757\"}, \"0.278346\": {\"frequency\": 1, \"value\": \"0.278346\"}, \"0.745278\": {\"frequency\": 1, \"value\": \"0.745278\"}, \"0.426239\": {\"frequency\": 1, \"value\": \"0.426239\"}, \"0.161211\": {\"frequency\": 1, \"value\": \"0.161211\"}, \"0.526834\": {\"frequency\": 1, \"value\": \"0.526834\"}, \"0.39877\": {\"frequency\": 1, \"value\": \"0.39877\"}, \"0.453101\": {\"frequency\": 1, \"value\": \"0.453101\"}, \"0.398798\": {\"frequency\": 1, \"value\": \"0.398798\"}, \"0.534728\": {\"frequency\": 1, \"value\": \"0.534728\"}, \"0.186397\": {\"frequency\": 1, \"value\": \"0.186397\"}, \"0.356107\": {\"frequency\": 1, \"value\": \"0.356107\"}, \"0.532925\": {\"frequency\": 1, \"value\": \"0.532925\"}, \"0.13547\": {\"frequency\": 1, \"value\": \"0.13547\"}, \"0.420376\": {\"frequency\": 1, \"value\": \"0.420376\"}, \"0.408157\": {\"frequency\": 1, \"value\": \"0.408157\"}, \"0.320394\": {\"frequency\": 1, \"value\": \"0.320394\"}, \"0.285966\": {\"frequency\": 1, \"value\": \"0.285966\"}, \"0.496392\": {\"frequency\": 1, \"value\": \"0.496392\"}, \"0.289933\": {\"frequency\": 1, \"value\": \"0.289933\"}, \"0.232068\": {\"frequency\": 1, \"value\": \"0.232068\"}, \"0.631114\": {\"frequency\": 1, \"value\": \"0.631114\"}, \"0.444543\": {\"frequency\": 1, \"value\": \"0.444543\"}, \"0.555747\": {\"frequency\": 1, \"value\": \"0.555747\"}, \"0.49615\": {\"frequency\": 1, \"value\": \"0.49615\"}, \"0.283745\": {\"frequency\": 1, \"value\": \"0.283745\"}, \"0.589178\": {\"frequency\": 1, \"value\": \"0.589178\"}, \"0.20718\": {\"frequency\": 1, \"value\": \"0.20718\"}, \"0.315675\": {\"frequency\": 1, \"value\": \"0.315675\"}, \"0.514486\": {\"frequency\": 1, \"value\": \"0.514486\"}, \"0.535832\": {\"frequency\": 1, \"value\": \"0.535832\"}, \"0.534653\": {\"frequency\": 1, \"value\": \"0.534653\"}, \"0.395066\": {\"frequency\": 1, \"value\": \"0.395066\"}, \"0.143792\": {\"frequency\": 1, \"value\": \"0.143792\"}, \"0.324959\": {\"frequency\": 1, \"value\": \"0.324959\"}, \"0.17468\": {\"frequency\": 1, \"value\": \"0.17468\"}, \"0.329111\": {\"frequency\": 1, \"value\": \"0.329111\"}, \"0.545733\": {\"frequency\": 1, \"value\": \"0.545733\"}, \"0.812318\": {\"frequency\": 1, \"value\": \"0.812318\"}, \"0.428381\": {\"frequency\": 1, \"value\": \"0.428381\"}, \"0.247759\": {\"frequency\": 1, \"value\": \"0.247759\"}, \"0.586792\": {\"frequency\": 1, \"value\": \"0.586792\"}, \"0.464422\": {\"frequency\": 1, \"value\": \"0.464422\"}, \"0.400289\": {\"frequency\": 1, \"value\": \"0.400289\"}, \"0.44362\": {\"frequency\": 1, \"value\": \"0.44362\"}, \"0.295247\": {\"frequency\": 2, \"value\": \"0.295247\"}, \"0.378592\": {\"frequency\": 1, \"value\": \"0.378592\"}, \"0.314999\": {\"frequency\": 1, \"value\": \"0.314999\"}, \"0.34344\": {\"frequency\": 1, \"value\": \"0.34344\"}, \"0.508187\": {\"frequency\": 1, \"value\": \"0.508187\"}, \"0.417399\": {\"frequency\": 1, \"value\": \"0.417399\"}, \"0.660082\": {\"frequency\": 1, \"value\": \"0.660082\"}, \"0.371631\": {\"frequency\": 1, \"value\": \"0.371631\"}, \"0.387377\": {\"frequency\": 1, \"value\": \"0.387377\"}, \"0.371635\": {\"frequency\": 1, \"value\": \"0.371635\"}, \"0.633419\": {\"frequency\": 1, \"value\": \"0.633419\"}, \"0.434207\": {\"frequency\": 1, \"value\": \"0.434207\"}, \"0.562999\": {\"frequency\": 1, \"value\": \"0.562999\"}, \"0.438028\": {\"frequency\": 1, \"value\": \"0.438028\"}, \"0.40974\": {\"frequency\": 1, \"value\": \"0.40974\"}, \"0.335598\": {\"frequency\": 1, \"value\": \"0.335598\"}, \"0.545352\": {\"frequency\": 1, \"value\": \"0.545352\"}, \"0.628384\": {\"frequency\": 1, \"value\": \"0.628384\"}, \"0.532156\": {\"frequency\": 1, \"value\": \"0.532156\"}, \"0.403283\": {\"frequency\": 1, \"value\": \"0.403283\"}, \"0.439585\": {\"frequency\": 1, \"value\": \"0.439585\"}, \"0.545355\": {\"frequency\": 1, \"value\": \"0.545355\"}, \"0.659807\": {\"frequency\": 1, \"value\": \"0.659807\"}, \"0.292112\": {\"frequency\": 1, \"value\": \"0.292112\"}, \"0.0832697\": {\"frequency\": 1, \"value\": \"0.0832697\"}, \"0.518863\": {\"frequency\": 1, \"value\": \"0.518863\"}, \"0.287923\": {\"frequency\": 1, \"value\": \"0.287923\"}, \"0.203962\": {\"frequency\": 1, \"value\": \"0.203962\"}, \"0.329758\": {\"frequency\": 1, \"value\": \"0.329758\"}, \"0.390504\": {\"frequency\": 1, \"value\": \"0.390504\"}, \"0.467338\": {\"frequency\": 1, \"value\": \"0.467338\"}, \"0.440535\": {\"frequency\": 1, \"value\": \"0.440535\"}, \"0.551812\": {\"frequency\": 1, \"value\": \"0.551812\"}, \"0.248172\": {\"frequency\": 1, \"value\": \"0.248172\"}, \"0.545715\": {\"frequency\": 1, \"value\": \"0.545715\"}, \"0.451505\": {\"frequency\": 1, \"value\": \"0.451505\"}, \"0.716798\": {\"frequency\": 1, \"value\": \"0.716798\"}, \"0.607083\": {\"frequency\": 1, \"value\": \"0.607083\"}, \"0.37596\": {\"frequency\": 1, \"value\": \"0.37596\"}, \"0.579236\": {\"frequency\": 1, \"value\": \"0.579236\"}, \"0.276985\": {\"frequency\": 1, \"value\": \"0.276985\"}, \"0.267969\": {\"frequency\": 1, \"value\": \"0.267969\"}, \"0.412478\": {\"frequency\": 1, \"value\": \"0.412478\"}, \"0.44969\": {\"frequency\": 1, \"value\": \"0.44969\"}, \"0.307297\": {\"frequency\": 1, \"value\": \"0.307297\"}, \"0.312261\": {\"frequency\": 1, \"value\": \"0.312261\"}, \"0.533957\": {\"frequency\": 1, \"value\": \"0.533957\"}, \"0.666968\": {\"frequency\": 1, \"value\": \"0.666968\"}, \"0.360446\": {\"frequency\": 1, \"value\": \"0.360446\"}, \"0.195766\": {\"frequency\": 1, \"value\": \"0.195766\"}, \"0.306539\": {\"frequency\": 1, \"value\": \"0.306539\"}, \"0.55317\": {\"frequency\": 1, \"value\": \"0.55317\"}, \"0.185308\": {\"frequency\": 1, \"value\": \"0.185308\"}, \"0.443531\": {\"frequency\": 1, \"value\": \"0.443531\"}, \"0.383625\": {\"frequency\": 1, \"value\": \"0.383625\"}, \"0.0974353\": {\"frequency\": 1, \"value\": \"0.0974353\"}, \"0.347122\": {\"frequency\": 1, \"value\": \"0.347122\"}, \"0.443538\": {\"frequency\": 1, \"value\": \"0.443538\"}, \"0.444943\": {\"frequency\": 1, \"value\": \"0.444943\"}, \"0.390168\": {\"frequency\": 1, \"value\": \"0.390168\"}, \"0.650348\": {\"frequency\": 1, \"value\": \"0.650348\"}, \"0.581017\": {\"frequency\": 1, \"value\": \"0.581017\"}, \"0.779952\": {\"frequency\": 1, \"value\": \"0.779952\"}, \"0.295187\": {\"frequency\": 1, \"value\": \"0.295187\"}, \"0.447416\": {\"frequency\": 1, \"value\": \"0.447416\"}, \"0.414512\": {\"frequency\": 1, \"value\": \"0.414512\"}, \"0.499448\": {\"frequency\": 1, \"value\": \"0.499448\"}, \"0.379722\": {\"frequency\": 1, \"value\": \"0.379722\"}, \"0.443751\": {\"frequency\": 1, \"value\": \"0.443751\"}, \"0.309032\": {\"frequency\": 1, \"value\": \"0.309032\"}, \"0.654199\": {\"frequency\": 1, \"value\": \"0.654199\"}, \"0.153773\": {\"frequency\": 1, \"value\": \"0.153773\"}, \"0.468085\": {\"frequency\": 1, \"value\": \"0.468085\"}, \"0.293639\": {\"frequency\": 1, \"value\": \"0.293639\"}, \"0.287463\": {\"frequency\": 1, \"value\": \"0.287463\"}, \"0.413559\": {\"frequency\": 1, \"value\": \"0.413559\"}, \"0.539568\": {\"frequency\": 1, \"value\": \"0.539568\"}, \"0.397754\": {\"frequency\": 1, \"value\": \"0.397754\"}, \"0.35794\": {\"frequency\": 1, \"value\": \"0.35794\"}, \"0.35797\": {\"frequency\": 1, \"value\": \"0.35797\"}, \"0.406457\": {\"frequency\": 1, \"value\": \"0.406457\"}, \"0.578948\": {\"frequency\": 1, \"value\": \"0.578948\"}, \"0.53588\": {\"frequency\": 1, \"value\": \"0.53588\"}, \"0.341616\": {\"frequency\": 1, \"value\": \"0.341616\"}, \"0.272102\": {\"frequency\": 1, \"value\": \"0.272102\"}, \"0.471056\": {\"frequency\": 1, \"value\": \"0.471056\"}, \"0.398757\": {\"frequency\": 1, \"value\": \"0.398757\"}, \"0.349415\": {\"frequency\": 1, \"value\": \"0.349415\"}, \"0.204345\": {\"frequency\": 1, \"value\": \"0.204345\"}, \"0.498821\": {\"frequency\": 1, \"value\": \"0.498821\"}, \"0.239819\": {\"frequency\": 1, \"value\": \"0.239819\"}, \"0.465332\": {\"frequency\": 1, \"value\": \"0.465332\"}, \"0.319164\": {\"frequency\": 1, \"value\": \"0.319164\"}, \"0.438263\": {\"frequency\": 1, \"value\": \"0.438263\"}, \"0.328891\": {\"frequency\": 1, \"value\": \"0.328891\"}, \"0.415566\": {\"frequency\": 1, \"value\": \"0.415566\"}, \"0.293372\": {\"frequency\": 1, \"value\": \"0.293372\"}, \"0.371851\": {\"frequency\": 1, \"value\": \"0.371851\"}, \"0.301992\": {\"frequency\": 1, \"value\": \"0.301992\"}, \"0.60118\": {\"frequency\": 1, \"value\": \"0.60118\"}, \"0.366274\": {\"frequency\": 1, \"value\": \"0.366274\"}, \"0.259784\": {\"frequency\": 1, \"value\": \"0.259784\"}, \"0.448282\": {\"frequency\": 1, \"value\": \"0.448282\"}, \"0.297392\": {\"frequency\": 1, \"value\": \"0.297392\"}, \"0.745306\": {\"frequency\": 1, \"value\": \"0.745306\"}, \"0.266852\": {\"frequency\": 1, \"value\": \"0.266852\"}, \"0.444496\": {\"frequency\": 1, \"value\": \"0.444496\"}, \"0.547808\": {\"frequency\": 1, \"value\": \"0.547808\"}, \"0.344271\": {\"frequency\": 1, \"value\": \"0.344271\"}, \"0.593652\": {\"frequency\": 1, \"value\": \"0.593652\"}, \"0.569186\": {\"frequency\": 1, \"value\": \"0.569186\"}, \"0.583853\": {\"frequency\": 1, \"value\": \"0.583853\"}, \"0.243231\": {\"frequency\": 1, \"value\": \"0.243231\"}, \"0.275984\": {\"frequency\": 1, \"value\": \"0.275984\"}, \"0.592093\": {\"frequency\": 1, \"value\": \"0.592093\"}, \"0.272085\": {\"frequency\": 1, \"value\": \"0.272085\"}, \"0.381066\": {\"frequency\": 1, \"value\": \"0.381066\"}, \"0.369831\": {\"frequency\": 1, \"value\": \"0.369831\"}, \"0.210044\": {\"frequency\": 1, \"value\": \"0.210044\"}, \"0.571216\": {\"frequency\": 1, \"value\": \"0.571216\"}, \"0.362362\": {\"frequency\": 1, \"value\": \"0.362362\"}, \"0.809928\": {\"frequency\": 1, \"value\": \"0.809928\"}, \"0.230162\": {\"frequency\": 1, \"value\": \"0.230162\"}, \"0.257946\": {\"frequency\": 1, \"value\": \"0.257946\"}, \"0.134054\": {\"frequency\": 1, \"value\": \"0.134054\"}, \"0.464115\": {\"frequency\": 1, \"value\": \"0.464115\"}, \"0.748622\": {\"frequency\": 1, \"value\": \"0.748622\"}, \"0.110402\": {\"frequency\": 1, \"value\": \"0.110402\"}, \"0.197723\": {\"frequency\": 1, \"value\": \"0.197723\"}, \"0.487663\": {\"frequency\": 1, \"value\": \"0.487663\"}, \"0.487661\": {\"frequency\": 1, \"value\": \"0.487661\"}, \"0.449458\": {\"frequency\": 1, \"value\": \"0.449458\"}, \"0.189775\": {\"frequency\": 1, \"value\": \"0.189775\"}, \"0.452885\": {\"frequency\": 1, \"value\": \"0.452885\"}, \"0.297805\": {\"frequency\": 1, \"value\": \"0.297805\"}, \"0.569983\": {\"frequency\": 1, \"value\": \"0.569983\"}, \"0.435968\": {\"frequency\": 1, \"value\": \"0.435968\"}, \"0.63365\": {\"frequency\": 1, \"value\": \"0.63365\"}, \"0.312588\": {\"frequency\": 1, \"value\": \"0.312588\"}, \"0.402766\": {\"frequency\": 1, \"value\": \"0.402766\"}, \"0.548286\": {\"frequency\": 1, \"value\": \"0.548286\"}, \"0.415392\": {\"frequency\": 1, \"value\": \"0.415392\"}, \"0.514807\": {\"frequency\": 1, \"value\": \"0.514807\"}, \"0.652426\": {\"frequency\": 1, \"value\": \"0.652426\"}, \"0.215644\": {\"frequency\": 1, \"value\": \"0.215644\"}, \"0.215647\": {\"frequency\": 1, \"value\": \"0.215647\"}, \"0.35175\": {\"frequency\": 1, \"value\": \"0.35175\"}, \"0.396487\": {\"frequency\": 1, \"value\": \"0.396487\"}, \"0.427351\": {\"frequency\": 1, \"value\": \"0.427351\"}, \"0.785842\": {\"frequency\": 1, \"value\": \"0.785842\"}, \"0.354308\": {\"frequency\": 1, \"value\": \"0.354308\"}, \"0.396718\": {\"frequency\": 1, \"value\": \"0.396718\"}, \"0.407809\": {\"frequency\": 1, \"value\": \"0.407809\"}, \"0.51509\": {\"frequency\": 1, \"value\": \"0.51509\"}, \"0.452405\": {\"frequency\": 1, \"value\": \"0.452405\"}, \"0.469502\": {\"frequency\": 1, \"value\": \"0.469502\"}, \"0.446328\": {\"frequency\": 1, \"value\": \"0.446328\"}, \"0.488795\": {\"frequency\": 1, \"value\": \"0.488795\"}, \"0.345658\": {\"frequency\": 1, \"value\": \"0.345658\"}, \"0.449115\": {\"frequency\": 1, \"value\": \"0.449115\"}, \"0.330655\": {\"frequency\": 1, \"value\": \"0.330655\"}, \"0.418019\": {\"frequency\": 1, \"value\": \"0.418019\"}, \"0.412041\": {\"frequency\": 1, \"value\": \"0.412041\"}, \"0.484685\": {\"frequency\": 1, \"value\": \"0.484685\"}, \"0.556136\": {\"frequency\": 1, \"value\": \"0.556136\"}, \"0.471385\": {\"frequency\": 1, \"value\": \"0.471385\"}, \"0.422435\": {\"frequency\": 1, \"value\": \"0.422435\"}, \"0.39907\": {\"frequency\": 1, \"value\": \"0.39907\"}, \"0.779573\": {\"frequency\": 1, \"value\": \"0.779573\"}, \"0.451807\": {\"frequency\": 1, \"value\": \"0.451807\"}, \"0.280899\": {\"frequency\": 1, \"value\": \"0.280899\"}, \"0.504035\": {\"frequency\": 1, \"value\": \"0.504035\"}, \"0.277347\": {\"frequency\": 1, \"value\": \"0.277347\"}, \"0.222762\": {\"frequency\": 1, \"value\": \"0.222762\"}, \"0.119203\": {\"frequency\": 1, \"value\": \"0.119203\"}, \"0.405176\": {\"frequency\": 1, \"value\": \"0.405176\"}, \"0.520744\": {\"frequency\": 1, \"value\": \"0.520744\"}, \"0.25457\": {\"frequency\": 1, \"value\": \"0.25457\"}, \"0.476033\": {\"frequency\": 1, \"value\": \"0.476033\"}, \"0.0820345\": {\"frequency\": 1, \"value\": \"0.0820345\"}, \"0.604456\": {\"frequency\": 1, \"value\": \"0.604456\"}, \"0.426736\": {\"frequency\": 1, \"value\": \"0.426736\"}, \"0.382503\": {\"frequency\": 1, \"value\": \"0.382503\"}, \"0.72108\": {\"frequency\": 1, \"value\": \"0.72108\"}, \"0.385362\": {\"frequency\": 1, \"value\": \"0.385362\"}, \"0.333005\": {\"frequency\": 1, \"value\": \"0.333005\"}, \"0.627063\": {\"frequency\": 1, \"value\": \"0.627063\"}, \"0.35221\": {\"frequency\": 1, \"value\": \"0.35221\"}, \"0.267289\": {\"frequency\": 1, \"value\": \"0.267289\"}, \"0.355752\": {\"frequency\": 1, \"value\": \"0.355752\"}, \"0.215845\": {\"frequency\": 1, \"value\": \"0.215845\"}, \"0.609948\": {\"frequency\": 1, \"value\": \"0.609948\"}, \"0.430535\": {\"frequency\": 1, \"value\": \"0.430535\"}, \"0.544849\": {\"frequency\": 1, \"value\": \"0.544849\"}, \"0.38004\": {\"frequency\": 1, \"value\": \"0.38004\"}, \"0.573211\": {\"frequency\": 1, \"value\": \"0.573211\"}, \"0.310186\": {\"frequency\": 1, \"value\": \"0.310186\"}, \"0.323966\": {\"frequency\": 1, \"value\": \"0.323966\"}, \"0.202294\": {\"frequency\": 1, \"value\": \"0.202294\"}, \"0.487241\": {\"frequency\": 1, \"value\": \"0.487241\"}, \"0.636923\": {\"frequency\": 1, \"value\": \"0.636923\"}, \"0.188316\": {\"frequency\": 1, \"value\": \"0.188316\"}, \"0.422726\": {\"frequency\": 1, \"value\": \"0.422726\"}, \"0.495033\": {\"frequency\": 1, \"value\": \"0.495033\"}, \"0.307902\": {\"frequency\": 1, \"value\": \"0.307902\"}, \"0.138287\": {\"frequency\": 1, \"value\": \"0.138287\"}, \"0.617297\": {\"frequency\": 1, \"value\": \"0.617297\"}, \"0.328763\": {\"frequency\": 1, \"value\": \"0.328763\"}, \"0.492777\": {\"frequency\": 1, \"value\": \"0.492777\"}, \"0.278225\": {\"frequency\": 1, \"value\": \"0.278225\"}, \"0.277902\": {\"frequency\": 1, \"value\": \"0.277902\"}, \"0.454695\": {\"frequency\": 1, \"value\": \"0.454695\"}, \"0.456889\": {\"frequency\": 1, \"value\": \"0.456889\"}, \"0.409087\": {\"frequency\": 1, \"value\": \"0.409087\"}, \"0.54454\": {\"frequency\": 1, \"value\": \"0.54454\"}, \"0.277909\": {\"frequency\": 1, \"value\": \"0.277909\"}, \"0.553517\": {\"frequency\": 1, \"value\": \"0.553517\"}, \"0.36151\": {\"frequency\": 1, \"value\": \"0.36151\"}, \"0.490805\": {\"frequency\": 1, \"value\": \"0.490805\"}, \"0.352838\": {\"frequency\": 1, \"value\": \"0.352838\"}, \"0.401709\": {\"frequency\": 1, \"value\": \"0.401709\"}, \"0.457634\": {\"frequency\": 1, \"value\": \"0.457634\"}, \"0.230572\": {\"frequency\": 1, \"value\": \"0.230572\"}, \"0.38262\": {\"frequency\": 1, \"value\": \"0.38262\"}, \"0.205932\": {\"frequency\": 1, \"value\": \"0.205932\"}, \"0.416385\": {\"frequency\": 1, \"value\": \"0.416385\"}, \"0.46015\": {\"frequency\": 1, \"value\": \"0.46015\"}, \"0.274811\": {\"frequency\": 1, \"value\": \"0.274811\"}, \"0.41129\": {\"frequency\": 1, \"value\": \"0.41129\"}, \"0.222\": {\"frequency\": 1, \"value\": \"0.222\"}, \"0.5302\": {\"frequency\": 1, \"value\": \"0.5302\"}, \"0.480661\": {\"frequency\": 1, \"value\": \"0.480661\"}, \"0.560595\": {\"frequency\": 1, \"value\": \"0.560595\"}, \"0.597942\": {\"frequency\": 1, \"value\": \"0.597942\"}, \"0.510673\": {\"frequency\": 1, \"value\": \"0.510673\"}, \"0.170019\": {\"frequency\": 1, \"value\": \"0.170019\"}, \"0.311806\": {\"frequency\": 1, \"value\": \"0.311806\"}, \"0.114891\": {\"frequency\": 1, \"value\": \"0.114891\"}, \"0.292205\": {\"frequency\": 1, \"value\": \"0.292205\"}, \"0.437205\": {\"frequency\": 1, \"value\": \"0.437205\"}, \"0.477185\": {\"frequency\": 1, \"value\": \"0.477185\"}, \"0.501033\": {\"frequency\": 1, \"value\": \"0.501033\"}, \"0.504848\": {\"frequency\": 1, \"value\": \"0.504848\"}, \"0.45616\": {\"frequency\": 1, \"value\": \"0.45616\"}, \"0.328161\": {\"frequency\": 1, \"value\": \"0.328161\"}, \"0.265871\": {\"frequency\": 1, \"value\": \"0.265871\"}, \"0.360333\": {\"frequency\": 1, \"value\": \"0.360333\"}, \"0.278357\": {\"frequency\": 1, \"value\": \"0.278357\"}, \"0.401599\": {\"frequency\": 1, \"value\": \"0.401599\"}, \"0.594446\": {\"frequency\": 1, \"value\": \"0.594446\"}, \"0.530709\": {\"frequency\": 1, \"value\": \"0.530709\"}, \"0.187816\": {\"frequency\": 1, \"value\": \"0.187816\"}, \"0.327259\": {\"frequency\": 1, \"value\": \"0.327259\"}, \"0.357846\": {\"frequency\": 1, \"value\": \"0.357846\"}, \"0.345953\": {\"frequency\": 1, \"value\": \"0.345953\"}, \"0.421564\": {\"frequency\": 1, \"value\": \"0.421564\"}, \"0.699781\": {\"frequency\": 1, \"value\": \"0.699781\"}, \"0.754131\": {\"frequency\": 1, \"value\": \"0.754131\"}, \"0.372248\": {\"frequency\": 1, \"value\": \"0.372248\"}, \"0.318401\": {\"frequency\": 1, \"value\": \"0.318401\"}, \"0.265173\": {\"frequency\": 1, \"value\": \"0.265173\"}, \"0.485059\": {\"frequency\": 1, \"value\": \"0.485059\"}, \"0.354888\": {\"frequency\": 1, \"value\": \"0.354888\"}, \"0.209118\": {\"frequency\": 1, \"value\": \"0.209118\"}, \"0.28837\": {\"frequency\": 1, \"value\": \"0.28837\"}, \"0.292771\": {\"frequency\": 1, \"value\": \"0.292771\"}, \"0.279797\": {\"frequency\": 1, \"value\": \"0.279797\"}, \"0.376859\": {\"frequency\": 1, \"value\": \"0.376859\"}, \"0.544901\": {\"frequency\": 1, \"value\": \"0.544901\"}, \"0.358606\": {\"frequency\": 1, \"value\": \"0.358606\"}, \"0.181793\": {\"frequency\": 1, \"value\": \"0.181793\"}, \"0.544941\": {\"frequency\": 1, \"value\": \"0.544941\"}, \"0.493177\": {\"frequency\": 1, \"value\": \"0.493177\"}, \"0.697685\": {\"frequency\": 1, \"value\": \"0.697685\"}, \"0.51563\": {\"frequency\": 1, \"value\": \"0.51563\"}, \"0.331267\": {\"frequency\": 1, \"value\": \"0.331267\"}, \"0.430314\": {\"frequency\": 1, \"value\": \"0.430314\"}, \"0.346317\": {\"frequency\": 1, \"value\": \"0.346317\"}, \"0.379485\": {\"frequency\": 1, \"value\": \"0.379485\"}, \"0.777404\": {\"frequency\": 1, \"value\": \"0.777404\"}, \"0.30797\": {\"frequency\": 1, \"value\": \"0.30797\"}, \"0.47616\": {\"frequency\": 1, \"value\": \"0.47616\"}, \"0.467754\": {\"frequency\": 1, \"value\": \"0.467754\"}, \"0.50593\": {\"frequency\": 1, \"value\": \"0.50593\"}, \"0.429557\": {\"frequency\": 1, \"value\": \"0.429557\"}, \"0.249967\": {\"frequency\": 1, \"value\": \"0.249967\"}, \"0.437448\": {\"frequency\": 1, \"value\": \"0.437448\"}, \"0.526797\": {\"frequency\": 1, \"value\": \"0.526797\"}, \"0.290958\": {\"frequency\": 1, \"value\": \"0.290958\"}, \"0.428557\": {\"frequency\": 1, \"value\": \"0.428557\"}, \"0.578594\": {\"frequency\": 1, \"value\": \"0.578594\"}, \"0.17894\": {\"frequency\": 1, \"value\": \"0.17894\"}, \"0.189328\": {\"frequency\": 1, \"value\": \"0.189328\"}, \"0.459086\": {\"frequency\": 1, \"value\": \"0.459086\"}, \"0.475965\": {\"frequency\": 1, \"value\": \"0.475965\"}, \"0.30228\": {\"frequency\": 1, \"value\": \"0.30228\"}, \"0.145371\": {\"frequency\": 1, \"value\": \"0.145371\"}, \"0.537061\": {\"frequency\": 1, \"value\": \"0.537061\"}, \"0.322554\": {\"frequency\": 1, \"value\": \"0.322554\"}, \"0.317404\": {\"frequency\": 1, \"value\": \"0.317404\"}, \"0.554972\": {\"frequency\": 1, \"value\": \"0.554972\"}, \"0.537067\": {\"frequency\": 1, \"value\": \"0.537067\"}, \"0.589183\": {\"frequency\": 1, \"value\": \"0.589183\"}, \"0.227942\": {\"frequency\": 1, \"value\": \"0.227942\"}, \"0.61632\": {\"frequency\": 1, \"value\": \"0.61632\"}, \"0.292805\": {\"frequency\": 1, \"value\": \"0.292805\"}, \"0.406609\": {\"frequency\": 1, \"value\": \"0.406609\"}, \"0.5161\": {\"frequency\": 1, \"value\": \"0.5161\"}, \"0.352545\": {\"frequency\": 1, \"value\": \"0.352545\"}, \"0.312876\": {\"frequency\": 3, \"value\": \"0.312876\"}, \"0.696515\": {\"frequency\": 1, \"value\": \"0.696515\"}, \"0.30004\": {\"frequency\": 1, \"value\": \"0.30004\"}, \"0.193895\": {\"frequency\": 1, \"value\": \"0.193895\"}, \"0.579829\": {\"frequency\": 1, \"value\": \"0.579829\"}, \"0.428739\": {\"frequency\": 1, \"value\": \"0.428739\"}, \"0.718861\": {\"frequency\": 1, \"value\": \"0.718861\"}, \"0.448531\": {\"frequency\": 1, \"value\": \"0.448531\"}, \"0.135003\": {\"frequency\": 1, \"value\": \"0.135003\"}, \"0.332841\": {\"frequency\": 1, \"value\": \"0.332841\"}, \"0.498922\": {\"frequency\": 1, \"value\": \"0.498922\"}, \"0.313057\": {\"frequency\": 1, \"value\": \"0.313057\"}, \"0.466452\": {\"frequency\": 1, \"value\": \"0.466452\"}, \"0.20638\": {\"frequency\": 1, \"value\": \"0.20638\"}, \"0.635764\": {\"frequency\": 1, \"value\": \"0.635764\"}, \"0.291897\": {\"frequency\": 1, \"value\": \"0.291897\"}, \"0.184556\": {\"frequency\": 1, \"value\": \"0.184556\"}, \"0.0281342\": {\"frequency\": 1, \"value\": \"0.0281342\"}, \"0.328289\": {\"frequency\": 1, \"value\": \"0.328289\"}, \"0.309606\": {\"frequency\": 1, \"value\": \"0.309606\"}, \"0.244234\": {\"frequency\": 1, \"value\": \"0.244234\"}, \"0.261678\": {\"frequency\": 1, \"value\": \"0.261678\"}, \"0.467657\": {\"frequency\": 1, \"value\": \"0.467657\"}, \"0.699817\": {\"frequency\": 1, \"value\": \"0.699817\"}, \"0.462566\": {\"frequency\": 1, \"value\": \"0.462566\"}, \"0.351445\": {\"frequency\": 1, \"value\": \"0.351445\"}, \"0.282331\": {\"frequency\": 1, \"value\": \"0.282331\"}, \"0.245712\": {\"frequency\": 1, \"value\": \"0.245712\"}, \"0.128202\": {\"frequency\": 1, \"value\": \"0.128202\"}, \"0.356715\": {\"frequency\": 1, \"value\": \"0.356715\"}, \"0.789287\": {\"frequency\": 1, \"value\": \"0.789287\"}, \"0.485499\": {\"frequency\": 1, \"value\": \"0.485499\"}, \"0.108389\": {\"frequency\": 1, \"value\": \"0.108389\"}, \"0.319913\": {\"frequency\": 1, \"value\": \"0.319913\"}, \"0.200474\": {\"frequency\": 1, \"value\": \"0.200474\"}, \"0.404823\": {\"frequency\": 1, \"value\": \"0.404823\"}, \"0.417077\": {\"frequency\": 1, \"value\": \"0.417077\"}, \"0.490488\": {\"frequency\": 1, \"value\": \"0.490488\"}, \"0.383326\": {\"frequency\": 1, \"value\": \"0.383326\"}, \"0.430943\": {\"frequency\": 1, \"value\": \"0.430943\"}, \"0.55301\": {\"frequency\": 1, \"value\": \"0.55301\"}, \"0.287857\": {\"frequency\": 1, \"value\": \"0.287857\"}, \"0.532033\": {\"frequency\": 1, \"value\": \"0.532033\"}, \"0.287855\": {\"frequency\": 1, \"value\": \"0.287855\"}, \"0.330348\": {\"frequency\": 1, \"value\": \"0.330348\"}, \"0.407437\": {\"frequency\": 1, \"value\": \"0.407437\"}, \"0.286103\": {\"frequency\": 1, \"value\": \"0.286103\"}, \"0.505665\": {\"frequency\": 1, \"value\": \"0.505665\"}, \"0.414074\": {\"frequency\": 1, \"value\": \"0.414074\"}, \"0.431661\": {\"frequency\": 1, \"value\": \"0.431661\"}, \"0.423628\": {\"frequency\": 1, \"value\": \"0.423628\"}, \"0.477856\": {\"frequency\": 1, \"value\": \"0.477856\"}, \"0.423627\": {\"frequency\": 1, \"value\": \"0.423627\"}, \"0.287323\": {\"frequency\": 1, \"value\": \"0.287323\"}, \"0.516097\": {\"frequency\": 1, \"value\": \"0.516097\"}, \"0.302763\": {\"frequency\": 1, \"value\": \"0.302763\"}, \"0.39215\": {\"frequency\": 1, \"value\": \"0.39215\"}, \"0.372533\": {\"frequency\": 1, \"value\": \"0.372533\"}, \"0.161788\": {\"frequency\": 1, \"value\": \"0.161788\"}, \"0.160419\": {\"frequency\": 1, \"value\": \"0.160419\"}, \"0.315612\": {\"frequency\": 1, \"value\": \"0.315612\"}, \"0.421828\": {\"frequency\": 1, \"value\": \"0.421828\"}, \"0.753745\": {\"frequency\": 1, \"value\": \"0.753745\"}, \"0.160414\": {\"frequency\": 1, \"value\": \"0.160414\"}, \"0.357715\": {\"frequency\": 1, \"value\": \"0.357715\"}, \"0.42215\": {\"frequency\": 1, \"value\": \"0.42215\"}, \"0.343543\": {\"frequency\": 1, \"value\": \"0.343543\"}, \"0.300459\": {\"frequency\": 1, \"value\": \"0.300459\"}, \"0.301451\": {\"frequency\": 1, \"value\": \"0.301451\"}, \"0.342019\": {\"frequency\": 1, \"value\": \"0.342019\"}, \"0.34781\": {\"frequency\": 1, \"value\": \"0.34781\"}, \"0.443349\": {\"frequency\": 1, \"value\": \"0.443349\"}, \"0.371846\": {\"frequency\": 1, \"value\": \"0.371846\"}, \"0.239821\": {\"frequency\": 1, \"value\": \"0.239821\"}, \"0.863998\": {\"frequency\": 1, \"value\": \"0.863998\"}, \"0.163806\": {\"frequency\": 1, \"value\": \"0.163806\"}, \"0.218861\": {\"frequency\": 1, \"value\": \"0.218861\"}, \"0.463793\": {\"frequency\": 1, \"value\": \"0.463793\"}, \"0.238605\": {\"frequency\": 1, \"value\": \"0.238605\"}, \"0.258541\": {\"frequency\": 1, \"value\": \"0.258541\"}, \"0.330915\": {\"frequency\": 1, \"value\": \"0.330915\"}, \"0.432263\": {\"frequency\": 1, \"value\": \"0.432263\"}, \"0.340899\": {\"frequency\": 1, \"value\": \"0.340899\"}, \"0.343764\": {\"frequency\": 1, \"value\": \"0.343764\"}, \"0.262346\": {\"frequency\": 1, \"value\": \"0.262346\"}, \"0.349744\": {\"frequency\": 1, \"value\": \"0.349744\"}, \"0.731203\": {\"frequency\": 1, \"value\": \"0.731203\"}, \"0.205585\": {\"frequency\": 1, \"value\": \"0.205585\"}, \"0.351719\": {\"frequency\": 1, \"value\": \"0.351719\"}, \"0.468781\": {\"frequency\": 1, \"value\": \"0.468781\"}, \"0.498213\": {\"frequency\": 1, \"value\": \"0.498213\"}, \"0.32403\": {\"frequency\": 1, \"value\": \"0.32403\"}, \"0.655631\": {\"frequency\": 1, \"value\": \"0.655631\"}, \"0.356921\": {\"frequency\": 1, \"value\": \"0.356921\"}, \"0.421825\": {\"frequency\": 1, \"value\": \"0.421825\"}, \"0.68328\": {\"frequency\": 1, \"value\": \"0.68328\"}, \"0.901702\": {\"frequency\": 1, \"value\": \"0.901702\"}, \"0.248787\": {\"frequency\": 1, \"value\": \"0.248787\"}, \"0.424535\": {\"frequency\": 1, \"value\": \"0.424535\"}, \"0.478192\": {\"frequency\": 1, \"value\": \"0.478192\"}, \"0.478391\": {\"frequency\": 1, \"value\": \"0.478391\"}, \"0.306884\": {\"frequency\": 1, \"value\": \"0.306884\"}, \"0.509157\": {\"frequency\": 1, \"value\": \"0.509157\"}, \"0.396969\": {\"frequency\": 1, \"value\": \"0.396969\"}, \"0.184462\": {\"frequency\": 1, \"value\": \"0.184462\"}, \"0.432463\": {\"frequency\": 1, \"value\": \"0.432463\"}, \"0.666731\": {\"frequency\": 1, \"value\": \"0.666731\"}, \"0.147554\": {\"frequency\": 1, \"value\": \"0.147554\"}, \"0.480775\": {\"frequency\": 1, \"value\": \"0.480775\"}, \"0.339657\": {\"frequency\": 1, \"value\": \"0.339657\"}, \"0.414495\": {\"frequency\": 1, \"value\": \"0.414495\"}, \"0.284891\": {\"frequency\": 1, \"value\": \"0.284891\"}, \"0.566849\": {\"frequency\": 3, \"value\": \"0.566849\"}, \"0.563839\": {\"frequency\": 1, \"value\": \"0.563839\"}, \"0.242977\": {\"frequency\": 1, \"value\": \"0.242977\"}, \"0.429782\": {\"frequency\": 1, \"value\": \"0.429782\"}, \"0.528631\": {\"frequency\": 1, \"value\": \"0.528631\"}, \"0.36763\": {\"frequency\": 1, \"value\": \"0.36763\"}, \"0.404162\": {\"frequency\": 1, \"value\": \"0.404162\"}, \"0.398354\": {\"frequency\": 1, \"value\": \"0.398354\"}, \"0.556623\": {\"frequency\": 1, \"value\": \"0.556623\"}, \"0.234083\": {\"frequency\": 1, \"value\": \"0.234083\"}, \"0.261487\": {\"frequency\": 1, \"value\": \"0.261487\"}, \"0.442447\": {\"frequency\": 1, \"value\": \"0.442447\"}, \"0.609001\": {\"frequency\": 1, \"value\": \"0.609001\"}, \"0.603825\": {\"frequency\": 1, \"value\": \"0.603825\"}, \"0.479262\": {\"frequency\": 1, \"value\": \"0.479262\"}, \"0.385773\": {\"frequency\": 1, \"value\": \"0.385773\"}, \"0.776707\": {\"frequency\": 1, \"value\": \"0.776707\"}, \"0.457131\": {\"frequency\": 1, \"value\": \"0.457131\"}, \"0.715314\": {\"frequency\": 1, \"value\": \"0.715314\"}, \"0.580479\": {\"frequency\": 1, \"value\": \"0.580479\"}, \"0.583263\": {\"frequency\": 1, \"value\": \"0.583263\"}, \"0.467554\": {\"frequency\": 1, \"value\": \"0.467554\"}, \"0.269464\": {\"frequency\": 1, \"value\": \"0.269464\"}, \"0.499189\": {\"frequency\": 1, \"value\": \"0.499189\"}, \"0.78883\": {\"frequency\": 1, \"value\": \"0.78883\"}, \"0.451834\": {\"frequency\": 1, \"value\": \"0.451834\"}, \"0.527999\": {\"frequency\": 1, \"value\": \"0.527999\"}, \"0.563909\": {\"frequency\": 1, \"value\": \"0.563909\"}, \"0.523762\": {\"frequency\": 1, \"value\": \"0.523762\"}, \"0.553206\": {\"frequency\": 1, \"value\": \"0.553206\"}, \"0.479288\": {\"frequency\": 1, \"value\": \"0.479288\"}, \"0.49555\": {\"frequency\": 1, \"value\": \"0.49555\"}, \"0.322936\": {\"frequency\": 1, \"value\": \"0.322936\"}, \"0.361837\": {\"frequency\": 1, \"value\": \"0.361837\"}, \"0.524751\": {\"frequency\": 1, \"value\": \"0.524751\"}, \"0.464751\": {\"frequency\": 1, \"value\": \"0.464751\"}, \"0.48524\": {\"frequency\": 1, \"value\": \"0.48524\"}, \"0.415033\": {\"frequency\": 1, \"value\": \"0.415033\"}, \"0.745467\": {\"frequency\": 1, \"value\": \"0.745467\"}, \"0.196378\": {\"frequency\": 1, \"value\": \"0.196378\"}, \"0.365805\": {\"frequency\": 1, \"value\": \"0.365805\"}, \"0.364539\": {\"frequency\": 2, \"value\": \"0.364539\"}, \"0.345135\": {\"frequency\": 1, \"value\": \"0.345135\"}, \"0.42963\": {\"frequency\": 1, \"value\": \"0.42963\"}, \"0.463571\": {\"frequency\": 1, \"value\": \"0.463571\"}, \"0.609647\": {\"frequency\": 1, \"value\": \"0.609647\"}, \"0.205769\": {\"frequency\": 1, \"value\": \"0.205769\"}, \"0.337268\": {\"frequency\": 1, \"value\": \"0.337268\"}, \"0.405346\": {\"frequency\": 1, \"value\": \"0.405346\"}, \"0.724171\": {\"frequency\": 1, \"value\": \"0.724171\"}, \"0.488581\": {\"frequency\": 1, \"value\": \"0.488581\"}, \"0.41468\": {\"frequency\": 1, \"value\": \"0.41468\"}, \"0.137481\": {\"frequency\": 1, \"value\": \"0.137481\"}, \"0.111256\": {\"frequency\": 1, \"value\": \"0.111256\"}, \"0.359094\": {\"frequency\": 1, \"value\": \"0.359094\"}, \"0.768503\": {\"frequency\": 1, \"value\": \"0.768503\"}, \"0.380729\": {\"frequency\": 1, \"value\": \"0.380729\"}, \"0.280791\": {\"frequency\": 1, \"value\": \"0.280791\"}, \"0.531277\": {\"frequency\": 1, \"value\": \"0.531277\"}, \"0.41284\": {\"frequency\": 1, \"value\": \"0.41284\"}, \"0.315718\": {\"frequency\": 1, \"value\": \"0.315718\"}, \"0.384839\": {\"frequency\": 1, \"value\": \"0.384839\"}, \"0.623845\": {\"frequency\": 1, \"value\": \"0.623845\"}, \"0.379982\": {\"frequency\": 1, \"value\": \"0.379982\"}, \"0.485433\": {\"frequency\": 1, \"value\": \"0.485433\"}, \"0.394577\": {\"frequency\": 1, \"value\": \"0.394577\"}, \"0.487501\": {\"frequency\": 1, \"value\": \"0.487501\"}, \"0.274222\": {\"frequency\": 1, \"value\": \"0.274222\"}, \"0.606421\": {\"frequency\": 1, \"value\": \"0.606421\"}, \"0.273907\": {\"frequency\": 1, \"value\": \"0.273907\"}, \"0.433353\": {\"frequency\": 1, \"value\": \"0.433353\"}, \"0.566333\": {\"frequency\": 1, \"value\": \"0.566333\"}, \"0.379042\": {\"frequency\": 1, \"value\": \"0.379042\"}, \"0.274336\": {\"frequency\": 1, \"value\": \"0.274336\"}, \"0.202682\": {\"frequency\": 1, \"value\": \"0.202682\"}, \"0.310229\": {\"frequency\": 1, \"value\": \"0.310229\"}, \"0.3181\": {\"frequency\": 1, \"value\": \"0.3181\"}, \"0.556835\": {\"frequency\": 1, \"value\": \"0.556835\"}, \"0.366844\": {\"frequency\": 1, \"value\": \"0.366844\"}, \"0.392247\": {\"frequency\": 1, \"value\": \"0.392247\"}, \"0.229034\": {\"frequency\": 1, \"value\": \"0.229034\"}, \"0.491294\": {\"frequency\": 1, \"value\": \"0.491294\"}, \"0.552804\": {\"frequency\": 1, \"value\": \"0.552804\"}, \"0.492983\": {\"frequency\": 1, \"value\": \"0.492983\"}, \"0.627823\": {\"frequency\": 1, \"value\": \"0.627823\"}, \"0.558476\": {\"frequency\": 1, \"value\": \"0.558476\"}, \"0.480428\": {\"frequency\": 1, \"value\": \"0.480428\"}, \"0.315281\": {\"frequency\": 1, \"value\": \"0.315281\"}, \"0.521145\": {\"frequency\": 1, \"value\": \"0.521145\"}, \"0.611511\": {\"frequency\": 1, \"value\": \"0.611511\"}, \"0.0380566\": {\"frequency\": 1, \"value\": \"0.0380566\"}, \"0.384919\": {\"frequency\": 1, \"value\": \"0.384919\"}, \"0.324717\": {\"frequency\": 1, \"value\": \"0.324717\"}, \"0.292943\": {\"frequency\": 1, \"value\": \"0.292943\"}, \"0.474173\": {\"frequency\": 1, \"value\": \"0.474173\"}, \"0.721034\": {\"frequency\": 1, \"value\": \"0.721034\"}, \"0.401062\": {\"frequency\": 1, \"value\": \"0.401062\"}, \"0.501145\": {\"frequency\": 1, \"value\": \"0.501145\"}, \"0.270589\": {\"frequency\": 1, \"value\": \"0.270589\"}, \"0.209695\": {\"frequency\": 1, \"value\": \"0.209695\"}, \"0.388662\": {\"frequency\": 1, \"value\": \"0.388662\"}, \"0.500494\": {\"frequency\": 1, \"value\": \"0.500494\"}, \"0.31374\": {\"frequency\": 1, \"value\": \"0.31374\"}, \"0.451983\": {\"frequency\": 1, \"value\": \"0.451983\"}, \"0.388664\": {\"frequency\": 1, \"value\": \"0.388664\"}, \"0.259367\": {\"frequency\": 1, \"value\": \"0.259367\"}, \"0.422373\": {\"frequency\": 1, \"value\": \"0.422373\"}, \"0.487348\": {\"frequency\": 3, \"value\": \"0.487348\"}, \"0.412563\": {\"frequency\": 1, \"value\": \"0.412563\"}, \"0.232549\": {\"frequency\": 1, \"value\": \"0.232549\"}, \"0.630192\": {\"frequency\": 1, \"value\": \"0.630192\"}, \"0.530288\": {\"frequency\": 1, \"value\": \"0.530288\"}, \"0.465509\": {\"frequency\": 1, \"value\": \"0.465509\"}, \"0.387487\": {\"frequency\": 1, \"value\": \"0.387487\"}, \"0.176701\": {\"frequency\": 1, \"value\": \"0.176701\"}, \"0.360305\": {\"frequency\": 1, \"value\": \"0.360305\"}, \"0.560472\": {\"frequency\": 1, \"value\": \"0.560472\"}, \"0.540149\": {\"frequency\": 1, \"value\": \"0.540149\"}, \"0.246264\": {\"frequency\": 1, \"value\": \"0.246264\"}, \"0.494009\": {\"frequency\": 1, \"value\": \"0.494009\"}, \"0.37324\": {\"frequency\": 1, \"value\": \"0.37324\"}, \"0.516773\": {\"frequency\": 1, \"value\": \"0.516773\"}, \"0.403589\": {\"frequency\": 1, \"value\": \"0.403589\"}, \"0.49664\": {\"frequency\": 1, \"value\": \"0.49664\"}, \"0.33378\": {\"frequency\": 1, \"value\": \"0.33378\"}, \"0.198268\": {\"frequency\": 1, \"value\": \"0.198268\"}, \"0.229769\": {\"frequency\": 1, \"value\": \"0.229769\"}, \"0.0577358\": {\"frequency\": 1, \"value\": \"0.0577358\"}, \"0.39183\": {\"frequency\": 1, \"value\": \"0.39183\"}, \"0.39185\": {\"frequency\": 1, \"value\": \"0.39185\"}, \"0.588756\": {\"frequency\": 1, \"value\": \"0.588756\"}, \"0.246447\": {\"frequency\": 1, \"value\": \"0.246447\"}, \"0.573157\": {\"frequency\": 1, \"value\": \"0.573157\"}, \"0.407127\": {\"frequency\": 1, \"value\": \"0.407127\"}, \"0.406283\": {\"frequency\": 1, \"value\": \"0.406283\"}, \"0.285947\": {\"frequency\": 1, \"value\": \"0.285947\"}, \"0.679745\": {\"frequency\": 1, \"value\": \"0.679745\"}, \"0.43146\": {\"frequency\": 1, \"value\": \"0.43146\"}, \"0.669432\": {\"frequency\": 1, \"value\": \"0.669432\"}, \"0.388404\": {\"frequency\": 1, \"value\": \"0.388404\"}, \"0.404345\": {\"frequency\": 1, \"value\": \"0.404345\"}, \"0.18926\": {\"frequency\": 1, \"value\": \"0.18926\"}, \"0.425278\": {\"frequency\": 1, \"value\": \"0.425278\"}, \"0.334324\": {\"frequency\": 1, \"value\": \"0.334324\"}, \"0.404618\": {\"frequency\": 1, \"value\": \"0.404618\"}, \"0.563331\": {\"frequency\": 1, \"value\": \"0.563331\"}, \"0.429978\": {\"frequency\": 1, \"value\": \"0.429978\"}, \"0.279168\": {\"frequency\": 1, \"value\": \"0.279168\"}, \"0.370003\": {\"frequency\": 1, \"value\": \"0.370003\"}, \"0.228147\": {\"frequency\": 1, \"value\": \"0.228147\"}, \"0.511868\": {\"frequency\": 1, \"value\": \"0.511868\"}, \"0.216287\": {\"frequency\": 1, \"value\": \"0.216287\"}, \"0.598633\": {\"frequency\": 1, \"value\": \"0.598633\"}, \"0.450475\": {\"frequency\": 1, \"value\": \"0.450475\"}, \"0.279164\": {\"frequency\": 1, \"value\": \"0.279164\"}, \"0.306182\": {\"frequency\": 1, \"value\": \"0.306182\"}, \"0.51802\": {\"frequency\": 1, \"value\": \"0.51802\"}, \"0.477247\": {\"frequency\": 1, \"value\": \"0.477247\"}, \"0.38586\": {\"frequency\": 1, \"value\": \"0.38586\"}, \"0.257066\": {\"frequency\": 1, \"value\": \"0.257066\"}, \"0.477459\": {\"frequency\": 1, \"value\": \"0.477459\"}, \"0.580157\": {\"frequency\": 3, \"value\": \"0.580157\"}, \"0.641577\": {\"frequency\": 1, \"value\": \"0.641577\"}, \"0.351939\": {\"frequency\": 1, \"value\": \"0.351939\"}, \"0.59057\": {\"frequency\": 1, \"value\": \"0.59057\"}, \"0.308129\": {\"frequency\": 1, \"value\": \"0.308129\"}, \"0.263243\": {\"frequency\": 1, \"value\": \"0.263243\"}, \"0.70443\": {\"frequency\": 1, \"value\": \"0.70443\"}, \"0.462042\": {\"frequency\": 1, \"value\": \"0.462042\"}, \"0.412273\": {\"frequency\": 1, \"value\": \"0.412273\"}, \"0.215207\": {\"frequency\": 1, \"value\": \"0.215207\"}, \"0.471613\": {\"frequency\": 1, \"value\": \"0.471613\"}, \"0.461333\": {\"frequency\": 1, \"value\": \"0.461333\"}, \"0.278183\": {\"frequency\": 1, \"value\": \"0.278183\"}, \"0.470215\": {\"frequency\": 1, \"value\": \"0.470215\"}, \"0.421008\": {\"frequency\": 1, \"value\": \"0.421008\"}, \"0.269865\": {\"frequency\": 1, \"value\": \"0.269865\"}, \"0.330238\": {\"frequency\": 1, \"value\": \"0.330238\"}, \"0.194352\": {\"frequency\": 1, \"value\": \"0.194352\"}, \"0.371616\": {\"frequency\": 1, \"value\": \"0.371616\"}, \"0.383007\": {\"frequency\": 1, \"value\": \"0.383007\"}, \"0.407511\": {\"frequency\": 1, \"value\": \"0.407511\"}, \"0.379605\": {\"frequency\": 1, \"value\": \"0.379605\"}, \"0.434766\": {\"frequency\": 1, \"value\": \"0.434766\"}, \"0.365329\": {\"frequency\": 1, \"value\": \"0.365329\"}, \"0.244938\": {\"frequency\": 1, \"value\": \"0.244938\"}, \"0.149056\": {\"frequency\": 1, \"value\": \"0.149056\"}, \"0.598835\": {\"frequency\": 1, \"value\": \"0.598835\"}, \"0.10922\": {\"frequency\": 1, \"value\": \"0.10922\"}, \"0.625186\": {\"frequency\": 1, \"value\": \"0.625186\"}, \"0.454453\": {\"frequency\": 1, \"value\": \"0.454453\"}, \"0.403599\": {\"frequency\": 1, \"value\": \"0.403599\"}, \"0.544134\": {\"frequency\": 1, \"value\": \"0.544134\"}, \"0.852103\": {\"frequency\": 1, \"value\": \"0.852103\"}, \"0.549774\": {\"frequency\": 1, \"value\": \"0.549774\"}, \"0.639248\": {\"frequency\": 1, \"value\": \"0.639248\"}, \"0.451551\": {\"frequency\": 1, \"value\": \"0.451551\"}, \"0.403029\": {\"frequency\": 1, \"value\": \"0.403029\"}, \"0.390614\": {\"frequency\": 1, \"value\": \"0.390614\"}, \"0.368144\": {\"frequency\": 1, \"value\": \"0.368144\"}, \"0.167623\": {\"frequency\": 1, \"value\": \"0.167623\"}, \"0.389758\": {\"frequency\": 1, \"value\": \"0.389758\"}, \"0.398424\": {\"frequency\": 1, \"value\": \"0.398424\"}, \"0.34313\": {\"frequency\": 1, \"value\": \"0.34313\"}, \"0.310238\": {\"frequency\": 1, \"value\": \"0.310238\"}, \"0.235667\": {\"frequency\": 1, \"value\": \"0.235667\"}, \"0.359411\": {\"frequency\": 1, \"value\": \"0.359411\"}, \"0.370479\": {\"frequency\": 1, \"value\": \"0.370479\"}, \"0.566927\": {\"frequency\": 1, \"value\": \"0.566927\"}, \"0.362424\": {\"frequency\": 1, \"value\": \"0.362424\"}, \"0.434319\": {\"frequency\": 1, \"value\": \"0.434319\"}, \"0.24837\": {\"frequency\": 1, \"value\": \"0.24837\"}, \"0.60264\": {\"frequency\": 1, \"value\": \"0.60264\"}, \"0.291613\": {\"frequency\": 1, \"value\": \"0.291613\"}, \"0.425491\": {\"frequency\": 1, \"value\": \"0.425491\"}, \"0.430103\": {\"frequency\": 1, \"value\": \"0.430103\"}, \"0.448411\": {\"frequency\": 1, \"value\": \"0.448411\"}, \"0.456693\": {\"frequency\": 1, \"value\": \"0.456693\"}, \"0.163367\": {\"frequency\": 1, \"value\": \"0.163367\"}, \"0.309037\": {\"frequency\": 1, \"value\": \"0.309037\"}, \"0.20046\": {\"frequency\": 1, \"value\": \"0.20046\"}, \"0.278687\": {\"frequency\": 1, \"value\": \"0.278687\"}, \"0.456505\": {\"frequency\": 1, \"value\": \"0.456505\"}, \"0.604876\": {\"frequency\": 1, \"value\": \"0.604876\"}, \"0.329134\": {\"frequency\": 1, \"value\": \"0.329134\"}, \"0.564116\": {\"frequency\": 1, \"value\": \"0.564116\"}, \"0.477865\": {\"frequency\": 1, \"value\": \"0.477865\"}, \"0.309055\": {\"frequency\": 1, \"value\": \"0.309055\"}, \"0.719696\": {\"frequency\": 1, \"value\": \"0.719696\"}, \"0.248845\": {\"frequency\": 1, \"value\": \"0.248845\"}, \"0.476596\": {\"frequency\": 1, \"value\": \"0.476596\"}, \"0.423542\": {\"frequency\": 1, \"value\": \"0.423542\"}, \"0.224661\": {\"frequency\": 1, \"value\": \"0.224661\"}, \"0.411729\": {\"frequency\": 1, \"value\": \"0.411729\"}, \"0.351545\": {\"frequency\": 1, \"value\": \"0.351545\"}, \"0.413574\": {\"frequency\": 1, \"value\": \"0.413574\"}, \"0.443289\": {\"frequency\": 1, \"value\": \"0.443289\"}, \"0.399833\": {\"frequency\": 1, \"value\": \"0.399833\"}, \"0.391435\": {\"frequency\": 1, \"value\": \"0.391435\"}, \"0.412886\": {\"frequency\": 1, \"value\": \"0.412886\"}, \"0.108881\": {\"frequency\": 1, \"value\": \"0.108881\"}, \"0.380208\": {\"frequency\": 1, \"value\": \"0.380208\"}, \"0.655924\": {\"frequency\": 1, \"value\": \"0.655924\"}, \"0.471033\": {\"frequency\": 1, \"value\": \"0.471033\"}, \"0.506653\": {\"frequency\": 1, \"value\": \"0.506653\"}, \"0.357729\": {\"frequency\": 1, \"value\": \"0.357729\"}, \"0.413378\": {\"frequency\": 1, \"value\": \"0.413378\"}, \"0.522004\": {\"frequency\": 1, \"value\": \"0.522004\"}, \"0.645508\": {\"frequency\": 1, \"value\": \"0.645508\"}, \"0.313489\": {\"frequency\": 1, \"value\": \"0.313489\"}, \"0.233553\": {\"frequency\": 1, \"value\": \"0.233553\"}, \"0.608848\": {\"frequency\": 1, \"value\": \"0.608848\"}, \"0.447327\": {\"frequency\": 1, \"value\": \"0.447327\"}, \"0.443355\": {\"frequency\": 1, \"value\": \"0.443355\"}, \"0.431074\": {\"frequency\": 1, \"value\": \"0.431074\"}, \"0.650783\": {\"frequency\": 1, \"value\": \"0.650783\"}, \"0.418494\": {\"frequency\": 1, \"value\": \"0.418494\"}, \"0.562358\": {\"frequency\": 1, \"value\": \"0.562358\"}, \"0.401073\": {\"frequency\": 1, \"value\": \"0.401073\"}, \"0.167868\": {\"frequency\": 1, \"value\": \"0.167868\"}, \"0.645531\": {\"frequency\": 1, \"value\": \"0.645531\"}, \"0.693039\": {\"frequency\": 1, \"value\": \"0.693039\"}, \"0.301249\": {\"frequency\": 1, \"value\": \"0.301249\"}, \"0.363095\": {\"frequency\": 1, \"value\": \"0.363095\"}, \"0.484232\": {\"frequency\": 1, \"value\": \"0.484232\"}, \"0.286007\": {\"frequency\": 1, \"value\": \"0.286007\"}, \"0.312706\": {\"frequency\": 1, \"value\": \"0.312706\"}, \"0.238161\": {\"frequency\": 1, \"value\": \"0.238161\"}, \"0.36959\": {\"frequency\": 1, \"value\": \"0.36959\"}, \"0.400957\": {\"frequency\": 1, \"value\": \"0.400957\"}, \"0.543546\": {\"frequency\": 1, \"value\": \"0.543546\"}, \"0.351098\": {\"frequency\": 1, \"value\": \"0.351098\"}, \"0.248201\": {\"frequency\": 1, \"value\": \"0.248201\"}, \"0.394774\": {\"frequency\": 1, \"value\": \"0.394774\"}, \"0.361954\": {\"frequency\": 1, \"value\": \"0.361954\"}, \"0.578565\": {\"frequency\": 1, \"value\": \"0.578565\"}, \"0.322051\": {\"frequency\": 1, \"value\": \"0.322051\"}, \"0.758802\": {\"frequency\": 1, \"value\": \"0.758802\"}, \"0.476441\": {\"frequency\": 1, \"value\": \"0.476441\"}, \"0.471325\": {\"frequency\": 1, \"value\": \"0.471325\"}, \"0.183592\": {\"frequency\": 1, \"value\": \"0.183592\"}, \"0.286952\": {\"frequency\": 1, \"value\": \"0.286952\"}, \"0.650336\": {\"frequency\": 1, \"value\": \"0.650336\"}, \"0.387815\": {\"frequency\": 1, \"value\": \"0.387815\"}, \"0.165201\": {\"frequency\": 1, \"value\": \"0.165201\"}, \"0.492971\": {\"frequency\": 1, \"value\": \"0.492971\"}, \"0.472103\": {\"frequency\": 2, \"value\": \"0.472103\"}, \"0.551105\": {\"frequency\": 1, \"value\": \"0.551105\"}, \"0.110202\": {\"frequency\": 1, \"value\": \"0.110202\"}, \"0.136581\": {\"frequency\": 1, \"value\": \"0.136581\"}, \"0.157655\": {\"frequency\": 1, \"value\": \"0.157655\"}, \"0.377877\": {\"frequency\": 1, \"value\": \"0.377877\"}, \"0.199928\": {\"frequency\": 1, \"value\": \"0.199928\"}, \"0.296802\": {\"frequency\": 1, \"value\": \"0.296802\"}, \"0.322139\": {\"frequency\": 1, \"value\": \"0.322139\"}, \"0.460927\": {\"frequency\": 1, \"value\": \"0.460927\"}, \"0.449439\": {\"frequency\": 1, \"value\": \"0.449439\"}, \"0.351368\": {\"frequency\": 1, \"value\": \"0.351368\"}, \"0.493624\": {\"frequency\": 1, \"value\": \"0.493624\"}, \"0.397152\": {\"frequency\": 1, \"value\": \"0.397152\"}, \"0.425502\": {\"frequency\": 1, \"value\": \"0.425502\"}, \"0.866318\": {\"frequency\": 1, \"value\": \"0.866318\"}, \"0.491476\": {\"frequency\": 1, \"value\": \"0.491476\"}, \"0.603878\": {\"frequency\": 1, \"value\": \"0.603878\"}, \"0.645473\": {\"frequency\": 1, \"value\": \"0.645473\"}, \"0.658301\": {\"frequency\": 1, \"value\": \"0.658301\"}, \"0.0245854\": {\"frequency\": 1, \"value\": \"0.0245854\"}, \"0.31299\": {\"frequency\": 1, \"value\": \"0.31299\"}, \"0.496986\": {\"frequency\": 1, \"value\": \"0.496986\"}, \"0.311341\": {\"frequency\": 2, \"value\": \"0.311341\"}, \"0.73498\": {\"frequency\": 1, \"value\": \"0.73498\"}, \"0.556791\": {\"frequency\": 1, \"value\": \"0.556791\"}, \"0.197637\": {\"frequency\": 1, \"value\": \"0.197637\"}, \"0.591816\": {\"frequency\": 1, \"value\": \"0.591816\"}, \"0.297161\": {\"frequency\": 1, \"value\": \"0.297161\"}, \"0.365263\": {\"frequency\": 1, \"value\": \"0.365263\"}, \"0.42955\": {\"frequency\": 1, \"value\": \"0.42955\"}, \"0.427421\": {\"frequency\": 1, \"value\": \"0.427421\"}, \"0.446546\": {\"frequency\": 1, \"value\": \"0.446546\"}, \"0.65624\": {\"frequency\": 1, \"value\": \"0.65624\"}, \"0.207466\": {\"frequency\": 1, \"value\": \"0.207466\"}, \"0.529469\": {\"frequency\": 1, \"value\": \"0.529469\"}, \"0.211402\": {\"frequency\": 1, \"value\": \"0.211402\"}, \"0.35996\": {\"frequency\": 1, \"value\": \"0.35996\"}, \"0.681711\": {\"frequency\": 1, \"value\": \"0.681711\"}, \"0.335884\": {\"frequency\": 1, \"value\": \"0.335884\"}, \"0.32295\": {\"frequency\": 1, \"value\": \"0.32295\"}, \"0.280306\": {\"frequency\": 1, \"value\": \"0.280306\"}, \"0.681248\": {\"frequency\": 1, \"value\": \"0.681248\"}, \"0.305504\": {\"frequency\": 1, \"value\": \"0.305504\"}, \"0.261584\": {\"frequency\": 1, \"value\": \"0.261584\"}, \"0.646261\": {\"frequency\": 1, \"value\": \"0.646261\"}, \"0.375616\": {\"frequency\": 1, \"value\": \"0.375616\"}, \"0.497906\": {\"frequency\": 1, \"value\": \"0.497906\"}, \"0.462691\": {\"frequency\": 1, \"value\": \"0.462691\"}, \"0.306213\": {\"frequency\": 1, \"value\": \"0.306213\"}, \"0.627583\": {\"frequency\": 1, \"value\": \"0.627583\"}, \"0.376926\": {\"frequency\": 1, \"value\": \"0.376926\"}, \"0.571417\": {\"frequency\": 1, \"value\": \"0.571417\"}, \"0.52404\": {\"frequency\": 1, \"value\": \"0.52404\"}, \"0.618111\": {\"frequency\": 1, \"value\": \"0.618111\"}, \"0.686755\": {\"frequency\": 1, \"value\": \"0.686755\"}, \"0.809764\": {\"frequency\": 1, \"value\": \"0.809764\"}, \"0.393077\": {\"frequency\": 1, \"value\": \"0.393077\"}, \"0.480505\": {\"frequency\": 1, \"value\": \"0.480505\"}, \"0.250518\": {\"frequency\": 1, \"value\": \"0.250518\"}, \"0.571548\": {\"frequency\": 1, \"value\": \"0.571548\"}, \"0.15358\": {\"frequency\": 1, \"value\": \"0.15358\"}, \"0.576917\": {\"frequency\": 1, \"value\": \"0.576917\"}, \"0.189539\": {\"frequency\": 1, \"value\": \"0.189539\"}, \"0.468182\": {\"frequency\": 1, \"value\": \"0.468182\"}, \"0.41454\": {\"frequency\": 1, \"value\": \"0.41454\"}, \"0.200094\": {\"frequency\": 1, \"value\": \"0.200094\"}, \"0.397065\": {\"frequency\": 1, \"value\": \"0.397065\"}, \"0.504278\": {\"frequency\": 1, \"value\": \"0.504278\"}, \"0.457275\": {\"frequency\": 1, \"value\": \"0.457275\"}, \"0.31648\": {\"frequency\": 1, \"value\": \"0.31648\"}, \"0.458772\": {\"frequency\": 1, \"value\": \"0.458772\"}, \"0.370277\": {\"frequency\": 1, \"value\": \"0.370277\"}, \"0.441721\": {\"frequency\": 1, \"value\": \"0.441721\"}, \"0.394048\": {\"frequency\": 1, \"value\": \"0.394048\"}, \"0.494582\": {\"frequency\": 1, \"value\": \"0.494582\"}, \"0.149938\": {\"frequency\": 1, \"value\": \"0.149938\"}, \"0.550274\": {\"frequency\": 1, \"value\": \"0.550274\"}, \"0.341048\": {\"frequency\": 1, \"value\": \"0.341048\"}, \"0.446963\": {\"frequency\": 1, \"value\": \"0.446963\"}, \"0.311634\": {\"frequency\": 1, \"value\": \"0.311634\"}, \"0.360226\": {\"frequency\": 1, \"value\": \"0.360226\"}, \"0.298934\": {\"frequency\": 1, \"value\": \"0.298934\"}, \"0.73366\": {\"frequency\": 1, \"value\": \"0.73366\"}, \"0.486686\": {\"frequency\": 1, \"value\": \"0.486686\"}, \"0.764914\": {\"frequency\": 1, \"value\": \"0.764914\"}, \"0.289107\": {\"frequency\": 1, \"value\": \"0.289107\"}, \"0.364252\": {\"frequency\": 1, \"value\": \"0.364252\"}, \"0.457897\": {\"frequency\": 1, \"value\": \"0.457897\"}, \"0.322822\": {\"frequency\": 1, \"value\": \"0.322822\"}, \"0.298445\": {\"frequency\": 1, \"value\": \"0.298445\"}, \"0.382234\": {\"frequency\": 1, \"value\": \"0.382234\"}, \"0.406902\": {\"frequency\": 1, \"value\": \"0.406902\"}, \"0.431575\": {\"frequency\": 1, \"value\": \"0.431575\"}, \"0.321806\": {\"frequency\": 1, \"value\": \"0.321806\"}, \"0.374589\": {\"frequency\": 1, \"value\": \"0.374589\"}, \"0.4988\": {\"frequency\": 1, \"value\": \"0.4988\"}, \"0.455773\": {\"frequency\": 1, \"value\": \"0.455773\"}, \"0.358599\": {\"frequency\": 1, \"value\": \"0.358599\"}, \"0.351257\": {\"frequency\": 1, \"value\": \"0.351257\"}, \"0.382018\": {\"frequency\": 1, \"value\": \"0.382018\"}, \"0.417702\": {\"frequency\": 1, \"value\": \"0.417702\"}, \"0.64807\": {\"frequency\": 1, \"value\": \"0.64807\"}, \"0.323476\": {\"frequency\": 1, \"value\": \"0.323476\"}, \"0.454878\": {\"frequency\": 1, \"value\": \"0.454878\"}, \"0.0646169\": {\"frequency\": 1, \"value\": \"0.0646169\"}, \"0.521269\": {\"frequency\": 1, \"value\": \"0.521269\"}, \"0.230169\": {\"frequency\": 1, \"value\": \"0.230169\"}, \"0.634748\": {\"frequency\": 1, \"value\": \"0.634748\"}, \"0.733788\": {\"frequency\": 1, \"value\": \"0.733788\"}, \"0.561943\": {\"frequency\": 1, \"value\": \"0.561943\"}, \"0.363312\": {\"frequency\": 1, \"value\": \"0.363312\"}, \"0.466219\": {\"frequency\": 1, \"value\": \"0.466219\"}, \"0.362778\": {\"frequency\": 1, \"value\": \"0.362778\"}, \"0.693089\": {\"frequency\": 1, \"value\": \"0.693089\"}, \"0.378946\": {\"frequency\": 1, \"value\": \"0.378946\"}, \"0.372776\": {\"frequency\": 1, \"value\": \"0.372776\"}, \"0.455653\": {\"frequency\": 1, \"value\": \"0.455653\"}, \"0.534268\": {\"frequency\": 1, \"value\": \"0.534268\"}, \"0.372261\": {\"frequency\": 1, \"value\": \"0.372261\"}, \"0.495181\": {\"frequency\": 1, \"value\": \"0.495181\"}, \"0.371276\": {\"frequency\": 1, \"value\": \"0.371276\"}, \"0.353354\": {\"frequency\": 1, \"value\": \"0.353354\"}, \"0.446479\": {\"frequency\": 1, \"value\": \"0.446479\"}, \"0.363954\": {\"frequency\": 1, \"value\": \"0.363954\"}, \"0.356212\": {\"frequency\": 1, \"value\": \"0.356212\"}, \"0.295899\": {\"frequency\": 1, \"value\": \"0.295899\"}, \"0.411125\": {\"frequency\": 1, \"value\": \"0.411125\"}, \"0.565891\": {\"frequency\": 1, \"value\": \"0.565891\"}, \"0.421545\": {\"frequency\": 1, \"value\": \"0.421545\"}, \"0.767786\": {\"frequency\": 1, \"value\": \"0.767786\"}, \"0.426268\": {\"frequency\": 1, \"value\": \"0.426268\"}, \"0.606827\": {\"frequency\": 1, \"value\": \"0.606827\"}, \"0.476278\": {\"frequency\": 1, \"value\": \"0.476278\"}, \"0.420145\": {\"frequency\": 1, \"value\": \"0.420145\"}, \"0.495611\": {\"frequency\": 1, \"value\": \"0.495611\"}, \"0.541404\": {\"frequency\": 1, \"value\": \"0.541404\"}, \"0.533238\": {\"frequency\": 1, \"value\": \"0.533238\"}, \"0.723292\": {\"frequency\": 1, \"value\": \"0.723292\"}, \"0.0806264\": {\"frequency\": 1, \"value\": \"0.0806264\"}, \"0.510033\": {\"frequency\": 1, \"value\": \"0.510033\"}, \"0.450178\": {\"frequency\": 1, \"value\": \"0.450178\"}, \"0.598192\": {\"frequency\": 1, \"value\": \"0.598192\"}, \"0.371514\": {\"frequency\": 1, \"value\": \"0.371514\"}, \"0.482326\": {\"frequency\": 1, \"value\": \"0.482326\"}, \"0.37663\": {\"frequency\": 1, \"value\": \"0.37663\"}, \"0.230882\": {\"frequency\": 1, \"value\": \"0.230882\"}, \"0.525011\": {\"frequency\": 1, \"value\": \"0.525011\"}, \"0.896743\": {\"frequency\": 1, \"value\": \"0.896743\"}, \"0.410385\": {\"frequency\": 1, \"value\": \"0.410385\"}, \"0.482329\": {\"frequency\": 1, \"value\": \"0.482329\"}, \"0.370015\": {\"frequency\": 1, \"value\": \"0.370015\"}, \"0.501687\": {\"frequency\": 1, \"value\": \"0.501687\"}, \"0.55252\": {\"frequency\": 1, \"value\": \"0.55252\"}, \"0.470999\": {\"frequency\": 1, \"value\": \"0.470999\"}, \"0.349695\": {\"frequency\": 1, \"value\": \"0.349695\"}, \"0.288822\": {\"frequency\": 1, \"value\": \"0.288822\"}, \"0.168168\": {\"frequency\": 1, \"value\": \"0.168168\"}, \"0.458797\": {\"frequency\": 1, \"value\": \"0.458797\"}, \"0.0923221\": {\"frequency\": 1, \"value\": \"0.0923221\"}, \"0.623848\": {\"frequency\": 1, \"value\": \"0.623848\"}, \"0.588611\": {\"frequency\": 1, \"value\": \"0.588611\"}, \"0.605919\": {\"frequency\": 1, \"value\": \"0.605919\"}, \"0.356356\": {\"frequency\": 1, \"value\": \"0.356356\"}, \"0.517634\": {\"frequency\": 1, \"value\": \"0.517634\"}, \"0.288274\": {\"frequency\": 1, \"value\": \"0.288274\"}, \"0.388553\": {\"frequency\": 1, \"value\": \"0.388553\"}, \"0.26818\": {\"frequency\": 1, \"value\": \"0.26818\"}, \"0.22582\": {\"frequency\": 1, \"value\": \"0.22582\"}, \"0.496692\": {\"frequency\": 1, \"value\": \"0.496692\"}, \"0.778516\": {\"frequency\": 1, \"value\": \"0.778516\"}, \"0.282116\": {\"frequency\": 3, \"value\": \"0.282116\"}, \"0.325053\": {\"frequency\": 1, \"value\": \"0.325053\"}, \"0.445597\": {\"frequency\": 1, \"value\": \"0.445597\"}, \"0.572856\": {\"frequency\": 1, \"value\": \"0.572856\"}, \"0.420162\": {\"frequency\": 1, \"value\": \"0.420162\"}, \"0.292347\": {\"frequency\": 1, \"value\": \"0.292347\"}, \"0.352522\": {\"frequency\": 1, \"value\": \"0.352522\"}, \"0.357735\": {\"frequency\": 1, \"value\": \"0.357735\"}, \"0.217014\": {\"frequency\": 1, \"value\": \"0.217014\"}, \"0.421962\": {\"frequency\": 1, \"value\": \"0.421962\"}, \"0.383017\": {\"frequency\": 1, \"value\": \"0.383017\"}, \"0.270772\": {\"frequency\": 1, \"value\": \"0.270772\"}, \"0.563252\": {\"frequency\": 1, \"value\": \"0.563252\"}, \"0.423407\": {\"frequency\": 1, \"value\": \"0.423407\"}, \"0.275093\": {\"frequency\": 1, \"value\": \"0.275093\"}, \"0.0777318\": {\"frequency\": 1, \"value\": \"0.0777318\"}, \"0.278965\": {\"frequency\": 1, \"value\": \"0.278965\"}, \"0.291595\": {\"frequency\": 1, \"value\": \"0.291595\"}, \"0.370704\": {\"frequency\": 1, \"value\": \"0.370704\"}, \"0.342989\": {\"frequency\": 1, \"value\": \"0.342989\"}, \"0.242654\": {\"frequency\": 1, \"value\": \"0.242654\"}, \"0.319569\": {\"frequency\": 1, \"value\": \"0.319569\"}, \"0.61058\": {\"frequency\": 1, \"value\": \"0.61058\"}, \"0.428997\": {\"frequency\": 1, \"value\": \"0.428997\"}, \"0.416475\": {\"frequency\": 1, \"value\": \"0.416475\"}, \"0.226463\": {\"frequency\": 1, \"value\": \"0.226463\"}, \"0.24738\": {\"frequency\": 1, \"value\": \"0.24738\"}, \"0.448676\": {\"frequency\": 1, \"value\": \"0.448676\"}, \"0.434764\": {\"frequency\": 1, \"value\": \"0.434764\"}, \"0.549187\": {\"frequency\": 1, \"value\": \"0.549187\"}, \"0.342767\": {\"frequency\": 1, \"value\": \"0.342767\"}, \"0.632934\": {\"frequency\": 1, \"value\": \"0.632934\"}, \"0.541571\": {\"frequency\": 1, \"value\": \"0.541571\"}, \"0.43563\": {\"frequency\": 1, \"value\": \"0.43563\"}, \"0.539372\": {\"frequency\": 1, \"value\": \"0.539372\"}, \"0.747439\": {\"frequency\": 1, \"value\": \"0.747439\"}, \"0.371944\": {\"frequency\": 1, \"value\": \"0.371944\"}, \"0.310266\": {\"frequency\": 1, \"value\": \"0.310266\"}, \"0.480988\": {\"frequency\": 1, \"value\": \"0.480988\"}, \"0.425641\": {\"frequency\": 1, \"value\": \"0.425641\"}, \"0.716125\": {\"frequency\": 1, \"value\": \"0.716125\"}, \"0.458643\": {\"frequency\": 1, \"value\": \"0.458643\"}, \"0.310683\": {\"frequency\": 1, \"value\": \"0.310683\"}, \"0.129795\": {\"frequency\": 1, \"value\": \"0.129795\"}, \"0.553208\": {\"frequency\": 1, \"value\": \"0.553208\"}, \"0.450354\": {\"frequency\": 1, \"value\": \"0.450354\"}, \"0.76077\": {\"frequency\": 1, \"value\": \"0.76077\"}, \"0.144076\": {\"frequency\": 1, \"value\": \"0.144076\"}, \"0.320904\": {\"frequency\": 1, \"value\": \"0.320904\"}, \"0.600562\": {\"frequency\": 1, \"value\": \"0.600562\"}, \"0.306537\": {\"frequency\": 1, \"value\": \"0.306537\"}, \"0.277564\": {\"frequency\": 1, \"value\": \"0.277564\"}, \"0.40724\": {\"frequency\": 1, \"value\": \"0.40724\"}, \"0.338111\": {\"frequency\": 1, \"value\": \"0.338111\"}, \"0.456512\": {\"frequency\": 1, \"value\": \"0.456512\"}, \"0.294412\": {\"frequency\": 1, \"value\": \"0.294412\"}, \"0.482692\": {\"frequency\": 1, \"value\": \"0.482692\"}, \"0.390396\": {\"frequency\": 1, \"value\": \"0.390396\"}, \"0.578992\": {\"frequency\": 1, \"value\": \"0.578992\"}, \"0.684848\": {\"frequency\": 1, \"value\": \"0.684848\"}, \"0.477873\": {\"frequency\": 1, \"value\": \"0.477873\"}, \"0.602635\": {\"frequency\": 1, \"value\": \"0.602635\"}, \"0.244799\": {\"frequency\": 1, \"value\": \"0.244799\"}, \"0.60878\": {\"frequency\": 1, \"value\": \"0.60878\"}, \"0.371194\": {\"frequency\": 1, \"value\": \"0.371194\"}, \"0.214431\": {\"frequency\": 1, \"value\": \"0.214431\"}, \"0.424609\": {\"frequency\": 1, \"value\": \"0.424609\"}, \"0.439189\": {\"frequency\": 1, \"value\": \"0.439189\"}, \"0.403163\": {\"frequency\": 1, \"value\": \"0.403163\"}, \"0.325129\": {\"frequency\": 1, \"value\": \"0.325129\"}, \"0.177257\": {\"frequency\": 1, \"value\": \"0.177257\"}, \"0.310306\": {\"frequency\": 1, \"value\": \"0.310306\"}, \"0.377049\": {\"frequency\": 1, \"value\": \"0.377049\"}, \"0.523564\": {\"frequency\": 1, \"value\": \"0.523564\"}, \"0.342968\": {\"frequency\": 1, \"value\": \"0.342968\"}, \"0.645515\": {\"frequency\": 1, \"value\": \"0.645515\"}, \"0.475013\": {\"frequency\": 1, \"value\": \"0.475013\"}, \"0.239275\": {\"frequency\": 1, \"value\": \"0.239275\"}, \"0.444458\": {\"frequency\": 1, \"value\": \"0.444458\"}, \"0.439217\": {\"frequency\": 1, \"value\": \"0.439217\"}, \"0.498199\": {\"frequency\": 1, \"value\": \"0.498199\"}, \"0.481009\": {\"frequency\": 1, \"value\": \"0.481009\"}, \"0.435564\": {\"frequency\": 1, \"value\": \"0.435564\"}, \"0.457065\": {\"frequency\": 1, \"value\": \"0.457065\"}, \"0.565368\": {\"frequency\": 1, \"value\": \"0.565368\"}, \"0.217632\": {\"frequency\": 1, \"value\": \"0.217632\"}, \"0.448772\": {\"frequency\": 1, \"value\": \"0.448772\"}, \"0.509311\": {\"frequency\": 1, \"value\": \"0.509311\"}, \"0.244743\": {\"frequency\": 1, \"value\": \"0.244743\"}, \"0.444641\": {\"frequency\": 1, \"value\": \"0.444641\"}, \"0.239848\": {\"frequency\": 1, \"value\": \"0.239848\"}, \"0.320035\": {\"frequency\": 1, \"value\": \"0.320035\"}, \"0.457657\": {\"frequency\": 1, \"value\": \"0.457657\"}}, \"size\": 3984}, \"green\": {\"std\": 0.1320961936390992, \"complete\": true, \"min\": 0.07098508134624938, \"max\": 0.9374815538194444, \"quantile\": [0.07098508134624938, 0.14185438796936758, 0.16762346540178572, 0.1844621163523889, 0.1981743006177008, 0.20936584594075755, 0.22261242241585105, 0.23301478794642858, 0.23984848484848484, 0.24621366854822738, 0.25095654740687934, 0.2643481719234901, 0.26938510802469134, 0.2742224333820721, 0.27902857985593643, 0.2850783275365617, 0.29172007252897203, 0.2958989037508952, 0.3008149372826627, 0.3054517225977908, 0.310893411574764, 0.31373997992892216, 0.31861292225534027, 0.32294991233682496, 0.3291105053800366, 0.33335859995039685, 0.3399443601196391, 0.3442712214356682, 0.34934106222750694, 0.35298503239063805, 0.35605975223546943, 0.35851975468196473, 0.36151047207446807, 0.36458201574900795, 0.3676218632332541, 0.3716155908978175, 0.37431407786191934, 0.3778773176193692, 0.3820183899176955, 0.3853827880825354, 0.38871618822891374, 0.3916704299132948, 0.39388616345430427, 0.39820928539426526, 0.4015214223710317, 0.4049403098609041, 0.4081566691505216, 0.41248672739118325, 0.4146802036761053, 0.41653653570013865, 0.4215641047631847, 0.4244681609623016, 0.4267680389965226, 0.4299038573966087, 0.4338484700520833, 0.4371753912071535, 0.44137326130154, 0.44378770206822776, 0.4469715011510677, 0.45032149057539683, 0.45367206790123454, 0.4579850502980626, 0.46116942875544986, 0.46439074441249056, 0.46733819607530946, 0.47121465773809523, 0.47401184609222624, 0.47659564393939396, 0.4795125171655455, 0.4824345858134921, 0.4846849387276764, 0.4883208209359949, 0.49200874006458023, 0.49388769870839544, 0.4986705678177287, 0.5035788763035863, 0.5075953221316365, 0.5124453590029762, 0.515629699686774, 0.5219999224565757, 0.5260218764796402, 0.5307092958271237, 0.5366726953389325, 0.5415649838549429, 0.5478815045951316, 0.55462586934923, 0.5638806733630952, 0.5699833094335504, 0.5777355877831071, 0.5853357419227856, 0.5945656212841854, 0.6026354477148534, 0.6110126357451425, 0.6240035742894957, 0.637275366368604, 0.6534573143003399, 0.6685760744636389, 0.6927039865871834, 0.7182990709940592, 0.7659998456790124, 0.9374815538194444], \"median\": 0.4215641047631847, \"numeric\": true, \"num_unique\": 1328, \"num_undefined\": 0, \"var\": 0.017449404373938392, \"progress\": 1.0, \"size\": 1328, \"frequent_items\": {\"0.3061089515686035\": {\"frequency\": 1, \"value\": 0.3061089515686035}, \"0.2262634636202924\": {\"frequency\": 1, \"value\": 0.2262634636202924}, \"0.6734542858811019\": {\"frequency\": 1, \"value\": 0.6734542858811019}, \"0.5442774310730253\": {\"frequency\": 1, \"value\": 0.5442774310730253}, \"0.6462605032917533\": {\"frequency\": 1, \"value\": 0.6462605032917533}, \"0.6062376543209876\": {\"frequency\": 1, \"value\": 0.6062376543209876}, \"0.6070051244081722\": {\"frequency\": 1, \"value\": 0.6070051244081722}, \"0.5395684302036761\": {\"frequency\": 1, \"value\": 0.5395684302036761}, \"0.454991582397838\": {\"frequency\": 1, \"value\": 0.454991582397838}, \"0.36958992890408243\": {\"frequency\": 1, \"value\": 0.36958992890408243}, \"0.35687888102334825\": {\"frequency\": 1, \"value\": 0.35687888102334825}, \"0.41047239816194736\": {\"frequency\": 1, \"value\": 0.41047239816194736}, \"0.41849358966385386\": {\"frequency\": 1, \"value\": 0.41849358966385386}, \"0.4895770609457345\": {\"frequency\": 1, \"value\": 0.4895770609457345}, \"0.4566289992559524\": {\"frequency\": 1, \"value\": 0.4566289992559524}, \"0.4244681609623016\": {\"frequency\": 1, \"value\": 0.4244681609623016}, \"0.5491869598765432\": {\"frequency\": 1, \"value\": 0.5491869598765432}, \"0.20259035022354693\": {\"frequency\": 1, \"value\": 0.20259035022354693}, \"0.35295911772586536\": {\"frequency\": 1, \"value\": 0.35295911772586536}, \"0.5137746505940771\": {\"frequency\": 1, \"value\": 0.5137746505940771}, \"0.5227773379284649\": {\"frequency\": 1, \"value\": 0.5227773379284649}, \"0.4459642982858037\": {\"frequency\": 1, \"value\": 0.4459642982858037}, \"0.38072908925386445\": {\"frequency\": 1, \"value\": 0.38072908925386445}, \"0.39297616663515506\": {\"frequency\": 1, \"value\": 0.39297616663515506}, \"0.4117109879533035\": {\"frequency\": 1, \"value\": 0.4117109879533035}, \"0.4359676951896668\": {\"frequency\": 1, \"value\": 0.4359676951896668}, \"0.25095654740687934\": {\"frequency\": 1, \"value\": 0.25095654740687934}, \"0.3978458768007948\": {\"frequency\": 1, \"value\": 0.3978458768007948}, \"0.6410529992548435\": {\"frequency\": 1, \"value\": 0.6410529992548435}, \"0.5539913220317934\": {\"frequency\": 1, \"value\": 0.5539913220317934}, \"0.47346304622473245\": {\"frequency\": 1, \"value\": 0.47346304622473245}, \"0.4471492900545635\": {\"frequency\": 1, \"value\": 0.4471492900545635}, \"0.35605975223546943\": {\"frequency\": 1, \"value\": 0.35605975223546943}, \"0.4709351086404888\": {\"frequency\": 1, \"value\": 0.4709351086404888}, \"0.40055598331210446\": {\"frequency\": 1, \"value\": 0.40055598331210446}, \"0.21902514260912698\": {\"frequency\": 1, \"value\": 0.21902514260912698}, \"0.197267957275206\": {\"frequency\": 1, \"value\": 0.197267957275206}, \"0.7454665023561508\": {\"frequency\": 1, \"value\": 0.7454665023561508}, \"0.5738883335322671\": {\"frequency\": 1, \"value\": 0.5738883335322671}, \"0.445193942677029\": {\"frequency\": 1, \"value\": 0.445193942677029}, \"0.5961871498477491\": {\"frequency\": 1, \"value\": 0.5961871498477491}, \"0.2876930421013413\": {\"frequency\": 1, \"value\": 0.2876930421013413}, \"0.39104594684988464\": {\"frequency\": 1, \"value\": 0.39104594684988464}, \"0.27202822730654763\": {\"frequency\": 1, \"value\": 0.27202822730654763}, \"0.39184989543876264\": {\"frequency\": 1, \"value\": 0.39184989543876264}, \"0.3562429157262216\": {\"frequency\": 1, \"value\": 0.3562429157262216}, \"0.3122610065822156\": {\"frequency\": 1, \"value\": 0.3122610065822156}, \"0.5159202067057291\": {\"frequency\": 1, \"value\": 0.5159202067057291}, \"0.4071272786458333\": {\"frequency\": 1, \"value\": 0.4071272786458333}, \"0.4841053712098692\": {\"frequency\": 1, \"value\": 0.4841053712098692}, \"0.2665382385253906\": {\"frequency\": 1, \"value\": 0.2665382385253906}, \"0.14494128204491255\": {\"frequency\": 1, \"value\": 0.14494128204491255}, \"0.4155476928511722\": {\"frequency\": 1, \"value\": 0.4155476928511722}, \"0.38659241230677766\": {\"frequency\": 1, \"value\": 0.38659241230677766}, \"0.29198529776060245\": {\"frequency\": 1, \"value\": 0.29198529776060245}, \"0.3987702379293874\": {\"frequency\": 1, \"value\": 0.3987702379293874}, \"0.5958027131512956\": {\"frequency\": 1, \"value\": 0.5958027131512956}, \"0.5369928389822075\": {\"frequency\": 1, \"value\": 0.5369928389822075}, \"0.31465151475590836\": {\"frequency\": 1, \"value\": 0.31465151475590836}, \"0.23366738655804886\": {\"frequency\": 1, \"value\": 0.23366738655804886}, \"0.6418080854694901\": {\"frequency\": 1, \"value\": 0.6418080854694901}, \"0.6466336779682067\": {\"frequency\": 1, \"value\": 0.6466336779682067}, \"0.48390426912092505\": {\"frequency\": 1, \"value\": 0.48390426912092505}, \"0.4543185504736884\": {\"frequency\": 1, \"value\": 0.4543185504736884}, \"0.5108729297911961\": {\"frequency\": 1, \"value\": 0.5108729297911961}, \"0.37720182327946505\": {\"frequency\": 1, \"value\": 0.37720182327946505}, \"0.31373997992892216\": {\"frequency\": 1, \"value\": 0.31373997992892216}, \"0.3716155908978175\": {\"frequency\": 1, \"value\": 0.3716155908978175}, \"0.3596854258299168\": {\"frequency\": 1, \"value\": 0.3596854258299168}, \"0.12682945956581135\": {\"frequency\": 1, \"value\": 0.12682945956581135}, \"0.6801443672839507\": {\"frequency\": 1, \"value\": 0.6801443672839507}, \"0.5585356339164402\": {\"frequency\": 1, \"value\": 0.5585356339164402}, \"0.35117331097863885\": {\"frequency\": 1, \"value\": 0.35117331097863885}, \"0.5929773445581682\": {\"frequency\": 1, \"value\": 0.5929773445581682}, \"0.3152836861891571\": {\"frequency\": 1, \"value\": 0.3152836861891571}, \"0.2923465079706278\": {\"frequency\": 1, \"value\": 0.2923465079706278}, \"0.5431181693989071\": {\"frequency\": 1, \"value\": 0.5431181693989071}, \"0.4841754349848744\": {\"frequency\": 1, \"value\": 0.4841754349848744}, \"0.5853357419227856\": {\"frequency\": 1, \"value\": 0.5853357419227856}, \"0.48423186097517307\": {\"frequency\": 1, \"value\": 0.48423186097517307}, \"0.18219019556811422\": {\"frequency\": 1, \"value\": 0.18219019556811422}, \"0.33193662986582495\": {\"frequency\": 1, \"value\": 0.33193662986582495}, \"0.36309531585941235\": {\"frequency\": 1, \"value\": 0.36309531585941235}, \"0.5702365095628416\": {\"frequency\": 1, \"value\": 0.5702365095628416}, \"0.347896370236609\": {\"frequency\": 1, \"value\": 0.347896370236609}, \"0.31308833092126204\": {\"frequency\": 1, \"value\": 0.31308833092126204}, \"0.2668522931386948\": {\"frequency\": 1, \"value\": 0.2668522931386948}, \"0.5032776072668651\": {\"frequency\": 1, \"value\": 0.5032776072668651}, \"0.1831797530836699\": {\"frequency\": 1, \"value\": 0.1831797530836699}, \"0.5099903858535233\": {\"frequency\": 1, \"value\": 0.5099903858535233}, \"0.35547665299706444\": {\"frequency\": 1, \"value\": 0.35547665299706444}, \"0.1577876984126984\": {\"frequency\": 1, \"value\": 0.1577876984126984}, \"0.49388769870839544\": {\"frequency\": 1, \"value\": 0.49388769870839544}, \"0.5269940618285988\": {\"frequency\": 1, \"value\": 0.5269940618285988}, \"0.31336511861640726\": {\"frequency\": 1, \"value\": 0.31336511861640726}, \"0.39120689740739273\": {\"frequency\": 1, \"value\": 0.39120689740739273}, \"0.2616784953428458\": {\"frequency\": 1, \"value\": 0.2616784953428458}, \"0.48440992921013415\": {\"frequency\": 1, \"value\": 0.48440992921013415}, \"0.5496095149365123\": {\"frequency\": 1, \"value\": 0.5496095149365123}, \"0.5839813532658283\": {\"frequency\": 1, \"value\": 0.5839813532658283}, \"0.4613328371145986\": {\"frequency\": 1, \"value\": 0.4613328371145986}, \"0.3940478956041233\": {\"frequency\": 1, \"value\": 0.3940478956041233}, \"0.31413344510680574\": {\"frequency\": 1, \"value\": 0.31413344510680574}, \"0.5604070027669271\": {\"frequency\": 1, \"value\": 0.5604070027669271}, \"0.5981918181298014\": {\"frequency\": 1, \"value\": 0.5981918181298014}, \"0.44338528364318525\": {\"frequency\": 1, \"value\": 0.44338528364318525}, \"0.2850783275365617\": {\"frequency\": 1, \"value\": 0.2850783275365617}, \"0.43431941760800635\": {\"frequency\": 1, \"value\": 0.43431941760800635}, \"0.3249587962962963\": {\"frequency\": 1, \"value\": 0.3249587962962963}, \"0.27734677269345237\": {\"frequency\": 1, \"value\": 0.27734677269345237}, \"0.3659118852459016\": {\"frequency\": 1, \"value\": 0.3659118852459016}, \"0.5448494838232798\": {\"frequency\": 1, \"value\": 0.5448494838232798}, \"0.39010326524826927\": {\"frequency\": 1, \"value\": 0.39010326524826927}, \"0.7134436074513394\": {\"frequency\": 1, \"value\": 0.7134436074513394}, \"0.35193853134698017\": {\"frequency\": 1, \"value\": 0.35193853134698017}, \"0.3995802859042553\": {\"frequency\": 1, \"value\": 0.3995802859042553}, \"0.55462586934923\": {\"frequency\": 1, \"value\": 0.55462586934923}, \"0.6639703248517786\": {\"frequency\": 1, \"value\": 0.6639703248517786}, \"0.7033153521825397\": {\"frequency\": 1, \"value\": 0.7033153521825397}, \"0.43911175765235044\": {\"frequency\": 1, \"value\": 0.43911175765235044}, \"0.4578967573289416\": {\"frequency\": 1, \"value\": 0.4578967573289416}, \"0.49362366287796583\": {\"frequency\": 1, \"value\": 0.49362366287796583}, \"0.3716305982620321\": {\"frequency\": 1, \"value\": 0.3716305982620321}, \"0.2821164629036417\": {\"frequency\": 1, \"value\": 0.2821164629036417}, \"0.4424443745297775\": {\"frequency\": 1, \"value\": 0.4424443745297775}, \"0.31670050919026327\": {\"frequency\": 1, \"value\": 0.31670050919026327}, \"0.35896461333976565\": {\"frequency\": 1, \"value\": 0.35896461333976565}, \"0.3397244698660714\": {\"frequency\": 1, \"value\": 0.3397244698660714}, \"0.5366726953389325\": {\"frequency\": 1, \"value\": 0.5366726953389325}, \"0.39700334488670247\": {\"frequency\": 1, \"value\": 0.39700334488670247}, \"0.48879535242127153\": {\"frequency\": 1, \"value\": 0.48879535242127153}, \"0.32723670480713873\": {\"frequency\": 1, \"value\": 0.32723670480713873}, \"0.4384007980624156\": {\"frequency\": 1, \"value\": 0.4384007980624156}, \"0.6458606101778656\": {\"frequency\": 1, \"value\": 0.6458606101778656}, \"0.31053560323383084\": {\"frequency\": 1, \"value\": 0.31053560323383084}, \"0.3510981141083791\": {\"frequency\": 1, \"value\": 0.3510981141083791}, \"0.35476113975395224\": {\"frequency\": 1, \"value\": 0.35476113975395224}, \"0.2739760044642857\": {\"frequency\": 1, \"value\": 0.2739760044642857}, \"0.439968998015873\": {\"frequency\": 1, \"value\": 0.439968998015873}, \"0.45032149057539683\": {\"frequency\": 1, \"value\": 0.45032149057539683}, \"0.3561418608757062\": {\"frequency\": 1, \"value\": 0.3561418608757062}, \"0.28509983364168057\": {\"frequency\": 1, \"value\": 0.28509983364168057}, \"0.1765992921013413\": {\"frequency\": 1, \"value\": 0.1765992921013413}, \"0.3265067901234568\": {\"frequency\": 1, \"value\": 0.3265067901234568}, \"0.49248593765487164\": {\"frequency\": 1, \"value\": 0.49248593765487164}, \"0.48481517807387653\": {\"frequency\": 1, \"value\": 0.48481517807387653}, \"0.6531592571924603\": {\"frequency\": 1, \"value\": 0.6531592571924603}, \"0.24637719918003423\": {\"frequency\": 1, \"value\": 0.24637719918003423}, \"0.2960868464653903\": {\"frequency\": 1, \"value\": 0.2960868464653903}, \"0.45688897294960473\": {\"frequency\": 1, \"value\": 0.45688897294960473}, \"0.3391714686761229\": {\"frequency\": 1, \"value\": 0.3391714686761229}, \"0.35621189062159325\": {\"frequency\": 1, \"value\": 0.35621189062159325}, \"0.4600843789550704\": {\"frequency\": 1, \"value\": 0.4600843789550704}, \"0.4133173828125\": {\"frequency\": 1, \"value\": 0.4133173828125}, \"0.34956818950425717\": {\"frequency\": 1, \"value\": 0.34956818950425717}, \"0.31317684088286785\": {\"frequency\": 1, \"value\": 0.31317684088286785}, \"0.3201259996419193\": {\"frequency\": 1, \"value\": 0.3201259996419193}, \"0.15549716502926422\": {\"frequency\": 1, \"value\": 0.15549716502926422}, \"0.3322635323660714\": {\"frequency\": 1, \"value\": 0.3322635323660714}, \"0.3914049304520616\": {\"frequency\": 1, \"value\": 0.3914049304520616}, \"0.3349727552160954\": {\"frequency\": 1, \"value\": 0.3349727552160954}, \"0.46204203764060575\": {\"frequency\": 1, \"value\": 0.46204203764060575}, \"0.2509223865327381\": {\"frequency\": 1, \"value\": 0.2509223865327381}, \"0.48050532149796854\": {\"frequency\": 1, \"value\": 0.48050532149796854}, \"0.4807750630822981\": {\"frequency\": 1, \"value\": 0.4807750630822981}, \"0.23970434364133134\": {\"frequency\": 1, \"value\": 0.23970434364133134}, \"0.2743718094475182\": {\"frequency\": 1, \"value\": 0.2743718094475182}, \"0.4793935799774293\": {\"frequency\": 1, \"value\": 0.4793935799774293}, \"0.4344411569148936\": {\"frequency\": 1, \"value\": 0.4344411569148936}, \"0.4434620815019403\": {\"frequency\": 1, \"value\": 0.4434620815019403}, \"0.4077181135121709\": {\"frequency\": 1, \"value\": 0.4077181135121709}, \"0.37685939828614007\": {\"frequency\": 1, \"value\": 0.37685939828614007}, \"0.47047705386035515\": {\"frequency\": 1, \"value\": 0.47047705386035515}, \"0.40838387632846396\": {\"frequency\": 1, \"value\": 0.40838387632846396}, \"0.611603839367031\": {\"frequency\": 1, \"value\": 0.611603839367031}, \"0.27094228062584547\": {\"frequency\": 1, \"value\": 0.27094228062584547}, \"0.29992062855594015\": {\"frequency\": 1, \"value\": 0.29992062855594015}, \"0.5478815045951316\": {\"frequency\": 1, \"value\": 0.5478815045951316}, \"0.4661740020349879\": {\"frequency\": 1, \"value\": 0.4661740020349879}, \"0.1746804470486111\": {\"frequency\": 1, \"value\": 0.1746804470486111}, \"0.230882083953373\": {\"frequency\": 1, \"value\": 0.230882083953373}, \"0.5474184978655018\": {\"frequency\": 1, \"value\": 0.5474184978655018}, \"0.4652544970239278\": {\"frequency\": 1, \"value\": 0.4652544970239278}, \"0.38351503487451266\": {\"frequency\": 1, \"value\": 0.38351503487451266}, \"0.6531869411326379\": {\"frequency\": 1, \"value\": 0.6531869411326379}, \"0.3149994140625\": {\"frequency\": 1, \"value\": 0.3149994140625}, \"0.6207835786140089\": {\"frequency\": 1, \"value\": 0.6207835786140089}, \"0.4947676196808511\": {\"frequency\": 1, \"value\": 0.4947676196808511}, \"0.5601421440972222\": {\"frequency\": 1, \"value\": 0.5601421440972222}, \"0.33335859995039685\": {\"frequency\": 1, \"value\": 0.33335859995039685}, \"0.4836805607173297\": {\"frequency\": 1, \"value\": 0.4836805607173297}, \"0.39388616345430427\": {\"frequency\": 1, \"value\": 0.39388616345430427}, \"0.4824345858134921\": {\"frequency\": 1, \"value\": 0.4824345858134921}, \"0.6279731844325916\": {\"frequency\": 1, \"value\": 0.6279731844325916}, \"0.3178330388144841\": {\"frequency\": 1, \"value\": 0.3178330388144841}, \"0.18212628244039328\": {\"frequency\": 1, \"value\": 0.18212628244039328}, \"0.2837452468539437\": {\"frequency\": 1, \"value\": 0.2837452468539437}, \"0.13002548527393173\": {\"frequency\": 1, \"value\": 0.13002548527393173}, \"0.2457117233212594\": {\"frequency\": 1, \"value\": 0.2457117233212594}, \"0.5260218764796402\": {\"frequency\": 1, \"value\": 0.5260218764796402}, \"0.49545105253353205\": {\"frequency\": 1, \"value\": 0.49545105253353205}, \"0.7785159742921013\": {\"frequency\": 1, \"value\": 0.7785159742921013}, \"0.42981525274528526\": {\"frequency\": 1, \"value\": 0.42981525274528526}, \"0.28677841067447046\": {\"frequency\": 1, \"value\": 0.28677841067447046}, \"0.41453989426560756\": {\"frequency\": 1, \"value\": 0.41453989426560756}, \"0.47969408933415275\": {\"frequency\": 1, \"value\": 0.47969408933415275}, \"0.12636039711530847\": {\"frequency\": 1, \"value\": 0.12636039711530847}, \"0.4788744066691876\": {\"frequency\": 1, \"value\": 0.4788744066691876}, \"0.36345883377873606\": {\"frequency\": 1, \"value\": 0.36345883377873606}, \"0.4875912293597054\": {\"frequency\": 1, \"value\": 0.4875912293597054}, \"0.4979056946075309\": {\"frequency\": 1, \"value\": 0.4979056946075309}, \"0.4608342291766205\": {\"frequency\": 1, \"value\": 0.4608342291766205}, \"0.35024448642774725\": {\"frequency\": 1, \"value\": 0.35024448642774725}, \"0.5519878152020863\": {\"frequency\": 1, \"value\": 0.5519878152020863}, \"0.3463899739583333\": {\"frequency\": 1, \"value\": 0.3463899739583333}, \"0.5891833550670641\": {\"frequency\": 1, \"value\": 0.5891833550670641}, \"0.34601399739583333\": {\"frequency\": 1, \"value\": 0.34601399739583333}, \"0.23337797619047618\": {\"frequency\": 1, \"value\": 0.23337797619047618}, \"0.6282634062920726\": {\"frequency\": 1, \"value\": 0.6282634062920726}, \"0.2989344262295082\": {\"frequency\": 1, \"value\": 0.2989344262295082}, \"0.37149378345227474\": {\"frequency\": 1, \"value\": 0.37149378345227474}, \"0.36525823150413783\": {\"frequency\": 1, \"value\": 0.36525823150413783}, \"0.43720456737444463\": {\"frequency\": 1, \"value\": 0.43720456737444463}, \"0.40372845362103177\": {\"frequency\": 1, \"value\": 0.40372845362103177}, \"0.24039851065627546\": {\"frequency\": 1, \"value\": 0.24039851065627546}, \"0.48384866002225846\": {\"frequency\": 1, \"value\": 0.48384866002225846}, \"0.3541247364831349\": {\"frequency\": 1, \"value\": 0.3541247364831349}, \"0.36224850968703426\": {\"frequency\": 1, \"value\": 0.36224850968703426}, \"0.5600211024260637\": {\"frequency\": 1, \"value\": 0.5600211024260637}, \"0.5005371868799603\": {\"frequency\": 1, \"value\": 0.5005371868799603}, \"0.30510494171626984\": {\"frequency\": 1, \"value\": 0.30510494171626984}, \"0.43118009052579365\": {\"frequency\": 1, \"value\": 0.43118009052579365}, \"0.37692598530319316\": {\"frequency\": 1, \"value\": 0.37692598530319316}, \"0.3743029549116734\": {\"frequency\": 1, \"value\": 0.3743029549116734}, \"0.43395349555335966\": {\"frequency\": 1, \"value\": 0.43395349555335966}, \"0.3432535846025702\": {\"frequency\": 1, \"value\": 0.3432535846025702}, \"0.24265423186785892\": {\"frequency\": 1, \"value\": 0.24265423186785892}, \"0.2937807764212322\": {\"frequency\": 1, \"value\": 0.2937807764212322}, \"0.2936540570175439\": {\"frequency\": 1, \"value\": 0.2936540570175439}, \"0.40792864140476004\": {\"frequency\": 1, \"value\": 0.40792864140476004}, \"0.3410482146588783\": {\"frequency\": 1, \"value\": 0.3410482146588783}, \"0.32992193507304884\": {\"frequency\": 1, \"value\": 0.32992193507304884}, \"0.4823263630153999\": {\"frequency\": 1, \"value\": 0.4823263630153999}, \"0.4461137999157749\": {\"frequency\": 1, \"value\": 0.4461137999157749}, \"0.09232210490272809\": {\"frequency\": 1, \"value\": 0.09232210490272809}, \"0.43290493432111216\": {\"frequency\": 1, \"value\": 0.43290493432111216}, \"0.2600799558118485\": {\"frequency\": 1, \"value\": 0.2600799558118485}, \"0.4984191815697963\": {\"frequency\": 1, \"value\": 0.4984191815697963}, \"0.22710560581140352\": {\"frequency\": 1, \"value\": 0.22710560581140352}, \"0.37194392697466466\": {\"frequency\": 1, \"value\": 0.37194392697466466}, \"0.36451432820084345\": {\"frequency\": 1, \"value\": 0.36451432820084345}, \"0.5945656212841854\": {\"frequency\": 1, \"value\": 0.5945656212841854}, \"0.42037576068057625\": {\"frequency\": 1, \"value\": 0.42037576068057625}, \"0.2819982549783162\": {\"frequency\": 1, \"value\": 0.2819982549783162}, \"0.3929642222729438\": {\"frequency\": 1, \"value\": 0.3929642222729438}, \"0.15318305121527778\": {\"frequency\": 1, \"value\": 0.15318305121527778}, \"0.6008982240437158\": {\"frequency\": 1, \"value\": 0.6008982240437158}, \"0.4322629537674641\": {\"frequency\": 1, \"value\": 0.4322629537674641}, \"0.524750907555521\": {\"frequency\": 1, \"value\": 0.524750907555521}, \"0.16786771020011948\": {\"frequency\": 1, \"value\": 0.16786771020011948}, \"0.23984848484848484\": {\"frequency\": 1, \"value\": 0.23984848484848484}, \"0.5360161598684472\": {\"frequency\": 1, \"value\": 0.5360161598684472}, \"0.33167860998885484\": {\"frequency\": 1, \"value\": 0.33167860998885484}, \"0.5494525528151495\": {\"frequency\": 1, \"value\": 0.5494525528151495}, \"0.4683475308412604\": {\"frequency\": 1, \"value\": 0.4683475308412604}, \"0.3681340039741679\": {\"frequency\": 1, \"value\": 0.3681340039741679}, \"0.4277064627063884\": {\"frequency\": 1, \"value\": 0.4277064627063884}, \"0.5369286880608275\": {\"frequency\": 1, \"value\": 0.5369286880608275}, \"0.3603334263392857\": {\"frequency\": 1, \"value\": 0.3603334263392857}, \"0.4073570804845422\": {\"frequency\": 1, \"value\": 0.4073570804845422}, \"0.27735517814850935\": {\"frequency\": 1, \"value\": 0.27735517814850935}, \"0.5246030970982143\": {\"frequency\": 1, \"value\": 0.5246030970982143}, \"0.6848482774071493\": {\"frequency\": 1, \"value\": 0.6848482774071493}, \"0.16520088176850473\": {\"frequency\": 1, \"value\": 0.16520088176850473}, \"0.64369937829804\": {\"frequency\": 1, \"value\": 0.64369937829804}, \"0.46645196143617024\": {\"frequency\": 1, \"value\": 0.46645196143617024}, \"0.45495583395429706\": {\"frequency\": 1, \"value\": 0.45495583395429706}, \"0.3419616083538188\": {\"frequency\": 1, \"value\": 0.3419616083538188}, \"0.4495996105411376\": {\"frequency\": 1, \"value\": 0.4495996105411376}, \"0.593540794914023\": {\"frequency\": 1, \"value\": 0.593540794914023}, \"0.4829754702295695\": {\"frequency\": 1, \"value\": 0.4829754702295695}, \"0.3000397556596642\": {\"frequency\": 1, \"value\": 0.3000397556596642}, \"0.4833775636369064\": {\"frequency\": 1, \"value\": 0.4833775636369064}, \"0.24621366854822738\": {\"frequency\": 1, \"value\": 0.24621366854822738}, \"0.16389387259290206\": {\"frequency\": 1, \"value\": 0.16389387259290206}, \"0.21253293172590854\": {\"frequency\": 1, \"value\": 0.21253293172590854}, \"0.32104848710317463\": {\"frequency\": 1, \"value\": 0.32104848710317463}, \"0.284740198784515\": {\"frequency\": 1, \"value\": 0.284740198784515}, \"0.5054282927994268\": {\"frequency\": 1, \"value\": 0.5054282927994268}, \"0.39039585810543004\": {\"frequency\": 1, \"value\": 0.39039585810543004}, \"0.13547014716840536\": {\"frequency\": 1, \"value\": 0.13547014716840536}, \"0.6334187815807273\": {\"frequency\": 1, \"value\": 0.6334187815807273}, \"0.24094974578373016\": {\"frequency\": 1, \"value\": 0.24094974578373016}, \"0.4158581415168018\": {\"frequency\": 1, \"value\": 0.4158581415168018}, \"0.6827888332770874\": {\"frequency\": 1, \"value\": 0.6827888332770874}, \"0.25343548487103174\": {\"frequency\": 1, \"value\": 0.25343548487103174}, \"0.5801572668719898\": {\"frequency\": 1, \"value\": 0.5801572668719898}, \"0.18700748363770192\": {\"frequency\": 1, \"value\": 0.18700748363770192}, \"0.2810045417906746\": {\"frequency\": 1, \"value\": 0.2810045417906746}, \"0.5370455166316768\": {\"frequency\": 1, \"value\": 0.5370455166316768}, \"0.5144328963997135\": {\"frequency\": 1, \"value\": 0.5144328963997135}, \"0.310893411574764\": {\"frequency\": 1, \"value\": 0.310893411574764}, \"0.27481104860945216\": {\"frequency\": 1, \"value\": 0.27481104860945216}, \"0.33259558285734186\": {\"frequency\": 1, \"value\": 0.33259558285734186}, \"0.48476791062970187\": {\"frequency\": 1, \"value\": 0.48476791062970187}, \"0.41675343075790144\": {\"frequency\": 1, \"value\": 0.41675343075790144}, \"0.5094034620225565\": {\"frequency\": 1, \"value\": 0.5094034620225565}, \"0.5479636143698644\": {\"frequency\": 1, \"value\": 0.5479636143698644}, \"0.4866998173556664\": {\"frequency\": 1, \"value\": 0.4866998173556664}, \"0.6378178558122206\": {\"frequency\": 1, \"value\": 0.6378178558122206}, \"0.4069017154350595\": {\"frequency\": 1, \"value\": 0.4069017154350595}, \"0.47132539647184607\": {\"frequency\": 1, \"value\": 0.47132539647184607}, \"0.3563444415973411\": {\"frequency\": 1, \"value\": 0.3563444415973411}, \"0.6541988846035252\": {\"frequency\": 1, \"value\": 0.6541988846035252}, \"0.29277098191195194\": {\"frequency\": 1, \"value\": 0.29277098191195194}, \"0.41832006023348234\": {\"frequency\": 1, \"value\": 0.41832006023348234}, \"0.626795531426237\": {\"frequency\": 1, \"value\": 0.626795531426237}, \"0.4485974318851252\": {\"frequency\": 1, \"value\": 0.4485974318851252}, \"0.31287622640337803\": {\"frequency\": 1, \"value\": 0.31287622640337803}, \"0.3291105053800366\": {\"frequency\": 1, \"value\": 0.3291105053800366}, \"0.4215641047631847\": {\"frequency\": 1, \"value\": 0.4215641047631847}, \"0.29326331967213115\": {\"frequency\": 1, \"value\": 0.29326331967213115}, \"0.5144863204051383\": {\"frequency\": 1, \"value\": 0.5144863204051383}, \"0.4823653738839286\": {\"frequency\": 1, \"value\": 0.4823653738839286}, \"0.5043566313244048\": {\"frequency\": 1, \"value\": 0.5043566313244048}, \"0.4491152808779762\": {\"frequency\": 1, \"value\": 0.4491152808779762}, \"0.28221405029296875\": {\"frequency\": 1, \"value\": 0.28221405029296875}, \"0.7078363514011066\": {\"frequency\": 1, \"value\": 0.7078363514011066}, \"0.2832046798501373\": {\"frequency\": 1, \"value\": 0.2832046798501373}, \"0.4181498344370861\": {\"frequency\": 1, \"value\": 0.4181498344370861}, \"0.1981743006177008\": {\"frequency\": 1, \"value\": 0.1981743006177008}, \"0.6001722935267857\": {\"frequency\": 1, \"value\": 0.6001722935267857}, \"0.48906195794925167\": {\"frequency\": 1, \"value\": 0.48906195794925167}, \"0.34734667082238413\": {\"frequency\": 1, \"value\": 0.34734667082238413}, \"0.6280818137720757\": {\"frequency\": 1, \"value\": 0.6280818137720757}, \"0.2731903870255431\": {\"frequency\": 1, \"value\": 0.2731903870255431}, \"0.35298503239063805\": {\"frequency\": 1, \"value\": 0.35298503239063805}, \"0.22903377880826334\": {\"frequency\": 1, \"value\": 0.22903377880826334}, \"0.26938510802469134\": {\"frequency\": 1, \"value\": 0.26938510802469134}, \"0.3576874825932999\": {\"frequency\": 1, \"value\": 0.3576874825932999}, \"0.2596838572668651\": {\"frequency\": 1, \"value\": 0.2596838572668651}, \"0.07098508134624938\": {\"frequency\": 1, \"value\": 0.07098508134624938}, \"0.35493100730086735\": {\"frequency\": 1, \"value\": 0.35493100730086735}, \"0.3308564531610567\": {\"frequency\": 1, \"value\": 0.3308564531610567}, \"0.5256626823973503\": {\"frequency\": 1, \"value\": 0.5256626823973503}, \"0.4781454918032787\": {\"frequency\": 1, \"value\": 0.4781454918032787}, \"0.387487304300436\": {\"frequency\": 1, \"value\": 0.387487304300436}, \"0.2670364505712866\": {\"frequency\": 1, \"value\": 0.2670364505712866}, \"0.4740122685185185\": {\"frequency\": 1, \"value\": 0.4740122685185185}, \"0.5453518037984082\": {\"frequency\": 1, \"value\": 0.5453518037984082}, \"0.3030680552239994\": {\"frequency\": 1, \"value\": 0.3030680552239994}, \"0.5952127252666879\": {\"frequency\": 1, \"value\": 0.5952127252666879}, \"0.32630109548508096\": {\"frequency\": 1, \"value\": 0.32630109548508096}, \"0.5307092958271237\": {\"frequency\": 1, \"value\": 0.5307092958271237}, \"0.3516918567925089\": {\"frequency\": 1, \"value\": 0.3516918567925089}, \"0.6181109254965569\": {\"frequency\": 1, \"value\": 0.6181109254965569}, \"0.3009487549677099\": {\"frequency\": 1, \"value\": 0.3009487549677099}, \"0.3328114909339295\": {\"frequency\": 1, \"value\": 0.3328114909339295}, \"0.4267213510701546\": {\"frequency\": 1, \"value\": 0.4267213510701546}, \"0.39696885850694447\": {\"frequency\": 1, \"value\": 0.39696885850694447}, \"0.5089240421341609\": {\"frequency\": 1, \"value\": 0.5089240421341609}, \"0.3934804377480159\": {\"frequency\": 1, \"value\": 0.3934804377480159}, \"0.6580462810346875\": {\"frequency\": 1, \"value\": 0.6580462810346875}, \"0.7233207588176851\": {\"frequency\": 1, \"value\": 0.7233207588176851}, \"0.30903746543526694\": {\"frequency\": 1, \"value\": 0.30903746543526694}, \"0.5142236130909955\": {\"frequency\": 1, \"value\": 0.5142236130909955}, \"0.40818665738880716\": {\"frequency\": 1, \"value\": 0.40818665738880716}, \"0.6105797674568283\": {\"frequency\": 1, \"value\": 0.6105797674568283}, \"0.46648778521825396\": {\"frequency\": 1, \"value\": 0.46648778521825396}, \"0.373841068328373\": {\"frequency\": 1, \"value\": 0.373841068328373}, \"0.5653679801503992\": {\"frequency\": 1, \"value\": 0.5653679801503992}, \"0.4311868169398907\": {\"frequency\": 1, \"value\": 0.4311868169398907}, \"0.4528854073771304\": {\"frequency\": 1, \"value\": 0.4528854073771304}, \"0.3127055389965226\": {\"frequency\": 1, \"value\": 0.3127055389965226}, \"0.5002379882959861\": {\"frequency\": 1, \"value\": 0.5002379882959861}, \"0.5234888071286636\": {\"frequency\": 1, \"value\": 0.5234888071286636}, \"0.2705890178642476\": {\"frequency\": 1, \"value\": 0.2705890178642476}, \"0.2791681532576163\": {\"frequency\": 1, \"value\": 0.2791681532576163}, \"0.24614901577247889\": {\"frequency\": 1, \"value\": 0.24614901577247889}, \"0.529958774703459\": {\"frequency\": 1, \"value\": 0.529958774703459}, \"0.4785112394436165\": {\"frequency\": 1, \"value\": 0.4785112394436165}, \"0.48441722553402883\": {\"frequency\": 1, \"value\": 0.48441722553402883}, \"0.32294991233682496\": {\"frequency\": 1, \"value\": 0.32294991233682496}, \"0.5191793964232488\": {\"frequency\": 1, \"value\": 0.5191793964232488}, \"0.5679784367163555\": {\"frequency\": 1, \"value\": 0.5679784367163555}, \"0.19816370193264105\": {\"frequency\": 1, \"value\": 0.19816370193264105}, \"0.2998160329384499\": {\"frequency\": 1, \"value\": 0.2998160329384499}, \"0.5095351310233482\": {\"frequency\": 1, \"value\": 0.5095351310233482}, \"0.34376385689159733\": {\"frequency\": 1, \"value\": 0.34376385689159733}, \"0.6784772572875494\": {\"frequency\": 1, \"value\": 0.6784772572875494}, \"0.3724905499683557\": {\"frequency\": 1, \"value\": 0.3724905499683557}, \"0.27327516697998727\": {\"frequency\": 1, \"value\": 0.27327516697998727}, \"0.29695656923604014\": {\"frequency\": 1, \"value\": 0.29695656923604014}, \"0.5511046064660904\": {\"frequency\": 1, \"value\": 0.5511046064660904}, \"0.29467251972087377\": {\"frequency\": 1, \"value\": 0.29467251972087377}, \"0.4616610858675853\": {\"frequency\": 1, \"value\": 0.4616610858675853}, \"0.4605629195797251\": {\"frequency\": 1, \"value\": 0.4605629195797251}, \"0.35979989443616495\": {\"frequency\": 1, \"value\": 0.35979989443616495}, \"0.7001658137917329\": {\"frequency\": 1, \"value\": 0.7001658137917329}, \"0.19431157564148255\": {\"frequency\": 1, \"value\": 0.19431157564148255}, \"0.36245873897641695\": {\"frequency\": 1, \"value\": 0.36245873897641695}, \"0.4043447113948626\": {\"frequency\": 1, \"value\": 0.4043447113948626}, \"0.4920624831627155\": {\"frequency\": 1, \"value\": 0.4920624831627155}, \"0.5379486762152778\": {\"frequency\": 1, \"value\": 0.5379486762152778}, \"0.2687036140540915\": {\"frequency\": 1, \"value\": 0.2687036140540915}, \"0.3675358641732675\": {\"frequency\": 1, \"value\": 0.3675358641732675}, \"0.435106550980975\": {\"frequency\": 1, \"value\": 0.435106550980975}, \"0.30350462147887325\": {\"frequency\": 1, \"value\": 0.30350462147887325}, \"0.8466077559300874\": {\"frequency\": 1, \"value\": 0.8466077559300874}, \"0.603824826130154\": {\"frequency\": 1, \"value\": 0.603824826130154}, \"0.3673561692747144\": {\"frequency\": 1, \"value\": 0.3673561692747144}, \"0.6685760744636389\": {\"frequency\": 1, \"value\": 0.6685760744636389}, \"0.4963920479988457\": {\"frequency\": 1, \"value\": 0.4963920479988457}, \"0.4255730571142483\": {\"frequency\": 1, \"value\": 0.4255730571142483}, \"0.5951853538784585\": {\"frequency\": 1, \"value\": 0.5951853538784585}, \"0.38457580265070074\": {\"frequency\": 1, \"value\": 0.38457580265070074}, \"0.4340349808432922\": {\"frequency\": 1, \"value\": 0.4340349808432922}, \"0.4328445572528564\": {\"frequency\": 1, \"value\": 0.4328445572528564}, \"0.2873231668938821\": {\"frequency\": 1, \"value\": 0.2873231668938821}, \"0.4850590613018257\": {\"frequency\": 1, \"value\": 0.4850590613018257}, \"0.5401848143318431\": {\"frequency\": 1, \"value\": 0.5401848143318431}, \"0.25794605396412035\": {\"frequency\": 1, \"value\": 0.25794605396412035}, \"0.39940981058271535\": {\"frequency\": 1, \"value\": 0.39940981058271535}, \"0.5106940859493116\": {\"frequency\": 1, \"value\": 0.5106940859493116}, \"0.357544343568473\": {\"frequency\": 1, \"value\": 0.357544343568473}, \"0.43744830419146824\": {\"frequency\": 1, \"value\": 0.43744830419146824}, \"0.3831746992370892\": {\"frequency\": 1, \"value\": 0.3831746992370892}, \"0.4937357126087386\": {\"frequency\": 1, \"value\": 0.4937357126087386}, \"0.31669181569796323\": {\"frequency\": 1, \"value\": 0.31669181569796323}, \"0.4140955457432662\": {\"frequency\": 1, \"value\": 0.4140955457432662}, \"0.32288197954450853\": {\"frequency\": 1, \"value\": 0.32288197954450853}, \"0.4090115263437972\": {\"frequency\": 1, \"value\": 0.4090115263437972}, \"0.5785935796918351\": {\"frequency\": 1, \"value\": 0.5785935796918351}, \"0.39715187220566317\": {\"frequency\": 1, \"value\": 0.39715187220566317}, \"0.36453904320987657\": {\"frequency\": 1, \"value\": 0.36453904320987657}, \"0.27902857985593643\": {\"frequency\": 1, \"value\": 0.27902857985593643}, \"0.1897748935432759\": {\"frequency\": 1, \"value\": 0.1897748935432759}, \"0.3987569072795639\": {\"frequency\": 1, \"value\": 0.3987569072795639}, \"0.4713854054766452\": {\"frequency\": 1, \"value\": 0.4713854054766452}, \"0.4931032934502576\": {\"frequency\": 1, \"value\": 0.4931032934502576}, \"0.5347307652599211\": {\"frequency\": 1, \"value\": 0.5347307652599211}, \"0.4675542581125762\": {\"frequency\": 1, \"value\": 0.4675542581125762}, \"0.48485562696447043\": {\"frequency\": 1, \"value\": 0.48485562696447043}, \"0.44628958643815203\": {\"frequency\": 1, \"value\": 0.44628958643815203}, \"0.15197517866734303\": {\"frequency\": 1, \"value\": 0.15197517866734303}, \"0.3722609759980894\": {\"frequency\": 1, \"value\": 0.3722609759980894}, \"0.3674579148065476\": {\"frequency\": 1, \"value\": 0.3674579148065476}, \"0.38483874868206414\": {\"frequency\": 1, \"value\": 0.38483874868206414}, \"0.5608495265792302\": {\"frequency\": 1, \"value\": 0.5608495265792302}, \"0.4588192003134765\": {\"frequency\": 1, \"value\": 0.4588192003134765}, \"0.3140230688027819\": {\"frequency\": 1, \"value\": 0.3140230688027819}, \"0.3774221455439239\": {\"frequency\": 1, \"value\": 0.3774221455439239}, \"0.3027632751755395\": {\"frequency\": 1, \"value\": 0.3027632751755395}, \"0.5124982741163475\": {\"frequency\": 1, \"value\": 0.5124982741163475}, \"0.24715301029265874\": {\"frequency\": 1, \"value\": 0.24715301029265874}, \"0.3770232487411933\": {\"frequency\": 1, \"value\": 0.3770232487411933}, \"0.23427118482740086\": {\"frequency\": 1, \"value\": 0.23427118482740086}, \"0.42955671662389594\": {\"frequency\": 1, \"value\": 0.42955671662389594}, \"0.6558650622842861\": {\"frequency\": 1, \"value\": 0.6558650622842861}, \"0.33546412336049286\": {\"frequency\": 1, \"value\": 0.33546412336049286}, \"0.4246094914307004\": {\"frequency\": 1, \"value\": 0.4246094914307004}, \"0.5559452679526016\": {\"frequency\": 1, \"value\": 0.5559452679526016}, \"0.42902015580975433\": {\"frequency\": 1, \"value\": 0.42902015580975433}, \"0.49918881000968457\": {\"frequency\": 1, \"value\": 0.49918881000968457}, \"0.5141681367274278\": {\"frequency\": 1, \"value\": 0.5141681367274278}, \"0.5011451037243542\": {\"frequency\": 1, \"value\": 0.5011451037243542}, \"0.24436250211459618\": {\"frequency\": 1, \"value\": 0.24436250211459618}, \"0.23689386177347244\": {\"frequency\": 1, \"value\": 0.23689386177347244}, \"0.5845724318335387\": {\"frequency\": 1, \"value\": 0.5845724318335387}, \"0.2537989008941878\": {\"frequency\": 1, \"value\": 0.2537989008941878}, \"0.2477592523596622\": {\"frequency\": 1, \"value\": 0.2477592523596622}, \"0.21140173047465585\": {\"frequency\": 1, \"value\": 0.21140173047465585}, \"0.4139222498265266\": {\"frequency\": 1, \"value\": 0.4139222498265266}, \"0.5370608568948413\": {\"frequency\": 1, \"value\": 0.5370608568948413}, \"0.7210341696827657\": {\"frequency\": 1, \"value\": 0.7210341696827657}, \"0.4090865260192706\": {\"frequency\": 1, \"value\": 0.4090865260192706}, \"0.1876197759039503\": {\"frequency\": 1, \"value\": 0.1876197759039503}, \"0.19821760121708892\": {\"frequency\": 1, \"value\": 0.19821760121708892}, \"0.461511966765873\": {\"frequency\": 1, \"value\": 0.461511966765873}, \"0.4712713378595836\": {\"frequency\": 1, \"value\": 0.4712713378595836}, \"0.4922781607054148\": {\"frequency\": 1, \"value\": 0.4922781607054148}, \"0.35180816632169726\": {\"frequency\": 1, \"value\": 0.35180816632169726}, \"0.4049403098609041\": {\"frequency\": 1, \"value\": 0.4049403098609041}, \"0.07159753224206349\": {\"frequency\": 1, \"value\": 0.07159753224206349}, \"0.4164748821317737\": {\"frequency\": 1, \"value\": 0.4164748821317737}, \"0.7092565511674118\": {\"frequency\": 1, \"value\": 0.7092565511674118}, \"0.4859896341251045\": {\"frequency\": 1, \"value\": 0.4859896341251045}, \"0.5829348816029144\": {\"frequency\": 1, \"value\": 0.5829348816029144}, \"0.5431801181248516\": {\"frequency\": 1, \"value\": 0.5431801181248516}, \"0.277563994521952\": {\"frequency\": 1, \"value\": 0.277563994521952}, \"0.22444066691505216\": {\"frequency\": 1, \"value\": 0.22444066691505216}, \"0.5796422538610039\": {\"frequency\": 1, \"value\": 0.5796422538610039}, \"0.7161253817626527\": {\"frequency\": 1, \"value\": 0.7161253817626527}, \"0.39477426481184125\": {\"frequency\": 1, \"value\": 0.39477426481184125}, \"0.2779092261904762\": {\"frequency\": 1, \"value\": 0.2779092261904762}, \"0.4588444900663892\": {\"frequency\": 1, \"value\": 0.4588444900663892}, \"0.3661190941220238\": {\"frequency\": 1, \"value\": 0.3661190941220238}, \"0.3935294861376198\": {\"frequency\": 1, \"value\": 0.3935294861376198}, \"0.397753544624646\": {\"frequency\": 1, \"value\": 0.397753544624646}, \"0.4489432060368755\": {\"frequency\": 1, \"value\": 0.4489432060368755}, \"0.44696305116327667\": {\"frequency\": 1, \"value\": 0.44696305116327667}, \"0.39820928539426526\": {\"frequency\": 1, \"value\": 0.39820928539426526}, \"0.42131132823372697\": {\"frequency\": 1, \"value\": 0.42131132823372697}, \"0.534442086660509\": {\"frequency\": 1, \"value\": 0.534442086660509}, \"0.3563563328793813\": {\"frequency\": 1, \"value\": 0.3563563328793813}, \"0.6091793981481481\": {\"frequency\": 1, \"value\": 0.6091793981481481}, \"0.3008149372826627\": {\"frequency\": 1, \"value\": 0.3008149372826627}, \"0.3102658500993542\": {\"frequency\": 1, \"value\": 0.3102658500993542}, \"0.5260490406110283\": {\"frequency\": 1, \"value\": 0.5260490406110283}, \"0.4518341548859127\": {\"frequency\": 1, \"value\": 0.4518341548859127}, \"0.6026354477148534\": {\"frequency\": 1, \"value\": 0.6026354477148534}, \"0.36458201574900795\": {\"frequency\": 1, \"value\": 0.36458201574900795}, \"0.4440844793615412\": {\"frequency\": 1, \"value\": 0.4440844793615412}, \"0.37260587431693987\": {\"frequency\": 1, \"value\": 0.37260587431693987}, \"0.4931767728514655\": {\"frequency\": 1, \"value\": 0.4931767728514655}, \"0.4135585575552388\": {\"frequency\": 1, \"value\": 0.4135585575552388}, \"0.5638391082960755\": {\"frequency\": 1, \"value\": 0.5638391082960755}, \"0.3642597949339251\": {\"frequency\": 1, \"value\": 0.3642597949339251}, \"0.6093858796296296\": {\"frequency\": 1, \"value\": 0.6093858796296296}, \"0.5205492103849063\": {\"frequency\": 1, \"value\": 0.5205492103849063}, \"0.34647794208829363\": {\"frequency\": 1, \"value\": 0.34647794208829363}, \"0.32213898189484125\": {\"frequency\": 1, \"value\": 0.32213898189484125}, \"0.5699833094335504\": {\"frequency\": 1, \"value\": 0.5699833094335504}, \"0.4823873817019086\": {\"frequency\": 1, \"value\": 0.4823873817019086}, \"0.49561079178105355\": {\"frequency\": 1, \"value\": 0.49561079178105355}, \"0.6276365893425763\": {\"frequency\": 1, \"value\": 0.6276365893425763}, \"0.5521209104938272\": {\"frequency\": 1, \"value\": 0.5521209104938272}, \"0.7182990709940592\": {\"frequency\": 1, \"value\": 0.7182990709940592}, \"0.5886112719767166\": {\"frequency\": 1, \"value\": 0.5886112719767166}, \"0.38228953210382516\": {\"frequency\": 1, \"value\": 0.38228953210382516}, \"0.3113413665254237\": {\"frequency\": 1, \"value\": 0.3113413665254237}, \"0.4168685572763711\": {\"frequency\": 1, \"value\": 0.4168685572763711}, \"0.35851975468196473\": {\"frequency\": 1, \"value\": 0.35851975468196473}, \"0.5777355877831071\": {\"frequency\": 1, \"value\": 0.5777355877831071}, \"0.38123377422883503\": {\"frequency\": 1, \"value\": 0.38123377422883503}, \"0.4074173797123016\": {\"frequency\": 1, \"value\": 0.4074173797123016}, \"0.2805955042225534\": {\"frequency\": 1, \"value\": 0.2805955042225534}, \"0.42503555940160737\": {\"frequency\": 1, \"value\": 0.42503555940160737}, \"0.5036610836553705\": {\"frequency\": 1, \"value\": 0.5036610836553705}, \"0.2170136988516499\": {\"frequency\": 1, \"value\": 0.2170136988516499}, \"0.4145679118901956\": {\"frequency\": 1, \"value\": 0.4145679118901956}, \"0.637275366368604\": {\"frequency\": 1, \"value\": 0.637275366368604}, \"0.4136422525264582\": {\"frequency\": 1, \"value\": 0.4136422525264582}, \"0.3800398961319478\": {\"frequency\": 1, \"value\": 0.3800398961319478}, \"0.6170226858854436\": {\"frequency\": 1, \"value\": 0.6170226858854436}, \"0.2545700932661306\": {\"frequency\": 1, \"value\": 0.2545700932661306}, \"0.2982051043219076\": {\"frequency\": 1, \"value\": 0.2982051043219076}, \"0.3886615902881272\": {\"frequency\": 1, \"value\": 0.3886615902881272}, \"0.42362840449986067\": {\"frequency\": 1, \"value\": 0.42362840449986067}, \"0.5419008091517857\": {\"frequency\": 1, \"value\": 0.5419008091517857}, \"0.398353902757079\": {\"frequency\": 1, \"value\": 0.398353902757079}, \"0.20083914620535714\": {\"frequency\": 1, \"value\": 0.20083914620535714}, \"0.36195436507936507\": {\"frequency\": 1, \"value\": 0.36195436507936507}, \"0.16041860717834078\": {\"frequency\": 1, \"value\": 0.16041860717834078}, \"0.46859809674615005\": {\"frequency\": 1, \"value\": 0.46859809674615005}, \"0.3004594737640807\": {\"frequency\": 1, \"value\": 0.3004594737640807}, \"0.5317987793549346\": {\"frequency\": 1, \"value\": 0.5317987793549346}, \"0.475213378663686\": {\"frequency\": 1, \"value\": 0.475213378663686}, \"0.503752173373075\": {\"frequency\": 1, \"value\": 0.503752173373075}, \"0.24618516908074817\": {\"frequency\": 1, \"value\": 0.24618516908074817}, \"0.5715407754010695\": {\"frequency\": 1, \"value\": 0.5715407754010695}, \"0.3054517225977908\": {\"frequency\": 1, \"value\": 0.3054517225977908}, \"0.2652984581579783\": {\"frequency\": 1, \"value\": 0.2652984581579783}, \"0.2372428043983772\": {\"frequency\": 1, \"value\": 0.2372428043983772}, \"0.2647746360756346\": {\"frequency\": 1, \"value\": 0.2647746360756346}, \"0.45110616427277433\": {\"frequency\": 1, \"value\": 0.45110616427277433}, \"0.4357744193989071\": {\"frequency\": 1, \"value\": 0.4357744193989071}, \"0.5413495290669904\": {\"frequency\": 1, \"value\": 0.5413495290669904}, \"0.3120353577628968\": {\"frequency\": 1, \"value\": 0.3120353577628968}, \"0.6730520215539545\": {\"frequency\": 1, \"value\": 0.6730520215539545}, \"0.9374815538194444\": {\"frequency\": 1, \"value\": 0.9374815538194444}, \"0.42184624565972223\": {\"frequency\": 1, \"value\": 0.42184624565972223}, \"0.3227512591873436\": {\"frequency\": 1, \"value\": 0.3227512591873436}, \"0.4603687283737024\": {\"frequency\": 1, \"value\": 0.4603687283737024}, \"0.61632032414307\": {\"frequency\": 1, \"value\": 0.61632032414307}, \"0.23107116244411327\": {\"frequency\": 1, \"value\": 0.23107116244411327}, \"0.503817273787499\": {\"frequency\": 1, \"value\": 0.503817273787499}, \"0.3873880712866369\": {\"frequency\": 1, \"value\": 0.3873880712866369}, \"0.3117259515313708\": {\"frequency\": 1, \"value\": 0.3117259515313708}, \"0.502044394703061\": {\"frequency\": 1, \"value\": 0.502044394703061}, \"0.4015214223710317\": {\"frequency\": 1, \"value\": 0.4015214223710317}, \"0.4663631701787805\": {\"frequency\": 1, \"value\": 0.4663631701787805}, \"0.2671477583209141\": {\"frequency\": 1, \"value\": 0.2671477583209141}, \"0.3878151475178359\": {\"frequency\": 1, \"value\": 0.3878151475178359}, \"0.5475759128166915\": {\"frequency\": 1, \"value\": 0.5475759128166915}, \"0.3514450602334824\": {\"frequency\": 1, \"value\": 0.3514450602334824}, \"0.3522100269926961\": {\"frequency\": 1, \"value\": 0.3522100269926961}, \"0.41430810546875\": {\"frequency\": 1, \"value\": 0.41430810546875}, \"0.4674098318322335\": {\"frequency\": 1, \"value\": 0.4674098318322335}, \"0.39129780004177606\": {\"frequency\": 1, \"value\": 0.39129780004177606}, \"0.24423383826573258\": {\"frequency\": 1, \"value\": 0.24423383826573258}, \"0.2893729042473919\": {\"frequency\": 1, \"value\": 0.2893729042473919}, \"0.45279143588639426\": {\"frequency\": 1, \"value\": 0.45279143588639426}, \"0.3399443601196391\": {\"frequency\": 1, \"value\": 0.3399443601196391}, \"0.29585288469153403\": {\"frequency\": 1, \"value\": 0.29585288469153403}, \"0.36759708858002693\": {\"frequency\": 1, \"value\": 0.36759708858002693}, \"0.47615964977645303\": {\"frequency\": 1, \"value\": 0.47615964977645303}, \"0.5131559097039735\": {\"frequency\": 1, \"value\": 0.5131559097039735}, \"0.3975039586438152\": {\"frequency\": 1, \"value\": 0.3975039586438152}, \"0.20045983137961232\": {\"frequency\": 1, \"value\": 0.20045983137961232}, \"0.4421344866071429\": {\"frequency\": 1, \"value\": 0.4421344866071429}, \"0.3925611845508077\": {\"frequency\": 1, \"value\": 0.3925611845508077}, \"0.4673256855237154\": {\"frequency\": 1, \"value\": 0.4673256855237154}, \"0.38744233911357506\": {\"frequency\": 1, \"value\": 0.38744233911357506}, \"0.39335273591897235\": {\"frequency\": 1, \"value\": 0.39335273591897235}, \"0.7677860226059096\": {\"frequency\": 1, \"value\": 0.7677860226059096}, \"0.42734204691835115\": {\"frequency\": 1, \"value\": 0.42734204691835115}, \"0.5116863046448088\": {\"frequency\": 1, \"value\": 0.5116863046448088}, \"0.5271303468186522\": {\"frequency\": 1, \"value\": 0.5271303468186522}, \"0.42950568243792636\": {\"frequency\": 1, \"value\": 0.42950568243792636}, \"0.5163916718886767\": {\"frequency\": 1, \"value\": 0.5163916718886767}, \"0.20969509678125248\": {\"frequency\": 1, \"value\": 0.20969509678125248}, \"0.34877347156163296\": {\"frequency\": 1, \"value\": 0.34877347156163296}, \"0.7312030639878297\": {\"frequency\": 1, \"value\": 0.7312030639878297}, \"0.3743433090445011\": {\"frequency\": 1, \"value\": 0.3743433090445011}, \"0.4040057594386488\": {\"frequency\": 1, \"value\": 0.4040057594386488}, \"0.44137326130154\": {\"frequency\": 1, \"value\": 0.44137326130154}, \"0.277413959280628\": {\"frequency\": 1, \"value\": 0.277413959280628}, \"0.6297064608185932\": {\"frequency\": 1, \"value\": 0.6297064608185932}, \"0.37458931969169246\": {\"frequency\": 1, \"value\": 0.37458931969169246}, \"0.29745319485842026\": {\"frequency\": 1, \"value\": 0.29745319485842026}, \"0.540494434207647\": {\"frequency\": 1, \"value\": 0.540494434207647}, \"0.19648390830346477\": {\"frequency\": 1, \"value\": 0.19648390830346477}, \"0.26599478390461995\": {\"frequency\": 1, \"value\": 0.26599478390461995}, \"0.24486416418281173\": {\"frequency\": 1, \"value\": 0.24486416418281173}, \"0.6669681015316206\": {\"frequency\": 1, \"value\": 0.6669681015316206}, \"0.2506138061087991\": {\"frequency\": 1, \"value\": 0.2506138061087991}, \"0.42962968129960316\": {\"frequency\": 1, \"value\": 0.42962968129960316}, \"0.4127664546680333\": {\"frequency\": 1, \"value\": 0.4127664546680333}, \"0.09623029796800477\": {\"frequency\": 1, \"value\": 0.09623029796800477}, \"0.3456577460106383\": {\"frequency\": 1, \"value\": 0.3456577460106383}, \"0.3402392861760961\": {\"frequency\": 1, \"value\": 0.3402392861760961}, \"0.7025987307230631\": {\"frequency\": 1, \"value\": 0.7025987307230631}, \"0.3090549708147044\": {\"frequency\": 1, \"value\": 0.3090549708147044}, \"0.5106728078358209\": {\"frequency\": 1, \"value\": 0.5106728078358209}, \"0.5968720937027533\": {\"frequency\": 1, \"value\": 0.5968720937027533}, \"0.3603045954608455\": {\"frequency\": 1, \"value\": 0.3603045954608455}, \"0.459086062198981\": {\"frequency\": 1, \"value\": 0.459086062198981}, \"0.43432736601219823\": {\"frequency\": 1, \"value\": 0.43432736601219823}, \"0.5712580725285643\": {\"frequency\": 1, \"value\": 0.5712580725285643}, \"0.2933471227809179\": {\"frequency\": 1, \"value\": 0.2933471227809179}, \"0.451982737208147\": {\"frequency\": 1, \"value\": 0.451982737208147}, \"0.4518068301061218\": {\"frequency\": 1, \"value\": 0.4518068301061218}, \"0.4710421020136778\": {\"frequency\": 1, \"value\": 0.4710421020136778}, \"0.3019152850223547\": {\"frequency\": 1, \"value\": 0.3019152850223547}, \"0.3977142614586236\": {\"frequency\": 1, \"value\": 0.3977142614586236}, \"0.4029571069299553\": {\"frequency\": 1, \"value\": 0.4029571069299553}, \"0.3822457837301587\": {\"frequency\": 1, \"value\": 0.3822457837301587}, \"0.2951494860785521\": {\"frequency\": 1, \"value\": 0.2951494860785521}, \"0.30903173053075395\": {\"frequency\": 1, \"value\": 0.30903173053075395}, \"0.664747966524429\": {\"frequency\": 1, \"value\": 0.664747966524429}, \"0.41497092119273177\": {\"frequency\": 1, \"value\": 0.41497092119273177}, \"0.4701094699848024\": {\"frequency\": 1, \"value\": 0.4701094699848024}, \"0.4673952577409399\": {\"frequency\": 1, \"value\": 0.4673952577409399}, \"0.44378770206822776\": {\"frequency\": 1, \"value\": 0.44378770206822776}, \"0.4436913165151695\": {\"frequency\": 1, \"value\": 0.4436913165151695}, \"0.32662476003620594\": {\"frequency\": 1, \"value\": 0.32662476003620594}, \"0.5313134378856028\": {\"frequency\": 1, \"value\": 0.5313134378856028}, \"0.43476610700354257\": {\"frequency\": 1, \"value\": 0.43476610700354257}, \"0.47596527114190157\": {\"frequency\": 1, \"value\": 0.47596527114190157}, \"0.16762346540178572\": {\"frequency\": 1, \"value\": 0.16762346540178572}, \"0.16950381324404762\": {\"frequency\": 1, \"value\": 0.16950381324404762}, \"0.4641841755319149\": {\"frequency\": 1, \"value\": 0.4641841755319149}, \"0.25755532778728657\": {\"frequency\": 1, \"value\": 0.25755532778728657}, \"0.8074532390510949\": {\"frequency\": 1, \"value\": 0.8074532390510949}, \"0.32655264220069546\": {\"frequency\": 1, \"value\": 0.32655264220069546}, \"0.19681025003971248\": {\"frequency\": 1, \"value\": 0.19681025003971248}, \"0.23914373644764064\": {\"frequency\": 1, \"value\": 0.23914373644764064}, \"0.45194245872805794\": {\"frequency\": 1, \"value\": 0.45194245872805794}, \"0.49113513552008403\": {\"frequency\": 1, \"value\": 0.49113513552008403}, \"0.6240035742894957\": {\"frequency\": 1, \"value\": 0.6240035742894957}, \"0.32460881820161547\": {\"frequency\": 1, \"value\": 0.32460881820161547}, \"0.4074365060196195\": {\"frequency\": 1, \"value\": 0.4074365060196195}, \"0.45367206790123454\": {\"frequency\": 1, \"value\": 0.45367206790123454}, \"0.3853827880825354\": {\"frequency\": 1, \"value\": 0.3853827880825354}, \"0.2631017138599106\": {\"frequency\": 1, \"value\": 0.2631017138599106}, \"0.537151847718254\": {\"frequency\": 1, \"value\": 0.537151847718254}, \"0.1633665054563492\": {\"frequency\": 1, \"value\": 0.1633665054563492}, \"0.5268919827645285\": {\"frequency\": 1, \"value\": 0.5268919827645285}, \"0.356715339781746\": {\"frequency\": 1, \"value\": 0.356715339781746}, \"0.390779076626925\": {\"frequency\": 1, \"value\": 0.390779076626925}, \"0.600964584035822\": {\"frequency\": 1, \"value\": 0.600964584035822}, \"0.16816783913225114\": {\"frequency\": 1, \"value\": 0.16816783913225114}, \"0.5860357675111774\": {\"frequency\": 1, \"value\": 0.5860357675111774}, \"0.5549717342275506\": {\"frequency\": 1, \"value\": 0.5549717342275506}, \"0.337240930870119\": {\"frequency\": 1, \"value\": 0.337240930870119}, \"0.4612525903803288\": {\"frequency\": 1, \"value\": 0.4612525903803288}, \"0.270431336934923\": {\"frequency\": 1, \"value\": 0.270431336934923}, \"0.2944835637138327\": {\"frequency\": 1, \"value\": 0.2944835637138327}, \"0.14185438796936758\": {\"frequency\": 1, \"value\": 0.14185438796936758}, \"0.6797447643165453\": {\"frequency\": 1, \"value\": 0.6797447643165453}, \"0.37729430576254347\": {\"frequency\": 1, \"value\": 0.37729430576254347}, \"0.3161945571538033\": {\"frequency\": 1, \"value\": 0.3161945571538033}, \"0.4420116181133571\": {\"frequency\": 1, \"value\": 0.4420116181133571}, \"0.5147088045565816\": {\"frequency\": 1, \"value\": 0.5147088045565816}, \"0.35928907414307004\": {\"frequency\": 1, \"value\": 0.35928907414307004}, \"0.3676218632332541\": {\"frequency\": 1, \"value\": 0.3676218632332541}, \"0.5349993790362643\": {\"frequency\": 1, \"value\": 0.5349993790362643}, \"0.7149985353311706\": {\"frequency\": 1, \"value\": 0.7149985353311706}, \"0.40276625423200285\": {\"frequency\": 1, \"value\": 0.40276625423200285}, \"0.6161280210822382\": {\"frequency\": 1, \"value\": 0.6161280210822382}, \"0.3639544523099851\": {\"frequency\": 1, \"value\": 0.3639544523099851}, \"0.31990507016890213\": {\"frequency\": 1, \"value\": 0.31990507016890213}, \"0.6878576839671415\": {\"frequency\": 1, \"value\": 0.6878576839671415}, \"0.4702153488551365\": {\"frequency\": 1, \"value\": 0.4702153488551365}, \"0.3024118231495281\": {\"frequency\": 1, \"value\": 0.3024118231495281}, \"0.4227260307998013\": {\"frequency\": 1, \"value\": 0.4227260307998013}, \"0.45890322280178836\": {\"frequency\": 1, \"value\": 0.45890322280178836}, \"0.5091574783199918\": {\"frequency\": 1, \"value\": 0.5091574783199918}, \"0.23070456097863884\": {\"frequency\": 1, \"value\": 0.23070456097863884}, \"0.3574723307291667\": {\"frequency\": 1, \"value\": 0.3574723307291667}, \"0.3778773176193692\": {\"frequency\": 1, \"value\": 0.3778773176193692}, \"0.49852815039139914\": {\"frequency\": 1, \"value\": 0.49852815039139914}, \"0.342682136656746\": {\"frequency\": 1, \"value\": 0.342682136656746}, \"0.45794168258136386\": {\"frequency\": 1, \"value\": 0.45794168258136386}, \"0.4434881524725275\": {\"frequency\": 1, \"value\": 0.4434881524725275}, \"0.4421025832091406\": {\"frequency\": 1, \"value\": 0.4421025832091406}, \"0.4284601056134259\": {\"frequency\": 1, \"value\": 0.4284601056134259}, \"0.2493289872533222\": {\"frequency\": 1, \"value\": 0.2493289872533222}, \"0.5220134915031708\": {\"frequency\": 1, \"value\": 0.5220134915031708}, \"0.3543080427853013\": {\"frequency\": 1, \"value\": 0.3543080427853013}, \"0.47121465773809523\": {\"frequency\": 1, \"value\": 0.47121465773809523}, \"0.1779793670983275\": {\"frequency\": 1, \"value\": 0.1779793670983275}, \"0.7431085812628581\": {\"frequency\": 1, \"value\": 0.7431085812628581}, \"0.4081566691505216\": {\"frequency\": 1, \"value\": 0.4081566691505216}, \"0.38871618822891374\": {\"frequency\": 1, \"value\": 0.38871618822891374}, \"0.43053451849489793\": {\"frequency\": 1, \"value\": 0.43053451849489793}, \"0.27252150086934923\": {\"frequency\": 1, \"value\": 0.27252150086934923}, \"0.4473269359393579\": {\"frequency\": 1, \"value\": 0.4473269359393579}, \"0.39109024050884517\": {\"frequency\": 1, \"value\": 0.39109024050884517}, \"0.4316606898907104\": {\"frequency\": 1, \"value\": 0.4316606898907104}, \"0.3507748906629383\": {\"frequency\": 1, \"value\": 0.3507748906629383}, \"0.4240101959745763\": {\"frequency\": 1, \"value\": 0.4240101959745763}, \"0.6262186343005068\": {\"frequency\": 1, \"value\": 0.6262186343005068}, \"0.5277601066468254\": {\"frequency\": 1, \"value\": 0.5277601066468254}, \"0.5457325768849206\": {\"frequency\": 1, \"value\": 0.5457325768849206}, \"0.18781556701903168\": {\"frequency\": 1, \"value\": 0.18781556701903168}, \"0.624168466146559\": {\"frequency\": 1, \"value\": 0.624168466146559}, \"0.11489094324391455\": {\"frequency\": 1, \"value\": 0.11489094324391455}, \"0.30212191953090795\": {\"frequency\": 1, \"value\": 0.30212191953090795}, \"0.18442287162565696\": {\"frequency\": 1, \"value\": 0.18442287162565696}, \"0.48734768811376417\": {\"frequency\": 1, \"value\": 0.48734768811376417}, \"0.388483089931298\": {\"frequency\": 1, \"value\": 0.388483089931298}, \"0.40766183867362144\": {\"frequency\": 1, \"value\": 0.40766183867362144}, \"0.5219999224565757\": {\"frequency\": 1, \"value\": 0.5219999224565757}, \"0.36627368517949477\": {\"frequency\": 1, \"value\": 0.36627368517949477}, \"0.5668486048640687\": {\"frequency\": 1, \"value\": 0.5668486048640687}, \"0.5658906392152209\": {\"frequency\": 1, \"value\": 0.5658906392152209}, \"0.6329341827876984\": {\"frequency\": 1, \"value\": 0.6329341827876984}, \"0.6005621274217585\": {\"frequency\": 1, \"value\": 0.6005621274217585}, \"0.47664968729256557\": {\"frequency\": 1, \"value\": 0.47664968729256557}, \"0.4483196814118556\": {\"frequency\": 1, \"value\": 0.4483196814118556}, \"0.253410505513978\": {\"frequency\": 1, \"value\": 0.253410505513978}, \"0.27614240587259653\": {\"frequency\": 1, \"value\": 0.27614240587259653}, \"0.39211409084151055\": {\"frequency\": 1, \"value\": 0.39211409084151055}, \"0.37431407786191934\": {\"frequency\": 1, \"value\": 0.37431407786191934}, \"0.40684855826338295\": {\"frequency\": 1, \"value\": 0.40684855826338295}, \"0.5464595336382355\": {\"frequency\": 1, \"value\": 0.5464595336382355}, \"0.7263044301295059\": {\"frequency\": 1, \"value\": 0.7263044301295059}, \"0.29718833111702125\": {\"frequency\": 1, \"value\": 0.29718833111702125}, \"0.39001024590163935\": {\"frequency\": 1, \"value\": 0.39001024590163935}, \"0.5278259283407849\": {\"frequency\": 1, \"value\": 0.5278259283407849}, \"0.3045259021577381\": {\"frequency\": 1, \"value\": 0.3045259021577381}, \"0.567558627179278\": {\"frequency\": 1, \"value\": 0.567558627179278}, \"0.39224748883928573\": {\"frequency\": 1, \"value\": 0.39224748883928573}, \"0.6627439081101191\": {\"frequency\": 1, \"value\": 0.6627439081101191}, \"0.5643399777015522\": {\"frequency\": 1, \"value\": 0.5643399777015522}, \"0.23301478794642858\": {\"frequency\": 1, \"value\": 0.23301478794642858}, \"0.49277716049382714\": {\"frequency\": 1, \"value\": 0.49277716049382714}, \"0.4035802445717072\": {\"frequency\": 1, \"value\": 0.4035802445717072}, \"0.5245708005092703\": {\"frequency\": 1, \"value\": 0.5245708005092703}, \"0.5214068709637357\": {\"frequency\": 1, \"value\": 0.5214068709637357}, \"0.6110126357451425\": {\"frequency\": 1, \"value\": 0.6110126357451425}, \"0.23169615548161854\": {\"frequency\": 1, \"value\": 0.23169615548161854}, \"0.3586528835778491\": {\"frequency\": 1, \"value\": 0.3586528835778491}, \"0.5622798084077381\": {\"frequency\": 1, \"value\": 0.5622798084077381}, \"0.16041416445352907\": {\"frequency\": 1, \"value\": 0.16041416445352907}, \"0.37832194010416664\": {\"frequency\": 1, \"value\": 0.37832194010416664}, \"0.20558532826549694\": {\"frequency\": 1, \"value\": 0.20558532826549694}, \"0.490279433681073\": {\"frequency\": 1, \"value\": 0.490279433681073}, \"0.41248672739118325\": {\"frequency\": 1, \"value\": 0.41248672739118325}, \"0.3705955042225534\": {\"frequency\": 1, \"value\": 0.3705955042225534}, \"0.33717184905921416\": {\"frequency\": 1, \"value\": 0.33717184905921416}, \"0.45155067649654873\": {\"frequency\": 1, \"value\": 0.45155067649654873}, \"0.4338484700520833\": {\"frequency\": 1, \"value\": 0.4338484700520833}, \"0.4156652074018877\": {\"frequency\": 1, \"value\": 0.4156652074018877}, \"0.4778732638888889\": {\"frequency\": 1, \"value\": 0.4778732638888889}, \"0.4144952876984127\": {\"frequency\": 1, \"value\": 0.4144952876984127}, \"0.45565277220232214\": {\"frequency\": 1, \"value\": 0.45565277220232214}, \"0.38323160985451576\": {\"frequency\": 1, \"value\": 0.38323160985451576}, \"0.46654945558887884\": {\"frequency\": 1, \"value\": 0.46654945558887884}, \"0.5154911274031764\": {\"frequency\": 1, \"value\": 0.5154911274031764}, \"0.5084248777265852\": {\"frequency\": 1, \"value\": 0.5084248777265852}, \"0.4626420044630418\": {\"frequency\": 1, \"value\": 0.4626420044630418}, \"0.618820791131423\": {\"frequency\": 1, \"value\": 0.618820791131423}, \"0.5059298326008016\": {\"frequency\": 1, \"value\": 0.5059298326008016}, \"0.4085490014130478\": {\"frequency\": 1, \"value\": 0.4085490014130478}, \"0.33034785588582355\": {\"frequency\": 1, \"value\": 0.33034785588582355}, \"0.4810422100099354\": {\"frequency\": 1, \"value\": 0.4810422100099354}, \"0.6187023898408509\": {\"frequency\": 1, \"value\": 0.6187023898408509}, \"0.6767307611219144\": {\"frequency\": 1, \"value\": 0.6767307611219144}, \"0.3654047756270122\": {\"frequency\": 1, \"value\": 0.3654047756270122}, \"0.34538871647966896\": {\"frequency\": 1, \"value\": 0.34538871647966896}, \"0.4805858792846498\": {\"frequency\": 1, \"value\": 0.4805858792846498}, \"0.4552679722017673\": {\"frequency\": 1, \"value\": 0.4552679722017673}, \"0.493400283107113\": {\"frequency\": 1, \"value\": 0.493400283107113}, \"0.24837038310047563\": {\"frequency\": 1, \"value\": 0.24837038310047563}, \"0.3506631335113352\": {\"frequency\": 1, \"value\": 0.3506631335113352}, \"0.5121792722305017\": {\"frequency\": 1, \"value\": 0.5121792722305017}, \"0.42726058638199255\": {\"frequency\": 1, \"value\": 0.42726058638199255}, \"0.5412379685696374\": {\"frequency\": 1, \"value\": 0.5412379685696374}, \"0.2727710698169095\": {\"frequency\": 1, \"value\": 0.2727710698169095}, \"0.2059315195551842\": {\"frequency\": 1, \"value\": 0.2059315195551842}, \"0.4738255247143567\": {\"frequency\": 1, \"value\": 0.4738255247143567}, \"0.289106677827381\": {\"frequency\": 1, \"value\": 0.289106677827381}, \"0.46046703245692217\": {\"frequency\": 1, \"value\": 0.46046703245692217}, \"0.47210318980615373\": {\"frequency\": 1, \"value\": 0.47210318980615373}, \"0.4617657180059524\": {\"frequency\": 1, \"value\": 0.4617657180059524}, \"0.5780524248633879\": {\"frequency\": 1, \"value\": 0.5780524248633879}, \"0.5643574239740476\": {\"frequency\": 1, \"value\": 0.5643574239740476}, \"0.10115419635393862\": {\"frequency\": 1, \"value\": 0.10115419635393862}, \"0.41483051822533135\": {\"frequency\": 1, \"value\": 0.41483051822533135}, \"0.28565092523596625\": {\"frequency\": 1, \"value\": 0.28565092523596625}, \"0.43294367410676443\": {\"frequency\": 1, \"value\": 0.43294367410676443}, \"0.5753598459809625\": {\"frequency\": 1, \"value\": 0.5753598459809625}, \"0.42223818503999366\": {\"frequency\": 1, \"value\": 0.42223818503999366}, \"0.5124453590029762\": {\"frequency\": 1, \"value\": 0.5124453590029762}, \"0.5822452591608976\": {\"frequency\": 1, \"value\": 0.5822452591608976}, \"0.3478095079787234\": {\"frequency\": 1, \"value\": 0.3478095079787234}, \"0.6124104561805915\": {\"frequency\": 1, \"value\": 0.6124104561805915}, \"0.6534573143003399\": {\"frequency\": 1, \"value\": 0.6534573143003399}, \"0.5237056339061816\": {\"frequency\": 1, \"value\": 0.5237056339061816}, \"0.4026350543747523\": {\"frequency\": 1, \"value\": 0.4026350543747523}, \"0.4906306792226106\": {\"frequency\": 1, \"value\": 0.4906306792226106}, \"0.3088846129025853\": {\"frequency\": 1, \"value\": 0.3088846129025853}, \"0.3793168197384807\": {\"frequency\": 1, \"value\": 0.3793168197384807}, \"0.5212897416790859\": {\"frequency\": 1, \"value\": 0.5212897416790859}, \"0.5171988022691241\": {\"frequency\": 1, \"value\": 0.5171988022691241}, \"0.2651733937776141\": {\"frequency\": 1, \"value\": 0.2651733937776141}, \"0.43921718323543374\": {\"frequency\": 1, \"value\": 0.43921718323543374}, \"0.4560469521205668\": {\"frequency\": 1, \"value\": 0.4560469521205668}, \"0.4262385897913562\": {\"frequency\": 1, \"value\": 0.4262385897913562}, \"0.5358323257688492\": {\"frequency\": 1, \"value\": 0.5358323257688492}, \"0.4551057115112994\": {\"frequency\": 1, \"value\": 0.4551057115112994}, \"0.6388899497019374\": {\"frequency\": 1, \"value\": 0.6388899497019374}, \"0.4146802036761053\": {\"frequency\": 1, \"value\": 0.4146802036761053}, \"0.5733225343808462\": {\"frequency\": 1, \"value\": 0.5733225343808462}, \"0.3716941809275794\": {\"frequency\": 1, \"value\": 0.3716941809275794}, \"0.557718525235615\": {\"frequency\": 1, \"value\": 0.557718525235615}, \"0.40135665935889814\": {\"frequency\": 1, \"value\": 0.40135665935889814}, \"0.20269111906917964\": {\"frequency\": 1, \"value\": 0.20269111906917964}, \"0.44632831905116743\": {\"frequency\": 1, \"value\": 0.44632831905116743}, \"0.7895429486924332\": {\"frequency\": 1, \"value\": 0.7895429486924332}, \"0.22261242241585105\": {\"frequency\": 1, \"value\": 0.22261242241585105}, \"0.27896472193347194\": {\"frequency\": 1, \"value\": 0.27896472193347194}, \"0.2643481719234901\": {\"frequency\": 1, \"value\": 0.2643481719234901}, \"0.3359291851923689\": {\"frequency\": 1, \"value\": 0.3359291851923689}, \"0.34410854693841014\": {\"frequency\": 1, \"value\": 0.34410854693841014}, \"0.7799517422182078\": {\"frequency\": 1, \"value\": 0.7799517422182078}, \"0.3365336401596592\": {\"frequency\": 1, \"value\": 0.3365336401596592}, \"0.3950664657839143\": {\"frequency\": 1, \"value\": 0.3950664657839143}, \"0.7239589034450503\": {\"frequency\": 1, \"value\": 0.7239589034450503}, \"0.12659726889187575\": {\"frequency\": 1, \"value\": 0.12659726889187575}, \"0.17938117588932806\": {\"frequency\": 1, \"value\": 0.17938117588932806}, \"0.3862473648313492\": {\"frequency\": 1, \"value\": 0.3862473648313492}, \"0.33437282662692497\": {\"frequency\": 1, \"value\": 0.33437282662692497}, \"0.49112304959598774\": {\"frequency\": 1, \"value\": 0.49112304959598774}, \"0.39623829675099204\": {\"frequency\": 1, \"value\": 0.39623829675099204}, \"0.5188626644409505\": {\"frequency\": 1, \"value\": 0.5188626644409505}, \"0.4070193916855654\": {\"frequency\": 1, \"value\": 0.4070193916855654}, \"0.38666114280241215\": {\"frequency\": 1, \"value\": 0.38666114280241215}, \"0.41084847716240946\": {\"frequency\": 1, \"value\": 0.41084847716240946}, \"0.44449612593539783\": {\"frequency\": 1, \"value\": 0.44449612593539783}, \"0.45337495349702384\": {\"frequency\": 1, \"value\": 0.45337495349702384}, \"0.5344543760890309\": {\"frequency\": 1, \"value\": 0.5344543760890309}, \"0.6846908967391304\": {\"frequency\": 1, \"value\": 0.6846908967391304}, \"0.4301031951127745\": {\"frequency\": 1, \"value\": 0.4301031951127745}, \"0.1844621163523889\": {\"frequency\": 1, \"value\": 0.1844621163523889}, \"0.18266241383683457\": {\"frequency\": 1, \"value\": 0.18266241383683457}, \"0.4337384431944776\": {\"frequency\": 1, \"value\": 0.4337384431944776}, \"0.4623019431525826\": {\"frequency\": 1, \"value\": 0.4623019431525826}, \"0.5509442760368984\": {\"frequency\": 1, \"value\": 0.5509442760368984}, \"0.47914511839523544\": {\"frequency\": 1, \"value\": 0.47914511839523544}, \"0.35558197463768115\": {\"frequency\": 1, \"value\": 0.35558197463768115}, \"0.8092610327395162\": {\"frequency\": 1, \"value\": 0.8092610327395162}, \"0.3576067434799475\": {\"frequency\": 1, \"value\": 0.3576067434799475}, \"0.4666588797734594\": {\"frequency\": 1, \"value\": 0.4666588797734594}, \"0.36601624430241775\": {\"frequency\": 1, \"value\": 0.36601624430241775}, \"0.2368323087431694\": {\"frequency\": 1, \"value\": 0.2368323087431694}, \"0.2024521708961142\": {\"frequency\": 1, \"value\": 0.2024521708961142}, \"0.288821991411116\": {\"frequency\": 1, \"value\": 0.288821991411116}, \"0.44417271710683437\": {\"frequency\": 1, \"value\": 0.44417271710683437}, \"0.42196177968206655\": {\"frequency\": 1, \"value\": 0.42196177968206655}, \"0.5220040828365623\": {\"frequency\": 1, \"value\": 0.5220040828365623}, \"0.4255016121031746\": {\"frequency\": 1, \"value\": 0.4255016121031746}, \"0.4903784775152439\": {\"frequency\": 1, \"value\": 0.4903784775152439}, \"0.4565046812996032\": {\"frequency\": 1, \"value\": 0.4565046812996032}, \"0.41219184674615\": {\"frequency\": 1, \"value\": 0.41219184674615}, \"0.19763653440139095\": {\"frequency\": 1, \"value\": 0.19763653440139095}, \"0.23981891904330693\": {\"frequency\": 1, \"value\": 0.23981891904330693}, \"0.5081865407614112\": {\"frequency\": 1, \"value\": 0.5081865407614112}, \"0.49781117540724734\": {\"frequency\": 1, \"value\": 0.49781117540724734}, \"0.635558584159935\": {\"frequency\": 1, \"value\": 0.635558584159935}, \"0.2912163903378043\": {\"frequency\": 1, \"value\": 0.2912163903378043}, \"0.3261952715077715\": {\"frequency\": 1, \"value\": 0.3261952715077715}, \"0.5694265017422983\": {\"frequency\": 1, \"value\": 0.5694265017422983}, \"0.3549071381303984\": {\"frequency\": 1, \"value\": 0.3549071381303984}, \"0.41534696348733235\": {\"frequency\": 1, \"value\": 0.41534696348733235}, \"0.3155551985198376\": {\"frequency\": 1, \"value\": 0.3155551985198376}, \"0.25996444982613015\": {\"frequency\": 1, \"value\": 0.25996444982613015}, \"0.259783722380613\": {\"frequency\": 1, \"value\": 0.259783722380613}, \"0.3406503042722305\": {\"frequency\": 1, \"value\": 0.3406503042722305}, \"0.36970148912053535\": {\"frequency\": 1, \"value\": 0.36970148912053535}, \"0.4745467748397436\": {\"frequency\": 1, \"value\": 0.4745467748397436}, \"0.4407574981371088\": {\"frequency\": 1, \"value\": 0.4407574981371088}, \"0.47806133434307435\": {\"frequency\": 1, \"value\": 0.47806133434307435}, \"0.5789480529131986\": {\"frequency\": 1, \"value\": 0.5789480529131986}, \"0.6604885766858716\": {\"frequency\": 1, \"value\": 0.6604885766858716}, \"0.5379566865808824\": {\"frequency\": 1, \"value\": 0.5379566865808824}, \"0.47004674501452853\": {\"frequency\": 1, \"value\": 0.47004674501452853}, \"0.611510726686508\": {\"frequency\": 1, \"value\": 0.611510726686508}, \"0.5804372190371515\": {\"frequency\": 1, \"value\": 0.5804372190371515}, \"0.4653854247363089\": {\"frequency\": 1, \"value\": 0.4653854247363089}, \"0.5210585015473869\": {\"frequency\": 1, \"value\": 0.5210585015473869}, \"0.47417280874512613\": {\"frequency\": 1, \"value\": 0.47417280874512613}, \"0.22155720892558528\": {\"frequency\": 1, \"value\": 0.22155720892558528}, \"0.5871774929845162\": {\"frequency\": 1, \"value\": 0.5871774929845162}, \"0.5583833420035672\": {\"frequency\": 1, \"value\": 0.5583833420035672}, \"0.22466092760684606\": {\"frequency\": 1, \"value\": 0.22466092760684606}, \"0.46439074441249056\": {\"frequency\": 1, \"value\": 0.46439074441249056}, \"0.4986705678177287\": {\"frequency\": 1, \"value\": 0.4986705678177287}, \"0.47122489407678814\": {\"frequency\": 1, \"value\": 0.47122489407678814}, \"0.6734072970360825\": {\"frequency\": 1, \"value\": 0.6734072970360825}, \"0.416031232163242\": {\"frequency\": 1, \"value\": 0.416031232163242}, \"0.3141684319398559\": {\"frequency\": 1, \"value\": 0.3141684319398559}, \"0.37308751653636507\": {\"frequency\": 1, \"value\": 0.37308751653636507}, \"0.48071192856147754\": {\"frequency\": 1, \"value\": 0.48071192856147754}, \"0.46733819607530946\": {\"frequency\": 1, \"value\": 0.46733819607530946}, \"0.3718457806299603\": {\"frequency\": 1, \"value\": 0.3718457806299603}, \"0.504847748046642\": {\"frequency\": 1, \"value\": 0.504847748046642}, \"0.4264342709885743\": {\"frequency\": 1, \"value\": 0.4264342709885743}, \"0.4262680936430731\": {\"frequency\": 1, \"value\": 0.4262680936430731}, \"0.4154039815339779\": {\"frequency\": 1, \"value\": 0.4154039815339779}, \"0.6997811139691333\": {\"frequency\": 1, \"value\": 0.6997811139691333}, \"0.24967914501712057\": {\"frequency\": 1, \"value\": 0.24967914501712057}, \"0.693089473129218\": {\"frequency\": 1, \"value\": 0.693089473129218}, \"0.42084955601092894\": {\"frequency\": 1, \"value\": 0.42084955601092894}, \"0.3931907359541058\": {\"frequency\": 1, \"value\": 0.3931907359541058}, \"0.4790322730654762\": {\"frequency\": 1, \"value\": 0.4790322730654762}, \"0.10611264248627357\": {\"frequency\": 1, \"value\": 0.10611264248627357}, \"0.5715479290674603\": {\"frequency\": 1, \"value\": 0.5715479290674603}, \"0.5638806733630952\": {\"frequency\": 1, \"value\": 0.5638806733630952}, \"0.4145938120963736\": {\"frequency\": 1, \"value\": 0.4145938120963736}, \"0.44157938256279106\": {\"frequency\": 1, \"value\": 0.44157938256279106}, \"0.21628713211273462\": {\"frequency\": 1, \"value\": 0.21628713211273462}, \"0.6562395047615731\": {\"frequency\": 1, \"value\": 0.6562395047615731}, \"0.5303482969763845\": {\"frequency\": 1, \"value\": 0.5303482969763845}, \"0.49035870857205377\": {\"frequency\": 1, \"value\": 0.49035870857205377}, \"0.24934370528439126\": {\"frequency\": 1, \"value\": 0.24934370528439126}, \"0.37070417287630403\": {\"frequency\": 1, \"value\": 0.37070417287630403}, \"0.7301741836414839\": {\"frequency\": 1, \"value\": 0.7301741836414839}, \"0.3773672575422485\": {\"frequency\": 1, \"value\": 0.3773672575422485}, \"0.44347279972279974\": {\"frequency\": 1, \"value\": 0.44347279972279974}, \"0.5141327394917636\": {\"frequency\": 1, \"value\": 0.5141327394917636}, \"0.44956576901521617\": {\"frequency\": 1, \"value\": 0.44956576901521617}, \"0.36022579793840037\": {\"frequency\": 1, \"value\": 0.36022579793840037}, \"0.3712885980231867\": {\"frequency\": 1, \"value\": 0.3712885980231867}, \"0.4762778301012846\": {\"frequency\": 1, \"value\": 0.4762778301012846}, \"0.4212188741927471\": {\"frequency\": 1, \"value\": 0.4212188741927471}, \"0.20936584594075755\": {\"frequency\": 1, \"value\": 0.20936584594075755}, \"0.5712156347022649\": {\"frequency\": 1, \"value\": 0.5712156347022649}, \"0.21592182066567311\": {\"frequency\": 1, \"value\": 0.21592182066567311}, \"0.2742224333820721\": {\"frequency\": 1, \"value\": 0.2742224333820721}, \"0.47659564393939396\": {\"frequency\": 1, \"value\": 0.47659564393939396}, \"0.4267680389965226\": {\"frequency\": 1, \"value\": 0.4267680389965226}, \"0.9352386010735405\": {\"frequency\": 1, \"value\": 0.9352386010735405}, \"0.6883546858884084\": {\"frequency\": 1, \"value\": 0.6883546858884084}, \"0.3028434566452569\": {\"frequency\": 1, \"value\": 0.3028434566452569}, \"0.20637953552903535\": {\"frequency\": 1, \"value\": 0.20637953552903535}, \"0.3102285922752111\": {\"frequency\": 1, \"value\": 0.3102285922752111}, \"0.31648016626666137\": {\"frequency\": 1, \"value\": 0.31648016626666137}, \"0.5368607178340785\": {\"frequency\": 1, \"value\": 0.5368607178340785}, \"0.4579850502980626\": {\"frequency\": 1, \"value\": 0.4579850502980626}, \"0.4509850813462494\": {\"frequency\": 1, \"value\": 0.4509850813462494}, \"0.5066085017961629\": {\"frequency\": 1, \"value\": 0.5066085017961629}, \"0.36681573533216577\": {\"frequency\": 1, \"value\": 0.36681573533216577}, \"0.5415649838549429\": {\"frequency\": 1, \"value\": 0.5415649838549429}, \"0.5781024900645803\": {\"frequency\": 1, \"value\": 0.5781024900645803}, \"0.5714173497267759\": {\"frequency\": 1, \"value\": 0.5714173497267759}, \"0.34857703225132347\": {\"frequency\": 1, \"value\": 0.34857703225132347}, \"0.20118182168576432\": {\"frequency\": 1, \"value\": 0.20118182168576432}, \"0.11125558867362147\": {\"frequency\": 1, \"value\": 0.11125558867362147}, \"0.7809455603431119\": {\"frequency\": 1, \"value\": 0.7809455603431119}, \"0.5075953221316365\": {\"frequency\": 1, \"value\": 0.5075953221316365}, \"0.37868524707567436\": {\"frequency\": 1, \"value\": 0.37868524707567436}, \"0.44559740823412697\": {\"frequency\": 1, \"value\": 0.44559740823412697}, \"0.5872619380278192\": {\"frequency\": 1, \"value\": 0.5872619380278192}, \"0.2674805581538829\": {\"frequency\": 1, \"value\": 0.2674805581538829}, \"0.6059189083219362\": {\"frequency\": 1, \"value\": 0.6059189083219362}, \"0.4901802662152211\": {\"frequency\": 1, \"value\": 0.4901802662152211}, \"0.3781631116492797\": {\"frequency\": 1, \"value\": 0.3781631116492797}, \"0.47781968060661767\": {\"frequency\": 1, \"value\": 0.47781968060661767}, \"0.5056653284143519\": {\"frequency\": 1, \"value\": 0.5056653284143519}, \"0.47903098007801614\": {\"frequency\": 1, \"value\": 0.47903098007801614}, \"0.3320869342480399\": {\"frequency\": 1, \"value\": 0.3320869342480399}, \"0.39427174551208055\": {\"frequency\": 1, \"value\": 0.39427174551208055}, \"0.36138571739671477\": {\"frequency\": 1, \"value\": 0.36138571739671477}, \"0.35976268331351563\": {\"frequency\": 1, \"value\": 0.35976268331351563}, \"0.19990510503783354\": {\"frequency\": 1, \"value\": 0.19990510503783354}, \"0.3884957062251984\": {\"frequency\": 1, \"value\": 0.3884957062251984}, \"0.14538506028467488\": {\"frequency\": 1, \"value\": 0.14538506028467488}, \"0.5746898965296013\": {\"frequency\": 1, \"value\": 0.5746898965296013}, \"0.28897191691505214\": {\"frequency\": 1, \"value\": 0.28897191691505214}, \"0.4981992074374182\": {\"frequency\": 1, \"value\": 0.4981992074374182}, \"0.31149153645833333\": {\"frequency\": 1, \"value\": 0.31149153645833333}, \"0.45471233912531656\": {\"frequency\": 1, \"value\": 0.45471233912531656}, \"0.4170772013164431\": {\"frequency\": 1, \"value\": 0.4170772013164431}, \"0.40974046583927864\": {\"frequency\": 1, \"value\": 0.40974046583927864}, \"0.31134058846115736\": {\"frequency\": 1, \"value\": 0.31134058846115736}, \"0.39013304148037753\": {\"frequency\": 1, \"value\": 0.39013304148037753}, \"0.3105960082643395\": {\"frequency\": 1, \"value\": 0.3105960082643395}, \"0.24737961065573771\": {\"frequency\": 1, \"value\": 0.24737961065573771}, \"0.44657899893013536\": {\"frequency\": 1, \"value\": 0.44657899893013536}, \"0.3451345162692499\": {\"frequency\": 1, \"value\": 0.3451345162692499}, \"0.43563018731204495\": {\"frequency\": 1, \"value\": 0.43563018731204495}, \"0.42523696058759414\": {\"frequency\": 1, \"value\": 0.42523696058759414}, \"0.3452648127462883\": {\"frequency\": 1, \"value\": 0.3452648127462883}, \"0.4287392107550919\": {\"frequency\": 1, \"value\": 0.4287392107550919}, \"0.47813763330853176\": {\"frequency\": 1, \"value\": 0.47813763330853176}, \"0.28695203993055557\": {\"frequency\": 1, \"value\": 0.28695203993055557}, \"0.4876344419111816\": {\"frequency\": 1, \"value\": 0.4876344419111816}, \"0.5285940604818679\": {\"frequency\": 1, \"value\": 0.5285940604818679}, \"0.6077876534948056\": {\"frequency\": 1, \"value\": 0.6077876534948056}, \"0.5031717275211127\": {\"frequency\": 1, \"value\": 0.5031717275211127}, \"0.452413581969246\": {\"frequency\": 1, \"value\": 0.452413581969246}, \"0.5150397287254085\": {\"frequency\": 1, \"value\": 0.5150397287254085}, \"0.7720296296296296\": {\"frequency\": 1, \"value\": 0.7720296296296296}, \"0.48313703089114596\": {\"frequency\": 1, \"value\": 0.48313703089114596}, \"0.4270834368046726\": {\"frequency\": 1, \"value\": 0.4270834368046726}, \"0.608847905803447\": {\"frequency\": 1, \"value\": 0.608847905803447}, \"0.43657662971632477\": {\"frequency\": 1, \"value\": 0.43657662971632477}, \"0.4224345659463487\": {\"frequency\": 1, \"value\": 0.4224345659463487}, \"0.39344492125397457\": {\"frequency\": 1, \"value\": 0.39344492125397457}, \"0.4333528537041458\": {\"frequency\": 1, \"value\": 0.4333528537041458}, \"0.3139225502980626\": {\"frequency\": 1, \"value\": 0.3139225502980626}, \"0.332624580812403\": {\"frequency\": 1, \"value\": 0.332624580812403}, \"0.4153262639962346\": {\"frequency\": 1, \"value\": 0.4153262639962346}, \"0.3157486808208005\": {\"frequency\": 1, \"value\": 0.3157486808208005}, \"0.26939704745066445\": {\"frequency\": 1, \"value\": 0.26939704745066445}, \"0.34934106222750694\": {\"frequency\": 1, \"value\": 0.34934106222750694}, \"0.465151096113487\": {\"frequency\": 1, \"value\": 0.465151096113487}, \"0.5312307440558679\": {\"frequency\": 1, \"value\": 0.5312307440558679}, \"0.8320847134359831\": {\"frequency\": 1, \"value\": 0.8320847134359831}, \"0.5187457185512885\": {\"frequency\": 1, \"value\": 0.5187457185512885}, \"0.32465651135005974\": {\"frequency\": 1, \"value\": 0.32465651135005974}, \"0.3960795697667476\": {\"frequency\": 1, \"value\": 0.3960795697667476}, \"0.3361060916542474\": {\"frequency\": 1, \"value\": 0.3361060916542474}, \"0.7475559413580247\": {\"frequency\": 1, \"value\": 0.7475559413580247}, \"0.4131847870974804\": {\"frequency\": 1, \"value\": 0.4131847870974804}, \"0.5507162233382936\": {\"frequency\": 1, \"value\": 0.5507162233382936}, \"0.47401184609222624\": {\"frequency\": 1, \"value\": 0.47401184609222624}, \"0.30199156746031747\": {\"frequency\": 1, \"value\": 0.30199156746031747}, \"0.401457563164232\": {\"frequency\": 1, \"value\": 0.401457563164232}, \"0.49816707029309487\": {\"frequency\": 1, \"value\": 0.49816707029309487}, \"0.3775579388560158\": {\"frequency\": 1, \"value\": 0.3775579388560158}, \"0.38301672557043653\": {\"frequency\": 1, \"value\": 0.38301672557043653}, \"0.28079071969696967\": {\"frequency\": 1, \"value\": 0.28079071969696967}, \"0.21641643132364025\": {\"frequency\": 1, \"value\": 0.21641643132364025}, \"0.3753272182113999\": {\"frequency\": 1, \"value\": 0.3753272182113999}, \"0.4209686778549536\": {\"frequency\": 1, \"value\": 0.4209686778549536}, \"0.6420408465350476\": {\"frequency\": 1, \"value\": 0.6420408465350476}, \"0.48133388431388074\": {\"frequency\": 1, \"value\": 0.48133388431388074}, \"0.7659998456790124\": {\"frequency\": 1, \"value\": 0.7659998456790124}, \"0.2705533854166667\": {\"frequency\": 1, \"value\": 0.2705533854166667}, \"0.4371753912071535\": {\"frequency\": 1, \"value\": 0.4371753912071535}, \"0.4857376272975658\": {\"frequency\": 1, \"value\": 0.4857376272975658}, \"0.38332634841368646\": {\"frequency\": 1, \"value\": 0.38332634841368646}, \"0.4763338926174497\": {\"frequency\": 1, \"value\": 0.4763338926174497}, \"0.33406153952315587\": {\"frequency\": 1, \"value\": 0.33406153952315587}, \"0.4014333852445966\": {\"frequency\": 1, \"value\": 0.4014333852445966}, \"0.41787961837053395\": {\"frequency\": 1, \"value\": 0.41787961837053395}, \"0.4225889815485163\": {\"frequency\": 1, \"value\": 0.4225889815485163}, \"0.6148024353815237\": {\"frequency\": 1, \"value\": 0.6148024353815237}, \"0.4934963363139593\": {\"frequency\": 1, \"value\": 0.4934963363139593}, \"0.461595554755604\": {\"frequency\": 1, \"value\": 0.461595554755604}, \"0.5676759051792513\": {\"frequency\": 1, \"value\": 0.5676759051792513}, \"0.5066530254427909\": {\"frequency\": 1, \"value\": 0.5066530254427909}, \"0.373239980579096\": {\"frequency\": 1, \"value\": 0.373239980579096}, \"0.42055549878616727\": {\"frequency\": 1, \"value\": 0.42055549878616727}, \"0.6063961419753087\": {\"frequency\": 1, \"value\": 0.6063961419753087}, \"0.4640611804520616\": {\"frequency\": 1, \"value\": 0.4640611804520616}, \"0.4046180410395764\": {\"frequency\": 1, \"value\": 0.4046180410395764}, \"0.29172007252897203\": {\"frequency\": 1, \"value\": 0.29172007252897203}, \"0.2381605709876543\": {\"frequency\": 1, \"value\": 0.2381605709876543}, \"0.4422364866704285\": {\"frequency\": 1, \"value\": 0.4422364866704285}, \"0.6562723898419774\": {\"frequency\": 1, \"value\": 0.6562723898419774}, \"0.5958412528708323\": {\"frequency\": 1, \"value\": 0.5958412528708323}, \"0.27790193011046976\": {\"frequency\": 1, \"value\": 0.27790193011046976}, \"0.5055993453973444\": {\"frequency\": 1, \"value\": 0.5055993453973444}, \"0.23206840958227548\": {\"frequency\": 1, \"value\": 0.23206840958227548}, \"0.4601502353634519\": {\"frequency\": 1, \"value\": 0.4601502353634519}, \"0.4261540611028316\": {\"frequency\": 1, \"value\": 0.4261540611028316}, \"0.5035788763035863\": {\"frequency\": 1, \"value\": 0.5035788763035863}, \"0.515443175462303\": {\"frequency\": 1, \"value\": 0.515443175462303}, \"0.3722482174688057\": {\"frequency\": 1, \"value\": 0.3722482174688057}, \"0.3205694409860558\": {\"frequency\": 1, \"value\": 0.3205694409860558}, \"0.27433572985262616\": {\"frequency\": 1, \"value\": 0.27433572985262616}, \"0.48668627542162696\": {\"frequency\": 1, \"value\": 0.48668627542162696}, \"0.5263825196748678\": {\"frequency\": 1, \"value\": 0.5263825196748678}, \"0.4432889225220504\": {\"frequency\": 1, \"value\": 0.4432889225220504}, \"0.38250319838940017\": {\"frequency\": 1, \"value\": 0.38250319838940017}, \"0.28117268005987905\": {\"frequency\": 1, \"value\": 0.28117268005987905}, \"0.38748936599602585\": {\"frequency\": 1, \"value\": 0.38748936599602585}, \"0.21077742556926374\": {\"frequency\": 1, \"value\": 0.21077742556926374}, \"0.4401637791852956\": {\"frequency\": 1, \"value\": 0.4401637791852956}, \"0.21564414509786442\": {\"frequency\": 1, \"value\": 0.21564414509786442}, \"0.4939674624564425\": {\"frequency\": 1, \"value\": 0.4939674624564425}, \"0.43613450654491925\": {\"frequency\": 1, \"value\": 0.43613450654491925}, \"0.4961496468624368\": {\"frequency\": 1, \"value\": 0.4961496468624368}, \"0.5449008711557539\": {\"frequency\": 1, \"value\": 0.5449008711557539}, \"0.3836253191056103\": {\"frequency\": 1, \"value\": 0.3836253191056103}, \"0.47099905303030304\": {\"frequency\": 1, \"value\": 0.47099905303030304}, \"0.563908679398699\": {\"frequency\": 1, \"value\": 0.563908679398699}, \"0.3062044895364805\": {\"frequency\": 1, \"value\": 0.3062044895364805}, \"0.3777890721041361\": {\"frequency\": 1, \"value\": 0.3777890721041361}, \"0.36039143009314306\": {\"frequency\": 1, \"value\": 0.36039143009314306}, \"0.3282888454861111\": {\"frequency\": 1, \"value\": 0.3282888454861111}, \"0.577176548907671\": {\"frequency\": 1, \"value\": 0.577176548907671}, \"0.4883208209359949\": {\"frequency\": 1, \"value\": 0.4883208209359949}, \"0.49200874006458023\": {\"frequency\": 1, \"value\": 0.49200874006458023}, \"0.4103894775205987\": {\"frequency\": 1, \"value\": 0.4103894775205987}, \"0.35378258941013696\": {\"frequency\": 1, \"value\": 0.35378258941013696}, \"0.3740202744659712\": {\"frequency\": 1, \"value\": 0.3740202744659712}, \"0.5796838927476814\": {\"frequency\": 1, \"value\": 0.5796838927476814}, \"0.5235639747610513\": {\"frequency\": 1, \"value\": 0.5235639747610513}, \"0.4484753011674118\": {\"frequency\": 1, \"value\": 0.4484753011674118}, \"0.4876629408605876\": {\"frequency\": 1, \"value\": 0.4876629408605876}, \"0.19576598152281746\": {\"frequency\": 1, \"value\": 0.19576598152281746}, \"0.438199748509687\": {\"frequency\": 1, \"value\": 0.438199748509687}, \"0.48956835258320913\": {\"frequency\": 1, \"value\": 0.48956835258320913}, \"0.41347273375680943\": {\"frequency\": 1, \"value\": 0.41347273375680943}, \"0.6689296930950107\": {\"frequency\": 1, \"value\": 0.6689296930950107}, \"0.5335155721350954\": {\"frequency\": 1, \"value\": 0.5335155721350954}, \"0.40095704800064325\": {\"frequency\": 1, \"value\": 0.40095704800064325}, \"0.6064205515115632\": {\"frequency\": 1, \"value\": 0.6064205515115632}, \"0.7179268623373005\": {\"frequency\": 1, \"value\": 0.7179268623373005}, \"0.1607147166043003\": {\"frequency\": 1, \"value\": 0.1607147166043003}, \"0.5944460671235468\": {\"frequency\": 1, \"value\": 0.5944460671235468}, \"0.5148760125885211\": {\"frequency\": 1, \"value\": 0.5148760125885211}, \"0.3820183899176955\": {\"frequency\": 1, \"value\": 0.3820183899176955}, \"0.472946229550611\": {\"frequency\": 1, \"value\": 0.472946229550611}, \"0.4738916790674603\": {\"frequency\": 1, \"value\": 0.4738916790674603}, \"0.7888301697530864\": {\"frequency\": 1, \"value\": 0.7888301697530864}, \"0.4795125171655455\": {\"frequency\": 1, \"value\": 0.4795125171655455}, \"0.46266586061507936\": {\"frequency\": 1, \"value\": 0.46266586061507936}, \"0.3858599175347222\": {\"frequency\": 1, \"value\": 0.3858599175347222}, \"0.4254353695996829\": {\"frequency\": 1, \"value\": 0.4254353695996829}, \"0.4159341508528042\": {\"frequency\": 1, \"value\": 0.4159341508528042}, \"0.5669266695630586\": {\"frequency\": 1, \"value\": 0.5669266695630586}, \"0.5223697545438346\": {\"frequency\": 1, \"value\": 0.5223697545438346}, \"0.353736824156746\": {\"frequency\": 1, \"value\": 0.353736824156746}, \"0.32039355151659143\": {\"frequency\": 1, \"value\": 0.32039355151659143}, \"0.3337801167411823\": {\"frequency\": 1, \"value\": 0.3337801167411823}, \"0.46116942875544986\": {\"frequency\": 1, \"value\": 0.46116942875544986}, \"0.5542131806930694\": {\"frequency\": 1, \"value\": 0.5542131806930694}, \"0.49887372862617924\": {\"frequency\": 1, \"value\": 0.49887372862617924}, \"0.21484133998228716\": {\"frequency\": 1, \"value\": 0.21484133998228716}, \"0.3014509593889717\": {\"frequency\": 1, \"value\": 0.3014509593889717}, \"0.3619384256362119\": {\"frequency\": 1, \"value\": 0.3619384256362119}, \"0.40219766828117237\": {\"frequency\": 1, \"value\": 0.40219766828117237}, \"0.29294295078379884\": {\"frequency\": 1, \"value\": 0.29294295078379884}, \"0.42347568926974666\": {\"frequency\": 1, \"value\": 0.42347568926974666}, \"0.2638192879913663\": {\"frequency\": 1, \"value\": 0.2638192879913663}, \"0.24323121255406102\": {\"frequency\": 1, \"value\": 0.24323121255406102}, \"0.2395792438271605\": {\"frequency\": 1, \"value\": 0.2395792438271605}, \"0.4017440542722305\": {\"frequency\": 1, \"value\": 0.4017440542722305}, \"0.5891779891304347\": {\"frequency\": 1, \"value\": 0.5891779891304347}, \"0.3213774679201348\": {\"frequency\": 1, \"value\": 0.3213774679201348}, \"0.3781423093641331\": {\"frequency\": 1, \"value\": 0.3781423093641331}, \"0.3287484171625602\": {\"frequency\": 1, \"value\": 0.3287484171625602}, \"0.3505919699602043\": {\"frequency\": 1, \"value\": 0.3505919699602043}, \"0.4396534693321443\": {\"frequency\": 1, \"value\": 0.4396534693321443}, \"0.6354505091902632\": {\"frequency\": 1, \"value\": 0.6354505091902632}, \"0.5561355624653548\": {\"frequency\": 1, \"value\": 0.5561355624653548}, \"0.4299038573966087\": {\"frequency\": 1, \"value\": 0.4299038573966087}, \"0.43145951704545454\": {\"frequency\": 1, \"value\": 0.43145951704545454}, \"0.5212689926007993\": {\"frequency\": 1, \"value\": 0.5212689926007993}, \"0.5893813686920802\": {\"frequency\": 1, \"value\": 0.5893813686920802}, \"0.3783672030009921\": {\"frequency\": 1, \"value\": 0.3783672030009921}, \"0.36151047207446807\": {\"frequency\": 1, \"value\": 0.36151047207446807}, \"0.24626366133816416\": {\"frequency\": 1, \"value\": 0.24626366133816416}, \"0.3624827160493827\": {\"frequency\": 1, \"value\": 0.3624827160493827}, \"0.6927039865871834\": {\"frequency\": 1, \"value\": 0.6927039865871834}, \"0.40332456222056634\": {\"frequency\": 1, \"value\": 0.40332456222056634}, \"0.38267361421297125\": {\"frequency\": 1, \"value\": 0.38267361421297125}, \"0.36532934364133135\": {\"frequency\": 1, \"value\": 0.36532934364133135}, \"0.33284052098857425\": {\"frequency\": 1, \"value\": 0.33284052098857425}, \"0.49892171142976555\": {\"frequency\": 1, \"value\": 0.49892171142976555}, \"0.5291275266617064\": {\"frequency\": 1, \"value\": 0.5291275266617064}, \"0.3228221731519058\": {\"frequency\": 1, \"value\": 0.3228221731519058}, \"0.3627780278523763\": {\"frequency\": 1, \"value\": 0.3627780278523763}, \"0.461647917451801\": {\"frequency\": 1, \"value\": 0.461647917451801}, \"0.6965152291356185\": {\"frequency\": 1, \"value\": 0.6965152291356185}, \"0.5365947901142574\": {\"frequency\": 1, \"value\": 0.5365947901142574}, \"0.4835555167390141\": {\"frequency\": 1, \"value\": 0.4835555167390141}, \"0.4336406327620467\": {\"frequency\": 1, \"value\": 0.4336406327620467}, \"0.6568547928051002\": {\"frequency\": 1, \"value\": 0.6568547928051002}, \"0.4063092138636906\": {\"frequency\": 1, \"value\": 0.4063092138636906}, \"0.49952227618243245\": {\"frequency\": 1, \"value\": 0.49952227618243245}, \"0.5283641074975174\": {\"frequency\": 1, \"value\": 0.5283641074975174}, \"0.6602147656514215\": {\"frequency\": 1, \"value\": 0.6602147656514215}, \"0.29681154443382707\": {\"frequency\": 1, \"value\": 0.29681154443382707}, \"0.4726328495054333\": {\"frequency\": 1, \"value\": 0.4726328495054333}, \"0.4004324321636031\": {\"frequency\": 1, \"value\": 0.4004324321636031}, \"0.7586182847122589\": {\"frequency\": 1, \"value\": 0.7586182847122589}, \"0.4469715011510677\": {\"frequency\": 1, \"value\": 0.4469715011510677}, \"0.515629699686774\": {\"frequency\": 1, \"value\": 0.515629699686774}, \"0.4225955350955351\": {\"frequency\": 1, \"value\": 0.4225955350955351}, \"0.479553188788149\": {\"frequency\": 1, \"value\": 0.479553188788149}, \"0.5052484809027777\": {\"frequency\": 1, \"value\": 0.5052484809027777}, \"0.4099039182998092\": {\"frequency\": 1, \"value\": 0.4099039182998092}, \"0.4792618427579365\": {\"frequency\": 1, \"value\": 0.4792618427579365}, \"0.41653653570013865\": {\"frequency\": 1, \"value\": 0.41653653570013865}, \"0.3429891748366013\": {\"frequency\": 1, \"value\": 0.3429891748366013}, \"0.35566536079986466\": {\"frequency\": 1, \"value\": 0.35566536079986466}, \"0.4454433610845866\": {\"frequency\": 1, \"value\": 0.4454433610845866}, \"0.5160972465078512\": {\"frequency\": 1, \"value\": 0.5160972465078512}, \"0.47523053762986106\": {\"frequency\": 1, \"value\": 0.47523053762986106}, \"0.4760325850720318\": {\"frequency\": 1, \"value\": 0.4760325850720318}, \"0.5446831597222223\": {\"frequency\": 1, \"value\": 0.5446831597222223}, \"0.5008327379941905\": {\"frequency\": 1, \"value\": 0.5008327379941905}, \"0.2729791753700167\": {\"frequency\": 1, \"value\": 0.2729791753700167}, \"0.308979602209616\": {\"frequency\": 1, \"value\": 0.308979602209616}, \"0.6233915395585318\": {\"frequency\": 1, \"value\": 0.6233915395585318}, \"0.3569627732851914\": {\"frequency\": 1, \"value\": 0.3569627732851914}, \"0.608780090657591\": {\"frequency\": 1, \"value\": 0.608780090657591}, \"0.22627584761549926\": {\"frequency\": 1, \"value\": 0.22627584761549926}, \"0.5482857932721013\": {\"frequency\": 1, \"value\": 0.5482857932721013}, \"0.425804358840929\": {\"frequency\": 1, \"value\": 0.425804358840929}, \"0.319568607390873\": {\"frequency\": 1, \"value\": 0.319568607390873}, \"0.24282175084877003\": {\"frequency\": 1, \"value\": 0.24282175084877003}, \"0.37108692956349204\": {\"frequency\": 1, \"value\": 0.37108692956349204}, \"0.23307810949900792\": {\"frequency\": 1, \"value\": 0.23307810949900792}, \"0.3335242020615996\": {\"frequency\": 1, \"value\": 0.3335242020615996}, \"0.37089179841897235\": {\"frequency\": 1, \"value\": 0.37089179841897235}, \"0.4409180854241338\": {\"frequency\": 1, \"value\": 0.4409180854241338}, \"0.3933300732737208\": {\"frequency\": 1, \"value\": 0.3933300732737208}, \"0.253144618028007\": {\"frequency\": 1, \"value\": 0.253144618028007}, \"0.37024015772478885\": {\"frequency\": 1, \"value\": 0.37024015772478885}, \"0.44703767386602644\": {\"frequency\": 1, \"value\": 0.44703767386602644}, \"0.4608859791475184\": {\"frequency\": 1, \"value\": 0.4608859791475184}, \"0.49298296133025515\": {\"frequency\": 1, \"value\": 0.49298296133025515}, \"0.3544283888358399\": {\"frequency\": 1, \"value\": 0.3544283888358399}, \"0.3984058880117423\": {\"frequency\": 1, \"value\": 0.3984058880117423}, \"0.44445762898364766\": {\"frequency\": 1, \"value\": 0.44445762898364766}, \"0.613915675035669\": {\"frequency\": 1, \"value\": 0.613915675035669}, \"0.7620675028858018\": {\"frequency\": 1, \"value\": 0.7620675028858018}, \"0.5883158687282662\": {\"frequency\": 1, \"value\": 0.5883158687282662}, \"0.4716738956832385\": {\"frequency\": 1, \"value\": 0.4716738956832385}, \"0.44927106321676474\": {\"frequency\": 1, \"value\": 0.44927106321676474}, \"0.2777236667711069\": {\"frequency\": 1, \"value\": 0.2777236667711069}, \"0.4746316483955098\": {\"frequency\": 1, \"value\": 0.4746316483955098}, \"0.2413951066036047\": {\"frequency\": 1, \"value\": 0.2413951066036047}, \"0.7245075334821428\": {\"frequency\": 1, \"value\": 0.7245075334821428}, \"0.4075542508917955\": {\"frequency\": 1, \"value\": 0.4075542508917955}, \"0.6392477024341778\": {\"frequency\": 1, \"value\": 0.6392477024341778}, \"0.3901983327203324\": {\"frequency\": 1, \"value\": 0.3901983327203324}, \"0.4251651630704365\": {\"frequency\": 1, \"value\": 0.4251651630704365}, \"0.47254846833472586\": {\"frequency\": 1, \"value\": 0.47254846833472586}, \"0.5777430215262929\": {\"frequency\": 1, \"value\": 0.5777430215262929}, \"0.5864937982161272\": {\"frequency\": 1, \"value\": 0.5864937982161272}, \"0.19435202315588446\": {\"frequency\": 1, \"value\": 0.19435202315588446}, \"0.49031983294290477\": {\"frequency\": 1, \"value\": 0.49031983294290477}, \"0.3292217607460474\": {\"frequency\": 1, \"value\": 0.3292217607460474}, \"0.49247096994535516\": {\"frequency\": 1, \"value\": 0.49247096994535516}, \"0.599085779216256\": {\"frequency\": 1, \"value\": 0.599085779216256}, \"0.3893788034028813\": {\"frequency\": 1, \"value\": 0.3893788034028813}, \"0.4242502314814815\": {\"frequency\": 1, \"value\": 0.4242502314814815}, \"0.23873142876978617\": {\"frequency\": 1, \"value\": 0.23873142876978617}, \"0.40265495325498546\": {\"frequency\": 1, \"value\": 0.40265495325498546}, \"0.5243794661453168\": {\"frequency\": 1, \"value\": 0.5243794661453168}, \"0.3916704299132948\": {\"frequency\": 1, \"value\": 0.3916704299132948}, \"0.31299029541983975\": {\"frequency\": 1, \"value\": 0.31299029541983975}, \"0.20009362599206348\": {\"frequency\": 1, \"value\": 0.20009362599206348}, \"0.49047814603916023\": {\"frequency\": 1, \"value\": 0.49047814603916023}, \"0.33091520077385217\": {\"frequency\": 1, \"value\": 0.33091520077385217}, \"0.2848738317276021\": {\"frequency\": 1, \"value\": 0.2848738317276021}, \"0.3796559155766944\": {\"frequency\": 1, \"value\": 0.3796559155766944}, \"0.3712616883213415\": {\"frequency\": 1, \"value\": 0.3712616883213415}, \"0.31861292225534027\": {\"frequency\": 1, \"value\": 0.31861292225534027}, \"0.2958989037508952\": {\"frequency\": 1, \"value\": 0.2958989037508952}, \"0.18831610158966716\": {\"frequency\": 1, \"value\": 0.18831610158966716}, \"0.3558621305265772\": {\"frequency\": 1, \"value\": 0.3558621305265772}, \"0.4408638381768505\": {\"frequency\": 1, \"value\": 0.4408638381768505}, \"0.4943125155240934\": {\"frequency\": 1, \"value\": 0.4943125155240934}, \"0.24876971930452774\": {\"frequency\": 1, \"value\": 0.24876971930452774}, \"0.40852176264156176\": {\"frequency\": 1, \"value\": 0.40852176264156176}, \"0.38163887609453623\": {\"frequency\": 1, \"value\": 0.38163887609453623}, \"0.29680183708521424\": {\"frequency\": 1, \"value\": 0.29680183708521424}, \"0.45336102625084584\": {\"frequency\": 1, \"value\": 0.45336102625084584}, \"0.38676809488640884\": {\"frequency\": 1, \"value\": 0.38676809488640884}, \"0.3442712214356682\": {\"frequency\": 1, \"value\": 0.3442712214356682}, \"0.3103061841987422\": {\"frequency\": 1, \"value\": 0.3103061841987422}, \"0.5329251147073413\": {\"frequency\": 1, \"value\": 0.5329251147073413}, \"0.3635140589577616\": {\"frequency\": 1, \"value\": 0.3635140589577616}, \"0.4234065824468085\": {\"frequency\": 1, \"value\": 0.4234065824468085}, \"0.3420185978638848\": {\"frequency\": 1, \"value\": 0.3420185978638848}, \"0.5629994750494071\": {\"frequency\": 1, \"value\": 0.5629994750494071}, \"0.4663156488824981\": {\"frequency\": 1, \"value\": 0.4663156488824981}, \"0.4846849387276764\": {\"frequency\": 1, \"value\": 0.4846849387276764}, \"0.48112298387096775\": {\"frequency\": 1, \"value\": 0.48112298387096775}, \"0.47577726355761246\": {\"frequency\": 1, \"value\": 0.47577726355761246}, \"0.22646319642432883\": {\"frequency\": 1, \"value\": 0.22646319642432883}, \"0.32347593461546115\": {\"frequency\": 1, \"value\": 0.32347593461546115}, \"0.35926127019654996\": {\"frequency\": 1, \"value\": 0.35926127019654996}, \"0.2883704359165425\": {\"frequency\": 1, \"value\": 0.2883704359165425}, \"0.3776516879562044\": {\"frequency\": 1, \"value\": 0.3776516879562044}, \"0.4494581191786411\": {\"frequency\": 1, \"value\": 0.4494581191786411}, \"0.281433780561192\": {\"frequency\": 1, \"value\": 0.281433780561192}, \"0.3702769675237812\": {\"frequency\": 1, \"value\": 0.3702769675237812}, \"0.5639549510160012\": {\"frequency\": 1, \"value\": 0.5639549510160012}, \"0.5006949869791667\": {\"frequency\": 1, \"value\": 0.5006949869791667}, \"0.4601964937693468\": {\"frequency\": 1, \"value\": 0.4601964937693468}, \"0.2978051890946543\": {\"frequency\": 1, \"value\": 0.2978051890946543}, \"0.34290875507827984\": {\"frequency\": 1, \"value\": 0.34290875507827984}, \"0.5714614381520119\": {\"frequency\": 1, \"value\": 0.5714614381520119}, \"0.26724219123000714\": {\"frequency\": 1, \"value\": 0.26724219123000714}, \"0.4705408763881702\": {\"frequency\": 1, \"value\": 0.4705408763881702}}, \"mean\": 0.42331994120806044}, \"path\": {\"complete\": true, \"numeric\": false, \"num_unique\": 1324, \"num_undefined\": 0, \"progress\": 1.0, \"frequent_items\": {\"/data/coursera/images/sunsets/ANd9GcQ4xQ4yZJruTBDxeUh-LiXY_jYACdG89W-mgxzr9j2KgSIO-tikVg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT4vXBq1qg5TjzD-_ErJAtxrjoaWhY0CUV2w4--JYGkCb6_R-Xc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRR_z4ZZghtNlcOMSVXHspdDJC-G5vSLcCfCkzsDC2EBowQ0Z8z.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQXtN_PXmBq_Es-OJCsSyXo9TSK4xGqg9lkFD1BcQGvi5AXIoNL8g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSNT5_Cary0HdL3bU9CAsbGCePYDFlXpcbPDwpNriXNJFLgwAq4zQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR1UN0P6GLGyIPqAvAbvXs_rMO8FFu6qR8_3oMPO4GACRol95xK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR1JGV3uLonrDCQBkoAlWNx3hGBB628J18u0G92EqJDcRCepCWM7g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSIQ_UIrGapUQBa-OEsIn0K7FXEuGKMzWB27slb2OBX-BlxUbCu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT7324w-qNvWmStkp8UYp0WYqX9aYmlUXIoC9aacTvEfylMT3jQCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR1VpkRDw_05P_-INAk9QxD7sNBKsmjH3GOx4yAnUKCfmI03PLx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTlOl2S_wTLwSi9yO8vJijOW6smUdcORZtOmI3LHMkRi4tK0YkQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ1O55e0PJcYuSLDZMyl0sP2fja4OJWp09Z2l4mUK4s4LbZlx3F.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRc_X7W0liYW_rSzBWSgD4r7f5EDAhvCxyx-z1ydkxSbTJzzuql8Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRBgpE0OoNVIpp-BUCff3pbzFwOk-XFTUXgyOMazPGqMKY6jsm6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRKffIBraoZOoC5UJdse8bNB2DmqyiG5pLIedP7tL8fEXAFDC4mCQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT-Pl8GaellPqfbRD0IgQiUfzOCbAvoiaB9ZxdrK8QLvZyuiBXW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQkUsy-_l5xFnT0lvU3UkML74uC90uHytfsv7vUQwSpXgNsRyMF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRqciloLaaMlz4BD3NE4ECuHF1AsQMASVwGk3op3kpuoNFNkWKS8w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRY_5EabJ_ldLD7_KAD7L3wicsSIWOEr2FnOJUkbDN4fHQlNolWUQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS-NqLZD5PgFXWdjCd_oh07nEL1QQzJSqI6Rmw_nIkSHPBR7QWU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT64JvuOrtwaH6zF_kWoNhfV3lXS85A9fANobbt0p6SrDMThKFClg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRuMhfwZLezC2TkRwtwh2onoAZeqm6PI77iLiLfgLNFAfsHK3w4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSnlypoEVQ1ze0da-VOZLYGrcNkCbZZV_IW_7OWQgqyMkNRxIPm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRTkOlBV5VS5Tz8Fpq7ALoqmaSfb2JM3DsQXzBAmXrhZu6XBHsj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT-xwT3Hq4lO_2yTYTwIFKkdyQNK8WXa2O9CPzpPQjcq9yyFU1Upw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT8JlzLyo03Pp97H2B2qQMiFVGQ3tNCNxK3Wq28cUZvMx8A9sCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSdVzDcPgSvQHuu7yj81IEunID17xdWskc0jhxQblWXOdzLcHTivQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcST5lihs2QYKw_qrO7AWfHXjcJjiACgsx8O1nikK7uZmi_cYatc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTSmPPWIkUDmp-BTWq8Id8HrkMVBYHXBQ9WoAgckVJ9e77zCGWJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRNxOyKLOBSs75zwEEKlcJ2YG6cZQM5DhFAlmTtCB3dOfyq6LZB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRLyviWM4QHzGg8DyoEjOaKLRQayECrNU4de27xnjOX7sA_R4PW5Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRm-t0PkztEycv-bvgC074deR5luJjLMEcgMX05d7UsSxdbGVoQeg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRn1a0FRSODbYAlzwMTd0VfIzbftWztX1-M38i-lwZ3hK4E2AYJ-Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT0r9PtZmoIND6a4_fXyHMjPx5Zij0UTmVcYhZu8bybskF26c73.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRistxZ06R89j62g3LvqXh0wEVDSR5kvGI0FVZkp0K2C-nNso3hEg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRAE39pX-kqM3Bkru9sqoUJy-iVKFkgEFzKj6_B0zzvwpCHb3dtRg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSr79ZDpuBOGQVQfYNWEAqF9NJ_g8r4RBJGbhxQw2lemardEIoj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ-Y4lf0VySCfoago7CrpHOCl1LHcbHaB2BMf6UvUSkeV4dtoIKlA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQjpKa2FnH-xBsTtCBl0s3VCW0KL3L14kq65czEpf9g-WHETwqY3g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSKElB-04bh4dpM1nCtbyvAfZIeEvdx0QJWr0eQ-zOG5Jxopx-d.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS9UhyOVi-qgUd8nAvq5dE43nCGYrfopTo2Q2G8zfriuh2cHQB-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRuYR6GfC0lbwnbE--xE0xrIYwFIrY5O95ER95aDB65FW9PxyrOvg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR2Br797HCBU2t3D45BjoXhyia3Ix6p0gydlrUte4EXpBPlO9fwlA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQboq1Gg0Q7aTErq9oKiwSq2-X2Hu8lFbelvk6SX25N6SuJ5eG1cg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT792TYFlrT3R-m9qwIjjpJkrLfeBKzCGNr_Vz1t3lo6RM3JXKQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSFW7RpLRBSjtSGS4jlLTzwsow898_wMTXGLG-3AFUKpkhMzUAnIg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTEkVsYqRoEJAFeEaKwcDbtjMDwRUaGw6DWgF6E26nfTOQc_QkZ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQGbFoZJnts-CnU_98Q_QgKj7LBYJMekUryZs9tZjPaQJac9E2t.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSQ68dNzfp47djqV0jYxezx2buJjpA7KXbTdyWPxMWf3CYH0H5u.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTyB-TGHClM8D3sKtzee19i1Y4EJ8CnVgIN4s4svDQniUlrYOTT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSYDlAfzXXON-s8pHk9C2nxxwOm_a0tmonevseyOF80SfrCQXeESg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTDJP7O0DswEDcK3bvB794CWEa3CK5RQ7CQ7Jy5wgIKV-l9O8Gb.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRngY_ccyx-WyzxfA4LH3F_Z66xh7FZ0EsxKZIqUUTZrN6HiaCRCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ88hel4_MLyc_zJjbxGX3tDkb1GCF6aGNx0KEll3c9Cpxuk7-p.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTSVC8EaDGtOLszLH6HHmDDhGAStb3X4ksmXl9p0RkRgYuZxYMP8g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRzUIq8aZe8UvrxIuCZj9PWePG64cllcxjlUZ6_QGrHFvq2XZTcDw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS9yS9sheiBz9Z9LA4cNja35lemyqJFWk_5aw8cO6GCHqT9ebOMfg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQLk343TNtdKIm2Cez0FCNQRoaAvT4ErPHsfbvpo3b4oI7r2TJR.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRdXca4H54CdRDnOKdDE8QP3hUxwz_hMsRhLdpq7wA9ug0LXKHCnw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRX4Inf0Bs1b6tKTjxfbjB17lVF0bMxZuPQHY529g5Sk_o_wmUm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRHJf0o8Xdyd6NQiiHMSEEY38xiVSTKZNL2PAt36BTeHxhbbmRv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQgoESCyh78mLx-hZcuIXYI6n_Vz_BUWgrgT8QCAyIrkI0q4-GP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTQmQg2ZygzDwWmvTDvroE6S0gMYAIPmFIAAQ6Eu4TbDRv6NZKO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQSynaKOEEaZKSa-BJCsy29KzJ_Q778btizpxrE-MOhDb5-l2rxcg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQf_j9m1Ml9rNy-wO0VI5fjq08FyptF-qTc3xgZc_6DUJP7YNMF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS_Apxg4WbRr_Uj3A9oexEYVuXpjOEAdAj7KZ_syk2PuZjUjTpujQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR9gBJFKLDSbaYQfHp7dKMxAToEA4OK7zrI-AADSzFNuhgxZff1.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTWecHiLn_mRLV3uPwlF_oHzAdLlxiPcAK9T01UF1vuaKC34fnm2g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSMn56D5jPJhdQigfYG93O2TZc499EG7CrJSOXohw8s3N4Ms1Df.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTWQ40J2_uxlMIYDYmwPnBOqRRxjmNtQLX-AO1RjFFsFrhcfD4p.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT_f1HE3zt-4oWqAmqBjUIx79lgEXq1WKPTdLemDtSQaEEtUBIK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR6-yF7ns3thAykuqLPccK0KssYvtIHn1FpH9I1OvK5F5C9MK7tSg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQtFjZzNBLOpzTLyt7eWW7hTIvZQni8UbHZfJjiRXohldnMmgsN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT0shDIioVJO9-VH7VvwB-h6raUNYztF8e6BTmCuVG-v2MvEsz_Xg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQUqgBcG0dTb1Tv56U9ElCzLi4PoKgL8fi-Ls8orEVWUIchWGNxnw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR3I747ED1yQr0vRQLbgoR2XYmu9fQQk2fNi2hiscvWzsl6CkGxCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSbD1ML5xGdFxeehQn1IyrxGn7YZ1pi31TOnhZEZoT9jT2n0Yuf.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS-g9IWMWVdBys_Z-QiZqfXgvZopIDZRHQmxd1z2-aD9R0St93O.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTHCmUbHr_3s2fTmBHkFcJ3bfCZVBE82ZSEwNxFOR1kDkdPZMIu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQT9yhx9qwcA4xre40-Cd0tqHd8Zf9NYPlLhGLT5lSCfhC9KrH0MQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRk05mYkqARwt87BQNGJ20BNbd4fb_eaAFd1_hval70sa7P_KomMQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRJrwYqYKJaeSokzbHnmfYMKh_QLcd6Aj-Bjj15bDYIs2Ec2GCO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRIbGO4ChyMvGCZQw3kGZAkycfwnCdO7r9zDvVx9g_iodFCoYBFdQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQzqfPWK-w79rJCAmjfrg9dxh6XxH27jmXJKkrH5qCKjpPWqCLb.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS5YMnc8VJAry7zy9j3AuS6ZuM4sB5Z3KBPOX2_Y93AwU2RcnrIdg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTNhR7eZrrYlIoIG4gX7HynFvlDmviY6_qeh_0m4n7o1t-O0HXW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRsIg2TZl6pjcNPuv2GCitt_8xOri7sS__TPDeQDIhoUTDtLg-u.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRD94TAbd4Pw_uLY2nleDbKnjOAoRrDpt5VxTma-XF0nZcykJJ5pg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRva6jwlq1JGNWDrFy1TNybcAdxtlqHPi6xJe69sY1mSTplhlge.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ1D4YUCLe5MCG4xd5iNJGh2f84w-oayS1Gwo4x_hWGthcKB3X9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTYEThlvd6-SWvTKwHd8ACG57RWCuXzv2a_lVrwjuNoBWkKNlvWMg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQfhua9-COIt17xG2p6f47J4dgNjyZul2peHrstsAK-QmPXwP6QlA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRzPSrZb2y5Y7OPNSUiXP4VQOc9wTkKrDcNI6W_5aKZ7QyPJqmr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS8_4qyvPC67OSdHEm8pLvsET5wqzI7h4NRMvEjkbUpgHox-AZ8Ug.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS1D7EEjiyG9RiPxzzEiQSrE18nKwA4vhRfGO-DOHJ5J0XsRH3jYQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRhikISkbNNtw16ZtAlYh_lZWVh49RCXPxMhd82Z9rnZnwKUWv_iA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQY8AoUx82g1jiYIRYazL3BU7DhLsR0Ydy7V1Y__rQfGyu_OcRJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS6UV30PMi6vrUMsUt80oW_24U0V3ss_z-qeHj1G4RDjEOntSwW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRw5gbjJzEa740rMLMVCZ3fHsOF1yiLFh9ww_Ur3CFiH1t5g6ljbg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT1ktC1wdvX2WXzzV6NCXNR6r4YNh10p7_YUZjtSa_985xvrVT-GQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTQFZ1JVDSbkR5mbEvg8GVjQUhq4QgpmGsfRE18aFWykSucxhTL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRgdPQQJVrj2fpuNjivTrJ6AIEXuQjnCFGR23NA792KbD43deji.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTHTqTQW79cZrRGJqk0NYVXA5BKyg_CenyIuZN90LHrBJtQnHHo.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRaRe67DRoSNEmVUKdLB1WKOuYoB8f0vcexRasG6-Wc7xS6NXOf.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSRG5D5x-DGFv3xtsHuVGIz3GW_xY-si0ifWGTsU5YQ5xPp_QY7rg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSHuWfZw3ed0lL0CM3QhFukEgheIVT6MU4BfFowqxFScd1cRVh2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTgrsLfSciVZ1Aec7QzIzViKPaimxcEg7oeELGKlQomHzGJ7qMYGA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRyPn8zQuDdeVjclYTpPddPBY5Zq8rTRwsLrnUsRgjYaHt8_4AvcA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTTJCZQiwRIC553pVEM4yE4E0kbJZmnqACBEJCi2EcFFeYnE9-INg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSMa-JWx5ShOhIz56NFZqFaMtmhkzQ77fe3xXebLYTiQ2R7kk6b.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR2FCtkUDDAJSQHmIGWbf5qbmcu_gvpPfGg3oN0JOvhScZm9YqidA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ_1pq_ShKuY-P_MT9KaYP0iI5bAo3N8nEV3h87O7-16ykdX803nA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTuwXY-zWAJOdNM9bA5dX67GByAziqDu6xcZyYuxsa58B3o5QCL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSHqs6YPZMW0vVCzRYF36puO5LExI8nvfMqfgpL8IcWQmyQPaT2kw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSDbcpFoMkCOl58fgtIpgfb7JWrNreMW1WygqjrU8xGAoZ9SINbAg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSLRv7bDAb-8uT8vTrEo_AiqWCEQJIsxrHD-hzzraFIFwVNB7bh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRz6-JTUK3KZN0NO36XDooxSuDohUuH_lXBPbfDzk3ctGQzXYWQSA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRlJQOU9l0SJld0sw2foxqfpVaXf9xAvLLxIJ1yT0cUMQequxdp.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQhtgoJuP0f8V9HiZBcOSvMpOnR199auPN3hHpb0i3cYwFkR7Bu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT4C0Vno57l7iFR44mRQ96611FnbaJ49EUDaUFG-xMQ_kxp1hrv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTu3s5CzjmPcZm3qx76nWohsuKq-Bw_cm-mQb9hjaUMJJgzldiO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTcqS33I_uZJHE3D1rusxuWF4bD-jnlUFpN-hRteRoGAr3LcOhk.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSdSxLgfQ2PAk9iuaxwf3WH1NccvJviNVM9cmtGfb-ithLJSsqtRw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSCmWcmt3shlLZXuDJykAz8STRCb0djUm-ME5SN7crkFiSuU21I.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSQlj1oluWyvYkElkZQGpnX2XIwaHRFkEXI6qugdN-PwIV0ukIo0A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQVCkSN-bkBMccPCTTriTuXTURUVZmFeHpvsuU3BS6rDH2hyIYE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRudGwvwxv1UF0MyGZtdWxQ1B0lskqvG8mePsJ8pDy55q_6q0lP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSkeodf3uQeny1qseez6Z8d6VRKudGn5gb18LDGNjk87MNZdOroeg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQwEHHS9sncprX2iQCC3iDf8JGb2fDU36PsrNqYEfcAasVIA97s.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR2xvU0J9rTDVrcFAgtfar2iSk0ENuCgsH7KRmN9Uf6BR-S-GZujw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQuLuliiB-Udqt59YVeF5SvK3lTS-MxAgDFw05EPa4lPtRPwKx8.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSrUnRDuNbT1EKRLgsEokiQtuVFrRECuWQ5RRPeeKutpEP-Imqx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSB7m_Hs3M7ULbD8yPOVa2hzrcdn4BXKAXSTGwRCfBjcsUtR_a5Uw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQC9j1fmFEHdPQUSHgBmUbr_NXDGBHYrbvkkbMTSF4KRq70dqMCyw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSOkZvLfZ7-JLWl-pBHXQdT0qtxyVtgMm9O1-azCLUZb6mALg_4hg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR7_yIhfDd8-75PogDaIQl5o_IyCjjdtK-_k9Nleamfj_owoaYFaw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQQGE7WjywcbKvbEpw-Vt_UAoBRMQqdeAh-iQ20BK149ZhlKplKlQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTMCHX5Rmt8vwZg9Bm8PMZAeCDhaysa1u6Gxkh0bg8rrSB46j9Qjg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSnFHSajFqRUpbInqfk0VDBufL9TsAgQ-SQJvzVtJ69Ywwq2nWdUA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSyQq_eXK_HFVEHuUDe8Vz1s1JwLX8p7Ot1eMwjVM7ohlzEI_ZGVg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTT_Sim1rVl9Md12FPvh6OWmzwoNCVNDk5erW2Lz8hEQFALF_XM6g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSdNeOBQTNbqPuEk5U-TVs8Dln66ujCasf11N1ieUHiEPV2TRVBpw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQwgaehr0E0BHaMthdfrvzNFB2SYelLMFXdm53dxC8gQW8XY0Rw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSgyeHOcKfdo_cdDD9c47Irno1sWvPpp0I6-W_9KMIV4JUy8U-iQQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRvMpbcH6PsDqWeOExS7sT5FMDjICptm0hiljrly-L0TwNeCTkh7Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRhF0P5E1Y-F8FHhHkHJa0ec1y4fa78ywBE7Mu68NJWXMP9RbqXRg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQUsf6AbJhY_H_lU05PyzqbAH669tFNdimaoRRATbstYnhBSi4U.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ6cVDXvUc7jyi9jm328NsCpE4rzieF9ODQl2BF0c3LgTF0Wq7zEA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTzYdwl9Bw3DgkhLfAQSf2z889kTrI0HNL3_E2xbB_19TNP3pqy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTtVWAbD00rzgtOBjp9tm5odGrMlh4l5pEHTtlAPzL8gqDWaia9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRPQowxaXHVSyfep_8onh-Gjg6P1J5Pux6rEUe3Xuq25aeWwn82.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQikmr2viXcTbVck9sUMN4TdxdBYUgT-Dmo3x1ywRTCjPiGllz_SA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSzRSJPYL2agiGFcgon1F-ONbwMbCQh2RtxPODhDybW7hwSAxJA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT_Ou4W1TjRO8y5C2EYhHHYXN8PSWeu5ib8mnsJ6MmNyvx_3SQkxA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR3yHbYMjAcGANRu4ep_KkNYeLnQ1KTeo6Y8TTcYamC0yPmxIbr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRgJhp5m-mUwX02FOIDM6Et00grHg3iU6ADYinBYtB0Hq5moz9h.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSN4oTPrQN20VzmIj-D2KNIYmVw5WFUsxptM7FMrQZODoCg22PJhQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTvEhZMJ8ZR35eySqUdbd5ykZVMHI8wVFBMrIe6ElIen4uG_O8S.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQoc-K2MrYf5JnQ5FhPwtCvYk8EjbYtUtmdshiFi2l6Ds5wLBmUqg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQsj-BdubYPClYe0UPxEJNxZaB0PHV0TsYbJVp-YSyO2TXgd0tD.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRaeznx0MYpw2G7wjxH--CR6zizI1JHEdVwzVnEFZxyJKIvB02c.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQX-WqxXP22kPMu6y7cL59s_AUxY9qXZzrKp6r3u1Zg_U5FlBlr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSUSUcOWTFI60URDQdGPLcL6jE-X3elJpETOucV0HMQdbkcw-t0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS4mRt24mljxTx0eaVGZ5D2mMcKFSBiCJ2wr3kZrHBrgcbuLMC3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRN08p5G0LxBCpNKAbg6DC2AEYDoh0vhm6tPUzTcGNUlfOIx3Xu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRvDqFjrTSGklmx4fAZU0wSkpKim85xSP3847LSZo2SQ9O6DxQx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTfrsNgHkQQB_X7nl8nQRweB7u3AsG8ayjvAssk_5jdpm_dcIec.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSG9DKMefcwHuNuRaSK98nowiOahpPMX5C1LW9SuY8FXj7HLmKN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTZ37HB-ZC2mc1ak1zNwDu0uC6bPWzGswOn6JqGhtjzTthdIViv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTtUbQ7FRfFRLZ6I9bQElBVx7MYfx6a3rPLcrUrGSPwzY40wP9tiA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSE-l2ZDNgl-wT6pSxS5_R9-0-8CwHl-t7MGJqWLxC4_tkkfGW7IA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQCCik_LEJruiEgOtArU2u32BeoQAK29sSEtQC4VW9Km7maIWQWzQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSFrBqxT3v_IaLYGNfcO6zkSiMbmaEIcQIoO5PzozqdihNVI4ejKA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT_Kb4PWm1cxQAmiTVFk84_4id-DUO-y48qsoOq8cxbK2YJN9naYA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTMx2o9t5X0HE48kM1FhlEv-7gWC0WdU47zJZTRqk3wkDcE_6nrcA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS7i2pyRqUqOrA05QkoLLsk0X0Fw0zqx0VGXESNgB9r247-ZlpU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTvEtYMVzjsJiprVGckqV0i2FJZf_ZgxXFetzltvt_1iJSXhU3ywQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQnWPitCRAiuKZ-FXAq29ip3rU4-Nf4SgLFfAK-ncbsNj0lfE1Tbg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSObtswrGM-aiq54fhmvz9GAg8_a1aaErMOfKStL7oYE7WFty9RpQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQe3JTRLlmBK2bobjkG2S2fPFERWhCdsixliYq9irzDnZDQ35X2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSfnN43LgS-ZV2CGROXIbgpd5L1gzVT6BcsS7SxMhPCjy4MoLYI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT7j2yq4-7D0-2yNOaK1EwGXuHCWEnB32UBXqTEhfuD6vCb0uopGA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRjPqRdP0p0ImNoS9Ey2yvUsxBVHjV4FF4KjF5vIDd1ffyDFEjgBQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR_uIdd1kLusskSmpBcKiKZaKDbV5ZmsS1VGqbz8ioNsxj8wSyE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRdRsJaRC6KENpR367ZsQS1SUA6UgAxy2dB8cERdQyRRTrVjUko.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTfhAU8fwffT3Js82RsDeqId0ysM2hUlulyuI2z76GmFd4kGIEv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTz4m-bJFb9KU3iSf2hrQ2-TXBe_F_3WlHrqir0VmD2Gn4-ue2p.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS7blhRNsSJqYK0djsqhdoGstGOnVMId4O8u7xFg3b25dHQJ_wPsQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ-9q7fjHdCPVLZHzTvLPvtklacP7xAO82eCTM2EuOxEL4Sl3qpzg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRWSReylooLl2AR_j9b1JQN48JpaMWqY4lAOe0avHpGyUoUzjuL2g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTHKNLFASu1f6o6TaSwo4_giJjpz-eCENIYfVg4gDCbud1hxVUbgw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSL4gS88i17M6QNE8aJLCaxRL1jQEGfBuXCjxow0LN5_gzcOAkw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTLILH7alPgpjDpYBEd3k7j-D4lMN70quyOkqcTw4QotRj32F7a.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRuxZOEZio9nFDcfasA4HjEdeKPbAuLo99mBfue-qoa_lCcUUKP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS0Kr4CGdiokj2vKhZUp2VT7mTnGrpxdc4qjy5Oz_ca4nFaoSUT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRSDnabysbXffxD4zqQlX70doRpAKqNAgZORnvUZ7L8qMV1BeX8gA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQouo2VICwSfdtLYfPudCwPgUbt5glJ5yxLiyUz5RiyeBnPyEf9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQNiGQ5n9agpOwOAH3GLiKzKBOxbJJJqXZVrNergPCebkm0kfeUDg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQExPxKiafUCJYDkd3CeugMR3vtazHcpc7JiBbQKmUIGsWLsSrA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQpnbZgrtKqtPwGIicxvlxQ8b42efKooxo3sWxrUUPEm-82Rkv6Xw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTOcKasQcJDhGviFz3NdMnC089ZdS6xGEabz6p97KrTRZdfrxME.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcToWP8Aumn9N2xrae8ULQdeIU6q447i_3aPD8_vX_AcRBDZw1e-jQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS3T8g84Ia8QUyryaSkgTVUv8m7Ewd7tjwiBPAfKIZqe-tQu1zs.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRZN8blCOZ3zFKr6pTsrb5k6coVp2CAxEnFydRNyG9iBgYgiNm9bA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS-a-3H6Am33WBrwsTdpKIAciGVVCcpx27dZFxGpkeVE0m3ttDB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR3kr3fEREIme9ZCsVxtMpmx77e1dwT3Se2aGxVj39da9hC54BC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRtdrxnZOg3VSjjaZA4J4UR3eDPU_q70X-GSh4vZKdl4CzYmX1QHA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSPckO-sz2VxzcPUH3uYMEWiLH_yryn-nyR6pCmmIFfQ0U5dTvA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQjPvS_LSPKiiwiczvZbbXNCqlpQK1nAbU5e_Nl1VFgb2fo7pqM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTeaax2ZdxlBMrK6gwr7Gxhg72GMpR1BHKuVkO9b9vYuOtpKk67.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQJ_sQE2fknT5fM8OgP0pBbfVazEfnKsFT6FNQXwgKyPnc76a7r.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRNQDDlRRerbyCVEm1-ixzePxl1WoyDlyDmCPUHjZ1IHis-L44R_Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS4iIkYhCtoEBrtUsmF0aGLBq8WvKcgTsYZA_3sC4XDvlISrlRiKQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSrdRbZclZCqefveeOY-2c0oAapznyC99-SBSG99D33SX_PrsDI-w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQxft4u1BetHXVluPbror5PxaDFwvuAS1uipQ5qMWp8mXUQ7AtG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTI1Daqyo3Nwab_NRukpxh6uHnmHfZ8jJN2XFFGX-GiAjT2Pl6S.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRDmts_La47BKRph6jZvhUOjJ_6fSk_YTknr1UsgrO1-ITh5lDc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTn8Z9n40aoLlay5keUW6y_sfZwGfDZvJdMkg52BQMlKYwFnxLqFQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ2UGVOoL5duqauU4YBT4vfO1Abudb5PAWCf7V1Lc041JVWyBHY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRAhWi0jhErjBGuPtiW8ZPe1eGK63vV9OJPERGO4NkZgxvw4sxYEQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTdQZKqbtRrwT_Z4Tm0mSg4S9EtCIw-C_2yviXZUdLkTsyb4ZER.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS7aD0Pi2tmydeeDL-oYk3kWlrh7hMoXmguvtND2VNdQ5LKntHcww.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRWV1mOycY_Iu6iSwaoFaBcvb1Vpmn2GqmSJl0DVPb5kmzq2lZkIA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQN40nY6Okwg3d6q61keJGFbQXJEdP0ycZrnLYhaNUC8znmVlQj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQKjYb0kFxdKisOvq9WWrpyBgVwCOCVsapzCuLHquSMDZWTadJc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTi7AUTtQu0eJ5396pIDGBk7y78BL0R-RCX5LqiLfzBs52bWvBMwg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSe81J9HiRw_02Hlgf3Wg5cjEPKPJLC7zYU5ofEwPkuJ4oqRRS9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ-yIJezGGCylI2cGGcg9bwTOiVh9iz0mmqI6KVfsdZZqvzBSfQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRetEFfEBk9l66ncFP5wRTocK7O6rgCahshBUrhd7qI_zLi_M-XBA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQgQ-VQAuMOUKMf0EjIdR8zSrgr9pTWUkJdx5-YoD7p4UAm24Us.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRwjKze2v_vvUiAFVmCwByzP4MDpA8iKbVzwifo0Lj2X7PP82mxXA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSmJf46Ko3nRIUKv_o9tY204dv9WDwGs659D8l8tFffkNBsLHpw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQP4Tq8XpBf1phnEOcac76ex5s9AAKbm5dSHiQecNtEr4gfn7bp.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ0W4zSfC1L5XbzSup3sflvvu10z4CDiheIA39HHvAd6ZgcOmaTkQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTk_Y-Gwpbse6DT0TDV4dYWLZaybJkGT8F8az_xmuZ-Vc83Y6Oz4A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT6CTbpKuZDAb0tYZf4niYjJ4NivV2sI5EULVf_qmdwlkWm97WC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTCLvJZnrO_3C6HwxZ7w2F9hQFPLYtqZhMx9qrUlCDtFXZAfwjm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQCpmJHNl41fvMwqPjlEm6X-pHhneT6heju6H9DRz9rBMeSfIwkpQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSFH2iS-YkE5YJkSwdGoSkJemhsqDdTskIdtqx5-TizBVJuzlgQpw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTAC2Eb-Aq_weA9-P17L26UZgQ0wZoatyJFQIDqKNlSN3Zph9jG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR0VcQuJwGzndY5vEXZRocuzdW-qv9KT73qC8KF8oWNgS_GaBJv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTHLgoEDl-1y6QL5T2wxUbrtI32hww3GjFA3oIKNkHtyCjyJPtk.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTAWSpR2wWrdEnbKy9chbDIeKhLUk-CmfaWznIwFHlWCbVTDC0ESQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSz8IpEN9SWDAzga2Qqa3fktA9IBdQSMhnWNhG9GkzCghw0isjy4g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTBp6p8P5IIIkk6EMJtoWlZwAcbYQLL4KQUhI2ni33N4sc4JKkZEQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQEHNCfr8JIHAil_oyHxXXj97VRu5IGMg_cya2sv_QosZ3L0zM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTz0nIoFoXbkh6fWvzqQpPWVev_Wlm8ADjqbQ229WayaRPDZF-M.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTKVZWpW-e_9D33UHtqpOoPH5KhFTtQBFbP92__sizxsGhb5-E2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTyLVfobsMaccxFbympHb9lXS4eZx6YOYMZZ1IsjjaLCfh6mae8LA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTfVUDaZ86wB5mcyeBrB2eB2VXaamA6G60OJXA-8KpiMCix9KmA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT2CvPyKzAP2D_wM8bptjuvwQPcUIjsF7naOayDE-ealJ1P7eIuDA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQbM19ibVFi7quH_Jcn0f1j-FuQteanv_cmL7Cnc2YKAlV3Jjj6qw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT5ZbeeyXJUo75tCSNidy_1HLm8f8F976rsvvau-fvpyxRCxdFwPg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTr8CwCGOs40rWyVDaauY0s1BhDx6_iiY3YTX6QQJ4a0WgU1IIQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQXhO4WLHnzFBjrrXA0pCegOE6_XDXPxpcBKDJv0XeqaHPDoITxsQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQvythiqIChLPcZn79ZBEcgDXXfzrd7piTGqEIAKl5RBxRNDaO9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSEiSDSgl_aVQKr1aECkinki-4Be45Sts2jXLke3c7ddHWpXh6t.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQiMjgo7-6x1D5Jheta1ulJs1XsU7W1UcayFwL3uQw6CjP-5lO0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSrM6CKr68Gh5BufWnPhGeZBxCZiwRRRtQ662Hs8v_Y3u_mPzIH.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTwXuk73vUKQiOdmAiXeh5-snFiHTLRrrEDQw_esvgJYhaN5PiWpQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTqLXRiH2qIM3FaKi9fAzdABWHIeu0VnAfQQPgXAyXurC_nyTPE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTOPdNvrCeailkrwyMwqee3Xt-3soBv-UuJDYg61XI7xP3mEcBP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRPUoI5U9i-gV3zCSgZcvXAC7sMvp6t8v4_X7-GV-qZ03puuBMVNQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ0VAnOVSM7Jt0rWfQAbKAzpmjhY_NRc4Wnsf8VsOG8HSB-dgYi.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQPvoPaOHF02HBVeafeQPeMdqzUG6Ry1t-WX9RklAKwvBPAPdCmhg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRUHLh6TC9j49aZTK_w_WF1UR7Fl_puYAPNBFnp8ygdnlnR0PpQ9Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ3G3vcXYRM3wDt31_Uc5M7aZYoNkR6oz1K3qWfXriPQTml3H7J.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQUPrLjuU9UhZ-CgnGu9lW7Id-uhD4XUZ1Je62MWFBgBzWZjSUc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTLy-Xie5fbgGS4Fu4jgu5z0XndFvVFAjiWUB48aJzPtpTPk4SrDg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSnUN4FdeFFTa5lP1J1_cMl4sERVs5ropLWiuGPD2N6MtSk36wNCw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTqz8Zjk7Q2rKtiynGHuWasam6PNJFkrKhHGXAX07rQYp1TdsdF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS97_PhVMp6bDW3-VBEv0_dRP1804uXcZa4oPGmc2MGHKO23DkKAg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ_MYLHdE6eNM6DwFHygumkXbQc2rymDitibdBJaEUPsJUFg39gUQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSKyeqjnK_KmQfzCTZuIoXreVKIL4W55NGEgvABwPJJYV9HzUczhA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQSOY8p2xvEExee70w66OHQSRbeq23fOzSP89uUgXJtYVt_QMmZzg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRx1ni6aLKtRQikl76R3lgVKGJ_IzvdPw_eTbdyVuh2ZoP_9aAalg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQKdXI1yshDXXRTsCK0nD4dLfoSs5W1XVor9ACDDEZEVOtRjmYTsw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTiNMAW42M_mKmklGLAyakPGe_q8Q2wCLdXz4qRDRAeIfzN0qFP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSZXFaQ0XfR_awa90qZM0a59C9fzWj53y2jJuJXhpRVYe6ZIqJs.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT2HDDzDhmU6VKjahA2yMjwH8rD6LnvHSYkRZUwSMiJFvyohIaX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQWI0-i2RVTI5VcmTrFPTCa4Gz467ceHDQ_lgLPAgLyyvm1ltFvRA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQiFtxzAVVZt6GLVFkuHodHKeiooASlYpv-fgSqnqar6AvWX3KAEg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTNuGI-fXTqx0rMMu9M-WPdEgJVOR5lSvslvfTslTjJQS76i3aMSQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRGhufKgBZb9mFZR-FAd6CHm4TaKH4hfE1Ur-iptzEOHl4s4MjH.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT2xDk-EAeMMyLvt3ubWM1Xlb0GKceohXUaMTxRU7vC7gcrxm-F.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR04DFOem_nOZbkjwX_3BDAXtiPmF3mag5mwdlwAnZH5ceFmGoh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR9ICU23d-92vQ8b2wSRw7PML4oUNP-we8i6Vru_TfqJQ1-GaXO2A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTqUrEA73oNmmbzNMcGAnF10qoJg4Z2RCD3uTfJKUlWAbF72oV57g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSduy5-khNjUhyiOpayhnWVgjR_okAn6tGMgosDETafIhp_T6KeQw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ-QkSjvhAO2PUo4kqHvKKshorQFRMekpYD06BGTtdeCmejp6LZ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRnlrFLqJ6PqoTEHTtTSgFe2PPt3iPfT9fPBm2dxY_EVubFSbHL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSx1q83ETzHI_sOpNAJrhk7Lia6Mio4Gfwy_2sRoXy9mMNA81KA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRiXSh4NU0wV_IJpO5drgYU3fmxUf7tPin5HVtXpGNETgBEZc2COg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcToaQgerrUTncM7JdxNdf0xFUo5Qrjk1Rmacc5_0xhX8qXZC9xjAg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRAW9Y2ZRUvbKqc1QKy1YBq7LfChUB_05oOPAZnBb4G1dKwXsuV.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRPXfXW-2UPoWI-XxpE56S3hI7xrPRr_D4RLEwWeyeH8y6b7nDE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcREZ8Qu_AFmSsVXdHPRPfmj6IHsR2SvUSB1OtPiHvDT0rX9KQ3i.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRfSHu5VJSRdw-FJt0SvftyXF_adph4d8sKhYamjqlwkEzzHVCCAg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRpplyVeK11B8IclQUnMfNPY83GDb1soOmhAfpnzXL2PtpnnifS.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSOIUoSRSLV6kxF2c5x0I8PYodFqN-QRqEr6-oKPh2K5x2gFWk4qg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSju23BqxSF2HopaabMPolqtUqu-SiYkn3Rdhl09c4l8K75bpsQ1w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSN4TPL6_XoTvZeg3-15UhGnWAwjhbxQLjTNiCpWIqMyzq27xIdlg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQpsfbMhUgOBDJUq4iVUQ-Wivtc61X6ohPG4jAXS37YTN1O2c4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRXUbT8iXVa8gEtmHRMzwQoPRxoVX6oYZ9vFxJnBHmBVNVPpVLXDg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRsMdT6CYcBWSX8YhxEPPLH__On0LhTeFIUe5eQUaUHXPZ5c6x2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT18WmY4Dz3h1NMXrYDuQv4qcFDve27R3AaFrB5DvsdptOzQ8uM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTaKg_d8TIonWxRWZ26SMOXPc0cNPcyDZECpHZItz_bBVqDqTlTZg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQki0Rg3JNQ2Qtv4FUGub5YCsk7TFBDMRJZECbBSKKjrQSr-F2S6Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTfaQL2gqBCmF5I_toT4OyHpj2gytvZV9lkAyfk_I_MsHZGX4BO4Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSmOnk0i1UDbGOAzVQ5OUSz2MgHBwHVzMnEyehM06dFMMnZTrRM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQhJdJuTXjLtL2kX1DssvoyqX3NOAUeDryhvokO-w1jJl_0SCJ7aQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSBAjw_xZrRu8mCsEPbHeb9yX81Tp29ouEvTzJv-_fYRw74yNlm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRsY5hQwQf0XE26jJvP8bsYvziBa0IbV4HnshYy-UNhxP3-LEX_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRHWdFeoQcQT5A4iWGdiNyKw9_WLEn6Yvjz0yjh2-4tuw6Yd9Bh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTPYzJN9zOqVMBBBeWRNX5yWG2AyrsPDOnYuSAAkyLu0POGq0o2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRiVGX2-ar-hH2D8GAXCxLT_uW2pQSTLut9T-sF9ITJ6y9u3S0Vcw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQF_DtnDG6kDB3JsWN2sTcKFYB6SKXeC1AZ4gx7e6WfLLBu7R5ItA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRveQvhBeHG-ykC2x12jRPyNYgiDTpqSVXUMVmtXQc87x4AD-Mr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRScYWqbMMB9bj6yLEDc9sVBhKuLpkGX6XDlXUIDvVKeARTMG5V.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRt_BMhge5PoBgMtU67r_8yJdthZqrph3pw59NElnxxaUz4TS_SfQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSTYuNFd36csaxm9nSjRGWmNRc7Xr7in-H-2sK9MbhQsANrtDZ_pQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSDa4NQVdcle7gAw53O1SuSrZ75_jf_BFJ_a5uhOKmzE5lGR0xHTg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRFHSKSdDzATojnUJjjHQ0TMyRmoQH5pNYQZZ-EOykBGr-A9ZEg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRBaacedfTfxlzjyPY2HK0HOJKXVMWRMzlbYt1QcyI1xoWXkpXeMQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRoKWQl2yL_IZzfkdOpSaBL2WTv7Xczpv6gq2U3z4z5Yh7Cl4GU-A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTLfBCSX8kxdTjCAsjYDpm_uJfJJmzBGCNc6mpp7MR3WADDf6a7Vg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTmj8TqS3aLK5dLq8SViJDxSEvYDoSLnVlEX-ql2U5JZ9Szys0u.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRXzeZm9Fvt3_K9JO4w0DKmLEi_V5F05Q11J2tQYklDY1vRmvZ9WA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRMDGzn7Q6CASpoYJyFmR6Lkv-VvnaP_j6RTGdkNpwSg1Zd7Zhz1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSSoLcfatJCURaFfXuIQDvTHpVu2G2eyhbX5K4v5IQ0IzrYA1yp-g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR4IWQcW1SjjK8fesj117_DCqwU6VXTy1-lBJ_kwiVV68Q4m9mm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTiLXn3LPeVYjyJQV639zqgQDS3iRd_3C6Yyv3tGlac7yrhe22Ibw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ8n7XwIJxEZuJkxpWSqAsSxoR4itQBY3-Uq8B7Wdl3p4jvp4Tw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSTvvCIVw8II9PxO0ZGUIc9EE6zuo8UBZXlv3hkLSm2InDjXXZ7hA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQgnAASYgfLOgX7h-lpdM1zHT02V3km28el7IgY3PEw2iHsoes5_Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTIgLXqihO0YWzoDADiCAXv4VYcxcXUDPEKsHsfbf_VmQzAnY8R.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTKjUGHM-l28KKOs3iOEU0nGlwzjdlMPBSMaaFm6lpWliFicGBJjA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTOu3gAq-pRegXOYdA8l1vdn0q--tScnHJk4xSDxkbC4m0tWAMc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTJZsD0mq8nBPsYySvv2yRMDShQ5qBVQ1WJJlbiS2yLmdseFfsc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQd6rdmNd95ZOG0LMAK3osxA_tHAvRE1PPbSNUU3OTiYLpvb8e4UQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQlrygVtbatEwplSAUdifUPKViCYiYA93z9YAGMhSUJynAxyDaK_w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTHYp-5B-A7-fRnv9wXVPuqVRDe874MC664ghfzk4k0_SoEx7PNVg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSEiJCN2Qx2j0hIaRb8nRV7bEqn5Nm9CcALlPdcykgFHSt2P78d.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQV2VuOnacUOwUZ8vqvSL4uaLLntgTRqnPo8bjV-npkgItZXaRK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT3klVYgt9LmkeRD7Xh7zYoTL1ODi6V15Bec8UDDVsmGbLiOzl5FA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQrH-zRM9kZGSjV4dNHPSKdDNMzVC0Uc0G5Xm4nG489N4lhLk1P.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTOzAs3QAq_Qoc4fNV0bj5yxg2UpDoT2BqcSsmj5y4I35UKDiaW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQw-bn0VuKmsAoNMZDIg8Riej90cxMyyu9n7xPgPScu4ciwUyWL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQjScigGm_U88xxwdEXfFdzCxDIDcpTL5FJKg72T6mI8Cta8s-J_A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQrQP3vgcw4ge3kgvcI0cPewZTu-b1jYaI0dpOHd5zLzhWl26L9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQT-YJ3hICQNXOy8uOK7Y9lm0aObuhrfnCAHGsIVz217ZcwSn12.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT6pJk_lN9-qULD2OPNNEovL9uPde7fX6ui_MOuhIg-pihEIsrSRw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSzlib8a-TDBSlQRjw_zRQ8xwDLra_Y0Wr0Xg3k0QdDUc31KpnO-A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTjRHFoo-a--Je9WEjWv4kZCcQiEGUsqGmHF9tYlvTvFm3pQgWcmg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTn9AwS9Spqxp1FrBD9Z0KPDGmOWlG8cbxOmdwqoPBQtqwi-K99.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ9Be07dZXIkJDxc3gxs--0y1lkhBu8B1Lxl8BewN7vK1h7TfYr4A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSGSZkZfF9lbhhkaPatRV7M72psTFqkOgu3br8FIQ7v0RvWCvNTgA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQnxvEJ5AWcEGKUHWBzGq9liE4hyLGsqeiri7qdGxUcKws7U63R.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQqRess069PPw970xOn56aqtqj_1J-Cc1JQ9mR_CzLkwd99hJoz.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS4FBdR6wsb0_za72S0GFppHZfQiJNMDR_Yq1gZLMFZROLw79O9jA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ95I9SmXC9IFFx2H6pbyuMcUuNhtFOBEYaaUvHGxyF0spef8qU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRdcIVau51HxpZ8QzJPdd3-GWw7jh3YROr469VCa4kRt2RHZ3Z5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTcBQtibSlmrtsxXj7nDqV3NN3v58adIb6b-_1EuvPsBiOriLwz0Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTvvulnjWt_KnqyVZ6pDzQZBMDvJru-TToxBKM0IQPDwnlUbN7Z9Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTeUlueEoyAZkLhw2N54kYIZF6YERdtkzEJMfbwQG0p74N5809-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSP6XalW4F-Vc8C1sNbG9Rf-Am74I3Oe428Ykxnzj9RktFNSn0tiQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS_wexCvZmpISLh4XQHK3A4fahgiqd6yW-xQIppzpsKrakyZdNPFg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSDg9qY-NcRkeU-COmnzU9xUltPkE8zTmzpS94e0qL06tfJUEYT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSP7DNfO0b5Qrqw3X7YPZ3MSZx-OruaVUnbttCK2FIDUe2QRxIdXw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSOaFxAOBvJCNg4YU3jX88FMUWFaQq2fat3hsdW1Swm7CNL-1uA2Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS0mhJ2Dmcy5XxDnGRrh9QkrxB1owbKBMu1ZgSvQCItPUjztyqM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRia7CnAZAreMp2vebaxSdcqEReDA_gdlF1Ssd34PXBIGYCpsVFwA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSMxH6xPVAig4cMZvh0907Ot7TPsy_zY3J4wA6R4Y5uuV-Aokh_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSDR121Z4liUIql9P3ost0e7zVae73RUVhpyeiPgXpIhGoY9ZDc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSMhtDdu38vScAAn-_pLWgUsgA0GMx4JDwyfZmBk0FkzgFZq-kQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQBrvTM9C7sj7UndKDmJz4UZUdMe5ZpoHIIEfUg0iRPW1ycM9gsRw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRIO5XaGGaSsupcms5jLapQtaKJMFleQ3rQAspO8-zStUz7oVN3lw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTBel3tGAhEYkS67wnCyJ2iXMD4eTQXqm63uJ0CaBPatWQr6XrQbA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSXpJd9q6pN017Yrgmg5mDARPyjil9hrgNVFCBqf0hhiRrE5IGL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQqgNnAoeWrEqpZLf4yCWmcdrJVs9phLC9me95vy7H8w-OSnUMlDQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQZLP_oAqN3rH2q2BqEGMMz866Foz8A6DW7F8FvWEh3dAv1oga4Zg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTIIpd0qDRpnGpffSCoHgc6iS4q5SgNDoXtAuXna-1WgB7qSbb-TA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSkFIMfFYgdxykOR5_68PpdvMaedMu5PQToEN_yOgodlXhj9lSc-A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRVIfduo2MPVZ_Of2Lw_pv0C1ZhmdfprIX5Eo8cFLi5L0GM_DMZ7g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSIwSxnH9lgwALUwird1I1n-tCMr1LiNTjCfPqt6avDPazRAAo7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTCHXOqA0ZdJGkRtk3J3Jf0HEEvfEXWA_kfRfAVlfvymt8VdFfA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTrV45oOB5At7wMRjY9R8U3dpAC3lc-SIpg33RTXYXJBT1jJMKw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcScNyrHeWLvH7am0TpltiEEJ9CosecsRC1wSlVBTqz9iswJOLjJDw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQVPT03Y6zK6j7ieoWduXIgqiFADBg5Ip1rU4IUJsH5WhoEMWV8.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRs4-CSokZQJFe9vodGC6fK7ouonFopisgxltdHeLmmR85ny4hA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQU7uznQJcsAkO31uom7h_CRvOH5QaL_5vWhdaogGMO2a9KaO4o.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS76jI7qbcacMaAiXHX1R5vISqpzg5jl20ZyDg2xzyV0LjWlDV2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQQTi1KRIWMrxOwyL9rpMRkV8kj0Tp4x_OONaDvaPSgF_smjSNl.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQbo-L9LD8o1IRMgf96ExpiQJrpmX8Vu3v-Ngjf6NbDZjD6xnuYIQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSxE9pCRPDTAaDj68djaUxg_FMSuAPUnjkGvYVZIX2Wa5_3f0Fo7g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRdqKcAMLjhMNaoXf9r1CZlAi3TQ7BBPapdzVVAx6j9dfcTTzEEJw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTG2yNHIlNQ27u-C7NLpgv6Y5SbhP4d3y2j7fsI6NPV9psP3vGG6A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQvVu3Dh3dVBsYc-W2Gcxt-3nBQ5DNkT3OWf3m0wmuTABpbJZWhFw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRJYlbjfn3TkSIIFJZu-V73dNGTjJr56LXyj4jwm3sobVibLkxL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTy7WCGMa9wMJdwS6uIOEJNJpmAJFFU3Et7sw8mnwJ-hDHC6t2r.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSHlm5RONeKRY2wDXDkAxeWQDecuyneYhOSQPIlXHJoNQ3ef_THxA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTVAzoGhPOjBRWyDsaJQDBwAWqwNW9L4Tois0ich9li-WQAL3kh5A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTiEczPjaH_YaVy13meF1zYm7iAivrpGpMLF2Fdzj_nhzeYRjmWDA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS7atSXHWW034EtjjqEjZcbe07-JakiELgsRfqcNFXrI0KAz8I6NA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRMS1329FcoYWKYFFptwpOwqeEcYHp6ZyjJ71VfBrpFjFz4TEIB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT_tcAQPcarZ1UMDICzOI8NcHOAyy4bsk8P6wnqjfuVFoU9nPGq3g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRCm9wT51slz6thEtX4pluaKB-hfTJ1rA2zPPOzs_zC5fy3U9lASA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSt3fo2fcpVj_p2YNvch6kjYEtaA70BnkvVi5VHigute1QPiePj6g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTvMVOx6-_wYBKR6UtJ_J54sii0oUSI9Hn-_s9P58bUgkK2mjkxiA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR_AgfgQdXQkYq4S9yal-xsuvrmU69cXm5nAXV4ygIYFypT9vVG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ-HRsM6J42Mc2BJaSFXbxIidQEep8bjhaHdn-xUCfw91f0MHtE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT7oMN0WlsNdO3uPxTd4L_DBFw99l0WPtv_TM1oyUoGa7YaTN0sZQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR5kTfbURotlgKnQufnlV3JzXcU6DfP7yRmIoTjZNq2DfKLmGEpkw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQnubWNfrZSMTAXzRcO-sVpv8grl5WSVZ_-HcTZ-O8bzc4-5ddp6Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTkE_YCtY2vqJnCmGjEPFOwSi8SvAWZIQ8JA4NdTe92pS95iB1jAA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS7BUM69BjIZYeHl08l618814Q9cPvKrBG31-TVtDQU0voC5aMt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQeLQsxHSSmyUAj-zntq6-Puq6rgxIIABo-qA6i44WdzHBEYZD5kw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSePcE1-787NrrWyn213hYhfBL3Tzfq5ZCafJ_Y7SjSeyqzq-kV4g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQvfKjhROG__B70sgDT-cdDULrvy0a0EEW_DQW78xDsWcWZ6azQIQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRO3L81NK3mTOAs0Z3X4ZCdIag_qhDPKA4CTR5NLpZ465HCnaCRlSHduoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRpGf0YIlkLuwMSZP7_TARa3haJcbuv63SvHLbFelqNoLuRfzqY3w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRKh9cBXVQIqAthqNJG7OGYI_3cdKHfbp-4Ft3iOJNXtTvJrzee-w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQov2JpsVI0UO50J4NiyhsuxMNw90ffXe6U7PCHVJeQFIUKLZ4qdA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTVQKECFc8A4Ueteqjoo2BizGsWmpFbvdLT2iq0VBMc1mahdq8c.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSL1kq5zUHjlrKgr_MU1kVm4k3huzMPR3ifCMgWlswTQIBGPJPOXg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSDevGLPlyOTnLwSlFULki30H2UgG7JDo73ZJKvkJ3BL_HvdQ_V.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT23Os5u_Nm5DMZ6yW0YsYDIMsx720OrxuzF_oGvPbGRo3nXc1u.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ_-V8iCfffr1zv6QqnrmuZfgwmaji37Wg86mHrmBX06OTXgJjp9g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSV1KUlzVP-mrwoT4xLXzNnYh2oaSwma1oQhbwaFTxDJzKLnMc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQIA8sGpTnIG2mQOeFxgwhKLOjYR-chqllD0gryM2CZXRyRSN4jXA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT5RDKdt6F9cdDU6Tiy8uD5vV6NjO7mmK_qlL2qpmAnei_0tsBBsQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR3lAOyj12x1dIz84FNPos5q1lZTz1WodIl5AmyiXxdETj04V5ung.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT4ZPLXq1CV5sLpNR2JRGjczUOM0XAtlysTolk5JftUdZ8TTsr-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT-xEDjTS7Ql7KQXcdH0TsryrgtaUEM9CtTJz9uqfsF3ZsNNAWz.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRREX2zf3MNJrYI-5ZbZQ_TPGKxLchDRhJted7KV5qkXE4HN_hPqw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQd2sLf5mOFuTbkG0CYtw_F6nxXpKUinaiVFbFlmPWNXc9x4BWKug.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ7o765xVKBRmxQV86d_tNQDLYtQDdqTVEkq7NCQaOaNwgKDmjC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRtzO5SYtgYtDyk8Uib5Bws0rR-3E3ZygnFCNgDKWBCNXCqkMrFcQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSgx8rNDq8i6vN1LZJFdDBumHD6XgQyyZOhzCr2cl9Rcq59bZPd.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTHq57PL5KvIcXl6_vjFHO4s-Vyh6rIPNMx9gZxdz1aZleh6Ssa.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTQik9qsmkHwzWe8vIaRicMkXMr5QEhjc42l4RJU8RZYtyjoNjh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT-igiUQ4GwMUXkbkmkB5oAmaG9NXAr0QGpG8ZYMU4izw3-fu13gg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTls-YfRxAXiNTUgktqPd0EHlwuu0TLDPjUUpofidQD-KASBkBH.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSNaSYsUrXXMbI6a36o5s4tzb8NoMOvOsr44-w3G2L4T4YO2wfC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTjRi-M3VmkYXuxYVeTV0gNHaW0zzxp3uzWYgIKnV8qkzq9K_-k.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSM9V2bjoE09QiIsoB23J_W6QuUAqPN8yordVOS9VdrUlhkAfLj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSwW8uc3BYjrq0UX_RYh5KN_WjTTYvCvp7r9JwX_Zzm9YvR9NGENQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTd95IegG1WaYvWsZtF0YpWaAunOSHRbhZafkEXKujKdSQVNo2q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRt8xMt6eG7CaEpSqYj7cXhqOyOl69wd7gH-I1zSNwwWc4sMIwcrQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSQVT-rqk3KPTR7_Ixv94JTElYnXzNsIL4TELisIvK69F_kjC8nUw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ8wY8bTOiMbLlC3qstrkoWFjNkVMnyVUStMt4XdTp8QKAhtAwh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS5GoLBrGPiuLfcmfx7f6G2bylIILMEZ4gEGoBH2Gg7aywsvdjyXA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRupsMunpBTMlCf_kbwy9UFj81SpVUBkgLRK6-AUrSUYkDUa1RMlA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRctsS1SN9Kvcp1j5iMjih4jv9JrbL5xCHMSWSW0na76Q7bQovw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQDqkIaGATpjrQtDahjItrY47WJ_eMiC5IQXhowlHg64UvunTrnVw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQkOr7i4WJFlKnj2ya8i3qMyl2i2OU89mFmDzJnwhG3kST4G3lCOg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSAoxSexQWAkH1UQVG8XZDpZtEetRQ7lI1Jy5VthSLtGrT8yWukwA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQubE2twZZ5ti1N-yG0bg094XrjmBy6vlnFul9SGe6e7b1IaMIpPA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSJDh40W9E0j7O8QUb7B_8aRkDRQ4hl0YSyPUwpfy6hSY3jnf6mGg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQDNJchDVh5pfEMu0TT8RCOIJxvxbiVsVaQ_8btYQ37rwg1boJ-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR1g8-5TPtS8-xtdhgISnq2CzRmZ8-KXvpYNDFXMk1EZOLWmgI7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQQliE4bXzbhUCew8zDMsCMslTL5GCj7dyUZnludWdvlBX4ZnWxgw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQsEAE3mlJ42KwN995HE3d6ZX6O_NFuq25BaPMESm0qiHk5WrwfTQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRrk6pdCQqcCIXSKqSFEtbx_4lo-KEdLpGtwt6jx2mz0AACmS3Jgg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSeY8c9Jwfk8RjsNyf_WsXY3F0msqLF9_MkF3mrS0Aw_WSNfCW6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR7b1E00mp4hxZ-ytqFSUHhDPfiQVpNpj90WRD0T3X3Xc2tPNNI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT9WhnNmdPtNcytlssFw90iB40sfdpPKZOYCYgnWlAys5DglOF1vA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTohz4jLZMHwLOnwnUFl5wLgEPd89_DincOcBDGmKMNx8Und-JTgQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRBsG6zxNj636qTC6HdtTQEMDTOmwa2SaYJfsa-izefJJGC8DGcbA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS7V7oOfy88GYNHRYLO3cBksPcFptEHtNfatxvCVX7Jn2owekgcaw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTF9ARH-rpsMLCFuqS1gnHPVGbEC7sFWSgzQpiy3bX9arvtjfA6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRdZd6pv8D7DBPRZAO9tXy-HAyGSKcZg6Ebbs7l3i5xCfgu-YSC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS10UFYiOANLrUfvmyxoExSSskebKlKgxluRlMmvwbv6zxMhSIdDw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRd8MNs_p8ZWZZKbl76PGzgfucHleKXSqrYiYSKOCuK-T57XnClmQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRbEIlpTp-nSMEbe5X7viJUfjs3F6SC7UH2x--vthamCgTrL43Pcg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTZ6t4jFAnM_q0iUw_rtq6Br1x_kuryPZ8ywiNsZ5YFj5XOlofG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSsbBnYRQuk9NYWznOd74TaTOusHK0gATv27oOeytC-cqP1eUdN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRWyJLYWOBqHNjXB47kNQr9tQtdj60trf8dGmKs0oMYMSfyuQ6v.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTNyNdOG-uznPgIz_Li2B2Ujt9TwEo_GoR6ibh4LAt4huJyvQWK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSXFKPkN-4YqhhBqvOMyENBo4U7jfERlfJWrw4VQV1fpnr1tN5Gnw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQo-vUqELyjz6eyuhbu-8x-uXTRtIipFv3pYlOnnzta5F32Sh6s.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSSc65H4c06aDU9_NWRdHbMDHn69gMyPqnvx5vH76_GFyJ7XRdw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTJUqQ500ELxyNJX1FGPzn6MlKk_s72YATpZR9h0sJ9Wry9se_o.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS4hp--I2GMLfr7vtBTvJYfmfD0IDTbZmWF49Li4wyLo2HdecsyfQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTFXlmnK97L5qPrhHqTTu1hqfJ2cEM-moVn3MjU-IEAHOY5vKBCSw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQwbJ1hVSQxWoEv1yS8zJEnL2ZTHJ60CVPrrtHL-_j5zwgOEw8I.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTc5baxh24bUZquZqPNHya5mZPyfWBLxINMxDl4gJECMyqP_cvUdA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRrY2THnOf9ZG-w6xwOBLS2HkW3svO45XnxDB03Aer4uXS9NFIn.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQrap4YDEaWobDwwjBX4hBrHFMgflYeGi1rtJaGMNWo8mwHGfxjwg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRb8NpM-WDNu3Y9jxvbruIdbG0cO2k00D7R0qeWOtRj5uMinpyi.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQr2cOUBuZ38erUDRLZMTPsEN_lmuIxzFNAJzQX4n7HYpJg-GDG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSy6hceyYQGfeK_rdIisfmhtKVdgUdQpj4Ut-k6j_hEk-ExAeNO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRYHRwMJaKjesS1MNbhNX3XTWnXRstMpSyX9Sqj5iPt7EQbMXNe.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTJuWdGfnuIaugvacc4BkRFjvmdMWhmQhxHaznXgu9INdeX0fAA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRwt8Iwkhcj3ieRMRYPQx8Hzu5y3jgqfTh-Gn_ndxGcMWTwsAVc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQGuNARgogEzk3ijLHZS9WrkXg8AkDuXVLtaJUMM4FrlINsI6-d.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRk7I5V1FOKTUnlGyjPUGYcmnWjMHPlcXcj1YHYQiluikZ8khty.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRAosbhIzOChT3qbnf6jxsnPOz1bJUzqpZZeHnToQ-d-JN6ikTP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTw57oLn0-wQxlhqDZeVhYaDHvX5XQc_JUY-bt9aCJTsLFj0ZpYWQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTbo9kPQwPtXIK8RiLoDrEvvMBa0GSi_v2RHEH-pkkmo0BYpbaM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRdTIRkBm387QhxYiLkyg4JpfuduJxGbIbQUSG-5uA4dnKp906ytQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQyMqF8IpoU6tJBBdmj6Y-Ue4155iY8etszSZDxfUaTXEm_Vu5v.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSSimRraWZAci1YTbOys6Qf2DOJn1v2yW3iBa-fLT-AB3ksqADhWw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQvZ63gsA15CmBL8z3kOP7_haK0lI50-66alxPCSMucuyfT0GRG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSj_93PyGNdgKELgUCWOeyYuM4fhlP-TzgRKPQ564AG5I2CV__RKg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQtEAQ5WEY6aiaaPCPHFZk4z0NGd6oZ5Te_nZHDckoqsLlr4QKz.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRQ_GTqzfPTHNVAcQgik2PQJZSM2fSvGCBwtXBli_hIcicDr6g4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTWXsYFNN0fYA2QetcrF1Irx330m11oMNQOS8Qai34ArGDUROO0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSOCmHpNDLcslEWQtXlz42JgEeAxbxHc8y0n-iGo3OFxLVtmLCOhA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQJ7Zh5SXGgX1bxuhDfJQYRnd-cqU96i8lvWm5GEKxM-5YX9FSIjw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSyiMOZnlbIhCKM8H3R4GJO_QE6HP1QphEG8_q17q4K6zstinT1ZQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTdMpW8nlRg9z0yutmeksirSKvuhAjXTRYOMttAyesbZstIXchO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTyg3kmSMn-sS-EnQwt0R0yO0JvS1aK8Z6gEuQ2x7yEYqcV-vL4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR_5Xnb2dhogi5uACykRMWT9fOgBfLV6-DkQLGjmikPj2qY0FTVWA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcShP0oYROsgoGymL1rVJ08SFOY4VwLamyyaDXraCvTzP8orGm22.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRbLtSBv5a54bV21_ECK_YGtS-ByKBhnbSWxHqkzIezyCsEj4aR.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQZ5eZbzXBjzQakISNtmI8ZeDj8fEtttElUnsK5dBEWrXIOetP_hQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTSZfy56sspDlJKKDfuOOMt42ji_gFMg-3NZeGFeFrcSOOpADrjqA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT3WUeAjR47cYewzzIAr92IvgpMvxM3AZFFjWlqTlDmRGpo9IpTqQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQhkPQhWJ84zGDQm3zFaAgrjWNi75qA7vhqMriM9ghii_3RG6Yv6Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ8aVsiop_6jvwv9gAjF-tM33K00W2nR8o-taJIjEKcjt0OmwlmQQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRya6gAV0-5EdRAbgwPHSkXe8gJBVcInO5FKVTC8IeZloyjhB2aCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRLtyA25Mx1V_GyHmikjCxTPknDSVM2GAe4ix-nw19kSIgbUXtj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTGZtksbDh1hLGGRcLASoAXeRl4Ipisb28wlyRHGxmQ8_THbHZ4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRxPZuvJDhHDukaUG7v6jI_lTVLyfOWW70FPAkEbcLu3CYXozZ2Ug.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQwCy8g7u_D2mpAQlB3YgZCEH4SrXC3prCQy1ZS-z0GaCOax1zJWQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR1Kj3j52NhIyOUgPG22jjCeTHpC-WVEwMXWJZMpablYh8DUO_R.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRQxyP9gryh1o9QPDrDu90z7W8SliPKOESuhUv59bOjigwuMHRWdQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQY71eLp6Z3qb-m8QiW-urhxVeKhGpC_JFqgWDwtuM27BeMyW-w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSwvryAsJHKKwo0Mr4o35iqI-heh6RjtPY0IbiYjwP9gp4csSt_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR-TQIxtn3ateoDJ-pRJEAM5aPFZDSj9CBaYzC7vrSlCNeA_UI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSB33ZBKEQhT7tZCua7rhuHepu2i0tgPIKYpDsuF8rJOHs-9b4MBA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQoM53rcZqmgRIhe4pAUYFCqpvLwlfZ-8TLVkE0Q-sn315dvrt0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQPJ0iuiQ8qo-lR2KspwEG9LZLuJEdW1oWcLiDbOxo5Ik9OB54kew.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTbaHCJ9EQZiSdqlN9qJ7Y1WqB2sVakw9rL3jFOS08rBKwWf3F61w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSO1N3EzBmkWq-WzZzT1ZhlKwnrhAbcLtwDUp3BLVMiQqVRDfSp9Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSEMNyKsPy85BbhqZ8Rhv0-hyHQnOyg9j51b3eVvxPOUywjAvMK7A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTwqIRCj2HdDugOjXQtqJaKyd-NvFIA_GVRUSopPjn0ZgXbft5j.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT64GsHYdpOAp8C6Nbs1xkwERtQrkJvNBFErKbNTST64v6x6oLBDw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQIS2RU_PZq42U_GTFHX_1xiGrnivKj8cmSs3veQRqZd2eibWFZIw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSiBjQ2kECFhcnbmNvYxANJOavo694iE4FxW-AFunvt7B3z_sgc1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ44Rr7AMWW8pt_rVDDlyrvaOZvKxTS4MYbDxdanNe8I_mZavPQ-w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT8TKLkSe9y1KQ4NLNc70Bt6nA92lGdMft1dtckji3fqbVJpNXW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRafWJBBnQ-t2fB3bc3TRUlBgd-wl1cHM0jVPxDkyBoOMBQaHIhSA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRP9YApifU4NkShTN_1tKaigNsjKqVWmr5S7wcTRlZOMk1apVlXZw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTyMBxgcxYrSutKkK-OhVhet3BZxZEq1Uqh_tq_EUSZq8JfhzOf4w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSH2HgdUsSkJFkvdPwzw2dZWjI_6spJPDhZt-8GdgLTV4KEfO54.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQwd7IxedqNJgL_XAfVMmljq8M0-bb_6K49SHK2bn8lbpjfocJ1FA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQndGVJcrDZM8cBi69myoXRvpUdKgHyJ3RHqcsVwIU6jBroqkHB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSfgH0w3HIR0J7yhFdTrWai5f3K2dM7gJJWp79vl6gylwCwXYZXng.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSCyu0TuwbwaCFAG-HJl2-DyPOWS_RP6xCU7of53ofEmsE7oWSwWA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQTnYY5oVmftLKjFp0CQUWrNAG1hZwVFK1-CalaNMKXwxgmSTzt-g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQO3YqxAxRhmweSA-P7cG65l1ks-7FI796UhK2q6oFy8mCOo3tK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSq31mDKAlsS-JfPdtgQeu6WA03m9W9p2ZokTU2bKADt2hfINCW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS4ZL__Cf8843CbWSYvNqElFDBckgLlLwSWff_VoySGPQkWSLSxew.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR2YdeFWljyAemRcTTs5xhnn5ksn5miy_EWfy74GsX3WWEmrqpVVA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRZY5x07-GUlyC9JOYmwnkwXa4LbP9jKiquDZX-7eNfCgQPusNfUg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTlr2C5MS8_xwhpGYPhsgHr9gkiMPYXaxouwU0dhOk9kKvVIFDA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRKx8R5eTCE0V-_ML7tk0A4NtFf44rTP1qphSJg_QhmytkwtORn8Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR2BZ0snngDw86HEsaNEqGgL0Jn9iKyN0Y8KS3esqjuTME32kuCGg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRQbE12EgjEuvVx66QnSlux4dVTv7NcfBOb3jpUt0ba96onmi2stQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQy4uqZufq4TT9jM4tTHCQb47MU6PK44gaL3h-WYjvxq4HQU1yUPQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ4ARLxql3H0gL2HfnORyt5CORfwUcBGyYm6QbZ3LoQD2mM8p0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRrsYudn9XNsCnicZV11qlO6SpUqXteM9_gSoUVphdJ46puoVKBGA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRUzIv1WgVl8Z3Osprgg9cYGKOuTdH5zI2ohrSwHFGQsITp_fR1cw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRZTqtm6b1WF3g9JZQvk5ZUlJXR_KHTxmR3O4bQSGZY0KQR-MWX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTOaKEB9qV4rD_N6dPCphObmo7ZI-SO_rwqlXBdff0by_2x4WNl1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS3IELU1SG7zEDqSMFOaugxBfwBr4TculkMTS2Xt5HxOTYpPTzu4Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRK60zs63HEp4FdoYxIx6mp-ApbN4XWEn4liy-VBVoH400LO_ao0g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRYhTjJMJ8KXvKiqCST3iRUn6pP2tTm7fYBWbJ0Gqk4KLJoesxL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS9ossXh9RVcWDE1Z79wb5M9y2zMgUwVf5TByVjR7c8Qjy4cqYuQg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTqE0FQDwxjWwBI2zRAmjX-7JWiYXuAC06YhYMydN4dTBaDSPDx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSdtvgt-kczCFL5g6TJaJITuq7x8SWOezJdynd_v5dPRoRlMu2b.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRZLdhJJZCu54826soWFnpsnPGbKByH2rlWapAtjwnr4qUJ2X9O.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRpxih1jC_P7wwqld3Bu5AOhLKadXMOctLMczdghrpZjthXXXMe8Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTwXncEHnoQOSQI_MjSkmlvnGTwlFt91eS3KsxjYC36xtIZIqA9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQHnV55FGsCXu1KyVOwBF91xKt7tcSmFDAtF26sDNBxtAqDpwKh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQiwXUivlncq-lw1R93qyNzqdaXNp6StkDzqxfdJ2UkZMuXmlZZBg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR1ZoGvVPetGeDhINF9g8ycjdvPYWiGSduJNTFLakwsET9Y9CJR.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSh92mi4dV7nLmhuLeCJ2WPFdMWE68GvhV-lPoW9gvZ_sCMu-uu0g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRTlBkCs6ILmDyfytCztisiE9r459O9SbJYxvNoX95wO6lwCJdKhA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSaBuhXc3WUNbaIybmFyQuOOkEi1_umwAXQQJxUW-BRkjB9rERY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTrpoKksCGyesTLC9x70iRFm-k6J_3qDErchUql61WO0jJrfwov.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQVSV4PiEMenWys7kH1QVPmpbV43zbfTdu9-hWbVfpeAxbq8XVQEw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR4QsQWoWCMRiZcN1gl5M6pJpCDTJWK7OjPw5eg1p9uDNnci3ZJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSIZz2mYtQ3EjbDNQT8rHDT_mJpB0mgcbSqC76j6p1QtG5FgtsV.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSPzH24lQ6COOFqiRVH9-bPPHnJ9TNKxRbAkfgO0i04MppOlYpXcw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRcuf5UX7wSdZVdbeIWx_MO6GMI4Hb0MWzjk0ToNkF_RrbumXgJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSoY6UmKlE2a0UecZlWYOufFbnnEiuWiySWntEw3OWMKLhCiUj9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTHczGw7zjMiMhDkP4Zfc2w2-659tJrIBzBMSxELfJwPyD8g91yNg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQRrtET-55F7Wa9n_NGyHnK04gALPx95nJjz7gQP5OCEAvNq-BG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRt2-lSaF3IVpPxHyptyAJQ4XgGh-yrrUucX7gWo1dKafo5604W.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRnL5jGGaGX7Dka7rBiS0HB__vIdktwTv69P1FOB2a3eZ_A7-E1.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTFFfav7_seUSXdLVgHizIPUy6glnJXQHDshv_f3QxD4EkVzYhq.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcScT9H_kU8l4mUKBlO4s3OyLEWVjQt_nAoORdMMtWbLlb502rfE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTt0raVVCU2WC6sIG15BdlijyyJhKdVehsPGj9J7tIz5EQ28Ry62g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQy38SM7FPIdFOgJx-lxE6jYOZ8v9mlBvOkkCzwi37uQOFk_ECWIw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRmGhuHn7UQfIpL0Q8mdNb_L1pNH1NgSIKnT-3ypcTGvAfvlB7C.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ0XNnCueBMO1yMQbMIEjA9yy0dnDGTCa1N1LQ-eyscY_louA-HuQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTFjwHeoGNSY2FfJg07ze3JeoBwF-bMZs45KLbUoGvLSfCqCZEc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQYXnPhvKwOXyzG0U0XULdrnt0enuJADhuDuo1UWMFA2jV4lUu6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR4JQUjD9Xc0Ff-ur2ndc5B6t2OUubT__vroUH4mNulqx8Gw9WF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTH1zkmVL-2T9BScz0rSBmpdT1vNrfX4yPmFpe8_I7BGjNUot5BLA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTUvZ85G1tWhTmRY4AL_H-GOaCNJ9OkOF4DLu4pcj9HVFdnEnIBew.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQDQ1Pvj82zVMLL0-fImRm3XV_NpctgXMkKGgrvKORUeuocfkopjw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQk2r6zXi0yhW9Prl2Mm1kXaw_TicQ-V4cLaVfEbLv9HbSvZOIW3Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRL7W04upsKt4IWesvk7fok69t8eCeG7lP-hDWkruqmNY8IvM2Dig.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSOY3BdlsjwxzX2e-i8mOEjpw3vrAmaZsaL7lACw6u1_JhL1cYC7A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTLupkjbhuH_S-Af9Z9c60emTcK1TWw2D4GLYjuLIEpU-kX5Emxkg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRc5T40gaTFXFPajGTERo8yP3KDa9lNo1i7isFxkU12Rn6cdiw_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS3jzoIsv2p_HUHs73YnXUPLV7Mt2TPFz1y0sMga1R78Do0300w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSgfb6vdXkmMFFSlGOc8VCmyfjrucLa_KcYvM3dIwFwgYxscZsR.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQQrhgUMog-BNhgTpdOft_jW6Ji5SoVCTphvbXjCIyHkf6qydfS.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSkdFZOFyQXaOuq1mX98ngT_yxgeGCSwT46sVEuMXA1Dhbem_R1Yw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRx8MBzZDR3qOzBhS8uTO3hQAsIulithQhpQtFt7DTBbtDKFQk5GA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRRGeS3amgQVKRXfqXQJ4RnDnUNTBapZiTIn_7yg6QOQASWSXl5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ-6pQo9fg5S5QMcV8N8J54yYqrubYCWw-bq4-Da1Ku1hkEJEO3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSvFSM-pfrRtxXkUiyDbkfgBgIi5nRIwCcsYXyoAtWSLGK5vEEs.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQA3y12z2JUN3_1BvTjEYYIMU4VrWowaufHSfp-K8r2vwOUpQ2JIg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR3BbPwCp6S8KfumE0k55OaqOc0aWfn_aHEp38tswI1PMwLrk6o.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSZHjVYNhqBkLqiVWP-a66uZjnZQ2l55z8JvGBar3Zr72LVEFwn.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRhctwqFlTW4SXNqKE8VoVHGjKMOE2HoFFtGC05hNzoVnShgeHNlw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSoNon1-0agRd81zDH-MOIirACdGOqK0mFojeyzb3_f8-KISlbF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQslwfto_62zMFGjxv03059kgdQLmjbij-4NvJqYvYXDzcG_NplpQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTEJBsn4QGxxowhbRcYpARm3bXLCQmaxukEbfswDQ1JUieggjJ0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTqS1HzDXNgvl4rD9G1PfRTtHxrhTASGJqdMPF12rZXQYw_qWJV.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSofQT7QhkY4TYmt4AS4F6xapxwV_BJRYRtCGkP5jetoh_MhrrQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRB4_bqmD7pcTZ4BuTVUFdSLFHms-kc7FZCJcJnw9eDFcHrqq5tjg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRK5H9TMSepTf7PMyj5hkGia4ysBRH2yhe00OqWJroN4C6npPVr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRPinvcLyKfPxfFFXFVfY_R_06U0a-vlF_MVeDthlH2G_CX_lk3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTtCyhhJuVSf_54aEwZFezjnFzIQ4AiwGWEKfkKC3qQqq4zSHaB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQnv0pUXS5Xl3ky7Ku1rCSQZrV6LvuoDwxdWXXc2wk8eNT28i0C.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQtJeBbVmmnq6My_Z22NC-bKpmkzEX46FUOmrVG-S4rqwK0gpD3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQnZHVefsHYMTQ0GyJSCnmQ5hCQUHpz9a42Mo3c31GuZeppOPKHow.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ94dpmqwIQQyYMSOl1k7vjsIQpiYMCtquwrc5eHCFUSlZgI3Eu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQl7FBWMWiijWpjI2sQ6BGcRwdQAD6VOxlpYJ47SZljOtDCum86.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTPik6LVXSEPS4xuajsIibwNGf9XAvx2nDc10s4ZA4AmhTOlRWb.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRBD-xPxUwT4AbDd6tvoiYwfndzkweqH6bkkAVwU563D4AL_9zWQg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR3HX9zNOg_leVURJluUFFG7rc0hs9XD8EQ4B38ZhUR895lq6qv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTcFueHS7VPx0S_80dKogvj_0cFO9F7Mgr10g5QoWV9CkhrHiyNAw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRB5srqV9w9xebsPVXqCA0_-8WtMkJZGKvtJelI-bCvMFxSNy7-Zg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSzuuuX4HVsno6mhTTz080KUdvaOLnVwZtSlBblzui0DpTIEJud.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQhbVM8cF4KBa_JbNfaoHB2FsHlr1jTzvuoY5HPqrDD9FPC5_aTEw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSjatyAEIjNl_n6jki7T_MZEbpX9dDbSl7LyHGT1cuUkzWDRBSh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQltg7ksBMOTINiXB448-nTTSeBwZWzzQLUaI53Xtewd_WDqk0G.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRom0Q3KUY_NAuaVJmpsoGHkBC7xhQWSbhMYgpbkP_yeBd71NQ8.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSuvdGMcRTENjdCg0Bz1bBTQDuqEtwZrL6KeJDBBIQxtFNx6Kx8cA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRgY4kA8zyjMezKG7Fhh8jwYO7R8YqaMEu6fORGUhIXE4dT6UCx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSF6g-GHeOdxrHAVsAMN1xAcTBjWeMNDUVDQFb62IzBDGGSdRlX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS5RMMQsu9ognNCUVV-eROtdtRFWB_2r0NcIS5Z9Qee7v9dha2n.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQKjLqmbb_xkNt3KNgpl7KVztn8YYDRsfZvlVDGCkusx3NFH6xyCg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRw4TDxB7GKkYu7KnzXa3a4WPQ_DsuZWX_6o3fpgwGE13CSW_i3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQnLG3qS2zzZIqacY5IlCixrjjrGUbTbJ10WPnGcLqAIgfvER5j.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQm3Dvfoztf_kp79I9Lr487O3KOFJeo9q0E2TmbrBr9hz9MgKcB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT3u6dOcAjxdAOnztCDRIqO1oyDZGaF9vvzqA3YXPdwvuN2xjsU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSC-Nvc83AM7j8HTRFzNaZ96BSW2fV2krOC3Uexm68xsRbJYkXkPQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTMop9vIbHspJagFfcOHs3tE-4HWrCGPwjgSQ7_1Rgf8dQVcU9N2A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQJDQ0mAGwOOV5vY2WyJ5LsbX3wpBFx0VsDW5_xFCCC-GXU016Lqg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRzwEYpXZO8ODQv0-3S9bUk-EqvjDwbIQtNmpHb_v889nXFPFM6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRkvq_jSrRFA3ZIDA2Nd_zP9VgetqlJyACwdyF8UdIVRmoPTreFZg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSAcmPvwZA4Di8dVW3QN6u0CmH0A04NXLEHUyq4OfV0vHScRhOGeA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS_DbJtdEdKBAt-u9YvnuZARgNkZmI18Kg6KEfqGkH7TRHkRxig.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRZt-NP2Cdsy1aXO_RU-BKheQhrraY-qxtS2Yfy90RWGAoiEcXL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS8Qgl5zQWKn7ZuH-fbdiP-ETzBAQa-NqBeBoSU-N3ltarwBEri.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQPPblWWxrx4M2D5LjUqOCcs_8J7CBgnHv36Bpw3HT91ParVXSt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRt-EtR7nBhP8sQ-ns7QovkTbYV8fY08yhjVicOPXzcG-c9EfYpWA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQISE2C1lVHBv5TgZeqxBOmUFPjAfHbi2ISgqNwPoUGUOHVs9SJXw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTjL4GhUYW-8KE1n8-Dyki_PRaBjBti3xC0uHC3fbtzEwphWwB3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSRb3OXTt69DIbG0ZDr9WhjwE9LBrZsgE5eqcOzlzJ0-0zDoQpw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR3sUSFf72NfRaihSn1s8iIUHIFjISWVl6FFISgexWXThKw0N6nPA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSO6yOHCDXtlz5sweMw98Uo-expaLI7n8fr9XsK7Vf1FB_am294_A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRHVHvmMxZT82zcHItbj0yjK--9JhmO_1_2FE6VV1QW4OMwSi1Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ0LcwKTh6gamDdTTGWPMDR6IITl-Ryw0DSNbwY0oDMmeUzjm0g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRQrSkTuTrV3QJPvG2zpovMFVFmdFNo4vILMXHDSajFAmD4Leuk.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTDLJF7GDF852X4DMQFXYk7iizSTGTKklKWnRvspJ9VeFKIzSdt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRA2IsxQfsCnxOVDxmounLG9W2Cw3luicVlW77huch6off1qAW0JA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSuGE3HAQQ5AhLZo-pVBX4snB0VO0UfBbNPYQxJW3LyFgmWxPZL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ42LTPJRt5lRQc6SDm-jXxBRtqLFEN1hQTNfpeviZQ3s7JUemI1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ202oYoqyMIVhVfSsFu-jmY2KfNQYx5MZuJ8NmwE_DebUmfi7Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQmtbzAniQuL3GzHmFiU9HqkqypbvpckUT4EHGCMckDF9ioqsY_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR-YX1KgguWCg0MNxzSDxogqGBxOVyTFN2SseQWX-8gK62MN83xVg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR-ItBmuGUW0V_RN1QOc5R1SQg1FnAjwMsZGZFFiRe4T4vnju2k.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSP8rBGLP_BjO2ev0A7J_9e5sqWDVJ9xwsiS87099NsqeV0PxTiig.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRl01YbQMEeEWdccPqD6xddxaUA4RFV9hjwbYwb5fjMT-kD5TNM-Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRRqNkTYB2IQ7B2WYBZM7wnISJO3LtlsI_q9BjfPNHaQS6sRh68.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRotFD-RtZl9EY6YZex3oLJQF1PFGMC-tGXFfQJqfLR8ofJdiFP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQD8mhFLRE7B4gNQVSYZX0fkZTQWAnHKy373A8jrGj7wO_S3Ep6nw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSbuojaXrWeftQQ-vvSRu_ges0JFoSlHTipX86ciC70CK2L-0YkoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRt9zdvXMmhN-fEkWeEgx0r0Vxcmc5M-1KvmL9iQR9wBJYKgMIQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTh44MvCWgTAlQ6gnR2zDY235w0JLp2Napyg-5sdEt_FIW7NuOs.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQdpiUBzFbkgMETcOsZjsAdwf8eIGMTUGqzskpvug9hFJr-iIuO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRv0MEfgqjgkU8Btu37GgDK9b9XcckaWls0v2bE7pZkaq3suc_3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSd_EOzriPnK-ouZPNhd2pBdydF50U3XQJlApdz9HsE5JzUSqlF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRDQ1sSlFRscSSD155-hJL3HqKSUG6UF_r_f09CNbU_plgL8LIXKQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQkM2nQvq8FPmcA-T6DchVkGohw-sp6KbqMaTtFds61p_0-rLgzQQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTNtY8HhoerC9jsrguNnLEpSzcqRHgP6dLTcZE0eNxhCEKojtKr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ03vCKUO0WH8yUmU3Pt8RFSXpREVrUva_vN7dZnRo5OIt6xoJw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQimnYyaYcQELr1XxKZTNzbuX_nVu7dNwk28XqEIUBva5olw47x.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQIRMBSTZZhuMak4d3Oh_qd93cLRlwwXjEf3ozWEOCFv2EH4wBa.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSxbZuqGH82pxzN2pU5FCDHx-l8-AqfvpvOCLDR6ZFCWHA_uUM_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS6HLb34C7C8LfVkQaALIQJQrdrB3A3nbbuNRuJt9uvaJU2oZliPg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS3vY8dM8rT32CaE-5nDC7vMnFYZOJ3z4v3ixAfUB7-C0aaxMwZ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTQJb_OhSOq2n1-NkjnprVp6lc8wUnRJnKS6XlcJljAV57ZV7BeaA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS82iczDjgijy969pDA4xpl-VBQW3-k2QEsZA2a-AjTcWvPvoZDZQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRPEWJeFuvmWeXlnDoWhtAa1oMSIIBkCLBNaYO2jJY3n0P1rHR6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTpYydRLKp_K3aHCrjIeCh7PN-VDr8aKRJB9OwMRSlBirylXWiMHA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRUegvhuBSU4Zw5xwafsCI5Cn9x1bRlw5FXGEC03nWnzCITGzGP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRDg9NtZddQ4uKkdvGXBL76T_JeBqoovwKqyC_t2-xcWji5_ugK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQSaxQN9ClX1CpXF0fj-ATB6t7cNg78XnkuvqpyijD9eWY1mD8h_A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS5nuDP6CHsCXWWahz0UqKC5JdZtMgeo1iJ89pC2URGLr4IvVOH.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTTRKloykuPvG4iSQMCLBzqKucJZ1E8q7_6Dna6fsDxDNL3pjVE2w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR_cXp2OoLPxX7XsdB4OQjNA9xEb_QyF0FZjkEpg_uLvEq4bcBQRw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQypC6rhosIl4n97Gtm0Jm0G76eUP9GnW3oOf5t1YqIWrMIc5dCEQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRoiTdeKWZawX58aVdis_jclewv1VERkbbPhAQ0jUcjH_Uj2FFbww.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR85WCguS08Hdgo2wM8BJUTfNR3m8aNIQnz3Bk5n-yfzq-oSxWK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQXFtqStFxzwh0FEAGFmptE35z_b8kJfdxnNnrkh6k5BCMpALAFwg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTtgGoYXlVdghwDrm20Z_XcW0P_bnqeJQtU7TsOpZlFYC1RA8wU7g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQa3PvIHC-YnpMcLzK0cVpbKlIjHHSL0kz29phpQRX6Xax-rE0IPw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTHndsUHJHc03mGWbCfZeXjOkDIY2kLmyOSGDAQamV7aQJ-Nqy0jQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSb-mxB6dtQfcqeOfa-6saa63XbPBt0x1nLwq6qCJvRtn1B-kc_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTnYq7Z-BmFTRzj9seFbOtL1rcS_3l8XJViyoUAtYGNaTUto8yOEg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSAVbg2fK42ql_1bDreCuP_dMwv-VLSYegeVdvh8FNZ5v8DpLmRQA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSko10mSXv4fiZAZ7RO2ZpJ8DgjfOG66wBmxvdnHGPDp3rrAaIQ-w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcScj81Z5hZTG1IOjN6e7HjbAm8l0y8s8biNFDUdn2cwthi9UBNl1Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQZ6ZKxfRN7ixcj1cwdMHJP1cSKmtpa090W8cikckkYiZAeFl8Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRpRkdLD1XKK4IJxPnvkQ_Gl_TrqYVpNE1NbGb8ZuY4nBhItrIX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRYuAfEwuy3FTuzkpw81dx16lRO-hKb1pIsoUtWyuwZ2ojgVu0P.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ3QBC1wd4-PmfN7eiSNnXF_CB_WZMSb_qNF55MTmqxSoALUXyl.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ9bmfqW1TlE0a5trMTW86tzYJoPLR7HPOWh-Pg2wXmvApSQADj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR9rxu13EgmIrz9cBvHkyLiyFiJ0VNDIGfPEpsM1SfZ34jXB-XD.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQpwuBPfHNGbMWppmRMbtaZlxmwv4D9j_K_RDbAgLGIcMMPM2RX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQQOGZIvf8lzPV2Rt_q7YXgp0ZOpRzk6ggDssStsL0qCmr9L9DY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSlNNPCS9vLqxCRgXy463nwwSgr26t-qWUzUsk8azFHErCG8Irl.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRbDRc8--YoYoMPOLK8q_TasAAeJjfF0dq4iSoylAmuQJSwgBqG5g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT7KVQJXL4k-UhMK_1V9m218g6QK3ZTg5n7yWD3jDiVV-IDu4cT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSdOYviWDEVOGLytEDRP_GxIegE1a9i9-1-4p6GDK1NOOfJyYqb9Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQkiNrf5h7C6b51IRHp6l2ph_iOheb37huKzNw9r4BxFE0hwGi9Cg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSQl7YQZItiY4q6ETbsT9cfw2Fl2y0Skj60asc2OKy6_5HuAbQ8.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS-6FB3XaYBeHvXb5PMJxcA2B9FoDSOaQgkCbJA2jiH9MUqtd3n.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRAdOJMLDpXrq6Rrv0kkp2pvAUlehYoKXAH9S0o2G4FWReGyR2B.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRdFgs9STdx6jCxCDy5G8FJoM5940zawU7-gjEMYkboThkzodNfSw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSdV3Mcivd-eSQmeOIfNJdlP2LJ9qrp4--XmuF03A_yGpEKCaf4lw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTKk_AmTERngmNxEUsuR6ownH4rUOKi2TvSRNuX0u_6fst023pj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQM4l8aL1ZUPs5cnFI1274zF0K-LkRiYzRZCBX89thjYlTadkTxMg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQxWZRF3Jk-YhHi8V-3dmryaSx-8JGpn0_UEcxvp-hQwCBvcxwX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQrNbHEQmpbA-TdI4tCGQLtExOy7vAvmhvAV0QE00ApVCH7y0ZBBA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQjP_siJFh6XOr4X_Kw5UMv4VyfSmixaKP-ZKLG0lIDGb4EA_mA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQPtkSzAaqQJIoHlwwmjZeFef_RukkLkxfaJzTkNtMXfuYYU3hl.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRb46AFTCDUDU1mySwVje5VGeEW6WerxOFltY8tsdtX1ExKvleXKw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT-BM0EPdz8MEB0RiD4PgcFIenCh5Ks4Y82xPqZ1sLTG7rQkk5M.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTrRP_8QOzL8SuTRpY_S1S7RLJay1RE0lS7yIBqN0O2A9NwUktYpg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTZGhDE1yRBjAbbqkomxT__7q-f2GpqnNv3XYs9TmOTg3ZKfMOX6A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ4JP-7ZLgGwC2qrsx_Z5a-plNug0qhp3N9IRDo6sshcLyfxzWO6w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSBMFmh63QrpamHduLDBMzmkh9s0G8bvZsMwHxuJNq3I4D9dzC9Nw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTIiRpA1i4CfDCbKPMZaWu1XU3dx_uX-JmStRjdyu2er2hM-3_3dA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTQzGGZof26eVo7vhIliFJknXgrSChLtDwIzZwwNsBqNWTR7qHQFQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQuYG6atLonJr65opBbOkSwLNWsCXq1Aq4NUEPiDtHS-p62Dcichg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRaZp0STfVLa68EhvtfYj_AWEXgA1rcmXsveFMamYizm3lgPFWr9g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTnB9LZJ6OBHBWdvERC6256G4-1lDEBFbjXzW0t7Yg8rswI-vVU5g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR9f6FJ3Mz5Jc-Yqcphv5EAJJLwpi-eT2bp5HoxNf3V3XGk430W.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSuEBi95SuwXVuNlI2UQFul7TFu7fN5eKAxkaiVS4L-2qxNdAqyDQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT852qrQI1RcoAd9-3xnqMPC37O-2cfwHHZiRKSd8ek0PoZ5fA0dg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS5h7OTIatlcULw6ItT6I3CMw6D30P6BB_9oxzWBd3XuSXr473f2A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSL84wJN-ELgHqHdC3OCdo6I5DNw6RPfR0TKnsiCmeKXwHW62NS.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQM38N2aXAH-RQz2UmlHUTLouR6mHWiDvIPVsbdJew5J8h-u38F.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSYhWwY-sXem8YVU3PknNC4UCRRMuLmgOlfSptznw2Hk9CY1AOT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSZsuEI250NpGqPIJ3OXaQ7OGmm6amctvbl_zk0VcVA9Lde89xxoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTfkD3VpteA2XWCCowvsTGz1cRkyXj9p9lTF5uO-fqb4f47Gb5c.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR9VoCOrcM-2NA5dVlcn--RfTbyUW9NZb-CR4SKqHxnaDzyuGJI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRo4jysKRdSVPkIKnRgUaqOoUNSRF54JG9NBiCFJODwNNG41oDirA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTaJrKy2K5sEh6ZF2u2OkH-fW91RP7-21qLacww-tx-jpntPPvH.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTPV9Ybox40SXw4rpACDUZ1EBynvRVJnunalJNcDijCI0FavvPy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT0h3OgOmM2VmgsV3vz1fmSJY3teWY5lYXWcHfo-Qm05vrFchuVdw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRdVCZBhQCdCEvojM4dff0BM-HSWCxb2usRTmt2rYt4rAc8o9YylA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTgpQh_yKxGBI05EI9DvfOz0FqW98O3HFPImTd3834DfFJ_x2G0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRk013RPmhGjm1L1PsCMtVYYjpX5mmBfXVstITIv1syWwxGkviRxg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSrBFfB-vfl1-tMOumSkcjOq4x3ohIl09l8JQUjyEXfd-8sBit2WQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSN4bnXXRj5RN49o34qw2-srr_Genbr3K-RwRUbvdX2MqSMRNfC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSkjtG5zr5c3BjuFtfleNhNbAzfPg-1jEyvL-biXdxm5F7JHTXM1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTrg2t_XvhY266-2xpUKB2RiOOao9IkZ5OGJFaEzPWPnpIdGoIJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSjLxqBXihLKdl2J-va8JDtW8AUgTeZSih9ViXuO0D2I4SEr4FN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQqpU0IVJ6Pd6IDnA9ky_BBqpAcvuvhsA6iKtvq6KlenBFKcTgr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR6UFLAnCaCTg3TljQCleldSDDqZMxBQDvFYrPnAXNAPNxaqATY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRJ6z8T7h9qPqIAPH0nTuN-0qsOmYDnAKunm1ThqsLZHh62KIai.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSk8gxjhdXEEloP3whWEh4VYYK7VeoKEQNKDXmsllelDLViy3pB8A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQk0hXpCb8kt50MFM-Yb5IbmotGwec0b99uUDHMX2J8hRUO4v24fA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ36m9IkUgJyixD-5UKPTE2FOA3EmG4jnC1_Gk2tAbVyB8DgyOw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSCz63LbtV5fpCyJAlVplpRGn8YA4iVnwgVore4X6P0Ao1VwbK7Cw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSAyt5fmWFutU78UjgENTje0bcag8ITmf86y1X-7IkCObcvmteg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSb4Lf8vkFFt0cyuupyalcKtdS9e06usEr23I3pNLqUtZ8dLBMp.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ1hvqTjojWKvUcifxEkFYwd20YJ370RpChBgdKQkZQoZdwf7B1dw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQkvgbtAHAcAQuR_Cx1Cka0X8e0_ExvoAArQQHrBX6drd9WlLP1HA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTILefI6iGt4Nzlq8xlje1CnnAFUIqj36NPN45FcQsqbdcM7uSY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQITCvs5-C0CmthmZqFivvB_IM2ueTvQhuOwUzATAO9JgIJA4n_mA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQTyA2gMDH7HRgybvfEwM3ODRvsoPn8e2Br2-5QbvXxc--16VyFsg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT8795DsEJHjGfl9NgJhXK71PeaJgBa1_A8YpsIBiEDWUmf15fa5A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR9ntkMXdRFM9xKmfyL8KR4cLV250JBYDvg3GKRlEebvHOMSJgL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSqWpnaDvDEQao5dKCdX5xWFZDAquiB4CThHScm8ISFR0UciiiM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTIqZK15AgrFYovisFTd-z7H6qeioUTcUkf6SWushtz48lZjntJoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTBlsVnr4RXW-8aWEQsTErxhJqnGHf20eDrm2BgdwBc9ttDDIT3kA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSa_yeHf76SX2pKWD-iv7HuurqTQJ3-s1ATIqBR5YDdWPdxpbAfdA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS8BIsnTJ2_3QV7p3IIzn9rLKX6iv0irRrwL1g9A3TPnxPyxSYV.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQylnuigLTMUYnXCJ2eDCzc-62oGzZycBMEYu03OcqsyhFAevIjKQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRwK79vbsGc2I2ytx_RUT1yUITPWncgjvkDjB-UyE3lWvCFoLzSng.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR_09vZLKNYUkOFtc1y_rkzMOpO0e6VS0QaSqDNnz0O1i5QVi3t.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRQgpJHwlt5gbz8BH68oPoNxhVm9qBK7Rh8eE2OIJqFyKMvGeigVg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSiCA_c1JqBXCagwi-7HLT_8Zqr8onHYhl7sTa6kPTCqZ8K3CpQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSlo6r4Qa6Xnfj6t0gXLugxCbGQEz8dhq8kWFchwLZTlrR_JBJGFQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRiVlVzoV7i-Qt7Wi5Rn1LoMXaEEnnkTK91erJhNbDOUUf6-7D9cg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS9KnlefU_7ACh51Ti2e99GOdeEmHRDXOaEWsqeYvhzJ0lq8Pf4Cw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSD8ZJ1D8_FnSrQjAVe-YfvJNlcuFqReNrw4UWwYAZ_hObA3czqig.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRuqqiH6x8JnhYCBGmOXoQ1SSvAfN_HlDCqhihjZ7G1Q_rCGAM6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQFCFLbKjNda3iUiiwOrZa-Uk7-voxpxFCZ_IpRqsLstBJbTNDE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT2rGV4FcYy3CBX4IOAIgoiV7_eANKqFTi-fP7_SBGkHRWcxhg-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTZ_TW2uDnyBfL_9gkss-9BwWnM82dbFCi_omn-SeA7NkNYcxX6mQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQktrEKdCuyfZuAMfxs4EWvWrsOUjKFxqy7BHdVieu-5NSuetVRBg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQwJC007HVv01rNsCW48UdnUvvk2O9AzvyYrJaVQod06P8ll-Sv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQz1S4MFhnHjb74W9CaCBB4FNiwQlDVYssedl0l6R_3eByqhFs2TQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSlxw0Rw2x2Mn-pqXpoZlWku6fiUxyigWlrsmPjqJgqRtrCQfhErg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSsXHPlt3CWhxK6vdHRz4iAbOPC8KYOUNgKGqFj1se5elcSB0m8dw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTlADpzfN8JMMqIH_CD4Sh4hnwTon34h8Sxn39viPVKlIEGxsU7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ255khjGEkc4VnLgj9Z24jIy8mATtDo3B37v1lWyZu10w_TvmW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSAb2GMlHYIvV8eXZuUskgqHA-Oo2LfLjw3FsyeSDF0-5z1rzyk.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRzSKm3g_XKLmXkm57o1iZFQzId6E2OmKcUo2e7KMX8S2k2seOYaw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQlt4qW_ijd2-JdjjI617P80tav1GU-CrF3RqCSNSZRWNu9bI9A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRe1Q5IB20Ma_cYJLshlZTysKVqvD4L3DLq2eBza-LUlXfZg3K_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSzeXthxtaN9plSJFOKddJQI5E4WB4Rzzsu-BD0CY5DdBwh96ngQg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSCVz9LEuy-llDDGpt4NtTFEmSDfPI5ryK5bGK9iYxbt6KryGiS_w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTZA8fKJXot-_isHQUkzrXZNbULHAAJFdOgVyOBS8Vvp6HkKgCu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQEUIzEWx-HFx1_qZLX4Jx9GIpOdNPIVb7DnoLjND_5NlWG_ys7AA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTl9_AmDErViGL2iYSAHeUtS0AY2u0LVdYRLV5fn_kM5U653b0EwA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTT72mxSmAPjQiyIU7zLwqhO4hWSc5EQHUijwrRPsRsgLtHZsjx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTgs2ovYxaFSNVS5DHhtYrWKI_yUk5nBpyC_h-lOc_vqW5R33jP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRtZIpBKtHGFL09r5VSPe3kuGep0KKUoKnMyUcFFiF8sNct40SOzw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTHrIew_C5bT8tV2eo8wtyiHVo5ppCNd5_HqhcG_Kc1Fi9n4U__Gg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSAmu71Shmsk3fWPLmTh6E02pPhruBpQu-KEfnMK3h1j9o-PSi-5g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT1OwEvDwzyt6U73nUOkI7vzCxMwRf2FDncvoYwLbwe5G4jDZJZ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ1Oc2K6e09gniWmIv3VCGK4nIgr950y3F4uYpyWvqHZrqvB-hC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQytuYFuMEGWjl8q2dBNlfxecBZ5wyOPNMMfqmVffrNfE1iqzmYSg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQO2tk65UiRmtsdIEtr69urhDbjohFboozxLBHm8TaMT-JXbl2t.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQNqBA9TaMBWaislhYerZBbcusu2DYC6UH-fFU5KOs9R8rXIF7e.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRwia-pOPFLf9dEKBEU88Rlf6s9UfwGNpGnZLlbuqX-nJNfbxBFKw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS59y5m6MmNqym00PBKNjDPqmpMy8obOLBuOcUAVTanZZOJxt9W.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQxl-BnvY0FcPOh6JcZTbyPFRkw0YVv6RoCGIfVAAq2XG2EBBEAUQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQPpSzkX5_LfitE4KqfMBxrDqzgedwMI8lcIbQPrDOFfu6GJLB1.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSr317EUFTT1DbbwNkXv8hqSTOG4NmsxMVlkfutJLjgCaYbJmlU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTQblbJdCvEmYnaGQbBfyTPqC4vgO-qaXxNGltGeJG0pBVujZcp.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTqBRgzjR3BRz1k7AZr2QHv_QskiCbQuK-fz6YptlKXluUdIL_5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTUzNlEn6NaPDRFF64Wg-YfSo8b9NHwHS2sa3E7By66Lf4z7JRGJg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQUauskGV2h3m9YH2CX0VC0OvHF4jL1GdUxZ_uM5YSySjl8oWytZA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcREw-ilf7J6V1BFMXz6HbS7oaxVjf_VPJQOiC22Ttlzhba30Xehyg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ5CqYkr1Cb2Ya8TEOSlgmOSXTHXjl2DMuevAxNgj7HaLoWvJvPKw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSoYsn7hmDmh0UZ1a4MyAuvpYNnZ2snLdnP_Fdvm1_Ek1oiKCjj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQQTWsm_sYmfgzkJON27THSP0TztjVLEEbVSlcIe7lZUUajvwHRxA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSJ2i_cBY2yyNcPgH2v86zRmRoruZuI1uBL5P2nV7KV-Wjef8fkpQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQd79AVr70cCXHbFN5GTStxxyiLYstdCUfhi8eadj_Npb6VEYQY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSLW_pBPLroKH6g_hPQ7STEDZ2LyOibTEnX3uLszaccC-2OHxpQpA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQEglyvZZi7ZDFViCyIbaKTRYt-3Pj-_hJzGiYifLUY8iksy8Ii.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTRyvZ-41QehA0RNZn2qPrfOIdxeKltcAmViCbi_OVdbIT9vSh4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQDGSZ9N43B3iWlHPTDfWmshtZTMZh2Nqno3ebfOemfLsqaZ5Pjpw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcStWOGC6iI56iDJon3GrX-J_DNPvwaxBCFnCSN4GIjslQp3qcbi4Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS4RBEvrIjGQvpmp6G3UHqskV44zCv8yY6kSf2U7iNOwGD7fbhYqg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRjv7l4U_iDwyaGwcdLfxwWO7FaiFNeqbPN-5vHYG-oiP74nrY7vA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRPimWd7Rh16tT5QVgBaio0tuEs3ksuAzii3YOIos7leFG537PI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQgmqJQRrMjUgnv9Pq_IOyUuD-a02d_mvGV_g2NnulB9IcAc9gz.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT97HyNAR5Bs4EYTqTeU57r_Pxnk9RtPYKPI3ajNw9GWeeHNc4H.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSoMvi1L0rREM1oVk3TNgQTWNilPKHb4gtWX7pqi9tAMNb0HJdnuw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTkvX6vyBavJZiyUgna3FShuPwe7RAOkvwIt4WZaiNvAM2Hoo8HwQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTbL96A8CM3BmIIrV7AmFSRCib_ovCiESousoYvqX3xwrmLuGsX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSbEfY4fUCKZR0jV-RXOwq4oGlDEvEpidnLV3rSOniMCNImi-iE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQRnAtUWToiZybbhuddZEnXND7aJO6qvCj6BAAHbCPldTMSj4WB2w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRaQsFVb7kRdSTdS9i_83rMTGCXcnipy3WBWBa-1UsA_JYPYExhHw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRsiWgVkOjYa-g7CR5oDNClXbb3Lxs-d6bSqCXHAsMc5KVVAOypBA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSJdE8k979oM7kGPasjMqngygu2j1hqtR9FtB1c4xl-wvk2B6eu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRsRtXC99VgtFADfjxR7IRX9N5kLKBNO2T2hryOrOFiDM9ZIQeg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQBQVSSR6g0Yyi_I94Wu4uc0Q9uTIDm6nx_yFyNJJh4DK_b46Z7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSSjA8y-h5hLfBpNlC-_on7euqhBY2QhdUXlRa447IhPPgkAYhelw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSn6UONqJfDFWPmWpby2OyZNigS7iKPpJCbaN2pbNfS-0kTz-4s.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTw2Te9eTAT0j95vc5ucYz4Sa-jJKvulmAaGEPl_MB2UKgkITZK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQYJei-mpS8JRZTpEkj5HBB8pdSuCsNNNzNJ3g0uvY0aoz8ez_lZw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRXnsg3-d_trpg6BsLVzlgX_0qqRSOcbzHTlnrTXSBDSXfnKohSJQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTPMAgd9JCw3zWa1BylgJ5YmfO7L4Z0xuYVexxnXTisicsD4Boe.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQnoD2vheoLFeC5qR_u9lcApv4Rlz8A_mHe1Jlpf_sfGHbzporW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTQ_i5Wg-U3NBfngle7bJ88HTuFzL86RnngXJZRDhz-E9wWjIZI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS07dZp1JPX9GJaiJ50lTZz0COTqY8ydq4oo5aOYAwH-BtF8Uqn9A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTSIxcLjKomsTgVx4sM43a8HxfjgyWNKOl1zbbRob4p7fPQj4qs9w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRhL1IJeKEURBZpbP2shUQ41xrIYryPtDFsg2yKno4FawMshPGRkQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRejX_N7i5o12tOlCZsfIfEV6E3vz0iyVc2IHiDEeOogwUYU229dA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSiEOnPfewPIU56_zDE3HwhC4BRGIqnsf251QsnWn-oQxWU0h2wPw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRt1n6OZtYqj_POsgvInxBWxw6ItzPNy9yIoD5RGPcGFebaBuHg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTL7Q3nIC5sjhLQv7ymJbfzm1BqKohT2YG8QZKuy6fJIgwGOksq.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSyChNQM18CBI9RzRWNIbvQp0uU1UZbWp92C71PyhVa2gd59vUpHw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRsuJncfBCjKX0jLT-3SxsDkLbEcuS8Iql9rgiS2WdaMW9kIEPb7g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRJgXOdMFRUkRirqPlnm07Q9SVokA4iormAac1gAt9pSi9_solC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRuVzYvkHAVB9rgmBVU4cNjUxTTVqm5g-aAgB5aNTmJmNrBpJDkCQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSy6C9YMOST6c46ihVum5VKFRWa6CwRJPqXtsSId-SmzYE980Yh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTqsD3IOJb1ZEUagC9KhDQHh11hLM-J3_uAkN1ahXwBcowZpGis.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQScY61Ha44xcQ6t0l5VCdRWACJrlk6n4lx3DVCUxASJQjAzY6Z.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTSnJXwwmy8Uqrs6PXIuwHNY9VSFV3EzRfVcizeF9g07pN7HSV7Tw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSLbazJoP_1IR9tHkREp0Ra90pgk9B3Czt12NUN0cSofkk0nJaf.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQaoOxrMFowXI7eQDHr6d8Uzw5fOgUAKwZt3LpuPYAOCwk4yOwCxg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSWifXIvSCE-cLz_QukFSzBWNprEol7iKu7UoeGPnmnFuiLI-tG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRuFKg3GpamabvtGK-nCloi2Y05VvAITURdJbs6LXMG_Wubp3tg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSK3j_K6ot3SoduIvUy3sS0GvrzcWIVElfcTy2ocAhEj0iY4wud.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQL_1nrlxymSF09n8ilgnqCn6SijOauuoDMh2JiAsSeU5zhhagJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTkg9Xa7Euojk91iPp_BRBbDJx4Z_LdqntI9CDgIK5boDE0aSWP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQByP1-p5okUsTrNnKELK9u9H1nNQzyj_DFlXxA6PIUfuQu-WVB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQWUxwnpXgEtlWq99z_yo7ANyeKPEUPR0-EpBEgFDN5sihIE4c7Bg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTQ7YGA7bxVaKGsWpLEst1JnIeNiQywA0N7OdnVNTvRVarDtG-P.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ1gxwA2R1cuEk3UGRu9KsEAak-byI_5fPo_ZiIeh2fvK2L442u.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR_3XRLsBq4Pmn_cQMbNzSgl5ndRftnWbNTSliHLbryDGw5_3zBhw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQCV8_89q_UtP6v7HpojrNvIlDKIFcGVltUayatuPhAAal19B7t.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSt0nS86zqcNIITHKGrOVZ9_pGdXnGAq6zI32FNkpTxyxqCyb7K.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRpCzdH_pBlgP5s8yr10IDSVme2gYJe1m3S58h7vbiiEHuIsDkKug.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTBF3OnwLQqysLVuITCyzY9hi1V2l0an5rRe46OyyJHND6mt3a4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR80GWyP3KFXsLuhad5ty5-d7Vl4YbsvepoGq5fFu9LA8xw0FFXCQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSM4FJcxaAYZ-sY-uLf3g2xXS-_bQX_p09cJ-7Rdy_ZQzEWbZod.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQUC7bjm67c0EAub42zr2BiqBQ5osakxoFZiDibqoYWUehVML52.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTudVR2orqVdRahad-vIKMrTNOG3LXafKJQggdN8o4YAuCRoPi1cg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTKjP9lFbXPFv95XFzfACdgq-Z2BfOeYsI3V5gb2ksIDKy0V6s5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQQg-BuqfCHiHsPFYmZlyF51GOK6JbeIubFLQOIYfoMdl83jXbB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcScTYNg1DHBnqe1ksRi5_2Xzy5PHhN2IO7ekgJkb5G1O3vlHEzW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRuM9jj0NZmoAvB5jMOtCg01f-Ng27IjKjCMX_1cqa9rKk4gqOt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRzbtav3rSO3S_yWoSgeYRpWL_A4H1c0uP1B7mlgbaW9R5n3q47.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSppY5MxsjnBV5c1CbGOwxIU6yVohVsZZ28Er9LuROX5OGRSc4B.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR3CInzE63yFCPsWUdE_8AYmt32gpUxKhiforVu1HdBLjMXkjTOvA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ7GxZrY7hGRmi8BJRu9o3W481eNLRX9cvRrUFQUyH20dcIWEdXxg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSMxeIbybPD1g_0s6R9pkRaPXLPPCGAOJCFd6LAeENj8qwZxZqg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRSIwpOkGd6oGPDdm6ZHxpgOdbXxFys_077vvBBIXjpCLCpGIIyhw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSXkIBknWQCUz-5vCM1YLcOYstOLGmSvC65cv3gqt32X1T_QjXn.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSGHsjuLAM2OH4TnXVxi4cwLlyjHlRxJXoUiUJtZFfuhneYf8Pz.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT-h2jUcU8VNVmN-US_QbnL9FtHq1JINlBUD_t-L59YC2u3bNes.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT7jovl7CmHSRhz2-qpHYCgeyDyQu-jX5iumlY2k8gXzxvVIXCx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTX5X9PZ2f1sDudW9vPLXoKL5ckSNrJS7fu0uui1Y9EhA7v-vC2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRvWK8hHZZt1qaYYrnYZ1q3FldRSVvt-b5gE0Iqw25v4w2YjHW2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQDDNcWydnlaWszUgPNTmi9KP6p4Qf3ztL2q6oQkH5UL8WIJzzh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTtvgbSp0PvYTze66Febw8YkvNZzTqm61dZkWsoC_Ygm6uP5k79.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQsd2zlwcqaM8khRxlOr3MWwnKFdZWV74tamImxMkKJGM81_NEK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSHnEuQVIA8JxsVb_d09QJOt3bKqK75jZFyJVjp_RNi0YOx8Wv_og.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTjssafo7MH_dj96AGMGT1BTg-HepjXLJ2pCb7yulj7hwKkcoN8.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSpziXwGzSFA2xKE5d_s7UzOFPPdc6V8YQyCuBUsQPs9RgArHpo6Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ8flX7rfBV2lAuV0MlAwKTdxnL8JCbCWsSKm43JQfegqcgOJDY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQT-z3CA-ipfbzfd9HlQJYRxjQkUvZ0U4BMtltd3HvhvW1lrotE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTIozvbWNOTPiQ6c4VRIZ7t9u-I9EXD1l1eAAaO1iCTlG4nrdIBlA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTj3rY4ACP3qBVs-V_jf0Yz8xonFCogWBdE45i23Ij6dQsx3jKgIA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTYXH07tA59nAfNdsImhF0nwHp_q_nNWSGJUjoe46NbYbn-WDPX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRcTIVnBszGeQc-FObGLRjxkJRVW_ZmkaSakWwUP4gZ9sME3Yy5JA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRfpo4o4xe_hPkK0WdwlzCJOsoTovRhM3-bNPAe1asg6JFRaFHZvA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTupwOPjhWCnHEOSfhrqcl1yxYO-69Ls8rjEugZgOaNJE3cWs0eaw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT3wW-VmkLw05AN6tbcEH8O2NDvDZ-oZuLFIwlGBG5lMPypB5RT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQj3sU9Gf4MfBQaOnrpAFByyMZqWuhONdRfC-TNPTofV8S21BgtYA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRWOcNaDLoalwuqhYwEJXuK6lhXhAMDD1uHDg0WhpMDI-rBnIpN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcThHh1geCkK2rkZcTehR877fth_ybnTB0nXf6EHPJNRA1AiswkS9A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT0jq6tV1f4IjX2P-Ku7vR5pLZuxJbv2ljtI7FxFOr6Q6tz6kKT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRZrm1NcPNfbhAfaSwPKDZTOXBptle-yLbfq8TCIolWNXqgwIpWEQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSHqMcWFGC1WZHKu1yXGmGl6r9uo3zx5c59ZUPoqdWeH63GK6HV_A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTxG_ADDB5a-AK7AQwjcEp2e43hv-pQpAx9ZdR4ji47F5YayLuU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQrYzrWr39lOdYPGHPcJnlNpY2-9i4myv1BQKjE5c4VYP3rnmSC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT_slK-v-jy8ZMFCcVacSID9dJ3qxpg0mVGSwe91PsB8XkDHhep.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTQWsxnS9X1jWem-2kiIiblrqm1HogkmlBgV4tXksBmkc8lzWzDFg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTEKh1NBPi7dhdlncfHp-EKUnhKviNvfjZSDX30TvhKQuyM8ooa.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTcSSCJyErTPE8poy_J-EfNJ5VeMIf28J7AwGUSQA_9XdFArzVu5g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQf1VrdXdHtv7rpjiatXhN7lqLyvrggTks-LOHPonkqPwVywmG2lA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS-1YDpYDmkNtVsegbpHAsJV9ELaFGefcIxXv_DrYC37_VUecK8Aw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT4s46kGuykbXtoGWeRKkE9hwug2zzl4u5R-QWX2SaY0yhKJAz1.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSbNcfzKq9ZgKwiFPszSsQ7QvSm4dhwWyydaGdve6EyROOfRtcKsQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQj6dnATgWgvI_5ajMhFMNi-YQ5F6gBETGanX53pf9arW08czGT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQIVjs94krEQ8_R7iTkS4j15d0yc5xow7YY-RlxKpRTPQwvRWf3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSGKsKjdUi2GlxYB_X06r-d8haa05B5W2b5lk1q2okJ6bQBtuk9CQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS5uZcDlPsuTq5Fhp1RokMeT1Ixb8LZezYOKdKfaOb3tTOfQsovEw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSTqhVGRcF9mGinGnNOWbyLFlbvWFz2YQ_lgyOhAfljf3GOOcD8eA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSYwP0AyFwerjwJpQ_9BniAimdQU9QhMQbQ7JSEJxCjH4r1kW1l4Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSDPXlKMheHH_5EAp9AenKTgg1-d4WvXP7xXORH8Wg_oYavXCmc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSZCRPlGhHi9uV_UTduPr07KFxzJoqA-U6Ejs0j7TBB-q9yCxatHA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQilXJ9A-FWTxa6tYmOY-tVuPI3gy5JbwjlsIkUyeltauQ8hFej.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQwg1qJP00NRZgDot_aghowWx1Mpy0xAkoYPtbc0SkF5tZC3xJttg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT9shQ26F79jJrwP0F9v_cof2MbRHKhWlcURzdd9FlJl6pXQAiuXQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSexekyvYZ9G19MghViZPP2oP1856UON64V6b21K9nYv6fXqYMC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQkdQ3a5F38NhP_AnCK7juFo2tIQ4RhfPLTJP2u83lxS2OwpTQv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQsrr5LReQWOppF5LTwkOyjC1k33p8HG1Bn58lDv3AmYRoSsTp1.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTMDbORGQqtfUEIu4zYFBIV42PTSQ6KTkedF3AfzZw60Ft0oP_oZw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRFOoCJNb_8BKAScANNsdSUfvr8dsweZF4dDTPAd0O5wmh8oCk3Ig.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTj2rEQ5_f_uUANjWlKRTYCW4W3k3zNbKdAlKPvzeKyQdzAVSof.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRM6wBNLAu2fGcNtwhZWER9HSV5VObogHInADnPYCOAjMIkmFfWvA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT1o6unhpSabeNwCJGD9J1nE8OubUbAyzLOu6uQt3UOukuaxF6R.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcROAWDsg_3Sxz2hR6fPSX39Kvbqt-skVrrvdlXUEsj2mOiVJSG7BQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQFn22ol1aQZXQ-1nOUCxtxW10CcLhtE70_1Qro-ofW_7sTKOYq.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTrfOSUz5VzN_Iv1ZEoxrnJ_TNxRFSjNFcyL2ATVWbvgraQ4UD77w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT2wrG5WfyZp87nqbNLErH6LbKJNWy1vOR2hbd5Bu_iojMIDofI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSCnJIOPNktYuWqVi0tsn4nHXSjprBLd1FTAbLBvZQu5Hd6wFz5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRzzpMP5qknK_R4EyWBP17eQVAdtsn-aa6n6SUgyR4gfs3PAr6-eA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQD4GqFNJm5hcYrHpy-xiQsr2j1SCI77moYWxXnQtgr2XyxB7q5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRuuTIRSeeMYml-_jjnlGjVdryoxN2-y46xgp5tsIJDMnD1WIlmWw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSWCyANHQjkwLmHUPbZzUuMQPFe7hqe79G1R0dCcqcZkPL_yOg3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTVHux6o8QLvSowbjlzVshkyvzgFRkdIdeQnIjubPgj1pgrviAi.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSX1i8GqUw4Fn6sM46w0-rCyEhyRI0O2txOtzifLfUyi7sxBjZg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRiRMryUEO2v6-fny98HCqNViGiSKvY_oll2q3YdIj5bkZ0sHnA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT2TJ3hEoUE5v43M2Ul_nji83kXYNIjj6Rs_9hxVzaqFd1hkTWerw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTlwJLc6ZNjKBvgO_qAF0hkRq3_7zozkzBH75O5dTc06hDJh2M_zw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS6PDULjgeSPbg5sD9-R2Bl5tjBU6f4qviPbZHZTjZ3Y_6iKLefWw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQJP3_kfFC9MPAgotTuv1aIQAXu0t78hsWWUjznxmkilhgnQzcv7w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTxBqYL6oeS9SgNF8FZmN_QBOzsA_38Qf9rn4tNXDWRM6cKXSRHdA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQwt1PA5RMe_id68Y4FG9Dx_Ykh6MNjDvMu6VtZz6FpkOjtMl-Urw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSbpe_nCVA_QeLFWoHSy3LzbD3bfkpeC1Ez8WbT29jQF0bd1iU0gg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQKdYzzKwYZJHBYg8RfpGYMpHpVsn-S2C-B70_toPpJJu6zayNv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTfpwOtPZJ8aqbHY1m91H0gSnPB2GZROK4OW5ilTX148q4Ya-4LyA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR-W79pLTWmk8fK4MOagNdQ1rfgBx49Es9_N4ryyPJgQC3djRhZ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTjjto7bKTduKIvTLJLHaoWIpG4INso_e-eM5dgGONehqsrJBVJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRObtPifNQmDMlNJIO9H3esYEdLPYKso-oeHrhG9K_B-GS5GRk9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR5KCzelXbbMG4AHVmmVf7CnGI2Xb0exYFC-uQKXnwo4mSNny4Aew.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRzuL2JmhiVuxOY_vcXSlhIUoDnrhSZ7e8BcnTxdD2Ws5pUWsmq.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRRf0d8e7GZfwKAl8BiMqwj74Z24gerEfmTML_Kz8s2_PyMMGXADg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQb2QZyGykdlIDjj1iBZ6TCF_Vy7zCbZoYJAAgWkUXsbSQlCQXZZQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQgCTRJROBCiF-kcOxAmwiKnb0UkY3aqtQOCPvuvoLOVwKXZqkw9A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRh-zPIgmE1LEpBCVmxXcMe_25nnpd84SYQv3Sq5uN20_nsgJBikQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTrU5JUhhRQQ3Uc3FQELCCNaMjEYT8__iol-CCwuR6-VdNdN-5v1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSo6l5a9PEDX1fWvW1TkwLXT6RCJMKaUCv8i-r-UAAyr06WHeWsjA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRreUd_tzoJ3tOH9TeLWpWJ3Ws1xOilv_aJ8rvLptkJc7Bff-DUSQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR54UmzVsyHEnil-jh0EulldAYKVpkK1OmK-YU5RrZP64MJuK4lkA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTTlcG9eGywxYyuRJYXUaZ6Bzih-lBIvAcE8oogN_BeKj1ALDSy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQhEuPWjen8rU1cxXFSxxghb-nnnPQ5aPRo-1nnsOt8VRE5pGCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQRx2vZQKPRMPa7j6LSLPsAKAgLOnoHuosl2LP8Jc0Y3MQJFJv7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRH9mmmfnwq02SVlwerMudrDxhnwofzMwbS_3IYr2wxtEyVMP6pfA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTeymg_Fj630g0oZaQTRtywwy5wQQq6cLsdA3T9soKzBPPxuHRWxw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSujqdVXMb7SCjfuafalhudsUBJmiQdaxCoZF9J30Aa16tcavNgfw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcReodbdyoPHeKQ45JKuvYy2FET9FQrOfNFL5nDTyT-dMnpE0LwN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQWa02JP_-LQNysjkhufzln-sL3QPj_ka__scvNWd0ibnt1EPSb6w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT6LiJXpydUKXGmYgDS_X-qEP1-wc1qfL6LXj940bBL4PTjeOFB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRk42vFH08TygmvldqZ1IEDPcHIxR_Ilcn88iTXx9PEhjGxfAre.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRyNyPaaWPp65jF-ZB-z2Zs1I2tOTk4DkftnbbNvQwqrNsPcPSQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTi_xqhKxHngomZxpQOSqzLUMhy1S1qfPEWTcbN3aXL7HK7SMQNrw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRHGdeJnvFvnXkH2PmzkbDzoHzdSbMuO2ks8nqmjtJVCCCF9Xl1FA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSW4_hIA1Uftubd8Yamulz88sr5155m6Lb6y7bgWEhJj5DaT7Nw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQrt7PhgzX6S7TUBbSr076yA4q3DNkvThriETgMR4aMJ32hvTn_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ34EpqQbnJHZIzsaWOFUJmvFSl88oolAQlaBUoHtVV4M3Nw0IDJw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS95WZBPIeMGiZYW1bzicGv-bEmQpiRdfenWxza8xMqUpWDrE6Z.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTSCpS0aj-zTwtzUK0SOCPiKzgxmX4xsNsoS3XzmYkpRLGImm7x.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTozj5w4fk4g6fVgDzJNOCb-FmGM_S9F6k2VqEbN4WKEz-13_9iiw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQcqqIUMeERnExCExHSX403_vl1wR823izA-Ef_m4UudQzeBp7i.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRi0IXuqH77uRcrHa6-wP2nxxRs5ZSATMfnimazqJQE-W3dz6w-Xg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRtXCCfxlThksfROeK0B6OG5NcNEfNMcZuJIrJT1jxMC1b2ywl8Cg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTshOURjjYTSsoFYkj-E_LaekbXpBXy4tbeLYLb0XaqkixBBY5uww.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRD-LKS0dvt7rUKKFncchBMulsh3ZtW1bnc1_2k4G9MkRS0HpqNbQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRAGtsFhxZzkw1mh17OVnGj4Dq5h65XrtkCAQ0pm2s19bhIygv-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSgPBPsE_IlxUZvpdUYaeHZImmqbXcyPz4OXjAZGR471f7-DkhL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTAhTLz0l1lp9NPnqilGXlOCuB7e1V19EIkjQzr80ptR2e2TH-uMg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQaMTGizr08BdDihGFW22sxHyZUFZazT0-DhlYUjZLceKYUv87Jvw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTDxuEtv81Wnw9hTCHEBZzPw29UmTOpTK2M8d28uB_jOPupHn3VIw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTjzu_EqTTfdptUUBIuddb418wOhWl8AmaYqWzrvZ4rLdeODc3yMA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ0sa93MklyNXW_oukodvV0P1-Wyl_bpOLmibpxxbYEkkl4_2Mc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQdO8fq0bjkTkbki3pvNinXBfPie8i1BLOT3XAXIlb_RsYiyK1Tdw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQrtO368YabMWhlZg8yPGK-XA-k5ZI2Tt2Bq4sgMtbMfsPwGJK8.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ4HmanLwwYpoDvuMV2gZ-hPHUKe_pEfASta1XhcQsdwAvYzEN-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSn7xh8NQ95nLShi_wkshZY2xWcuXdx57sDXnCWIcUrNOAp2U2Isg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTyxYsXOTvd7OQ3bglhFAS20F5YlZA8La1J8OOB3ZsT0Opc3nwlww.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQooF458yErkA79PNj14NblHu8sFOQnFbrACJ8XhLsKHUtXBb_-ew.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSf592lwYAy4_fgd6zP_GgLKvI0DoXtF5cRa_XT-RADgdXi1Oz2ag.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQMLiOIwamPqz4FKFXyUH_hf2bstJvVft__uyvyFNzb5b9lyA5A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRBpqh7TsGGWQoxlanO5sc2p7S2-UtRI7ux-Toupfe71klzQ3g-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRDafbJYEPQelYfrAFPNO-LW-rfuuTEf_gXlJOUCK6yco5PdX8R.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRhVFm43G7c9h5odpF7o_SK0QeGES0AbtzymuyoDJiz0AgoZdwd.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQJ4MB9qjweZTs3qvix7YQGo1yZ7fwbAHxzncVffcEXlS-yVpiG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQHM_BeBTmDWzZLdByJREnsx2sG_I36mTZ2a13p7KyxVwReV5qfnw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQHd24C1XCc_Yk0g2Co75Il2vnze29GXLZEj8x9ut76iFEb3SvIpw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQyMvH219WcFQKV0Jm6Zw1LxliP9crL_QsG5g8AK79kVmZ1XbbQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR9IwC4NBnabxJQncvYeCiwlTwJik1QrS8untHgVJKN3D4p192m.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQBLStj7Fn48YKX_-y1Iv6IjTCvrtDVwGMzS-OyqPiNuONj1_O55w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRXLeOcV5_w52ifTfuIfQoMIDqWXHcETQ5CPBn7tAxz8EDW59depQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRFcGKznPsuC9pQ54KjgeeIMQRFnV4_CsZoISu3Txza8d06LTud.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTTzFGdD-FQZIPmgvqBfnIGg41wV4fNbi84838vLM0AK7BQi3Qx7A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRfig6mcoh1MeJ6o7g2dUufbqYG8d92gZ996m429o6tQyl3T8IZ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQyKo4Wzs8V_gMkAwxxHuElI_eu1g6EZ_eML6Gf5uXtb6i5A-fScA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQpRCbPjhEM5A-gHOs4MxNXV-p8UJ4frkHBwpgGk6qmbPLIGX9q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT889WKtcPkOgYvZuv-YF2waXw-T-jqDiewpUdjaEbVO-Qck9Q9RA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSCRFiWjLkDR-9a7a03XqakGlzOi4Iz1Qmc8c7xF5YqyfMtmA6Z6A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTsZE9QS5UdyBkjRbNxCULrzAhaPn4-cA6Pq6xedv8CFpxdOBjt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSbjP_Tbvl7tKYoC0ZI3c2q3pZsrtpDtPElbHfW2NVxT2V5RUE3GQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQyjcRGJits5hRypGoCs9BLBScDCm34YsPINciwlNnDod7lWuSJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQSo1V6sulSmfrse07EmrAeLEsbsHQuMZm2VVpntRZINtiTgd2t.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR_MxfxEZtxFdJWAS_m20a05XbtmCajSZ6V0rnHSAv1U5VeNstOKQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTrhY6R9cqBa8KTQwb0iVQuHWtQF6fNwDAx5464k8qusvcFvkou.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSG97fTqJXE-qGzgXihoP_wrV3Uo9cq71LCETi3vqSoC6geKpPvDg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRrLwimW9yDEXJ7V0ijgSp8VnmjsSH6aBKFIE7rRQL6LmMjA3PQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQgV4dJZnzDr6JHCRWDEwBe3a9cp_hoo9fbeZXNJLjzC5RePl4Fuw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTdfvddm2GhBAFSaMET8h5N6-ukFvCxx4e6ifqDro96XAVlGX2s.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRUAOFWD_-MHyndeY__UjLitKWs4edfOX5dJ9iio4Ypj5Y-UnME.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR11qchLftFSnnxKvInArYrU7hNntDpChiGMx1crgEred9K4pdW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRkpkXCZQDntGrtJmiTN0dAnFEpgfLHtXGrbJfFoz3HjyZrsvRF3g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQI2nttVJzHEK2dI6QAhhvffszcrElUVqNUqBWE4-ujlDPG4kaR.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQxn1nBFqvijvZZKAtrMrzlzSPCMW-3OXSmAR6o5B4AgjlJXrFdRw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT1Aq8Lu2fExZt7HpjlYuOp7ZVn5DtxbGhIv3MRPoiNIA646gUWSg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQoyVwycL-7X1y0rwCOV7lFP3rnvK0eU26TsD3mJHn0wUGlYNt3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRUjrI5osuyps5PNBzUJ4jS4DK50xbc-LL7RUTaHNvdJpsPgbEx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT4gK4Rv_Tl3w22N5px0ssC8Eu6vj1nXJ-_-7KHpFC4CiEqwAGH1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSjLfSp1Sqe5WDfwxskCjC9wn8HIeTt8Sq2QQDID9l9e76M1fCx0A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQDp3treJcAK40io_glROJ38Y1HYU5EJWu67xis78uQl1M8Ks9B.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTnhaTLJHC2MIqoYtsth0TljYyYBjcLEgZE0s47-sA452d_bKWk.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR7O4b_2_w8qPXbDEgZqpto6DQTil3B83iHTLRSt4RTsBxLKJFnPA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTjcblLiCWz9FAwMKyqcFHs52eo2-tx12eXlaSNpXbjsTlBaeljng.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTWo4twM7UurLWReHI0h-oeju8Q-UAn_30qZF30YNww7HcAW5SE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTCaO2qoZveB_UDbtBh8eit0Z3kThjh-sxKlVMsEM1_T58N7r5J.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT5FKr2UIn9Cz9nsjR1VLE4s6JoPKD1I_ScXWi83_1WSnBUvH-ZbA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQQu3ojtg_WSsdPM6X4iNaoejKW58tJmz8gEwBegOmmTAwQ8CXmaA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSijwoq9BAQJ1Cp45URpggfjZiv7fQVpxEVZVl0Lw7-6tztVWIy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSPlpaY73dbjqL-8ffbmalAS0tiQRogAlMbMdIDUnpaW1YIPhIK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTyEtwj6VO5nGoS7aW4ciVgFf3Nd1MrVNnPZRlqAmTmZKOK6Opt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQls9Ygofmq1jYpH5AMlnc3Tojs2NIIhOLzRm6SDZYDrtuVmXKwLg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQRGgfn4bVYXEnpl1-RrFp2QzOoUyBZwRMX3Hwj8WNIPmmMQVoF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSFHxKSKDa8tm5lyVKuEdn-E6x5zAIc3qtZEvU6bXN_VWfH2kah.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT7qOtqW0IZHgio61Ry38HhRpHBazHk1FSvtTOmTM_qMtR8nE_PyQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSk-6fU0nzk6adzij1IOfxp7qq7q38IntVCc0e8jJFWn8N_aHBgHw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSpREyDkLmp9RdS4NGvO5nR5FBhTcULj0Y6OSK7aY8IjROxQPy3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTydCQYyIQo5RmsBGX3Jr0Cku8oxXBC7aWao3HsawpaRObecUXc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRqHeQQ1fb6xaYTVcsLOLGiyZqjicMzKCUzA8R9vHP0fCVetD_K.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSDBekUfT0HUBMFSDDvdYrBCpfJRNgAbzOzX9mnqbTIiTieJAVDuw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS4r7-TEabtgEUXfu0jnM22ssv0I5T36NbJy2BokpVGOEOTe9Eb.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRuO3b4nk6LV75AvziyCBXB0kySrMvSc9Zf6XOk6IPkSI9POVoy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT01POejDGx0gn_sd0Gws_a4Dl3y-eIwJU4QziFisMXkch4YwEw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT4nyUx29T95YmiERw4IpmQ1Cb7FqScnTfsx13eslISfR9QGFoc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRxJ5k9YdWKZ6dzKB6zJ5yIXl8rlCEp7zL31-RFb_gwn2_xW9uj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSSTHQIhY4Mza_LPipmD0cC3VD192kPxf07sJhqae51xKlzkc3d.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ-LMF6HugDQXa53SIoj6Vy-hc27j4ZGBnzYwO4gsCJIVSIPnXM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRKloBblC2BRcxI-nWl4ItxOAoRS-dYhEFxTy-MG8KuupePi_BB3A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRGcjtVNlncptuL9GMdVqaxhYmksU5o2OwN_IGiUsHXMbVK6HkHAQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRGL7zNNs1QzDR3OsEagGyKf6mFRXjPLYhPclYlUO4Monq27i66.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRYEzwV-DS89oATmmsPaP0xH4yWM5KHBYIJbGlUabmokEwLWowa.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRZIg6Nosmg1XXZbvppBrpqfLLD6sV6_X1PBFZ5Ysw6btgETbsl.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRZ6t5IILMj0_bEoTaT8TOnR-0nRMvsdBab7KjEIqwokBxRH23BJQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRIMwT4qTXrvOWamM4B7dC1TVtMusuV54k3AkzddRkJZ0SsuMCoyA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTECqXKoMTVcE84T5WP2a5zFjpdIATxI5uOFKWupX4s3qf9753AEg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTtF-CeFcKx8WIujQnRjxytg6cyejnwkdGS0NxJ0yvztrECd6Xy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTF6v0lPeZjLmjFrg07x2WSf-JX5Jm4p_EW2kAxnGAKFmBYf1r3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTMFpkw2oZb8YTX30YJrLiytbq1chidl2zCcJlXvofpAbu1X_As.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQWToN3pzlE3BK9z45iRDwVT25eI92JbSrActsJThEHW16sLExxfw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSfhRsAebRlIcp3wbxBHW4PZ_jmoA-Q4gCJKIGZPdlVHQHPZXEp.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR9QpLdrv6SIg2aotDtfbX8mY8lPDXxLb3k2Lr-R4oQ-xem-6Nb.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTJTix4z5Q3eiqZAkpzYIMvjPk5fL9Xv5PsRo_lCIWaw5hur1V23A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTpv1GoGEC6n0DBYdJavt99lKiEXEv9SE4DoedkF-LGBncy8v3G.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ155gIdV-BHQ1aUxoTX32O2VFtJhHrYB-h5X1x4LjsMiqJR53LGQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQYubbIKdP7-sidOoi0HlkrTXlyjRVoUJrpbSG4cPc4qeVAx4Sv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTjQ-1VgbtSTcA2vX_-x45FWuGarEDA35SrMHgvpvYcOHUygcp1.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSDEFQ_-wH3RCUKLylXnAIruTB9FArzxn68LD0_yuTQApnNBC20.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRVJ4E7UMNi_hN5lYyv9GiBFS6dtdKy7XGCPt4cP8nz-rPPLx08.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSZif961ZZC-CNdVh3wiHC-mGtcIcIrX5YYiJB8euyxhgUgwxEq.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRoC6BLv7BLL_HZhdO0ZU2axU_AuCEH5sjgLizn8WT4dqlqbl1W1A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT99lManI0IVm6yDSb1jugD2M_SRtx9f7YkNIf6-7iT6D9dsJby_g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQMz3JJJ1i5sjH4dsVykz3AfHJ2ydIwrMhOi2jMjSzAVjFHpYKC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQeme67tTCcvFbjg3xtvKPls3300iLBXVDEUfy8mx7yWaCAIqEWAw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS4dFI2UwC-lrsyubk2gj7n09MAtUKgiie4-IQ660IhEJVeoz1U.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSBN0licW70W1FkNQVL1alNy3aTKEPegRjZiT1fpvxJV1Ih4Kw7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR0mDbuzswoRDFaDUKQQ8NSHVGXI9qpwOL935KvfdXa79PZPjlW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRNqNFV9XD8qS8ed-r0a61AUeDqZXSDL93sRqNzOWecjAVBI0czoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRQK8SkQW6ggqdPkeEW9WOzI2DQQefetCz6DgXeM_9ELiDnYquF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSN9qKisQg1zwxzwfgdgejsGlWoKK8T3yKH-N3XXX88FW2AL1Nw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRCp1c4zkgi-OOchW-u-f8rL40FbwIk4sWTwhux8lJCLXMk800OIw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRZXyVsl-m6pWA4vU8ILjEsOCMwyXiPw361j1utgxb2WoSoha1mVQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRpEwztZBDgHIZI7F5cola85hK7CTjOP_1beHL2HFXgHYP3OwA5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRU-NkTtKnCYXCTRPsgoyQIsqQxIj4q2OMTx2aGEz-KU2LYzAOBjA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTqGDiyKybA1IQIPQCGFvsb8sClfluayfi7hsM_RzObqmqFqEhoTQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSOBwVrU-cVKExiQEgNWziiFSF5MU8MsWXdcC_jAgTpwsBiRpWU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS8I7ECuOaE3qs9p5_GMNfdMp5FL4PYpsEwaCJGOEBEtZ-8GC_hLw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR5ryGyqbmf8WkJ6PRC4bQuJAkNtnEgclJWK5uZLgzZYMIWjcb9EA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQwpC0u43nlE58ZQQxHy9OprjmXoIUCfMRiZbMh9NyWQmRe7_vroA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRJIMgw9eENi6VKn8TRw3HWJLG5m-ukyTtaH01i8wDmnPFuvm1L6w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQK6VlNG9yem4C3SdssiD8H4rEUzJJNzaLvBTuYdiMT0Ey3MYv1XQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSpZAcwjLCsurlCMADDtgTDkxJLiyZaKKj1GhPzJpU4prd-YyR4Mg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRe2r2vvDw9mMmABVmzGADVcONhZ9t1kAsAu5HK_bVCDETzkgAd.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRrKFdh53X21eFpOLDu8xxaJfg1YE294ohXmub5ri9ArhwXX126.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRMFD96UFm95tw8XcPaBVarT_ziEsx12bvKROYCMeMH8wthOy3oow.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQkw3xgi-0fpgQbp6IVDxy3fpYcTYkeMnaUuhBnzkYgrTAQHksLtg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTvEm1XUSOAH_kGSoTOMgc6lLkKFzoxm1bfIAegGxfMODBn1kV7Fw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSoIB-6d3E-U0YIluN-R1rSIKFvafmY-AyALPv7yom31QOvyQXD3A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTYfTPcR0ExdkVMx0qMgwRFswSWbC2ytMHWjDKhv4aE4xnUrkQzkw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRrD4tJeF40-kFDCwthROLvIISDtX2JjIJRFDSTMZFb6c3s8d4l.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSSjmfw5STWlhFcJxtW6kgHeJbw-knAeDQYO4X9p9ZZNGbfEcwkPA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ5bxI1StZT-Skc7GLImMqAxU7f6R3YCS96MJuPYtmfGcu7nYoE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSqKJsMLusKrmSOXfj6hBdw4EmHFga7nuIuno5pn4BZ-iq--eD54A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ4aRrWRi7PaKSC55a-GHGqEnKoWe9WIcGPI-1ra_2vAJveUEPaZw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSH_QcDJkq6_f4zivVqcpqYKrck2JPIkR2359RAxSkltb1jWkxvtg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRVFOBX9-IMu_nG1p0IdcOXa9faX6cgb7fy8pQJdeW52Ydhuxnw7g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRSWR65AeWYVIKHCkLl8mpm4SGUzgumv76hUTk0fKBE9si499_n.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTrr2h2GgteDZGKVP4T5Qa9bPJ6Ho9RQE4fEdvLiCX9QwyCPerK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSbDH-v2sixFCrooV_mAyRK2_Qsrv1YlktNaPnC4U58ZDv9xmyvew.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQlCTsTGBIJjgs5Zr3dQbCtIGBVs3FHthCi91bueP1Uf7-mnJu5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS97fKA5kAVyvGvJBTusm3Yomb7UZqYKlObR3PxHLnVcjA9HdgisA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTli3IjJZo4zlHUk7KXJrzcHzLlMXW4fUa6q-p_s3bAMnJbkL6aog.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ3-U1iFeTeromrkQz-Wl_oCKdNZX_JE_57_wDHEcy2fVCPpPwuMg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTxo1_ky231Z-60ue6CQw2wfw9dgwoVjMpcQuK_d6alQZWtw2YWdQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ5EUHDl9-SF9BaYEhvQubvdzWwTDN-PnPDfez32vy9eIFMuwl3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSNmvS9vJx9FpXwQgvydTQTGJ_8_OpF6KXviqKD2T3injpJtj7COQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTcWMIGJKj-62xKjrTU1eth2ErZtgyvzSNWRczVMyWt1YMk5WGYcQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT92lOlIavilAhZkEcFdjnybYdotMhKve9JNP0l4v2B0k2Srn3h.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTy48p2d7FPdVcoLB4djQIN2ynWsYkeMf3v0sOpnceNYFfgjPZY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTQylYtnXNtf_ixVDA1c10DuEOk9edPaZG3Ng_ZTlvKpGZwsLphuw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTGWO6pnQzfs0rffCsdiz7puprjB5hTm--LYws1ju7VuyBvyqDB_g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSaQMKqgmhTU519CRBtl8mDWyaCxWl7S1vzW82D0NypMHQgCW0X.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSMZ0InIDnY_sShCi5n9mSA66JK684n8jhPyrNz72d9b_Xvfd8GBQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRV92WS4U6jfUyHc9e20OUWJPU4k6njMybdMolWk0QKoyFG5NyrQA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRcedu6k-_CbdlOp7v5HTuYn0YZ58Wv4PrujnC_BCDb0i4gw7N6Vw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTeCyHvSJs4YthkRyyO9Jg9y2odaqZSWRuf1ctCHVsC5FwkvosxyA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTv3bteuUCcHa8reH6MdRf8ElX-GeNPv-Ld0jiUe5uivq-Fkh359w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQelVb2it2eod9HF62Rteyb7lMmIXd12IwFrf5RUWZag3UB1jzLoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS-uAzr3Vn1g-3J-fOzMlmUhUexNJlGhptP3iskrzstkZcep2wXng.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTxpvwWkloTTcYATMySKASKW1ei_e5BR0BegQJC2PqdaQdIt2cy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT6gIWGvncz1Ze90dKuB2rfSEi9XYM34XEkmY_4I8hQtmAdj0TL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRUx3FIiAu23D4zH2gGMPmdmqCNcI8cYppESICvB0Ji1gJP1Gl-8w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ65q43sQs6EJ4mKQsxKfMBGWP4D_i0MJiMu0qta5fK7QNeuWDKFA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTWweuuKTDL3sGXG1Eud9f4D9k4pw_DhJ5uZRq6RS8N4zSg27D7Bw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQzD-gmBj5AmxyL61MDiCLXJRIfdod4FaIhHJajiy-uAxAWmJ9V.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRyhsc_sltK2eCRalb4z-S3kcbVQVa7mu1ZronTu6CF0tjpfS4u.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRe5eLLC9D7Nzj9AiOa5_4cY32jt_uHqPZFipwqoluEJRH19MhMoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTCSKZeNja8LuYXU763eaZWj6NZkpDFZ-U9J6wM7uMxVq2nm2Lj3w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRIDofyx6s0uPMUj0VWDmCLN24HUl1rvSx0knXqEIJCTjeww4Qm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ0p0VhR7dXlGVaCDrmjPiWolZXDzA9882JcLja6au0zCpRZLdv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSnpNvskfnlVMhtq4muGkg1iRUol47_T5DizYComjWjW1iUz5MI1w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQk-WeL6N3tb6a79QiUQs-dDp-PI_Ye7dHviKjJAoj-IvN69rQiDg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRmMeb2V-u6PQYXC_JrUIXPr-z1FAmOZQqopzc7plbiqHvEaiP-0w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRCL03eBNwRmlIVdBs6HLeZW1Yw2-GQ3_F7zjUuMHLaCxQEZr3_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSow2UrudFqPSE6A1zxl-tfJVOxwuKOPPHaSsMlHUH36Dla_U6I.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT9nuk1r3VPTbD4fuO59YCJArp62yYhS1y6oCaApJB0-k11M1xs.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQgSTKxIMOWR8yPks47kYoRH3qnrOfCeicoBqpb-N6lhj4iU76jAA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTRtNU9etPs-CBOABEu-T-I6reBJMWSCDamPLUQ2V93ROzQgcpr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTS4uo4YDjTuZ77NAsBZW94QyDhZoKU91UE7t-GFVljHezk6YiwvQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQArho3P1-HKCO0CaxP2b-rdOM9GWOBCny0ZkhZV_-Xxn6iZZX2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTZDSAPAzAR5DHMToO8zgAOipwTGvUL2qdffWirM0FkqeGj-M40hg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS0-PnIzpLwlZs75OAUhDkpL5kx6x1thWZY-48gVXpN-tp6SGK-Ig.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSWOaVBhS5ZPNydImCko0I1Evr4oJhqYJlWRAqARFz7MSrZuFg-qg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR7i0JXQsYtSXLGSz4HZLqy1oa7IgRyHQFVVuzGslA4PKLe1L5OaA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRkeA3mg5g4XmmRqA35ueoLV56NJr7KLoiyhB63VQv9VKtQA0kN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQNGv5T6vc79K6gdEcENjpADS-pcO5KRByONc0aYPr-TA0EQJBXlw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQHVL5tsNxB2QUi6iSp-3rM2npU2TrgmtI3vXdSHCRv7EUVZRV6uQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR4BJZoY3kwsdFLwvLYBFprlUy7fc8BILfUP3DQ4rcfifRtGncFsg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTNZX-Cf-HAv9SwzUbrXOyYp9PZ6yMHYqQtFkDZNRTaPQ0fgsrnPA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSiGz_eTPp9jT77WK0J26eKooG7XQrrqYZChU0HG4SwWNaqvlvJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS2uF2PxJDFvk4aoRNYhIiSZZQy-gDlsRl_yR9zE4IVt_4toI6VfA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRBc2YhsqJtDGHRz2lJwuF2AiSCpdHNqJ4GGftX0gR9_7oD41Jm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRVPDByXHkienB4LbA5CZMabGeQiyKBuPTiHA_rHFm7Guvns5fS.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSPqX8EjpZkOMjt4hUXeRV0rENFbSxSAXBYv4deCUiqHTwgLn_o.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSKnnkXK4kvjY-zhAHOrR-HOibwqznvTXsDE0nV-jV1FrybhAfb0A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQLdZUsZYNj61o5I17ZWWqSYDTzQtp1wrXevShk6HfrG8mT_zJW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQrz1UgrU3pCv2kvoQ8GyFTTX9zM0bYCGyqQRmSS3IOn18KQAJe.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT1lcYtmDTsCb-WwpofjsIne3AWkAd8WDz1328UOGizlxjdKIFq.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRKdqeAuVVK7jz7dNNdvOOlU9ZBw5VFrqidP1wmn0o_110O_J2H.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSSF8U7px6Xcxr7YeJIzb-xovqtTGCjrpWUlSU57WDUhBsUSDtw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTXWy4_B-2Swx25m6eqRjPd8-rUI-2WVbbisEPe7hnHaT3n5HVlAA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTzsXM4iSFUhBnsO2oE4isTbWNdLY71LQjO_E5yZ3OBEMdH5S_pRQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQbNXkgKUKGShZfqCxT0ID87NtJ31c_DWfy8yDpb6nBY6YzaLUn.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQuUCd0sA19K8NA2LjOuofcZMDDoS6PDr7OAeJyzMaVAQTa2-Jp.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT8-j0uCodKHPpU912VmgXKkUXO916w6URKzNBXiMM0xlmfxq_fFw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSwzvgOZ9ubcb221BikVqLxZjIdUSRZZ0p-evaPs1E3iCmYqvEFVg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS-3mxwBdqwymDjxPXYvkSNf5OFiWs0HVzYguAbZqStO2Iyls-W.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ4ngCd7aNf4Uezdx0Y0auIPqxkNiH4GoNliFw5g6Z0Xfa89NxDCw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRwCU34NOJGTJjTSMZeQIBN13NuMiKtXrrugMuJzy3sG43qW6nx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTXR7uNP1EqTeJ0NPJqdu25AhYMAwVGKuBTECU6wFp5BGSqlG1c.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQMAVmx5-HIQ_nyIXU88jmbN1LRb6Qq88VM2VFSyCcVKuifFNcE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR1detf0u2Rfm-3nBZ1czpM8xDddNf4YPYu1YL86i8hEhJeMMS0Sw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTowaURCFu5UAygb_drpygsYa25GmGGZ4WVTyAcEEaphezUT0Aoog.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSF9YE3TCilxGBHKSjckDEBPZa8_paEymiuqsyhegj-zluIu14I.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ3whYfUGrHELoCiurYMmOps_dNp0p2mIMPcV7PVMJM2Vl9zkvodw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTP9kXLkkK3pmcLgxziLyUicIZlquQoGi3BTqcN8XYORkQwn5iVPg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRxnxto2pe9QUpTNrw2Q9j6pejg100MbNEkvk1PQi1zXsrYCprE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ3I4AqnWqa22WJ5cS_nxRsdKxvVgQBdxtHDGtk2jgenWo6lgp0eA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR5f2ITjjlXqjM7esu52w3uNorU7Hfh8lfi4fnpiS2aGO48rX430A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTDfqfk3jTI1ZH2HaBbyGnGVJFUWK62t_Ng3JtqEcSG8xGxSHpk.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT5ijDC2wC4WYghc1HKr4AGD3kUfiCb9wu1y7-fvCh8lqztZD7nYA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTFLrlLf0JvVnd0Lk0fw9DI2NT3UTNBBIE82PC23hV0Qa2T8Vll9A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTUdkJaPT2ssltB7ij7TbUR0XDmU6SmrNLXahnaoYxvjX45iRbUCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ3UX4TVOnUTI83wm1MFi60JOzyJzYUsJVyKJ8Q6yHi4LEZoUE4dA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQBmz9VBm4Okn1pjl7lqfdP47hq0PxOHtnNtjhFOhSoE0doLQzW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTFLKKcnJBHbwHyc7LZQoTj0mmsTfEuZY_b6RdGeNQdvE1kyOR7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQO4WVZK_WIGJMEFOMm0M-B20kUbY0b23QzeQO-K1BDsUXRLBQQ2Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRXQYJeMTkySOFt9e4-E-PLninohDK5nTDEAMUT202t7mF0cdYDfA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRxKfaAh_MBF8lujRSrUdDfrNkk7UnJn5yBrTCxkBmgfoI4Jbg5SA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTuDju_po9KSSMo4X7k8BjrmbxRVfwAJVTAxm1-O4nSnrfVx5k8HQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT3LrcEVUR9uawyaVbmp0Lutr5zjmlR1JBX6FywZ5u3BoxUfuA_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTKA-UyN-BKV6DUsU6C4cB_wngCC9i1jR8Q2yvWg9aHyYhe0-c4BQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSDLGmWkKtr830I_5u8EgakQA2eHio4UnYkHRIRzVyxeuWPzgp0Uw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTnj3ZQw2D_DIPmZnNovrWKZUs36wAgTU-ssiiMDz8XpaRmV44wvQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRTfbVGwktWj1ihfzPlG-4R7Q-IVUIyyIZRhoYJNzLwyQysQ54y9Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTwsVKDWuGCBhme5UUVHOUQXtZ-eLitpb2NEXDfhBisYzX_qWr32Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTRWULbhEgAiSXF0FJd4pVKG0ElB5MDkhCYFSUOW4aIn9vufIge.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSHDai4ce0T1ZVm6-XjGTVaSQhrM-o--FE7-R_xXHsIh1x9gjEH.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR_TUSVeoHQ6bFBq3K0JecGiFiAcDd5wdx792K1lWsoyRguioRv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSStZ17hZgoM_7FI8EWF5FouK1lgYKy5wSttt9Bx7ariFl3C6Ub.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ0AS3ipXjOLQLuepakrKNUkyjUPNFVaQAkw0Pr_etYlw7lQRo3Lg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTEobBb_9ZJN5BuCeX9vXGrIjxZvWV9LeyJU-ZWnG2m53ZgXA-4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSkhRJdHUKdIaoDNbn6ff4pCDP77NylZ4iltSKr_rzFeUtbyOqh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSZL2R0yDH1zFAMPxfFzuyWs4X__a_6YOJQUNz-ZoLzCh4IUBs-cg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS1b7jIZHalUoyRIMhs2ppkZrcp8-6t-Z2BCW-OzHb7C1EqXH0geg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQBQJncxQKcm335M26pQvhSqS9tPq9BMQFzrn8tOXKhpOrqYi071w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR-9uJBhzFQV_v2VwDyyXDSV41agFJtPEzSmh-n7eFCNO2Sc3rv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTryPaiBQu_7rxT-mfP8IrtqFpR4VERl0yue5RI_R0yVBwwe7CHoQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQjKdI8HMvod2TuVkA7TAJZrtpYArEoYpnMrRIcDLX45mPnKG74.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTt40kf_UbV74id8b4Hy9uxtpYlAiU0VIpDqN2LPp6tG5om5Idz4g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTTt1MvDQ6vj4828rf1PgdWyerL4Gd1hZgNWUqHJAySZ3jFUGZYrw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSk6DvfcykdtIDtydjI4a2NEs3UIe_V2MfvC--cwKDNku3xGdWt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRs2IQBEdkR4WsbKMo7OUCVnxBNqHIlV7wIOJ0SsC4F1duYpbEaUw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR-49EKnWR4zyEqtMUS4ceZrnCPzsLcKk-9XWKmWf2PcvR-Wcwt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTx0s2REAARHNDICg7nB-X1HkRF2oNxkqiYwwfBvPNbnJI5rsokwA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQYEtPaO6uZnrUMvYrhplutoRXO_uPI_Q4ZstVpcccOfzKh4PT0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSoj2JK-dp-_S8P_GS2QPtsjvK_wDtJ1A4b42Eh2P8vxNSZ5YIGXQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQXh_q7diyH2JUHppCMxL1BkHyNIOPkRNedXPXI0UyqNYWSGIAbNg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTAwErfF8yQCVxR5nGn6414mv02opKXSFZfaRS6Qs69td0NXAnI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQXlNshRcQ7WX_PrDXQw9esYY8MKy7Wmacg39HEEDp4N2FSsUWw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTXadcfZfV6GdKLs_sU7RVJw_um3qyN_dkqw5-1Hm6146WtpRBmHw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRUt8jKL8-IyyrSsXu59U9ADwOya0H6YVANHqhWHvhrKTX7NZ2r.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRdsHi_PwhUF3-9lVHHCy5COZoLwJAOYU80b1FWhC6IkwDNMbNB0A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQa35xTzYNjAQNDmtLwFeDlzmWaIo8FCdO2s5vDLJg0UEMyb7DN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTs0Wkz0LFlPJDvu-vp_l0h_LRsR_VdPPECVwRMnARscIOPVQGX9g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQv-LbTERdjHNvfgRT2CA3W-9HHmKmWrKR-kjNBnW8IqZ9B45I-DQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRN0bCmWeVn_IknigwMXNVl7wxUv8YTQnd6-3t4DTFPWVNJq186.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRp6X9oclsADwUMxHUdzOFsTxHz2-PJM0qoy9CcTEjiTGzD3E-a4g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSa8X98QaDzdTvj6dyF44VU3LMwsAK2GtZI8knydvmPctbvlh3EbQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQAPBORQYPq7vAkwjr6MFiu0BAwrn6OzEMgSzSl8Yi-Sp8izacE_w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT_uxwmzIRDJiYZVSWcYkI-KXqREvoW84yTHfNSAjfS_N1T7QFK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRu95j9inkWXCQGEkfpyBG7Gf5fTFGRyhCoDZCyW76CIQtijqRopg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQurG9OonPUzm6tJNxv5EhpRIty81O8lstxyIEvGyFtwbzzLUMMgA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQOw3R6Yx9e8KsywpmhKGish-UWoPaZ11_Xyfh44IciTlvXluPO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ3h7vo9eOf3BsUxnSEJ1BhGHyIZDpaTbiv-zKS94KVz_m56wbK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRk4hPxkcgok41sjVCGgyoscE_bYn8Pb2S6-8_Ppy7TWl9sDLHI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR9S6R7tyDek8BDsEoW9pLDLWjuD8udLKlkWLQU9uHaargmDJIF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQpuOL6GaG-INJsfa9We7sMydXjclepWfhg0E1f0_W-Zd8XM0isUw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQFAUn8o8vCg5JdN8_TMDE3D4kCHKuO851PjujeSQojyh2x12CT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQctqQc75qFFokozjwtQnPheUnCIZEmkMi1ECUtVJKsteyp9tmw6A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRtk89HaQdb2w0xnlw5RvxHpOqTwdiYvJE-XpsoofT5OdXKAO4Y.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQxeO-JhNR5ZkkMdnXCTWydlaxOfyhwfvUfbbxPFm0CnzjhXuDQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT812u5BIrfg-SxJL-uCi1u52Kko77yTmzXOFi3w5YJzODtcPZelA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQxQuoHOq7myFEOBYjbC5BxfsAgujMdb2_2UjZrmSzrqMLCbtOW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}}, \"size\": 1328}, \"folder\": {\"complete\": true, \"numeric\": false, \"num_unique\": 4, \"num_undefined\": 0, \"progress\": 1.0, \"frequent_items\": {\"cloudy_sky\": {\"frequency\": 288, \"value\": \"cloudy_sky\"}, \"sunsets\": {\"frequency\": 362, \"value\": \"sunsets\"}, \"trees_and_forest\": {\"frequency\": 319, \"value\": \"trees_and_forest\"}, \"rivers\": {\"frequency\": 359, \"value\": \"rivers\"}}, \"size\": 1328}, \"red\": {\"std\": 0.1264962265763447, \"complete\": true, \"min\": 0.08265617249503968, \"max\": 0.8639978686698814, \"quantile\": [0.08265617249503968, 0.16590502989625405, 0.19772340682629388, 0.2137652136115251, 0.23362540674879592, 0.24493822486472508, 0.2527581541814421, 0.25821905559467606, 0.2645935792349727, 0.2715038106267166, 0.27854026949826133, 0.28489055514157974, 0.2880224633631396, 0.2914337238526845, 0.29740512615432074, 0.30024451572028193, 0.3044143178104575, 0.3079020652697495, 0.3120389918379086, 0.31397190347098436, 0.31788458944622633, 0.3226942729078731, 0.327473531420765, 0.3312670647827644, 0.3342578125, 0.3408988543159739, 0.3476479446100348, 0.34974416294088423, 0.35331395709325397, 0.356921184177844, 0.3612139989999204, 0.3649261831582717, 0.36814401258422513, 0.37253267821659214, 0.377048792225534, 0.3794658358134921, 0.3822340205368466, 0.3853619442374565, 0.38855347316204275, 0.3908471497764531, 0.3947202845982143, 0.39838262648809525, 0.4011859631147541, 0.40409955242281304, 0.4074953884548611, 0.4100654864924007, 0.41275460379464285, 0.4147704232675238, 0.4163849796501214, 0.41851709759424605, 0.42179056204730647, 0.42453451347290544, 0.4285571273541799, 0.429991939484127, 0.4330794367858917, 0.43721686178999325, 0.43985156869302416, 0.4424470814029461, 0.4445430234959787, 0.4482819398659618, 0.45151247127894484, 0.4534963544241226, 0.4563094429347826, 0.4598693969075754, 0.4635706535218254, 0.4671593639868932, 0.47103290860615077, 0.4750133250656769, 0.47823846674534853, 0.48087658719102017, 0.4854986124517375, 0.49032875440333556, 0.4951813395503953, 0.49879747714920947, 0.5025168436413313, 0.5087436351217088, 0.5138105418647201, 0.5167727885779798, 0.526437669093658, 0.5302000874447718, 0.5346531080163044, 0.5413257575757576, 0.5454959075604758, 0.5531699212573135, 0.5584757535593389, 0.5631172755045177, 0.5696352714414255, 0.5785647631448413, 0.5821505271741285, 0.5920925154320987, 0.5990535160759065, 0.607083020604205, 0.624500079195375, 0.6336502576999503, 0.6470531233836636, 0.6589399094655097, 0.6757779070722048, 0.6976848036449671, 0.7232917172511245, 0.7607696845504223, 0.8639978686698814], \"median\": 0.42179056204730647, \"numeric\": true, \"num_unique\": 1321, \"num_undefined\": 0, \"var\": 0.01600129533805394, \"progress\": 1.0, \"size\": 1328, \"frequent_items\": {\"0.3209042549133301\": {\"frequency\": 1, \"value\": 0.3209042549133301}, \"0.3159414535306179\": {\"frequency\": 1, \"value\": 0.3159414535306179}, \"0.5010328311011905\": {\"frequency\": 1, \"value\": 0.5010328311011905}, \"0.5435462017337074\": {\"frequency\": 1, \"value\": 0.5435462017337074}, \"0.31561982790232107\": {\"frequency\": 1, \"value\": 0.31561982790232107}, \"0.4136464616678611\": {\"frequency\": 1, \"value\": 0.4136464616678611}, \"0.29740512615432074\": {\"frequency\": 1, \"value\": 0.29740512615432074}, \"0.5589649729929044\": {\"frequency\": 1, \"value\": 0.5589649729929044}, \"0.35804295902085925\": {\"frequency\": 1, \"value\": 0.35804295902085925}, \"0.4848915382667824\": {\"frequency\": 1, \"value\": 0.4848915382667824}, \"0.5143158451947561\": {\"frequency\": 1, \"value\": 0.5143158451947561}, \"0.4267358830028667\": {\"frequency\": 1, \"value\": 0.4267358830028667}, \"0.40028882575757574\": {\"frequency\": 1, \"value\": 0.40028882575757574}, \"0.4159455790013135\": {\"frequency\": 1, \"value\": 0.4159455790013135}, \"0.65078264398295\": {\"frequency\": 1, \"value\": 0.65078264398295}, \"0.4236272634981402\": {\"frequency\": 1, \"value\": 0.4236272634981402}, \"0.3185505930203676\": {\"frequency\": 1, \"value\": 0.3185505930203676}, \"0.3006019660439909\": {\"frequency\": 1, \"value\": 0.3006019660439909}, \"0.6371276201127559\": {\"frequency\": 1, \"value\": 0.6371276201127559}, \"0.5752103484623016\": {\"frequency\": 1, \"value\": 0.5752103484623016}, \"0.4215454993152588\": {\"frequency\": 1, \"value\": 0.4215454993152588}, \"0.23823583572224877\": {\"frequency\": 1, \"value\": 0.23823583572224877}, \"0.3798798736091312\": {\"frequency\": 1, \"value\": 0.3798798736091312}, \"0.18653548231479272\": {\"frequency\": 1, \"value\": 0.18653548231479272}, \"0.44004763168705946\": {\"frequency\": 1, \"value\": 0.44004763168705946}, \"0.5584757535593389\": {\"frequency\": 1, \"value\": 0.5584757535593389}, \"0.5818912226775956\": {\"frequency\": 1, \"value\": 0.5818912226775956}, \"0.5291822181786566\": {\"frequency\": 1, \"value\": 0.5291822181786566}, \"0.5278747313218962\": {\"frequency\": 1, \"value\": 0.5278747313218962}, \"0.5663333178323413\": {\"frequency\": 1, \"value\": 0.5663333178323413}, \"0.5051512962474625\": {\"frequency\": 1, \"value\": 0.5051512962474625}, \"0.4645377526383911\": {\"frequency\": 1, \"value\": 0.4645377526383911}, \"0.34892846475507766\": {\"frequency\": 1, \"value\": 0.34892846475507766}, \"0.6167503242341897\": {\"frequency\": 1, \"value\": 0.6167503242341897}, \"0.2903522276846105\": {\"frequency\": 1, \"value\": 0.2903522276846105}, \"0.20268178713363139\": {\"frequency\": 1, \"value\": 0.20268178713363139}, \"0.47757340964927986\": {\"frequency\": 1, \"value\": 0.47757340964927986}, \"0.374113813164232\": {\"frequency\": 1, \"value\": 0.374113813164232}, \"0.45151247127894484\": {\"frequency\": 1, \"value\": 0.45151247127894484}, \"0.38885845306656325\": {\"frequency\": 1, \"value\": 0.38885845306656325}, \"0.41086424957318407\": {\"frequency\": 1, \"value\": 0.41086424957318407}, \"0.37972242363200825\": {\"frequency\": 1, \"value\": 0.37972242363200825}, \"0.20720340948446467\": {\"frequency\": 1, \"value\": 0.20720340948446467}, \"0.4241321250743163\": {\"frequency\": 1, \"value\": 0.4241321250743163}, \"0.3164982961386309\": {\"frequency\": 1, \"value\": 0.3164982961386309}, \"0.26818024071567886\": {\"frequency\": 1, \"value\": 0.26818024071567886}, \"0.4969056478507905\": {\"frequency\": 1, \"value\": 0.4969056478507905}, \"0.2876930421013413\": {\"frequency\": 1, \"value\": 0.2876930421013413}, \"0.611103837867691\": {\"frequency\": 1, \"value\": 0.611103837867691}, \"0.2878551912568306\": {\"frequency\": 1, \"value\": 0.2878551912568306}, \"0.2137652136115251\": {\"frequency\": 1, \"value\": 0.2137652136115251}, \"0.5790906343005953\": {\"frequency\": 1, \"value\": 0.5790906343005953}, \"0.39907040174839786\": {\"frequency\": 1, \"value\": 0.39907040174839786}, \"0.2623462875154241\": {\"frequency\": 1, \"value\": 0.2623462875154241}, \"0.14880724920742755\": {\"frequency\": 1, \"value\": 0.14880724920742755}, \"0.4289972988077496\": {\"frequency\": 1, \"value\": 0.4289972988077496}, \"0.47819245218579237\": {\"frequency\": 1, \"value\": 0.47819245218579237}, \"0.36018945946681713\": {\"frequency\": 1, \"value\": 0.36018945946681713}, \"0.3239664058618977\": {\"frequency\": 1, \"value\": 0.3239664058618977}, \"0.4745673163037854\": {\"frequency\": 1, \"value\": 0.4745673163037854}, \"0.41281893115401447\": {\"frequency\": 1, \"value\": 0.41281893115401447}, \"0.6332865217434551\": {\"frequency\": 1, \"value\": 0.6332865217434551}, \"0.3652008399480121\": {\"frequency\": 1, \"value\": 0.3652008399480121}, \"0.418101831297869\": {\"frequency\": 1, \"value\": 0.418101831297869}, \"0.30542447554185725\": {\"frequency\": 1, \"value\": 0.30542447554185725}, \"0.3571931363525504\": {\"frequency\": 1, \"value\": 0.3571931363525504}, \"0.48824026639344265\": {\"frequency\": 1, \"value\": 0.48824026639344265}, \"0.2551310753567182\": {\"frequency\": 1, \"value\": 0.2551310753567182}, \"0.4285923490994565\": {\"frequency\": 1, \"value\": 0.4285923490994565}, \"0.5351141001178031\": {\"frequency\": 1, \"value\": 0.5351141001178031}, \"0.457275177469442\": {\"frequency\": 1, \"value\": 0.457275177469442}, \"0.553009799382716\": {\"frequency\": 1, \"value\": 0.553009799382716}, \"0.3325387500494971\": {\"frequency\": 1, \"value\": 0.3325387500494971}, \"0.3709761170260157\": {\"frequency\": 1, \"value\": 0.3709761170260157}, \"0.3990217492548435\": {\"frequency\": 1, \"value\": 0.3990217492548435}, \"0.4655490365244919\": {\"frequency\": 1, \"value\": 0.4655490365244919}, \"0.745877798127039\": {\"frequency\": 1, \"value\": 0.745877798127039}, \"0.4165805855688028\": {\"frequency\": 1, \"value\": 0.4165805855688028}, \"0.7096551029265873\": {\"frequency\": 1, \"value\": 0.7096551029265873}, \"0.635764179000557\": {\"frequency\": 1, \"value\": 0.635764179000557}, \"0.5867918124079529\": {\"frequency\": 1, \"value\": 0.5867918124079529}, \"0.524684488019217\": {\"frequency\": 1, \"value\": 0.524684488019217}, \"0.3624241648037755\": {\"frequency\": 1, \"value\": 0.3624241648037755}, \"0.35393364645941966\": {\"frequency\": 1, \"value\": 0.35393364645941966}, \"0.4210659337310433\": {\"frequency\": 1, \"value\": 0.4210659337310433}, \"0.6081169274714356\": {\"frequency\": 1, \"value\": 0.6081169274714356}, \"0.4664658625186289\": {\"frequency\": 1, \"value\": 0.4664658625186289}, \"0.696041171077411\": {\"frequency\": 1, \"value\": 0.696041171077411}, \"0.5093949487272619\": {\"frequency\": 1, \"value\": 0.5093949487272619}, \"0.777403896365481\": {\"frequency\": 1, \"value\": 0.777403896365481}, \"0.31180551929159706\": {\"frequency\": 1, \"value\": 0.31180551929159706}, \"0.5983488228349965\": {\"frequency\": 1, \"value\": 0.5983488228349965}, \"0.4736259322881423\": {\"frequency\": 1, \"value\": 0.4736259322881423}, \"0.626425095861184\": {\"frequency\": 1, \"value\": 0.626425095861184}, \"0.383045827123696\": {\"frequency\": 1, \"value\": 0.383045827123696}, \"0.48734768811376417\": {\"frequency\": 1, \"value\": 0.48734768811376417}, \"0.3459496847750694\": {\"frequency\": 1, \"value\": 0.3459496847750694}, \"0.25633624753711737\": {\"frequency\": 1, \"value\": 0.25633624753711737}, \"0.3715135214853453\": {\"frequency\": 1, \"value\": 0.3715135214853453}, \"0.40517619846000996\": {\"frequency\": 1, \"value\": 0.40517619846000996}, \"0.41116110181051585\": {\"frequency\": 1, \"value\": 0.41116110181051585}, \"0.5646248607463993\": {\"frequency\": 1, \"value\": 0.5646248607463993}, \"0.3783430718638526\": {\"frequency\": 1, \"value\": 0.3783430718638526}, \"0.38161814856150794\": {\"frequency\": 1, \"value\": 0.38161814856150794}, \"0.23686428837555887\": {\"frequency\": 1, \"value\": 0.23686428837555887}, \"0.7188607053297775\": {\"frequency\": 1, \"value\": 0.7188607053297775}, \"0.5650485356648763\": {\"frequency\": 1, \"value\": 0.5650485356648763}, \"0.4045579838245795\": {\"frequency\": 1, \"value\": 0.4045579838245795}, \"0.6181465008693492\": {\"frequency\": 1, \"value\": 0.6181465008693492}, \"0.465761344808542\": {\"frequency\": 1, \"value\": 0.465761344808542}, \"0.28461397332045185\": {\"frequency\": 1, \"value\": 0.28461397332045185}, \"0.22660853547468796\": {\"frequency\": 1, \"value\": 0.22660853547468796}, \"0.4003726664809139\": {\"frequency\": 1, \"value\": 0.4003726664809139}, \"0.34841684800128947\": {\"frequency\": 1, \"value\": 0.34841684800128947}, \"0.6283844375397868\": {\"frequency\": 1, \"value\": 0.6283844375397868}, \"0.5138843936011904\": {\"frequency\": 1, \"value\": 0.5138843936011904}, \"0.37774948708620415\": {\"frequency\": 1, \"value\": 0.37774948708620415}, \"0.6213901926877471\": {\"frequency\": 1, \"value\": 0.6213901926877471}, \"0.7134436074513394\": {\"frequency\": 1, \"value\": 0.7134436074513394}, \"0.4534963544241226\": {\"frequency\": 1, \"value\": 0.4534963544241226}, \"0.5195513916983976\": {\"frequency\": 1, \"value\": 0.5195513916983976}, \"0.44686655865880254\": {\"frequency\": 1, \"value\": 0.44686655865880254}, \"0.3526047937895554\": {\"frequency\": 1, \"value\": 0.3526047937895554}, \"0.2657811722636816\": {\"frequency\": 1, \"value\": 0.2657811722636816}, \"0.4571307663690476\": {\"frequency\": 1, \"value\": 0.4571307663690476}, \"0.3998331318204365\": {\"frequency\": 1, \"value\": 0.3998331318204365}, \"0.19177540612599206\": {\"frequency\": 1, \"value\": 0.19177540612599206}, \"0.3779845731767737\": {\"frequency\": 1, \"value\": 0.3779845731767737}, \"0.2821164629036417\": {\"frequency\": 1, \"value\": 0.2821164629036417}, \"0.5413326589430004\": {\"frequency\": 1, \"value\": 0.5413326589430004}, \"0.5393870883315429\": {\"frequency\": 1, \"value\": 0.5393870883315429}, \"0.41524677579365077\": {\"frequency\": 1, \"value\": 0.41524677579365077}, \"0.388958147542608\": {\"frequency\": 1, \"value\": 0.388958147542608}, \"0.29950673828125\": {\"frequency\": 1, \"value\": 0.29950673828125}, \"0.4053462433576802\": {\"frequency\": 1, \"value\": 0.4053462433576802}, \"0.25821905559467606\": {\"frequency\": 1, \"value\": 0.25821905559467606}, \"0.28932695829044264\": {\"frequency\": 1, \"value\": 0.28932695829044264}, \"0.41801868521583163\": {\"frequency\": 1, \"value\": 0.41801868521583163}, \"0.3818773561211904\": {\"frequency\": 1, \"value\": 0.3818773561211904}, \"0.371850782414307\": {\"frequency\": 1, \"value\": 0.371850782414307}, \"0.33057540052160955\": {\"frequency\": 1, \"value\": 0.33057540052160955}, \"0.5312770492311508\": {\"frequency\": 1, \"value\": 0.5312770492311508}, \"0.35117393194237456\": {\"frequency\": 1, \"value\": 0.35117393194237456}, \"0.49147611333412966\": {\"frequency\": 1, \"value\": 0.49147611333412966}, \"0.38660078745039683\": {\"frequency\": 1, \"value\": 0.38660078745039683}, \"0.5087436351217088\": {\"frequency\": 1, \"value\": 0.5087436351217088}, \"0.4482819398659618\": {\"frequency\": 1, \"value\": 0.4482819398659618}, \"0.46858614319423747\": {\"frequency\": 1, \"value\": 0.46858614319423747}, \"0.578919523099851\": {\"frequency\": 1, \"value\": 0.578919523099851}, \"0.4575160863803012\": {\"frequency\": 1, \"value\": 0.4575160863803012}, \"0.4428845021081349\": {\"frequency\": 1, \"value\": 0.4428845021081349}, \"0.19400325298422977\": {\"frequency\": 1, \"value\": 0.19400325298422977}, \"0.2599593980185439\": {\"frequency\": 1, \"value\": 0.2599593980185439}, \"0.3401652276488809\": {\"frequency\": 1, \"value\": 0.3401652276488809}, \"0.2786504129408843\": {\"frequency\": 1, \"value\": 0.2786504129408843}, \"0.24611082650273225\": {\"frequency\": 1, \"value\": 0.24611082650273225}, \"0.27916449329359166\": {\"frequency\": 1, \"value\": 0.27916449329359166}, \"0.4028556947582803\": {\"frequency\": 1, \"value\": 0.4028556947582803}, \"0.46818165612599205\": {\"frequency\": 1, \"value\": 0.46818165612599205}, \"0.327473531420765\": {\"frequency\": 1, \"value\": 0.327473531420765}, \"0.4416835915741625\": {\"frequency\": 1, \"value\": 0.4416835915741625}, \"0.6640507016890214\": {\"frequency\": 1, \"value\": 0.6640507016890214}, \"0.3333246630994847\": {\"frequency\": 1, \"value\": 0.3333246630994847}, \"0.2532085284135949\": {\"frequency\": 1, \"value\": 0.2532085284135949}, \"0.377255859375\": {\"frequency\": 1, \"value\": 0.377255859375}, \"0.5623999891829792\": {\"frequency\": 1, \"value\": 0.5623999891829792}, \"0.40878826689021364\": {\"frequency\": 1, \"value\": 0.40878826689021364}, \"0.518019801980198\": {\"frequency\": 1, \"value\": 0.518019801980198}, \"0.48058551924531306\": {\"frequency\": 1, \"value\": 0.48058551924531306}, \"0.44341832820184834\": {\"frequency\": 1, \"value\": 0.44341832820184834}, \"0.4559250518698006\": {\"frequency\": 1, \"value\": 0.4559250518698006}, \"0.42182772197420637\": {\"frequency\": 1, \"value\": 0.42182772197420637}, \"0.4854986124517375\": {\"frequency\": 1, \"value\": 0.4854986124517375}, \"0.4124780208506483\": {\"frequency\": 1, \"value\": 0.4124780208506483}, \"0.32115895119225035\": {\"frequency\": 1, \"value\": 0.32115895119225035}, \"0.3312670647827644\": {\"frequency\": 1, \"value\": 0.3312670647827644}, \"0.37745005510388885\": {\"frequency\": 1, \"value\": 0.37745005510388885}, \"0.5990535160759065\": {\"frequency\": 1, \"value\": 0.5990535160759065}, \"0.5002826605902778\": {\"frequency\": 1, \"value\": 0.5002826605902778}, \"0.2973583426477894\": {\"frequency\": 1, \"value\": 0.2973583426477894}, \"0.33398778116329764\": {\"frequency\": 1, \"value\": 0.33398778116329764}, \"0.28792310916542474\": {\"frequency\": 1, \"value\": 0.28792310916542474}, \"0.32157023873869406\": {\"frequency\": 1, \"value\": 0.32157023873869406}, \"0.29093034146996777\": {\"frequency\": 1, \"value\": 0.29093034146996777}, \"0.41007263567279384\": {\"frequency\": 1, \"value\": 0.41007263567279384}, \"0.6011799801516592\": {\"frequency\": 1, \"value\": 0.6011799801516592}, \"0.4309427781917536\": {\"frequency\": 1, \"value\": 0.4309427781917536}, \"0.4382634879776217\": {\"frequency\": 1, \"value\": 0.4382634879776217}, \"0.22013715536512668\": {\"frequency\": 1, \"value\": 0.22013715536512668}, \"0.3992472417735804\": {\"frequency\": 1, \"value\": 0.3992472417735804}, \"0.32255406510107015\": {\"frequency\": 1, \"value\": 0.32255406510107015}, \"0.23941112181203394\": {\"frequency\": 1, \"value\": 0.23941112181203394}, \"0.44226069610034774\": {\"frequency\": 1, \"value\": 0.44226069610034774}, \"0.42453451347290544\": {\"frequency\": 1, \"value\": 0.42453451347290544}, \"0.42354197714853453\": {\"frequency\": 1, \"value\": 0.42354197714853453}, \"0.526437669093658\": {\"frequency\": 1, \"value\": 0.526437669093658}, \"0.29434771825396827\": {\"frequency\": 1, \"value\": 0.29434771825396827}, \"0.5952044580853174\": {\"frequency\": 1, \"value\": 0.5952044580853174}, \"0.5307127887481371\": {\"frequency\": 1, \"value\": 0.5307127887481371}, \"0.3511859939759036\": {\"frequency\": 1, \"value\": 0.3511859939759036}, \"0.4100654864924007\": {\"frequency\": 1, \"value\": 0.4100654864924007}, \"0.46971936728395064\": {\"frequency\": 1, \"value\": 0.46971936728395064}, \"0.17725709945436507\": {\"frequency\": 1, \"value\": 0.17725709945436507}, \"0.38694580174891\": {\"frequency\": 1, \"value\": 0.38694580174891}, \"0.3086454452309985\": {\"frequency\": 1, \"value\": 0.3086454452309985}, \"0.4764408657206088\": {\"frequency\": 1, \"value\": 0.4764408657206088}, \"0.4256408345752608\": {\"frequency\": 1, \"value\": 0.4256408345752608}, \"0.264179163561848\": {\"frequency\": 1, \"value\": 0.264179163561848}, \"0.3858629067312469\": {\"frequency\": 1, \"value\": 0.3858629067312469}, \"0.39016820329828106\": {\"frequency\": 1, \"value\": 0.39016820329828106}, \"0.573019280923994\": {\"frequency\": 1, \"value\": 0.573019280923994}, \"0.49736483998726266\": {\"frequency\": 1, \"value\": 0.49736483998726266}, \"0.46848078703703705\": {\"frequency\": 1, \"value\": 0.46848078703703705}, \"0.45469542540994995\": {\"frequency\": 1, \"value\": 0.45469542540994995}, \"0.44693585444610034\": {\"frequency\": 1, \"value\": 0.44693585444610034}, \"0.39838262648809525\": {\"frequency\": 1, \"value\": 0.39838262648809525}, \"0.39680560730253356\": {\"frequency\": 1, \"value\": 0.39680560730253356}, \"0.4155655736277515\": {\"frequency\": 1, \"value\": 0.4155655736277515}, \"0.3671445486166243\": {\"frequency\": 1, \"value\": 0.3671445486166243}, \"0.3785649181547619\": {\"frequency\": 1, \"value\": 0.3785649181547619}, \"0.3120389918379086\": {\"frequency\": 1, \"value\": 0.3120389918379086}, \"0.446754777918153\": {\"frequency\": 1, \"value\": 0.446754777918153}, \"0.2984449515648286\": {\"frequency\": 1, \"value\": 0.2984449515648286}, \"0.5542942784002707\": {\"frequency\": 1, \"value\": 0.5542942784002707}, \"0.6477085866167129\": {\"frequency\": 1, \"value\": 0.6477085866167129}, \"0.5072762297556823\": {\"frequency\": 1, \"value\": 0.5072762297556823}, \"0.6663252648788276\": {\"frequency\": 1, \"value\": 0.6663252648788276}, \"0.49828871783088236\": {\"frequency\": 1, \"value\": 0.49828871783088236}, \"0.5158613901289683\": {\"frequency\": 1, \"value\": 0.5158613901289683}, \"0.3797416367980884\": {\"frequency\": 1, \"value\": 0.3797416367980884}, \"0.47074505518353177\": {\"frequency\": 1, \"value\": 0.47074505518353177}, \"0.40409955242281304\": {\"frequency\": 1, \"value\": 0.40409955242281304}, \"0.4145120071747005\": {\"frequency\": 1, \"value\": 0.4145120071747005}, \"0.607083020604205\": {\"frequency\": 1, \"value\": 0.607083020604205}, \"0.604876457093254\": {\"frequency\": 1, \"value\": 0.604876457093254}, \"0.4032234842076981\": {\"frequency\": 1, \"value\": 0.4032234842076981}, \"0.4285571273541799\": {\"frequency\": 1, \"value\": 0.4285571273541799}, \"0.412885993574441\": {\"frequency\": 1, \"value\": 0.412885993574441}, \"0.5633310673983999\": {\"frequency\": 1, \"value\": 0.5633310673983999}, \"0.34795162140376984\": {\"frequency\": 1, \"value\": 0.34795162140376984}, \"0.6270872968942822\": {\"frequency\": 1, \"value\": 0.6270872968942822}, \"0.35674652584285316\": {\"frequency\": 1, \"value\": 0.35674652584285316}, \"0.5310973576288333\": {\"frequency\": 1, \"value\": 0.5310973576288333}, \"0.41503347504767957\": {\"frequency\": 1, \"value\": 0.41503347504767957}, \"0.4671593639868932\": {\"frequency\": 1, \"value\": 0.4671593639868932}, \"0.60682666015625\": {\"frequency\": 1, \"value\": 0.60682666015625}, \"0.4330794367858917\": {\"frequency\": 1, \"value\": 0.4330794367858917}, \"0.45154425949742777\": {\"frequency\": 1, \"value\": 0.45154425949742777}, \"0.48630425805039207\": {\"frequency\": 1, \"value\": 0.48630425805039207}, \"0.5154683107131544\": {\"frequency\": 1, \"value\": 0.5154683107131544}, \"0.30453953774454423\": {\"frequency\": 1, \"value\": 0.30453953774454423}, \"0.39752659850914707\": {\"frequency\": 1, \"value\": 0.39752659850914707}, \"0.3612139989999204\": {\"frequency\": 1, \"value\": 0.3612139989999204}, \"0.3821341765873016\": {\"frequency\": 1, \"value\": 0.3821341765873016}, \"0.49716204048683554\": {\"frequency\": 1, \"value\": 0.49716204048683554}, \"0.5734402664219782\": {\"frequency\": 1, \"value\": 0.5734402664219782}, \"0.3914787555563039\": {\"frequency\": 1, \"value\": 0.3914787555563039}, \"0.3190619735929449\": {\"frequency\": 1, \"value\": 0.3190619735929449}, \"0.31571815381558027\": {\"frequency\": 1, \"value\": 0.31571815381558027}, \"0.47250948405267224\": {\"frequency\": 1, \"value\": 0.47250948405267224}, \"0.3794498256080086\": {\"frequency\": 1, \"value\": 0.3794498256080086}, \"0.5204863436259921\": {\"frequency\": 1, \"value\": 0.5204863436259921}, \"0.3476479446100348\": {\"frequency\": 1, \"value\": 0.3476479446100348}, \"0.42328606246895184\": {\"frequency\": 1, \"value\": 0.42328606246895184}, \"0.560070479384004\": {\"frequency\": 1, \"value\": 0.560070479384004}, \"0.3494152850223547\": {\"frequency\": 1, \"value\": 0.3494152850223547}, \"0.3905044625173302\": {\"frequency\": 1, \"value\": 0.3905044625173302}, \"0.551850285594215\": {\"frequency\": 1, \"value\": 0.551850285594215}, \"0.31356821925782796\": {\"frequency\": 1, \"value\": 0.31356821925782796}, \"0.5296145629882812\": {\"frequency\": 1, \"value\": 0.5296145629882812}, \"0.49847780171555944\": {\"frequency\": 1, \"value\": 0.49847780171555944}, \"0.3908471497764531\": {\"frequency\": 1, \"value\": 0.3908471497764531}, \"0.3396568873131373\": {\"frequency\": 1, \"value\": 0.3396568873131373}, \"0.4680846796262389\": {\"frequency\": 1, \"value\": 0.4680846796262389}, \"0.2902993936975375\": {\"frequency\": 1, \"value\": 0.2902993936975375}, \"0.40656708431428795\": {\"frequency\": 1, \"value\": 0.40656708431428795}, \"0.24621366854822738\": {\"frequency\": 1, \"value\": 0.24621366854822738}, \"0.40858815310029645\": {\"frequency\": 1, \"value\": 0.40858815310029645}, \"0.337040412808642\": {\"frequency\": 1, \"value\": 0.337040412808642}, \"0.4337790103938622\": {\"frequency\": 1, \"value\": 0.4337790103938622}, \"0.477123011284515\": {\"frequency\": 1, \"value\": 0.477123011284515}, \"0.4041616622403915\": {\"frequency\": 1, \"value\": 0.4041616622403915}, \"0.4003660583678303\": {\"frequency\": 1, \"value\": 0.4003660583678303}, \"0.42207073242654086\": {\"frequency\": 1, \"value\": 0.42207073242654086}, \"0.46386479434288536\": {\"frequency\": 1, \"value\": 0.46386479434288536}, \"0.5182228722795814\": {\"frequency\": 1, \"value\": 0.5182228722795814}, \"0.7363447971671894\": {\"frequency\": 1, \"value\": 0.7363447971671894}, \"0.5532076196586297\": {\"frequency\": 1, \"value\": 0.5532076196586297}, \"0.46305369543650793\": {\"frequency\": 1, \"value\": 0.46305369543650793}, \"0.48639630517852167\": {\"frequency\": 1, \"value\": 0.48639630517852167}, \"0.5617530438713833\": {\"frequency\": 1, \"value\": 0.5617530438713833}, \"0.4310738970368823\": {\"frequency\": 1, \"value\": 0.4310738970368823}, \"0.5801572668719898\": {\"frequency\": 1, \"value\": 0.5801572668719898}, \"0.37620293443612896\": {\"frequency\": 1, \"value\": 0.37620293443612896}, \"0.7315647476438492\": {\"frequency\": 1, \"value\": 0.7315647476438492}, \"0.5859629995422522\": {\"frequency\": 1, \"value\": 0.5859629995422522}, \"0.48252551304309116\": {\"frequency\": 1, \"value\": 0.48252551304309116}, \"0.38737666107799307\": {\"frequency\": 1, \"value\": 0.38737666107799307}, \"0.3095446783407849\": {\"frequency\": 1, \"value\": 0.3095446783407849}, \"0.7730481557377049\": {\"frequency\": 1, \"value\": 0.7730481557377049}, \"0.5414040023561508\": {\"frequency\": 1, \"value\": 0.5414040023561508}, \"0.5044367255243367\": {\"frequency\": 1, \"value\": 0.5044367255243367}, \"0.7037832685555423\": {\"frequency\": 1, \"value\": 0.7037832685555423}, \"0.39307701345786583\": {\"frequency\": 1, \"value\": 0.39307701345786583}, \"0.3555991448336914\": {\"frequency\": 1, \"value\": 0.3555991448336914}, \"0.4566741584656399\": {\"frequency\": 1, \"value\": 0.4566741584656399}, \"0.4090923062593145\": {\"frequency\": 1, \"value\": 0.4090923062593145}, \"0.44968998385494285\": {\"frequency\": 1, \"value\": 0.44968998385494285}, \"0.46846079787445766\": {\"frequency\": 1, \"value\": 0.46846079787445766}, \"0.29800558071238165\": {\"frequency\": 1, \"value\": 0.29800558071238165}, \"0.29936128866792927\": {\"frequency\": 1, \"value\": 0.29936128866792927}, \"0.4473954452309985\": {\"frequency\": 1, \"value\": 0.4473954452309985}, \"0.42510020879677446\": {\"frequency\": 1, \"value\": 0.42510020879677446}, \"0.28119468862476765\": {\"frequency\": 1, \"value\": 0.28119468862476765}, \"0.5160996953032104\": {\"frequency\": 1, \"value\": 0.5160996953032104}, \"0.46442187064832496\": {\"frequency\": 1, \"value\": 0.46442187064832496}, \"0.24105870863970588\": {\"frequency\": 1, \"value\": 0.24105870863970588}, \"0.417406205220316\": {\"frequency\": 1, \"value\": 0.417406205220316}, \"0.5497739403385344\": {\"frequency\": 1, \"value\": 0.5497739403385344}, \"0.2715038106267166\": {\"frequency\": 1, \"value\": 0.2715038106267166}, \"0.5428369140625\": {\"frequency\": 1, \"value\": 0.5428369140625}, \"0.33789039248511904\": {\"frequency\": 1, \"value\": 0.33789039248511904}, \"0.39355266707945413\": {\"frequency\": 1, \"value\": 0.39355266707945413}, \"0.32111979166666665\": {\"frequency\": 1, \"value\": 0.32111979166666665}, \"0.38577271174863387\": {\"frequency\": 1, \"value\": 0.38577271174863387}, \"0.3104183743169399\": {\"frequency\": 1, \"value\": 0.3104183743169399}, \"0.12979537609011627\": {\"frequency\": 1, \"value\": 0.12979537609011627}, \"0.4287707878592015\": {\"frequency\": 1, \"value\": 0.4287707878592015}, \"0.40482271485345256\": {\"frequency\": 1, \"value\": 0.40482271485345256}, \"0.5976421987410072\": {\"frequency\": 1, \"value\": 0.5976421987410072}, \"0.44464137300531914\": {\"frequency\": 1, \"value\": 0.44464137300531914}, \"0.30636263762856913\": {\"frequency\": 1, \"value\": 0.30636263762856913}, \"0.2527581541814421\": {\"frequency\": 1, \"value\": 0.2527581541814421}, \"0.6335599850968704\": {\"frequency\": 1, \"value\": 0.6335599850968704}, \"0.40106004659000793\": {\"frequency\": 1, \"value\": 0.40106004659000793}, \"0.3125883443797448\": {\"frequency\": 1, \"value\": 0.3125883443797448}, \"0.5349946233282251\": {\"frequency\": 1, \"value\": 0.5349946233282251}, \"0.251436304298057\": {\"frequency\": 1, \"value\": 0.251436304298057}, \"0.3102767619680851\": {\"frequency\": 1, \"value\": 0.3102767619680851}, \"0.3769071215783401\": {\"frequency\": 1, \"value\": 0.3769071215783401}, \"0.4940093873517787\": {\"frequency\": 1, \"value\": 0.4940093873517787}, \"0.30852497826626923\": {\"frequency\": 1, \"value\": 0.30852497826626923}, \"0.4598693969075754\": {\"frequency\": 1, \"value\": 0.4598693969075754}, \"0.4222345571486831\": {\"frequency\": 1, \"value\": 0.4222345571486831}, \"0.42955042223681067\": {\"frequency\": 1, \"value\": 0.42955042223681067}, \"0.4269275490561351\": {\"frequency\": 1, \"value\": 0.4269275490561351}, \"0.393406762295082\": {\"frequency\": 1, \"value\": 0.393406762295082}, \"0.45557917545675275\": {\"frequency\": 1, \"value\": 0.45557917545675275}, \"0.4613653561548072\": {\"frequency\": 1, \"value\": 0.4613653561548072}, \"0.44529105665378516\": {\"frequency\": 1, \"value\": 0.44529105665378516}, \"0.4230494326636905\": {\"frequency\": 1, \"value\": 0.4230494326636905}, \"0.4424470814029461\": {\"frequency\": 1, \"value\": 0.4424470814029461}, \"0.49071659215101837\": {\"frequency\": 1, \"value\": 0.49071659215101837}, \"0.43026794585196226\": {\"frequency\": 1, \"value\": 0.43026794585196226}, \"0.5641160334902281\": {\"frequency\": 1, \"value\": 0.5641160334902281}, \"0.3546335622487362\": {\"frequency\": 1, \"value\": 0.3546335622487362}, \"0.38470568552720613\": {\"frequency\": 1, \"value\": 0.38470568552720613}, \"0.38106562388388426\": {\"frequency\": 1, \"value\": 0.38106562388388426}, \"0.42016238275344153\": {\"frequency\": 1, \"value\": 0.42016238275344153}, \"0.3794658358134921\": {\"frequency\": 1, \"value\": 0.3794658358134921}, \"0.24768341461539986\": {\"frequency\": 1, \"value\": 0.24768341461539986}, \"0.3076526847718254\": {\"frequency\": 1, \"value\": 0.3076526847718254}, \"0.6817109946025661\": {\"frequency\": 1, \"value\": 0.6817109946025661}, \"0.3473001764062811\": {\"frequency\": 1, \"value\": 0.3473001764062811}, \"0.40795530796848856\": {\"frequency\": 1, \"value\": 0.40795530796848856}, \"0.5926235110755085\": {\"frequency\": 1, \"value\": 0.5926235110755085}, \"0.5568352144946861\": {\"frequency\": 1, \"value\": 0.5568352144946861}, \"0.5165458131669775\": {\"frequency\": 1, \"value\": 0.5165458131669775}, \"0.2916126457093254\": {\"frequency\": 1, \"value\": 0.2916126457093254}, \"0.20268959980237153\": {\"frequency\": 1, \"value\": 0.20268959980237153}, \"0.48815526692914946\": {\"frequency\": 1, \"value\": 0.48815526692914946}, \"0.5358281563163535\": {\"frequency\": 1, \"value\": 0.5358281563163535}, \"0.6263013318224336\": {\"frequency\": 1, \"value\": 0.6263013318224336}, \"0.6997628647947004\": {\"frequency\": 1, \"value\": 0.6997628647947004}, \"0.27809681711585754\": {\"frequency\": 1, \"value\": 0.27809681711585754}, \"0.5938122717479999\": {\"frequency\": 1, \"value\": 0.5938122717479999}, \"0.44741578784119107\": {\"frequency\": 1, \"value\": 0.44741578784119107}, \"0.29716107080853177\": {\"frequency\": 1, \"value\": 0.29716107080853177}, \"0.41445032989930825\": {\"frequency\": 1, \"value\": 0.41445032989930825}, \"0.3767579212918755\": {\"frequency\": 1, \"value\": 0.3767579212918755}, \"0.44029276515377574\": {\"frequency\": 1, \"value\": 0.44029276515377574}, \"0.38886811755952383\": {\"frequency\": 1, \"value\": 0.38886811755952383}, \"0.37220230132778437\": {\"frequency\": 1, \"value\": 0.37220230132778437}, \"0.31702795221462543\": {\"frequency\": 1, \"value\": 0.31702795221462543}, \"0.26245596652775577\": {\"frequency\": 1, \"value\": 0.26245596652775577}, \"0.31397190347098436\": {\"frequency\": 1, \"value\": 0.31397190347098436}, \"0.3954503996586793\": {\"frequency\": 1, \"value\": 0.3954503996586793}, \"0.7128213734567901\": {\"frequency\": 1, \"value\": 0.7128213734567901}, \"0.5042775217994451\": {\"frequency\": 1, \"value\": 0.5042775217994451}, \"0.4385397282868288\": {\"frequency\": 1, \"value\": 0.4385397282868288}, \"0.3826127327601568\": {\"frequency\": 1, \"value\": 0.3826127327601568}, \"0.407239703479431\": {\"frequency\": 1, \"value\": 0.407239703479431}, \"0.35269489735501336\": {\"frequency\": 1, \"value\": 0.35269489735501336}, \"0.3138712431693989\": {\"frequency\": 1, \"value\": 0.3138712431693989}, \"0.7735419859292282\": {\"frequency\": 1, \"value\": 0.7735419859292282}, \"0.3770852709573413\": {\"frequency\": 1, \"value\": 0.3770852709573413}, \"0.2770799696742029\": {\"frequency\": 1, \"value\": 0.2770799696742029}, \"0.2756330818965517\": {\"frequency\": 1, \"value\": 0.2756330818965517}, \"0.4417884657118056\": {\"frequency\": 1, \"value\": 0.4417884657118056}, \"0.28968218085106384\": {\"frequency\": 1, \"value\": 0.28968218085106384}, \"0.4098369193989071\": {\"frequency\": 1, \"value\": 0.4098369193989071}, \"0.4627372340152138\": {\"frequency\": 1, \"value\": 0.4627372340152138}, \"0.4501779395231586\": {\"frequency\": 1, \"value\": 0.4501779395231586}, \"0.4804283699156746\": {\"frequency\": 1, \"value\": 0.4804283699156746}, \"0.29415622585581835\": {\"frequency\": 1, \"value\": 0.29415622585581835}, \"0.4436203565955499\": {\"frequency\": 1, \"value\": 0.4436203565955499}, \"0.4729475109300477\": {\"frequency\": 1, \"value\": 0.4729475109300477}, \"0.5126989552331349\": {\"frequency\": 1, \"value\": 0.5126989552331349}, \"0.39284208776595747\": {\"frequency\": 1, \"value\": 0.39284208776595747}, \"0.38866392174681685\": {\"frequency\": 1, \"value\": 0.38866392174681685}, \"0.41111346308784913\": {\"frequency\": 1, \"value\": 0.41111346308784913}, \"0.553953717251951\": {\"frequency\": 1, \"value\": 0.553953717251951}, \"0.3030643815088699\": {\"frequency\": 1, \"value\": 0.3030643815088699}, \"0.3042502761413844\": {\"frequency\": 1, \"value\": 0.3042502761413844}, \"0.19772340682629388\": {\"frequency\": 1, \"value\": 0.19772340682629388}, \"0.3247172005415342\": {\"frequency\": 1, \"value\": 0.3247172005415342}, \"0.32483327123695976\": {\"frequency\": 1, \"value\": 0.32483327123695976}, \"0.4494393968264967\": {\"frequency\": 1, \"value\": 0.4494393968264967}, \"0.44375077620466963\": {\"frequency\": 1, \"value\": 0.44375077620466963}, \"0.693152502189229\": {\"frequency\": 1, \"value\": 0.693152502189229}, \"0.5320325648450649\": {\"frequency\": 1, \"value\": 0.5320325648450649}, \"0.44353071666238186\": {\"frequency\": 1, \"value\": 0.44353071666238186}, \"0.39677816393344745\": {\"frequency\": 1, \"value\": 0.39677816393344745}, \"0.42305819072420636\": {\"frequency\": 1, \"value\": 0.42305819072420636}, \"0.4087334066393345\": {\"frequency\": 1, \"value\": 0.4087334066393345}, \"0.6521867101361303\": {\"frequency\": 1, \"value\": 0.6521867101361303}, \"0.41112534153005464\": {\"frequency\": 1, \"value\": 0.41112534153005464}, \"0.6517469618055556\": {\"frequency\": 1, \"value\": 0.6517469618055556}, \"0.3978768987829877\": {\"frequency\": 1, \"value\": 0.3978768987829877}, \"0.4569479632389468\": {\"frequency\": 1, \"value\": 0.4569479632389468}, \"0.5566231215846994\": {\"frequency\": 1, \"value\": 0.5566231215846994}, \"0.5334080085906374\": {\"frequency\": 1, \"value\": 0.5334080085906374}, \"0.3548876459676136\": {\"frequency\": 1, \"value\": 0.3548876459676136}, \"0.18854703608247422\": {\"frequency\": 1, \"value\": 0.18854703608247422}, \"0.5789924508916132\": {\"frequency\": 1, \"value\": 0.5789924508916132}, \"0.6292923342026826\": {\"frequency\": 1, \"value\": 0.6292923342026826}, \"0.5605948832588177\": {\"frequency\": 1, \"value\": 0.5605948832588177}, \"0.6902585895455452\": {\"frequency\": 1, \"value\": 0.6902585895455452}, \"0.501668063835072\": {\"frequency\": 1, \"value\": 0.501668063835072}, \"0.2177721199156746\": {\"frequency\": 1, \"value\": 0.2177721199156746}, \"0.5915654591390149\": {\"frequency\": 1, \"value\": 0.5915654591390149}, \"0.29524650930851065\": {\"frequency\": 1, \"value\": 0.29524650930851065}, \"0.4137444945865399\": {\"frequency\": 1, \"value\": 0.4137444945865399}, \"0.41357402567714513\": {\"frequency\": 1, \"value\": 0.41357402567714513}, \"0.3044143178104575\": {\"frequency\": 1, \"value\": 0.3044143178104575}, \"0.3577146805621867\": {\"frequency\": 1, \"value\": 0.3577146805621867}, \"0.43985156869302416\": {\"frequency\": 1, \"value\": 0.43985156869302416}, \"0.3065394042560602\": {\"frequency\": 1, \"value\": 0.3065394042560602}, \"0.33190610804793497\": {\"frequency\": 1, \"value\": 0.33190610804793497}, \"0.3856827496274218\": {\"frequency\": 1, \"value\": 0.3856827496274218}, \"0.4138746741034112\": {\"frequency\": 1, \"value\": 0.4138746741034112}, \"0.6550625334105489\": {\"frequency\": 1, \"value\": 0.6550625334105489}, \"0.3408988543159739\": {\"frequency\": 1, \"value\": 0.3408988543159739}, \"0.7571607607886904\": {\"frequency\": 1, \"value\": 0.7571607607886904}, \"0.34737534153005467\": {\"frequency\": 1, \"value\": 0.34737534153005467}, \"0.38501112649804903\": {\"frequency\": 1, \"value\": 0.38501112649804903}, \"0.35475461689952437\": {\"frequency\": 1, \"value\": 0.35475461689952437}, \"0.41981584223936236\": {\"frequency\": 1, \"value\": 0.41981584223936236}, \"0.4958762436046743\": {\"frequency\": 1, \"value\": 0.4958762436046743}, \"0.2576957000248016\": {\"frequency\": 1, \"value\": 0.2576957000248016}, \"0.5209449197448554\": {\"frequency\": 1, \"value\": 0.5209449197448554}, \"0.2645283031171748\": {\"frequency\": 1, \"value\": 0.2645283031171748}, \"0.5035222615499255\": {\"frequency\": 1, \"value\": 0.5035222615499255}, \"0.3809778025793651\": {\"frequency\": 1, \"value\": 0.3809778025793651}, \"0.5810171543029362\": {\"frequency\": 1, \"value\": 0.5810171543029362}, \"0.7550006985842027\": {\"frequency\": 1, \"value\": 0.7550006985842027}, \"0.3133402415548932\": {\"frequency\": 1, \"value\": 0.3133402415548932}, \"0.6556309364178243\": {\"frequency\": 1, \"value\": 0.6556309364178243}, \"0.4877033785258063\": {\"frequency\": 1, \"value\": 0.4877033785258063}, \"0.304086502596085\": {\"frequency\": 1, \"value\": 0.304086502596085}, \"0.5859128166915052\": {\"frequency\": 1, \"value\": 0.5859128166915052}, \"0.5158932446676587\": {\"frequency\": 1, \"value\": 0.5158932446676587}, \"0.4086701242387454\": {\"frequency\": 1, \"value\": 0.4086701242387454}, \"0.5870035826718787\": {\"frequency\": 1, \"value\": 0.5870035826718787}, \"0.38694447031793344\": {\"frequency\": 1, \"value\": 0.38694447031793344}, \"0.4408786871120793\": {\"frequency\": 1, \"value\": 0.4408786871120793}, \"0.5304492672627918\": {\"frequency\": 1, \"value\": 0.5304492672627918}, \"0.40837064630400316\": {\"frequency\": 1, \"value\": 0.40837064630400316}, \"0.558843014349212\": {\"frequency\": 1, \"value\": 0.558843014349212}, \"0.4635706535218254\": {\"frequency\": 1, \"value\": 0.4635706535218254}, \"0.3319727876348366\": {\"frequency\": 1, \"value\": 0.3319727876348366}, \"0.5696352714414255\": {\"frequency\": 1, \"value\": 0.5696352714414255}, \"0.2808986799504655\": {\"frequency\": 1, \"value\": 0.2808986799504655}, \"0.5785647631448413\": {\"frequency\": 1, \"value\": 0.5785647631448413}, \"0.45170570976154995\": {\"frequency\": 1, \"value\": 0.45170570976154995}, \"0.49879747714920947\": {\"frequency\": 1, \"value\": 0.49879747714920947}, \"0.08265617249503968\": {\"frequency\": 1, \"value\": 0.08265617249503968}, \"0.4430970566318927\": {\"frequency\": 1, \"value\": 0.4430970566318927}, \"0.22558632604241266\": {\"frequency\": 1, \"value\": 0.22558632604241266}, \"0.22751984126984126\": {\"frequency\": 1, \"value\": 0.22751984126984126}, \"0.40318259438648785\": {\"frequency\": 1, \"value\": 0.40318259438648785}, \"0.5164548215032251\": {\"frequency\": 1, \"value\": 0.5164548215032251}, \"0.25790006246018476\": {\"frequency\": 1, \"value\": 0.25790006246018476}, \"0.20816257766812865\": {\"frequency\": 1, \"value\": 0.20816257766812865}, \"0.4422725347540103\": {\"frequency\": 1, \"value\": 0.4422725347540103}, \"0.388172690363412\": {\"frequency\": 1, \"value\": 0.388172690363412}, \"0.4537189653124258\": {\"frequency\": 1, \"value\": 0.4537189653124258}, \"0.517930637225786\": {\"frequency\": 1, \"value\": 0.517930637225786}, \"0.4783601221211521\": {\"frequency\": 1, \"value\": 0.4783601221211521}, \"0.263242906622529\": {\"frequency\": 1, \"value\": 0.263242906622529}, \"0.3645385018210405\": {\"frequency\": 1, \"value\": 0.3645385018210405}, \"0.4120414919969512\": {\"frequency\": 1, \"value\": 0.4120414919969512}, \"0.3577348663326434\": {\"frequency\": 1, \"value\": 0.3577348663326434}, \"0.41275460379464285\": {\"frequency\": 1, \"value\": 0.41275460379464285}, \"0.27064127604166666\": {\"frequency\": 1, \"value\": 0.27064127604166666}, \"0.28673107328869046\": {\"frequency\": 1, \"value\": 0.28673107328869046}, \"0.41616628997830674\": {\"frequency\": 1, \"value\": 0.41616628997830674}, \"0.6595779854910714\": {\"frequency\": 1, \"value\": 0.6595779854910714}, \"0.6356822456412706\": {\"frequency\": 1, \"value\": 0.6356822456412706}, \"0.21297571578837432\": {\"frequency\": 1, \"value\": 0.21297571578837432}, \"0.6832803699548222\": {\"frequency\": 1, \"value\": 0.6832803699548222}, \"0.43958504098360657\": {\"frequency\": 1, \"value\": 0.43958504098360657}, \"0.6022571545856814\": {\"frequency\": 1, \"value\": 0.6022571545856814}, \"0.4530781824789368\": {\"frequency\": 1, \"value\": 0.4530781824789368}, \"0.35116655799801294\": {\"frequency\": 1, \"value\": 0.35116655799801294}, \"0.2997540952520691\": {\"frequency\": 1, \"value\": 0.2997540952520691}, \"0.29262955247374073\": {\"frequency\": 1, \"value\": 0.29262955247374073}, \"0.3632761967370537\": {\"frequency\": 1, \"value\": 0.3632761967370537}, \"0.4158581415168018\": {\"frequency\": 1, \"value\": 0.4158581415168018}, \"0.42859771286231885\": {\"frequency\": 1, \"value\": 0.42859771286231885}, \"0.4973748687706484\": {\"frequency\": 1, \"value\": 0.4973748687706484}, \"0.4037813271604938\": {\"frequency\": 1, \"value\": 0.4037813271604938}, \"0.45230276639344263\": {\"frequency\": 1, \"value\": 0.45230276639344263}, \"0.8639978686698814\": {\"frequency\": 1, \"value\": 0.8639978686698814}, \"0.09474979733627756\": {\"frequency\": 1, \"value\": 0.09474979733627756}, \"0.5855616657459388\": {\"frequency\": 1, \"value\": 0.5855616657459388}, \"0.38979923023897056\": {\"frequency\": 1, \"value\": 0.38979923023897056}, \"0.5423373325401022\": {\"frequency\": 1, \"value\": 0.5423373325401022}, \"0.47683067871336315\": {\"frequency\": 1, \"value\": 0.47683067871336315}, \"0.40842373938191295\": {\"frequency\": 1, \"value\": 0.40842373938191295}, \"0.5843941339831956\": {\"frequency\": 1, \"value\": 0.5843941339831956}, \"0.38249476637443774\": {\"frequency\": 1, \"value\": 0.38249476637443774}, \"0.5138105418647201\": {\"frequency\": 1, \"value\": 0.5138105418647201}, \"0.540612378237111\": {\"frequency\": 1, \"value\": 0.540612378237111}, \"0.40268870144669044\": {\"frequency\": 1, \"value\": 0.40268870144669044}, \"0.48434181997697867\": {\"frequency\": 1, \"value\": 0.48434181997697867}, \"0.4544533096706593\": {\"frequency\": 1, \"value\": 0.4544533096706593}, \"0.46756287467796276\": {\"frequency\": 1, \"value\": 0.46756287467796276}, \"0.3381111235008425\": {\"frequency\": 1, \"value\": 0.3381111235008425}, \"0.28499635183805266\": {\"frequency\": 1, \"value\": 0.28499635183805266}, \"0.3789461469200199\": {\"frequency\": 1, \"value\": 0.3789461469200199}, \"0.21061668882978724\": {\"frequency\": 1, \"value\": 0.21061668882978724}, \"0.21472964791356186\": {\"frequency\": 1, \"value\": 0.21472964791356186}, \"0.21281735223364281\": {\"frequency\": 1, \"value\": 0.21281735223364281}, \"0.8123182508680555\": {\"frequency\": 1, \"value\": 0.8123182508680555}, \"0.5964321352649105\": {\"frequency\": 1, \"value\": 0.5964321352649105}, \"0.35658034045509385\": {\"frequency\": 1, \"value\": 0.35658034045509385}, \"0.3649261831582717\": {\"frequency\": 1, \"value\": 0.3649261831582717}, \"0.5821505271741285\": {\"frequency\": 1, \"value\": 0.5821505271741285}, \"0.26775710339873166\": {\"frequency\": 1, \"value\": 0.26775710339873166}, \"0.49929013835263836\": {\"frequency\": 1, \"value\": 0.49929013835263836}, \"0.49032875440333556\": {\"frequency\": 1, \"value\": 0.49032875440333556}, \"0.35331395709325397\": {\"frequency\": 1, \"value\": 0.35331395709325397}, \"0.30397960134128166\": {\"frequency\": 1, \"value\": 0.30397960134128166}, \"0.325230922389021\": {\"frequency\": 1, \"value\": 0.325230922389021}, \"0.41907807849702383\": {\"frequency\": 1, \"value\": 0.41907807849702383}, \"0.4829606681034483\": {\"frequency\": 1, \"value\": 0.4829606681034483}, \"0.3079020652697495\": {\"frequency\": 1, \"value\": 0.3079020652697495}, \"0.45240518212892566\": {\"frequency\": 1, \"value\": 0.45240518212892566}, \"0.30550437876154957\": {\"frequency\": 1, \"value\": 0.30550437876154957}, \"0.45598053410553413\": {\"frequency\": 1, \"value\": 0.45598053410553413}, \"0.43889778936910084\": {\"frequency\": 1, \"value\": 0.43889778936910084}, \"0.3947202845982143\": {\"frequency\": 1, \"value\": 0.3947202845982143}, \"0.5350055072791864\": {\"frequency\": 1, \"value\": 0.5350055072791864}, \"0.25668878849975163\": {\"frequency\": 1, \"value\": 0.25668878849975163}, \"0.6668631417410714\": {\"frequency\": 1, \"value\": 0.6668631417410714}, \"0.2666529114257851\": {\"frequency\": 1, \"value\": 0.2666529114257851}, \"0.47994551043219075\": {\"frequency\": 1, \"value\": 0.47994551043219075}, \"0.49880048643867925\": {\"frequency\": 1, \"value\": 0.49880048643867925}, \"0.5516380673363095\": {\"frequency\": 1, \"value\": 0.5516380673363095}, \"0.3850005817819149\": {\"frequency\": 1, \"value\": 0.3850005817819149}, \"0.3226942729078731\": {\"frequency\": 1, \"value\": 0.3226942729078731}, \"0.3342578125\": {\"frequency\": 1, \"value\": 0.3342578125}, \"0.4401042181324111\": {\"frequency\": 1, \"value\": 0.4401042181324111}, \"0.4938955028758508\": {\"frequency\": 1, \"value\": 0.4938955028758508}, \"0.5532059123059714\": {\"frequency\": 1, \"value\": 0.5532059123059714}, \"0.4302864428507729\": {\"frequency\": 1, \"value\": 0.4302864428507729}, \"0.2681725948913822\": {\"frequency\": 1, \"value\": 0.2681725948913822}, \"0.7620675028858018\": {\"frequency\": 1, \"value\": 0.7620675028858018}, \"0.3477954606200998\": {\"frequency\": 1, \"value\": 0.3477954606200998}, \"0.20738682935916541\": {\"frequency\": 1, \"value\": 0.20738682935916541}, \"0.6172968842895362\": {\"frequency\": 1, \"value\": 0.6172968842895362}, \"0.45097694304445507\": {\"frequency\": 1, \"value\": 0.45097694304445507}, \"0.44376001304023843\": {\"frequency\": 1, \"value\": 0.44376001304023843}, \"0.4026751277361379\": {\"frequency\": 1, \"value\": 0.4026751277361379}, \"0.42690131670028875\": {\"frequency\": 1, \"value\": 0.42690131670028875}, \"0.3560315135168651\": {\"frequency\": 1, \"value\": 0.3560315135168651}, \"0.25381753498393367\": {\"frequency\": 1, \"value\": 0.25381753498393367}, \"0.4081085689484127\": {\"frequency\": 1, \"value\": 0.4081085689484127}, \"0.41337797722704295\": {\"frequency\": 1, \"value\": 0.41337797722704295}, \"0.36814401258422513\": {\"frequency\": 1, \"value\": 0.36814401258422513}, \"0.5531699212573135\": {\"frequency\": 1, \"value\": 0.5531699212573135}, \"0.4015214223710317\": {\"frequency\": 1, \"value\": 0.4015214223710317}, \"0.43118129015974377\": {\"frequency\": 1, \"value\": 0.43118129015974377}, \"0.5208139236207857\": {\"frequency\": 1, \"value\": 0.5208139236207857}, \"0.48209650958363176\": {\"frequency\": 1, \"value\": 0.48209650958363176}, \"0.3337021857923497\": {\"frequency\": 1, \"value\": 0.3337021857923497}, \"0.5286559657733949\": {\"frequency\": 1, \"value\": 0.5286559657733949}, \"0.2914337238526845\": {\"frequency\": 1, \"value\": 0.2914337238526845}, \"0.5318488215664041\": {\"frequency\": 1, \"value\": 0.5318488215664041}, \"0.3316207929706905\": {\"frequency\": 1, \"value\": 0.3316207929706905}, \"0.2700398969200199\": {\"frequency\": 1, \"value\": 0.2700398969200199}, \"0.6035947668719898\": {\"frequency\": 1, \"value\": 0.6035947668719898}, \"0.5637120834245513\": {\"frequency\": 1, \"value\": 0.5637120834245513}, \"0.42910895412666616\": {\"frequency\": 1, \"value\": 0.42910895412666616}, \"0.4576339546457987\": {\"frequency\": 1, \"value\": 0.4576339546457987}, \"0.5445402405753968\": {\"frequency\": 1, \"value\": 0.5445402405753968}, \"0.43721686178999325\": {\"frequency\": 1, \"value\": 0.43721686178999325}, \"0.4405354600987718\": {\"frequency\": 1, \"value\": 0.4405354600987718}, \"0.3994672131147541\": {\"frequency\": 1, \"value\": 0.3994672131147541}, \"0.4487308184381714\": {\"frequency\": 1, \"value\": 0.4487308184381714}, \"0.37651465726127453\": {\"frequency\": 1, \"value\": 0.37651465726127453}, \"0.5112282913531215\": {\"frequency\": 1, \"value\": 0.5112282913531215}, \"0.4802429520615996\": {\"frequency\": 1, \"value\": 0.4802429520615996}, \"0.3192608202930949\": {\"frequency\": 1, \"value\": 0.3192608202930949}, \"0.4342069476356728\": {\"frequency\": 1, \"value\": 0.4342069476356728}, \"0.47144190228174604\": {\"frequency\": 1, \"value\": 0.47144190228174604}, \"0.25243638521360223\": {\"frequency\": 1, \"value\": 0.25243638521360223}, \"0.43450962086305983\": {\"frequency\": 1, \"value\": 0.43450962086305983}, \"0.4644267391931696\": {\"frequency\": 1, \"value\": 0.4644267391931696}, \"0.23865168633623776\": {\"frequency\": 1, \"value\": 0.23865168633623776}, \"0.4772471068939574\": {\"frequency\": 1, \"value\": 0.4772471068939574}, \"0.356921184177844\": {\"frequency\": 1, \"value\": 0.356921184177844}, \"0.635070479384004\": {\"frequency\": 1, \"value\": 0.635070479384004}, \"0.4565116968266131\": {\"frequency\": 1, \"value\": 0.4565116968266131}, \"0.7064363739072822\": {\"frequency\": 1, \"value\": 0.7064363739072822}, \"0.511873700714172\": {\"frequency\": 1, \"value\": 0.511873700714172}, \"0.3951557461372584\": {\"frequency\": 1, \"value\": 0.3951557461372584}, \"0.4097952747699257\": {\"frequency\": 1, \"value\": 0.4097952747699257}, \"0.5271303468186522\": {\"frequency\": 1, \"value\": 0.5271303468186522}, \"0.4768680245535714\": {\"frequency\": 1, \"value\": 0.4768680245535714}, \"0.6062185591479669\": {\"frequency\": 1, \"value\": 0.6062185591479669}, \"0.24465284160539216\": {\"frequency\": 1, \"value\": 0.24465284160539216}, \"0.3291335030344613\": {\"frequency\": 1, \"value\": 0.3291335030344613}, \"0.3652582092449187\": {\"frequency\": 1, \"value\": 0.3652582092449187}, \"0.45160217977550454\": {\"frequency\": 1, \"value\": 0.45160217977550454}, \"0.30695199275362317\": {\"frequency\": 1, \"value\": 0.30695199275362317}, \"0.2356672255340288\": {\"frequency\": 1, \"value\": 0.2356672255340288}, \"0.33235823498387934\": {\"frequency\": 1, \"value\": 0.33235823498387934}, \"0.1895389527275803\": {\"frequency\": 1, \"value\": 0.1895389527275803}, \"0.4627927135305298\": {\"frequency\": 1, \"value\": 0.4627927135305298}, \"0.3742685264318272\": {\"frequency\": 1, \"value\": 0.3742685264318272}, \"0.3658407919290013\": {\"frequency\": 1, \"value\": 0.3658407919290013}, \"0.31023776068537184\": {\"frequency\": 1, \"value\": 0.31023776068537184}, \"0.41061468861474437\": {\"frequency\": 1, \"value\": 0.41061468861474437}, \"0.5055788866930171\": {\"frequency\": 1, \"value\": 0.5055788866930171}, \"0.30346862433309446\": {\"frequency\": 1, \"value\": 0.30346862433309446}, \"0.4853578404017857\": {\"frequency\": 1, \"value\": 0.4853578404017857}, \"0.26266626499146184\": {\"frequency\": 1, \"value\": 0.26266626499146184}, \"0.46169728112599207\": {\"frequency\": 1, \"value\": 0.46169728112599207}, \"0.3502056321864805\": {\"frequency\": 1, \"value\": 0.3502056321864805}, \"0.39815902634040523\": {\"frequency\": 1, \"value\": 0.39815902634040523}, \"0.2881176465856894\": {\"frequency\": 1, \"value\": 0.2881176465856894}, \"0.5282770792643229\": {\"frequency\": 1, \"value\": 0.5282770792643229}, \"0.6578736305236816\": {\"frequency\": 1, \"value\": 0.6578736305236816}, \"0.48650825031210365\": {\"frequency\": 1, \"value\": 0.48650825031210365}, \"0.4278646714415078\": {\"frequency\": 1, \"value\": 0.4278646714415078}, \"0.3819794112964216\": {\"frequency\": 1, \"value\": 0.3819794112964216}, \"0.43776774519364725\": {\"frequency\": 1, \"value\": 0.43776774519364725}, \"0.5346531080163044\": {\"frequency\": 1, \"value\": 0.5346531080163044}, \"0.43730509500745157\": {\"frequency\": 1, \"value\": 0.43730509500745157}, \"0.2571637660289825\": {\"frequency\": 1, \"value\": 0.2571637660289825}, \"0.3130573065157995\": {\"frequency\": 1, \"value\": 0.3130573065157995}, \"0.3012571367470359\": {\"frequency\": 1, \"value\": 0.3012571367470359}, \"0.4274205006388922\": {\"frequency\": 1, \"value\": 0.4274205006388922}, \"0.3078812399245711\": {\"frequency\": 1, \"value\": 0.3078812399245711}, \"0.20396214932223747\": {\"frequency\": 1, \"value\": 0.20396214932223747}, \"0.348628883099443\": {\"frequency\": 1, \"value\": 0.348628883099443}, \"0.49861717755331425\": {\"frequency\": 1, \"value\": 0.49861717755331425}, \"0.46928704332278987\": {\"frequency\": 1, \"value\": 0.46928704332278987}, \"0.6723903304811508\": {\"frequency\": 1, \"value\": 0.6723903304811508}, \"0.18929416232638888\": {\"frequency\": 1, \"value\": 0.18929416232638888}, \"0.6027017455590542\": {\"frequency\": 1, \"value\": 0.6027017455590542}, \"0.26512659278848066\": {\"frequency\": 1, \"value\": 0.26512659278848066}, \"0.38371096547505373\": {\"frequency\": 1, \"value\": 0.38371096547505373}, \"0.43292928479381443\": {\"frequency\": 1, \"value\": 0.43292928479381443}, \"0.5286309876417751\": {\"frequency\": 1, \"value\": 0.5286309876417751}, \"0.6301920572916667\": {\"frequency\": 1, \"value\": 0.6301920572916667}, \"0.2899326171875\": {\"frequency\": 1, \"value\": 0.2899326171875}, \"0.30658233315992867\": {\"frequency\": 1, \"value\": 0.30658233315992867}, \"0.28489055514157974\": {\"frequency\": 1, \"value\": 0.28489055514157974}, \"0.13538661067193675\": {\"frequency\": 1, \"value\": 0.13538661067193675}, \"0.2985438206523902\": {\"frequency\": 1, \"value\": 0.2985438206523902}, \"0.4315754275831543\": {\"frequency\": 1, \"value\": 0.4315754275831543}, \"0.5160703868218366\": {\"frequency\": 1, \"value\": 0.5160703868218366}, \"0.45408268132141083\": {\"frequency\": 1, \"value\": 0.45408268132141083}, \"0.5693841198424012\": {\"frequency\": 1, \"value\": 0.5693841198424012}, \"0.42179056204730647\": {\"frequency\": 1, \"value\": 0.42179056204730647}, \"0.38237072172619047\": {\"frequency\": 1, \"value\": 0.38237072172619047}, \"0.6251855129160457\": {\"frequency\": 1, \"value\": 0.6251855129160457}, \"0.5040350198235923\": {\"frequency\": 1, \"value\": 0.5040350198235923}, \"0.23276311783401651\": {\"frequency\": 1, \"value\": 0.23276311783401651}, \"0.20467073397913563\": {\"frequency\": 1, \"value\": 0.20467073397913563}, \"0.31916369401506145\": {\"frequency\": 1, \"value\": 0.31916369401506145}, \"0.44205104880136986\": {\"frequency\": 1, \"value\": 0.44205104880136986}, \"0.22581982737208148\": {\"frequency\": 1, \"value\": 0.22581982737208148}, \"0.5540094669408806\": {\"frequency\": 1, \"value\": 0.5540094669408806}, \"0.3799552296451459\": {\"frequency\": 1, \"value\": 0.3799552296451459}, \"0.27854026949826133\": {\"frequency\": 1, \"value\": 0.27854026949826133}, \"0.3106832929706905\": {\"frequency\": 1, \"value\": 0.3106832929706905}, \"0.27787925484066556\": {\"frequency\": 1, \"value\": 0.27787925484066556}, \"0.34064103866122386\": {\"frequency\": 1, \"value\": 0.34064103866122386}, \"0.2977650246505772\": {\"frequency\": 1, \"value\": 0.2977650246505772}, \"0.12612506200396825\": {\"frequency\": 1, \"value\": 0.12612506200396825}, \"0.30368604073522104\": {\"frequency\": 1, \"value\": 0.30368604073522104}, \"0.43209959912572526\": {\"frequency\": 1, \"value\": 0.43209959912572526}, \"0.2803056427574835\": {\"frequency\": 1, \"value\": 0.2803056427574835}, \"0.4860432577818298\": {\"frequency\": 1, \"value\": 0.4860432577818298}, \"0.42893960039151\": {\"frequency\": 1, \"value\": 0.42893960039151}, \"0.3536589345994694\": {\"frequency\": 1, \"value\": 0.3536589345994694}, \"0.5167727885779798\": {\"frequency\": 1, \"value\": 0.5167727885779798}, \"0.295208356137802\": {\"frequency\": 1, \"value\": 0.295208356137802}, \"0.44496037746415773\": {\"frequency\": 1, \"value\": 0.44496037746415773}, \"0.45669283686761136\": {\"frequency\": 1, \"value\": 0.45669283686761136}, \"0.48087658719102017\": {\"frequency\": 1, \"value\": 0.48087658719102017}, \"0.4221501576211558\": {\"frequency\": 1, \"value\": 0.4221501576211558}, \"0.28610289473422457\": {\"frequency\": 1, \"value\": 0.28610289473422457}, \"0.3758030132602756\": {\"frequency\": 1, \"value\": 0.3758030132602756}, \"0.3159711594451744\": {\"frequency\": 1, \"value\": 0.3159711594451744}, \"0.4765281917536016\": {\"frequency\": 1, \"value\": 0.4765281917536016}, \"0.31014623695976157\": {\"frequency\": 1, \"value\": 0.31014623695976157}, \"0.38975779623847756\": {\"frequency\": 1, \"value\": 0.38975779623847756}, \"0.6667311692747143\": {\"frequency\": 1, \"value\": 0.6667311692747143}, \"0.5616915729933872\": {\"frequency\": 1, \"value\": 0.5616915729933872}, \"0.4502756851438492\": {\"frequency\": 1, \"value\": 0.4502756851438492}, \"0.32435527040026974\": {\"frequency\": 1, \"value\": 0.32435527040026974}, \"0.4248044931437328\": {\"frequency\": 1, \"value\": 0.4248044931437328}, \"0.6040952731311945\": {\"frequency\": 1, \"value\": 0.6040952731311945}, \"0.4515054489567809\": {\"frequency\": 1, \"value\": 0.4515054489567809}, \"0.4467325256642512\": {\"frequency\": 1, \"value\": 0.4467325256642512}, \"0.4297372547193244\": {\"frequency\": 1, \"value\": 0.4297372547193244}, \"0.42838147079236244\": {\"frequency\": 1, \"value\": 0.42838147079236244}, \"0.4539430421013413\": {\"frequency\": 1, \"value\": 0.4539430421013413}, \"0.2659267956142956\": {\"frequency\": 1, \"value\": 0.2659267956142956}, \"0.39474609375\": {\"frequency\": 1, \"value\": 0.39474609375}, \"0.45243993302949487\": {\"frequency\": 1, \"value\": 0.45243993302949487}, \"0.23626448175280496\": {\"frequency\": 1, \"value\": 0.23626448175280496}, \"0.4425482096833579\": {\"frequency\": 1, \"value\": 0.4425482096833579}, \"0.5279985812891027\": {\"frequency\": 1, \"value\": 0.5279985812891027}, \"0.27970054769319264\": {\"frequency\": 1, \"value\": 0.27970054769319264}, \"0.7239976538254953\": {\"frequency\": 1, \"value\": 0.7239976538254953}, \"0.2570656193112864\": {\"frequency\": 1, \"value\": 0.2570656193112864}, \"0.3849185858985967\": {\"frequency\": 1, \"value\": 0.3849185858985967}, \"0.511867824074074\": {\"frequency\": 1, \"value\": 0.511867824074074}, \"0.3079701978501131\": {\"frequency\": 1, \"value\": 0.3079701978501131}, \"0.5002084411834979\": {\"frequency\": 1, \"value\": 0.5002084411834979}, \"0.35250023251488094\": {\"frequency\": 1, \"value\": 0.35250023251488094}, \"0.36427060047193244\": {\"frequency\": 1, \"value\": 0.36427060047193244}, \"0.45741668628568594\": {\"frequency\": 1, \"value\": 0.45741668628568594}, \"0.30263808681073023\": {\"frequency\": 1, \"value\": 0.30263808681073023}, \"0.5905702775707898\": {\"frequency\": 1, \"value\": 0.5905702775707898}, \"0.4827601568068425\": {\"frequency\": 1, \"value\": 0.4827601568068425}, \"0.28372291140090755\": {\"frequency\": 1, \"value\": 0.28372291140090755}, \"0.2508904043359251\": {\"frequency\": 1, \"value\": 0.2508904043359251}, \"0.3853619442374565\": {\"frequency\": 1, \"value\": 0.3853619442374565}, \"0.7153143525702236\": {\"frequency\": 1, \"value\": 0.7153143525702236}, \"0.6589399094655097\": {\"frequency\": 1, \"value\": 0.6589399094655097}, \"0.49536077325994315\": {\"frequency\": 1, \"value\": 0.49536077325994315}, \"0.38774950347567033\": {\"frequency\": 1, \"value\": 0.38774950347567033}, \"0.4652632843501984\": {\"frequency\": 1, \"value\": 0.4652632843501984}, \"0.7948809413580247\": {\"frequency\": 1, \"value\": 0.7948809413580247}, \"0.32441917816057636\": {\"frequency\": 1, \"value\": 0.32441917816057636}, \"0.5878325260804769\": {\"frequency\": 1, \"value\": 0.5878325260804769}, \"0.23933609250992063\": {\"frequency\": 1, \"value\": 0.23933609250992063}, \"0.3280438723442349\": {\"frequency\": 1, \"value\": 0.3280438723442349}, \"0.4281866939484127\": {\"frequency\": 1, \"value\": 0.4281866939484127}, \"0.5211091830955126\": {\"frequency\": 1, \"value\": 0.5211091830955126}, \"0.7561577160493828\": {\"frequency\": 1, \"value\": 0.7561577160493828}, \"0.4724183484595176\": {\"frequency\": 1, \"value\": 0.4724183484595176}, \"0.26976052989130433\": {\"frequency\": 1, \"value\": 0.26976052989130433}, \"0.43802849538971117\": {\"frequency\": 1, \"value\": 0.43802849538971117}, \"0.7232917172511245\": {\"frequency\": 1, \"value\": 0.7232917172511245}, \"0.34328440969468677\": {\"frequency\": 1, \"value\": 0.34328440969468677}, \"0.3704790759031591\": {\"frequency\": 1, \"value\": 0.3704790759031591}, \"0.1522629470938897\": {\"frequency\": 1, \"value\": 0.1522629470938897}, \"0.3910515731351749\": {\"frequency\": 1, \"value\": 0.3910515731351749}, \"0.3000752159249303\": {\"frequency\": 1, \"value\": 0.3000752159249303}, \"0.3822340205368466\": {\"frequency\": 1, \"value\": 0.3822340205368466}, \"0.4384480955101285\": {\"frequency\": 1, \"value\": 0.4384480955101285}, \"0.6637297556712551\": {\"frequency\": 1, \"value\": 0.6637297556712551}, \"0.5668486048640687\": {\"frequency\": 1, \"value\": 0.5668486048640687}, \"0.5462070398163377\": {\"frequency\": 1, \"value\": 0.5462070398163377}, \"0.5936517070977103\": {\"frequency\": 1, \"value\": 0.5936517070977103}, \"0.2830408179012346\": {\"frequency\": 1, \"value\": 0.2830408179012346}, \"0.5731570870535714\": {\"frequency\": 1, \"value\": 0.5731570870535714}, \"0.5663593719108343\": {\"frequency\": 1, \"value\": 0.5663593719108343}, \"0.32744591049382715\": {\"frequency\": 1, \"value\": 0.32744591049382715}, \"0.603877636304115\": {\"frequency\": 1, \"value\": 0.603877636304115}, \"0.5420682585429686\": {\"frequency\": 1, \"value\": 0.5420682585429686}, \"0.6460448246465551\": {\"frequency\": 1, \"value\": 0.6460448246465551}, \"0.5769167885135673\": {\"frequency\": 1, \"value\": 0.5769167885135673}, \"0.3616548059218342\": {\"frequency\": 1, \"value\": 0.3616548059218342}, \"0.30688408740277007\": {\"frequency\": 1, \"value\": 0.30688408740277007}, \"0.3276608472338267\": {\"frequency\": 1, \"value\": 0.3276608472338267}, \"0.25279276515377574\": {\"frequency\": 1, \"value\": 0.25279276515377574}, \"0.4748421231734751\": {\"frequency\": 1, \"value\": 0.4748421231734751}, \"0.5730570399628253\": {\"frequency\": 1, \"value\": 0.5730570399628253}, \"0.44968944051167414\": {\"frequency\": 1, \"value\": 0.44968944051167414}, \"0.4701754088633921\": {\"frequency\": 1, \"value\": 0.4701754088633921}, \"0.3495086960565476\": {\"frequency\": 1, \"value\": 0.3495086960565476}, \"0.3918302546131306\": {\"frequency\": 1, \"value\": 0.3918302546131306}, \"0.396718471313912\": {\"frequency\": 1, \"value\": 0.396718471313912}, \"0.31998091452078636\": {\"frequency\": 1, \"value\": 0.31998091452078636}, \"0.32402950089589766\": {\"frequency\": 1, \"value\": 0.32402950089589766}, \"0.39310532391300024\": {\"frequency\": 1, \"value\": 0.39310532391300024}, \"0.7334378881023348\": {\"frequency\": 1, \"value\": 0.7334378881023348}, \"0.7377308535838115\": {\"frequency\": 1, \"value\": 0.7377308535838115}, \"0.3141774500706524\": {\"frequency\": 1, \"value\": 0.3141774500706524}, \"0.35711699412456555\": {\"frequency\": 1, \"value\": 0.35711699412456555}, \"0.5715535821745444\": {\"frequency\": 1, \"value\": 0.5715535821745444}, \"0.2539026115982957\": {\"frequency\": 1, \"value\": 0.2539026115982957}, \"0.3773583747364128\": {\"frequency\": 1, \"value\": 0.3773583747364128}, \"0.4767871479743083\": {\"frequency\": 1, \"value\": 0.4767871479743083}, \"0.39400189112103173\": {\"frequency\": 1, \"value\": 0.39400189112103173}, \"0.5532247423000497\": {\"frequency\": 1, \"value\": 0.5532247423000497}, \"0.3984462810585263\": {\"frequency\": 1, \"value\": 0.3984462810585263}, \"0.5356079339648927\": {\"frequency\": 1, \"value\": 0.5356079339648927}, \"0.45093959575260806\": {\"frequency\": 1, \"value\": 0.45093959575260806}, \"0.39257198602987986\": {\"frequency\": 1, \"value\": 0.39257198602987986}, \"0.4331898099980182\": {\"frequency\": 1, \"value\": 0.4331898099980182}, \"0.7224544304521753\": {\"frequency\": 1, \"value\": 0.7224544304521753}, \"0.49409264450449913\": {\"frequency\": 1, \"value\": 0.49409264450449913}, \"0.41006404320987655\": {\"frequency\": 1, \"value\": 0.41006404320987655}, \"0.5780273708907373\": {\"frequency\": 1, \"value\": 0.5780273708907373}, \"0.3288907137784091\": {\"frequency\": 1, \"value\": 0.3288907137784091}, \"0.19290899367559525\": {\"frequency\": 1, \"value\": 0.19290899367559525}, \"0.49354154124208893\": {\"frequency\": 1, \"value\": 0.49354154124208893}, \"0.16590502989625405\": {\"frequency\": 1, \"value\": 0.16590502989625405}, \"0.4178362518628912\": {\"frequency\": 1, \"value\": 0.4178362518628912}, \"0.48645919886657646\": {\"frequency\": 1, \"value\": 0.48645919886657646}, \"0.4443120396768829\": {\"frequency\": 1, \"value\": 0.4443120396768829}, \"0.4355641044702151\": {\"frequency\": 1, \"value\": 0.4355641044702151}, \"0.4353565613431915\": {\"frequency\": 1, \"value\": 0.4353565613431915}, \"0.2880224633631396\": {\"frequency\": 1, \"value\": 0.2880224633631396}, \"0.396132533813912\": {\"frequency\": 1, \"value\": 0.396132533813912}, \"0.5347539008149473\": {\"frequency\": 1, \"value\": 0.5347539008149473}, \"0.8446136829359165\": {\"frequency\": 1, \"value\": 0.8446136829359165}, \"0.5041586278373962\": {\"frequency\": 1, \"value\": 0.5041586278373962}, \"0.595363033234127\": {\"frequency\": 1, \"value\": 0.595363033234127}, \"0.5462437996031746\": {\"frequency\": 1, \"value\": 0.5462437996031746}, \"0.31331009334988064\": {\"frequency\": 1, \"value\": 0.31331009334988064}, \"0.33378893816642796\": {\"frequency\": 1, \"value\": 0.33378893816642796}, \"0.3113157227261876\": {\"frequency\": 1, \"value\": 0.3113157227261876}, \"0.43202442719523354\": {\"frequency\": 1, \"value\": 0.43202442719523354}, \"0.5121792722305017\": {\"frequency\": 1, \"value\": 0.5121792722305017}, \"0.36332534981714104\": {\"frequency\": 1, \"value\": 0.36332534981714104}, \"0.579844135993083\": {\"frequency\": 1, \"value\": 0.579844135993083}, \"0.14993843934013687\": {\"frequency\": 1, \"value\": 0.14993843934013687}, \"0.3677359324713928\": {\"frequency\": 1, \"value\": 0.3677359324713928}, \"0.4792879328269104\": {\"frequency\": 1, \"value\": 0.4792879328269104}, \"0.319790195386064\": {\"frequency\": 1, \"value\": 0.319790195386064}, \"0.41892690576245345\": {\"frequency\": 1, \"value\": 0.41892690576245345}, \"0.5248073566547832\": {\"frequency\": 1, \"value\": 0.5248073566547832}, \"0.40635594928075397\": {\"frequency\": 1, \"value\": 0.40635594928075397}, \"0.5429344417536016\": {\"frequency\": 1, \"value\": 0.5429344417536016}, \"0.4339829210224123\": {\"frequency\": 1, \"value\": 0.4339829210224123}, \"0.46106927803853753\": {\"frequency\": 1, \"value\": 0.46106927803853753}, \"0.5573455352707402\": {\"frequency\": 1, \"value\": 0.5573455352707402}, \"0.5025133600750913\": {\"frequency\": 1, \"value\": 0.5025133600750913}, \"0.4934473159433214\": {\"frequency\": 1, \"value\": 0.4934473159433214}, \"0.33393914866316543\": {\"frequency\": 1, \"value\": 0.33393914866316543}, \"0.28394932935916545\": {\"frequency\": 1, \"value\": 0.28394932935916545}, \"0.6919166494668471\": {\"frequency\": 1, \"value\": 0.6919166494668471}, \"0.4347035435267857\": {\"frequency\": 1, \"value\": 0.4347035435267857}, \"0.5462681361607142\": {\"frequency\": 1, \"value\": 0.5462681361607142}, \"0.43974897540983604\": {\"frequency\": 1, \"value\": 0.43974897540983604}, \"0.34631749190568883\": {\"frequency\": 1, \"value\": 0.34631749190568883}, \"0.5115930176752606\": {\"frequency\": 1, \"value\": 0.5115930176752606}, \"0.4350684612518629\": {\"frequency\": 1, \"value\": 0.4350684612518629}, \"0.3315318399155489\": {\"frequency\": 1, \"value\": 0.3315318399155489}, \"0.39052649111002796\": {\"frequency\": 1, \"value\": 0.39052649111002796}, \"0.3312011932541894\": {\"frequency\": 1, \"value\": 0.3312011932541894}, \"0.34091970629502844\": {\"frequency\": 1, \"value\": 0.34091970629502844}, \"0.40207148917459373\": {\"frequency\": 1, \"value\": 0.40207148917459373}, \"0.40696056651275725\": {\"frequency\": 1, \"value\": 0.40696056651275725}, \"0.44867595007451566\": {\"frequency\": 1, \"value\": 0.44867595007451566}, \"0.5454959075604758\": {\"frequency\": 1, \"value\": 0.5454959075604758}, \"0.4806613530519223\": {\"frequency\": 1, \"value\": 0.4806613530519223}, \"0.3524316163686041\": {\"frequency\": 1, \"value\": 0.3524316163686041}, \"0.3250529503567182\": {\"frequency\": 1, \"value\": 0.3250529503567182}, \"0.501408024691358\": {\"frequency\": 1, \"value\": 0.501408024691358}, \"0.4950960507927509\": {\"frequency\": 1, \"value\": 0.4950960507927509}, \"0.5155214542970691\": {\"frequency\": 1, \"value\": 0.5155214542970691}, \"0.3306489918030339\": {\"frequency\": 1, \"value\": 0.3306489918030339}, \"0.5029241958519622\": {\"frequency\": 1, \"value\": 0.5029241958519622}, \"0.2485265559296652\": {\"frequency\": 1, \"value\": 0.2485265559296652}, \"0.3110427517361111\": {\"frequency\": 1, \"value\": 0.3110427517361111}, \"0.37214929808925606\": {\"frequency\": 1, \"value\": 0.37214929808925606}, \"0.5240398489431994\": {\"frequency\": 1, \"value\": 0.5240398489431994}, \"0.4809659387620109\": {\"frequency\": 1, \"value\": 0.4809659387620109}, \"0.5322484320665674\": {\"frequency\": 1, \"value\": 0.5322484320665674}, \"0.41074999441254767\": {\"frequency\": 1, \"value\": 0.41074999441254767}, \"0.3130026407579656\": {\"frequency\": 1, \"value\": 0.3130026407579656}, \"0.27598354072173154\": {\"frequency\": 1, \"value\": 0.27598354072173154}, \"0.7196961158718331\": {\"frequency\": 1, \"value\": 0.7196961158718331}, \"0.41540750745156485\": {\"frequency\": 1, \"value\": 0.41540750745156485}, \"0.3656456163194444\": {\"frequency\": 1, \"value\": 0.3656456163194444}, \"0.29031082937332936\": {\"frequency\": 1, \"value\": 0.29031082937332936}, \"0.2741109700443494\": {\"frequency\": 1, \"value\": 0.2741109700443494}, \"0.3873701025005968\": {\"frequency\": 1, \"value\": 0.3873701025005968}, \"0.38591739629905614\": {\"frequency\": 1, \"value\": 0.38591739629905614}, \"0.47103290860615077\": {\"frequency\": 1, \"value\": 0.47103290860615077}, \"0.6336502576999503\": {\"frequency\": 1, \"value\": 0.6336502576999503}, \"0.4802084881589378\": {\"frequency\": 1, \"value\": 0.4802084881589378}, \"0.5594263963903477\": {\"frequency\": 1, \"value\": 0.5594263963903477}, \"0.5533477707401888\": {\"frequency\": 1, \"value\": 0.5533477707401888}, \"0.28299469733909166\": {\"frequency\": 1, \"value\": 0.28299469733909166}, \"0.4154365988088604\": {\"frequency\": 1, \"value\": 0.4154365988088604}, \"0.5370536958512502\": {\"frequency\": 1, \"value\": 0.5370536958512502}, \"0.2720333077206175\": {\"frequency\": 1, \"value\": 0.2720333077206175}, \"0.4598728160808069\": {\"frequency\": 1, \"value\": 0.4598728160808069}, \"0.2584424000854565\": {\"frequency\": 1, \"value\": 0.2584424000854565}, \"0.32975790361421803\": {\"frequency\": 1, \"value\": 0.32975790361421803}, \"0.62852783203125\": {\"frequency\": 1, \"value\": 0.62852783203125}, \"0.5585952194454343\": {\"frequency\": 1, \"value\": 0.5585952194454343}, \"0.46725378086419755\": {\"frequency\": 1, \"value\": 0.46725378086419755}, \"0.7607696845504223\": {\"frequency\": 1, \"value\": 0.7607696845504223}, \"0.5498773596621958\": {\"frequency\": 1, \"value\": 0.5498773596621958}, \"0.443956875522201\": {\"frequency\": 1, \"value\": 0.443956875522201}, \"0.2645935792349727\": {\"frequency\": 1, \"value\": 0.2645935792349727}, \"0.25998006076131075\": {\"frequency\": 1, \"value\": 0.25998006076131075}, \"0.5139811197916667\": {\"frequency\": 1, \"value\": 0.5139811197916667}, \"0.2022941005831482\": {\"frequency\": 1, \"value\": 0.2022941005831482}, \"0.30098057935916545\": {\"frequency\": 1, \"value\": 0.30098057935916545}, \"0.4641666974487786\": {\"frequency\": 1, \"value\": 0.4641666974487786}, \"0.3918422256704066\": {\"frequency\": 1, \"value\": 0.3918422256704066}, \"0.4765455521335032\": {\"frequency\": 1, \"value\": 0.4765455521335032}, \"0.2894921103013834\": {\"frequency\": 1, \"value\": 0.2894921103013834}, \"0.42580093625992066\": {\"frequency\": 1, \"value\": 0.42580093625992066}, \"0.4816565829273847\": {\"frequency\": 1, \"value\": 0.4816565829273847}, \"0.6389001543209877\": {\"frequency\": 1, \"value\": 0.6389001543209877}, \"0.4314701374692363\": {\"frequency\": 1, \"value\": 0.4314701374692363}, \"0.352838021310154\": {\"frequency\": 1, \"value\": 0.352838021310154}, \"0.4140742391185368\": {\"frequency\": 1, \"value\": 0.4140742391185368}, \"0.45624004028426635\": {\"frequency\": 1, \"value\": 0.45624004028426635}, \"0.1768813019531405\": {\"frequency\": 1, \"value\": 0.1768813019531405}, \"0.6486141338045635\": {\"frequency\": 1, \"value\": 0.6486141338045635}, \"0.4068151546199702\": {\"frequency\": 1, \"value\": 0.4068151546199702}, \"0.49168990414784136\": {\"frequency\": 1, \"value\": 0.49168990414784136}, \"0.39292178961748636\": {\"frequency\": 1, \"value\": 0.39292178961748636}, \"0.6011938352052865\": {\"frequency\": 1, \"value\": 0.6011938352052865}, \"0.4609265178288588\": {\"frequency\": 1, \"value\": 0.4609265178288588}, \"0.3549400421295471\": {\"frequency\": 1, \"value\": 0.3549400421295471}, \"0.4636825101749393\": {\"frequency\": 1, \"value\": 0.4636825101749393}, \"0.5268339823545795\": {\"frequency\": 1, \"value\": 0.5268339823545795}, \"0.6030729166666666\": {\"frequency\": 1, \"value\": 0.6030729166666666}, \"0.43031405009920637\": {\"frequency\": 1, \"value\": 0.43031405009920637}, \"0.20387595221606647\": {\"frequency\": 1, \"value\": 0.20387595221606647}, \"0.34296797379533034\": {\"frequency\": 1, \"value\": 0.34296797379533034}, \"0.42014490265169613\": {\"frequency\": 1, \"value\": 0.42014490265169613}, \"0.4161117254916196\": {\"frequency\": 1, \"value\": 0.4161117254916196}, \"0.8271469821162444\": {\"frequency\": 1, \"value\": 0.8271469821162444}, \"0.503356194141013\": {\"frequency\": 1, \"value\": 0.503356194141013}, \"0.4647507551000198\": {\"frequency\": 1, \"value\": 0.4647507551000198}, \"0.3156746806795635\": {\"frequency\": 1, \"value\": 0.3156746806795635}, \"0.23362540674879592\": {\"frequency\": 1, \"value\": 0.23362540674879592}, \"0.6954009331597222\": {\"frequency\": 1, \"value\": 0.6954009331597222}, \"0.4288903378042722\": {\"frequency\": 1, \"value\": 0.4288903378042722}, \"0.5832630363343254\": {\"frequency\": 1, \"value\": 0.5832630363343254}, \"0.3152805979880775\": {\"frequency\": 1, \"value\": 0.3152805979880775}, \"0.4915754332434423\": {\"frequency\": 1, \"value\": 0.4915754332434423}, \"0.474422248785973\": {\"frequency\": 1, \"value\": 0.474422248785973}, \"0.41998111479023204\": {\"frequency\": 1, \"value\": 0.41998111479023204}, \"0.4521000427894758\": {\"frequency\": 1, \"value\": 0.4521000427894758}, \"0.4147704232675238\": {\"frequency\": 1, \"value\": 0.4147704232675238}, \"0.4193211732645751\": {\"frequency\": 1, \"value\": 0.4193211732645751}, \"0.4210077465226031\": {\"frequency\": 1, \"value\": 0.4210077465226031}, \"0.31287622640337803\": {\"frequency\": 1, \"value\": 0.31287622640337803}, \"0.31354999029773517\": {\"frequency\": 1, \"value\": 0.31354999029773517}, \"0.23737472056631892\": {\"frequency\": 1, \"value\": 0.23737472056631892}, \"0.35610663499751616\": {\"frequency\": 1, \"value\": 0.35610663499751616}, \"0.49929483024691357\": {\"frequency\": 1, \"value\": 0.49929483024691357}, \"0.3496952027275803\": {\"frequency\": 1, \"value\": 0.3496952027275803}, \"0.6455080456254476\": {\"frequency\": 1, \"value\": 0.6455080456254476}, \"0.45845067269036344\": {\"frequency\": 1, \"value\": 0.45845067269036344}, \"0.6867546918471781\": {\"frequency\": 1, \"value\": 0.6867546918471781}, \"0.4040495373820169\": {\"frequency\": 1, \"value\": 0.4040495373820169}, \"0.5502354938271605\": {\"frequency\": 1, \"value\": 0.5502354938271605}, \"0.23358865532893303\": {\"frequency\": 1, \"value\": 0.23358865532893303}, \"0.2156146764778937\": {\"frequency\": 1, \"value\": 0.2156146764778937}, \"0.4269033076016001\": {\"frequency\": 1, \"value\": 0.4269033076016001}, \"0.5920925154320987\": {\"frequency\": 1, \"value\": 0.5920925154320987}, \"0.5118310759760206\": {\"frequency\": 1, \"value\": 0.5118310759760206}, \"0.5513684776858114\": {\"frequency\": 1, \"value\": 0.5513684776858114}, \"0.6503355532786885\": {\"frequency\": 1, \"value\": 0.6503355532786885}, \"0.4153291586643713\": {\"frequency\": 1, \"value\": 0.4153291586643713}, \"0.4782798314361206\": {\"frequency\": 1, \"value\": 0.4782798314361206}, \"0.5443097211872827\": {\"frequency\": 1, \"value\": 0.5443097211872827}, \"0.7745595038499752\": {\"frequency\": 1, \"value\": 0.7745595038499752}, \"0.3393939764905982\": {\"frequency\": 1, \"value\": 0.3393939764905982}, \"0.47823846674534853\": {\"frequency\": 1, \"value\": 0.47823846674534853}, \"0.4752837456597222\": {\"frequency\": 1, \"value\": 0.4752837456597222}, \"0.4146413841619149\": {\"frequency\": 1, \"value\": 0.4146413841619149}, \"0.43094945355191255\": {\"frequency\": 1, \"value\": 0.43094945355191255}, \"0.2721018059895315\": {\"frequency\": 1, \"value\": 0.2721018059895315}, \"0.5631172755045177\": {\"frequency\": 1, \"value\": 0.5631172755045177}, \"0.4563094429347826\": {\"frequency\": 1, \"value\": 0.4563094429347826}, \"0.3836793954670547\": {\"frequency\": 1, \"value\": 0.3836793954670547}, \"0.5970130080232466\": {\"frequency\": 1, \"value\": 0.5970130080232466}, \"0.24884507840368608\": {\"frequency\": 1, \"value\": 0.24884507840368608}, \"0.5419364104890528\": {\"frequency\": 1, \"value\": 0.5419364104890528}, \"0.21617633431019384\": {\"frequency\": 1, \"value\": 0.21617633431019384}, \"0.282776615203373\": {\"frequency\": 1, \"value\": 0.282776615203373}, \"0.3683410953800298\": {\"frequency\": 1, \"value\": 0.3683410953800298}, \"0.2672079217892098\": {\"frequency\": 1, \"value\": 0.2672079217892098}, \"0.44048722367113763\": {\"frequency\": 1, \"value\": 0.44048722367113763}, \"0.5475535559275794\": {\"frequency\": 1, \"value\": 0.5475535559275794}, \"0.3599264705882353\": {\"frequency\": 1, \"value\": 0.3599264705882353}, \"0.39457703515803483\": {\"frequency\": 1, \"value\": 0.39457703515803483}, \"0.4074953884548611\": {\"frequency\": 1, \"value\": 0.4074953884548611}, \"0.4574771019622454\": {\"frequency\": 1, \"value\": 0.4574771019622454}, \"0.3799823617800422\": {\"frequency\": 1, \"value\": 0.3799823617800422}, \"0.24493822486472508\": {\"frequency\": 1, \"value\": 0.24493822486472508}, \"0.377048792225534\": {\"frequency\": 1, \"value\": 0.377048792225534}, \"0.45233739459325395\": {\"frequency\": 1, \"value\": 0.45233739459325395}, \"0.3612124457525622\": {\"frequency\": 1, \"value\": 0.3612124457525622}, \"0.45706526995258595\": {\"frequency\": 1, \"value\": 0.45706526995258595}, \"0.2982451339410102\": {\"frequency\": 1, \"value\": 0.2982451339410102}, \"0.2886434695719443\": {\"frequency\": 1, \"value\": 0.2886434695719443}, \"0.6724851377110208\": {\"frequency\": 1, \"value\": 0.6724851377110208}, \"0.5468845623283446\": {\"frequency\": 1, \"value\": 0.5468845623283446}, \"0.696982886904762\": {\"frequency\": 1, \"value\": 0.696982886904762}, \"0.29559446721094346\": {\"frequency\": 1, \"value\": 0.29559446721094346}, \"0.5802960669596896\": {\"frequency\": 1, \"value\": 0.5802960669596896}, \"0.49944796407349257\": {\"frequency\": 1, \"value\": 0.49944796407349257}, \"0.3392628571211014\": {\"frequency\": 1, \"value\": 0.3392628571211014}, \"0.346982421875\": {\"frequency\": 1, \"value\": 0.346982421875}, \"0.5712663779185295\": {\"frequency\": 1, \"value\": 0.5712663779185295}, \"0.45310119369615276\": {\"frequency\": 1, \"value\": 0.45310119369615276}, \"0.3062129172622238\": {\"frequency\": 1, \"value\": 0.3062129172622238}, \"0.29340831470442125\": {\"frequency\": 1, \"value\": 0.29340831470442125}, \"0.41688431977172313\": {\"frequency\": 1, \"value\": 0.41688431977172313}, \"0.3702671696472926\": {\"frequency\": 1, \"value\": 0.3702671696472926}, \"0.26271249564589966\": {\"frequency\": 1, \"value\": 0.26271249564589966}, \"0.4951813395503953\": {\"frequency\": 1, \"value\": 0.4951813395503953}, \"0.6230137698708396\": {\"frequency\": 1, \"value\": 0.6230137698708396}, \"0.6812911388474913\": {\"frequency\": 1, \"value\": 0.6812911388474913}, \"0.16724999876117422\": {\"frequency\": 1, \"value\": 0.16724999876117422}, \"0.384980101320447\": {\"frequency\": 1, \"value\": 0.384980101320447}, \"0.5695894225700247\": {\"frequency\": 1, \"value\": 0.5695894225700247}, \"0.6544611855158731\": {\"frequency\": 1, \"value\": 0.6544611855158731}, \"0.4474445789865872\": {\"frequency\": 1, \"value\": 0.4474445789865872}, \"0.624500079195375\": {\"frequency\": 1, \"value\": 0.624500079195375}, \"0.26373090536512667\": {\"frequency\": 1, \"value\": 0.26373090536512667}, \"0.3457316794590643\": {\"frequency\": 1, \"value\": 0.3457316794590643}, \"0.4716129533035271\": {\"frequency\": 1, \"value\": 0.4716129533035271}, \"0.31504677128462977\": {\"frequency\": 1, \"value\": 0.31504677128462977}, \"0.46550943809869233\": {\"frequency\": 1, \"value\": 0.46550943809869233}, \"0.6598072530864197\": {\"frequency\": 1, \"value\": 0.6598072530864197}, \"0.5678630357922089\": {\"frequency\": 1, \"value\": 0.5678630357922089}, \"0.2399013164438609\": {\"frequency\": 1, \"value\": 0.2399013164438609}, \"0.47904341045050963\": {\"frequency\": 1, \"value\": 0.47904341045050963}, \"0.31271145961867614\": {\"frequency\": 1, \"value\": 0.31271145961867614}, \"0.2615838216145833\": {\"frequency\": 1, \"value\": 0.2615838216145833}, \"0.4129834429498613\": {\"frequency\": 1, \"value\": 0.4129834429498613}, \"0.31384354848710316\": {\"frequency\": 1, \"value\": 0.31384354848710316}, \"0.2559744659778627\": {\"frequency\": 1, \"value\": 0.2559744659778627}, \"0.30404200819672134\": {\"frequency\": 1, \"value\": 0.30404200819672134}, \"0.3906139404896254\": {\"frequency\": 1, \"value\": 0.3906139404896254}, \"0.32955887691971036\": {\"frequency\": 1, \"value\": 0.32955887691971036}, \"0.6071641936719185\": {\"frequency\": 1, \"value\": 0.6071641936719185}, \"0.8099279978918651\": {\"frequency\": 1, \"value\": 0.8099279978918651}, \"0.5125116050207962\": {\"frequency\": 1, \"value\": 0.5125116050207962}, \"0.28732159686579933\": {\"frequency\": 1, \"value\": 0.28732159686579933}, \"0.33081403349135197\": {\"frequency\": 1, \"value\": 0.33081403349135197}, \"0.4912938524508634\": {\"frequency\": 1, \"value\": 0.4912938524508634}, \"0.48710110842026827\": {\"frequency\": 1, \"value\": 0.48710110842026827}, \"0.31788458944622633\": {\"frequency\": 1, \"value\": 0.31788458944622633}, \"0.4295236181644492\": {\"frequency\": 1, \"value\": 0.4295236181644492}, \"0.371693079914784\": {\"frequency\": 1, \"value\": 0.371693079914784}, \"0.35772851267207767\": {\"frequency\": 1, \"value\": 0.35772851267207767}, \"0.6603916325644841\": {\"frequency\": 1, \"value\": 0.6603916325644841}, \"0.6606293231225296\": {\"frequency\": 1, \"value\": 0.6606293231225296}, \"0.30024451572028193\": {\"frequency\": 1, \"value\": 0.30024451572028193}, \"0.32512866007728897\": {\"frequency\": 1, \"value\": 0.32512866007728897}, \"0.4164531566119883\": {\"frequency\": 1, \"value\": 0.4164531566119883}, \"0.350867098236463\": {\"frequency\": 1, \"value\": 0.350867098236463}, \"0.25215784143518516\": {\"frequency\": 1, \"value\": 0.25215784143518516}, \"0.3660123697916667\": {\"frequency\": 1, \"value\": 0.3660123697916667}, \"0.3676297286346747\": {\"frequency\": 1, \"value\": 0.3676297286346747}, \"0.5604809046339194\": {\"frequency\": 1, \"value\": 0.5604809046339194}, \"0.5590017700195312\": {\"frequency\": 1, \"value\": 0.5590017700195312}, \"0.36471334761549923\": {\"frequency\": 1, \"value\": 0.36471334761549923}, \"0.49503341994885164\": {\"frequency\": 1, \"value\": 0.49503341994885164}, \"0.42134562841530054\": {\"frequency\": 1, \"value\": 0.42134562841530054}, \"0.26796899866714413\": {\"frequency\": 1, \"value\": 0.26796899866714413}, \"0.4470999616032501\": {\"frequency\": 1, \"value\": 0.4470999616032501}, \"0.5732110305059523\": {\"frequency\": 1, \"value\": 0.5732110305059523}, \"0.4002008817685047\": {\"frequency\": 1, \"value\": 0.4002008817685047}, \"0.3229355003720238\": {\"frequency\": 1, \"value\": 0.3229355003720238}, \"0.4347750156200413\": {\"frequency\": 1, \"value\": 0.4347750156200413}, \"0.4173993262543467\": {\"frequency\": 1, \"value\": 0.4173993262543467}, \"0.39012503793834336\": {\"frequency\": 1, \"value\": 0.39012503793834336}, \"0.3689236111111111\": {\"frequency\": 1, \"value\": 0.3689236111111111}, \"0.5887561638913669\": {\"frequency\": 1, \"value\": 0.5887561638913669}, \"0.35136822879366597\": {\"frequency\": 1, \"value\": 0.35136822879366597}, \"0.5242629699379056\": {\"frequency\": 1, \"value\": 0.5242629699379056}, \"0.5632515765250997\": {\"frequency\": 1, \"value\": 0.5632515765250997}, \"0.367672603546627\": {\"frequency\": 1, \"value\": 0.367672603546627}, \"0.28522269075256623\": {\"frequency\": 1, \"value\": 0.28522269075256623}, \"0.37428411910669973\": {\"frequency\": 1, \"value\": 0.37428411910669973}, \"0.29028086131840797\": {\"frequency\": 1, \"value\": 0.29028086131840797}, \"0.4726221987819926\": {\"frequency\": 1, \"value\": 0.4726221987819926}, \"0.5292525617710863\": {\"frequency\": 1, \"value\": 0.5292525617710863}, \"0.5808525958534013\": {\"frequency\": 1, \"value\": 0.5808525958534013}, \"0.6792705939912071\": {\"frequency\": 1, \"value\": 0.6792705939912071}, \"0.4163849796501214\": {\"frequency\": 1, \"value\": 0.4163849796501214}, \"0.44057647882350603\": {\"frequency\": 1, \"value\": 0.44057647882350603}, \"0.39588944692460315\": {\"frequency\": 1, \"value\": 0.39588944692460315}, \"0.7438753570541481\": {\"frequency\": 1, \"value\": 0.7438753570541481}, \"0.47229461515324217\": {\"frequency\": 1, \"value\": 0.47229461515324217}, \"0.6562672588365243\": {\"frequency\": 1, \"value\": 0.6562672588365243}, \"0.38016210245591686\": {\"frequency\": 1, \"value\": 0.38016210245591686}, \"0.429991939484127\": {\"frequency\": 1, \"value\": 0.429991939484127}, \"0.36261954697986576\": {\"frequency\": 1, \"value\": 0.36261954697986576}, \"0.5720573431324111\": {\"frequency\": 1, \"value\": 0.5720573431324111}, \"0.5025168436413313\": {\"frequency\": 1, \"value\": 0.5025168436413313}, \"0.41808657786885245\": {\"frequency\": 1, \"value\": 0.41808657786885245}, \"0.44394726383692235\": {\"frequency\": 1, \"value\": 0.44394726383692235}, \"0.42111548373075014\": {\"frequency\": 1, \"value\": 0.42111548373075014}, \"0.13029897491486497\": {\"frequency\": 1, \"value\": 0.13029897491486497}, \"0.28940587347162866\": {\"frequency\": 1, \"value\": 0.28940587347162866}, \"0.35640018297476417\": {\"frequency\": 1, \"value\": 0.35640018297476417}, \"0.2997783935668157\": {\"frequency\": 1, \"value\": 0.2997783935668157}, \"0.4500177422853478\": {\"frequency\": 1, \"value\": 0.4500177422853478}, \"0.5524669343248996\": {\"frequency\": 1, \"value\": 0.5524669343248996}, \"0.2593671603328366\": {\"frequency\": 1, \"value\": 0.2593671603328366}, \"0.6215222925981123\": {\"frequency\": 1, \"value\": 0.6215222925981123}, \"0.31480055365636145\": {\"frequency\": 1, \"value\": 0.31480055365636145}, \"0.4132759859294491\": {\"frequency\": 1, \"value\": 0.4132759859294491}, \"0.6805141549790314\": {\"frequency\": 1, \"value\": 0.6805141549790314}, \"0.16178798745653253\": {\"frequency\": 1, \"value\": 0.16178798745653253}, \"0.6255806587837838\": {\"frequency\": 1, \"value\": 0.6255806587837838}, \"0.4527795209026457\": {\"frequency\": 1, \"value\": 0.4527795209026457}, \"0.36753236576045856\": {\"frequency\": 1, \"value\": 0.36753236576045856}, \"0.4360523782911078\": {\"frequency\": 1, \"value\": 0.4360523782911078}, \"0.42306297686286165\": {\"frequency\": 1, \"value\": 0.42306297686286165}, \"0.543047845255837\": {\"frequency\": 1, \"value\": 0.543047845255837}, \"0.5092896174863388\": {\"frequency\": 1, \"value\": 0.5092896174863388}, \"0.34554165381323887\": {\"frequency\": 1, \"value\": 0.34554165381323887}, \"0.4778650757025435\": {\"frequency\": 1, \"value\": 0.4778650757025435}, \"0.44301920983837945\": {\"frequency\": 1, \"value\": 0.44301920983837945}, \"0.5104423735222704\": {\"frequency\": 1, \"value\": 0.5104423735222704}, \"0.15357954799773216\": {\"frequency\": 1, \"value\": 0.15357954799773216}, \"0.2716826789463933\": {\"frequency\": 1, \"value\": 0.2716826789463933}, \"0.468780815325385\": {\"frequency\": 1, \"value\": 0.468780815325385}, \"0.4756634830388307\": {\"frequency\": 1, \"value\": 0.4756634830388307}, \"0.3525224328847378\": {\"frequency\": 1, \"value\": 0.3525224328847378}, \"0.6470531233836636\": {\"frequency\": 1, \"value\": 0.6470531233836636}, \"0.4997439161823827\": {\"frequency\": 1, \"value\": 0.4997439161823827}, \"0.4534650457250328\": {\"frequency\": 1, \"value\": 0.4534650457250328}, \"0.48497028007939336\": {\"frequency\": 1, \"value\": 0.48497028007939336}, \"0.3230741817607623\": {\"frequency\": 1, \"value\": 0.3230741817607623}, \"0.4310842177946081\": {\"frequency\": 1, \"value\": 0.4310842177946081}, \"0.3700030337391581\": {\"frequency\": 1, \"value\": 0.3700030337391581}, \"0.5604716590750697\": {\"frequency\": 1, \"value\": 0.5604716590750697}, \"0.4149273076463798\": {\"frequency\": 1, \"value\": 0.4149273076463798}, \"0.6976848036449671\": {\"frequency\": 1, \"value\": 0.6976848036449671}, \"0.5794314236111111\": {\"frequency\": 1, \"value\": 0.5794314236111111}, \"0.331125210562822\": {\"frequency\": 1, \"value\": 0.331125210562822}, \"0.3749853282740461\": {\"frequency\": 1, \"value\": 0.3749853282740461}, \"0.5043604990354298\": {\"frequency\": 1, \"value\": 0.5043604990354298}, \"0.37586552526595746\": {\"frequency\": 1, \"value\": 0.37586552526595746}, \"0.5646783241823824\": {\"frequency\": 1, \"value\": 0.5646783241823824}, \"0.4576566884677387\": {\"frequency\": 1, \"value\": 0.4576566884677387}, \"0.63111363715485\": {\"frequency\": 1, \"value\": 0.63111363715485}, \"0.4244372325338376\": {\"frequency\": 1, \"value\": 0.4244372325338376}, \"0.27609211997019373\": {\"frequency\": 1, \"value\": 0.27609211997019373}, \"0.478391238201689\": {\"frequency\": 1, \"value\": 0.478391238201689}, \"0.32725937004558064\": {\"frequency\": 1, \"value\": 0.32725937004558064}, \"0.3181904045241593\": {\"frequency\": 1, \"value\": 0.3181904045241593}, \"0.5918160860655738\": {\"frequency\": 1, \"value\": 0.5918160860655738}, \"0.4750133250656769\": {\"frequency\": 1, \"value\": 0.4750133250656769}, \"0.3351016739744352\": {\"frequency\": 1, \"value\": 0.3351016739744352}, \"0.5316471063089916\": {\"frequency\": 1, \"value\": 0.5316471063089916}, \"0.7187208147044213\": {\"frequency\": 1, \"value\": 0.7187208147044213}, \"0.36182017251097665\": {\"frequency\": 1, \"value\": 0.36182017251097665}, \"0.48809376550099204\": {\"frequency\": 1, \"value\": 0.48809376550099204}, \"0.4031633445106806\": {\"frequency\": 1, \"value\": 0.4031633445106806}, \"0.36218495392342986\": {\"frequency\": 1, \"value\": 0.36218495392342986}, \"0.37253267821659214\": {\"frequency\": 1, \"value\": 0.37253267821659214}, \"0.43918891059027776\": {\"frequency\": 1, \"value\": 0.43918891059027776}, \"0.7297381101733577\": {\"frequency\": 1, \"value\": 0.7297381101733577}, \"0.6354505091902632\": {\"frequency\": 1, \"value\": 0.6354505091902632}, \"0.5004939111003326\": {\"frequency\": 1, \"value\": 0.5004939111003326}, \"0.40741919709388974\": {\"frequency\": 1, \"value\": 0.40741919709388974}, \"0.6338044119473423\": {\"frequency\": 1, \"value\": 0.6338044119473423}, \"0.28645856619473425\": {\"frequency\": 1, \"value\": 0.28645856619473425}, \"0.5972711833003953\": {\"frequency\": 1, \"value\": 0.5972711833003953}, \"0.2516909365799316\": {\"frequency\": 1, \"value\": 0.2516909365799316}, \"0.41800365638558296\": {\"frequency\": 1, \"value\": 0.41800365638558296}, \"0.28513939731699073\": {\"frequency\": 1, \"value\": 0.28513939731699073}, \"0.5979422646827608\": {\"frequency\": 1, \"value\": 0.5979422646827608}, \"0.4390623134179835\": {\"frequency\": 1, \"value\": 0.4390623134179835}, \"0.5788268178893179\": {\"frequency\": 1, \"value\": 0.5788268178893179}, \"0.33330977182539684\": {\"frequency\": 1, \"value\": 0.33330977182539684}, \"0.5356127359662196\": {\"frequency\": 1, \"value\": 0.5356127359662196}, \"0.383006992769045\": {\"frequency\": 1, \"value\": 0.383006992769045}, \"0.5704022702379767\": {\"frequency\": 1, \"value\": 0.5704022702379767}, \"0.27169224519077745\": {\"frequency\": 1, \"value\": 0.27169224519077745}, \"0.4832924107142857\": {\"frequency\": 1, \"value\": 0.4832924107142857}, \"0.4299107380319149\": {\"frequency\": 1, \"value\": 0.4299107380319149}, \"0.3734682393872149\": {\"frequency\": 1, \"value\": 0.3734682393872149}, \"0.6718417796467703\": {\"frequency\": 1, \"value\": 0.6718417796467703}, \"0.3682447273204245\": {\"frequency\": 1, \"value\": 0.3682447273204245}, \"0.33559783299763996\": {\"frequency\": 1, \"value\": 0.33559783299763996}, \"0.34083457825000996\": {\"frequency\": 1, \"value\": 0.34083457825000996}, \"0.2863882420516642\": {\"frequency\": 1, \"value\": 0.2863882420516642}, \"0.4353533451140873\": {\"frequency\": 1, \"value\": 0.4353533451140873}, \"0.5302000874447718\": {\"frequency\": 1, \"value\": 0.5302000874447718}, \"0.45487841376895655\": {\"frequency\": 1, \"value\": 0.45487841376895655}, \"0.38924534489172824\": {\"frequency\": 1, \"value\": 0.38924534489172824}, \"0.48312779433681075\": {\"frequency\": 1, \"value\": 0.48312779433681075}, \"0.34974416294088423\": {\"frequency\": 1, \"value\": 0.34974416294088423}, \"0.27834576644945963\": {\"frequency\": 1, \"value\": 0.27834576644945963}, \"0.6812476366277913\": {\"frequency\": 1, \"value\": 0.6812476366277913}, \"0.4625658162434896\": {\"frequency\": 1, \"value\": 0.4625658162434896}, \"0.5814409722222222\": {\"frequency\": 1, \"value\": 0.5814409722222222}, \"0.40328272478887234\": {\"frequency\": 1, \"value\": 0.40328272478887234}, \"0.36223431092232045\": {\"frequency\": 1, \"value\": 0.36223431092232045}, \"0.4159942405613512\": {\"frequency\": 1, \"value\": 0.4159942405613512}, \"0.4193638503869261\": {\"frequency\": 1, \"value\": 0.4193638503869261}, \"0.36476823092883015\": {\"frequency\": 1, \"value\": 0.36476823092883015}, \"0.29788287913278594\": {\"frequency\": 1, \"value\": 0.29788287913278594}, \"0.29211189766517637\": {\"frequency\": 1, \"value\": 0.29211189766517637}, \"0.3358842965949821\": {\"frequency\": 1, \"value\": 0.3358842965949821}, \"0.3448531281001984\": {\"frequency\": 1, \"value\": 0.3448531281001984}, \"0.46379307087570115\": {\"frequency\": 1, \"value\": 0.46379307087570115}, \"0.29441234048002707\": {\"frequency\": 1, \"value\": 0.29441234048002707}, \"0.44353755890376984\": {\"frequency\": 1, \"value\": 0.44353755890376984}, \"0.3151498168054288\": {\"frequency\": 1, \"value\": 0.3151498168054288}, \"0.18708940338202604\": {\"frequency\": 1, \"value\": 0.18708940338202604}, \"0.46083542408848466\": {\"frequency\": 1, \"value\": 0.46083542408848466}, \"0.24644742146440515\": {\"frequency\": 1, \"value\": 0.24644742146440515}, \"0.6209327380241904\": {\"frequency\": 1, \"value\": 0.6209327380241904}, \"0.528193940150055\": {\"frequency\": 1, \"value\": 0.528193940150055}, \"0.17670077447382032\": {\"frequency\": 1, \"value\": 0.17670077447382032}, \"0.16449807511388392\": {\"frequency\": 1, \"value\": 0.16449807511388392}, \"0.5911812160326086\": {\"frequency\": 1, \"value\": 0.5911812160326086}, \"0.4804540566662023\": {\"frequency\": 1, \"value\": 0.4804540566662023}, \"0.2839255030536325\": {\"frequency\": 1, \"value\": 0.2839255030536325}, \"0.643364737654321\": {\"frequency\": 1, \"value\": 0.643364737654321}, \"0.34901593873263165\": {\"frequency\": 1, \"value\": 0.34901593873263165}, \"0.5346125966494846\": {\"frequency\": 1, \"value\": 0.5346125966494846}, \"0.45613774715197425\": {\"frequency\": 1, \"value\": 0.45613774715197425}, \"0.6026402222172725\": {\"frequency\": 1, \"value\": 0.6026402222172725}, \"0.3116336779682067\": {\"frequency\": 1, \"value\": 0.3116336779682067}, \"0.44647893518518517\": {\"frequency\": 1, \"value\": 0.44647893518518517}, \"0.45512935731202486\": {\"frequency\": 1, \"value\": 0.45512935731202486}, \"0.30191520220515067\": {\"frequency\": 1, \"value\": 0.30191520220515067}, \"0.4112903800843254\": {\"frequency\": 1, \"value\": 0.4112903800843254}, \"0.5237619336931457\": {\"frequency\": 1, \"value\": 0.5237619336931457}, \"0.7036412879880986\": {\"frequency\": 1, \"value\": 0.7036412879880986}, \"0.40159890399900644\": {\"frequency\": 1, \"value\": 0.40159890399900644}, \"0.4011859631147541\": {\"frequency\": 1, \"value\": 0.4011859631147541}, \"0.2505280092592593\": {\"frequency\": 1, \"value\": 0.2505280092592593}, \"0.6192816225782414\": {\"frequency\": 1, \"value\": 0.6192816225782414}, \"0.40302893504785636\": {\"frequency\": 1, \"value\": 0.40302893504785636}, \"0.450263671875\": {\"frequency\": 1, \"value\": 0.450263671875}, \"0.7452783088454802\": {\"frequency\": 1, \"value\": 0.7452783088454802}, \"0.3966397323646299\": {\"frequency\": 1, \"value\": 0.3966397323646299}, \"0.3778379914906103\": {\"frequency\": 1, \"value\": 0.3778379914906103}, \"0.3416163686040735\": {\"frequency\": 1, \"value\": 0.3416163686040735}, \"0.5358800678852855\": {\"frequency\": 1, \"value\": 0.5358800678852855}, \"0.3553787241770489\": {\"frequency\": 1, \"value\": 0.3553787241770489}, \"0.41479799903388825\": {\"frequency\": 1, \"value\": 0.41479799903388825}, \"0.3122278234834614\": {\"frequency\": 1, \"value\": 0.3122278234834614}, \"0.3677729730231867\": {\"frequency\": 1, \"value\": 0.3677729730231867}, \"0.6199280788520479\": {\"frequency\": 1, \"value\": 0.6199280788520479}, \"0.3851578024093393\": {\"frequency\": 1, \"value\": 0.3851578024093393}, \"0.4534243143066173\": {\"frequency\": 1, \"value\": 0.4534243143066173}, \"0.49734182820523026\": {\"frequency\": 1, \"value\": 0.49734182820523026}, \"0.4103854349102416\": {\"frequency\": 1, \"value\": 0.4103854349102416}, \"0.2981676228841146\": {\"frequency\": 1, \"value\": 0.2981676228841146}, \"0.5147275555357567\": {\"frequency\": 1, \"value\": 0.5147275555357567}, \"0.5415713420063316\": {\"frequency\": 1, \"value\": 0.5415713420063316}, \"0.30589542970690514\": {\"frequency\": 1, \"value\": 0.30589542970690514}, \"0.40628321323675826\": {\"frequency\": 1, \"value\": 0.40628321323675826}, \"0.3590940061271584\": {\"frequency\": 1, \"value\": 0.3590940061271584}, \"0.5563606867858917\": {\"frequency\": 1, \"value\": 0.5563606867858917}, \"0.36740505487792813\": {\"frequency\": 1, \"value\": 0.36740505487792813}, \"0.5267973019125683\": {\"frequency\": 1, \"value\": 0.5267973019125683}, \"0.4876612103174603\": {\"frequency\": 1, \"value\": 0.4876612103174603}, \"0.493707759796627\": {\"frequency\": 1, \"value\": 0.493707759796627}, \"0.7943856956845238\": {\"frequency\": 1, \"value\": 0.7943856956845238}, \"0.24479865250869348\": {\"frequency\": 1, \"value\": 0.24479865250869348}, \"0.41851709759424605\": {\"frequency\": 1, \"value\": 0.41851709759424605}, \"0.42735075702382297\": {\"frequency\": 1, \"value\": 0.42735075702382297}, \"0.5346193514996632\": {\"frequency\": 1, \"value\": 0.5346193514996632}, \"0.5393722832836563\": {\"frequency\": 1, \"value\": 0.5393722832836563}, \"0.5071675297405548\": {\"frequency\": 1, \"value\": 0.5071675297405548}, \"0.5329661096245182\": {\"frequency\": 1, \"value\": 0.5329661096245182}, \"0.35921274276654774\": {\"frequency\": 1, \"value\": 0.35921274276654774}, \"0.5965826259801775\": {\"frequency\": 1, \"value\": 0.5965826259801775}, \"0.34556877404990477\": {\"frequency\": 1, \"value\": 0.34556877404990477}, \"0.5557468641331347\": {\"frequency\": 1, \"value\": 0.5557468641331347}, \"0.1443597863884749\": {\"frequency\": 1, \"value\": 0.1443597863884749}, \"0.49821268297762616\": {\"frequency\": 1, \"value\": 0.49821268297762616}, \"0.4719148761087352\": {\"frequency\": 1, \"value\": 0.4719148761087352}, \"0.3806999813710879\": {\"frequency\": 1, \"value\": 0.3806999813710879}, \"0.49881206895272207\": {\"frequency\": 1, \"value\": 0.49881206895272207}, \"0.39985655737704917\": {\"frequency\": 1, \"value\": 0.39985655737704917}, \"0.4445430234959787\": {\"frequency\": 1, \"value\": 0.4445430234959787}, \"0.3785916260747124\": {\"frequency\": 1, \"value\": 0.3785916260747124}, \"0.3586060916542474\": {\"frequency\": 1, \"value\": 0.3586060916542474}, \"0.3766297022956951\": {\"frequency\": 1, \"value\": 0.3766297022956951}, \"0.37110983565588446\": {\"frequency\": 1, \"value\": 0.37110983565588446}, \"0.6454734653507201\": {\"frequency\": 1, \"value\": 0.6454734653507201}, \"0.38855347316204275\": {\"frequency\": 1, \"value\": 0.38855347316204275}, \"0.4633894614361702\": {\"frequency\": 1, \"value\": 0.4633894614361702}, \"0.7875207246646796\": {\"frequency\": 1, \"value\": 0.7875207246646796}, \"0.6275830875398247\": {\"frequency\": 1, \"value\": 0.6275830875398247}, \"0.34790372295905225\": {\"frequency\": 1, \"value\": 0.34790372295905225}, \"0.4977723309312087\": {\"frequency\": 1, \"value\": 0.4977723309312087}, \"0.5134673900669201\": {\"frequency\": 1, \"value\": 0.5134673900669201}, \"0.32430461787319964\": {\"frequency\": 1, \"value\": 0.32430461787319964}, \"0.4165913748137109\": {\"frequency\": 1, \"value\": 0.4165913748137109}, \"0.6478419146548979\": {\"frequency\": 1, \"value\": 0.6478419146548979}, \"0.33726791480377544\": {\"frequency\": 1, \"value\": 0.33726791480377544}, \"0.43875289386388955\": {\"frequency\": 1, \"value\": 0.43875289386388955}, \"0.4123380157126936\": {\"frequency\": 1, \"value\": 0.4123380157126936}, \"0.6757779070722048\": {\"frequency\": 1, \"value\": 0.6757779070722048}, \"0.3483406701095072\": {\"frequency\": 1, \"value\": 0.3483406701095072}, \"0.6369226655505953\": {\"frequency\": 1, \"value\": 0.6369226655505953}, \"0.29960286458333335\": {\"frequency\": 1, \"value\": 0.29960286458333335}, \"0.2232441901687789\": {\"frequency\": 1, \"value\": 0.2232441901687789}, \"0.5413257575757576\": {\"frequency\": 1, \"value\": 0.5413257575757576}, \"0.2301623820168902\": {\"frequency\": 1, \"value\": 0.2301623820168902}}, \"mean\": 0.4310387558222442}}, \"selected_variable\": {\"name\": [\"images\"], \"descriptives\": {\"rows\": 1328, \"columns\": 7}, \"view_component\": \"Summary\", \"view_file\": \"sframe\", \"view_params\": {\"y\": null, \"x\": null, \"columns\": [\"path\", \"image\", \"folder\", \"red\", \"green\", \"blue\", \"rgb\"], \"view\": null}, \"view_components\": [\"Summary\", \"Table\", \"Bar Chart\", \"BoxWhisker Plot\", \"Line Chart\", \"Scatter Plot\", \"Heat Map\", \"Plots\"], \"type\": \"SFrame\", \"columns\": [{\"dtype\": \"str\", \"name\": \"path\"}, {\"dtype\": \"Image\", \"name\": \"image\"}, {\"dtype\": \"str\", \"name\": \"folder\"}, {\"dtype\": \"float\", \"name\": \"red\"}, {\"dtype\": \"float\", \"name\": \"green\"}, {\"dtype\": \"float\", \"name\": \"blue\"}, {\"dtype\": \"list\", \"name\": \"rgb\"}], \"column_identifiers\": [\"blue\", \"image\", \"rgb\", \"green\", \"path\", \"folder\", \"red\"]}, \"columns\": [{\"dtype\": \"str\", \"name\": \"path\"}, {\"dtype\": \"Image\", \"name\": \"image\"}, {\"dtype\": \"str\", \"name\": \"folder\"}, {\"dtype\": \"float\", \"name\": \"red\"}, {\"dtype\": \"float\", \"name\": \"green\"}, {\"dtype\": \"float\", \"name\": \"blue\"}, {\"dtype\": \"list\", \"name\": \"rgb\"}]}, e);\n", + " });\n", + " })();\n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "images = gl.SFrame('images.sf')\n", + "gl.canvas.set_target('ipynb')\n", + "import array\n", + "images['rgb'] = images.pack_columns(['red', 'green', 'blue'])['X4']\n", + "images.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pathimagefolderredgreenblue
/data/coursera/images/sun
sets/ANd9GcSN4TPL6_Xo ...
Height: 194 Width: 259sunsets0.4032234842080.2545700932660.297391832186
/data/coursera/images/sun
sets/ANd9GcQeme67tTCc ...
Height: 194 Width: 259sunsets0.5568352144950.246377199180.0395407719022
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rgb
[0.403223484208,
0.254570093266, ...
[0.556835214495,
0.24637719918, ...
\n", + "[2 rows x 7 columns]
\n", + "
" + ], + "text/plain": [ + "Columns:\n", + "\tpath\tstr\n", + "\timage\tImage\n", + "\tfolder\tstr\n", + "\tred\tfloat\n", + "\tgreen\tfloat\n", + "\tblue\tfloat\n", + "\trgb\tlist\n", + "\n", + "Rows: 2\n", + "\n", + "Data:\n", + "+-------------------------------+------------------------+---------+\n", + "| path | image | folder |\n", + "+-------------------------------+------------------------+---------+\n", + "| /data/coursera/images/suns... | Height: 194 Width: 259 | sunsets |\n", + "| /data/coursera/images/suns... | Height: 194 Width: 259 | sunsets |\n", + "+-------------------------------+------------------------+---------+\n", + "+----------------+----------------+-----------------+\n", + "| red | green | blue |\n", + "+----------------+----------------+-----------------+\n", + "| 0.403223484208 | 0.254570093266 | 0.297391832186 |\n", + "| 0.556835214495 | 0.24637719918 | 0.0395407719022 |\n", + "+----------------+----------------+-----------------+\n", + "+-------------------------------+\n", + "| rgb |\n", + "+-------------------------------+\n", + "| [0.403223484208, 0.2545700... |\n", + "| [0.556835214495, 0.2463771... |\n", + "+-------------------------------+\n", + "[2 rows x 7 columns]" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "images.head(2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need to come up with initial estimates for the mixture weights and component parameters. Let's take three images to be our initial cluster centers, and let's initialize the covariance matrix of each cluster to be diagonal with each element equal to the sample variance from the full data. As in our test on simulated data, we'll start by assuming each mixture component has equal weight. \n", + "\n", + "This may take a few minutes to run." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n", + "Iteration 5\n", + "Iteration 10\n", + "Iteration 15\n", + "Iteration 20\n", + "Iteration 25\n", + "Iteration 30\n", + "Iteration 35\n", + "Iteration 40\n", + "Iteration 45\n", + "Iteration 50\n", + "Iteration 55\n", + "Iteration 60\n", + "Iteration 65\n", + "Iteration 70\n", + "Iteration 75\n", + "Iteration 80\n", + "Iteration 85\n", + "Iteration 90\n", + "Iteration 95\n", + "Iteration 100\n", + "Iteration 105\n", + "Iteration 110\n", + "Iteration 115\n", + "Iteration 118\n" + ] + } + ], + "source": [ + "np.random.seed(1)\n", + "\n", + "# Initalize parameters\n", + "init_means = [images['rgb'][x] for x in np.random.choice(len(images), 4, replace=False)]\n", + "cov = np.diag([images['red'].var(), images['green'].var(), images['blue'].var()])\n", + "init_covariances = [cov, cov, cov, cov]\n", + "init_weights = [1/4., 1/4., 1/4., 1/4.]\n", + "\n", + "# Convert rgb data to numpy arrays\n", + "img_data = [np.array(i) for i in images['rgb']] \n", + "\n", + "# Run our EM algorithm on the image data using the above initializations. \n", + "# This should converge in about 125 iterations\n", + "out = EM(img_data, init_means, init_covariances, init_weights)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The following sections will evaluate the results by asking the following questions:\n", + "\n", + "* **Convergence**: How did the log likelihood change across iterations? Did the algorithm achieve convergence?\n", + "* **Uncertainty**: How did cluster assignment and uncertainty evolve?\n", + "* **Interpretability**: Can we view some example images from each cluster? Do these clusters correspond to known image categories?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluating convergence\n", + "\n", + "Let's start by plotting the log likelihood at each iteration - we know that the EM algorithm guarantees that the log likelihood can only increase (or stay the same) after each iteration, so if our implementation is correct then we should see an increasing function." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEICAYAAABmqDIrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8VVW99/HPV0RIPYikZfKIStoFL9idMmwrJaiJ6BHz\ngoX6lKU9HU90VCwNUTkWZR4zu+oxD14ptbQjCOZWU0oK0SChULxChoAXAgHh9/wx5pLJZO2911rs\nzVp7+32/Xuu19hpzzDHH8LJ+a8wx5hiKCMzMzDrKVvWugJmZdW0ONGZm1qEcaMzMrEM50JiZWYdy\noDEzsw7lQGNmZh1qiwcaSYdKukfSYkmvSXpW0s2S3lsm7yBJd0laLmmFpEclHVfI00PSREmLJK2U\n9JCkwWXKkqSxkhZKWiVptqRjOrKtZmZWnx5NH+CPwJnAp4BzgX2AGZJ2K2WSdARwH7AIOAEYDvwU\n6Fko7xrgNOAbwBHAYmCqpP0L+S4GLgCuAIYBM4DJkoa1Z+PMzGxjaoQHNiW9C5gHjImI70naHngC\nmBQRY1o5byDwCDA6Iq7L0roBc4F5ETEiS9sZeBaYEBHjc+dPB3aKiAM6qGlmZm96jTJGsyx7X5u9\nHwfsBFzWxnnDgTXALaWEiFgH3AQMldQ9Sx4GdAeuL5w/CdhP0u61V93MzFpTt0AjaStJ3SXtDfyY\ndIvspuzwgaTgs7+kxyStlfSMpAsk5es8AFgYEa8Vip8LbAPslcu3OiKeKJNP2XEzM+sAW9fx2n8A\nPpD9/TdgSES8mH3eFdiO1AMZD8wCPgmcD+wAlG6n9QGWlyl7We546f2lCvKZmVk7q2egGQX0AvoD\nXwOmSzowIp4h9bR6AGMj4r+y/PdL2gk4U9K4iHi1LrU2M7Oq1C3QRMT87M+ZkqYAT5FmoJ0BLM2O\nTS+cdjdwOulW1x9IvZl+ZYov9VBKPZblQO8K8m1CUv1nS5iZbSERofYusyEmA0TEy8ACNoypzK3w\n1LnAnpKKU573IU0SWJDL10NS/zL5AvhLG/XrMq9vfvObda+D2+Q2dYVXV2tPRMf9pm6IQCPp7cB7\n2BAYbicN0g8tZD0MeA34c/b5DtKg/8hcWd1Is9amRkRpFtsU4HXgpEJ5o4A5EfF0+7TEzMyKtvit\nM0m3kgb3HwNeAd4NnEXqgVwGEBFzJV0LjM8CxyzSw52nAuMjYmWWb7akm4HLJW0DLCTdetuD9JAn\nWb4lki4DxkpakZV3PNAEHNnBTTYze1OrxxjNDFKP46uk3sizwL3ApZEmApR8AXgO+DLwdtIYzr9H\nxJWF8kYDlwAXkcZhHgWGRsSjhXznAa8CXwF2AeYDIyPirvZqWGfQ1NRU7yq0O7epc+hqbepq7elI\nDbEyQCOTFP5nZGZvBpKIrjoZwMzMui4HGjMz61AONGZm1qEcaMzMrEM50JiZWYdyoDEzsw5Vz0U1\nbQtZswZWroRVq+C119LnNWtg7Vp4/fX0Wrduw2v9+g3vEZu+l17Fzy0day1f6VXSUlr+vfh3ubS2\njpdTyzm15t2cc+pRplWmM/+z37+4J3E7cqDppFatgiefhKeeSq/nn4fFi+Hvf4elS2HZMnjpJXj1\n1RRUzMxac+qpHVe2A02DW78eFiyA2bPT67HH4PHHYeHCzv3ryczePBxoGswrr8Dvfw+/+x3MmAF/\n/GPqmZiZdVZbfAkaSYcC55D2lNkRWAI8BIyLiMdbOOdHpLXPJkXEZwvHegAXk1Zm7g3MBs6JiAcK\n+UTa7+YLbFjrbHxE3NpGfTt0CZq1a+GBB2DaNLjnHvjTn1Ivpj116wbbbgtveQv07Ak9eqTX1ltD\n9+7p+NZbp/etttrwLm1479YtvedfpWOtpbeUp9yrpKW0/Hvx73JpbR0vp5Zzas27OefUo0yrTGf9\nZ//BD8LIkR2zBE09ejR9gD8CPyAFmX7AWGCGpP0i4tl8ZkkHkoLIyy2Udw1p+4CvkVZv/jIwVdKg\niHgsl+9i0kKe57Fh9ebJko6IiCnt1bhKrF4Nd94Jv/gF3HUXvNxSy1ohQb9+0L8/7Lkn7LYb7Lor\n7LIL7Lwz9OkDvXtDr14puHTW//jNrPNriEU1Jb0LmAeMiYjv5dK3Bh4BJgFfBB7I92gkDcyOj46I\n67K0bqSNzuZFxIgsbWfSKtETImJ87vzpwE4RcUArdWu3Hs2cOfCTn8D116fB+krtsAN84APwvvfB\nwIGw337wrnelXoqZWXvpqEU1G2WMpvS1+3oh/WzSsz7fIQWaouGkfWxuKSVExDpJNwHnSOqebX42\nDOgOXF84fxJwtaTdO2rzs3Xr4Pbb4corobm5snPe8x4YPBgOPBA++lHYa690C8rMrDOqW6CRtBXQ\njbRJ2aXAIuDG3PG9gK8Dh2XBo1wxA4CFEfFaIX0uaa+bvYDHs3yrI+KJMvmUHW/XQPP663DjjTBh\nAsyb13renXeGww+HQw+FQw5Jt7/MzLqKevZo/gB8IPv7b8CQiHgxd/yHwC8i4v5WyugDLC+Tvix3\nvPRebu5WMV+7ePhhOOUU+MtfWs7Tpw+ceCIcfzwMGpQG283MuqJ6BppRQC+gP2kgf7qkAyPiGUmj\nSEHohNYKaDSrV8O4cfDtb7c8c+wTn4AzzoCjjkozv8zMurq6BZqImJ/9OVPSFNJWzedK+g/gu8C3\ngLWSdiDd3toK6J59/mdEvE7qzfQrU3yph1LqsSwnTX1uK19Z48aNe+Pvpqamslu4rlwJhx0G95fp\nf3XrBiedBF/7WhrINzNrBM3NzTRXOni8GRpi1hmApJmkgPB50jTlIAWYktLnAI6OiF9LOp80jtM7\nP04jaRzpWZ1eEbFW0snAtcDeEfFkLt9o4Gqgf0uTASqZdbZmDYwYkaYqF518curl9O/fahFmZnXX\npbdylvR24D3AAmAx0AQcnL2XXv8ApmV//y479Q7SoP/IXFndgOOAqdmMM4AppBltJxUuPQqYszkz\nztatg89+dtMg07cv/O//wnXXOciY2ZvbFr91JulW0gOTjwGvAO8GziJNU74sItYAm9yAkvQa8EL+\nif+ImC3pZuBySduQekJnkGaynZDLt0TSZcBYSSvY8MBmE3Dk5rTnkkvg5ps3Ths4EH772zTgb2b2\nZlePMZoZpB7HV0m9kWeBe4FLI+KZVs6L7FU0GrgEuIg0DvMoMDQiHi3kOw94FfgKG5agGRkRZW54\nVWbhwjR9OW/vvWHqVAcZM7OShhmjaVStjdEcfXR6GLPkbW9LU5t3330LVc7MrB116TGazujuuzcO\nMgATJzrImJkVuUfThnI9mrVr0zjM47m1pgcNggcf9FIxZtZ5uUfTQG65ZeMgI8H3v+8gY2ZWjr8a\na3DNNRt/PuWUtJeDmZltyrfO2lC8dfb007DHHhvnmTsXBgzYsvUyM2tvvnXWIH7+840/f/jDDjJm\nZq1xoKnC+vVw7bUbp40eXY+amJl1Hr511ob8rbPmZjj44A3HevSAxYthxx3rUzczs/bkW2cNoNib\nOfpoBxkzs7Y40FRozRr45S83TjvllPrUxcysM9nigUbSoZLukbRY0muSnpV0s6T35vIMkXS9pCcl\nrZS0QNJVknYuU14PSRMlLcryPiRpcJl8kjRW0kJJqyTNlnRMpfWeNQtWrNjweZddYMiQ6ttvZvZm\nU48eTR/gj8CZwKeAc4F9gN9L2i3LczqwE3AxMBSYAAwHZkjatlDeNcBpwDeAI0jbDEyVtH8h38XA\nBcAVwDDS4p6TJQ2rpNIPPLDx5098wtsvm5lVoiEmA0h6FzAPGBMR35P01ohYWsgzGLgPODUirs3S\nBgKPAKMj4rosrRswF5gXESOytJ1Jq0RPiIjxuTKnAztFxAGt1C0iguHD4Y47NqRfeSWceebmt93M\nrFF09ckApa2UXwcoBpnMzOy9by5tOGkfm1tKCRGxDrgJGCqpe5Y8DOgOXF8ocxKwn6RWl8Jcvz6t\nY5Y3eJObc2ZmVk7dAo2krSR1l7Q38GNgEXBjK6c0Ze+5VcYYACzMb+OcmUva62avXL7VEfFEmXzK\njrfo8cdh2bINn3fYAfbdt7UzzMyspB4bn5X8AfhA9vffgCER8WK5jJK2By4nBYb84vx9gOVlTlmW\nO156f6mCfGUVx2cOPNALaJqZVaqegWYU0AvoD3wNmC7pwOIum9mYy03AO4CPRcT6LV3RH/xgXO5T\nE4MHN23pKpiZtbvm5maam5s7/DqNMhlgB+Ap4MaIOCOXLtI4ytHA4RHRXDjvJmBgRLy3kD6SFJz2\njYjHJV0KfCUiti3k+xCpZ3VES1s6S4rddguefXZD2u9+l3o1ZmZdSZeeDBARLwML2DCmUvJjYCTw\nmWKQycwF9pTUs5C+D2mSwIJcvh6S+pfJF8BfWqtfPsj06OEtAczMqtEQgUbS24H3sCEwIOm7wKmk\nqct3tHDqHaRB/5G587oBxwFTI2JtljyFNKPtpML5o4A5EfF0pXX98IdTsDEzs8ps8TEaSbcCs4DH\ngFeAdwNnAWuB72Z5zgH+HbgaeELSR3JFLImIJwEiYrakm4HLJW0DLATOAPYATiidEBFLJF0GjJW0\nIrv+8aSZbEdWU39PazYzq049JgPMIPU4vkrqjTwL3AtcmpsIMIx0S+vU7JX380LaaOAS4CKgN/Ao\nMDQiHi2cdx7wKvAVYBdgPjCypbGZluxfXG/AzMxa1eZkAEmfrabA0hP6XYWkSDEvuf12OOqoOlbI\nzKyDdNRkgEp6NNcWPpe+dVUmDaBLBZqires5IdzMrBOq5Gtzz9zf/we4AfgNafrwC8DbSeMhh5Eb\nF+mqundvO4+ZmW1Q1XM0km4H5kfEOWWOfRvYOyKObsf61V3x1tk998Ahh9SxQmZmHaRRnqMZAkxr\n4djd2fEuzT0aM7PqVBtoVgMtPa74IdJDkl2ax2jMzKpT7dfmLcA4SeuAyWwYozkO+CbpuZcuzT0a\nM7PqVBtoxgD/AvwncGkuPUiTBMa0U70alns0ZmbVqWlRzWxHzEGkBx8XA3+IiL+2c90aQnEywJw5\nsM8+dayQmVkHqedzNJvIgkqXDCxtcY/GzKw6VS+qKWlbSV+WNFnSPdn7GZLeUuH5h2bnLZb0mqRn\nJd0sqbjUf29JP5O0RNIKSdMkbbKvpaQekiZKWiRppaSHJG2yIpmSsZIWSlolabakY6ptvwONmVl1\nqgo0knYhLUh5BWn22bbZ+5XArGwV5rb0Af4InAl8CjiXtFz/DEm75fLdCRya5TsG6A7cK2nXQnnX\nAKcB3wCOIN3KmyqpuCrZxcAFWd2HkdZcmyxpWAV1foMnA5iZVafaBzavA4YCx0TEg7n0jwG/JC3N\nP7rqSqQxn3nAmIj4nqSjgFuBgyPi/ixPL9LqzP8TEWdlaQOBR0hbCVyXpXUj7T8zLyJGZGk7kxbv\nnBAR43PXnQ7sFBEHtFK3jcZonn8edi2GOjOzLqBRHtg8DBibDzIAEfEQG3oUtViWvZf2jxkOLCoF\nmewar5D2n8kvaTmc9OzOLbl860jL4wyVVOp/DCP1iK4vXHcSsJ+k3SutqHs0ZmbVqTbQbA8sauHY\nc9nxikjaSlJ3SXuTdtJcRAoQAAOAOWVOmwv0k7RtLt/CiHitTL5t2LBj5wBgdUQ8USafsuMV8RiN\nmVl1qg0084GTWzg2inT7q1J/IK00MB/YFxgSES9mx/oAy8ucU+r57Fhhvj6595cqyNcm92jMzKpT\n7e/z7wDXZYP+N5AG3nch7Vb5SVoOQuWMAnoB/YGvAdMlHZjb/KwhuUdjZladqr42I2JSdttqPPCz\n3KEXgC9GxA1VlDU/+3OmpCnAU6QZaGeQeik7ljmt1PNYnnvv10q+Zbl8vSvI14Jxb/z14INNDBnS\n1Hp2M7NOoLm5mebm5g6/Tq0rA2wFvJv0Rb2MtHXA+s2qiDQTWB4Rh0q6GvhURPQr5PlvoCki9sw+\nnw98HeidH6eRNA44B+gVEWslnUzawG3viHgyl280aX22/hHxdAv12mjW2fr1oHafk2FmVn+NMusM\ngIhYHxGPR8SD2fvmBpm3A+8BFmRJvwb65h+8zKY3Hwn8KnfqHaRB/5G5fN1Ii3xOjYjSLLYpwOvA\nSYVLjwLmtBRkirp3d5AxM6tW1SMOkvYjrdT8CdLtreXAvcBFEfHnCs6/lfTQ52PAK6Se0VmkacqX\nZdl+DfwemCTpbNJA/tjs2MRSWRExW9LNwOWStiE9Z3MGsAe53T4jYomky4CxklZk1z8eaCIFr4p4\nfMbMrHrVPrD5IeA+YBUpGPydNBngSOAtwEER8ac2yvgPUo/jnaTeyLOkQHVpfiKApN6kyQcjgJ7A\nQ8BXI2JOobwewCXAiaRxmEeBsyPigUI+kYLV57M6zwcujIjb2qjvG7fOevWCl19uLbeZWefVUbfO\nqg0000kzxYZExKu59H8BpgMvR8Sh7V3JesoHmj59YOnSOlfIzKyDNMoYzSDgP/NBBiD7/C3go+1V\nsUbkZ2jMzKpXbaBpq/tT/RS2TsRjNGZm1as20PwBOC+7VfYGSduRphP/vr0q1ojcozEzq161v9HP\nA5qBpyXdyYaVAQ4nbRnQ1J6VazTu0ZiZVa/alQEeljSItK/LUDY8sFnx9ObOzD0aM7PqVf0bPSIe\nA47tgLo0PPdozMyqV9PKAG9W7tGYmVWvlpUBPkF66r4f6UHKvIiIIe1RsUbkHo2ZWfWq+uqUdDrw\nQ9K4zF9J+8lslKWd6tWQ3KMxM6tetb/Rx5D2oTk1ItZ0QH0amns0ZmbVq3aMpi/w35sTZCQdK+k2\nSc9IWilpnqQJkrYv5Bsg6VZJz0taIWmOpDHZ6sz5fD0kTZS0KCvvofyqz7l8kjRW0kJJqyTNlnRM\nNXV3j8bMrHrVBpo/kXbE3BxjSEv2nwsMA64CvgTcXcog6R2k53X2AL4CfBq4Dfg2cHGhvGuA04Bv\nAEeQnu2ZKmn/Qr6LSdOyr8iuOwOYLGlYpRV3j8bMrHrVLqp5AHA98KWIuL+mC0pvjYilhbTSxmRD\nIqJZ0hdIY0HvjogFuXw3klaI7pt9Hgg8AoyOiOuytG7AXGBeRIzI0nYmrRI9ISLG58qbDuwUEQe0\nUt83FtX89KfhjjtqabWZWePrqEU12/yNLulZNl7DbAfgXkkr2bClcklExO6tlVcMMpmZpIkEfbPP\npZtUxUX5X2bjXthw0j42t+TKXyfpJuAcSd2zzc+GZWVeXyhvEnC1pN0r2fzMt87MzKpXyc2ge+j4\nxTKbsms8nn2eTLrN9YNs47OlwCdJO2SOy503AFiY38Y5M5e0181eWZkDgNUR8USZfMqOtxlofOvM\nzKx6bX51RsTojqyApL7AhcC0iJiVXfMfkj5G2rb5ySzremBcRHw3d3ofNu1VQZp+XTpeen+pgnyt\nco/GzKx6df2Nnq36/CvS7a9Tc+k7kQb/VwDHkALCIcD5ktZExLfrUF33aMzMalDJGM1ngd9ExNLs\n71aVBuUrKLcncCdpZtlBEbEod/gc0soD/SLilSztfklbA+Ml/SwilpF6M/3KFF/qoZR6LMtJ2zy3\nla8F4wD485+hubmJpqam1rObmXUCzc3NNDc3d/h12px1Jmk9MChbuXl9G+VFRHRrIw9ZwPgV8HHg\nkxExs3D8LuBtEfGBQvpwUk/no1l9zge+DvTOj9NIGkcKVr0iYm1uVtveEfFkLt9o4Gqgf0uTAfKz\nzk4/HX70o7ZaZ2bWOdVzK+c9gdm5v1t7tfmMjSSRVhdoAo4qBpnM34F3StqhkD4oe38+e7+DNOg/\nMld+N+A4YGo24wxgCunZnZMK5Y0C5lQy4ww8RmNmVotKJgM8Xe7vzXAVaZuBi4FVkj6SO/ZcRDwP\n/Ag4EZgmaSJp1tnBpIc9b83yEBGzJd0MXC5pG2AhcAbpdtwJuXovkXQZMFbSCmAWcDwp2B1ZacU9\nRmNmVr16fHUOI92L+nr2yrsQGB8Rf8iWkbkAuBzoBTxFGiy5rHDOaOAS4CLSOMyjwNCIeLSQ7zzg\nVdJKA7sA84GREXFXpRV3j8bMrHqVjNEspPLnaCIi3rnZtWog+TGasWNhwoQ6V8jMrIPUbWUA4D46\n/oHNTsE9GjOz6tX9gc3OxGM0ZmbV81bOVXCPxsyselUHGknvy/aJeVHS65Len6VPqGbJ/c7IPRoz\ns+pVFWgkfZy0j8t7SM/C5M9fD3yx/arWeNyjMTOrXrU9mkuBqcA+wFcLx2YB72+PSjUq92jMzKpX\n7Vfn+4FjIiLStN+NvAjs3D7Vakzu0ZiZVa/aHs1rwLYtHHsHm25U1qW4R2NmVr1qA83vgLOy9cRK\nSj2b04DftkutGpR7NGZm1av2N/r5wIOkZV5+QQoyn8vWEfsA8KH2rV5jcY/GzKx6VfVosvXDDgJe\nIK1TJuDL2eFPRMT8tsqQdKyk2yQ9I2mlpHnZ1Ojty+QdJOkuScslrZD0qKTjCnl6SJooaVFW3kPZ\nOmnFsiRprKSFklZJmi3pmGra7x6NmVn1qv6Nnm23PCTbuKwP8FJErKyiiDHAc8C52fsBpMU0m4CP\nlTJJOgK4FZhEWol5DTAA6Fko7xrgMOBrpNWbvwxMlTQoIh7L5buYNFPuPDas3jxZ0hERMaWSirtH\nY2ZWvTYX1dwos3RIRLQ4DiPpaxHxnTbKeGtELC2klTYmGxIRzVnv5glgUkSMaaWsgcAjwOjSzp7Z\n+NFcYF5EjMjSdgaeBSZExPjc+dOBnSLigFau8caimnfeCUcc0VrrzMw6r3pufJZ3a/blvglJXyU9\nZ9OqYpDJzCTdhuubfT4O2IlNtwQoGk7q6dySK38dcBMwVFLpZtcwoDtwfeH8ScB+knZvq97gHo2Z\nWS2qDTS3AFMk7ZFPlHQWMJG010stmkjdhr9knw8ElgH7S3pM0tpsTOcCSfk6DwAW5rdxzswl7by5\nVy7f6oh4okw+Zcfb5EBjZla9agPNF4E/kHa+3AlA0ldIPY9/j4irqq2ApL6kMZppEfFIlrwrsB2p\nB3INMIR0a+18UkAr6QMsL1Psstzx0vtLFeRrlScDmJlVr6rf6BGxXtLxwHRSz+Zm0u2yMRFxRbUX\nl7Qd8CvS7a9Tc4e2AnoAYyPiv7K0+7PgdqakcRHxarXXq904AH7+c1i/vommpqYtd2kzsw7S3NxM\nc3Nzh1+nqskAb5wk9SY9vPle4OyI+G4NZfQE7gL2Aw6KiL/kjt0AfAbYPyLm5tJHAL8EPpZt93wT\nMDAi3lsoeyRpnGbfiHhc0qXAVyJi20K+D5F6aEe0tKVzfjLAww/Dh7r0k0Jm9mZWtx02JV3XwqEX\ngLcBA3N5IiI+V0GZW5MCxvuBT+aDTGbupmeVNRcYIalnYZxmH1IvaUEuXw9J/SPiyUK+/NhQqzxG\nY2ZWvUq+Og+i5a2c/wnkH45ss3skSaQtBppIPYmZZbLdDlwEDGXjoHMYab21P2ef7yCN74wE/icr\nvxtp1trUiFib5ZsCvA6clJVbMgqYExFPt1Vv8BiNmVktKtnKeY92vuZVwLGkByhXSfpI7thzEfF8\nRMyVdC0wPgscs4BPkcZxxpceEI2I2dk40eWStiE9sHkGsAfpIc9SG5Zky+SMlbSCDQ9sNgFHVlpx\n92jMzKpX0xjNZl1QWgj0a+HwhaUHKrPbaxcAnwPeDjwFXBkRVxbK6wFcApwI9Catw3Z2RDxQyCdg\nLPB5YBdgfna929qo7xtjNAsWwDvfWXFTzcw6lY4ao2kz0EjqByyOiLXZ362KiGfaq3KNIB9onnoK\ndq/o0U4zs86nbpMBSLejPgo8TOpVtNUF6tbG8U7LYzRmZtWrJNCcSlp3rPT3lr3X1kA8RmNmVr0t\nPkbT2eRvnS1bBjvuWOcKmZl1kEZZVPNNzT0aM7PqVfLA5jVVlBcRcdpm1KeheYzGzKx6lfxGP4TK\nx2W69H0492jMzKrnMZo25Mdo1q8HtfvdSzOzxuAxmjrbemsHGTOzWtQcaCRtJelJSfu0Z4Ualcdn\nzMxqszk9GpHWFOtR1UnSsZJuy3bMXClpnqQJkrZv5ZwfSVpfbiVpST0kTZS0KCvvIUmDy+STpLGS\nFkpaJWm2pGMqrbfHZ8zMalOPW2djSCspnwsMIy2y+SXg7nKZJR1IWnX55RbKuwY4DfgGcASwGJgq\naf9CvotJa6ddkV13BjBZ0rBKKu0ejZlZbWqeDJCtqrwW+GBEzKrivLdGxNJC2smkrZqHRERzLn1r\n4BFgEmkb6Qci4rO54wOz46Mj4rpcveYC8yJiRJa2M/AsMKG0aGeWPh3YKSIOaKW+AcHb3gYvvFBp\nK83MOp+GmwwQEeuAU0hroVVz3tIyyTNJt+L6FtLPJtXxOy0UN5y0wdkthXrdBAyVVOqHDAO6A9cX\nzp8E7CepzaUy3aMxM6vNZt06i4ifR8TydqhHE2kO8eOlBEl7AV8HvpQFj3IGAAsLu2tC6tFsA+yV\ny7c6Ip4ok0/Z8VZ5jMbMrDZVfX1K+mwrh9eTxlEeiYjnqiizL2mXzGmFW3A/BH4REfe3cnofoFyg\nW5Y7Xnp/qYJ8LXKgMTOrTbVfn9ey4en//H28fNr6bNfLUyJiTWuFSdoO+BXp9tepufRRwAfI7ZJZ\nb751ZmZWm2oDzYGkcY47gF8AL5B2vzwO+DRpG+V9gPHA08B5LRUkqSdwJ2mK9EERsShL3w74LvAt\nYK2kHUgBbCuge/b5nxHxOqk3U24ztlIPpdRjWU7afbOtfC0Yx9KlMG4cNDU10dTU1Hp2M7NOoLm5\nmebm5g6/TlWzziT9EpgfEZsEEEkTgPdGxNGSLgJOioj+LZSzNakn83HgkxExM3dsd9IEg2DTXpOy\n96Mj4teSzieN4/TOj9NIGgecA/TKdgYtzWrbOyKezOUbDVwN9I+Ip1uoa0DwvvfBrIrn1pmZdT6N\nMuvsUOCeFo79FhiS/X0/m84gA9KDk8ANpAkAR+WDTObv2bGDs/fS6x/AtOzv32V57yAN+o/Mld+N\n1MOaGhFrs+QppGd3TipcaxQwp6Ugk+cxGjOz2lT79bmaNHZSLth8gDTWAimA/bOFMq4CjiU9QLlK\n0kdyx57518E7AAAVgklEQVSLiOdJgWojkl4DXoiIB0ppETE7Gw+6XNI2pJ7QGaTbcSfk8i2RdBkw\nVtIKYBZwPCloHdlGmwGP0ZiZ1araQDMZuFDSOtIYzT+At5F6FONIT+kDHADMb6GMYaTbX1/PXnkX\nksZ3ygnKb0MwGrgEuIg0DvMoMDQiHi3kOw94FfgKsEtWv5ERcVcL19uIezRmZrWpdozmLcBPKT8b\n7Abg8xHxmqQjgFfbmJrcKZTGaIYMgenT610bM7OO01FjNFX9To+IVcAoSeOBQaSewWLg4YiYn8v3\nm3atZQNwj8bMrDY1fX1GxF+Bv7ZzXRqax2jMzGpTdaCRtC3p4cpPkJ5DWQbcC/x31uPpktyjMTOr\nTVXTmyXtQpqxdQXwQWDb7P1KYJakt7d7DRuEezRmZrWp9jmabwM7AoMjYs+I+GhE7El68LI36Wn+\nLsk9GjOz2lQbaA4DxkbEg/nEiHiIDRuPdUnu0ZiZ1abaQLM9sKiFY89lx7sk92jMzGpTbaCZD5zc\nwrFRwLzNq07jco/GzKw21f5O/w5wXTbofwPpGZpdSMu5fJKWg1Cn5x6NmVltqn1gc1I2vXk88LPc\noReA0yPihvasXCNxj8bMrDZVb+UcET8BdiXtOzM4e+8LPCXpsbbOl3SspNskPSNppaR5kiZI2j6X\nZ4ik6yU9meVZIOkqSTuXKa+HpImSFmV5H5I0uEw+SRoraaGkVZJmSzqm0na7R2NmVpuqAw1ARKyP\niMcj4sHsfT2wAynotGUMacn+c0kLbF4FfAm4O5fndGAn0grPQ4EJwHBgRtajyrsGOI0Ns94WA1Ml\n7V/IdzFwAekZoGHADGCypGGVtNk9GjOz2tTjd/qnI2Jp7vP9kpYD10pqiohm4EuFPA9I+htwH2mv\nmWsBJA0kLfA5OiKuy9LuB+aSbu+NyNJ2JgW4CRHxvazM+yTtDVxK2q+mVe7RmJnVpqYezeYoBJCS\nmaTdM/u2kQc23lBtOGkPnFty5a8DbgKGSir1Q4YB3UnbUOdNAvbLdvVslXs0Zma12eKBpgVNpL1m\nHm8jD4U8A4CF+W2cM3NJO2/ulcu3OiKeKJNP2fFWuUdjZlabNr8+JfWvsKxdaqmApL6kDc+mRcSs\nFvJsD1xOCgy35w71AZaXOWVZ7njp/aUK8rXIPRozs9pU8jt9AeV3tixShfk2nCBtB/yKdPvr1Bby\ndCPdCnsH8LFs4sEWNo7p02HFCmhqaqKpqWnLV8HMrJ01NzfT3Nzc4depJNCc0hEXltQTuBPYAzgo\nIjZZ2kaSgOuAQ4DDI2JuIctyoF+Z4ks9lGW5fL0ryNeCcXz60/DlL7eey8ysMyn+cL7wwgs75Dpt\nBpqI+Hl7X1TS1sAvgfcDn4yIv7SQ9cfASOBfs9loRXOBEZJ6FsZp9iH1khbk8vWQ1D8inizkC6Cl\n67/Bt87MzGqzxScDZL2UG0iD+0dFxMwW8n2XdDttdETc0UJxd5AG/UfmzutGmgI9NSLWZslTSM/u\nnFQ4fxQwJyKebqvengxgZlabenx9XgUcS3qAcpWkj+SOPRcRz0s6B/h34GrgiUKeJaVeSUTMlnQz\ncLmkbYCFwBmk23EnlE6IiCWSLgPGSlpB2rzteFKwO7KSSrtHY2ZWG0VUNX6/+ReUFlJ+XAXgwogY\nL+le4KAW8vw8It6YOCCpB3AJcCJpHOZR4OyIeKBwXQFjgc+TZsjNz653Wxv1DQiuvx5OPLHt9pmZ\ndVaSiAi1e7lbOtB0NqVAc8stMHJk2/nNzDqrjgo0jfLAZsPzGI2ZWW0caCrkMRozs9o40FTIPRoz\ns9o40FTIPRozs9o40FTIPRozs9o40FTIPRozs9o40FTIPRozs9o40FTIPRozs9o40FTIPRozs9rU\nY1HNYyXdJukZSSslzZM0IdvcLJ+vt6SfSVoiaYWkaZL2LVNeD0kTJS3KyntI0uAy+SRprKSFklZJ\nmi3pmErr7R6NmVlt6tGjGUNaSflcYBhpkc0vAXcX8t0JHAqcCRwDdAfulbRrId81wGnAN4AjgMXA\nVEn7F/JdDFwAXJFddwYwWdKwSirtHo2ZWW3qsajmWyNiaSHtZOBaYEhENEs6CrgVODgi7s/y9CKt\nzvw/EXFWljYQeIS0lcB1WVo30v4z8yJiRJa2M/AsMCEixueuOx3YKSIOaKW+AcFTT8Huu7fLPwIz\ns4bUZdY6KwaZzEzSVtB9s89HAotKQSY77xXS/jNH5c4bTtrg7JZcvnWkrZ+HSird8BpG6hFdX7ju\nJGA/SW2GEPdozMxq0yiTAZrYeKfLfYA5ZfLNBfpJ2jb7PABYWNhds5RvG2CvXL7VEfFEmXzKjrfK\nYzRmZrWpe6CR1Be4EJgWEY9kyX2A5WWyL8ved6wwX5/c+0sV5GuRezRmZrWpa6CRtB3wK9Ltr1Pb\nyF5X7tGYmdWmbr/TJfUkzSzbAzgoIhblDi9nQ68lr0/ueOm93G6dpXzLcvl6V5CvBeO49NIUbJqa\nmmhqamo9u5lZJ9Dc3Exzc3OHX6cuO2xK2prUk/k48MmImFk4fjXwqYjoV0j/b6ApIvbMPp8PfB3o\nnR+nkTQOOAfoFRFrc7Pa9o6IJ3P5RgNXA/0j4ukW6hoQrF3r22dm1rV1mVlnkgTcQJoAcFQxyGR+\nDfTNP3iZTW8+khSgSu4gDfqPzOXrBhwHTI2ItVnyFNKzOycVrjMKmNNSkMnr1q2tHGZmVk49fqNf\nBRxLeoBylaSP5I49FxHPkwLN74FJks4mDeSPzfJMLGWOiNmSbgYul7QN6TmbM0i3407I5Vsi6TJg\nrKQVwCzgeFKwO7KtCnfrBmr3GG9m9uZQjwc2F1J+XAXgwtIDlZJ6A98BRgA9gYeAr0bERtOeJfUA\nLgFOJI3DPAqcHREPFPKJFKw+D+wCzM+ud1sb9Y2ePYNVq6pqpplZp9NRt87qMkbTmUiK7bcPXn21\n3jUxM+tYXWaMpjPy1GYzs9o50FTAs83MzGrnQFMB92jMzGrnQFMB92jMzGrnQFMB92jMzGrnQFMB\n92jMzGrnQFMB92jMzGrnQFMB92jMzGrnQFMB92jMzGrnQFMB92jMzGpXl0Ajqa+k70t6SNI/Ja2X\ntMn6Z5IGSLpV0vOSVkiaI2lMtkJzPl8PSRMlLZK0Mit3cJnyJGmspIWSVkmaLemYturrHo2ZWe3q\n1aPZi7SC8zLgfmCTBdckvQNoJq3E/BXg08BtwLdJKz/nXQOcBnwDOAJYDEyVtH8h38XABcAVwDBg\nBjBZ0rDWKusejZlZ7eq+qKak04CfAHtGxDO59C8APwTeHRELcuk3knbk7Jt9Hgg8AoyOiOuytG7A\nXGBeRIzI0nYGngUmlFaIztKnAztFxAEt1C+GDg2mTGnPVpuZNZ4346KapRtWLxfSX2bjeg8H1gC3\nlBIiYh1wEzBUUqmcYVmZ1xfKmwTsJ2n3lirSlXo0W2Lb1i3Nbeoculqbulp7OlIjB5rJwIvADyTt\nIelfJB1N2iXzO7l8A4CF+a2cM3NJu2/ulcu3OiKeKJNP2fGyutIYTVf8n8Nt6hy6Wpu6Wns6UsP+\nVo+If0j6GGnr5iez5PXAuIj4bi5rH2B5mSKW5Y6X3l+qIN8m9i+O9JiZWcUaNtBI2ok0+L8COIYU\nEA4Bzpe0JiK+vaXqcuGFW+pKZmZdUETU9UWaLbYO6FdIn0jqgfQqpF8MvAb0yT7fBDxeptyRWbnv\nzT5fCqwsk+9DpJ7SYS3UL/zyyy+/3iyvjvieb9geDbAv8EREvFJIf5g0qL9X9vdcYISknoVxmn1I\nkwRKM9bmAj0k9Y+IJwv5AvhLuUp0xAwMM7M3k0aeDPB34J2SdiikD8ren8/e7yAN+o8sZcimNx8H\nTI2ItVnyFOB10mSCvFHAnIh4uh3rbmZmmbr1aCT9a/bnB0mzvg6XtARYEhH3Az8CTgSmSZoILAUO\nBsYAt0bE8wARMVvSzcDlkrYBFgJnkB70PKF0vYhYIukyYKykFcAs4HigCTiyg5trZvamVbcHNiWt\nJ92yKrovIg7J8nyY9CT/+4BewFPADcBlEbE6V1YP4BJSYOoNPAqcHREPFK4pYCzweWAXYD5wYUTc\n1q6NMzOzDeo9GaARX8D/AX5BmozwMvBLYLd616uCeh9Lmqn3DLASmAdMALYv5OsN/AxYQprVNw3Y\nt971r6KdU0gTOMZ35nYBhwP3Aa9m/509DDR14vYcCEwFXgBeAf4EnNIZ/h0BfYHvAw8B/8z+++pX\nJl9F9Qd6kCY0Lcr+X3wIGNxobQKGkB5ifzKr5wLgKmDn9mxTI4/R1IWktwD3Au8CTiaN4ewN/DY7\n1sjGkMahziWthHAV8CXg7kK+O4FDgTNJU8e7A/dK2nXLVbU2kk4A9qd8b7jTtEvS6cDtwExgBOlH\nwmRg21y2ztSe/UhfulsD/xc4mhQ4r87aWtKobWpz/cVMpfWvdP3FjlRJm04HdiLN5h1K+mE6HJgh\nadtC3trbVO9fEo32Av4NWEtae62UtkeWdla969dG3d9aJu1k0jTvpuzzUdnng3J5epHGwC6vdxva\naN+O2X/cn6HQo+lM7QJ2J/0i/H+t5Ok07cnqNoH02MFbCukPAQ92pjbR8iMXFdUfGJj99/nZXFo3\n0h2G2xusTeW+MwZn9R/dXm1yj2ZTRwK/j4iFpYSIeAp4kPQfWsOKiKVlkmeSJlv0zT4fCSyKNOGi\ndN4rpNl7Dd0+4FvAYxFxc5ljnaldpf/pf9xKns7UHki/7NdExKpCen5twuF0rjYVVfrvpNL1F+uu\nle8M2PCdAZvZJgeaTe0DzCmTPpdW1kNrYE1s/JxQa+3rV6a73BAkfZx0G/PMFrJ0pnYdSPoleIKk\nBZLWSvqbpDNyeTpTewCuJc23uULSOyTtIOnzpNU8LsvyDKBztamo0n8nla6/2KiasvfHc2mb1SYH\nmk21tnbajlu4LptFUl/gQmBaRDySJbe1NlzDtTH7tfQjYGLktowo6Ezt2pU0Bvht0i2nT5HG0a6U\n9P+yPJ2pPUTEXNLjB0eTnnFbThqI/mJETM6ydao2lVFp/Stdf7HhSNoeuJwUQG7PHdqsNjXyygC2\nGSRtR1qQdA1wap2rs7nOAXqSvpS7gq2A7Un3u3+VpTVL2pM0/f77datZjSTtRZqd+WfgC6TxmqOA\nH0t6LSJurGf9rG3Zg+43Ae8APhYR69urbAeaTS2n/C+rliJ6w5HUkzQ7Zg/SwOWi3OHW2lc63jAk\n7QacRxrX6Jm1rbQsUI9s5YhX6VztWkq61TC9kH436X732+lc7QH4T9KPmuER8XqWdm+2OO5/ATfS\n+dpUVGn9lwObbE2fy7eszLG6yp4xvI50q/PwrIeat1lt8q2zTc0l3YstGkAL66E1Eklbk35Zvp+0\nUGixzq2175mIWNnBVaxWf9L8/Umk/9iXk/6jDuA/sr/3pXO1q/g/cUt5Okt7IP07eCwXZEoeBt4q\n6W10vjYVVVr/ucCe2Y+ivOL6i43kx6RlvD4TEc1ljm9WmxxoNvVrYJCkPUoJ2d8Hkm5FNazsV8kN\npMG8oyJiZplsvwb6ShqcO68XaUZNI7bvEdK9/4NJ7Sq9BPxP9vcCOle7SitRDC2kHwY8FxEv0Lna\nA2ltwv2zHzp5g0i30ZbR+dpUVGn9K11/sSFI+i7p9vroiLijhWyb16Z6zOlu5Bfpgbm/kpaxGZ69\nZgN/A7atd/3aqPsPyZ4vAT5SePXN8og0Vftp0vMoQ4Fm0m6mfevdhiraWnyOplO1C7iH9HT56aTJ\nAD8lTXk+uZO251+z+k/J/p/5FHBlljaxM7Qpa8O/5v4/+mL2+aBq60+6VbiUdMv3ENJKIyuBgQ3W\npnOy9J+W+c7o315tqvt/oI34Ii1BM5mNl6DZZDmKRnuRFhRd18Lrgly+0jIaL5KW0bibBlgGpMq2\nriOtU5dP6zTtIk0G+D7pAdTXSD9mPtNZ25PVdyjwW9ISNC+TFq49nWxNxUZvU/aFW+7/nd9WW3/S\n7d7vsGG5lhls4SVoKmkTaRWUlr4zrmmvNtVtUU0zM3tz8BiNmZl1KAcaMzPrUA40ZmbWoRxozMys\nQznQmJlZh3KgMTOzDuVAY2ZmHcqBxqxA0uckrZfUP/v8b5KOrmN9dpD0TUkHlDl2r6Tf1qNeZpXy\n6s1m5eWfZD4LeIANa5Rtab2BbwLPklYQyPvSlq+OWXUcaMzqQNI2EbGm0uwtHYiIee1UJbMO41tn\nZq2QtBDYHRiV3U5bL+ma3PGBkn4taZmklZJ+l207nS/jWknPShok6UFJK4FvZcc+I+keSf+Q9Kqk\nWZI+mzt3d+BJUg/rZ9n115XySGou3jqT9C5Jt0lantVphqShhTzjsrL2knRndu2nJJ3fvv8EzRxo\nzNoygrQE/hTSiraDgIsAJL2ftJpvb+D/AseQVredLul9uTIC2IG0+u0NwLDsHeCdpFtyo0g7Uv4a\n+KmkL2THF2flCrgku/5Hgd/kyn6DpHdkddoPOIO0rPty4DeFYFM671bSStJHZfW4UNLnqvjnY9Ym\n3zoza0VEPCppNfBibLq/z0TgKeDgiFgHIGkqaZOo80kBomQ74MSIuLNQ/hvbU2f7Cd0H7Eoae/lJ\nRKyR9EiWZWFEPNxGlceQgtqHI2JhVu5dpE37LgGm5i8PfCcirss+/1bSEOAE4OdtXMesYu7RmNUg\n22nwINKeHEjqlm0E1Y20RfNBhVPWsqEXki9nL0k3Snouy7OW1Dt6d41VGwz8vhRkACLt/X4jcICk\n7Qv5/7fweQ7lt+w1q5kDjVlt+pCCyvlsCBBrSdvafpl0Oy1vSRT25JC0HSko7QecDXwc+CBwDWnv\nj1rrtbhM+t9Jt9+Ke94X93pfDRS36zXbLL51Zlabl0ibSl1Jus3U4sywTLmNnz4K7AZ8PCJmlBIl\ndd+Mei0DdimT/o6sDss3o2yzmjjQmLVtNfCWfEJErJT0AGkb20fKn9ambbP310sJknYkbYVcvD7F\nOrTgPuDfJPWLiGeyMrcibT08KyJW1FhXs5o50JiVl++h/AUYLOkI0i2oFyPiaeCrwH2S7gauJt2y\n2gl4P7BVRJzXxjUeAl4FfiBpHGl7568DS4BeuXwvkGazHS/pz8A/SRMDire9AL4HfA6YlpX5Kmn2\n2V7A4ZU13ax9eYzGrLz8ra6xwHzgZuBh0lP6ZD2ZD5H2j/8v0oyuy4F9gftbKY/s/BdJ06e7AZNJ\ns8J+ClxfyBfAaaTxlWlZHT5druyIWEwa65kLXAXcQhovOjwiprVVpzbSzWqiwvikmZlZu3KPxszM\nOpQDjZmZdSgHGjMz61AONGZm1qEcaMzMrEM50JiZWYdyoDEzsw7lQGNmZh3q/wOumonE2vLc1AAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ll = out['loglik']\n", + "plt.plot(range(len(ll)),ll,linewidth=4)\n", + "plt.xlabel('Iteration')\n", + "plt.ylabel('Log-likelihood')\n", + "plt.rcParams.update({'font.size':16})\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The log likelihood increases so quickly on the first few iterations that we can barely see the plotted line. Let's plot the log likelihood after the first three iterations to get a clearer view of what's going on:" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEICAYAAABmqDIrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFNW5//HPFxhRVECCinFBEUVQrsYlwRjNRCIiXHMT\no0YjGqMxbonxukUwCy5BTBQTs6gxUUNwQbzm/pJwxQg6rgTBJQQU3NgURJRddub5/XGqmeqa7p7u\nme7pnpnn/Xr1q7tOnao+h2WeOXU2mRnOOedcqbQrdwGcc861bh5onHPOlZQHGueccyXlgcY551xJ\neaBxzjlXUh5onHPOlVSzBxpJgyRNkbRE0gZJiySNl9Q3xzV3SaqVNDbDub0l/UnSAknrJM2VdKOk\nTol8kjRc0jxJ6yW9JumUUtTROedcnQ5l+M5uwAzgt8AyYB9gODBVUn8zWxTPLOkY4CxgVfJGUTCZ\nArQHrgMWAUcBNwC9gTNj2W8CrgBGAK8AZwATJA01s0nFrKBzzrk6qoQJm5IOBOYAV5rZ7bH0DsCr\nwDjgIuA5Mzsndv4EYBJwoplNjqXfDFwJdDazDZJ2JQShUWZ2QyzfZKC7mR1W0go651wbVil9NMuj\n9y2J9GsIZbw1y3XbRe/J1s6q6DpFx4OBKuCBRL5xQH9JPQstsHPOufyULdBIaiepStIBwN3AYuCh\n2PnehMdhF5vZ1iy3mQy8BfxcUl9JO0o6HrgMuNPM1kf5+gEbzeydxPWzCcGoX9Eq5pxzLk05WzTT\ngI3AXOAQYKCZfRQ7fyfwqJk9m+0GZrYROJbQRzMbWAM8CfzNzL4fy9oNWJnhFstj551zzpVAOQYD\npAwDOgO9gKuAyZKOMbOFkoYBR5DemV+PpI7AI8BuhAEDi4DPAj+VtNXMLillBZxzzjWsbIHGzOZG\nH6dLmgTMB66VdDVwG3ALsFlSF8LjrXZAVXT8iZltAb4DHAf0NrN50f2el7Qa+L2kO83s38AKoGuG\nYqRaMssznANAUvlHSzjnXDMxMzWcqzAVMRjAzFYBbxOGJHcHdgVGEQLECkIg2Av4RvR5SHTpIcDK\nWJBJeSl6T83NmQ10lNQrke9gwIDXGyhfq3n99Kc/LXsZvE5ep9bwam31MSvd79QVEWgk7Q4cRAg2\nS4Bq4EvRe+r1IaH/pRp4Prr0A6BrhgAygBBA3o+OJxFGtJ2VyDcMmGVmC4pUFeeccwnN/uhM0mOE\nCZMzgdVAH+ByYBMwxsw2AfUGAEjaACw1s+diyfcD/w38n6RRwELChM0fATPM7AUAM1smaQwwXNJa\n6iZsVgMnl6CazjnnIuXoo5kKnE6Ypb8doQP/aWC0mS3McZ1Fr7oEswWSBgAjgRsJj90WAXcRHr3F\njSCMSrsM6EEY7XaamT3exPq0KNXV1eUuQtF5nVqG1lan1lafUqqIlQEqmSTzPyPnXFsgCWutgwGc\nc861Xh5onHPOlVQ5J2w61yRmsHVreNXW1r2nPsePc73M0t8zpZllftXW1pUl2yt5PtNxrrTk5+R7\ntvO5Pue6JtP5bEp9vljXlPI+xVTOMvXuXbp7e6BxTbJpE3zySXitXVv3nnqtWZN+vHYtrFsX8m3Y\nUPfatAk2bgzvmzeH15Yt4RX/vGVLCCBbtlTmDwrnWqrzzivdvT3QOGprYdkyWLQIFi+GDz8Mr48/\nhhUrYOVKWL06vFKBY82aECy2JNfbds65BA80bcz69TB9OrzwAsycCa+/Dm++GVoVzjlXCh5o2oAV\nK+Avf4GHH4aamvAoqrVo1w7atw+v1OdkmhQ+p95Tae3apX/OlSZlf7WLhtTkypM8n+k4V1ryc/I9\n2/lcn3Ndk+l8NqU+X6xrSnmfYipXmT7/ebj33tLc2+fRNKAlz6OZPx9+9jMYOzb0fZRC+/aw446w\n007hfccdYeed69J23jn9PZVnhx2gUyfYfvvw6tgRttsOqqrq3quqoEOH8KqqCt/VoUNdEEkFD+dc\ncZRqHo23aFqhjz+GESPCbyf59qF07gz77AN77QW77w677Qbdu8Muu0DXrtClS8iz887pQWO77fyH\nvXMuNw80rcxTT8E558D772fPs99+8IUvwNFHwyGHQN++Iag451wpNPuETUmDJE2RtETSBkmLJI2X\n1DfHNXdJqpU0Nsv5vpIekbRM0jpJcyR9P5FHkoZLmidpvaTXJJ1S7PqVS21taMV8+cuZg8x++8FP\nfhI6/999NzxOu/hiOPZYDzLOudIqR4umGzAD+C2wDNgHGA5MldTfzBbFM0s6hrC8/6pMN5N0JDCF\nsDDn+VG+A4CdEllvIizkOYK61ZsnSBpqZpOKU7Xy2LoVLrgA7ruv/rn99w8B5pvfDP0bzjnX3Cpi\nMICkA4E5wJVmdnssvQPwKjAOuAh4zszOiZ0XMAt4w8xOzXH/XQmrOo8ysxti6ZOB7mZ2WI5rK3ow\nwJYt8O1vw7hx6ekS/PCHcP31oR/FOeca0toX1UxtpZzsur6GUMZbs1z3JcKGaWMauP9goAp4IJE+\nDugvqWf+Ra0cZnD++fWDTI8eoa/m5ps9yDjnyq9sgUZSO0lVkg4A7gYWAw/FzvcGrgMuNrOtWW5z\nTPTeSdJUSZskLZX0K0nbx/L1Azaa2TuJ62cDis63OHfcEfpa4vbaC559FnyrDOdcpShni2YasJGw\nAdkhwEAz+yh2/k7gUTOrt9tmzKcJgeJhwnbNXwZuAb5DeuulG7Ayw/XLY+dblOefh6uuSk/bZx94\n5hk44IDylMk55zIpZ/fwMKAz0Au4Cpgs6RgzWyhpGHAEcGYD92hH2HXzz2Z2fZT2bNS3c7OkPmY2\nt0TlL5sPPoDTT0+fI9O5Mzz5JPTqVb5yOedcJmULNLEAMF3SJGA+cK2kq4HbCC2TzZK6EFot7YCq\n6PgTM9sCfBzdY3Li9v8ARgOHEVpMK4CuGYqRasksz3Bum5EjR277XF1dXdYtXM3gu9+FJUvS08eO\nhQMPLE+ZnHMtU01NDTU1NSX/nooYdQYgaTohIFwAzCO0VOKjH1LHBnzNzP4q6SxgLPAVM5sYu9dh\nhCHMZ5rZeElnA/cDB5jZu7F85wJ/BHqZ2YIs5aqoUWePPQZf/3p62rXXho5/55xrilY96kzS7oTR\nY28DS4Bqwoiy6tjrQ+DJ6PPz0aWPA5uAExO3PIkQkKZHx5MII9rOSuQbBszKFmQqzapV8P3vp6cN\nGAA33lie8jjnXD6a/dGZpMcIrY2ZwGqgD3A5IWCMMbNNQL0BAJI2AEvN7LlUmpktl3Qz8CNJa4Cn\ngKOAHwP3p1ovZrZM0hhguKS11E3YrAZOLlVdi+2668J+MSkdOsA99/hETOdcZSvHj6ipwOmEWfrb\nESZSPg2MNrOFOa6z6JWeaHaDpNXAJcCVhBbRLYSVAOJGAGuAy4AehL6b08zs8SbVppm88gr87nfp\naVdfHdYqc865SlYxfTSVqlL6aAYNCqPKUvbfH/7977DcvnPOFUOr7qNxuU2enB5kAH79aw8yzrmW\nwVs0DSh3i6a2Fj77WXj55bq0L30JpkzxfWCcc8XlLZo26tFH04MMwC23eJBxzrUc3qJpQDlbNFu3\nhk3J3nqrLu3UU2HChLIUxznXynmLpg2aMCE9yLRvDz/7WfnK45xzjeGBpkKZwahR6WnnnOPLzDjn\nWh5/dNaAcj06+/vf4eTYVFIJ5szxQOOcKx1/dNaGmNV/RHbaaR5knHMtk7doGlCOFs3TT8Pxx6en\nvfYaHHposxbDOdfGeIumDbnttvTjoUM9yDjnWq5mDzSSBkmaImmJpA2SFkkaL6lvjmvuklQraWy2\nPFG+a6N8mRbllKThkuZJWi/pNUmnFKNOxfTWWzBxYnra8OHlKYtzzhVDOVo03YAZwKXACcC1wMHA\nVEl7JzNLOoawvP+qXDeV1Au4DliaJctNwE+AO4DBhMU9J0ga3LhqlMZvf5t+fNRR8PnPl6cszjlX\nDBXRRyPpQGAOcKWZ3R5L7wC8CowDLgKeM7NzstxjEmHDtIOA9mZ2XOzcroRVokeZ2Q2x9MlAdzM7\nLEfZmq2PZs0a2GsvWL26Lm3sWDj77Gb5eudcG9fa+2hSWylvSaRfQyjjrbkulvRN4DNAtodMg4Eq\n4IFE+jigv6SeBZW2RMaOTQ8yu+0Gp59evvI451wxlC3QSGonqUrSAcDdwGLgodj53oRHYReb2dYc\n9+kKjAGuNrOVWbL1Azaa2TuJ9NmE7aH7Nb4mxVFbG1ZkjrvoIujYsTzlcc65Yinn3ozTgCOiz28B\nA83so9j5O4FHzaxex37CrcBcM8s1UKAbkCkILY+dL6uaGpg7t+64Qwe48MKyFcc554qmnIFmGNAZ\n6AVcBUyWdIyZLZQ0jBCEzsx1A0nHRvf5TCkLOnLkyG2fq6urqa6uLvp33Htv+vGpp8KnP130r3HO\nuW1qamqoqakp+fdUymCALsB8wqOzq4F3CY/D7kplAf4FvEgYFPCJmW2R9DphG+gRsXx/IzwSHAKs\nN7NNkkYDl5lZp8T3HkVoWQ3NtqVzcwwGWLkS9tgDNmyoS5sypf6kTeecK6VWPRjAzFYBbwO9ge7A\nrsAoYEX0Wg7sBXwj+jwkuvQgQuCJ5zsGODr6fFGUbzbQMRoCHXcwYMDrpahXvsaPTw8y++4LJWg0\nOedcWZTz0dk2knYnBI0/A0uA6gzZxgMzCfNhZkdpmfL9ihBAvwekOv8nEUa0nQXcGMs7DJhlZgua\nVIEmuu++9ONzz4V2FfErgHPONV2zBxpJjwGvEILGaqAPcDmwCRhjZpuATDP7NwBLzey5VFqmgQKS\nVhLm0cTzLZM0BhguaW30/WcQAtXJyXs0p9dfh2nT0tO+9a3ylMU550qhHC2aqcDpwBXAdoSJlE8D\no81sYY7rLHrlI1O+EcAa4DKgBzAXOC1b30xzSbZmBg4Mj86cc661aHAwgKSMM/GzaWCYcYtTysEA\ntbVhJYAlS+rSxo2Ds84qydc551xOpRoMkE+gqU0kpS5QhjTMrH1xilYZShlonn8ejj227njnneGD\nD6BTp+zXOOdcqZQq0OTz6Gy/2Oe9gAeBicDDhAUsdyfMdzmJBua9uHSPPpp+fPLJHmScc61PQfNo\nJP0vYRb+DzOc+zlwgJl9rYjlK7tStWhqa6FnT3jvvbq0xx6Dr7WqPz3nXEtSKfNoBgJPZjn3j+i8\ny8NLL6UHmU6d4MQTy1ce55wrlUIDzUbgyCznjiIMUXZ5+J//ST8eOtQfmznnWqdChzc/AoyUtBWY\nQF0fzenAT4E/Frd4rZNZ/f6ZU08tT1mcc67UCu2j2QH4PaHTPznq7EHgu2a2IdO1LVUp+mhefhmO\njLULt98eli2DnXYq6tc451xByjnqbBszWw+cLelGYABh4uMSYJqZvVnswrVWf/lL+vHgwR5knHOt\nV6NWBoiCigeWRpo8Of3YR5o551qzgpdulNRJ0vckTZA0JXq/JHqsls/1g6LrlkjaIGmRpPGS+ua4\n5i5JtZLGJtKPlPQHSW9K+kTSAknjJO2b4R6SNFzSPEnrJb0m6ZRC699UK1bA9OnpaYMGNXcpnHOu\n+RQUaCT1ICxIeQdh9Fmn6P03wCvRKswN6QbMAC4FTgCuJSzXP1XS3hm+8xjCqsurMtzrG4RtmH9J\nmDD6Q+BwYIakPRN5bwJ+EpV9MGHNtQmSBudR5qKpqQlzaFIOOQR69GjOEjjnXPMq9NHZz4FdgGPN\n7IVUoqTPA/8D3AKcm+sGZvYwYVWBbSRNB+YApwK3x9I7EDY/u4m6vWXibkls/4ykF4F5wAXAyCht\nV+BKYJSZpe7/jKQDgNGEbQSaRfKx2Ze/3Fzf7Jxz5VHoo7OTgOHxIANgZi8CPwKGNrIcy6P3LYn0\nawhlvDXTRckgE6UtBJYB8RbNYKAKeCCRfRzQX1LPRpS5UTzQOOfamkIDzU7A4izn3ovO50VSO0lV\nUavi7ui+D8XO9wauAy42s60F3LcvsBvpu2b2Azaa2TuJ7LMJw7T75Xv/pli4EN6MDaHo0AGOO645\nvtk558qn0EAzFzg7y7lhhMdf+ZpGWGlgLnAIMDDRQrkTeDTT5mbZSGpPeNT2IXBv7FQ3YGWGS5bH\nzpfclCnpx0cfHVZsds651qzQPppbgbFRp/+DhDk0PQi7VX6Z7EEok2FAZ6AXcBUwWdIxZrZQ0jDg\nCApfDfq3hPk9Q8ws0+CBsvLHZs65tqjQCZvjJHUCbgD+EDu1FLjIzB4s4F5zo4/TJU0C5gPXSroa\nuI0wsGCzpC6Ex1vtgKro+BMzS+vPkTQa+A5wjpkl2g6sALpmKEaqJbM8w7ltRo4cue1zdXU11dXV\nDVWvHjMPNM65ylJTU0NNTU3Jv6egJWi2XSS1A/oQflAvJ2wdkNwgrdB7TicEhAsIo8aM+svcKHr/\nmpn9NXbtdYTg9z0zuzPDvc8G7idsY/BuLP1cwvpsvcxsQZZyFWUJmlmzoH//uuOdd4aPP4aqqibf\n2jnniqIilqBJiYLKG8UqRPQo7iDgz4THcdUZso0HZhKGOs+OXXsZcCNhNFy9IBOZRBjRdlaUN2UY\nMCtbkCmm555LPz7uOA8yzrm2oeBAI6k/YaXmLxLm1KwAngZuNLN/53H9Y4RJnzOB1YSW0eWELQbG\nmNkmoN4AAEkbgKVm9lws7QzCvJvHgRpJn4tdstrM3gAws2WSxgDDJa2Nvv8MQkA7uaA/gEZKBpr4\nFs7OOdeaFRRoJB0FPAOsB/4KfEAYDHAyMFTScWb2cgO3mUrYVuAKYDtgESFQjY7mwGRj0SsutVXY\n4OgV9wxwfOx4BLAGuCwq81zgNDN7vIHyNpmZBxrnXNtV6DYBkwkjxQaa2ZpY+s7AZGCVmbWqlbuK\n0Uczfz7st1/d8fbbw8qV0LFj08rmnHPFVClbOQ8Abo4HGYDo+Bbg6GIVrDVJtmY++1kPMs65tqPQ\nQNPQr/bF3SGslXj++fRjf2zmnGtLCg0004AR0aOybSTtSFg5+Z/FKlhr4v0zzrm2rNA+ms8CNcAG\n4O/UrQwwhLBlQLWZTc96gxaoqX00H30Eu+5ad9yuXdiTpnPnIhTOOeeKqCLm0ZjZS5IGEPZ1OZG6\nCZt5D29ua5KPzQ491IOMc65tKXgejZnNJOwb4/Lg/TPOubau4K2cXWE80Djn2rqC1zqT9EXCqsr7\nANsnTpuZDSxS2SpCU/poNm0Ka5pt2lSXtngx7LFHkQrnnHNFVBF9NJIuJOwTsxx4k7CfTFqWIpWr\nVZg1Kz3I7LmnBxnnXNtTaB/NlYR9aM6L1iRzOcyYkX581FHlKYdzzpVToX00ewL3NSXISBokaYqk\nJZI2SFokaXy0BXO2a+6SVCtpbIZzHSX9QtJiSeskvSipXk+IguGS5klaL+k1Sac0th75mJ4Y6H3k\nkaX8Nuecq0yFBpqXCTtiNkU3YAZwKXACcC1wMDBV0t7JzJKOISzvn23HzHuB84EfAUMJc3uekPQf\niXw3EYZl30FYgHMqMEFScjHOovEWjXPOFT5h8zDgAeBiM6u3lH+jCyEdCMwBrjSz22PpHYBXgXHA\nRcBzZnZO7Pyh0flzzWxslNaesF/NHDP7apS2K2GV6FFmdkPs+slAdzM7LEfZGjUYYP36MF9mS2wf\n0I8+gk99quBbOedcsyjbYABJi0hfw6wL8LSkdYS9aOLMzHo2ohyprZS3JNKvIbS6biUEmqSvEPax\neSRWgK2SHgZ+KKnKzDYTWjBVhCAZNw74o6Sexd787F//Sg8y++3nQcY51zblMxhgCiVYLDPaDro9\nsC8wGlgMPBQ73xu4DjgpCh6ZbtMPmGdmGxLpswl73fQm7ATaD9hoZu9kyKfofFEDjT82c865oMFA\nY2bnlui7pwFHRJ/fIuxx81Hs/J3Aow08outG/VYV1LWQusXeV+aRr2iSgcYHAjjn2qpyrgwwDPgc\nYfLnamCypH0AJA0jBKEry1e8pvEWjXPOBfn00ZwDTDSzj6PPOaU65fPINzf6OF3SJGA+cK2kq4Hb\nCBupbZbUhfB4qx1QFR1/YmZbCK2ZfTLcPtVCSbVYVgBd88iX0ciRI7d9rq6uprq6Old21q6FN95I\nTzv88JyXOOdcs6upqaGmpqbk39PgqDNJtcCAaOXm2gbuZ2bWvlEFkaYTAsIFwDxCv1C8YyZ1bMDX\nzOyvkn5M6MfpGu+nkTSSsD9OZzPbLOls4H7gADN7N5bvXOCPQK9sgwEaM+rsuefguOPqjvv0gTlz\nCrqFc841u3IuQbMfYW5K6nPRSdodOAj4c/Rd1RmyjQdmEubDzI7S/gZcD5wWXZsa3nw68EQ04gxg\nEmFE21nAjbF7DgNmFXvE2csvpx/7YzPnXFuWz2CABZk+N5akx4BXCEFjNdAHuJwwTHlMtOpAvQEA\nkjYAS81s236VZvaapPHALyVtR2gJXUIYyXZmLN8ySWOA4ZLWRt9/BiGgndzUOiUlWy+HHlrsb3DO\nuZaj4P1oimAqocVxBWEI8iLCxmmjzWxhjuuMzMOszwV+RmipdAX+BZxoZv9K5BsBrAEuI+wKOhc4\nzcweb3RNsnjzzfTjPn2K/Q3OOddy5NNHk+ovyYeZ2f5NLlUFaUwfzV57wfvv1x3PmePBxjlX+crZ\nR/MMJZiw2VqtXZseZNq3D6sCOOdcW1XOCZut0ltvpR/36gXbbVeesjjnXCXwrZyLLNk/c+CB5SmH\nc85VioIDjaTPSHpM0keStkg6PEofVcol91sKDzTOOZeuoEAj6QuEUWMHEXbajF9fS+YVltsUDzTO\nOZeu0BbNaOAJwkZlVyTOvQK0+YVWPNA451y6QufRHA6cYmYmKTkS7SNg1+IUq2Uyg7lz09M80Djn\n2rpCWzQbgE5Zzu1B9u2W24Rly2BV7E+gUyfYc8/ylcc55ypBoYHmeeDyaD2xlFTL5nzgqaKUqoXK\n9Ngs835tzjnXdhT66OzHwAuEZV4eJQSZb0XriB0BtOnlI71/xjnn6iuoRROtH3YcsJSwPL+A70Wn\nvxjbYyYrSYMkTZG0RNIGSYskjZfUN5bncEmPS3pP0voo70RJAzLcb29Jf5K0QNI6SXMl3SipUyKf\nJA2XNC+652uSTimk/g3x/hnnnKuv4EU1zewVYKCk7Ym2SDazdQXcohswA/gtsIywcdlwYKqk/ma2\niLA45lvAfYRtA3YjjHJ7RtIxZjYDIAomU4D2hMC3iNCqugHoTWwFZ8L2AlcQFtdMrd48QdJQM5tU\n6J9DJt6icc65+hpcVDMts3S8mWXth5F0lZndWnAhpAOBOcCVZnZ7ljw7EUa23W1mP4jSTiDsNXOi\nmU2O5b2ZsA10ZzPbIGlXQhAaZWY3xPJNBrqb2WE5ypb3opoHHwyvv153/M9/wuc+l9elzjlXdqVa\nVLPQwQCPScq4u4qkKwjzbBojtZXylhx51gEbE3lSq4glR7utItQt9Qc2GKgCHkjkGwf0l9Sz0AIn\nbd0Kb7+dnuYtGuecKzzQPAJMkrRvPFHS5cAvCHu95EVSO0lVkg4A7gYWAw8l8khSB0n7AL8hDD64\nJ5ZlMuER288l9ZW0o6Tjo3LcaWbro3z9gI1m9k6iGLMJwahfvuXO5v33YdOmuuPu3WGXXZp6V+ec\na/kKDTQXAdOAJyV1B5B0GTAG+G8z+10B95pGaKHMBQ4BBprZR4k8jxB23pwPfA0YYmbb9q80s43A\nsYQ+mtmEjc2eBP5mZt+P3acbsDJDGZbHzjfJBx+kH++9d1Pv6JxzrUNBgwHMrFbSGYSWxKRoG+XR\nhL6VOwr87mFAZ6AXcBUwOeroj++yeXV0/72BS4GJkgZGAxKQ1JEQjHYDziL0w3wW+KmkrWZ2SYFl\nymjkyJHbPldXV1NdXV0vTzLQ7L57Mb7ZOedKp6amhpqampJ/T0GDAbZdJHUlTN7sC1xjZrc1qRBS\nF0Kr5aFswUFSFTALeMfMhkRplwJ3AL3NbF4s73eA3wOHmtm/JY0GLjOz5JDnowgtq6HZtnTOdzDA\n738PF15Yd3zuuXDffQ1e5pxzFaNsO2xKGpvl1FJCS+LQWB4zs28VWggzWyXpbcKQ5Gx5NkuaCcQH\nIxxCGF49L5H9pei9L/BvwmO1jpJ6mdm7sXwHE/p9XqeJki2aHj2aekfnnGsd8nl0dhzZt3L+hNBH\nktKoLZ8l7U7YeuDPOfJ0Ao4E3oglfwB0zRBABkRlSW2qPIkwWu0s4MZYvmHALDNb0Jhyx3mgcc65\nzPLZynnfYn6hpMcIEyZnAquBPsDlwGbgtijPXYSO+hmEuTM9CSsQ9CAEi5T7gf8G/k/SKGAhYcLm\nj4AZZvZCVIdl0TI5wyWtpW7CZjVwcjHqtXRp+rEHGuecCwpeGaAIpgKnE2bpb0fowH8aGB0bCDCN\nsEjnBcCOhJbJNOA8M5udupGZLYiWpRlJaKl0j+53FzAq8b0jCKPSLiMErLnAadn6ZgrlLRrnnMus\nwcEA0RyWJVEfyT4N3TAxaqzFy3cwwP77w7uxh3dz5kCfPiUsmHPOFVmpBgPkE2i2Akeb2UuSammg\nH8bM2uc639LkE2jMYKedYF1sxbcVK6Br1xIXzjnniqhso86A84B3Yp8b1eHfmq1dmx5kOnaELl3K\nVx7nnKskjZpH05bk06J56630dc169oT580tbLuecK7ZKWVTTZeAjzpxzLrt8JmzeW8D9zMzOb0J5\nWiQfceacc9nl00dzPPn3y7TJ53AeaJxzLrtmn7DZGvmCms45l5330RSBt2iccy67RgeaaOOydyUd\nXMwCtUQeaJxzLrumtGgE7At0LOgiaZCkKZKWSNogaZGk8ZL6xvIcLulxSe9JWh/lnRgtN5Ppnn0l\nPSJpmaR1kuZI+n4ijyQNlzQvuudrkk5pRL3r8VFnzjmXXTkenXUjLJZ5KXACcC1huf6pklL7UnYl\nbNF8BTCIsKBmV+AZSUfGbxYd/5Owbtr5wEnArYRdN+NuAn5C2L9mMGHNtQmSBje1Qt6icc657Bo9\nYVNSe8KKy0emdrxsdCGkA4E5hJ06b8+SZyfCSs53m9kPojQRNkN7w8xOzXH/XQmLbY4ysxti6ZOB\n7mZ2WI41G7urAAAYkElEQVRrc07YrK2F7beHzZvr0j75BDp1ynqJc85VpIqbsGlmW4FvA8lNxxpj\nefS+JUeedcDGRJ4vEfaxGdPA/QcDVcADifRxQH9JPfMvaroVK9KDTOfOHmSccy6uSY/OzOxPZrai\nMddGgwmqJB0A3A0sBh5K5JGkDtGq0b8hzNO5J5blmOi9k6SpkjZJWirpV5K2j+XrB2w0s3dIN5vQ\n19SvMXUAH9rsnHMNKWg/Gknn5DhdC6wCXjWz9/K43TTgiOjzW8BAM/sokecR4OvR56XAEDObEzv/\naUKgeBj4NfBDwi6cNwJ7xa7tBqzMUIblsfON4v0zzjmXW6Ebn91P3ez/+HO8eFqtpPHAt81sU457\nDQM6A72Aq4DJko5J7GdzNTAa2JsweGCipIGxPqF20Xf/2cyuj9KeldQBuFlSHzObW2AdC+Ijzpxz\nLrdCA80xhH6OvwGPEloZuxN2zPxP4BLCCLIbgAWEXS0zigWA6ZImAfMJI9AuieWZH6W/LGkioeP/\nJmBIlOXj6H1y4vb/IASowwg7aa4gjFpLSrVklmc4t83IkSO3fa6urqa6unrbsbdonHMtVU1NDTU1\nNSX/nkIDzVXAw2YWDyBvAs9JWgN818y+JqkLcBY5Ak2cma2S9DbQO0eezZJmAofGkmdny58wG+go\nqZeZxfbB5GBCi+j1XBfHA02SBxrnXEuV/MX5+uuvz565CQodDDAImJLl3FPAwOjzs8Ce+d5U0u6E\n0WNv58jTidD/Es/zOLAJODGR/SRCAJkeHU8ijFY7K5FvGDDLzBbkW9YkDzTOOZdboS2ajYQO/EzB\n5gjCD30IAeyTTDeQ9BjwCjATWA30AS4nzMm5LcpzF+Fx1gzC3JmehEmbPYgFCzNbLulm4EdRi+op\n4Cjgx8D9qdaLmS2TNAYYLmlt9P1nANXAyQX+GaTxUWfOOZdboYFmAnC9pK2EPpoPgd2A04CRQGrv\nmlTfSCZTCX06VxBm8y8CngZGxwYCTCPM8r8A2BF4P0o7z8zSHpeZ2Q2SVhP6dq4ElgC3EPpy4kYA\na4DLCAFrLnCamT1e0J9AworE4O5Pfaopd3POudanoJUBJO1AmMdyZobTDwIXmNkGSUOBNWb2bHGK\nWT4NrQxw4IFhK+eUN96Agw5qhoI551yRlWplgEYtQRMtGTOA0DJYArxU6mHE5dJQoNl9d/jww7rj\nxYthjz2aoWDOOVdkFRVo2pKGAs3228PGjXXHvs6Zc66lKlWgKbSPJjX66zzgi4R5KMsJfSz3mdn6\n4havsm3cmB5kOnSAHXYoX3mcc64SFTS8WVIPwoitOwhDjVNDjn8DvBINU24zVq1KP+7SBVT03wWc\nc65lK3Qezc+BXYBjzWw/MzvazPYDvkCYeX9LsQtYyTIFGuecc+kKDTQnAcPN7IV4opm9CPwIGFqs\ngrUEHmicc65hhQaanQjL+WfyXnS+zfBA45xzDSs00MwFzs5ybhhhl8w2wwONc841rNBRZ7cCY6NO\n/wcJc2h6EJZz+TLZg1Cr5IHGOecaVlCgMbNx0fDmG4A/xE4tBS40sweLWbhK54HGOecaVvBWzmb2\ne8LOlgcDx0bvewLzo2X8c5I0SNIUSUskbZC0SNJ4SX1jeQ6X9Lik9yStj/JOlDSggXtfK6lWUr2l\nb6JtoYdLmhfd8zVJpxRa/zgPNM4517CCJ2wCmFkt8EY8LdqD5uA8Lu9GWJX5t8AyYB9gODBVUn8z\nW0QYKv0WcB/h8dxuhEU4n4l24ZyRvKmkXsB1hNZVJjdF9xhB3erNEyQNNbNJeZS7Hg80zjnXsEYF\nmqYws4eBh+NpkqYTBhKcCtxuZk8RlvyP53mCsGXA2YRAlfQ7YBxhX5v2iWt3JazsPMrMbo+Sn5F0\nAGEnTg80zjlXIgU/OiuR1FbKW3LkWUfYD6deHknfBD5DaBllMhioImxDHTcO6C+pZ0GljaxcmX7s\ngcY55+orW6CR1E5SVdSquJswP+ehRB5J6iBpH8IyN0bYpiCepyswBrjazBI/+rfpB2w0s3cS6bMB\nRecL5i0a55xrWIOPzqK+j3wUuonxNMKunBD6Ywaa2UeJPI8AX48+LwWGmFlyrs6twFwzG5vju7oB\nmYLQ8tj5gnmgcc65huXTR/M2oSXREOWZL2UY0BnoBVwFTI46+hfG8lxN6EPZG7gUmChpoJm9AiDp\n2Og+nyngews2cuTIbZ+rq6uprq4GPNA451q2mpoaampqSv49De5HI+lbhdzQzP5UcCHCiLX5wENm\ndkmWPFXALOAdMxsSpc0GaggjySAEu78RHgkOAdab2SZJo4HLzKxT4p5HEVpWQ7Nt6ZxrP5rkpmfv\nvw+f/nQeFXbOuQpUtv1oGhM4CmVmqyS9DfTOkWdzNE/n0FhyX8Ios4szXLIc+G/ClgazgY6SepnZ\nu7E8BxNaYa83ptzeonHOuYY1+/DmTKIlbQ4C/pwjT2rvm/j8neoMWX9FaNF8D0h1/k8ijFY7C7gx\nlncYMMvMFhRa5uSmZ+3b+86azjmXSbMHGkmPESZMzgRWA32Ay4HNwG1RnrsILZIZhLkzPQmBowch\nWABgZplWAFgJtDez52L5lkkaAwyXtJa6CZvVwMmNqYdveuacc/kpR4tmKnA6YZb+dsAiwlbQo2MD\nAaYB5wMXADsC70dp55nZ7Dy+I1OnyghgDXAZIWDNBU7L1jfTEH9s5pxz+WlwMEBbl20wwIwZcNRR\ndceHHQavvtqMBXPOuSIr1WCASlkZoMXxFo1zzuXHA00jeaBxzrn8eKBpJA80zjmXHw80jeSBxjnn\n8uOBppE80DjnXH480DSSBxrnnMuPB5pGSgaarl3LUw7nnKt0HmgayVs0zjmXHw80jeSBxjnn8tPs\ngUbSIElTJC2RtEHSIknjJfWN5Tlc0uOS3pO0Pso7UdKAxL2OlPQHSW9K+kTSAknjJO2b4Xslabik\nedE9X5N0SmPr4YHGOefyU44WTTfCYpmXAicA1xKW658qae8oT1fCrptXAIMIC2p2BZ6RdGTsXt8g\nbMP8S+Ak4IfA4cAMSXsmvvcm4CeEbQMGE9ZcmyBpcGMq4YHGOefyUxFrnUk6EJgDXGlmt2fJsxNh\nJee7zewHUVr35PbPkvYB5gE3mtnIKG1XwuKdo8zshljeyUB3MzssR9kyrnXWowcsXVp37JueOeda\nuta+1tny6H1LjjzrgI3xPMkgE6UtBJYB8RbNYKAKeCCRfRzQX1LPQgvsLRrnnMtP2QKNpHaSqiQd\nANwNLAYeSuSRpA5RK+U3hOX/72ngvn2B3UjfNbMfsNHM3klkn03Y/rlfIWXftAk2bKg79k3PnHMu\nu3LusDkNOCL6/BYwMEML5RHg69HnpcAQM5uT7YaS2gN3AR8C98ZOdQNWZrhkeex83nzTM+ecy185\nH50NAz4HnEnYaXNy1HKJuxo4CjgFmAVMlHR4jnv+FhgAnGVmq3LkaxJ/bOacc/krW4vGzOZGH6dL\nmgTMJ4xAuySWZ36U/rKkiYRgcxMwJHk/SaOB7wDnmNmUxOkVhFFrSamWzPIM57YZOXLkts/V1dXs\nvHN12nkPNM65lqimpoaampqSf09FjDoDkDQdWGFmg3LkmQAcamYHJtKvA24Avmdmd2a47mzgfuAA\nM3s3ln4u8Eegl5ktyPKd9UadPfUUDBxYd/zFL0Iz/F0551xJtepRZ5J2Bw4C3s6RpxNwZDKPpMuA\nG4ERmYJMZBJhtNpZifRhwKxsQSYbf3TmnHP5a/ZHZ5IeA14BZhL6ZvoAlwObgduiPHcRHmfNIMyd\n6UmYtNmDWLCQdAZwO/A4UCPpc7GvWm1mbwCY2TJJY4DhktZG338GUA2cXGgdPNA451z+ytFHMxU4\nnTDrfzvCRMqngdHRHBgII9LOBy4AdgTej9LOM7PZsXudGL0Pjl5xzwDHx45HAGuAywgBay5wmpk9\nXmgFPNA451z+KqaPplJl6qN59FG4554QcFatgm9/G665pkwFdM65IilVH40HmgZkW4LGOedam1Y9\nGMA551zr5YHGOedcSXmgcc45V1IeaJxzzpWUBxrnnHMl5YHGOedcSXmgcc45V1IeaJxzzpWUBxrn\nnHMl1eyBRtIgSVMkLZG0QdIiSeOjLZhTeQ6X9Lik9yStj/JOlDQgw/06SvqFpMWS1kl6UdKxGfJJ\n0nBJ86J7vibplFLX1znn2rpytGi6EVZlvhQ4gbDZ2cHAVEl7R3m6ErZ3vgIYRFi5uSvwjKQjE/e7\nl7AA54+AocAS4AlJ/5HIdxPwE+AOwgKcU4EJkpKLcTrnnCuiiljrTNKBwBzgSjO7PUuenQhbBtxt\nZj+I0g4FXgXONbOxUVp7YDYwx8y+GqXtSlglepSZ3RC752Sgu5kdlqNsvtaZc65NaO1rnaW2Ut6S\nI886YGMiz1eATcAjqQQz2wo8DJwoqSpKHgxUAQ8k7jkO6C+pZ+OL3rI0x7atzc3r1DK0tjq1tvqU\nUtkCjaR2kqokHQDcDSwGHkrkkaQOkvYBfgMYcE8sSz9gnpltSNx+NmGvm96xfBvN7J0M+RSdbxNa\n438Or1PL0Nrq1NrqU0rl2PgsZRpwRPT5LWCgmX2UyPMI8PXo81JgiJnNiZ3vBqzIcO/lsfOp95V5\n5HPOOVdk5Xx0Ngz4HHAmYUvnyVHLJe5q4CjgFGAWMFHS4c1aSuecc01jZmV/AV0ILZPf5chTRdh+\n+f9iaQ8Db2TIexqwFegbHY8G1mXIdxRQC5yU43vNX/7yl7/ayqsUP+PL+ehsGzNbJelt6vpUMuXZ\nLGkmcGgseTbwVUnbJ/ppDiYMEng7lq+jpF5m9m4inwGv5/jeoo/AcM65tqQiRp1J2h04iLrAkClP\nJ+DIRJ6/ETr9T4vlaw+cDjxhZpuj5EmE0WpnJW47DJhlZguaWgfnnHOZNXuLRtJjwCvATELfTB/g\ncmAzcFuU5y5CR/0MwtyZnoRJmz2IBQsze03SeOCXkrYD5gGXAPsS+n5S+ZZJGgMMl7Q2+v4zgGrg\n5NLV1jnnXLNP2JR0NaHFsT+hNbIIeBoYbWYLozzfJsz27wPsCLxPGKV2s5nNTtyvI/Az4JuE1QP+\nBVxjZs8l8gkYDlxACFhzgevN7C+lqalzzjmAsg8EqMQXsBfwKGFI9Crgf4C9y12uPMp9KvAXYCFh\nguscYBSwUyJfV+APwDJgLfAkcEi5y19APScRBnHc0JLrBQwBngHWRP/OXgKqW3B9jgGeIExFWA28\nDHy7JfwdAXsCvwZeBD6J/n3tkyFfXuUHOgK/IMwPXBfd99hKqxMwkDCR/d2onG8DvwN2LWadKqKP\nppJI2oHQwjoQOJvQj3MA8FR0rpJdSeiLupawGsLvgIuBfyTy/Z2whtylhKHjVcDTkj7dfEVtHEln\nAv9BGMSR1GLqJelC4H+B6cBXCb8kTAA6xbK1pPr0J/zQ7QB8B/gaIXD+MaprSqXWqTfh72A58CyZ\n/31B/uXPdw3GUsqnThcC3QlrQZ5I+MX0K4S1Jzsl8ja+TuX+TaLSXsAPCP1F+8XS9o3SLi93+Roo\n+6cypJ1NGOpdHR3/V3R8XCxPZ+Bj4JflrkMD9dsl+sf9DRItmpZUL0Kf4zrg+znytJj6RGUbBWwA\ndkikvwi80JLqFP0w3Ur93/7zKj9hZGwtcE4srT3hCcP/VlidMv3MODYq/7nFqpO3aOo7Gfinmc1L\nJZjZfOAFwj+0imVmH2dInk5YZmfP6PhkYLGZPRu7bjVhBF9F1w+4BZhpZuMznGtJ9Ur9p787R56W\nVB8Iv9lvMrP1ifRV1I1u/Qotq05J+f6d5LsGY9nl+JkBdT8zoIl18kBT38GEVQiSZtMy10SrJn2u\nUK767ZOhuVwRJH2B8Bjz0ixZWlK9jiH8JnimpLclbZb0lqRLYnlaUn0A7ieMublD0h6Suki6ADge\nGBPl6UfLqlNSvn8n+a7BWKmqo/c3YmlNqpMHmvpyrZ+2SzOXpUkk7QlcDzxpZq9GyQ2tD1dxdYx+\nW7oL+IWZZZtr1ZLq9WlCH+DPCY+cTiD0o/1G0vejPC2pPlgYDfolQt/M+4Sy/xq4yMwmRNlaVJ0y\nyLf8+a7BWHGi7Vh+SQgg/xs71aQ6VcTKAK74JO0I/D9Cc/e8MhenqX4IbE/4odwatAN2Ijzv/n9R\nWo2k/QhD8H9dtpI1kqTehNGZ/wa+S+iv+S/gbkkbzOyhXNe78osmuz8M7AF83sxqi3VvDzT1rSDz\nb1bZInrFkbQ9YXTMvoSOy8Wx07nqlzpfMaJdV0cQ+jW2j+qWWhaoo6QuhOHBLaleHxMeNUxOpP+D\n8Lx7d1pWfQBuJvxS8xUzS+0Z9bSk7sCvCFuAtLQ6JeVb/hVAcoHgeL7lGc6VVTTPcCzhUecQS8xX\npIl18kdn9c0mPItN6keONdEqhaQOhN8sDycsFposc676LTSzdSUuYqF6EcbvjyP8Y19B+EdthNW9\nlwOH0LLqlfxPnC1PS6kPhL+DmbEgk/IS8ClJu9Hy6pSUb/lnA/tFvxTFJddgrCR3E5by+oaZ1WQ4\n36Q6eaCp76/AAEn7phKiz8cQHkVVrOi3kgcJnXn/ZWbTM2T7K7CnpGNj13UmjKipxPq9Snj2/yVC\nvVIvAX+OPr9Ny6pXajWKExPpJwHvmdlSWlZ9AD4A/iP6RSduAOEx2nJaXp2S8i1/vmswVgRJtxEe\nr59rZn/Lkq1pdSrHmO5KfhEmzL1JWMrmK9HrNcLmbJ3KXb4Gyn4n0fwSwl4/8deeUR4RhmovIMxH\nORGoIawpt2e561BAXZPzaFpUvYAphNnlFxIGA9xDGPJ8dgutz9ej8k+K/s+cQNgVdythEEfF1ymq\nw9dj/48uio6PK7T8hEeFHxMe+R5PWGlkHXBohdXph1H6PRl+ZvQqVp3K/g+0El+EJWgmkL4ETb3l\nKCrtRVhUdGuW109i+VLLaHxEWEbjH1TAMiAF1nUrYa26eFqLqRdhMMCvCRNQNxB+mflGS61PVN4T\ngacIS9CsIixeeyHRmoqVXqfoB26m/ztPFVp+wuPeW6lbrmUqzbwETT51IqyCku1nxr3FqlOzL6rp\nnHOubfE+GueccyXlgcY551xJeaBxzjlXUh5onHPOlZQHGueccyXlgcY551xJeaBxzjlXUh5onEuQ\n9C1JtZJ6Rcc/kPS1Mpani6SfSjosw7mnJT1VjnI5ly9fvdm5zOIzmS8HnqNujbLm1hX4KbCIsIJA\n3MXNXxznCuOBxrkykLSdmW3KN3u2E2Y2p0hFcq5k/NGZczlImgf0BIZFj9NqJd0bO3+opL9KWi5p\nnaTno22n4/e4X9IiSQMkvSBpHXBLdO4bkqZI+lDSGkmvSDondm1P4F1CC+sP0fdvTeWRVJN8dCbp\nQEl/kbQiKtNUSScm8oyM7tVb0t+j754v6cfF/RN0zgONcw35KmEJ/EmEFW0HADcCSDqcsJpvV+A7\nwCmE1W0nS/pM7B4GdCGsfvsgMDh6B9if8EhuGGFHyr8C90j6bnR+SXRfAT+Lvv9oYGLs3ttI2iMq\nU3/gEsKy7iuAiYlgk7ruMcJK0v8VleN6Sd8q4M/HuQb5ozPncjCzf0naCHxk9ff3+QUwH/iSmW0F\nkPQEYZOoHxMCRMqOwDfN7O+J+2/bnjraT+gZ4NOEvpffm9kmSa9GWeaZ2UsNFPlKQlD7rJnNi+77\nOGHTvp8BT8S/HrjVzMZGx09JGgicCfypge9xLm/eonGuEaKdBo8j7MmBpPbRRlDtCVs0H5e4ZDN1\nrZD4fXpLekjSe1GezYTWUZ9GFu1Y4J+pIANgYe/3h4DDJO2UyP9/ieNZZN6y17lG80DjXON0IwSV\nH1MXIDYTtrX9HuFxWtwyS+zJIWlHQlDqD1wDfAE4EriXsPdHY8u1JEP6B4THb8k975N7vW8Ektv1\nOtck/ujMucZZSdhU6jeEx0xZR4ZFMm38dDSwN/AFM5uaSpRU1YRyLQd6ZEjfIyrDiibc27lG8UDj\nXMM2AjvEE8xsnaTnCNvYvpr5sgZ1it63pBIk7ULYCjn5/STLkMUzwA8k7WNmC6N7tiNsPfyKma1t\nZFmdazQPNM5lFm+hvA4cK2ko4RHUR2a2ALgCeEbSP4A/Eh5ZdQcOB9qZ2YgGvuNFYA3wW0kjCds7\nXwcsAzrH8i0ljGY7Q9K/gU8IAwOSj70Abge+BTwZ3XMNYfRZb2BIflV3rri8j8a5zOKPuoYDc4Hx\nwEuEWfpELZmjCPvH/4owouuXwCHAsznuR3T9R4Th0+2BCYRRYfcADyTyGXA+oX/lyagM/5np3ma2\nhNDXMxv4HfAIob9oiJk92VCZGkh3rlGU6J90zjnnispbNM4550rKA41zzrmS8kDjnHOupDzQOOec\nKykPNM4550rKA41zzrmS8kDjnHOupDzQOOecK6n/Dz23Kz4bBlKgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(range(3,len(ll)),ll[3:],linewidth=4)\n", + "plt.xlabel('Iteration')\n", + "plt.ylabel('Log-likelihood')\n", + "plt.rcParams.update({'font.size':16})\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Evaluating uncertainty\n", + "\n", + "Next we'll explore the evolution of cluster assignment and uncertainty. Remember that the EM algorithm represents uncertainty about the cluster assignment of each data point through the responsibility matrix. Rather than making a 'hard' assignment of each data point to a single cluster, the algorithm computes the responsibility of each cluster for each data point, where the responsibility corresponds to our certainty that the observation came from that cluster. \n", + "\n", + "We can track the evolution of the responsibilities across iterations to see how these 'soft' cluster assignments change as the algorithm fits the Gaussian mixture model to the data; one good way to do this is to plot the data and color each point according to its cluster responsibilities. Our data are three-dimensional, which can make visualization difficult, so to make things easier we will plot the data using only two dimensions, taking just the [R G], [G B] or [R B] values instead of the full [R G B] measurement for each observation.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import colorsys\n", + "def plot_responsibilities_in_RB(img, resp, title):\n", + " N, K = resp.shape\n", + " \n", + " HSV_tuples = [(x*1.0/K, 0.5, 0.9) for x in range(K)]\n", + " RGB_tuples = map(lambda x: colorsys.hsv_to_rgb(*x), HSV_tuples)\n", + " \n", + " R = img['red']\n", + " B = img['blue']\n", + " resp_by_img_int = [[resp[n][k] for k in range(K)] for n in range(N)]\n", + " cols = [tuple(np.dot(resp_by_img_int[n], np.array(RGB_tuples))) for n in range(N)]\n", + "\n", + " plt.figure()\n", + " for n in range(len(R)):\n", + " plt.plot(R[n], B[n], 'o', c=cols[n])\n", + " plt.title(title)\n", + " plt.xlabel('R value')\n", + " plt.ylabel('B value')\n", + " plt.rcParams.update({'font.size':16})\n", + " plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To begin, we will visualize what happens when each data has random responsibilities." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEKCAYAAAArYJMgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNXawH+Hsi0BLFRBGfTqtYLlWgEBERFQRIqIBVBq\nGiEJaRRDKCEhIb2DfmK7KIiAgGIBEaz32q7tWhm9gigWIMnOzFLm+2M2m93sJiSQEILze5486Nkz\n57wzszvvvOW8R+i6jomJiYmJSWPRoqkFMDExMTE5vTEVjYmJiYlJo2IqGhMTExOTRsVUNCYmJiYm\njYqpaExMTExMGhVT0ZiYmJiYNCqmojFpdIQQ3YUQR4UQjzW1LCYNhxCin/u+PlKt/agQYms9xnnc\nfcx5dRhbFkJ8X085632MScNiKppmiNeD2/tPE0L8IIRYKYS4qKllNPnLoLv/TtYYfn0DKaoTGN+k\nEWjV1AKYnBBfA8+4/7stcBPwIHCXEOJ6Xde/ajLJTP4KvAdcAvx2guMkAEuA3XXoe0uAtmMpkkDH\nmJxETEXTvPla1/UF3g1CiHwgBEgEJjaFUCZ/DXRdVzFedk50nF+AX+rYd1eAZnEcx5icREzX2enH\n4xg/vGuqfyCEuFsIsUoI8Z0QwimE+EMI8aoQYmCAvh4fuRDiGne/g0KI/UKItUKI7oEmF0KECiG+\nEEIo7nlmAy1rEtY9zxa3LE4hxKdCiFghRKsA/Srl6S2EeEMIUSaE2COEWCKEEO5+Dwkh/uMe6zsh\nxMN1vXBCiPnuOW4WQjwshPjQPc5arz4Wt3wfCyEq3NfjVSHEzQHG6yKEyBdCfON1vT8VQuQKIVp6\n9at0/fQQQswRQnwrhFCFEF8JIWbWIGuQEGKxEOJrd99fhRBrhBA9A/R9QwhxRAjRyn2O33uNHxKg\nv1UIEee+jgfd1/k7IcSTQogege5JDTKeJ4RYLYT4XQhRLoR4XQhxbYB+x3J9eff1ibcIIXYB493/\nK3u5krfWdIxXexshxCIhxJfu7+tvQogXariGFwohnhBC7HJfu9+EEB8IIeYfS2YT06I5nTkUoG0x\noAJvAHuBLsAIYIsQYrSu6+sCHHMdEA9sBYqBq9zHXC6EuFzXdVdlRyHEAmAu8BNQhPEiEwHcGEhA\nIcS9wFNAOfAs8CcwDEgD+gB3BTjsBrc8m9zyDAHijOHEPgxLbr37HO8FlgshvtN1fXsgGapR6YJJ\ncM//IvAyUOaW1wq8CvQG/gWUAEFuOV8XQoypvIZCCAfwDtDZLetqd98LgSnuOZzV5s0FrgWeA1zA\nSCBTCNFd1/Uor+tmA7YDVwPvusc+F7gHGCKEGKzr+s5q5wXwT/f4LwFH3P0LhBAuXdcf9er/FDAK\n2AmUAkeB7sDt7jHqYiGcCezAcIcVA92AscB2IcQtuq6/W02++sRovMkCHgJ6AtnAfne7XMsxCCHO\ndsv3d2AbsBE4G+O8BwkhBuq6/p677zkY97slxndLdp/fxcA0YH4dZf/rouu6+dfM/jB+9EeBDQE+\nK3R/lhPouABtHYD/YbjhvNv7ucc5Aoyu9tlKd/s9Xm1/w1Bu3wLtvNo7YSi1I8BjXu1tgQMYD/GL\nvNpbYjzMjwAP1iDPYK92B7AHqAB+BLp5fXZ1Tdephuua5O6/H7g4wOdL3PPHVms/G+Ph+wtgdbfd\n6R4rPMA47ar9//+5++4BOnq1BwGfuee82qt9vrt/abVxBrjbq9/Lbe72t4Egr/aLMBTaF9XuyxFg\nTQC5W1U7vvKePFKtX+V9eqxa+y3uzz4OcP5HgPPqMPYu4PtjHV+HY/5Z/Tvsbj/fff8/8WqLcPe9\nI8DYZzbEb/p0/zNdZ82bi4QQSe6/DCHEO8B04CsM68UHXdd/CNC2D1gLXFCD62K7rutrqrU9huGe\n83aD3IdhwSzTdf2A1/i/ADn4+9FHAG2A5bquf+3V/wjG274AJgSQ53Vd17d49XdiWAw2oFjX9Z+8\nPvsQ+A64IsA4tVGi6/p/vRvcrrlpGA/ldO/PdF3/HcgA2gPV3ZBq9cG9r493M8bLwa9e/Sow7qPA\nSPKoZDygYViP3uNuw7gWFwgh+gQYP8E9ZmX/r4G3gL8LIYK8+oka5D7sffwxOALMq3b8VoyXiCuE\nEL3qOE6D47ZmxgAv6br+nPdnuq5/DyzHsNgvrXZooGvyZ6MJehphus6aNxcC1f3j3wB9dV33ywQS\nQnQCZmO4QM7FeDhXomO40n6sdtiHAeatfJif4dVW6dd+K0D/nQHaernnfLP6B7qufyCEKHf3qc5/\nArT9XMtnezHcf3VFBz4I0P53jPP9QQiRFODzCzEe0BcDmzFcW3uBQiHEIAwX3Ju6rn9Xy9yBrlNl\nWy8w4gqABPzHWyl58QYw1N2/+njHupcVuq6XCSFeBsYJIc4F1rnP5WNd14/WInt1ftB1PVAW2U7g\nVrd8n9RjvIbkWoyXoqAa7uUl7n8vBr7AcKEuAdYJIZ7DUJZv1nB+JgEwFU3zZpOu68MBhBAdMKyZ\nZGCN2w/ueTAIIc7E8DOfg/Fj34zhujqK4XK5GbAGmONggLbD7n+9g/zt3P/uC9A/UEZR21o+q2wP\nZGEFkudILZ8dpv7f80AyneX+tydVSrU6Ooa7C13XDwohbgAWYLjRRmMYRl8Dybqu/zPA8YEUR6Us\nldf3WNdtL4bCa1v9A13XywP0D3QvR2FYS+MwLDUB/C6EKAQW6rp+mGMT6Fwq5RZUnU9TUHkvb3b/\n1UTlvZTd93I+hiU0AeNefggk6rr+aiPKelpgus5OE3Rd36fr+kKMwGtfDL+yN5OBrsAcXdf767oe\npev6fN1Ij/6yAUSodAd1CPBZpwBtB2v5rLI9kOI4GQQKTFfK8qyu6y1r+VvoGUTXf9R1fSKGS+0f\nwBwMy+EpIUT/AHN0DNBWeX0qr29drpvOCVw7XdcVXdfn6Lp+PoalNhXD8pmHcQ51IdC5eMsXyH14\nsqi8NmnHuJdPVh6g6/pnuq6PxkgC6AOkYMS41gtzgfQxMRXN6cc8jMD4HC+/OxhBTjDcANW5qQHm\n/QTjTbV6bAAMxVedj939A6UFXw0EAx81gFwNxZcYiQv/cMdr6oxu8JGu60sw4jwCw8qpTqDrVNn2\niXusMozg9kVuK7Y6/d3/flwfGWtC1/XvdV1fQVUgf3gdD+0uhOgaoN3nfBqISou2xjT6avwLQ9nd\nUN+J3HGqd3Rdn4vxW7MCg+s7zl8NU9GcZrgD0wUYmVAzvD76EeMB19u7vxAiippdQfVhFcYPPsbt\npqscv4tbjupWwnqMN8vJQogLvfq3BFLd/Z9oALkaBHeSQjFGdl2qEMLvtyOEuM6deowQ4pIaFEFn\n97/VA8sCmCGE6OxpMOIxczCuxZNefZ/AiK8t9BnAsJKGAd/quh4oVnZMhBDtAwTBwbBEWgBKHYdq\nCSyqNvZAjPjMp7quN6Si+cP977l16exOUFkD9BNChAfqI7zWRQkhrnLfi+rUdC9NqtEkMRr3m04C\nxqLCXoAdkHRdrx6IDnSsFeMLfD+GG+JjIF7X9R2NJ3GzYxkQjvHQz3P75p/EWH9SIIQYgLG+4R/A\n9RhrCIadyIS6rn8jhEjB8O3/RwixGuP7dQ/wPnBHtf4HhRDT3XL9SwjhvY7mUuBFXdefOhGZGoFH\nML6zs4DhQogdGA+5bu72izASKlTgNmCpEGInRoLGH+7P73T/94pqY+vAv4FP3NfiEMY6mvMwstG8\nA/lpGNdzihDiCoxg/bkY8QMFqPMi1QB0BT4SQnwEfIo75RojS/AokFnHcf4DDBBCvI2RoOAt37QT\nkC8QWzHuyXIhxPMYFv0Px/j+hGAkeOQIIR7CKKdTjnG9b8A4Z4e773iMa70DI4uxDOPl7HbgB4x1\nTya10FQWzd8wgqN/YGQd1afg3WPAJIwH2jCMjKMtgVbznubUuMjNnXFWhOFPjnK3/YSxNmEbhqk/\nGeNH35fAWVa1zhHoM13Xk4AwjB9iCMb9yQZm1tB/FUY68DsYD6FKCyweIyBdH3lqo0EKKuq6rmEo\nkHAMpXgPRizsBgzX2niq6n5twbAs22GcSyTGw2kFcI0euCxKJMb1GgqEYqxxidZ1PbqaHCqGi2wJ\nRkwsGuOh9yJwYw3WTG3XwPszGWM90UFgEMb3ZxDG77SvrutrAxxbfWwd47fdFyO2MxW4G2OBZD/d\nvRCyDvLVdL+rf49eBmLd7dEYCRjVlW31Y/7AWEhcGXN6ECOZ5iqMzMlxXt2fwXgh6oqRxh+Okfm3\nFLiuhnR1Ey+ErjdtUVMhxCSM1cc9jmXRuHPvPwIm6rr+hLutJfA58F9d10c0trwmJg2NEOL/MJTU\nMX8DJibNkeYWoxmO8ZbnMVXdvvNVwGAhROumEszExMTEJDDNTdFcCuxyuw68+RywYLjkTExMTExO\nIZqbojkLwzdenT+8PjcxaY6YG3OZnLY0N0VjYnLaoev6Q7qutzLjMyanK82tBM2fBC5LUmnJ/BHg\nM4QQ5tuiiYmJST3Rdb1ei5NrorlZNJ8DPSoXxXlxGUaSwLc1HRiodHVT/iUlJTW5DKZMpkx/NZlO\nVblORZkakuamaF7ECPqPqWxwpzffA2zRdT3QZl8mJiYmJk1Ik7nOhBCVC/L+gVF+Y6h7h8R9uq6/\n6d4b5Xtgvq7riwB0Xf/YvWo6Wwhhwaj5FIqxeGpc9TlMTExMTJqepozRrKYq00bHWEUNRjmNWzCU\nT+WfNxMxNoNaiFGC5hOMHRebam+L46J///5NLYIfpkx1w5SpbpyKMsGpKdepKFND0uSVAU4GQgj9\nr3CeJiYmJg2FEAK9gZIBmlvWmYmJiYlJHZBlmYKiHJxKOQ57MGEhkUiS1CSymBaNiYnJKYEsy+QV\nFOJ0KjgcdiLCQpvswdjckWWZ2UnRDL+nLza7FVXR2PDcDlKSM+t8TRvSojEVjYmJSZMjyzLxc+Yx\nePgobDYbqqqyZcPzpC1eaCqb4yA2Poprbj4Pm71qd3ZV0fjgzR9JT8uq0xgNqWiaW3qziYnJaUhe\nQaFHyQDYbDYGDx9FXkFhE0vWPHEq5T5KBsBmt+JUy5tEHlPRmJiYNDlOp+JRMpXYbDaczrpu6Gni\njcMejKpoPm2qouGwBTeJPKaiMTExaXIcDjuq6luUXVVVHA57E0nUvAkLiWTDczs8yqYyRhMWEtkk\n8pgxGhOTeiDLMjklxZRpKm2sNiKnTTdjCA2AGaNpeDxZZ2o5Dlv9s87MZIB6Yioak4ZAlmWiFiZz\n04T7sdrtaIrC2yufJmte0mnzMJRlmfy8IpzlCo5gO+ERISft3Myss1MLU9HUE1PRmDQEUYkJnDPk\nVqz2KneOpijseek1spakNqFkDYMsyyTGJTFs4BhsVjuqprDp9dUsWZpsPvD/gphZZyYmTUCZpvoo\nGQCr3c7P+34lNmEm4ZGTiE2YiSzLTSPgCZKfV+RRMgA2q51hA8eQn1fUxJKZNHfMygAmJnWkjdWG\npig+ymbvrl38+cvXjBozFJu9G6riYs78SBbPz2l2VoCzXPEomUpsVjvO8r9e5pcsy+QUllKuuAi2\nW4gMndrs7uephGnRmJjUkchp03l75dNoivHg1RSF1wvymBw+FJvdAoDNbmHEuOspKM5uSlGPC0ew\n4S7zRtWMWE1TI8syM2PnMjk8jpmxcxvVapRlmah5KXTtfTc973iIrr3vJmpeSrO1VE8FzBiNiUk9\nqMw6K9dUgq02yv74H3fdf5Vfvy1rvyQ/+9EGmS8/pxhnhYojyEZ4ZONluZ2qMRpZlomam8aNI8Kw\n2hxoqpN31hWQtSi+UeSKiptN1953Y7U5PG2a6mT3Wy+QtTSlwec7VTFjNCYmTYQkSWQtSWV5ZjZZ\nS1I588wOqIrLp4+quLDb2pzwXLIskxiTzJXdb+WWq8ZwZfdbSYxJbrQ3a0mSWLI0mY+/3sHWd9bz\n8dc7mlzJAGQXrPAoGQCrzcGNI8LILljRKPOVKy4fJVM5Z3m1+2xSd8wYjYnJCRA2fSZz5kcyYtz1\n2OwWVMXFun++x+L5OSc8dn5OMcP63u8bnO97P/k5xWRkNU6WmyRJZCxLa5Sxj5eGePDLu2SKMwv4\n89c/2bV7F53P70ynTp0JC4vwU6TBdgua6vSzaILd7tHGQpZlcvKXU+E8RJCjNZHhU5pcyTcUpkVj\nYnICSJLE4vk5vL/tV7as/ZL3t/1a50QAWZaJj4kicvoU4mOi/CwVZ4UaODhf4buC/mQgyzIJkTHM\nfHg6CZExJzVeUfng96Y+D355l8z8sDncYr+WBy4czqybpqH+UEb3czsyZ3ac37lEhk7lrTXLPXNq\nqpO31iwnMnRqg5xPQBllmZjEVLpfeQ9X3TKF7lfeQ0xi6mkTFzJjNCYmTYAsyyTFRzH2tt7YbVYU\nVePZV94iOS3Lo6RmRSVwZfdbfZSNqil8/MNrjWbR1CRr8ow47rv2NuwWK4pL45l/vUJS7tKT8sZ9\nojGahIhYbrFfi91SVUtNcak88fVz3Hnv7fz7gy9JT1/mN+fJzDqLmjWH7lfe42dF/fDxc2RlLG60\neWvD3PjMxKSZU5SX41EyAHablbG39aYoL4e0ZUYZ9/DI6STGJHPdpbfy9gdvcviIzp5937EsN/mk\nylqcledRMgB2i5X7rr2N4qw8UnOWHePoE0eSJLIWxZNdsMLz4K9PIoB6UMHezrdgp91iAxfYbFac\nzorAc57EwH+F81BA92CF89BJk6ExMRWNiUkToFaUe5RMJXabFdVZVcZdkiTCoiaRlJDLuGHzsVod\naJqT3Iw8unXrdtL892pZBfZzqslqsaKW+T+gGwtJkshOX3Rcx9ra2lFcqp9FgwVUVcPhCGooMY+b\nIEfrgHGhIEfrJpSq4TBjNCYmTYAtKBhF9S3jrqgaNodvGfcX1rzsUTIAVquD266PIC+7cTKuAsra\nJgjFVU1Wl4atTdM/oOvC9OgwnvlsvaFcMJTMivee4oZbrmXDhlcIC4toYgkhMnwKOzYV+cSFdmwq\nIjJ8ShNL1jCYMRoTkyagLjEagOmT4ul9WYjf8W99UUTxipOTHdZYMRp5l8zyzEwOHThI63ZtmRId\njdTj+Mc71lzFmQXs//VPvj9G1lndx9zFisxMDh04QOt27ZgcHY3Uo8fxy3iKZZ2ZRTXrialoTBoT\nWZYpyslDLXNia+MgJLJuDy9ZlinKy0F1lmNzBBMS4V/GPWbmXC7pdJ/HogHQNCdf/vIMy7KPz5V0\nPMiyTHFWHmpZBbY2QUyPOv4HNBgP/tSwcMIu7YXDYsHpclHwxSckFOQ3mrJpSORdu1gaFkrEpZd6\n5M/74gviCgpPSNmcSpiKpp6YisaksZBlmaSoeMbeNBi71YaiqTz79haSs9Ia5G1UlmWiwxcztHeU\nJ0az+a0sMvPnNOs1FnMiZnCvtQ0OS1WKstPlYpVWxuK83CaUrG7MjYjgfqvFT/6nNReL8vKaULKG\nw8w6MzE5RSjKyfMoGQC71cbYmwZTlJNHWlbDZGQdCfqRlz6dDYcd0MrJkaDmX+Ty0IGDOLqd7dPm\nsFg4tO9gE0lUPw4dOICjW1efNkP+35pIolMbU9GYmJwAapnTo2QqsVttqOXOGo6oHwUl2YwN7Y/N\nXpX1pSoaBSXZpC858cKdsixTlJ+NWlGGLagNIeEzT4ql1LpdW5wul59F0Lpt20afuyFo3a5ds5b/\nZNMkWWdCiG5CiDVCiP1CiANCiOeFEOfW8dhzhRArhRA/CCGcQoivhBALhRCOYx9tYtKw2No4UDTf\nlfqKpmILbpivo1Mt81EyADa7FadWXsMRdUeWZZISZtLvik6M6H8Z/a7oRNJJ2k9nSnQ0BV98gtNl\nlJGpjNFMiY5u9Lnrg7xLJj4ijsgJEcRHxCHvkgGYHB1N3hdf+Mif98UXTD7F5D9VOOmKRghhB7YB\nFwEPAg8AFwJb3Z/VdqwDeB3oA8wBhgDLgRjgxEvlmpjUk5DICJ59e4tH2VTGaEIiGyZl1mFrg6r4\nphariobDGlzDEXWnKD+bsUOu9100OuR6ivIbf4sDqYdEQkE+q7QySnbvYpVWdsolAhila+YxwH4j\nI88dygD7jcwPm4e8S0bq0YO4gkKe1lwU7t7D05rrtEoEaGhOejKAECISyAAu0nV9l7tNAr4BYnVd\nr/FbLoQYBLwMDNZ1/TWv9iUYyqatrut+haDMZACTxsSTdVbuxBZc96yzuo49e+FM7hh/PTa7FVXR\n2PjEe6TMyz7hOSJDJjGi/2V+7eu2f0FO4clbp9NUGG7DHJSKcuxBwYSE+2b9xUfEMcB+o99Cz23K\nO6TlLW0CiU8uzT0Z4E7g3UolA6DruiyEeAu4C6jtdarSIXqgWvsBDOusQS6KiUl9kCSpwQL/gcZO\nmZdNQUk2Tq0chzWYlHnGTyQ2LgpFLcduCyYs1HhIyrJM1opiylwabSxWoibXvH+NLagNiqr5VCgI\ntGj0dMRwG0YxZnDVOqakhCiSU6vWMdVUukb9pfknY5xsmsKi+RlYp+t6SLX2AmC0ruudajnWCnwC\n/AyEAj8C1wNPAc/ruh7QX2FaNCanE7IsM+eRaO4a3ddj5axfs4OQqdEsffoxrgl/EIvDjsup8EH+\nk+TGPxJQ2VTGaCrdZ4qq8exL75GceuLWUlNgbBJXQkW5RlCwlfDIaTWeR/ysKPpe1tVPye74fDdp\nGUatOdOiad4bn50F/Bmg/Q/gzNoO1HVdA/oCLYHPgTLgVeDFmpSMicnpRkFhjkfJgJEccNfoviSm\nJHuUDIDFYeea8AfJWlEccBxJkkhOzWb7p7+wbvsXbP/0Fz8lI8syMbOjmR4zlZjZ0ads2XpZlkmI\nWsQVXe+gf88HuKLrHSRELapRXqWGWnNKRVWSRUh0KKs+W+tTumbVZ2sJiQ5ttPM4XWlW6c1ui+Y5\noCNwP/A/4DogSQhxRNd18xtgUi9kWSY/rwhnuYIj2E54RMgp/zavqOUBM9F0a2uPkqnE4rBTdsg3\nmcAbSZJIywjsrZZlmfjFMdw2qZ/HcopfHEPanGUNfo1kWaYoNxe1vAJbcBAhM2bUa478nBKG9H7I\nZ5O4Ib0fIj+nhIysJX797e5ac9UtGntQldtQ6iExv2AhRZmFqL8o2NramV+w8JRKWGguNIWi+ZPA\nlktNlo43k4Gbgb95xXh2CiEOAiVCiCJd1z9tOFFNTldkWWbJ0mV8/sU3dDijA4P6DKFtm7YkxiWd\n9O2LZVmmILsYZ7mGI9hK2Mya4yoAdlswqqL5ra0R2iFcTsVH2bicCm1aWwMNc0zySnO5ZsgVvFy8\nDaG2QLcd5drhvcgrzWVZSuZxjRkIWZZJiollbL+B2K1WFE0jKSaW5GXpdb4PFeVa4E3iygMr2ZDw\nSL8YTdHTG0ic77s1gNRD+ku4yRqbplA0nwP+qS5wKfDFMY69HNjvnUjg5n2MRIBLgICKZv78+Z7/\n7t+/P/3796+btCanBbIsk1Ow3Nj+9+ghdu/Zw53jQrh+sB1NVdjwVCl39ruTYQPHkJ9XVO/tjOVd\nMsuzvApERtWtQKQsy8yOWsAdNz6AzWpH1RRmRy0gNOZhNqx9AaWiAntQEKEzDM9wTmkh+yoqyMh8\nlvEPDOK87l08MZols5NYmh84RnM87N33M9+t+Jbx/R/CZrWhaipPrPg/grs2bNXmotxcj5IBsFut\njO03kKLcXNIy66bQgoKtqJrit0mcIziwkpUkiSnhMcTPiqJbly60aNWa24aNorCg8KRuwXAq8cYb\nb/DGG280ythNoWg2AOlCCEnXdRk86c29gbhjHLsXOEMIcb6u6997td8A6MDumg70VjQmfy1kWSZ6\nTiq9R0z37ND4/VNZlB3cj9Vmx2qzM/yBqbz+7BPcO/wBnOX1yyqSd8mkhocTcnkvHO3OxulykRoe\nTkL+sdeFFGQXe5QMGG/h1198Kynzkpg29l5sViuqphEVGsbhTu3oN/1eznfYudJ5B8+lFSO1bUun\njl1YvCATSZLo1q0bi7KX8fVPuzhcXsHl0vnHedVg7ze/EjY0HJu78oHNamN8/4co2Jx/3GMGQi2v\n8CiZSuxWK2q57343siyTn1/IH3/8ifzDLs45rzOdO3YmPCSc8MhpJEQt8rjPVE3hpbf+j9SsuTXO\nu27dekLDorHZqoL97dt3JD+/gIyM9AY9x+ZA9Rfw5OSG22CvKZIBlgMysF4IMVwIMRxYB/wAlFZ2\nEkKcJ4Q4LITw/qY8jpEAsFkIMV4I0V8IEQukA//Wdf2tk3USJs2HnILlHiUDxs6FQx+IYufWlz19\nrDY7R4Xufguudd2wH8uzMg0l4y5H4rBYCLm8F8uzjv027gzg8nn3P1s8SgbAZrXSMshKv+n3YnW7\nxawOO8Pjp3P2OeeRvtR3a4F9u7/hrLaCDt3P5FfXr0TGTj+uIP753c73KJlKbFYb53c7fuUVCFtw\nEIpWbb8bTcMWXGU5ybJMYuJceva8gdtvv5uJE0LZ/2c5nS7pREJSAgCpWXP5dPdGtv/nKT7dvZHU\nrLm1WiZOp9NHyQDYbDYUp2/5IFmWiY2KJ3zyDGKj4k/ZhIhTmZNu0ei67hRC3AJkAU9guLxeA6J0\nXfe+w8Lrr/LYH4QQNwDzgYVAe4yEgGLg5O27atKsKFdcAbfJPeqV8a6pCvqRI2x6fTVLltbvTe7Q\ngYM42vkXiPzt2z3MiovBqThx2B2Eh/ov5Dx0VGX52gz2H9yL3WKlXXAHDlTs4/mXN6LrRxCiJbf2\nvpmjllYeJeM5B4edcpfv+uSU1IWUB1kYGDsZq8OG5lR5PW0FKakLKS02imfIskx+cS5OtRyHLZjw\n6YED72e2PxNVU32UjaqpnNm+1uTQehMyY4ZfjObZ7a+TvKzKqsjPL2TIkJEexWCz2bhn5HgK89Lp\n1r0LKakplBaXegL/siyTX5qF03UQh6Ut4VOj/M7R4XCgqqqPslFVFbuj6rsiyzJzox5hxE1jPJbS\n3KhHWJS14C/pXjtemqTWma7rP+m6PkbX9TN0XW+n6/ooXdd/rNbnB13XW+q6vrBa+391Xb9X1/Xu\nuq4H6bpo5tB7AAAgAElEQVR+sa7r8bquV1/EaWICQLDd4tm5sBJNdaIfPeL+b4VnH82iQ4eg40oE\ncApIe3snKf9+n4x33+an/fv5Zt8+ZOef9LrpMgYM60uvmy4jcZ7v27Asy/y0ew+21odImDCd+Ikh\nDO19PS1blDNuWB8mjbqNccP6sHHrSyh/HkRz+rr0NKdCsMX3jfwz+VsGxhtKBsDqsDEwfjIff/Ol\nZ87E5Fn0HHgB/UdfR8+BF5CYPCvgW3rozFDWvrMW1V1eR9VU1r6zltCZDZfcKe+SKcwswdKqPVnP\nruWJN15lu/y1XyKA06kEtD56dJR4+PKx/PSJ7DkHWZaZnRLBVXefwcCH/sZVd5/B7JQIv3MMDw9j\n0+YXUVX3+akqmza/SHh4mKdPQU6RR8mA4doccdMYCnKKfM9DlomePYupMaFEzw58Pf/KmFs5mzQJ\nsiwTE53I9KnRxEQnNuoPMzJsCm+tK/bZJveNNXl0OaM1773yLN/8ewuPl+ZSury43kpGlmV+qXDS\n/+GHGTZ5Mn0nTiT/6y9Y+P4OHph2v88b+NBRg8kvrNqrJD+vkKDWdibeMcZjNez4aCfRD43xCYw/\nNHIw+/fuZXvxKo+y0ZwKb61YQ+RU34d+62CHR8lUYnXYONLC4rFkhtw3wGcNzpD7BpBf7L8HjCRJ\nLMpayLt73uGlTzfz7p53WJS1sNZrJMsyMbPimR4aScys2t1M8i6ZeeELuNE+mJEXTSS0z2wOH7QR\nEuFvYTkcdo9CqERVVVodEdgtNsIHT6Ioq8C4rqVZDJtyNTaH4cq0OSwMm3I1+aVZfueXsiSFjz75\nkK3bXuOjTz4kZUmKz9xKmRIwm03xiuPJssysxYlcMLwX100YwAXDezFrceN+p5sbzWodjcnpgSzL\nxMcu4rYBEz3uiPjYRaSl1+5TP14kSSJzcYIn6yzYbiEvbV6DzJWfX8BdI+72USh3j5/I408sD/gG\n7lSqLCtnuUpLIXxcUzqHAwbGe/a8nMSkReSUFlLuUgm22Mia4+++ufDc89Gcqo+y0Zwq3dpI5GeX\n4CTwGhynaixUlGWZ9NRUvv/+W5yHNC689BLmxs6u846h8YlJDBp2LzabHVVViE9MIm1JYCuxMKuE\nkZePx2ZxWwsWOyMvH09hVglLc33XvoSHh5KYONfjPlNVlbVPP8nYnkONa2SxoZYZ19bpOojN0dH3\nHB0WFJf/XjeSJHkC/7Isk7s8j3JXBcGWIGZMicDexh4wm83uFcfLLc1nwKShPlbkgElDyS3NJzMl\n45jX7a+AqWhMTjp5uSUeJQPGG+JtAyaSl1vCskz/xXWyLJNXVECF6iTI5iAiJKzeSkKSJLLSFzeE\n+D7UFFB2uQ4H9P877FX+f0ewjX267hMHEbRC0TQfZaNoGmec3cE4h5Ta13TMjYxlXEwIdy4K8cRo\nti58ipFX3M9nu7ej20TANTgOW7DhVouOZuyQIdhuuglV03hs41pCEiMoWpJX4zWXZZnirHw++/BT\nbGeeTfnB/dhsdmw2O4OG3UtefhHLMvzTxZUDKrZ21awFix1lr19dXCRJYsmSReTnF/Lxhx/TsdWZ\njO01lM5nGgpFcanY2hjX1mFpi+p0eSwaANXpwm6pea8YWZaZlRrHgGm3YXVY0Zwas1LjmPnADIqX\nlfrEaNa9vZpFWQs8x5ZrzoBWZLlW855EsiyTvbyIskMKbVrbmTnl1F8ofCKYrjOTk06Ni+sq/BfX\nybJMXNJsLul/Fb3vHsgl/a8iLmn2KeOWqAwoe6OqKhdfeDGbn9/i4//f/PwWwkOrKiWFR4Ti0l08\nvnG1Jw7S96o+5Dy51pOFpWgaq159m5CIyDrJI0kSV7TrwXtz1rJ99jP8e94GRl54P22DzuTwUZWf\n9v3Ic4+u82w9oCoaG1a+Svj0GRTm5RlKxivb7eE7RmK1tiS3NHBKsyzLzI9I5JYzehJ/+ySmXnU7\nO9c8y2+//myMYbNT4fRXHAD2djZUl2/cSXX5F7L0PreMjKWseKyU1tZWtAsyFIfiUnn2gw2ERBmx\nlfCpUWxa/iGq09grRnW62LT8Q8KnRtV43XKX53mUDIDVYWXAtNtY+9ILLMpawHt7dvLypxt4b89O\nv0SAYKsDrdo5ak6VYGvgPYlkWWZmahKdxvblsql30WlsX2amJp0y3+nG4KQX1WwKzKKapxYx0Ylc\n+rdhfu6IL77d5GfRxMTHckn/q7DavVxBisqXb3zEsrSmX+sgyzKJs2czbNidHpfOpk0vsiTFSILM\nL8yrNetMlmVSFi/hm8+/wm610uPC8xk3/n5efOF51IpybEHBhERUla+XZZnM0hUcdLloa7EQPXVy\nwDEToxYy7MYJnrfwTe+s5IxuLblh9OWU/VnO9k3voB/VOXr0KO3t51BauIKI6dMZdtNNfue44tV1\nBLU7gw5t2+LUynBY2xA+1diJMyFyFrec0dOv8GTuOy9gO8uOflRl17ffkptbSJ8+fXzldMdoKt1n\nqkth7WdPsDD/kRrXH8nyLkpyM/nt5z38+L/fkc69gDM6nkVIlK+VW5l19utve/j5+5/pcW53zjy7\nQ407iE6Nnc51k3v7tb+/4i1K0wPXivOea9biRI/7THOqbHt0MxlzlgSca+aceDqN7euTRag5FX55\ndgfZi+u3ULgxae7bBJj8xYmYMc0vRvPKtsdJS/dfXFehOn2UDIDVbqNCbZitkqsjyzIl2Tmo5WXY\ngtswbWZkrS4NSZJYkpJCfn6BR6EsSakKKGcsrX37AEmSKF1e4tde/aFcKVt4Shq9poRxtsOBy+kk\nPCWN/NnxPjJKksSSrHlGTMZd1mZJ1jzSclKw2a3Y7FZGT7nD03/7qg8AsAcFoWqax6IBUDWNwy2P\n8uWX/+HK8P7sfOUXDh38lTEP30PWgkzUg07sHX3vz/6Kg6hHf2XiuJHYbFZUtTfJyXEkJS2lT58+\n7JJlslYs54DrEC3Pd/DqvudpeaQV9nY2PyUjyzJFhZko6kGOHGnBb9/vInLYP7BfcjGK5uKxNz4n\nJGqujyLOKyykQlE44nJx5A+FqAeGeW0FMDNgdepgSxCaU/NYNACaUyPYUnsVBFmWyS0upPURC88l\nP450fnfObndWjUoGoOyQwnmBUtUPnb7bD5gWjUmTIMsyebklOCs0HEFWImYELul+Mi0aWZZZMDOK\n8Tfc5FnP8cS7b/NItrEgUpZlCnMKcZapONrYCI0MPal+9Rmz59Lm7nuxeK3zcDmdlL2wityURcc8\nflZiNFfcLvnFZz59WSZjSaZvjMZdkeCxjWvZ5zrIrSMu4/239zAk5GGsdhuaovLC0lIubXced5/X\nx8eiKd3xNHeF3IzNq2ClqmoU525g+aMrCU9L5fLwUCxuZflZfiH58Qn0qHYtd+7cSXxMDOee05HW\n1iP0H3g+WzZ+wIQbr+Gcs9sBoGguXvxeZUlmnpGMMHceg0YaCQMvrFzBpCH/8Cucuf2zX/wKiQaK\n0WwreYWMhKW1xqZik+cx4L6Rnmuy7Zm1pCfVnpn3V7RoTEVjckpTGaO57d47PD/mV1ZtZGlySoM/\n5BNnRjG48zl+gfgF61/kgssup+yXPxlz8zhP3a8X3l5zUhfuTZwVR4+Hpvu07d/9E1vnzOScs8/g\n/B4XEBs/p9YHY8LCGIaMr6rG/NIT20mdt8zHIqiedaa5DuBsVUHfCQ/7KfwvnnkN164/ue/qIdgt\nNhSXyqJXc4lLmug3f17Gc/z9+r7Yx431U5bKP58ld1FVsoYsy0ybEM7Eu8I9Vu9zrxRyx6jzePel\n/xA6pK+n71P/+ollpSuJiYvjkhtu9CRgbFxZyrS7q/pVsm77F+QU+e8gGijrrLZ7G50Qx98G3uh3\nTb59/R0yU2tO2qiM0VwfOgarw47mVHivcDXZCfVfw9WYmK4zk78MkiSxNDnFJ+vseJWMLMvkFxRQ\n4VQIctgJD/P166vlZQFTizuf2YXf9yjcP2CcT92vu28aTWFOIUuzTk5137YWCy6n0/OQ3r/7J74p\nTmNR5L0e11Bc1HSCu/ZA2K20sdiYOaWqErQkSaTOW0Z+Sa5nt05vJVNJkCOYv0kXYg8OInRGOPml\n2Xy977uALkxat2R+3hKKs/JRDzrROMyBAzqPF+2gtfUwtw7tRafOZ6GqGkeOCg64DtHO4Rsktzgc\n7D10yKetIKfIo2TASBa557ZQNr+eS2uvFCZFc2EJNpICKhTfRZ1HW7QOvIOo11YAsiyTtbykakfS\nYygXb8pVpQa3bu0uMEmSyE5IJnt5EeWHFIJb2085JdPQmIrG5JRHkqQTdpPJssysuHjuGDXaE7Sf\nFRdPxtI0zw/cFtwmYGqx3sJKK52Adb+c5YEzqhqD6KmTPTEai8PBF6v+j/CR/TwPUrvNyoOjbqF4\n64fcEhaO5lSYuSSZ7MQkH2WTsSRwDTZZlpk3K4FR/Yd4rLZ5sxKYNjOcqEei0RTV7+39s88+I6ek\niMiocAASolKY+VARNqsDVXOy9pllDBn1N15YvY35yUt57uWXfJQlGBZNu9atfWRxlqsBMxMPaS1p\nrR8F8MRo5mYYCzWD7HaflPKbbhvK8jVPM2X0LVU7iL5s7CBaeb4zUhfxj2kT6OKudj0jdRG5CXVb\nzxVsswe8JkG2Y9fKkyTplHKTNTam68zkL8H00FBu6DfAb13Lu9u3UVxYCASO0RS+uo3eg6az860N\n3HvzcL+6X+/t2dkoFs3OnTuZm5xMi5YtOHrkKIuSkujTp48n6+z9L77EUraPR0JG+R1bsHEnfeKN\ndGjNqfDr2tfJXpx6zDnjomdx0/lX+JzjDz//j+fe3Ej7Dmfzw8E/uXdeuMeF+VxKEe1atKJ122Bc\n2lGktt24/u/3Y/NK61U1Jzkrw8gvyqJPnz7s2LmT6NkJdOjRnSN2Bz1GjuR/L6z3i9HERsVz9bkD\n/DITc/85j6t6XYq9BViC2zJtRjSS1APAL0ajqirrnngCqXN7WgodW1Awd44Yzbq1m6goV/nsx/8y\naMlsv/17fl+zmZzF/uu5qnO8MZrmguk6MzGpJ9/t2kX/wUN82mw2G9/tqtraSJIkHsnOoiQ7h88+\n+gRbUBf6DJpOh/bn0Kf3cFa+9CQThjzoF6NpaHbu3MmcBclMCJnqeWDOWZDM4kcMZZObsoiZCbP5\nZndQQNfQYUvVQkWrw06ZK7DVJcsy+UX57P11L7vl3zh6qAX/+/ZnBt90I53P7sDe33/lpY9e5+GZ\nY7HZrfzvhz08k5BOK4cDdf9+IkYMQuraGUXVKNnwOl/9/D39evq6xWxWBzfe0M+jJEsKckiccp87\nG02jdFk6c+Yt8EsECIsMYXb0fO7sc68nRvP4+nzSs7ICZuSBe7fQRQs9WWdBdjv52VWVrWVZJmHW\nAgYPGI/NakcuLwm8I6mr5h1Jq8+XnrSQ3OJCKlSFIJv9tFEyDY1p0Zj8Jeg7YACTpof6WTSPFhex\nY9tWv/47d+4kPnYhkx6YW/WgW7eM1mdYafV7Ob16XdZoWWf9Bw1ivFvJeMv6RFEpb7z6KmA8NKfE\nJWJz7Wfq6AEe11Dp2tfpGTqZs7p2AQJbNLIsk7wslR92fcuQUbez9fkPuXtoFFarA01zsmF9Fv2v\nvJgXXttE1+5daGkV9LvjRjp0bo+qaCxLKmJR6P1+Ci4h8zmi3G4zj9yak893ryMjK4W4WdHc0Otv\nftlo737yLUsz/N15sixTkFOEs1zFEWwjLPLEVs/Pik7ksgsGe6ykVa+u4JqE8cdt0ZzumBaNiUk9\nuejii1m16hnuvfc+j5WwatUzXHTx3wP23/jCaoI6weqPnkBoOrpVcFPCRM7s1oWvVqxiafqJuctk\nWaYwLw/FWY7dEUxoRFUQukXLFgHL2oiWVVFwSZJYvnQJC9LSSX90I0HWVnTu1AXN1haXorIzvYCW\n5RX8/L+fSUvP8pk3Mi0JVT/Eg6EPsPHpVz1KBsBqddC7z1he2ZxL3AMzPNbbyqf+yW0P3EyHzu2x\ntmjho2TAiA9ZrS62vLWCwb0ne2I0W95aQWrWbAAUZ7mPkjHOy4ri9N3gzPsc07MaLo5RUS3uc8vV\nw1ifXkL/2GmeHUn/XbKS3ISaN0szOT5MRWPyl2BefDwhsbNYvXE9rYDDgGjVknnx8QH7qxVltHdY\nuSTsfr833jaWwCVS6oosy8yLj2Pk4IEeF9K8+DgWphlrNo4eORqwTpp+5KjPOJIk8VhRgU/bzp07\nWTY7lvihA3BYLTivdvFoRirduuUhST3IWlHEteH38k7OE9jsNo4eaulRMpV88P5Gwu552CfDbsJt\n41i1cQ133H8bTlUJnM1ls5KaNZv8nFIqyl0EBVtIzaoqyGl3BKO6+1Wdl4bd0bBbQ9dEULDNp0Bm\nx7O7cPsld/BiYgoXXnEJbSzWOicCmNQPs9aZyV8CSZIoSs/goq7d6HR2ey7q2o2i9IwaHyq2oDbc\n3utCdqTn4nKX5nc5FV5enEnUlGknJEthXp5HyYDxVj9y8EAK84wtBBYlJbGyuNSnTtrK4lIWJSUd\nc+zNa57zKBkAh9XCpBt6UpptWDVlLhWLw87R1q1QFZUWrY+gVS/+eEQNmGF3RNPZtHorl/a8ktLn\nN6Oo7npsqkbp85u5pOeVRlZbVgpFyzPIyPJNQw8Nn8HazdtQ3cepqsbazdsIDZ/hdx6yLBMXE0PE\ntOnExcQ0SB2w8BnT2LLtCVTNuJ+qpvDhJ6/wZHERj4TNwHJYJT0zhdj4qNO67lhTYMZoTEwCIMsy\n8+NncMvVF/LyJ9/gbNGSPT/uJTMlvcZgdOVx+TklnrhCeKR/xYOIkGkM7XujT9sv+35jxdNrCQ4+\nA+dhjTO7tOeXPXuwBznQvbLOjkXM5IlMuEzya1/5ucyyFY8TOTeeDuP6U/HHfj4sWsWtg/r6xWiW\nl0Qyd2IY+8vLeOmTNzjUGoR2hJ9/3s3T/3wGgBmzQrBZBK10OCxAdenkZhQd0xqQZZnC/FwUZwV2\nRxCh4f57z8iyzLy4eEbeOsjjulv72qss9EpFP15kWSY/t4SKcpWgYBvhM4yXhtlJMQy/p69nIeuG\n53aQkuy/xuivhFkZoJ6YisbkeJBlmeK8LPb/sY9vf9zNWef/nS4d2hM1dWrAB5BRwmUBQ/uO9yQQ\nPLEui6TFsT5KIi4mhhsvu8hj0fyy7zdeWLeVh4ZO9DxYV2x9Fq1tK5an1e/hOnvmDIZ3DvZYNABO\nzcWGveWkZOd6YjTXht9rKJunX+T3L3dhOxpEC91G+/bncMVlV/Pum+ugi43BsyZ4CkW+sKSYJTHz\nPBlk+UVe20GHBN4O+niIi4nhxr9f4pdK/s5XX7J0We21446H2Pgorrm5u19png/e/IH0tKxajqwf\nsiyTW1REuaoQbLMzI+TU3hqgIRWN6TozMakBSZKYHhHFnpZB9Fu0lGvCImh/513MWLQ4oGslP6fE\no2TAWGA4fkQUs2J8d1sMjYhg7ZbXPS6kLa/t9CgZ4zgbk28ZS+tWDrJLSusl89SZUZTs/ACnZpTI\nd2ouSnZ+wNSZUZ5zyolPZt8/3+DXje9ycftzWbPyn+zc8RrXXn85dwy9l79f1IsWZ5/pUTJg7K9y\nd+J0omYnIMuy4SJLy6Qwp5SMtMwGfWAq5RUcKCvn8ZfXs/y19Tz+8noOlJWjVAROGjhRnEpFDZvB\nNdx8siwzKymJC/rdzHUjRnBBv5uZlXR6bw3gjaloTE5ZZFkmPjKWGQ+HER8Z22A/SlmWiY2OJXxa\nOLHRtY+bVVrKtZMmY3FvWGaxO7h20mSySv0VwB+/7Q+4mr1L1/PI8wraS5LEwrSlvPP512ze8Q4H\nygLHRCyHdcq0uq3pqEKwt+UZpL8jk7rtM9Lfkdnb8gyg6sVUkiT69PoHH7y6nX+9uYMRI0ewevVq\nIiKms+W1p1A1hdbBloCbeXU67zzy84v8ZpVlmbgZCUQ8NJO4GQkndK9cR4/wzL+3cm3sOAbMeYhr\nY8fxzL+34jpy5LjHrA2HPcizP08lxmZwDZekkFtUxICx92C1G98Pq93OgLH3kFvkfy1PR8ysM5NT\nElmWSYqcw5hrh2PvahRrTIqcQ3LOYqTKSsp5eSgV5diDfNODjzXunNg53HXLXR431ZzYOYREhrB+\n/VoUpRy7PZiwMMMVVKa5OMderTaX3UGZ22LwjLtL5stPv2TA1f7b/rawCb9tDSRJ8riB4qJifXbZ\nNI5TcbUSiMOHiI2L8sQ0wkJr37YgN7+UO+6ZidWrDIqmKuTml5KZYeyRs3r1avJK8ohKCffEJPIy\n8ogggrSlj5CXV8zve38KuCV0a1pR4fSt5SXLMvPCkxl51X3YOhj7ykQ9HMs5F51NC4ztB2q6P7Is\nk5dfTIVTJchhIyJ8OkcdrbktZKKPNXVb7ES+Wvlajed9IoSFRNYYo2kojLpo1bYGsNspV09eCaOm\nxFQ0Jg2KLMsUZBehlBv7qofNDAEgL6+YigqNoCArERHTj6kUirIKDCXjTiW2W2yMuXY4RVkFhESF\nMS8ujtGDbvWUs58XF8fCpb4l3WVZpig/G9VZhs3RhpDwmRTkFniUDBiWw1233EVczCyiZj3gSTee\nM2cWixdn0MZqwaU4PRYNgEtx0sYrBgJQmFXChBtDWbN+OaPvmuKJ0Ty2JoPbJ93Gr1/9z0eunOIS\nylWVYJuNUaPuoiAtj7E3j/KJ0agOwW8/7mXwg7dXyTU3hsWLag5Slzs1HyUDYLXZKfd6Y1+8ZLFH\nyYDhJpo0azyLZy/m4w8/ZtmyVGRZZnx0KCMSpnhiNGsWFdOv50AOqb/7nntmsaFkLMa8B5z7OUIF\nt14z2HM+CdHRpGZm+t2fuMRkBg19AKvNjqYqxCUmY2nfKqA1haVlwHM+USRJIiV5GQVFOTjVChy2\noAZPBDDqovkqG01RCLadWKp8c8FUNCbHRJZlSrOy0crKsLZpw9SowLsUyrLM3KhHGHFD1f7q8eGz\nOXhYYfToCE9bTPQ8lmXWXqpDKXNi7+r7I7RbbCjlTgrz8jxKBowth0cPupXCvDyPlSDLMkmJkYwd\ndh12W1cU1UVSYiStLR2wXe7vpup2TmefdOMRI/pTUJBLVNgMZixa7HGfuRQn/3p0Bblz5/jKe0Dj\nvO49GNH6Hl568RmOtDhKy6MtsFlb8eH2d0lLTvHIFZW8kN73jcdqNx4+yx79P2LiI/jnymf4+utv\n+a1sPwRbaa3CqLG3+Mp1980UFOaQvjRwkDrYYUVTFT+LJtgrBuEIdgSMSdiDq5SpJElE3PcQ8yOW\ncO7Fl9ASC7cOmcbrzz9O2vy4avdKxdahar4XP3iWh+4f6aPMxw4ZSnpqKgXFVbtVLk5Jg4Mq258u\n5YjFwrWDRzBo6APk5Mdx5UND/KypYMuxi1UeL5IkNWjgvzozQkKYlZTkcZ9pisK2Z58jIzm50eY8\nlTBjNM0UWZaJSkhgStRMohJOzCd+rHkWz4hk+FkdGX/hJQw/qyOLZ0QGnK8gu8ijZMCIT4zpOw57\nq7Y+bUOHPkRqau1uCXsbB0q1Gl2KS8Ue7ECpKPfZBdIY1+oTLC7Kz3YrGcPysNssjB12HfIP36Nq\nvuOqmkori29yjc1mRVHKkSSJ3Llz+O3F9Xz15Ep+e3E9uXP993yxt7OiuhQ6nXEOD/SZwoSbpjH6\nugdwHVI8SiYmNoH7Hp7iUTJguE963zee5zduInZOHI6LuzF6eSr3lSzlroxkXtj5Gb/8+ruvXDWs\npAeYET6VbZseRXOXqtdUhW2bHmVG+FRPn7KD5QFjEkq5r3vv7fc+YkpsLneNieaOMeF0OfcCxkyf\nzfPrN/ueexsbqqvKnbZf3Rcw5rTrm+88/y/vkvntw8+ZdeH1JPTsT9T51/CvVY9RdnA/55x9LquT\nCtCcxn3SnCpvlawlckpojed9qiNJEhnJyXy3/U3eX7ee77a/SUZy8imdddaQ1EvRCCFaCCEuF0L0\nE0KcnOW8Jn7Iskz0gmS6DR5Ir7Gj6TZ4INELkhtF2ZRmZTPpmuuxuws12i0WJl1zPaVZ2X59lXIl\nYDC8JcKv7bvvdlEbIVFhrP7XBo+yUVwqq/+1gZCoMOxBwajVguSqpmEPqvpKqs4yj5KpxG6zcO65\nHVi/db1H2aiaymOrH6XPzVf5jqdq2O3GviWSJJGTksJjyzLISQm8F05o1DTWfrrS88BVXQprP13J\no08Y2zTHzZ7PxVcN4Kwu51Kx/09eWV7Ma4UFvLK8mIr9f1KuamQvL+a6qQ94KhFYHHYGRIXx8vYP\nfeWqZSW9JElkpMzlu49e5P2tT/LdRy+SkWKUVIlOjGV86GSOtmzNM8UveJSNqmisSH+cOYm+VlqF\nEtgNV1FNSYVGT2ftR894zl1R1YDKvHKBJ0DpshwS+4zEYTFeGBwWK1HXDOLdzWto0zaYMYNH8ui0\n+byZuYoNcwoI1o6SX5jbrLO0JEkiMy2N0pwcMuuZtt7cqbPrTAgRBiQBZ7ubrgU+FEKsA7bqup7b\nCPKZBCCnuJjeD97n+1b84H3kFBeTlXrscvD1QSsrw965m0+b3WJBKyvz62sPtvuU+AAjGH4E3zVM\nqqbgcpXXOq8kSSTnLKYoqwCl3Ik92MGU2BAKinP4o/w30h7fzsQ7R9L9nK6omsaaV19j4dKq+mM2\nRxsU1eWjbBTVRcdOXTyxGqVCwR5kZ+6CeRQVZTOi41meWMi6dW+weHFGna+T1ENiUf48CrNKUPZq\n2NtaWZQ/D6mHRExsAoPuGGfEISoqePepJ7l/5DhPzbWnn3qSc87pRFlrna4BqglrbkWtqhrrXniT\nxYuWGetYspbzx68H2fXTd5wjdaJzp05EhBvxr8rAP7hTaxfNpd+EEVxst3HtuNt5Lu0xVpW8htXe\niqOHW9L+jK6MGTPGZ+4ge2A3XFA1t5skSSzMT6IwsxilTMWlH2bJ8jw6djyLP/aV06l9J3b//DN/\nuxdZMM0AACAASURBVPAizzGugxU4OvuO47BY+XP3DwwPfZiOnTrS/dwOHNj9P6aFjPUE6Wc/EkvK\ngvS/1EP6dKBOFo0QYgqQA6wDxoLPK+oOwH9TjNrH6yaEWCOE2C+EOCCEeF4IcW49jr9ECPGcEGKf\nEMIphPivECKiPjI0Z8o1NXAGi9bwGSzWNm1QXL4ZVorLhbVNG7++YTNDWPfuap8SH8s3FLDfuden\n7YV1eVx8SY9jzi1JEmk56eQ+aiQAFK7I4qoB3Rl2/02EP/IAz+/cwjNbXuGt/37llwgQEj6TZze9\nj6Iasiuqi2c3vU9IuBFfSs9MJ78kn/RMY6X/4sUZvP/+92zZ8i+2bfsPLQ63YMLk+xk4aiBTo6bV\n6U1a6iERGj0NW0dBxdE/WJq+hIgJE/jPBx96HtaWo3iUDBjFMu8fOY7DTidff/qFp9xNJS6nwu+7\nf2fLSx/y/nsyixcZLscZk+bw42d7UH/7kw6WTvz83UE6druUuNnz/WTNLSmg34QRng26rHYb98Q/\nTGtHMHfePYu7xkTRsZPvywRAZNhUdqzzdcPtWPcokWFT/fpKksTS3FRikmZyfs8uPBh5O61a2ZkR\nEsmEBycSPSMKVVM9slnaBuGsVo7f6dJo2/lsOnbqiKqq/Pn7n0yYNtYnaWHY6IHkF5rvtM2Nulo0\n0cAyXdfjhRDVUz/+C8TWdUIhhB3YBijAg+7mxcBWIURPXddr3QdVCPEP4HX3GJOAA8CFQHBtx51O\nBFttgTNYrA2fwTI1aiaLZ0R63GeKy8WjH7zHnNwcv76SJLEoa4FP1tm8tLksy0zmldcy0XUrQmi0\ntmgkJtQv8FpQnMMd4/r6PHQmRNzNR9t+YGmAeI8kSSQvyfHJOkteklPjm7AkSaSnZxprd6ZNo/ys\no4zKn4DVYUVzakSmRJEz25A5rziPCrWCIFsQEdOr0nZlWWb23DiG311VLPP5Fc/S0XXYYxlYrZaA\nlZm//ep7Rg6ZzuaMFdwya7KnmvAbaYV0aRHMrFlVxSmnPhSO5chBptwxyLNBW8nGV3njpc2MGv8Q\nefnFLMuosmzLtcBbDuviMOC2Uhy+1kXlNVm2aA45BaVUKBpHXCrtz2pNSm464rAOqobF0gK7PZjQ\nMCPtuqA4m5ET+7D+iZ3cO+I+H4V6z4hRLE1No7C4iKkxkaSExDD54r44LFacLo2sf7/EgPGjUVWV\n1WtW0qnrWQGTFpQGXEhpcnKoq6LpAWyp4bMK4Ix6zDkVkICLdF3fBSCE+BT4BpgG+Dv/3QghBLAS\neFXX9dFeH22vx/zNnsjp04lekOxxn2mKwltPPkPmI8cuulgfjP1AijnargvzXtuK1OX/2TvvsCiu\nto3/hrI7u0uzYTdrEhNjeo+GxK5RLKhgj10UARG7YI2KFRHpIPaOvYvGqOnF1Dfd6FiiIlgQ2J1d\nynx/LA5uFo0mxuRLuK+LK2Z2zpwzM7tzz9PupwrVatYkcsnvPLAX20u716mTRmJSjFqjMiIo/K5d\nH3+kettoNDJv4S2/TuUiZfFiXHUCbacFoC19+Gr1WlqObses6Nnk5V+nTZ82iDoR2SwzYcYE5k2z\n+dsTEuNUkgFb4L7bkB7sj1/DvpXxtOsfAk5O5SozV69mpG5NI100/rw9bx0W5yKypROMbtkDT4M7\nSYvjmbfY5so78f3/mOTfVW05rdNqGdahNWOXLuX69VwKzPaWrZu2/JbDguJiSxbYm86COeVL4xuN\nRsKCA5kzexa/ZJ0mYNxgtZvk7vhV9Gj9Mp4eBiZOCKWqvgonLvzEq50CKCkqv9XByV9O2o5b30hE\nUjSp0bFYrxTw8fHjXHe1YHlvJ85ahRZ9GrFh3kFks8VBGkZ3DwspK3B/cKfJADnYyKE8PAr8ehdz\ndgQ+ukEyAIqiSMD7QOffGdscaAiU3/T8PwKj0ciiqdM4d+Btvtq4mXMH3mbR1Gl3/fC+HSRJImL0\nDJ6t2xLfV/oysMsECor0t0xt/r31zp8XS9ySdObPuzVJ3Q7lVW+fPXWeE998Q/iIfkwaG4ok3T7B\n4GZIksSY0REMDxzDmNERqkvHkpdPkd5ZJZkb0Oq1/PDTDyrJAIg6kTZ92hCXbFNdNt2i34qzTmR0\ng7ocX76IX3/5iaXLk+2UmZcuS6FlE9tX37tKDXq1GsSA5oE87FWPGpWrodOKyPllhKp1QSUZgAtX\nLrPy/SPo63izcuUSrl3JsVvDyGHBHF25HUspAVnMMlui03FzEjjx1S4WzClfGl+SJIYGDSVoUH+u\nXstWSQZsFlGHkH7sP3ocUdTSo1tT5IsS9TS2WIqTS4l6jjcgyzLyTSRorG8kKj6GhatSebVFC8a9\nOBz3HC2aHGe+Sj1F7we6sippk13Swp7NbxMywlHtuQL/bNypRbMbmCoIwhHgdOk2RRCEqkA4ttjN\nneLxW+z/LeBfzvab8Wrpf/WCIHwIPA9cBTYAExRF+W+U2WJ7eN/rwP/NSIhNpoNPb7u05A4+vUmI\nTWZBzF83760QPDyMiOljVPfZ2VPnObhqFxH9m6MTNZhlKzMnjWDKnERu9JC/FSRJYsKY2bRpOris\n3mfMbOZFR6J1d8PlcjEWk8WObCwmC6IoqiRzA6JOxFRa9a+/Rb8VbVExdTw9GfnME8w+cZrLRbB5\n2y6cnRQQXLhyNQ93N3ungGwx41KaRGG2yIhuBnXtF69dxmyxoNNquXDlMsu++ZRWo4bxSql1uz06\nXtUjg9JMtMmzWJKSQL7FjJtWx4rFZUrLkiQRPi6CArMVg05DWHAg586dY9r86Xi6Gwjq1YPV7xwq\n1/1WJNjCtaKoRXF1pvvjjUhYspsW3V9lQ8Y61X1mazS3kUcfLb/R3PDRwcwYEcmbjbrb6qWsMinH\n11GjrpGVS3YjWwto+NhDFYkA/09xR+rNpYTyPlAX+Bh4HfgAm3VxCWiiKEruHU0oCBZs8Z6I32yf\niY0sNOWPBEEQkrC5164AcdjiNC8AM4H9iqKUm5RQod589wgeOoqWzzjy/ttfbiYh7e7cUfcKkiSR\nkGyr3j7xzTdE9H/FIats/9dFzFkYd9vjjBkdQSNjJ4fsuO+knYSODFRjNDfcZxaThbcX7aOmtjov\ndn7Rjmxks8x3h74jem70LWM0YQ81pLJOx5xPjvP8m4M4euAw3ToHqcdYuXEhmhJnerxRpiiweXsS\nvRo3RbZYWJq5k4aPPYXW4My5Xy9gEorwEGSCWrzByveP8OyoQId43bn97xAz5/e7U0qSxJjIKF7z\nG4JW1GORTRzenMS5E18yYkEomUt3MvSNjizfu5tXg3s4uN/eTV1H/4DWyLKF/Sv3EvDU48S88z3O\nnnqycs/gVORKrWq10Ti5IhdbiUm+tUUrnZJIXpSAfN2MBSvZ1010bFumhL3v7XXMXTC9gmjuE+57\nK2dFUXJKg/CjgLbAL6Vj44EYRVGu34vF3AGcAAVYrSjKjZLaY4IguABzBEF4VFGUH+/TWv7V0P+m\nGyHYHsZ6t79PMsNoNLJgri0gHz6iX7l1MhbT5fKG2qEg31JuvY8p32KL66SkMGXCeNL6x6GrZMBV\ncWXelDnUqVOHMVPG0L5/ezVGs2bRWhrUfFS1IKJmzSchMQ6TKR+lBGp41yUjO4cvf/6F9oOHU7V6\nDUqUYmTZjFiaieam9+CZ9j5sObgGwapgKZIp1llJO5SBK1UJ7bAQUaNHtppY92Mcrm7wZL+uTIlN\nR3Az8Eo5GYhffPstA4YGcvrUSerUrk716jUIGeGoNxabkKqSDIBW1NPCP4hVC8NsCQOuTpgtFtq9\n1JgNcWtpH9rHIUYjyxbWr9hJ4NNPk3H8BP07j0fU6rh05QKHP9tDcXEh2fmXWLp66W1JwljfyNy4\nBQCMHT2RVxr721nU7Vr2Jn5JMgsX3X+LugJ/DndcR6MoSh42y2Hmn5zzKlCpnO2VSz+7HW48RX6r\nrpcJzAWeAcolmunTp6v/btasGc2aNfv9lf6HERw2nIjRM1T3mWwxs/u9dUQturcJB38Uot6z3DoZ\nrd7zd8ca3LS3INGbXGVaDaGRM9SH6pLUZEYGDqfwaglbl+zkWt4VanjUpUfjYXgavAjsG8xDj9Rk\nwtTJLJjvmAUnSRJxCYmc+v4bvCvr2bt3Ge3bD0IUdbz8XCt2rF1O7zFhanLH0fWb8K5en9dr9EHU\n2EhA1Ojp3TSUhdvGcmjlFtqGDWFzTFr5GYjuXjT364FFNrMmOY6rF7Lx7+zHhMmRdvUyBWarSjI3\noBX1IGiwmGWadG7K8hU7GdixEz1feY1dS9ZzIfcaxnr1qedZk+NfnqOkBFwKXahk0FOouJa1Sq5c\nk55thgCQ+d2Wu7JECgrk8l8GCuy94zY9u5ib9OzuPtGkAjYcOXKEI0eO/CXHvu+NzwRBeBtwVRTl\n9d9sfwdAUZTmtxnbB1gFdFIUZc9N258BPgd6KYqysZxxFa6zP4AbWWc3ukUGh91aDFM6JZESswRL\nbj5aTzeGhY/EWL/8fe90bps6c0G56r+SdIqZk0bQr11DNUazat8PDjEaSZKIT4jHZDKh1+sJCQ4B\ncIjRZB5NZ160TVpmzPjxPOrzioObaMPiJAb2DWb3rq34vdbHgaj27kvBRe/MtNjy4wiSJBEfl4ip\nwIxCMUXF4OysxWAQ6dLFl627d6lCmyOHB7Fgejyt6w9wOM7qI0to3tifnR+lY879Frf6D9IqdIRK\nUrvjUvH19aead3Xb2mUzR1etptfrbYnZmM7wcaP4+L0vMOVZ+PKnr+keNtuObCyyiXfSZqG4F9Ep\n2J+8a3m8u+UwZ74/hVjFkwcbNkB01kKeE85OOgxuGvy6tWNfRgYfffwlXV4fwoFvMriQn41GZ8BL\nqEyd2lVJXWYviS+p3Tbz0end7Lptjh09kScfaeFwjVevm8fSVUsxGuuX6tmNpKfvC+p3YMOez5gx\nZ0kF2dwD3PcOm4IgHP6dXRRFUVre0YSCEAYswJbeLJVuMwI/AeMVRbldenNlbBluaYqijLxp+yRg\nFtBAUZST5Yz71xKN7ccaq77RjQi5vYz8X7KGUxKzQsYy8Mlm6DRazFYLy785wuT4hXdNNtIpiXkz\nojh1+gSBfXupsY6tmQeZNe+36synSIlfhMWUi1bvybCQ0Q4kMykiAt9OvmpAes/OPcyJslXNxy1J\nxZRvQe+mJXRkWdfMYSNDadKxncPaVs1bwvBBo9i0YS292w51+HzLzgQGvN6cQ9k/MXexfWKkJElE\nTJiMb5uu6lo2bV9FjYe9QaNgcHVj5BD7ezduZATPu/upFg2AbDWxeFsED9R8lEIlm7Buj3E1v4Ct\nn32PxdkVZ6uF61ZnAoLC7ebfuzSNwJadMFtkJqcvpMEDz/NM/RYc+G4nrp7udOwbosZoNiVMZ2QL\n2/veni8+oNBFwZJnJltrpfuMgaqa8+652/BtNBwPQyUOvL+UuYsiOHfuHONmBuPuXZf2Q4ep5JeZ\nvJrEqLL7J0kSUyaNo2u75mX3eN87zJxjI2lJkpg4bjrtWpZZ1Du3xDPgqVrs/vksk5bEkxS/mGbP\nVHGwao98eZl5Cx3rvCpwd/g7iOYI8Nsdq2BLbc4GflIUpcUdTSgIeuBLbAWbU0o3vwUYgKcVRTGV\n7lcPOAlMVxRl1k3jpwKTsZHVYWxSOFOB9YqiDL7FnP9KopEkiakR4fj7NkEnajHLFjbv+YC3omLu\nK9lMGjmaDvoH0WnKXE9mq4XdppPMWWIrgkxIii3r9RJUPhlKpySmh0SQn3ed3v07O2RvffTdD3fV\nynfsuLE88/yzDjUrxw4fxeBZlQKTFYPelmV183r+qEVz4MBShrZqT8YPH7E4PcV+LWPG82yjV9S1\nXMrJYsenG/CLbFuWcBD3HgvGL7J7GEeERNHp6SFqjGb94QQ6PN8HT10lUt8JJWp4R4fzXrTnY9oN\nCStbe6lFM6i1LYV67pp4qtX25NuTlxkyfgl516/y4ZGdlJQoKCUlXPzpM6L6BdqlUCcd3k6Tqd0c\nFJXfmXWM7s1GIVtMfHtuOxjy+fnKjzTvGeLgzju97z1i5sxDkiQGDx5ISP8Ah3v84dcnmL9wkXr+\nQ/oNpqZOjygU0eOZh6ldyQuT1crWHDP5hfl0aVEma3MD2w7/RGziMoftFbg73PdWzoqiNFMUpflv\n/p4CGmGLq0T9ziFuPpYJaIHNglkFrMaWXNDyBsmUQrjp7+bxbwHjgQBgD7YstHnYCkH/U0iMj1VJ\nBkAnavH3bUJi/P19m7Pk5tuRDIBOo8VyPR9JkoicOpoXferQptPTvOhTh8ipo8uVdEmOSaD5A43J\nLrpabj3K7VSLy4PJZHIoGrx+PY8fpGyMz/vxXOsBGJ/3Y0xElLoeSZIwXbvEhqRku7qTjclLCQoK\nZO+BLbzS2If1+9PtZHUydqfS4fmXMFstiO6OBYWmAjN5+blkbF3Npq0rWLkhmdcGvKimUOddzkcx\n5zNyYD8mjQpTkwtGTOxH2jtTid4aTuzWiTRp0IrqnrURNXq83R7G/JsGbGaLFUmS7GRjdq5YRvvn\nm5R+LlOvUlWGvPQGbnp3tKKOqt616Nh9OD4tOuGiURCruDN1QxqnLpwH4NSF8/x47ddye8SUaApt\n90erpyDfSkHhdUBbrkRSgcWMJEmMmzYFr6qVfvceG41Gnn24DhEtnmF08xeoXcmWAq7XaLDm5ap6\ndnbnL1sR9Y7ySBX4e/Gn+tEoivKLIAhzsVkXz/7e/jeNO4eNKG63z2mg3E5Hpe61vyfH9h8Em0Lx\nbx7wohbZfHvBynsNracbZqvFwaKRKWFw4JsMC/Wzk47pHPAqCUmxDv0/zNdNHLr4AVXq1iq3HuV2\nqsXlQa/XO1ThZx48RrdBk+yyrF7vNITYhFTCggMZFzoIneJKJRPEj5lOTeNDOJdoMMieJM9ZRr1H\napGxfTXunpWIXjMDUXClfuUq9H6lMV4Gd2L3ZhC3Nh1JklgSl0ZBvhWDm4ar1y6zL3MLfXt0UV1n\nq5MzeKLH4xzf8Q2uJ3OZ1LEjuic1mC1WZo0Ko23fviyMjaFmvdqIhS60bNCY/R/soIpHdbw9a9Pi\niX7MWR3BpDd90Wlt4xK2vY/oVJm30+L4OecqsjmXhvXrs//zIzR7vDGZH75DDx8fdFotD3h6qtI4\nly/9ypFDK+gypCdaXRcsZpll0fHk/pqFWMkDQSOU23HTyepquz8WEwY3Dbh6ABfKTVAwaHUsSUqk\nZc+uHFy38Y7uscbdE5PVil5T5h4zWa1o3D0ZGhJ+yxhNBf5Z+NPJAIIgtAG2KYryj9WF+Le6zsaP\nDcfn2Vp2ZGOWLbz3xXnmL/zrmjj9FuXFaJZ8sgfqKCgU0rdfF4cxmTu/In5Jmt22iSPHcfKX0zQO\naMfRLVvo59dZ9d+nrFtPSvqyu3IJ3hyjuZ6bx6HMI5y5kMOQ8Y7vKJ8fXIHpikTOT1cJbROmFg3G\nZ6agcTUw+LXhiBpbm+L1Xy0n2/kyPQcNIz/3Gu/t2cPls+cwFRYRnbCIOnXqMG78HFq0CkSr1WOx\nmFiRNpKxoYMc3Hgz50ZTr9YDTGr5KrqbunaevHiJBT8cxz9qhBoTOTR7Lf4PtODIx9/Qo8koZKuJ\n6APh1K9VFxenQhREfF4KwN1Qia27ZmByK2bA8G7k5uZzaM+H/Ho6G0uBicqVPbDm5lPD3YufLl/F\nL3Aqxz/ZR/t+7RzchQeWbaR3QB/OnjvL5iMZ9Jw+6LYxGoDQKYOwoLeL0RxOX8+SGVHMiYnmlS7t\nybmQxXsbMxjQ1bfcGE3ZPTzFnJEhBL74BHqNBpPVSsKHX+Bctz7OGg2UFEOhGa2LgKh3p6NfAHu2\nZKhN+oaFVWSh/VHc9xjNbRZSBVgL1Cp1pf0j8W8lmvJiNBu2H8NQqTbOGg0GnY7Q4KD78kNTs86u\n56P1cCNXyaWFfy22rvoQP792DnpVn753zsGikU5J9O7em0GRY8m7lsv7mZkIRUUUC1DFqzJpKSm/\nnbZsrCSRHB+DXJCHaHBneGmaqyRJREVFceLEBfr0Dmf3vg00CxjikGX17bG1fHX0HaZ2mqW2jwZY\ndng13V8ZqLYpBluvmWn7InHRumJwESkokpFdnWj0SE08alTm249+4M2+89Fqy+bYtW02g3o7Jhhs\nXLmeS1mXcKuqx0sj0vWpZ6lVuRKx7x/liRkDHCyI49O24nRVi9/zwez4Ng0n9xI6vzqMS1cusOvd\njWQVXECj13Mt6wTBo3pxaO+nXL5oprp3dVq1aInVIrN/6xom+HVTBTnnbMmgoJIHgyeHO6xvV/Jq\nenXtBcDZc2dZu2sltR6tQ/aJLJ6q+4yadRYSZvNcx8cmk3XxEr9c/AbFxRXR4EmDug8SMWYcRqOR\n0RPG80izxmh1IjkXsvho734Uq5XcnKukpy+/RbbeKWJmzeTMTz9w3WLhWlER3YcHUatePSyyTObm\nrcyfaQvjzgofSf8mL6oW3soPPmVyzL83C02SJBLi4jEXmNAZ9ASHhtyzc73vBZuCIJzCMRlAA1Qv\n/fddtQmowL2B0WjkragYW9aZOZ/iEsgt1NC8dceyHuyR05g/e8Zf/kMz1jcyZ0lZplVI+EBEnYaW\nHZ9m/Zpd9OrbUe0psiPjfWa/5ShXZ6xvZP6i+UyLmk2vYUPp3O9N24Nky1YiJ0265dySJDF94kh6\nt30enVgDs2xl+sSRTJ9re8C4u1emT++eiFodTX3eYO/aeNr3KcuyOrZzKd5uhTxS9wE7kgEQBCc7\nkgEQNTo8ndwY3TEUUSMiW2XS3l3LhSIzT/g+ybfv/aSSTE7Or3z40XrOX/ylXDFNV5yY1LU3ad+8\nQ/M327MsZTODnnwBk6tQbkxEdi0it+ASRy6vobCqmW9P/sx3uyMouJKLwd2LGg8+gIsCxZZLZG7/\nGv8Oo8rUBnak4lySr5IM2DTTJnUL4K1D+8oV3nS6KURat05d6tWtR5tBbfl56w8siipLzJAkiYgx\n0/F9vTfio7b59hxbR1S0fSX/yKARjBgTjpObDpycMJnM5J87zTNPNiIpIYag4PIsEIEr5mv0D+6m\nWj8rNmyjqV9PqtaoThv/rsQlJqIptKgkYzs3Df2bvEhKbAxzYv59WWiSJBE5YRKdW5dlVUZOmMTs\neXP+ccR6p6KaR8v524Uta6yhoig7/5rlVeD3YDQamb8whiUJaYhulfHrM0jtfaIVdbT2605cQtLv\nHOXeQye6I5utVK/lRYdez7N9+z7WrNpGStx2Zr+16JY/BJ/XfJgRGcm6uHhWRS9iVXQMIlZioqcx\nYfzIcoUzk+NjSkmmrG1z77bPkxxvs5gKCsqUAKpVrUm7Fn4cyVjK+vhIpOPbiY6KQOMCLtpipOwz\nLPtgDQnvL2Xyjrf4KesHuzbFYLNoaleqgVhKSqJGZOhrfTCfvMzxtYeoW9UDi8VETs6vHHt/CQED\nnmXgyM6s2ZxhJ6a5cX0GHZ95CZ1Wi2ApQdRp6TLMn4wvj3Py9EW1lfENWEwyF379lZnRM/jZfIGL\nQiF9Yt+id+xU+qXMwtnNiRbPvkqfTr0RrK74dwiyq6z37xxIVs5Vu2wysJFN/SrVeHv9VrsEiO2p\nq2n+WlkyqSzLFDsVczj1ICMD7ds/xccm20jmpvl8X+9NfGyyw/1yMehpObAvL3fyxV0pYOrorvTo\n+BSvvVCFaZEjHRJFEhNi6dbpVTtV7AE92/DBwf0AaEWRArPZ1qRP+xu1CK0GS75jk77fgyRJjBk/\njqDQEMaMH1du8srfjYS4eJVkwKaO3bm1Lwlx8X/zyhxxpxI0A/7idVTgHqDAbL5F6937rzUaPGw0\nk2eG4NfvWarX8qJrv8ZsX/UF6anpt33bkiSJpIR4hg3oVybGuGkt7VrUwMtTz7TJIcyYFW9XL3P1\n8iV0Yg274+hEDXKB7QFjMNgrAVSrWpMO7Xry3feZRC+wJUzq9B488BSsPrKRAYNGIoo6ZNnM6lUJ\npL8Xx2CfUDVGs3j/PAa27Ws3n6gREU1w6fgZerRtxp6tC3HWa2nd8QW2ZBylSHGhSK9hTkwMjWoZ\nKbIUIlgFtn/6FZRYydfb7pGo0/JLgYmXOwaz861ldJpaFhPZNSOd6Dnz2bx3D4qHgTcCe6Et7cip\n1evwmz6at6PSGeA/hBre9cqtrNeIBlWQ8wbMFgveNWsyZVQYS5IT+eLLr3BzcafIZMLD3QOwkUza\n0kQKisxsWbNRdUvGpiaRZ5H5/utveajqc3Zzilod5t9U8semJNF8UB+0Oh37E5Pw0mpYuetzXCnC\nt+njBHR6gaSEGOYtKLNAzDepYl+8dIX9R76gUHDmjPQr2VmX8PD0gJJiW5M+i9WObMwWK1q3u8tC\nkySJCVMiadu1s/odnDAlknkzZ/+jLAVzgWNWpSiKmAtMtxjx9+FOLZoK/D+AQadT01pvwNZ69/7r\nkxmNRmZNiefj/bns33CSj/fnMmtK/O/+UBPi4+nU/g27t7Se3fuw7+D36EQNPbs+SVJiWWxHkiT+\n993J8tNcDbYHTGjocDIz19ilI2dmriE0dLi6//CQcLYc/E4lGdvcOt7sFwzuhWz4Opk5h6aw7FI8\nV5XLeLrZS93IVpkGXnWZ9fpoPjjyHc895MGZ05+zZ///aNwrjFaDx9J84HgqPfQoP52UsFr1BLwx\nGv+2I+nQIpjiAgPZF3Ns/Vcq1eHC9x8zZ2Qk5zd8wjfJBzi/4RNWLUjGx8eHPKuM4CSoJHMDWr2O\nnNzLZF/KQqvVqOcLkJ1zgW2bF6O1XmXSyjROXbxgu04WC6s+ep9ho2y1TYvmzueFRk/T5403CWjT\nmz2bd5KxdgM7Nm5D1HnRrHEzlWTCZ0+jVqdmPNWvC36zx7Dlq81cunyh7JpYzOgM9t+9fNnWHfby\n+Yvk51t4ddAIWg0P5ZX+w1l78HtyrxdgNtlbILpSVeyLl66wMfMLGvcLonVgGH2nzGDfrj2sP1ge\n2wAAIABJREFUS0zk4rnT+HYLYOUHn6op3zdiNMPCHGNPt0NcYoJKMrbvgUjbrp2JS0y4q+P81dAZ\n9OW2YtAZ9LcY8ffhlskApYWRdwpFUZQ/q4H2l+HfmgzwW0iSxPjIabT2667GaA5u33RfYjT3CsEj\ngmjTvKnD9jXrlqJ3dqXE6sqvOddYtm6VTS5mTARVq73AZ++mMMy/iZrmGrc2k7ila+2KH+Piksm6\nmE326V94qE4dPL2rMWx0WfHooIGBtG3T3WHurRuXMrCjH0uPbeCNtzqwKXw7hssiA5v3U2M0azJX\n0POpN6jp6Y3ZKjM5cwFWTy1th4Xz9aEDOBUVUeLiwlOt2rI5eg4ze851KPjc9EUKhcW5ZJ++SPjE\naXaaZDdjSFgokpxPi8BeFFzN5au1+3Eyl1DoWkLxxQK8DAZeb96afXt30t0vkLy8a7y3P5Hwti+j\n12owWazMyNiL4uFBds41Nu/cpZJHQnwcWVkXuHjmCoMCghC1ImcvnGblzjR0bhqeePwJJoybRGxq\nErU6NXNIYT48cxmVnVxRik2cvXSeOYsX4ePjo+4TPmkC9do25dCaTbTt4e8w/v1liRjrNLCzaCRJ\nYkrkaOSSInwGOBaCHkqJp59/Bz754keCg0NJiY3Bkp+H1u2PZZ0FhYbwWvs2Dtvf3ZtJ0j/ILVVe\njGbHwT33LEZzv5IBpt/FcRT+vNhmBf4kjEYj82fPIC4hiQKzjEEn/r8iGQC93lBu0PyMdI1JHWep\n7qspodOZGTed/AILTz39IE1ajiRt10acFTPFgg6t10OkRMcj55oQPfUMGx1CaOhwZoWEM615BzUN\nO7xXP8YsiMLHx4fKVSpx9txp3vv8A4qcBFxKFHyea4IzCrJFpkS09aVxF71o7tuJmK2xKJYiiguL\nqFWlBrt+PELHR5tR09MbN40es0HPF1s20adzT/VBsHbLBkSDO6JWx3envmb7h+sRRQ2ybKVQLmDC\nsDZ4uRuITlxMQECATR8tMR6TqQC93oBfJz9yzvyMSYGNE6Ko7VKD/q8FqtdltZTMNctV3D08yL5+\nicVp09BjYVGP1uhLXUp6rYZpAe0JWr2FJcnLVJKZPGk8fr4tEcUnOXv2PItXzsHZyRUXQwmjI4eq\ngfiIKeNx8qhE/XKKMnMKzjMuoJ2a9bVs8QLq1Kmjfge7te/IpKiZuFWvVm5R56+XzcybY2+BGI1G\nZs5exKCQ4HLHuOr0arGn0Wj804F/vU5X7ndQ/5u5/24YjUZmz5tjl3X2T0wEgL9BVPPvwH/Fovk3\nQJIkIidNVN1nsiyTtmwZ3Z8cRD3vsriMbDXzQe47FLs482jDjmhvsg4sFjMrEicQ1WwIV815ZJw+\nzBkuo7leyKwWXRwKS0O3pvNi0xbk5uXz9Q8/8sboKXg/+DBWs4md86bj1+gJPvnlC14IacyxZe/T\n6dlBeLh7kbLiLbRoCOozktz8axz8dBdZV89SjcooipUfs7OZNHq6wwNr9qKZ9Hy1H0e+30NQ70BE\nrYhskUlYk4xesFDVsyo/SKdZlJJAQnI8vl3aqddiReoquvo3RqPVsmDaRt4assQx9XrpSAo1xbjq\ndIyaNJ931yUwsblj9cG49TtJ3rgNo9HIuLFjePmZRxwKKKMTlxE6brDD9pSUDDpMH+1gXXy+IJ6R\n7cosUrPFSuYv2cxdZHv4R4SM5qUCD+Z9e4BesyMdxv9vxz5S48t3UYVPnIixeQtHK2hlGgEdWvPJ\nFz+yYMGdSxTdCuXFaA5s3fGPi9H81bjvEjQVqMD9gtFoJCg4hLTlK0lITiUhdSnW69iRDNhSjM3X\nZUJDAzl0MB1LaTzCYjGzcf18Qp/z46o5j9SrB3g2xp/uKWFUqV3FQSrnqqkAfdWavNCiLe179CF8\nQgTfbFnN1fPn0Oj0dJownWUHdvH92ZNsjdiDmFeJw+/tJjk9iqqelVWS2f35WrqMeo5R8wPoNuM1\ncnV56MQSdh1cyeady8nOybKtWxQRtRrWv7tMJRkAUSsS3Hc4V0wKfZsOZ3KvaURNmM3Lr76oElVe\nbh6V3D3ZsvIIe7e+RyVD5XJTrx995FEeffIhHnjsEbSijmJXEdNvpGpMFiveNSuTmGArXjWX04b6\npHQGBedypWIeqO7NB+kbsJhLr7vZzLZZMQS8ZE9otqyvMqUKa24+D1etyfRnOnJwyVK78UfXZRAx\ndtwtvxthw4dzbP06uzH7lqbQ9OXn2L77EMHBobccezcwGo3Mmzmbbz/8lHf3ZvLth5/+50jmXuNP\nSdBUoAL3GpIkkRK/hOA3y5Sbo+NWIlvNDm/uOg/R5i6cP5m4uFQKCiwYDFqMXm48WLUO8f/bTIvo\nXmo9SrGHq4NUzsZvPqN/6Ci0pQ9zrSjSvWdvNu/aTPNho9Do9HhVr45YWMLAoNFqNtqq1FislkJE\nrci2o3voObIZos7mmrp+NR93d5GQkA6IOg2y2crK9LW0bdoHdzdPaj/0OLlZZ1SSuQFRW9YqWtSI\nDG83lPVvb6TOwDpkZ2WTuXk//dsHqBbQlP/FlH9d3F3p3tOXRbHLschmnm/TjZjNSYS3fEmN0cQd\nepe23Vrw6Tc2PTNdOW2oM3Yco07NR8qViqlevQZvjQglNjWJfIvM9198TS3BGS83e4EQs8XK/37+\nhcGjxuEuaigUSjBZLdT2rEIIL7FxwTJMrpAlX2d5+u80RjMaiZ4+ndjkZC5fvcaZU79Qr4Y30rkc\nZkfNv6dEYDQaiZ6/4J4d77+OO7ZoBEEIFAThC0EQTIIgFP/2769cZAX+O0iMj6Nr21Z2NRNv9uxA\n6sF4tZ5FtprZ8sUGRoTb2iEbjUaio6NITo4mOjoK79rVMVtlLDrFrujxqYGtifk0E7PVAtjcZqcK\nclWSuQGtKOJUZBOLtJpNKGZZJRnbmnT0CwzjbPZ5W+zGpVAlGYAjuz6jf/9W6jZRp6H/4Nd5+9gu\nlq5K4ZU3/DFbC5Etv8kYsshYZYv6/6JGpNhSAsDRA0dVkgEbKfXq6Evy1vl212XdO0k0a9cYURTx\nrKRnW0Ya7p5ePO8fxMKPTjB63W4WH/uQtt1a4Onhxvc//oAkSQSHhLJ9z9vIpfOfPXuekhItTV/q\nw/rle9XtsmwhJW4NwaXdOmOi5pEWHcurTz9H+yatSN1x2C7ra+6a7Tw9aBwN/YdSrWUAUolCzJf7\nVLIZ/lgzPIoFli+9PcncgNFoJGbuXFalJHMk8yCrVq1lwYLoCmvjH447VQboB8QBK4GngWWAK9AJ\nW5uAtX/VAivw34K5wN6Fk3Uph6Mff04u+cQfjqF+XSOVvL2YGefYO97WbTGWq/nZTP3qKEVOznZC\nkJXrVqfBWF/CRyXzeK1anMi+hlc9IxZZtiMbiyxT4uKK1WziSPwCanpWUknmBkRRR21jfRLWLqF6\nrUrIZmsZ2RQrdsQDNrK5fPVXtG61qVK9Nk27DiBpfSpBvcpiNEnrUvF/uas6RrbKnDh1wpbCWqQ4\nWEDPNXqKzHcOMn3ZSB5v9AQuWmjXy4dq1ashyzK51/Lxm9CbnZtXkHPyIpbcHEIGtuOBujWQZQsr\nM/bSzPcR+vTtymOPPolHpUpkHvsM2VxAzqnLOJUU4eZWiZYvBbNl5UZwslBS5IzF7Oxw7YPCQhkz\nPIQiZ5HpWw5iLShAzs3jpcAJVK/fAACNTk+T/qGc2rGC7cUS1qx8NB5uRCRF/6kmeRX45+NOXWej\ngDnYMsuGAImKonwuCEIl4AhlLZYrUIE/BZ2hzIWTdSmHrfs/oGuXQFVGZf+h9USGB5Wl48YlYMo3\no1DCr2d+ZEjPdujEBzE3e4ZFyevYOzaV9gsD1aLHL9MOYDbJBPZpRtyOT3j+9VasTIrD178HH374\nLoVKCae+/55KVSqzPTKUkC49yPzgfWTZbEc2smzmwumzuAglWH7OY0HIjwyIfIO6D1anGMWeeADZ\nbMXD4Mmv185yYMtMlBIdD7/alrdSF1JUXIioN2C+no+73s22v1Umbkcirh5upG/fQfbJH1mWuQ5L\nvhXXEmdEjYaSEoXLpuvUedjImUuncFJK2LftCi3at2LbtgMUFWv5dOMecnPz6TJ4GJ/u286mXe9S\ntZoWZ40TL7d+hA8PnWRUSKDqpkxfsZHKHjUY7juYT344zvKNMxjYYxpd2o5GtphYvnEGY0YHl3vv\nSqoZeKO/v9r+en1MGlXrGe320ej0KC6uRC2ucEv9l3Cnjc/ygM7AO0Ah4KMoykeln3UHZiuK0uCv\nXOifQUXW2T8PkiSRFBeLXJCPaHAjKDRMJY8pE8fTtW0rMnYfpE3bIQ71Jv/78R1CQocTMX4ynVr6\nqRbBhm0r8Pd9kRrelQGbkvWmZXtx8TAg65wQzSX0ND7HgqM7iAzpyKzVh/CuY+QHSUJbpTJdJ4xR\n1Ya3zJuH9cJ5pgSOITcvj5V7d9N3aJliwLq0JNwLnRjSrneZ0vOuFFzrFeIkCGAtZtDgtmqMZlnq\nIXLyrjBqbgdEvQbZZGV59EdcuiAwYFykOu/G+Bg8cUHv5c4LrXxYn7SU6o/VoM9AX/Ku5XNo+dsM\nauevCmIuXruC9r17UadePWRZZsvqleRmXaTQozr1vDzp26IpqTt38EK33lw78S1Waxbt/G0/1XVL\nj+L3RheH+EvUogTC24zk7eMHeOYxbzYe+xoXjTtF1jx6vP4UWWiYu2ix3b0cOHQw3ScMd9BK27b6\nAK2Hjle3Wc0mst/OYPHc2X/4exOfkECByYxBryMkOLjCbfYX4b6LamLrhumiKIoiCMJF4EHgo9LP\n8oFa92IxFfhvQJIkpo0fTY/Wr6oPzGnjRzNjvk0Dbebc+STGx3HpSn65MioFBTIJcQkqydi2i/Ts\nMoA9mavo3701YOvN4yK6MOaZVur4E9kXuZRnInLJboore5B94QJOGleVZMBWm9FtwgT2x88hcV06\nI3oPxl3QcWDDVkqEYpwUZzwFNwa181NFOHUakZCOw9jw7Wq6hzTj0oUrzJq7Db1eh2wqwlwkM2zC\na2xZ+hXFha44uxbi2+sxMrddtpu3R0g46QtnU8etCq46LRpXgT4DfRF1WvauPKCSDNg0ykb1GcDa\no4eo07cPoijS7c3+ZK5bxeff/UhtzcOsP7gfN40r25Ni2LptK4nJMaq1VVIklJtR9mDDeuz5Zh9a\nSnjxsUd58bFH7fbZ/Ok39vdy9HiqeHjakYztfETys05jNZvQ6PRYzSY+WZdM7LSJf/h7MzEykjc6\n+alpxxMjI5k7uyIj7J+OOyWab4BHgEzgXSCiVNG5CFth5w9/yeoq8K+AJEnEpS+moDAPg6s7BRfz\nVJK5mHOFPZ9+hNW1hEHD+7EseVWpUGg0Y8dMtNMoA5tFYzCImPLz7WIWl7KzOPLeIS5lXWXVxkza\nNH8BTw8D3549g+kZC3qNlhPZF0n65F1GdxvOeukTmo62VZnvj08ovyPkNQv+HWsxe+k8TLjgocmj\nisabDi8E8O772xyUnnUaEcViy6/x8HLD86EG4F4FF6WE4h8+Y9+6c/h1D1ZVG7asSuLC6Sz2pqaj\nuAi80r4dVWrUpOojDWkUGsbWhXPQ6FzKWixYKVcQk+KyXBxRFMm3WKlVswbduweoD+SE5SuYNG0q\nzrIT8VO/w7uuFkuJudyMMkF04mJWFnUVb8wWC9fyC9jx5XGsrk44y0V4eZbpyiXFxtHDpxVr3z1Q\nrvrzkw0akP12BnmyFXdRQ+y0iX+YFOITElSSuXGub3TyIz4hgYULKlxx/2TcKdGkAg+V/nsKcAh4\nr/T/8wC/e7yuCvxLIEkS4xeE0XrUS2j1tbGYrKyP/JjcvHrk5hWw/tOjdBrTAVGvRTZZmBA1mnkR\nizh37hwffXyITz7+jEH9xtnFaObOn05CXAKyRUbUilzKzuJA5g76+3ZDpxUxW2RW7lpPLjLXlWIG\nbU5Eo9fgotfQoOaDbP3qGE1njFXJxcnVpdyOkN5eThw6egavRg0IGDtYjfNsnrUS0axgtsp2ZGO2\nygjaEmSzlaSFu7lwuYR2s7vh3aA+Gf3/h1/3YXbK2t16B7F3TQY92w1CtpjZuGEZL/t1oMTVFY1e\nT5Oxk9j+Zjeb/plOCxrKFcTEuawRrSzL/CKdxs3LnYTVS7GYC2n2YhNqeXmRdeIEeWYrnV8cwYO1\nHiN9XxRz5ifwkPERBFxRKOSanEOr4c049fYFlDyYs3oT2oeq0jayt3r+h2N3qmrGn334GRe+PU1R\nkYWMhSkEjB2mxmgOr93Ogml3Zm1IkkRiTCJZFy5x/vIv1H+oDl6VvBkRVCYhU2AylysiWWAyl3PE\nCvyT8IeUAQRBMACNAT3wgaIoOfd6YfcSFTGavw9jpoyiYb9qaPVlgXGLycrhqUdxxoVmY1oj6m96\nozZZOJZynKyzPxAS2obcXBO7d37PGSmfhxs8ylszbRJ8UVGzkX4+w6CeQ9m5dws9m7+B7iYLx2yR\nmbZyCRERE0lZHk1gWGe1H05KzE5eCY2gci2bx/fK+fN8sH497YYNUWMlm2bNpq6HmRL3ajQOH+TQ\ngGxd0FyqF+oY2TlQjdHE7Ujmqss1ajzwBC+36oObRyV2ZiTyfGhXvkjZRL8egxyuz/YVq+nhO8R2\n7hYzMctn8tq8OXjWqQvAe+Mnoi3Kps/IrncUo0mNXYyLoYShE3uo55s2dxNdH32eFxs2xGyxsHDz\nNvxem4Sl0MLWT9IZ2GusSuTp6+eSX3SeJdFJ+Pj4EDgqiEaDGzuc/zcp71F4xkTAC37q+S8/uIIS\nfTEubjouX89ledrtlbpvQJIkpoycyusPv8aBExt5M9BHjW1tzjjOzBlxGI1Gxo4bxxMvvOSgtPC/\nzz6psGj+Avwdjc+cFUVR7XNFUQqwWTUVqMBtUVCYh1Zf226bVq/hfN41qntWtiMZAFGv5adT3xMZ\n3hadToNOp2FIYGPMZitLFh8FIDJiAp06tib3ucfZemAt58+dtyMZAJ1WxNvDi0+Ov6+SDNhk+IeF\nd2L5pg20ChkNQOVatXiha1fSwsehczMguhu4duocrjU8qFbJtdwGZLUefZCnn3iFWasWUKNyJXJM\nOTjrnalRw0YyVbxt59wpYAR71i2j2NmmpH1zGweLbEZQykrZRK2OqsaHVZKxmkwoZjPFZ7M5Mn8b\nJTpnXK8XMH3JQmobH0ZxduGSnMvmbRlcu5yLpkSgSLEwaeZQu/MdOrE7SRFreLFhQ3RaLWP9u7Bs\nfwb5hSUqydyYf3CviWzZP5/k5BhQ4BfpF57VN3c4/xNf/8TYViF2MaqBrQew8b21OCsuLLxDkgFI\njEnE/wV/Nn+yhjeH+9jVH/kHPE9iUgzz58USEhzsEKPZv3M7c2f/scSCCtw/3Knr7LwgCOuB1Yqi\nHP8rF1SBfxcMru5YTFYHi+axBk/x0/c/IZssDhaNpcCM7jd1KDqdBrMln8EjQvF0E8m9nk/16lXp\n82Y31q/ajNkiO1g01uJCzOY8RF09u2OJOi150i+qu8xiNnNk5UoMlT0pzLmMS7GWiZGJ7Nu3gqKi\n63a1OLb1y5z639eYfz1BgavMdZdcRk/1V9/CVyyL5eV2YVTxro1W1CMUglIis23tUrr0GaLGaLau\nXEX718sUmmWLmZJSWX2rycRH8+ZRdPY0Me390Ws0nMu9ypqiH6hftRZf/vQdxkcaMnR2DFqdjgun\nT7EtPhp3g86ubfaN89XcdP11Wi2CYCG34Eq5yRZ5Vyz0G9SWiPBw6lWpXe75G5x05caorprNJKTG\n3FUcxpwnI9bUobhYy60/MpttbQOMRiNzZ8+2yzq7n4kAkiQRvzgVU54FvbuWkFGBFUkId4g7JZot\nQF8gVBCEH4FVwFpFUc7+ZSurwL8CoYNH3RSj0WAxWTm4+BPmj7OJLE6IGk3rwNfUGM2GqO2U5BVi\nNlvtyMZstlK1TkNeadOT9w9uYUXGFqp5euDbpjUt2zYjfvVyQgIGqjGa5fs20aBRQ3Q6fVmMoxSy\n2YKcW8imsVPRemi5ln2R4qsmateuSrUHG/BGxyC0og4fHz927Ung4MJ0Wt8Uo9kSEcOYoGY8YKzG\nyvTDdOttrwIwYJAPS9OXoXHxgiKZS+dPUrmOF106vcqhbcspVpwotJixFhTj4e5lW5PFzIZtKaBT\n2DViGN6GSvR43Zc9P3yvksyC86d4aeoMNHo9V2MX0qmrTWb/8sULHN+zjslT+7J16+Fyz9dqKtM6\nM1ssFBW7cD03q9xki0Jznk3PrGp1utdrTspbm2g1tbt6/u8m7KP+w/XLjVE98dyTd/3w1bmLyFYz\nQpGm3Pojna6scZnRaPxb3GSSJDEpbBa+Lw9GrGNTyp4UNos5sZMryOYOcMcxGkEQXAFf4E2gPTZl\ngHexqQVsURTl7vul3idUxGj+Xvw26yx08Cj7PjGpsVy5nsOPX/zA0Fe7I2q0bPl6M/2H+dgsGbOV\npcs/puErAXz96T4ChnZE1InIZpmtqVtp69OUFSvW87DxQZwUJ0qEEuTiQmJj4wCInD6Kzr1eVmMW\nCQu38kCjXlw6/TnF2hyUs05Yrmej83DlfI6Fhg2eRXER8GnVjitXs9i9Iw2LUyEuBh0lZisjg17j\nAWM1AFYtP0LvgW84nHPUlA2EDBxPbt51Mt89xLmsX/Gu5k7nTq9T3bsKAGfOXGD18kxq16rH6dOn\nqGIwUN3di0JngZ/OSfTtGUT6mniefOBBTuZk0TY2EY3e1tTq3dgFdOvTD4B9K5Lo0+1ZRJ2WrKwr\n7Np9jIChHW4Zo5m/aTNOhpoI1lxEFzc6+49SYzQ7Ni/GWcylR6Af+xKPMOLZAM7n5rD53DGsOvj1\nSjarlq8CYOrIyXYxmozPtvPWkll3/eC90xjN34mxoyJ4xrujg67cl5d2sXBx1N+4sr8O9zJG80eT\nATyBHtisnCaArCiK271Y0F+BCqL552PCqLE0rf6E6v66eOUSe744wOncs5isEDBiBkf2rKf7sDaq\n8CSAbJZJnZHGwjnR7NixHZPJhF6vJzg4RH04ZWRkELVgOvUerEH2uctU01Xm3IVLVHqgFoLGharZ\nxbzWyMiWz88x1Hey2tslLXMeusoWBvTtgChqOXvmAmlp6/By11OoFNKl10t8/uVJunRv4fAWvjH9\nM1q81p6dx/bReXBfNRNrx7IVdOnQGE8PN9at3kNb345U8/ZGlmUOpW0krIkvZquFiJ2rMdWoRo9x\nk9HqdGxbmUqz8DJl42Pxi+nY2Q+tTseB5bEMfPN19bOsrCu8fehjTp28iNZJT0hIGMff/wBLfj5a\nNzd+vXSVju37kJ19kV2pC6hTrRbFriLOhTJX5Su0GtiWjA2ZBNXvyoNV66jHNVtl9hR/x7CxocTH\npJF1PocL50/x4AP1cNVrKHQqwtXFxXb9Q0LuihzuJOvs78SIwWNo8dibDtsPf7+axPQ/35rg9yBJ\nErFL48kvNOHmqidsyN1d3z+Cv6Ng0w6KouQKgrAPqIKteLPmvVhMBf67kPMK0NUrI5Aalb0Z3PJN\ntn93FOfKXlgtMnnXztqRDICoE3ns8Ub4+PjYdXK8GUlpifQL6clHq99jTsuhatOzWTtXcbXQzLTe\nvZi4cQchfjHqG6uo0VHF3YPufV9GFLVcysrh8P53mTVihJrxFbtuHS+2rEfyku0MH+mnvoUnxe4i\noN0gDn3wjkoyYCtg7DxoAPFTZ9LwkYd44ZVXOXr4HZSSYgQnZ6zFNveWTqOlTp16PBteVkTq6uTM\npRM/88uubbhYZZTiEtYnxdMrKIQSQWPnLqtevTJdu7Zg7dovcHUWefGFFwnwL4sFjR0zHlk2U61a\nDbS166MUWUG+zsncHLxqVuODnV9isBrY9sMxRrzUVbVYVvyYyYDIUCaFzqXd80GI1fXIj5vY/O58\nxMrX6OLXSQ3SR0RMIirqzptwGY1G5sfOv6N9/w7o3bXlKmXr3bW3GXVvIEkS4fMjeDXUV3Vfhs+P\nIGZ81D+ChO8Ed9WPRhAEd0EQBgmC8A5wCpiMzX3W8S6PU0cQhM2CIFwTBCFXEIQtgiDUvZtjlB5n\noiAIJYIgHLvbsRX4Z0CSJAKHD+HY8XdJPbqO5e9s4uKVS4AtoC+6GRg5Yhh71yymVk0PZPNvFI/N\nMlrX2//YBRf4dN+njGjSSW0RoNNomdypHyXFVpZ/fARnZ71DbxcnTZFazHj47Q8Y2LGjXVV+WO/e\nHNr9DRfOXiV69iaiZ29i9bKj6LSV8HD3pERQVJLJuXiJXSkbOZi2g6I8qF6jJvt37IASM05OhVBi\nJlu+wvlrNtnA3JIi3luZztHYRbydHE+duka+i5lL0EvPMrJlM8Kavor+6mV2LIzBdKmA+NhNyOZS\nhWWzhdUrDtOkeXdadOjPkoQUu/MKCR3BvszNyLKZNr7+XBOc6OXbkxkDxzC8eQ+uXsvDpZIbed6u\nhBxLIOmXfewp/o7JSfPYvnmfjWQ0NheeqNHj6iKqJAO22paOvu1IiL9922NJkhg3aRTBowczbtIo\ntTbnn4iQUYHs+TjdTil7z8fphIwK/Mvnjl0ar5IM2LL+Xg31JXbpP6et9O/hTtObO2Bzk3UEROAY\nEAhk3G1sRhAEHTbNNDO2eA/AbOCwIAhPKYpyR9VXgiA8CEQCWXczfwXKoOpGmU0YdPr7rhslSRJh\nY4JQKGLCW0GqsOO6lO045TtxvVim4RONAHii0cM0bm5k29IMugwJUGM0KxetxtnqTsjgIJxLnBA9\n9ASF25+HUgSYih2anuk0WqoZKlMgunBVvujwxlpidSmrnC9Wyq3K1ziJRE3rWyZKufoArzR9lfVb\n1+Ai6rGYZfJyr3MsfT9v+gyzueWeNhO3fTb66iLderVWx65dsZtVX7xDv2ebU3I1l5DXOqrWV+TW\nFCKHD7GXn+nbmw17j9G9Uz/OXjjD7GkJPNSwEQpafNoMo6q3rU6owGSxW7fRaCQ4NJDkiDf0AAAg\nAElEQVTJ095CcHJBlvNY/kkmV369iF6no9DbkzYjy2qKjq7JYPJYW1sA0/VCxOp6u+M5uZSUW0hp\nMptue+8jZo6iQ/+XEXX1kM0WImaOImrK4n/kW7rRaGRO7GS7rLP7lQiQX2gqN8U+v/D/T6HqnbrO\ndgI/YiOENYqinPkTcwYCRuARRVFOAQiC8A3wMzAMWHzroXZIBNYADQHn39m3Ar+BJElMnBxBO78O\nZbpRkyOYO+vOzXFJkkiJiUXOK0B0NzAsPKwsyH9KIj5mKabrheg9XAkJHwICJCTFYpLz0Ivu5Obm\n4aoT8O/uZ9d/pvcwP7auOkiY/2BkWSZy4iQMXjo8PQ281qQBadMT0WhFLLIZBHdqurjSofbrXDPl\nsuvrtxn05gAefeIxJkyYAIB3lVr8+M1XmJ+xOLRxruVmpFv93sSfjSVxx3RGdJ6uxmh+vXyWhLSf\n6e7XnpPnL5CyezeugkD7V16hRpUqmC0W6taryrXcAjK3vk+xIqDX6cjcfQjRVcSSl8uK6DiqV6qt\nkgzY3HKhfpFs/nqJ3Xn3GdCBmVNTmP/1ASp56Eg9tBdXVwMuQjE1PSqVS3QKRQBoNVqccaXE6oTg\nUvZzsMhmDL+pVZIkifkrV9F89mxVg+x4ehpTxoxi8ozpdC0lGbBJ8TTtG8CS5CQWzZ2H3sMV2WpS\nLRqAkiInZFl2KKTU6/SlCtuJmPLN6N10BIeOwGg0kpCyuJRkyup9OvR/mYSUxSyYc6ePgPsLo9H4\ntwT+3Vz15aaYu7nqbjPqn4U7JZqXFEX57B7N2RH46AbJACiKIgmC8D42hejf/ZYJgtAbeBboCWy7\nR+v6TyE+IUElGbC9gbbz63DHulGSJDEzbAz9XnwNXW3bW/fMsDFMiY0GBSaFzKP9U6GIlfTIVhPj\nhs+m0O0svYa0VLOh0hN2YDAYyhV2FJwFdV2d3mjH0Y8+ZM3SI7jmCkxvE6bGDaZtiMevZXPSD67j\nisbEoMDBKnGOGzeey9fyqCa64SV6MGvHSiZ37q9aCcmH9tLx+d7oNDpCXg9jQsYYZqweSrXKNci5\nfpGaLxjJz3dh0653GDE6TD3uxtUb6PzSS6zZu5cOfi+ydfdxuvfopX6enJSK5XoeD9T4P/bOOjyK\nc23jv42sxUOcAEuF0q9KS1uKHay4BJrgViRABAgS3J1AQlxwCA4JBIJTHNpSqrQFKgwaSID47sxG\n9vtjYcN2lyo957SH+7q4LnYy887szOzc8z7P/dyPF8U5tykstkP5hmXLZZsKucX3fva1Orwb2J4T\nCR/So0W4ifRSMuYi3LyFpnqVf61OkpBhR+69O+w5voMJY8JMx7B+62readWLLz8+SNT8aWb7iUlL\n483BQ5GrjGQhV6l5c/BQtmVlUufl/7Pq+1byoFV2WMTQqhyN3Hhty8pFMndmmeVodmfvIyQklMmR\nU+nUqpvJYXty5FTmL56LViqmKN+R3WtOYCgDmT38q8ubaKUSnsIco4aEWeRoTsdnExP591G7/Sai\neYIkA/ASsNPK8m+AwF/bWCaTuQLRwHiDwVAgkz0RUcT/HEp12t8d7ngUqTGxRpJ5JOfR/60mpMbE\nUmZwMJLMI3H8zm9EkHV5qtkb7ODQLsTM22jV2NHmkfShUqlEJpPh7/YsnV5rYFaN7uvswb5Pj6BQ\nKxk0qJcZcQYEBJCwOIrx7d8n/5nnWHnuBOM3JaCwU+DvWptO9Xvj7erzYCwVNbxrcbuoCNFGT4Wz\nLe3GDmZTxGIGh4WYjRvYrycLZs5DppDxyWc/mEjm4d+HjwgmYWksZWIZGncvDEonq4nkStuq2paH\n31smt+fstpP0aRpuNgMa3m0qSzdG8FxdPwz2tsjKKijIK+L9jgM4dHofrVs1JTszk9KiQu4UlODl\n5U3myvnEJiVazFCLJT0+KvPwl1ylpljS46pQWfV9c3xQa6PRaFgQP5GEmOVoi8tQO9kTt9JYmZ+Y\nkIBWp0WtUjN//gIS45NMJANGh+1OrbqRGJ9EmWjgwJqzDHi/iyl0uHbNLjx9a/3arfc/B41GQ0zk\n/AeqMx2O9qq/lRAA/qDq7E/CHci3svw+4PYbtl8CXDIYDOue6FH9j8FBpX5suOO3QCwuRVXdMuch\nlZRSUFKJsq75OEq5Gln5z97qVQpkMti4die9BwRU5WhWZdGxZZW+RBRF1A5qim7dN5FMTn4ee788\nzuVbP1Kv7kvc1N2xSpzP+/qRry1l9YWP+KB/gEkxtnKruYOSTq/jRu5NHDU+9B03hn07NqFQK1Ep\nFFbHffHF/+OLy5e4cbvY6t8rbWzp3uBfgIy4w3tI2R3F8E7jTTOUpKzFiMpcE8mKosT6Dftp3DeA\nj9afsRAmKOUqbO1U1Atojl/tGkg6kVWLUzn5xTFy83M4s2833d98kc3nS5kwaIjpey6PjcXf39/s\noeSkkJus+x9Cr9PipJAzMjiYsbOn86++QVW9eaKTeMnDH+GKgKa2xhhCirW0fYlassTss7ZEZ9EV\nVKlQoi3VYS+zM5GM8ZwpGPB+Fw6dvmAx7pOAsV4rnlKpFAeFA+HB4X+rB7VGoyFm7pJfX/G/FL9L\ndfafhkwma4JRlDD8P30sf3eEhYayb+ceY5tgjA/zfTv3EBZqvXviz6F0ckCnN08y6/QSZTK4dPEL\nRL35zEjUazHYmScvRZ1Evdfq4+NZi5RlG0mJ3cj+zI+wqVDg4uRsOq6s/fvoEhDAN99eRqcXycnP\nY8tnB3m7WWN86nrQfmxTvGq7mr6LaXxRRFlpIOOb8wwIam+WSB/cvRX7Lux8cNw6lh2IofrLNeg7\nbgwKlQqZwcZoteLjbnVcextbnGzk3C0osfr3wqJC3Bwc8XNzp5rSna6te5JxNp0NR9PIOJvO+216\nUVpqy/QpKSxauI4FURt4O7AdHn5eGJSVJnVT1fnT8ay/Bx9v3c/dnFwUKiWDIofhWcsTpayS0a3e\nYd9XP9Cnq3m/mqDmzZk1zTx0FhEczPmVy9E/mL0+zNFEBBstVZZOn82FzP2kT1nAx4tXE/FsK3r4\nvsWcsEiEK8Ljb4qfQe2o4vqta2zLXMe2HavYlrmO67euoXZQYSPDasjU5i8IUAiCQOTcSOp2qkvD\nfg2p26kukXMj/6tVbv80/KGCzT+1Q2PjtEyDwTDiZ8sTgUCDweD9C9t+g7F19OSHi4DdGAmzPaAz\nGAx6K9s9Ldi0goeqs4fhjt+jOjPL0TzIeaw7dxK5hxvvemnIPHmRbk0mm+L4aw9PR1G9gP7D2phy\nNDvST7B4nmXVtyAIxjBMqRaDoRJDpcjFCwJNX3mfw2dW4qi2p5q3HyUVenqObI1SpSA35x57N39E\nj8A+pjzBitTl9K71PKu+/gxNbQ12lNOx4ev4ehg7cM5MTcfHU8PVW9foPqwTx05+SfshxneYu7dv\nczg7gwZBrTgdu4UhwYNM427dsJU2jZqTuH4dztVcUdvJGDJ4YFUOZ8sWfrp6jQocUUsizkpnRg2c\nY3EO1x5bQ/P+/dm1cTm16r3IpVMf0mfiEIrzizmR8KEpfCbqdWw9Ekf3dq/j4uTImjMn6BTcyzjG\nouVUFJfxrLM9kqRnYI++FvuZFp9ExJSJBAUFIQgCMctTyLmbx83rt6hV+1k8XZxNJPMQk0aOpa3D\nCxbiif2llxg2JpzUuBikkiIUjs4MG2m9qPLUqVNMGTMG3xo+VCpssJEqybl+m3nR0WTtzKDh6xoT\n2dzJu8vBIycoLCnlpVfeYETomCc24xg7eSx1O9VF8Ygtj6STuLj7Ikvn//XFln9X/McLNv8kvsGY\np/k5/g/49le2fRGjymyElb/dByKAOGsbzpw50/T/Zs2a0axZs18/0n84fq9vlCAIxKYmUyLpkJVV\nIiltmbtnC2q5gpp16jAtdinL5i6gtq8fvVrKyT47h/IKe+xsy/CuDvdt3Niw4Tx2NhWUV9pSdK+C\nqLmLsa2UoXKqkiVrNBqilixBEK4wa2I4fdu8SvwPOXz3027mjghApZCjk/Qs2ZRNUUEJSpUCL99q\ntO/ZgKzszVy7fIdyvYReV0a6wZ4hEfNMLZg3bE2hT7PXcHVyQF9RQWBYezavz6RGLT9sT31uyk94\n+PjQqkM3TmZkcys/j6h5S3j+uWext7GlTaPmZO7dhcxegWeN52jXyJ/duzOorAQbG2jT9m12f+rP\nWwNHcTwuisIL31r1FCvVazmxeTnVyko4n76BXu3bc3DJBm7pSlC6VSN6xwTq+NTE1rac7u3q4eNh\ntK6RlRmN1CWdiINjNQKHDEUSdaxYNNVqv5ra1Z4nZcFyfH19WZy+iuc7v4d2yxGqKXz48dwFQqIt\nbWPEohJUbpah0Y8PnOa7r84w5v33UCk80Ul65owLZ9oSyxeG5Ph4DF5q/jXufZMzwp6YLaSvWcPE\nqVOZNmks73f4F4XFxezZt5/BfZqiUsrRiXpmTglj5ryEJ0I2pVKpGckAKFQKSqXSPz32PwnHjh3j\n2LFjf8nY/4kZzSggCqO8WXiwTANcBiINBsNjVWcymayplcWxGGc0YcCPBoPhlpXtns5oHoEgCMQn\nJ1Gi0+GoUhE+IuRXf9CCIDBmzgyaDOhe1d9+xgLKRD32zk4U5t1j9uSpnD99hhZ+z1s87GZvX4/7\nczWxs6nAIJNTp15DLmUfZkizHlVeWeeymBVbleScOG4k773kiEopZ9KSDGYO7oZK8YjRpqQn9eQZ\nuo+o6rsn6iSWTkrD368mOblFDAudifIRa35R1HFkRwIVWj2lyBg0vidb03fSObAtRYXF7Nxzho6D\nqmpIdq9OJeenq+iKtNR94XkK8u5SZqjA2d+bezkFvDdwKhf2pTCgbytTriUpdQfPdw/lp49PYijT\nc/urr1FL4OXlwf2iXBQKJfcLCqnuJmd6YDMTcSZkn6F9644YZDL2nPuEq8JVpg3sa3Eu15w5Qet+\nXdmeto02rXvi4WUUNNy6JnBs6wpCe/cx5WjW7thLp9f74KJ2JfZEDPUmfMDlpbsZ+kowKrkKnV5H\nypllJG1ZhqZ21T3wuBnN9ANJzPmgs8V12HelkAXRsWb3S+ee3RgRM8qi6+amKSs48eFJo+1MQhzn\nz51mfEgrVMpHxhT1HP20mEVRVt8bfxeezmj+GJ7kjOYXczQPnADayGSyjjKZzPHBshdkMtkmmUz2\njUwmOyaTybr9zn0uBwRgl0wm6yyTyTpjVKFdxdjJ8+G+a8pksnKZTDb14TKDwXDi5/+AAqDQYDCc\ntEYyT2EOQRCInDGVOk0b8G5AO+o0bUDkjKm/Gq+OTU02kQzAjUs/UOHkRLe4xbwfPZ++qctYvGYF\nbzZqyMYzHxo7P2J8MKYd3o3CFfr2qs/AgU3p1b0en+7fSKfXm5spyILe6kxyTKJpn2JpEQXFWtKy\nTmCvkJk93ABUCjl3r941q4hPidqEwc4BG0dnvKv7m5EMgFKp4uZdHa1f7cKt2zmIokSz9xqxaW0m\nkijhpC1hz/SZpISEkZG4gOL7N6nlXxt/lxrkXs2lwtuTFimr8O/WD0ks5/DGJF5uN5wVGz9i0dKN\nzJq3ikJbV77K2kKboB50GRxMl9ERyBz02KkrGRUazuiwcCaPG4fa0ZX7JVrTdwnr0JC0TZvYdfAM\nV3+4iZ2DE9Hpm83O5ZK1G7gm5LBqXqoZyQD41dRwTzKwYMVa4rfuYUFqOp1e74O3q69RTFBpz6Ut\nR0wkYzzvKoY3HE3SUnP3gGER4az76rApD6fTS6ScycDPp5rV6yCVFJkti0tOxvfZWmYkA0YbHrmT\ncZmxZXc0L7/8ohnJAKiUckSt+Zh/FOHB4RxaeQjpwX0i6SQOrTxEeHD4Exn/KX4djw2dyWSyOhib\nm1XHmAu5LZPJOgH7Hnz+CXgZ2CaTydoYDIbf1AjNYDBoZTJZCyAGY7sB2YP9RBgMhkczyLJH/v3q\nsL9l308B8clJtOzezcx/q2X3bsQnJ7F0kbnXlCAIxCcmUaoVufDdBdwbvGYimiObdhC0aDZytfGz\nXK0iYMZE4qfPZ11yGimxcYglpSgdHXD0c6P7+y3Mm4+Fd2VT9D7Ujq6U2RuwL5PR/qXm6EqqbgGp\nAtL2ncLN3Q2ZnZyUzCN0bvoGftWM4kSdpOd+aRnzJyxHqbKnvMxA7yEhVH/QbTJpYRSiqLOY0bgq\nnMm+cIAG3d5l9sRoXN3duF9YQuW1LGa27YhaLker1zNh13Z0BjlqPzUurs78q04zdl46yA/Hj5Ob\nsZtx4dMoKi5iy4Z48gvvUrvu/+FSw55X2rTiTGYmJYX5KFQqLhzei6aGP906BJnJoIN69Cczcw1h\n7RoAxgd2Lc/q9GgbiijpWHMsnZpdGjJ5+Wpquntyt7AQJw9fDAX3ee6F53FydjG7XpKow7/GS3R4\nbwCZ25MIbjXSJN8W9TpKy4q490Mh6z1WYi/Z0a5WZ3xc/FDJVYj3zQUNmtoapiUsJjUmnq+Pnaea\npytturXk6PHj6CQ9KoWcW/cKyDr7NfpKGbdLRARBMM1Gc3LvkHf1OpJOtJjRPFvrObN9KdXOXLmW\nx4dHr1JepsDOXqJF81oo1c6/5Zb+VWg0GhZPXWymOls8dfHfSnX2d8cv5WjmACLQGigG5mOceXwO\ndDEYDKJMJlMDe4CJ/I6OmwaD4QYQ9CvrXOU3VPwbDIbmv7bOU1ShRKez+pZZIpqrnARBYMKU6bzX\nORClUkX9pq3YtnYdjQd0o5qfD/YqpYlkHkKuVlFpb2dsUBUTbVrerl1zlKoGZusWFpVyT6Gn9ahu\npvj9hvh0im7nERIRjFrhQF5hPo62zgxo3MEUClqduYuererj5uhAwt4TyKq50rxRI05mHiF89iSz\nB3mPQQNYuXwxg4dGmnI0WzNWcVeWT+OmLyOcvc7sEQtRKpRszVjOqLdeRy03vlnna0tx9a7JoJ5D\nTEn+7VvSCXihPbHL4xg3bg7FRYXs2r4OQ0U540bPqtrH1nU07N6VkxnbCAgZhU2FHhuZrVUZdElZ\n1WedpEdm86D2SKFiYLO+rP10J32il5I+aTrDJs03NU1bH7eQkowNtO/Wx7Rs0+okfKv5sP9IMvfv\n3MBVbSQiUa9jzZkVuD/rSbuQINP53rwknZ70xUXlhtLZ/NjASDYL4pYSOW4M775UB6VSQfN/NSV5\nTzYBDV9j+9lL9AzsaSrGnBo5kbmLF6LRaLh94xp9BwaRlbCNzmFV+1w/ZyUbk8wrEzp16c6MsYsZ\n2H6mSTyyJn0Ws5ZGWr2H/wg0Go0pTCYIAsnL4k0vQiNG/72kzn9H/BLRNAImGgyGIwAymSwcYyI/\nxGAwiGCancQDyX/5kT7FE4GjSmX1LdPxZyGmhYujTCQDxpBTUI/+ZGZspUPYIPRaHXqtzoxs9Fod\n5aU6xo0fb+afJpXqLZpx7d93jl7jhpvNrDqF92X38hW83KQGRzNP8+N3V5g/YoSZXPeDrl2YlpSC\n5o1XqD+kP83cXFkzKYrnarxo8SCvXrMmzq5yEhNn4FXrWewclDQc0AMHV1c2zZzGhMBxpjoPg15n\nIhmAbRcu0K3nUPNCzR592b81Aye1I8VFhezdtppCsZCQsNlm56l7QH92HMig5K7RILNEp+fOtWtW\n65aEnLvcvFuAu5Oa+N2f8F7DQaa/KxUqbKQKFCoVfs8+R0lRAQez1mCw0eNRwxN9USnrlydgsJEj\nq9Qzb9Zkk4O1IAgkRSejKxaptKkgV3aH3iGhZue7/bhAds/KRGljx+zk6Y+9Z0LCRjJt4ni6tWmJ\nt5cnzVq+x/zV6UwfO8GsGLNr6zYkxSeweOkSateuSY1afnRs15IjabsoLtVyP6cAexsFA4cE4+tX\nE18fT0aGDGPntn0MbD/DrMB3YPsZ7NyW8VhH7j8KQRCYOXoCPRu8Z2qSN3P0BGYuW/SUbP5C/FKO\nxgf48ZHPD///8zxIDuD5JA/qKYwQBIHx48cSGjaC8ePHPhHdf/iIEI5szUB64IIs6USObM0gfESI\n2X6//eZ7q/kNKTefzzftopa7JztnLUSvNc6E9Fodu+Yswk2l5pW36tOsdWteeas+E6dMwc+7JptS\n9pvlUnJuFVidWeXna1m1dAdt6r2Jp4uLVX8vBxcXWocOppqfDwqVEhtbW+zL5VbrWVycHYkcOxS5\nox1thg3B3dcXhUqFvUJlekjm3r3D1dwctPoqZXyZjZ3VGUhpuZZibTHHD+/B3U1FrWdqWj1P+cI1\nSvPucz/nFooSHYM6BrFi9UqzuqUtWzcR3LEnC7Z+RGhqJk3r98bLvSrnIko6KhW2SDodFfoyjh5e\nRaewenQf15TGQc9wt6icroPm0Wv4IroOmsfkWUs5deok8CBcFLeIsTMiyLe5hqfGxer5zrXLYXby\ndDMhwM+h0WiYszCKwx9/zpKUFRz99CzP1XnGajHm5198RnBwMDeF22xemYHMAM1bNMGuXMWw0ZMZ\nETmFviPCyC8pwuWZeoybOpf7uYVm3mlgJBttsUWlwp9G8rJ4E8kAqBRKejZ4j+Rl8U98X09RhV+a\n0dgAFY98fvj/n+dDnuZH/gIIgsDkKRPo2KVNVY+PKROYP+/PvXlpNBoWz5prVJ2JOhyVKhbPMpe3\nJsSm4OHkazW/8drLLxEeGkJsciqy69dZM3QUSmc5hrIKnvOpRde+Pc3907p05qNjxxEvlZKVcBIU\nBpBklBXqrc6svDS+tB0whJ1xm1EplVblupJWx71btwE4m7EPmajjcvFXXF78DSGR403na0NqCq52\n9uzemE3urVv89OWXfH34EIU3bmEoK2fFjlQavtaI7EPb8HT3ZN6+PUxpZ8zR2JTrrc5ALt26SKFU\nyp2bAjVre2KnqLR6nryreUC5yI7ZE5kXPBalQomTnT3ZGRlUysDGAEENW+Lj7oGNnZxGA1qQuWsH\nwR1CTN0u1xxL55UBXdgyfxEuDkp6RLZE+cAg8+yeS/QcMgeF0viAVijVdBs4nYgJI9i2YRMaTW0A\nEtNi6Di4PhlrP7J6vnW6wt+UBdVoNCSmpBprnJLi+PSjTxAl0YxsRElEXdOJayU3COj8Ps5OLmza\nuh6ZQkbXPkNQPDiXCqWSwD59ycrI4r1uA8hYtgCxrrlRp6jXonaSWxzHn4VYUmoimYdQKZSIJU+l\nzn8lHitvlslklcD7wJcPFtlidHDugjGE9hD1gK0Gg+G/1kH57yhvHj9+LPXeesniQff5uW+Iivpr\nJZkhQyN4pUYT9nyyma79+ppyDxtXpDB7xmSiV6ymcc/+Jgnw3nVJNO7dgAOpO+ndpQ9eXuY1t8cP\nHiRy3HhSYhIQi7QondV0DAogdmUyLfoGmOL3O1em07LPe3j4eSLpRPYvXod0t5RRfXpW5Wh27aZ9\ni/psP/8dSAbaNW7G6dPnKNcb+OnGFe6V3KNe/XroRS32xRUMa9XdFCJZunMNlY4KBvUbjlKp5Mb1\na+zbnk5k1x6oFAqEnFskZ2fi7ODET8V3cfPywtvTn1ZN2uLs6MrGjNXk3L9O49avcGjNad58vS7v\ndHuNgzu/oVvXYNN5WrcmlveDeuHs7ExKwjxqV3+GMhsZ169dI/i9rmh8zY0xk/ccxta/nCtffYus\n0g5N7ZrczruLQw037t+8zxvPNOabWycZGdfftN2WxWdo12mGxbU7mDGJ52tWJ2TYWJLi4/ji0kcM\nn9eZ3Jv57Nr0FR2H96+qaUlOp22HV7jxpUjUwt/nmCwIAlMjJ9K1dRtTjmZt9nYah7bE0d2JD6MP\n06tTH0RRJC4tjrDJlqG5bRs20bFPKEe3pECBLe3fDDblaPaeT2NB3KQnHs6aMHoszX1eNCMbnSRy\n9PZ3LFr275M6G4U2KZRoRRzVSsJDh//Xhe7+nQWb260s+7khpoyns5onDu2fNL38M1A7KnB2cKXj\n2z05sGEnlTaVGMoNPFezFjt2Z5tIBozOvu37h/DhrlR6zRrC4egsenevqk5/6J+m0WhYGGvp1TR6\n4gTsHeR4aTxNJGMcV4nCyQFbqZwthw5gqDQgs5HRtV1DfDzdyd92gN49+nF4/xl6txpimgUk71zG\n7es3qOnlw8BWncxCJGMDBrL67H6KiwvZnb2DnFvXKK/QE3s8G1e5ii6vvs3wjt1I/OQQ42dMNfW8\nWRe3GpdyWwxKO2QGuLz7Iv/n/TwFeSIf7vyY1gHvcOBIGuWSDVevXKdz5+54eXmRm5cLjk40HdrL\n9HBfE53IwLdbo/H1QydJxG1Lp22HKWzfu4iXPF1pO6ebWS5L1EnsXvYFHk41ELWSaUZjI9cjiVrT\njAZAErXIFRL5hblMjxxPYKvm3Lp5CVGnx6u6G116vcrh9PWUl8m49dNtBoV3wMvXncufGP3FBEEg\nNS4asbQYpYMTw0ZaVucbi3ZTKBZFFB5uxKxbjrfGG4NCRuPQllTz9wCg0tYYAFEqlSjs7ZFE0TSj\nMR6rCDJbJFFnzNXMHvbAqFOP2kn+m0lGEAQSHmlDEBb+yzVhI0aHW+RoNn90iJnLFv3qvn7pGGJT\nkyiVdDgoVIwa9svHIAgCkZNn0bJzb5OQI3LyLBbPn/FfRzZPCr+Uo/kAGPSzf7+07CmeINQPTC8f\nxe8xvfwzCBs1nOzT6Tg7uNKz9VC6NelPaVE+/T/oQ4koWrWRN5TboFAruZN3x9w/bVfWY/3T1m/c\nzJDR0/HyrkHbAR1MJAPGsI5dpQG1SkH3jv9iYPc2DAhsjY+nOzpRQqfTc/r0ORPJgDF5PiJgNKVF\nZVz/6Yb1EElpKfsP7uT9Dm0YFx7O6LAwUMj5v64tWPv1GXZ++TFDxg03tYxWqpT0H/kBzi4OiPcL\nqOnizdSOfbG3BXt7F65fLyAtehffffM9N24KeNdw4sLFj8jLu8ORYwcYMG6kWQK+95hQoneuJy1z\nM5sPZGGn8sbJyY3a9jYonFVmJGPcv4IKmY7WjXuxY8khxAdNzN7t+AKbV0xDEvc35TUAACAASURB\nVI0vHpKoZf+O+TRvW53PPvmKwFbNUSkUtHmrKduWfWgim24DGmCQihkU3h4vX3dEnUSZWMmQYSMI\nH9iLts+70OudZ2j7vAtzxoeZ5QUFQSBiziz82r7Hq726U7dHIKIdtBzdng5jA0wkI2klbCpsTfdA\n3TrPczBzu5FcMJLM9g3pvNmkNccz1zIyZJjJqDNpVRRLYuf9ZpKZHDmNei80omXDjtR7oRGTI6f9\nYi5To9Ewc9kijt7+joxvTnH09nd/SgggCAJj506jVodG1OvTkVodGjF27i8fQ3xiiolkABRKFS07\n9yY+MeUPHcPfAY+d0RgMhrX/zgN5CnOEhoZb5Gj27DrA/Hl//M3rt0Kj0RAyZhCRoyfi7+WPvR10\na92Y1Nh4VN5eVm3kZXaVSFqRavZ+ZK8/yD3dDerVe5WF8x7/0Pjh6hUaKFU0ataBnQmbCAjranrz\n3zR/FR5lNsiQsXLLPgb3aIdKqUAnSsSm76SiUk653mBm6wJGsnFUOCLpC9FJokWIJLfoHmP6jTDL\nI/UNCGTLh3vpNKw36xcnm0jGNKZKiSQzkF9Ugqi34eLt6+icofuAwCpftVUpBI2si0Il50j612Ss\nT+J+sY7igtZmeRGFSsnzzz7LgCYdWLFvL02b9CF710LC67/A5svfWKjzRJ3EV59/zg+XrmKrtGPp\nsDW4ezjyTM1nMdgWsWrZEBwd3CkTS/HxsWV98nf4utYy5bV8PDzo9lY79i47QU7RPbQ6kZ7BbfDy\nrYaok9iS/CHYemNTXsq4Hq1MxZgqhZz+LeqRGhfNgmhjdX5sagoN+/c1XfvS/ALc3P1IH7Uaz+e9\naNS7KY7uTmQtyaRLw66Iokj2vl3MX2h0eo5PSuJefgHCFQFfv5oU/vQ5S+b+8S6VCfFJdGgVaKZ8\n69AqkCEDhvDSs8+jN1SAXI4MW9SOSsLCR5gsjp5UmCw2NYkmAwPNXiaaDAwkNjWJmAWLrW5TohVN\nJPMQCqWKEq1odf1/Av4TXmdP8Rug0WiYP28RiYnxVT0+/qQQ4JcgCAKJKbFoxRLUSkeK7pYQOWSQ\nWbLX28ODfZ+e5dTmdVZzNNmLM+ny5kD0epF9pxKpzL9HamwMw0ZZN12UpFIkUYenly8tW/Vif0o2\nFQY9Vy5cYGxQIBo/XwDu3L3Lxp3HuVGQh1ZmQF3Lj4ri21y5esWqh5hvLS9adnyf5Rt3MLTF+6YQ\nSXTGGmztbayGJGXllShVSvILixB1ohnZiDqRn65fQ+WjomubMNI2L2PUuAgzshoyaDhbNyWiLJEz\nuEUgqneMOaXUNVt4d2APPHyNeStJJ3Ljzk1mb0lDlOTYfxhH+Nsv4u/qSs86L5EQlUWX8Z25+t0N\n9iedQl9iwKN6TfpNGmMi4WMbtjN7ymxu3LjBrMlzGRoQYsqTrMtaiY1tpZmIwsfDg+4tOnDq0g+E\nhI8kMWUZlz+5gFrhiJODP+906cvpDfFWK/4/+/xTRk2eTERwsDFc9oBk7t/K4dyadAZ3qSLblQtX\n41nDm5qO/lz49ktUahUhYSNISIkz3Vczp0x+Yvfw49oQeCrdaOj5IhvPH+P97lVh1UmRM1iweNYT\n/Q2VStbr0kqlx7dZdlQbu8M+SjaSqMPxZ+2a/0n4W7UJ+F+DRqMhKmopiQnJREUt/UtJZvKsMdRr\n5U/LoNeo18qfn25fpKC42Gw9pUKJ3NaO6JnTuH50Px9tXM32qNnk37zOFyu+oMsLRpI5fCyGaZ1b\n0efVF+jg58HciJEWoQRBEJDKK0lfvsxENu0690HKlagshS37DpusV5ydnMjTl1BZuwZd4hbSYdoE\neq2YT4WHI8nblyE++FGLko70I8tp2bEpnt5etOrdltWf7mHupjTWHzqCaLAlv6DAakhSLNMj6kR8\nPDxYE7sS8YH8W9SJrIlfg42TK91GdODjz/fhr3nOKlndE0oY3KKbWd3PsNYdOZuZDRhJJj0+kUr7\nckR5BWpfFySdFne1MRzqrlajv1NG4szdnIi/wPh283numVdNJAPGh1izPoHEpSSxa0cWQ7uFmL3R\n9+88GBuZgjWZ2WbWNdsPHyUkfKTxnlq4jMSYFYQOH82Pt26iUKoot1Oik8zlxDpJj8zHl2pdOzFy\n/lxk5RVIOuO5Pr9zN/0ekMzD7z+4zwe4KpxJS0sjMSmBsLBQElfG8HpLDS0C3+T1lhomzXoyMn0w\ntiEQpZ9dS0nEXmZD9penTSRjPDcq2rXqQUL8ky35c1CoTKUCDyHpRCivZMzkcQSPDWHM5HFm3zk8\ndDhHsjYaW5FjJJkjWRsJD/3ndj/5t5tq/ifwd1Sd/TsxfmIE9Vr5W4RsspKPM7Bjz6plksiZy9+w\nONo87CAIAgnLUtGWSPx46TzTOrfi56aL2bfusiAm1rT+qNnzeaf/EErz8/l05zZyvv0WB1FHbQ9f\n9BU2fCZ8i0plR506z3Hjbg5OdavzRlAPLmYcxk4sp1xpR91urdg9PR77YpEXa9Tg8vUb+Gs0ODqr\naNauEZ7enuTdyWVFQhoOSgWFxSUEdOrLZ5+dpX+P7lW2/ps2IpUUoXVxoE+7zsSuXkvNF1/CxsYA\nMjvebdkZRxc3PsxOQHtP5Ob315kwaZIZ2dy4cZ0d69Ywb5ClsfiklSk4vVYDe0c7GvRqiGM1J3Yv\n2k/boYM5MSMdV6mceyUC1es8Q5FCzjenP2N2r2iUchXJHyfSaaJlCvTctj3ItdC6XkeLv23Yu5bm\nzd7j+Kn9VFbouV+Uz/I1qwFj+OqhmWq+rogbei2d2n1ASUE+5zbFMyqgscnkM23rMQoke16eORYH\nN3eurEmnQNTSsH9fTi1fzQcdulrsO3p5EvNnz2Jn5m7OfXaGoZODLO6rL44ILFkYbbHt78XDHM3D\n8JkoiWzftoaebzRn11dnCOg5zGKbY2d3kpQSa2W0P34MY+dOM4XPJJ3Ih8s3Uy6V0nF01bKjK/cR\nNWWB6WXxqersKf7noBVLrCah7xTmmWolRElkx5EDzImyzBFpNBqWLFuAIAgMCXqf9YeOIrOR0fGd\n+hhkMjI+vsi1Qj3jIiYTNiqYZalpvNN/CHKVGrlKTf2AIC7dWcLYli1MD7m4QyXcLCvmvlZH0IBB\nrF6/hsvJGQQ372oKhcUvWI3KXqRSqadYW8akwVGmMMmmLWm81fJlzp85wYzJvVEq5YiinjXrj1Kh\nrWD/pg1U2tljX1lJ8Ouv4ubgwJIzH+Hi5Ihc6UDnfuYChrt3crhy+Q4VBgMGpT0JCfGEhYUbZdI3\nrpOZuY3qtWpYrfuxqTBQ8d0Niqng9PVilJ4OVJSXoVCpuFr0Ezmlxbzy8vNU8/NicngEI3oNRylX\ncacgh5w73z/GyUGJrQyrtSyVGPDy9KZT+x7sOZTB8jjjQz1y2jRaBQaiUCqRRJGNqSm8NLAdO7ek\nEdAjGMnGlQ2bPwJ7sK2wZcALrXBTOTJ3/TbenTgamUpJzPjxxKamcP/mTat1RnZeHsyasZABPYZx\n9eZPVu8rrVjyB+5SS2g0GuYvnkNCfBK6Uh2XvvuOfm+2wdfNEzuDwWpYVe3w+PCUIAjEpSRSKupw\nUKoYOfzX+zNpNBqWTp1jpjrzcnTijRHtzGahzQe3Iy4tgej5S6q2i1r450/C3wRPZzRP8dgZzcld\nF3Gyd0ZXqkXloCZk5OM9oQRBYP6oMIY88Av7ITePpfuPYKdwxMOzLk3e7YuTgxsHTi+nRF5MuYsT\nGMpBZkdl3j1mNXzRYha06XIOd3VFfP7ZN1BpYFHwJIvk/uqTGwka1pbNKQfo8NoHeLsb8zqipGNh\n+mier+FOSUEpJWXlVKvuQYfW9clcfYyorgEW32Hc9p1cKy7h5erVaTJyiimGfvdODof2bqPtsBGm\nvNS+hDhUUhlqBxXXrwuMigimqLCIIzv2MqRNJ1Pdz7ItGxjauBHPeHmh0+tJPHSUVu+0ZePpvdTp\n344fN25hYt82JoJdue88wrViIjrMJOOT1bTs4MW2kz/SLjjY9Ha8Iy6Z1XHGENCUsdPp0qTqjX7H\nh5tw8XbG3laO2kFF6AO579jISF5o1MhCYrxj7zbe7NuRzzYdpOLTyyxr3tPivMz64TQvTxzJvczd\nxM6fb7reQ4YEM6TPANPMcN3uDLT29gxp2QelQsW27JV0GvruH57RCIJAbEoKJZKIo0LJqOG//NYv\nCAIzR06kV/02FJQWW+Ro9h3e8tgcjSAIjJ81hZa9u5jO85GNu4ia8dsUcI8ieGwI7/RvZrH8k3XH\nSF2a9LvG+k/iSc5onhLN/xgEQWBZSholooSjUsHo4cEAjBo/HJmzPQZbe2QVZRiKyoiNSvnNP7LJ\no0YS4OmMWi7nZn4BScc/wsnBF0OlCpmNjpv3c3D0qA22eoTc7+k6aTj2SiUHN2Rx7/vv8XJUUF2p\novc7b1Hd3RWA9V9fIXzKDCZFzObWje+ZOtDS1n3B2li6j2mHs6sjWcmf0rOFMVySez+HzL1zmNGz\nPWqFHK2kJ+bQGe7byii9do/YwEAzbzOtXk/yqQt8e/smlWoblI7OdA+bgEKpIjM9jWaDPrBQ2h1N\nTEStkJN3+yqjRxvj67l3cjlx8Diyikq+vXyZYQ0b0+C5KrdinV7PipOfEtgsgInr5xIX0d2CYOOy\nPqPwVjnePg4MDX6bnNx89pz4ljLssKccuY0Dq9dtM13PxNgkdKUiKgcloaOs13AMCw+nYUfLMFvy\n4oV0iotErlZxcnoy0zzeRv1IDxqtXmL2nS+QOSqIm1ylEBMEgR69B1BuqEClVKD08+LND/rw9ept\nDGrdD4C8u7fZd3Yj3Ye1NXVVzd54nNDBEezathdtkYTaWUFoRLDFMQuCwJjZs2jUt4+J3E+nbyB6\n+i/XmgiCYCwMLi5Feqg6k9midqhSnVnDmInjqdPyLYuZ4+Uj54he+NubAwKMmTyO5zq/ajHWD1lf\nmWY0fwc8DZ09xR+CIAiMnjWXBn0Gm368o2fNZdzggVQ4u9E0tBcKtRJJK3IicdPvGltfXIS6ugc3\n8wuYuusITvJn6f7uXFOl94ojk3iv42vUqOmPKIosX7mRQqUaL0UZI2f2NT2IVqTsYcibb+HuoEbh\n6ERCbCodGvVn+75kq3JlvSiRGbcLT40nJfqq38Txs1tNJAOgVsiJeK8hY7Yc5LZYwvSMXczu1sXU\nEiDu8CmavfM+91zO0CEkmJyrAslzIlHJFRSX67FZtxZZWSUGexve7NwZd18/7hbdZ+CYURzevMkU\nRvLy9iKwXxCiKKLbuZtzOTfMiEYll0NlOSq5EjcHtVWlV96dW7Rp1o3t+zejE1/H18uNoYGNjN9Z\n1HPsfIFpfY1GQ1SMdRnto3BUqawWTYq5JRwMXoDSToFYJrHg+91MercTarkCrV5i7smdeLz9KjMi\nx5uRTOSEOQwdNMdUcLg1O40ynUTeVcEUsvL08KHdu73JTMmiWLrHqy+/RujgCJIWraHTm4NRehvb\nVE8On8v8eHOZc2xKiolkwFir1ahvH2JTUohZ+PiQ0+MKg38NpeJj1GPi49Vjj8PI4DDGz5tE88Ht\nLHI0vwZBEEhMiDdFEULD/hnO0k9VZ/9DWJaSZiIZMP54G/QZzMS5c00kA6BQK2ka2osBIYMJGz2Y\n8RNHP1Yp9ND488uLF/khN4/UT3+kRs23GNxynpkb75CWCzhz5CvjZ6USx2rVqObpwqC+zcz61PQe\n3pHt5z8n9cQ5gkeN4U5OLlnH11EoFhG7aTm6ByojnSSSuHUFYZ2aM6d3D4a+2RhDwT1y7+cgSjry\n7gkmknkItUKOv++zuFd/hTy7ckI2bGVIxi7GHD9BodqJzR9l0aBbJwB8a2kYPmcu/q6OuCscCWzW\nlT6d+hLYrCsfr9/I7Ss/4ennYzyH7dqzYvlas0LVlavWU1FagZBbQuLh49zMzzcet14PNnbo9CKF\nOtGq0qscO15/8XVG9o9gVfpJdKJxHZ2oZ3PWZ4wIjfjd1z48JIQtKWlmRZObY5dT29GHSW2HMrl9\nMJPaDUXl7sma+9+yOudLMstvELttPauTEs0edvHxqbR+b4BZwWH3DsGcX7acmIXzyD68zaQEdHJy\nQW6rJC1hJUsWRrNr214jyTxovKaUq+j05mASY9LMjrdEsl4YXCL9NbUmDkrr6jGHn9W7/BZoNBqi\npizgh6yv+GTdMX7I+spMCPA4CILAlIkTePuVl2jTrAlvv/ISUyZOeGIqvf8kns5o/oEQBIGYlOUU\nS3qcFHIihg9Fo9FQIkrWq/rt5SaSMS1XK3HxdaBNYF1EnZ4ps0Yxb0YsGo3GqDKLTeV+XgHfXf6a\n3gM68vwLQSyM38CIEYvYvWMHxbp7ZH8eA7Y6qFDRtG5/KvXG2y03N4+c/AK8Ve5Wk8U/5pdSoShj\nRvR0Prv0Kf4e1cFQQqG2lLVZW1ArVVy9fZWQDs145kF9ikohJzKwM1PWRuPv9RoujrXQSnozstFK\nesrlTvQIncHGBcGon3Wkx6QQ01tn+vw4NibMR11ug7+PHzJHZ67n3ic8fIZZG4CeXfoRtWQm/SLH\nAFDNxwc7Fze279yNjcwGrU6LQ7kDg5r1q6pv2b+GHvXrknHuc1q905bojOWUywwsyzjF6G5VSq/4\nrLO4e9QEwKuaN+0b92DjlgPcLb7Dq/XqM2t+/B96w9VoNFR38ONIcjYV9uXYltmhKLLFwUVB+ol9\n2MoMtHujCf3e7czRu1+y6BdmBaWlktWCQwX2ZKxYh6eTkhPnsrF7kCdasHi26Zi1RRJK758V2cpV\naIsls2WOCqVFYXDOFYHLF74jOHwUjiolI0MeHwr7vRg5PPSxOZo/Ao1G87vDZIkJ8QS0a2MmGQ9o\n14bEhHiilvy9W04/JZp/GIzS4YW81W8Y1VVq9Doto2YvJHb6RByVCutV/WV6JK1oRjaSVkRhUwmA\nUiUnoPfbJKYsI3T4aCZFzKF9owEon1HR/HUd27IS6BDUAJ9atVEqVGjLizh0cSFDerQwJcVXbFmI\n3s6O3Nw8DmTvpoabIyUyO6uV8HklRfSd0hOFyp7CmzcY1LUNhcWl7Dl8nqu38vG2s8PbxdlEMg+h\nUsip5VWDwOYhXM/9kZmbZjCzV1WOJvrg57waNAWFUo3c0ZMekz4w78/yQQ8+SVzFxKCOpgf/pB+u\nWW0D4CRX4uRS1QGyZWAQx3ZsoXv/ruzfsIferYLM6lt6tx3I9NUzUMttsL+YTdiAl3FzVjEtcT9R\n2V/iqLRHL7PjtlZGv2YtTeN6VfMmoGV3Dn7xIWV2cubHReGoUDNy2K8ron4Obz9P6jt2RilXk1tw\nk82nY+ncergpWb5530q6N2hBQd79XxzHwUFhteDQBzv6at5Ap5dY/dUJIuOXWrQfUDsrEPU604wG\njI3Z1E7mLxyjhg83y9HkXBE4vnYDvcMiTOG68dNmEjVn5hMhG41GQ9SMeWaqsz8iBPgz0JVa9zfU\naf96f8O/Gk/FAP8wjJo4Bc82gcgf8UTT67TkHdhOxPChFjmajzasZNzggSxdn8a7wwJNOZrDscvp\n3ukVvH3cTOMkLdxNSR4EB821kI1mf5yIwcZA++ZDydyZwrCujSxkvqlZB1A5q+jZ9V0KikpJ2n0O\ndzWm8Jmok0iO2UHt94fx40eHUZXnMqJdOwqLS9my70s69wyhqKiAY6d2civ3CrUUSga81QA/96rW\nzhGp6fj51ya/5DYGmR5tkUidOq9RLnfi1TYDcff2RxK1rF8cRo03a2DAgAwZDdu34vPt2Yys9wr5\nJaVkffIV5djy/c07BIfPtGgDkLBsJh61atNp+ADTudwanUTezSv4OHoxodc4i2uzaHsUM4fVQ6V8\nJPkv6hkbc5D/e7sJ1dxc6dapEynLkujarLNpNrQ+exN4KWg9uKob6dG1WURNMyrAElJi0YqlqJUO\nhA0f9Xhl4BWBKeHz6PzqYHZ+tJqubQIsrmPWwdXcke5x6NSRx95jD3M0D8Nnkqgja3McwS/Xw8+1\nmvF76SX2lAgsiIux2HZy+FxT+EzU69h9fqVFjubhug9VZ5cvfEePByTzEJKo44fTR4le/NfbMj16\nTEkxyeiKdaicVIREPLlZ1fhxY3n7FUvH9k++/uY/MqN5KgZ4iseiWNJT/WfGm3KVmhJJj0ajYdmM\nqWaqs2UzjD9wf39/li1PokQv8v0339C9dz0zkhF1etwVKtw8Xa36i1WW29KyQ3227UjBwR6rDcvy\nC4vIu5+LUtkMH6UCf72IpFOwZP42HBS2eNs7MbReWzaePUPzYePZNSUMlVLB5t2n6dwzlKKiAvad\n3Uib6VWEmDJrPcNfeAM3BweS932Im7cbSgeJyIEDUCoVXL2Rw+rsz+g2fAwKpRpJ1LJv1RLsXGX8\na0TVOAeWrUd5r4D8klLST31Jj/f7olQouXbrBqtWxjBocISpDcCOrSuwrbAn8OUgDiXvoNyuErty\nG/q9PZD1hxMw2Bis1reIZaVmJHMrt5CsYz/gonTjp3NfMTQuisaNG+Pv709SXCLaEi1qRzXez1Xn\ntaCm5nUZAzqzYOliiovv0KF3ExNRT545lvkzrbtIaGprmBc/hcSYNO5JN6xexxsFd6lRp/Yv3mMa\njYbFi6YRH59KaanExa++YNzbLU0kA6CSK5CKLHu8aDQa5sdPJTEmDW2xhNpJYZVkHq77MPEfHD7K\nariuVPfv8wcTBIFpI6cTWD8Ipa+RJKeNnM6cuNlPhGxCw8KZMnGCKXwmiiI79x1g3sJ/H5H+VXhK\nNP8wOCnk6HVaixmN44NchUajYdnC+RbbaTQals0zqpcEQWDKrFF49XZDqZIj6vRsTD5I94Yt2Xvi\nC6uFcDZ2Fbi4OFFaWcztnCKrhYv5BUUYKEcUJZRKBY5yJZFNOlsci/3VH5Gr1MiUanSiRHmlHQql\nihMH0mkzJdBMtNBiRj/m9F9IWamEfy0NN3Ny6dG1D0qlcd+1/H35oMMbrIgdil8tfy5+eQV/3+fo\nuWS02ThtRvdj1aCpZJz9gh7v9zORRE0/f3p26MiiRRNwdnJBpy1BEvUo7FS4OLjSt6mxaj/3fg5H\nP9qOi00ltV+qS2xGPKO6hZtmJauPb8Ctljs6UY9KKedWbiHpe6/QM2CgaZ05U2eSunaF8UEeXSWp\nDR4TalUR9cO1HxkU2s5MTNGhdxMSUmJZstB8JmG6zrU1RMXNZ/zoCVavo6OLJ96+v94wV6PRsHSp\nUUU1aWQEbmpHs7/r9BIKZ4fHbhsVa3kP/hIcVdb9wRxUjy/AfNJIikk2kswjQobA+kEkxSSzOPbP\nk4FGo2HewkVG1ZlWi0qtZt7Cf0aL6aeqs38YIoYP5dz6VPQP+tbodVrOrU8lYvjQ3zGKAWfXaixP\ny2bJvK1Ez9hO94Yt8fWoRvsm9dixP87MX2z51nnIVXacOHoee0dP3ug5jGXp28y8tmLWbcbZ0QkP\nn1rEJmxHFCWwMz6QHoVOL1GmVKLXaSnTaVmVuRdZpYQk6qi0K7cqWrDzcGJsdAQDJvZk0rKx7Dl7\nltt590zrKOX2VBQWknfxe/zcFeRX3rY6js+LNbhWUGRh1FjTz59GDd7m43OnycrexZtv1mfwgBFs\nOLICUa8j934OR44vZ2SD15nftit9vJ/BwSAybeM8Zm5YxNzMGF4MaMC773dm/qqj6EQ9Wcd+oGdA\nP7M8TnDvASxeYP7AEgSBS99eRNKJ3Lt1h31xGzm4eD3Z0espupdvVUyhE3+9W2To6BHsOJlu7hO3\nfzUVtnrCRv6655YgCIwbM5ERwyK4pxVJO/+h6Vo+zNEMixj1q+P8VowMGcHR7ZtN/mC3rl1h7ZLZ\nFBTcYdyEJ+ef9kvQFZvnlsBINrri3y+Bfhw0Gg1RS5aSkJRM1JK/zt/w342nOZp/EARBICEpgTu5\ntxFy7lHjmedQ29mAVI6NnRJHtYKRYZbFcaZtY9LIzyvkW+Ezgua8jn8dT0StnvTpR+n9Wis0fsbO\nkDl599l9/Dy3c4vwd1Pj6O9J5LQZxKckcK/gPl9//AljerViz/HPuVcgUqovw8PdhSu379IzejVH\n4pfiI0mUlpVQXlTKuIAgVHIFOr1E7IkjaIYM48vtWyi58j3a0nw8nKtTZmeHW00vmk5vbyFaOLV4\nC30GVlX6izqJg6uy6d+1I3dy77I76yhDOlZV649Zu4IBq+ZYjLNq8HTspQpmhE+yCHt9fOkLopYu\nYdzYSOq90AilQkle3h2OHT/CzSvfsrRzN4tCx/nfXqRF8BQkUcu2xGloC2+hMNjgprSBCjsiho82\nuwZ37uYRs3UdL79Vn1vff08NtYqfbt2gYZ/OfHL0FB5aO0KaBpjO1bLsjbw3oin+tX3NvvvnH159\n7IzmUZw6dYrxIaNRyZ0o1BaBGuQujrz80itMGTPuF10gRoZEojaAwlCGJLPnnljKi89Ux64CFM4O\nDIsYZSEE+LMQBIG4pGRu38kl7951+ob0NDWn27flEAtn/bVv/5GjJtCoWmMLIcPpe6eeyIzmvw1P\nnQF+J/4XiEYQBCZNn0i7wLam+G7Wpj1oS+3oGDjalLQ9um8lUQummP0gBUFg8qh5dHhrsKnAcsvZ\nKNpMqY5nDVdErZ6U4H1M6z3A9LBem7GHRs8/R/rnF/B/8UWEHy8TNLgr1TX+7IlfTVDDl1l75Hs6\n9gkx7Ts9bSlNQ4xJ8q/TljOkaRBFpYWk7EnFydUJoTgflZcnBlGifdPWHDywDW+NO4GNZ7F2xzLK\nbSsQnQsIWhxsyq1sn5BCvz6d8PLxMDsfSTNSqeXqSVFxCSM6BpiF8a7k5JD85Vm6zQwxjbN1ShwD\n/Fri5ezO1i/30SuouymktW3fLhbFRKHRaAgZFk7LhuYV9lkbUxj/bhOLazL3/Kc0HDETMDYmO70h\nmc6te5GRlcSdKz8wcVSEidDu3M0j/ZOT/GvMGOQP1IKno6P44LlnyPj8AvEwRgAAIABJREFUM4pl\nNoxr2A3VI2Sm00vMylrO8Ll9Hqm8P2mWoxEEgcS0GLRSEWqFM6HBVS0bJo0eRSdfd/JLS0n69iIt\nIoZVVeGv3kr0VOt2LcFDRlBy+RLjm79lKniNOnoOxzovkLbiybojW8O4CWN55V8vWrRy+Pr4dyxZ\n9Nclzc1yNA+EDNs/3fbEcjT/bXhKNL8T/ySiEa4IpEbHIRWVGt8cx4xEU1vDuMhxvNr4ZQvFyvZ1\nx+jSvarATxJ1/PBVFtFLqmLk40ZNpp5nZ1OBJYCo17Lz6hyCpr8JwP4ll/C086Pg3l2EKwKuzi7c\nsrOlXeQ45CoVep2OI4kJdAhoysdZh7At1vOvnqMtYupbMzfQbuQE8nNu8umGdeiEn7hfUoiqTk26\nTjNaoei1OnbOWYyjrIAeoQ3YNO8ycoUalHLKKaNcVUCJtgivZ30oL9TRr2+AhUT6UNpeerZsQ8za\n9Ti7OKFwcsS+opKO9d/Gt1o1IpKSkdwc8Xv+GWxt5NRr1orzWzIZ9FwLwEDGp/u5q82noKSIF//v\nRRz9HZDJDVz8+nsCmvbF36+WaX87Nqcxul59S+uWL7+idegs07JDq5bSq+MgRElHfNpEqqkdGNHX\nmKNZkZ3B62PHWOTWvpw7i5H/asK8HbuZ2c0y/Dk3azWa1+tgYweqn6nOBEFg8rxwOg2uh1ItR9Tq\n2b3yc+ZPMdbijB0yiL4vP8+y46d4dVyIhez9xp4TxCywfFN/r0FDFrdpYmHhE3ngJIc+OmOx/pPG\niFHDaRbQ2GL58Z2nSIr9a7tU/pWqs/82PFWd/Y9CuCIwN3Q8A15uicrFGD6ZGzqeqYlRaMVSqxp8\nW7tKs2UKpYpSrXleRFssoaxurlRTytWgNT44Ra0edydvFs2tCseMnjyJ1zq1R/7g4SRXqWgZGsax\nlck079SKrcs209qaSijvDgBuvtWxVdkxOuQD5q5ZayIZALlaRcC0SP6fvfMOj6Ls2vhvE7I7Wwid\n0FkQrAhiBaUjvWMA6b2lkIQESOglpJLeE0A6SK/SREBRwV5fOwxI75DNzuym7PfHhgnLbii+qJ++\n3NfFpbvZ6TPPPc8597nPykn22Y+2qplrF6207dyDbRuXUbZKObzq1eDVAa1QYePtzK0MGNZbeavf\nnLmF/s3sNTxBw4ey9PABuk4cai/KzFqNd+MX8EDDm3MWOgyurwf4sDk2k1Y1G3Hy+inq1a5Deb2B\nq5yj3ZgOCDo1L5nr89b0HLybj6VWjbrIFpkTF8+x6N2dhLzeXbFuSTm8l4JyJXU+FtmMe/G7jqDR\n8swTz3DFbGL5u+9SxlbE76abvOxCLXhasnItLw8pX0ayWpxmNNetufx+6Qyp0WlOA15adoJCMgCC\nTk2P0U1Jy04gNiIJtaEsksWKxcPjgarwy3q4OZAMgE6txuDx16R89YLeZXM6neBafPBHYbfyTydP\nktFrBfx97T5y/8Yw2Z+NR0TzD0JWfLKdZIoHG61aw/BG7Rk/dDj1mzzl0ra9sMDx4bfIEnqdYwJZ\nV1aDbDU7zWjQWZDNVnYnfYvvoDDCJgcgm24iGDy5ZMmn1h2DU97Va5z49gcufHecIhm2Ls+hRefu\nVPaqrmz7Vo97q2Qm74yIILRHbdAqJHMLap0WQ8WKrIz9AsEDLl8+y6EPdjI6ebYS7tqZugT3okJU\nFjXRUzJw16gQVO4MadeBapXtUlutRkOZ4gFeoxXoOX4waTPiqORVz+Xg+tuVU5yXjxMQOQxBq2HV\nim14T+7gMFiPjOhNzsR06lWuh7uqkHEDWrFnz1GWfHoYW5ENlZsK77atWfntT8XHbWbf8kS6t7Tn\nkWSLhFf1qoT7zyI5PQuT2cLFX6+4VAvWLFeFrUc/w7N2FdLf3+qQo8k+tIVBw/qz9+BBFsYsJCc9\nx+F4zJabCDpHBZmgU2O23ARgfGAQ4UGTKFOU77KQ9+f/fI8oik4EVvvxxzFbrU4zmjqPP85fAb+J\n/oTOmUaXAR2ccjQPC6IoMm3GbDr08lZk7dNmzCZ64b8zTPZn428hGpVKVQtIBF4HVMC7QKDNZvv9\nHsu9CEwAWgE1gcvAB8BMm80m/pn7/P8Blpt5aMvdUZ+i1uDlqeXCmd/YvvYyPQd2d8jRFFjLKLLQ\n23M0t8MvaJxTjmb5nmi8ntVyJPU8aktFZs2dQu2yevq+/BwVDHqmvr2PZyRJmdFcO3OWI5mJ1KtQ\nh8GdRyvV5is3raDNG/0pW648m9flIOVeY0d4CBQUUK9ObWRZRm3N53BECoLFRr7eg2cG90JfoQLS\n1ZvUrN6Qn374FmPjp+gyZYiDJLm732gOJ6xnYL9RyLLEus2radx7CNu3rKByhQpUq1wJyWLBVsZd\nOVaNVkCt1XLz/O/89MlRTn39BW6FVorc1Tz7emeEIgsTpgzhxnUTqxfv5sL1iwrJ3IKgU1O3flXG\ndmpd8p2gZnSHrspnyWLhxvULfLIlhR+/+57+PcZRpXJ1ZIvE3gMriI6ZDYCKAtxVFp6qW4vdEQvp\nMn2GkqN5PyGRwS+1ZtnGpVSuoKOMXEDwW4t45qkncdO48/qADlT1qsKQAd6kZy5zul90Gk9ks9Vh\n/2WzlaJ8N6YEhyCZ81B71cRy9TLbolPpNc1PydHsTVtCL++OhM2eRuT8aMV6KCUtnRuqMvjtOsD0\n116kQdUqmK1WUj/5klkZWXZRSWo6eWYzep0OPz/XbtKuIIoiKRlp5Elm9Fod/hNdux8YjUai5kWT\nmpGiFKo+bCFASlq6QjJgd4Po0MublLR04mLvbWL6CI74y4lGpVJpgYOABAwt/noh8J5KpWpss9nu\nphUcADyNnaS+A2oAs4HPVCpVE5vNdubP2/O/HxpPvcvwiZugYsTgtuza9yvfHPlOefgWRdq9lpJT\ns8kzW9DrNE5CACguokuaQWpCNpLJgtagIXuVPUwWOm8KXQa1R9C2Q5YsLM/cyPAXnyOow8skR8XQ\nPXQqaq2WLzavp4rOk37NRzm0zx3aZRhzEmZS1VgdWcpjSGAAao2GD9at4cS3nxJ+7EOqaaoT2rgN\nWrWAZJWJj36L8+Ws1PasxqB2k5Ffk0jdN9ulJJnicI0gaHmz72A27N9J+wlhxC2cxGPVKnHz2lU6\njRuoLGORZOpXqEynZs+Ts+1txgUOVUJuOSnpVNIJ3LhuYv3KQ2ioSo2KVV0O1vl5+SXXQLbw69lz\nSu2QZLEQv2sH1eoZ8SovMCF2Plu27OLEyWPoDALRMbM5ffo0gWEz8KpdFw93eLXly3ye8RZfxSRS\nqPFAXVDE4OdbU87gyXXTDZo8Vg9Pr6pcVH9B/3H9HM6DIGhQuzs/yr7jgpxyNFuyPsF6yYPBfVsh\nCAKnTv/Oqu8+p5axNssmz6Jm/broNGp6dWlNVa/KVPGuRGp6Cr179iFg+nS86tbFQ+VOj9ETSNi6\nmfpnL1GlRk1mZWQBKkKnz6RLtz7Ky07o9JlERYTfl6HktDnT6dC/hzJLmTZnOtHzIkolmz8z8Z8n\nyS6th/7KAtF/E/6OGc04wAg8brPZTgCoVKpvgV+A8dhJpDRE22y2y7d/oVKpPgJOAGOBuX/C/v6/\nwfjJk0pyNMXhk4xPNtFl2MsIghqNh4pFMc5Gfrcn/kuD0Whk0R1FdCGhk4tJpqQgsPcEb7ZlbqbX\ni41xv3KNY8np2DzKYDorUrZCdZfV5g2aNOHMjXO81LwFH+zYhccFkZn92qHTPEfK5qOMaDQYrdpO\nIlq1wOQmPUk4/jaqcoKyjur6Oi792NyLSnKVgqDFrbAAjVZH5See5MUx/dm4MBZLsUOyRZLZkbGa\n4c+2ZMc3Hyokc+vYxvoPImNeNvt3fYKnoRrd2/hjMl1lU2Qyb4S1VAbrjZEH8ci1b1eSLSzbsB/v\nTn1468iHWC0yP539naHjxlGreMaWlp5OZETJgCmKItOj4hkQGoNGq8Mimdm3LIlO/Xvx5d4PGfvG\nSEXxlrP5LWaFz+fYR19w1WTl+uWbSsHrLciyhQJLCfHdfk0jZqQ4qM401sr069sBQRC4cOkiez57\nl/ELRihkuzFrO+3b20nGfk4FLly8QNiiWPpHzFVmPPvSsunQuy/it19yKd/E8DFDyL0uERA0w8EU\nsku3PqSmprNo0d1nASkZaQrJ2K+HQIf+PUjJSCMu+sH6wTwM6LUCsiw5WQ/9lQWi/yb8HUTTAzh6\ni2QAbDabqFKpPgR6cReiuZNkir87pVKpLmEPpf2rYaxnZGZaLOOHDsfLU4uboKLLsJfx8qqALFsR\ndGUf6vby5DyXBYH57m5s/ugbJkz0UQaV9ZvWUFiY77La3KbzoF/IdFb7h/Js9WoE9munuCq7FXko\nJHMLWrWAm6zi5NXjvP1xJG5WgReMbdkYno73zBJJ8u6EFfRo0bdkW7JEkXsZLJIZN3d7zsV7xhTW\nBYVj0KioptWiNtvY8tmXnJWvuDy2GhUrcfb3q1SuWglBo0XQ1KRDk0nsDH8bm4fMGVFkWH8fNqxb\nycLUDXhVqkiPNt3xqlSFZxo+wVvbNxI003Gw7dajO9HR0WRk2KW/SRnZ9Jg4DU1xPkaj1dFxRAAf\nrkujcl0vjp34nGuXr3L89xOUreJJVuoaBveegqDRUr/aq2RnJDFu4jAEQYMsW9iwcj2P1azl8hoa\njUZiI5LsHVDjY/jxzAms+3fRoVkr3v34EG9M7OlAtt7je5I+exm1ajbAzb2IV9s8z8nzF+k+M9Sh\nvURH33F8lL2CC+KvVK6mZUzQCLat3udSkGKWSjeFvNWo7OsfvqZpp1fvuB4CefLfYyjp7+vjlKPZ\nv20j0Qvn/y3780/H3+EM8Az2sNed+B57WOyBoFKpngKqAv/5L/frHwFjPSNZq5ZDRQ19B7dUSGbj\nlmP4+ATec/kHgV3d46hQkyULbvkFnL4pOQwqzz7dlNNnz7B6zxKl2vz3cyLxyxdgOXeGLX5z0FsF\nfhcvcM1UEh11K1OIZHUMR0hWmV9+P4V3WGs89Lm4qS+y68MkTFfN7F++jR1pa9ieupobJy/iWbac\nfb+KczTPtO/OvhUJvNSrE2AfFGvVfJIK+dXIt2jp3XsqvXsGUqGc0eWxnTTdQDLJ2FT5ynFUrlST\nvh0m0615EHWqPIVn2fJULW+k7+uhXLqaRzmDneBPnT3Nrz//xP7V69i6YhWXLlwE7IPtT9/9R6le\nz5WsCsncgkarI78QvLy88Jnky003E4PDBuPuoVVIBqBW9fp0aRFASmwmm5atY+/aTbzxUhOqVK9O\naRBFkZDwGTTu15Zxi0Jp6dOPTR/tRy6UXZNtLSO9+0yiU8fxbFt7mKo1a7kUTuTbCsm9eYMBw/sj\naDWo3G1KTx7lnMoyujuO9fb9musfRrtyTahRpiLyHWEpWZLRC66XfdgQRZHgkFAmTAwgOCQUgOiF\n8/nh0yMc2beDHz498kgI8F/gL6+jUalUFiDOZrNNv+P7BcA0m82mdr2ky3W5A+8BTwBP2Gy2G6X8\n7l9TR3MLoiiSnp6IbM5F0JXFxyfwoT8EoijelqOxh1ZWJa2lYbX62DwEWrRoqZDNunWbef6Fvhx+\nfy0nT/xI9QYN8Lh2hUFt27Pto6/p37nEjn7D7hTGtK1NzUrlOHPlBit2/IDfq4OVHE3yZ1u4oDOh\nLSwkoPsgJe8R+/YKms2bQsWa1bl65hw7pkdQRuWGzeaGJd+KTdBS69mnaNa3K5VqVgPs6qkPwzdh\nM1kZ0GsIgkbLpatneef9VeSpLjHGf5BybMuyNtBqUF/UgsA7SzaitVXgje4Byn5v3JJIx47t2b5z\nI4JOj0FTnusXr+GhhnOXz1DTw8acbr2VIsbED9+j5YB+lC3nyb5la6n5ZEMik+IJmjadGq16OZCN\nRTKzYt4kWr7yLL+d/AV9hbI8+/LzvLf2E3wGOXdm3LBlLlP6t0SyWFl16BizFyWVev0nh02hfteX\nnVoLr5wew8T5I51qkLZnH6V3bx/772SJlWui6DZrmpMqbe3UmWjcLITMt1vNXDx/md0bDtPPe5iS\no9m9a0upOZrQgBDalWuCVi1w7volVv28h57jByo5mv3rdyg5mluuF3lSHnqtHj8fv4d2v4uiyLTQ\nuXTsMlCZvezbvZboqIfTguCfin90weZDJppMYCTQ1Wazlepr/m8kmj8KURTt4oA8C3q9syWNKIok\nJ+dgysvHoPegb98ubN25+TYb+kkYjUaOHDnC1MlTqVm9Ju4e7lzLlRk0eC4Ay5aEce3GOaKHj2bN\n/kN0aTveKZy290AsQT1fxGyx4rtkFw2NjfAoVFGkduPVLq9T1rMce9asZnzXEtNNyWIh/dujPDug\nF19lrGBkD3vSecWWdXQb04WbN3LZtuMoHXwnKLmEg2lLuPr1FWp5GRnUZxSXrp5l37GlDBnWiRs3\nTex99whnzl3i2UZNGTxwKElLM2g3pBenfj7O3sw1FFjcUAue5OdbqVKpAhdzLzAweDg16tXCIsks\nnZeNW5GemuXLM+W5Z5wkvwnffIIlv5BhjV7j/SsniF+ajSiKBM1ZyKv9xyg5mg1xc6hVzUb/Ma0V\n4suK3Y6HtQ4Duwc6nb+UxcE0bVyHKtWrM2HS3V8yxk32o36b5/hk2x7cCvIpKuPBy706syF2CWUN\nHoyY+qayzQ0Zu2nfaiSVq9RQlt++KZUL1pt0DwlUzuvWqEV0a9SEHR/uwS/URyGri+cvc2DnB5iu\nSDR+tvFdVWeBI31447G2yudz1y+x8z+HOVtwlSZNn1NUZ6IoEjorlC7eXUoIbONuohZEPRQiCA4J\n5eln2zrlY/7z7UHiFpXeNvrfjn96weY1oIKL7ysW/+2+oFKpooAxwLC7kcwtzJ07V/n/Nm3a0KZN\nm/vd1L8GoigyJXQhTV7swvEvtmO7ITFg6CDiImNo0aJFcVvmKNq2n4hGo8NiMZOUlEFsbKgTGWUm\nZjB5WICStE5Zmc7Zs8dRqzXkXrlJw0pGtBoNhTZ3lwKBX6/kE7BkJ4VuKjwM5ek7apjT/uZZrax4\nZxM2WyEqlTsdX2lNGdnKl2u3MKqYZAA6tWzHhuwt9BvXh149mrE/K4Mzpy/jYXOnQLIwYOww1i1Z\niWyROPzZVoYM64QgaBAEDcMG9UKWLRz79IRi0R8eHcGF734gfuBQZTaVsfcAuRoBv9nBDnb9VevU\noGsHXz54O8llEePN02cZ274vFfQGNFa7w7HRaCR47HDmzgrDHRWF2HiiThW6DW/ikC8ZP6UnOVHv\nk74sGGONekiWAgrcNFw3XaVG1bqU0ZYnKv5u2hk7imQrH61Yx+iB7ZS8zpIV66hU1guNmztHN3+N\nqgx8dOQYA9+c5kAyFlni8tVLRM6dxeTQUKrXroXaBsNbtuHQsWN4ljPw9vL1SvjMs1xZ3FGRnZVZ\nqqdeeloSkjmPH8WfeL5sA+pVrQ1A9fJVGPJid9678TVRtwkAUtNTFZKBYpGBdxdS01Ndil8eFHl5\nkkuFmdn8v6UwO3ToEIcOHfpT1v13EM332PM0d+Jp7jPPolKpZgBTAD+bzbbmfpa5nWj+V5Gcmk2T\nF7vw0WdL6e9fEg6bu2gmcwlnxtxwDBVqsufdLF57pR+VK9eibfuJJCfnEB9f0tI2LTmN3sWNucDu\nPOw/1IeI7EjqGCvSsI4XZSwGJIsFd1WhS4HAFclEt6kR/PLeTjzM1zn9+yk+PvYBNgpR4c4TDZ+h\nMO8iI3p1Vrpdpm/ZyYmzV6lYoQJCh5IwkFflqvRp3ZXUBW9RvUF9pDwV7jYN/abO5PDKpWg0Gqrp\ny7BpRyplPN0dFFtglwebJRNgJ4EqGj1DuvdU/NG0Gg0TO7Vnxvr1Tnb9Kpu9hcE1SXJZxKjz0FJB\nb2DF54eZlWIfFEVRJCcxicl9vRUiS1i7kpvXGziEsW5ez8NNkpk5dhzXTbmsO3SU7v2DlL46G1Yt\ndFlQeScKzXkKydw63tED2xGftIPZEbFs27ERSTah06vZvX81QwYGK3VXm7ZlUr2+Fy1atGD9qlWk\np6Qg5Zk5fvECUfF2eXFEzHwWJyxDIwg8ZmxIbER8qSQza3owfXu2QhA0tGv5DJnZGxjcqC/1qtZG\nssqs+fId5qY4hgrzJNeuF3cTGTwI9HqtS4WZTve/pTC78wV83rx5pf/4AfF3EM12IFalUhlvFVmq\nVCoj8Bow9V4Lq1SqScACIMxms/35Dn5/A+wutVmYZBmDIDDJZ/xDCRHk5Vk4/sV2+vu3J/eaiXeW\n74OiIjzURYTMncPg4BAlNLIjJ4f2zcdSuXIt8vIcpbOSyexkpS9oBDz1akYNa82GNcd4zdiFJdtW\n063lS6zfk+mQo8naloTOWJNq9RpA++7sz4jh4q71jJlUUtOSHb8U/87N0Rar07QaNT59WjE9czN1\ntWWdXBDKGTypUe8pWvcfxero2QyaMQ+NVovN3Z0j7+xkauc+XMszEffuFpfyYJ22pJ+KbMp12bhN\nV8YDiyQ7kI1NVYBFlrhw5TQph/fh37qjkqNJObyPn66dZc+1E8xKWaRcw4zkZAa0butAZIM7dmXx\nwk0YjTVBsNHqjaYc2Pg5fgOGI2gE9ux/l279Q9AUJ8c1go5+Q2aQnJJDfFzpfe1FUeR38TiC8Lzj\n9RI0GI11yFgcR683myNoNbTq8jhvLdnD2+8kodOUBbWNZkNbcPPTU0Bxw7O4OKf1l1NX4VljWbQG\nAd/A0r2/0tOSFJK5tQ8TxvUjPWszzxifQfDUMTcl0ml5vVbv0vWiNJHBg8Lfb0KpOZpHeDj4O4gm\nB/AFtqlUqlnF380HTgLZt36kUqnqAMeBuTabLbz4uzeBBGA3cEilUr1y23pv2my2H/6C/f9TIYoi\nwbMX0Np7mPJWGTx7AXHzZ/3XZKPXa7Bevk7uNRPvrjnAkJGvI2jVLMs5TNdgPwf5ao+xQ9m/ZAOd\nXx+PXu+h7FtqRgrf/fgtbRq3crLStxZYEAQ1Hbo1YtuqDXR4ejDvfrSbIslCeGYItevVR1+hLF0G\nd2fr+vXsjJvHtSsXqV2vLv0HtnYIG42bPIo9b63H57YmXFqNGr1ewFxUxIZ3dtKva4kLwuK1qylf\nuy6/v/8OTz/1pHIsL3XtyeFF0Wiba9CqNQS/3ofVy7fz5vCeShgpe8kG6j7WQJkdFKhULhu3eXgY\nWBKeThVjbWxuHqiK8jFfvcLeHTlUMAj06diGxR9+AIVF4O5Gn45tuHrgAJFJ8Q7XQTaZHNZ9/vIV\n9hz8iHk9/JT6qMz09Zy8cgGhrf0c5+OukMwtaAQdJrP1rtc8PSmdKobqLsn1zPmzjJvcw+G8jxzd\nmVUbP6ZbwBtYzDKHF28nbkZEyfVPzsRsktEZBHr37U7Gohx6N3tTeYmYETiHhYmuXZ8lc57L2eST\nTz9BYlp6qcfg5+NXao7mYcBoNBIdNZeU1EzMZhmdTvifFwI8bPzlRGOz2cwqlaoddsJYQYkFTZDN\nZrt9Lqy67d8tdCr+b+fif7fjMNDuT9npvxDJ6VkKyYDdiLK19zCS07OIj3FWHz0IJvmNo3uf7hza\nIikkA2BTqV3KVwtVFg4esOdoRFEkbM5UuvVrz2ONq7Ny1UqGdhuq5GjW7FyFV1VPZNlKNa8K9Bry\nFPt3raNA487PosiIED9q1amtrH+Mny87Nu1AL9TG3S3fpczWgmMeUrJYuWqWyFyXBUBaSiqSOQ+t\nTk/m4hxlYAgKDVO8uypWr4FQs6biqFCjQiUGN2rDlqW7+eX6eWo+UYU+E1vjWUHP9AWBRMxKxFro\nRsbu/Uzs0qEkR7N7Pxdzr1H5mYa0HFFip//BkiUEjxtLwMRxlDcYGNnT0YZGKih0ug6CweBAZPuO\nfMjYtm84eNhNaNGf+TuXKC2hPSjEIpsdyMYimzHo1PYZcEoOJlM+BoMHk/zHKudCyjXT6cXurFi2\nlmEj2irkmpm9C2O9eq7P+4VrfL58Pwa1jrgZJaqvsJB5dG09SCGV+TNj6P1KXwcniN7N3iQtMYPY\nRGffMa1O75LwimwQGBaGySJj0AgEjnecwRuNRqIWRJGanopZMqPT6h6aEOD2bfwvJ/7/bPwtXmc2\nm+000O8evzkJuN/x3UjsKrN/LUyy7LI3ukm2lLKEI0q8pmT0OsFB9WM0GnmmQSPOnfpFIRmAMm4F\nLk0VTx3/lowke7w9ZFow3frZ8zqCVkPnIW1Yt30tN86bMEsmur/+Gl989T3xMZvJtxVQqXpF9Do1\npy9epFrD2g4kA/YYO0WFuLupKSwqRJYsTjLbH377HcliVXI0Eat3Ua2mkYzkZCZOmoSvvx/x2Yu5\nbLESn72YyePGYDQaCZgwnslzF/DawOFotFqe6+NNTEYqU7t6o1VrqKA3cD03jwGBHahdv5qyze7D\nmpGWlYjaTU3XlgN56+BusOWDyoOuLQeSc2Q1bcePd5j5tRw9mo27dvHEs42I3biBKd79SuTYGzdQ\nra7R6RpNnDSJOSFTlPBZYX6Rg60Q2Mmmfh0jGw/txbtNJzo3f4V16xcp4TOLbObQ3iwGeHfgzX7D\nqe5VD9y11GrWi5CpUSyKsQs4tGV1lNOXo8cLA9mwfDc2t3yKCtyoU6sRnuW1Ls9746efIzbaUWSQ\nmpypkAwU2wu94c8776xhULWSYxQ0WiST6yS6j2+AQ45Gli28vfk9rqoE2g0crJB3YPgCEmfOciKb\neyX+xRMi6fGZyDdkhHICPpMnPFDzNVEUSc1KxGwxodMY8Bt/dzWfKIokZ2RikmQMWoFJEyc8mgWV\ngkfuzf/PYBBc90Y33BFycAVRFAkNm02nbiXVzKFhs4mKLCk0q12nDmb5JrJkVcimY5dGbHwrg24j\nJyoP+67FSxnbfxjpKRnUqlULs2RyGJCqVKvMm+N68962jxnUfyhRM2fh07e/Msgu3b2dV1q14/ru\n98Bd4zLGjps7Ldt2Yu3KLNYu287AET1vk9mup8/jL+OfvJaK5co5bpIEAAAgAElEQVRx9eYNBnXv\nxYvPPIVksRDs48ONil409w2hSrEJ5YCAEJ7SCnhVr8bkMSPZtHMXJtmCQdAQtiiSXRs2YcnNQ1NW\nT7knqzmQDNjf5s0WE3pDRWSrhfwyGgrcNJQpAtlqoYxB53Lmd/n6dS6dPImHWyEhi7OpWM4TS2EB\nPfu34pTobN1nNBqZtyiWRRGR/PCf/yDlWV162P166jciE+PZvnkrkimPOrUMfPPJclCpMejUBPoP\nJXxmOFOG+Sgzy+U7l/Jim1Ekp+QwyX8sN/NNJOxOpZq+Kl1f6EI5fTk2f7SFsFlhAMyYG6TkaGTJ\nwrZ1H7NwrnN3TrNJdqkeLChynLHJFgmtwXUS3Wg0siAiTlGdaXV6dJVr8tzAAQ7k3Wz4MBKzskiM\nvP8ZvHhCZLbvPLyfHoJQy96UbLbvPOanzbkvshFFkenhQXQb3kw5F9PDg4iYmVCqsCF4zjxa9x+k\nPDPBc+YRN2/OI7JxgUeNz/6fwVWO5vDGFfeVowkJmcozz7VwUs98/9URxWtKFEUC/AJBk8uQCW0R\ntGpkyUpW/HauXimkjvFxPFRuvN68DV6VqyLLMp//8Bm2MkU81/Jxp7ffrz74Gfd8G62NDZ1yGis/\nfJdu/Xqwbu1WbDYVbwwerMTYN65aS/uu/cAGu99exeXz57DYzBjK6XArhNqGigx/oRUV9Hr812QR\nPtnPYf1pu/bzdPBcJ1v9ryLmMK5tdzYc2cO4yX5s3LkLk8WKQaMmcEJJSGZKWCBNO1dzOp4v95yn\nVzdvZs5ayJDRAQphr1qSRLU6VWk6apTTzG9raCiJ3TooIoDkwwfpMKQNnuUNHP3wHDExpUuQRVFk\nYUQUpz7/lqk9RqJVaxAvniH9wGpq1qrMdbOVrOWrXV77qZOn8Eq9F51yZavePYRgKKKwTC4d+/dE\noxWwSDJrUpfSsEY9wmaFOfiupWUkIskmtIIB34mu3+JDJofSpF57hWwuXTnHe0e2c+b8b9SpXI8O\nL3ennL48W4+uKzVH4wpjJgfxzKCBTt8fzcymVrnKmE0WdAYN/v53ny1M9Q+lhaaDU5vlI5b9xKTc\nOyQWEhZI067Vne+Hd86xKNL5+k2eFoqxVXune0F8/wDx0f+OENw/vY7mEe4Co9FI3PziPiXFb+P3\nKwTIM5fiOHtbPYDRaCQpNZGIhZGkRe7GQ6PCKudTuaIXly5cQlWkwUbRbcsLmPPMTAmdouRolLbB\nGw4QOS+GiNlz0D7RyGG7Wo0GVUERgiCgUatp1bEzuzZvobCggJ9++IEe3sPYu2MzRZeu49t7gvJG\n/tZ7K2k5sidly3uSk7GMsY+/TDmNlps3c9FWKRkECtWCA8mAvVHYRYsZrUag1dMvEhYTR7fAKSUh\nmfnhJM6eidFoxHd8INMXBNJ9WMkb7M4VR4mYlUhKaoZCMrfO4ZDRAXz24U6OrlhBs2HDSmZ+cXFM\nfe0lRdasU6uZ1Lotqds/wqYrS/gC59nBndc7JzuTYcMG8da3O8m7nkeBdI3okb2VkGH4ZD9mxqc6\n3QPmUtR/FEqcu3CGIUGjHWp+BvmN4of3P3cKSd0eJhNFkeBpIVy9fhXx+ElqVDFSrXpV+vTtTlri\nErq2HkSu6Tp7Dq5hyBsDleu2ZO0S6tav90AkA2DQCE5h2/PHT3D5xCU6DRis5INGj/BDyj1P+fIV\nMDZowNSwaQ7bkW/ICLXuuPfVWuRL9xdyNltMLvNVksXk8vcmSXbdLE7+36q9uV88Ipr/hzAajX8o\n8a/XleI4e0c9gNFoJDsnS/ksiiLBMyIYGTqrpEZjRTxCoYxa0HLtht3LNHJejL0HiGRCpzUQOS+m\nOFF8CulFZ5WWrYwbsixTZIPKVb3o2rcvG1eto23nN/no/cNUKluREb3fdKjHGdluKKu2b6L7+EF0\nnTiC9UnLqO9Vna17DtC7c3u8qthdhd2tsstGYQV5uZy/eomsA9t4Y2G0MhjkXb+GuUDFSJ9Anmv0\nFAE+44mYlUjabTH5iFmJGI3GUgkblTsJs2aRmJWFyWLBoNHwpKChQdWqDr/VqdXkXpZJXL74vgdd\nL69qvPRSQ3Zu2Mn45l0cZN0jWzQlKymeyIRkx+0YdIpYQLneFplzF07wZNMGTjU/mnuYVIqiyLS5\noXR8s4tiA7M5ZytNKncgJfkt/ANHs3XzTj499gm+wyY4XLfRA0fz6c+fPnDYKHD8eALDF9BseAl5\nH0jKwGf4HId80OBBwWzdlMT4N4cgW2RCg6YQlWAv6kzJTuKb377m9ao9nGY0gue9Q84AOo3BZb5K\nqzG4/L1B60yQFknCUBweFkWRzJR4LHk30eg9meA/+X86pPYodPYPhiiKZCSmIpnMaA06enj3JjUt\n2yFHs3fXRoccjSsETZlO3Zd6Oyma3lufzoABI5BliXe2ryIudqHL9QwfMAzp8hVG9OrukKNp0aMd\nHx4+RvnylSgoKuL773+k50AfPv3oPTr2GcLBNUsZ3WaA0/qWHFlFN//BACydFUlQ606UN5Rl2fv7\nGOHdG8liIXr5MvIq1aTrjEilUdiR5IUI58/j7ulJoacnL/YZwDfb12K9foXrJjfe9AlTwpHvrc8h\nKark7VsURRIzs8mVrfz23bcMGRHkRNg/fHWQuEWOaqrpAQG85GFj5zci+TYBD5VM98ZGPs1XEZGU\n9EDXcsaMKbiZbhDUsaXT3xcf/Q/amjXJk83oBR3+E/wAmBkygz6te5a0Fdj0FjPDZ7JlxzaeavWC\nk7/ZD+9/XqrtfvC0EKo+XZ2PjnxKoQrcbfBqi5f4ZOd3dO0wgv/8tIe4uEj8xvvRsXlHp+X3fbyP\n1KzU+z7m24/9dvK+ce46HdoOd/pd2uIwRvfsZw/pWmQOfPkhV4ou0nF0K0zXTByM/ZxRz/vaZzJW\niY3/WfVf5Wh2LT/6QDmaw+vXEDdvDgDzp/kxpGMTtIIaSbayat/XzI52npX+f8aj0NkjIIoic4LC\n6NesK1qNgGSRyYlLwy/Yl61btyuqs3uRDECeZHVZo4Gb/fYQBC1dew4hKnoRmRnOA4lX9Wo0rNuc\ndbsPY8k3c+bqBcpVqMiOjbtZsnQpAClZKTz93GO8u3MxBflqNIKWojJlXL6R29T2e9siyVTTlaV6\nJfss5tz1K2Tu38zJE2fo6t+CdxZ/zDdpcykqI+BWIKO+eBGNR1m6jhnG+uWr+XZlPH79XiJz/QU6\n+8xxkIy36z+WmXPDqVy9KucuXebMxSt08wuljlZHped/ZcVbyQwbOanEIn7XOqIj5zode9d+/Zgd\nEsOQPvMQNDpki5mULXOYv+ietccOMBqNLFwYy/jhgxWl3S1IFivf/PIzI4Z2U/ItU+eGETM3kvBF\nC0lPTsNsMqMz6MhcZrd+qVWrFlPnTHfI0exbv52YeaX3Jjp/8TxfnT/O68Gj0Oi0WMwS++KW4iEX\nIWi0mPPsYSitQevyumkN2tJWfc9jT4yMtKu+FidwJvd7NuxOoPFjbfn168OUKZCwuHngWU3F/s/3\nM6TTYASNwPHjv9FvQTcEnQZBp6HtlBdYviIF6fcCGjVtdN8kcwsVy1RiTfguJKuVBk89XSrJ3Nrn\nuHlz7Kqz4sLqW0KA0OBJCskAaAU1Qzo2ITMlnqi4ZJfr+7fjEdH8Q5GRmKqQDIBWI9CvWVd2bNzK\nosR7+z+JokhqWhpms5mffvyNp1s512i4qUpmgYKg5bffRJfr8gn0YVbgTLxb9VPerDce28KCxHAA\npoZP4/URHZQBLydsGRZZ4pVOPVi2YTUj2g90ytFYJJldmcsY+fJrgD0Ul4dMuUpFDBnTDc+Kep5v\n/CIGtSeSZKKoUEuRpgI/nxbRaAV0yPj2ewmtoObi9SKXkvEffvqVvqPG8Z+Vy+nmF6q4KVer14Bm\nw8ezalkCTz7+JHqdQHSkcwGf3VJlIUP7RCBo7MsKGh1D+sxjy8aNtGjRotRzn56WiCSZ0GoN+Pja\nE/BGo5Gs5asJn+zHyBZNS3I0b++ih+9Qh3xLx0HdSMlMJS5qETHxzjMUo9FIzLwIe2vk4llQTCnd\nKm/h1IULdI0KQKMrJmSdlteDR7HBLwbZIqHT28NKvv6+zJg6g17teynXbduBbSyMcXQoEEWRtPQk\nJCkXrbYsvj4BpW5fFEVCo/3p4teUl3Qdkc1WloVlM7XeizSsWg+z1UrkR6cwlbW/hMgWGSlfQtCV\nhLoq16xE37DOHFn+BTFx95+QF0WROaEBvNn5FbRtnkSSrazbc+yeyxmNRpeJf0veTbRCJYfvtIIa\ni/nmfe/Tvw2PiOYfCslkVkjmFrQaAcl0b/8nURQJmz6dbj3tlfUNn3ycDdkL6TduhpKj2bUqmW6d\nuyvLyLKERXbdZdtoNLIgMZz0xHQljLcg0W4NHxwWrJAM2AfJvpN6sHFJPN6jJvNqv8Ese2cLl08d\np0IVd1Rl3TiydQPnfjtPYPvuVK9YCcliYdH2t3lj+uvUamhvrbw781OiQpOdBq7gaVOxSDI6tUp5\noyzIM7mUjFNYhFqrw1ZU5NQfplq9BjRo9CyZpZC2KIqEzZxO+fJVFJK5BUGjw2wqqdgXT9ibe1lu\n5iFTyHXpLG96l9SSzJoRxIKFCQrZzIxPJT5iAT9/8x2Vy9VAVbEmNeo51iHdK99y67rcrTulKIpk\nJSRizTWhLmvAq1YNhWSU7ei0VKpeg33vriA6Zpay3oUxC0lLSUMySWgNWhbGOIZVRVFk5qwgenu/\nqhznzFlBhC9wPUtIXZxAF7+mSstsQadmRGR3tk4/xJSqLdCp1YS92hLf7XtYtWkNF69cAvcizvx6\njpoNSnrxyGYLOo3+ruflTmSkJtpJ5rYZyJudXyEjNZHoRfc2Lb0TGr0nkmxV1gcgyVY0Os8HXte/\nBY+I5h8KrUGHZJEdyEayyGgN9/Z/Sk1LU0gGoHbt2nj3asfiKF/qNnma33/8lUracpS9ranYpnVL\nefKJhqWu02g0EpPo3K7XZMlDoxW4dPYyH2w7RlGBO25lCilXTsVvn+7hzPkL/Pbb1xh07ugqV6FL\n1+fxqlaBi+evsWvLx1w4JOFZtT6Stgq/7r/Bb4euoVOXJSrUHoIIDQpCzstD0OuZEBCA/0Qfps6e\nSaGtjPKw16mgZm9OMp3GTlJyNHtzkqlQwz5AqdzcsEhmp/4wBqH0jhWpaal06d2N7W/vQbaYHchG\ntpjRGezLiidE5vuFMqRxJ7QVBDI/WsOb4xz9vrx7N2fEsGG88GIL/CfZ2zYIukqM6xuKoBFYeXCl\nk8ea5b9sCiaKIuGTAhn1YjO01e22N5P3HcVilhzIxmKWkG9eJTrDsRLfaDQSG1c6iaWlJykkc+s4\ne3u/Slp6ErExzkq8POtNBF0Vh+8EnRrrbe9SOrUaTaGNgR26K+HitMTltA9sQ80G1ZHNFvYteZ/o\nGXE8COS8XLSCY4dSraBGzst9oPXcwgT/yUz1G4XBZsPNVoYiVQEmlYqY1KV/aH3/Bjwimr8IotK4\nyYxeq/uvGzdNDPRzytFsOPoO8xLurVYzm81Obri1a9emhldFOk/oiOlac/YlbGPnpjW4ubtRVFiE\nu6qI6TNCH3g/DRo9Z46f4dCGL+k6KEAZ6Ldkx9C3VzdSstMJWjhVUTltWr6SN/o2pVw5PaaiMnQc\nPItKVWpikc38+t1WJvmOIyUxh3kz4vjph6+Y0K0t9R5/HMliYW5wMHPj4oiZH87CqEiSlr3HgG4v\nYNWUQRZP8klGEoVqNe5WKzdPH6fZXPsb+ovde7H3rTQ6jfRV+sMcW5ND4tzppR6XWbKfwzadX2Pz\n23H0bR+s5Gj2Hs0iOsF+rjITUu0kc6tdtRqXfl9Vq9Tkycd6MzUkgphF05FMkpID6dikI5syNtB7\nYr+SfMuaXcTMLf1ai6JIemoSstmEoDPg4+cYtspKSLSTzG22N1Nebk3i/Ay6zp6o5GiOpW9gZUa2\ny7BhWkoqZrMZnU6Hr7/j/SxJuS6PUyp2yRZFkcScdEz5EgYPLVjdkM1WZUYDIJutqG9TC5utVmrV\nqOsQLvZ9YzjJKSto+Pzj6DR6omfE3ddzJYoiqSnpmPNkfvpJpOljFTHW8irZf9mKoP/jrdG1hQZG\nvdxW8a7L+eTgH17XvwGPVGd/AURRJHRWGF28u95mCvgOUQucnWofdL23q84mBt4feYVMmcJzLzR1\nqtT/8P0PuJR/g9ZjumG6lstH6w5y/eQVGj3xJNNCQ0pV36Qll4TMfCf5OIVQvIcNZcjkGKfQ1Za0\neQybNAzhtjd1WZJJmRdN/QZNafbaQCpVqan87cDOZCzXiuj2mr8yqG/bH83gdk9TvbI9xPbeyZNE\nJdjfmI8c+YBZ4Yt4Y3QwphvX+GTHRm6cOkFNnY5XGzzBsgsn6DF9NmqtjgsnfuOdhFiaNnmOKuU9\nCZww7q7nMmRKCI1fsZ/DixcucWjPhxRaVJw48SOpGXG0aGFXjgWNmEj/uq2U5XKOvk2vMa9yp9/X\nyjU/0LNbMBaLmR9/24qUe4PXG76ukM2Fqxd454s9XC+6RuNnn8V/QunXWhRFZodNxrvba0rYauOu\nD5kfWWLfHzxqDEMed+7Wkf7FUfQNjQoBBI51dmMWRZEZ08Lo2ambcj9v37uLhdEl9/OUqUG88loN\np+M89uFZfH0CCIqaRfOJb6DRCVjMMgdillNWJ9Ej8GUEnRrZbGXFjHcIqf08DatWxmy1Mn/fIXr3\nGIpXZceZz44vPiA5+/6N3EVRJGzabLp0LFFnLluZwrDuz2Gs5aXkaOZFld619G4ICwiiW/k6Tk4P\nu66fIjLp7nVV/5/wj+6w+Xfg7yaakKkhPPtaE6eB/dsPv34ojZseFHfmaGRZZtf2nfj6+LB6xWK+\nP/ELHnodj9VtwPSgaXcd0GaEzKRXmz4lSeFDW1i4yLF179Cxvrz6xlin5dcmzmJ8iLN1XeLsWEaO\nS8J08xofH9yCqrCQAuDs6R/x8U51ClMdOhLO2B52P9VNX35JYrbdBHzylDDqv9zFieA+W5JIwKvt\nOX7pHNGfv0f1x+rhUVSAzt2dFSsc2xuJokhKTjJ5VhN6tQH/sZOKa4fsOZouvUsG281rVtCre10O\nHT7NvHlpGI31CJ0UQkf9M8qM5tz1i6z5eTtDR3VSSOCtFYdp1WISlSvZSfW99zORTv9GYYEHg7qP\nVM7t+vffJio1Stl+dmICFtNNNAZPxgUGKed8akgQLZ6r5TTIH/nqND5+ASRmLObrIx+wsFMXp8Fw\nx5XzRCbdPS8xJTiEF595zul+/uz7r4iNK+m5c2eOZuvGjwhfkEBiTjo1+r+K5rb6LotZ5sec3VQs\nL2DOv4nOw5Penb3ZvX49+bk38SjryeU8mW6NmzuFi4+I3xOTcP/hspDgqTR+2tlBY/mqJBo9aUTQ\nl2Wi3x9vjT555FgGN2jq9P3qX78k/q2cP7TOvwOP5M3/MORJzqGqh9m46UFhNBqJjIhQVGc6nQ5f\nHx8Wp0cxsMdzDOxSH0m2snbHV3ddT1pyukIyYC/c69WmD2nJ6cTGl+RrKlco5zIZryrMR5ZkpxlN\nDb0XK3PmUFFbnsFdRinV4dlvx5Gbd9WBaASNjoIie7hFslgQ9CWJYJNkcak2s5ax3/b1q1Tn6QoV\n6de7PbJsYd/hz5kyeapig9+rb0+SVybQYVxrNDoNFrOFqZHBxITZwzOR4RGMHjOCylU0qD0KGfDG\nE1SrVo4B/TzJyIgnOjqFCUF+JTkatUB5nSduFh37Dv7C8eO/odXUdCAZi8XMKfEX5rXoyTWziW17\nVlKoUkFhARWNVRSSCQ/yZ3Tzpmg1VezKtCB/ZiakYDQa7eEyF2Gr61cvEzAnmlf6+/Jqk47ELYki\nuHUrJbyz9LOjzEy+d/L7woULbBF3UgS4Ae1atcarShXM5pL72Wg0Er4goVh1ZlfX3RICmPIlB5IB\n0OgE3HRqFoU71h7dmhlC8UwteBrerTop4eKN7+9lfpyzU/TdYM5zXZD7xJPPkJTx38uPNZ4Gl951\nGk/XxZ//C3D7u3fgfwF6rc5uInkbHmbjpj8Co9HIothY0tPSWBQby85t6xnY4zkH5c3AHs+RmRbv\ntKwoioQGB/L9Fx+zfd86Ll65oPxNcKF8C/AZxwebliiqNYss8cGmJSycM5M1aW8hS/ZzI0syW3PW\n0/fl3rhZ8hSSsa9Xy7gBwRz6ZJ3DumWLmTJuViSLhTUffMCEgADlbwatxkkpZ5El1AUFgP3ht3m4\n2UNX63dw7WIezzdoweuvdOf5Bi0IDgtRSAZAo9PQYVxrUnKSlXPY6Ok6TBjzAqOGv0y1anbxhFar\nRpbsUlZjPSOzU6PYl/c960++z76874lZkkJaeg4ZmUsp46GlrMHe2dxiMbP/4GLqV61ob2lQvhIT\nW3XFr2UX/Nr0QCh+XLMTE4pJpsQ9YHTzpmQn2sMygs6AfIfbtyxb+O3kaV7p70vejat8vWcVUsWy\nBL6zjSlbNrDjynlmJife8y1eFEXOXbhM154D8O4/nK49B7Bz/z5+P30anc7xfjYajcTGJJCakkNs\nTInazOChxXJHm2SLWbbnau4Co9HI/Lhojojfs+OLDzgifs/8uOgHnnno9HYHjdvxMDtqjg8KYNkX\nHyBZ7ddAslpY9sUHjA8KuMeS/148mtH8BbA3bnKdo/mzIYoiaWkltjG+vv4uH0zJfBOtUNnhO62g\nRjY7Km9EUWTe1EAGtX+Z7s/aq/RzNq+lY9uBVK3kVVy45zzgxC2YSVJ6NnmSBb1WQ9wCu+dYgxr1\n2Ze5HdTgXuCOd+PelNeXo6yhnEu34MtXTygqL9liZsXWObi7X+S9kyeZG+eYCJ7kO56QGQto03u4\nIkLYszSJiU83RbJaiD2wlbINa3Hsy1+oXq0erZp0cpid1ahdQyGZW9DoNORZS/yvBG05JMmK9ra2\nC5JkxWKFkICZ5N3MR+/pgd9keyV/amoG0THx6PVa/PwmErNoOinJ2eSZrJilG5y6/D0F10xIj7co\n9Y3YYrqJVuOYp9Bq1FhMdnLz8QtwmaOpXPtx8m5c5atNcYwY2EH5W07OJsYH3V+oKDU1naFDxikz\ndEEQ8O43jIz0WNa+fV9d1Qkc6+OUo/k4YxMJoQvuuazRaHQZJhNFkczEFCRTHlqDngmBru9zAD9/\nH6ccze59G4mMnn/XbYuiSFpiJmaThM6gxTfQtdGn0WhkZko8WQlJWG6a0HgamJniur31/woe5Wj+\nBIiiSEZyyU0/cZI/gEPjpvtRnYmiSEpqFiazjEEn4O/3YC2dRVFk+oyp9Oz1ujKobN/2LhELY5zW\nEzplEm2f93TS/h/84iZRsSXhhNDgQNo/XtXJ12z5ri/p2fFNlzma0vYtNSuRqzcu8eNXvzDitVHU\n9aqLbJXZeGwzhqrlaPlkLweykS0SiStmU8+rAag8wJaPVZVLQlbpb+KiKJKcloVJskBRPmXMZrQq\nN9RlDYyfXKLE8h03iddf6e6w7Np9b9FhanMHsrGYLfy4WSRuYXzx+k8wZ44vA/o9jVarRpKsLHnr\nC1Tmx+j+chCCWodsNbPzkwQsZa7R13tkiT3Q7vVEFdvgHDlyhLDYWQwMG47p2k0+jdvFpJd7KmGt\n5d8cZGbKIoz1jEwPDKBHjXJO7gE7zt4gIjFJOe47VWeJGYv5+fRZRvZ53il/88mx48TGOs9e74TP\nRH/atOnq9P2evZtZuvT+8w93qs4Cx/r84YFYFEXmBk5lYLOSRnVrj+5nbuItLz6RtNQ0zHlmdHod\nvn6+AHbVWXFHTT//u29fFEVmBM2lZ/OBSih3+8drWZjw7+3E+UgM8ID4K4lGFEVmh0ylX+uSm37D\n4f3MX+Q8uN9rPVPD5vN6l5J2Ae/uXkFM5Oz7Xs+UKcG88NITToPK55/+RGysc+/3udP9lPDZrRzN\n3AhHf6bA8aPxbv6007Yilm3lmeebO6nOSju2sPBAuo4q8ZVaGbOL6pr6eFX3wifQB4Dpk+fR/bWS\njo47P1yDz+TRbN+0TSkU9AnwfSgP+pTJU3m+QQsHW5VTZ0+y/avVvDm9r5Kj2Z99WMnRlBzPCTIy\n4pGlmwhaT25cdqdZrXEI6ttEC1Yz2z6Ppf/QoSXfyRLff/s+ixZF06ZLO/rPGabkLq6cucixlQe4\n+sM5mrVswfigSYqdimOOxu4esOTjL5Uczd3O+7BRw5gyeajT3/bu+ZTU1GwXSzkiJGQqjZ9trsxo\nLl28wIGDezGZbtC4cSOHRnt/FUIDg2lb7Umnl5+D539kQqA/Af4BaFXuuKtsFNpUSLZCklIeTFE2\nJTCUF2u0dXrx+ezsQWIT/x1tAe7EIzHA/2NkJKcoJAN2u/x+rTuQkZxCdPz9K2NSUrMUkrl88Swf\nHdyBrcDK6BFjWbIs574ekqvXrrhMCl+9dsXpt0ajkbkRqWSmxSObcxF0ZZ1IBkAwlHVoQwz2h7rx\nCy8QFedcsOkKqVmJCsmA3Y596NRufL3jPDGRJeuIiJ9DWlJJj/qIeLuXVGnWLv8NfCf5MH3KbHq0\n9VZUXse++YB5QeFs2bxZUZ3dSTIARmM9oqNTlM8TR05zIBkAQa3Dzebh+J2g5crVa/YPapVDgrxS\nzap0DR3Iypk5RCY7zjSMRiMzE1KIX7iAk7/+hKkgn/rPPlvqsYnFhqGXrt/gyqUrLtsp//jDjwRM\nGG1XXPmXHkbz8/MhLHQWXbr0JffmDXbv2caAfsOUkHBY6Cwioxb8pWQjmfIc7kewP3eyKY+IiAg8\nZJlR3booL37Zu3YTERFBdva9ifUWzCbJZSjXXEo30UdwxCOiecgo7aaXTHkPtB6TWVZI5vDO1Qzt\n0V8ZAGeEzGDhItdOyrfj+MlTLgeV4ydPufy90Wh0CJO5wgT/QCVHc+vBXXPgE+bcpbnXnTBbXff+\nMFsde38YjUZiE/7ct0V7CCeDXKuMvoYnB7/YhYe7Bp1eIEE9WT8AABuoSURBVCJ2/h8iNr2nB7LV\n7DSjKVLlO/xOliXEE6L9g9WGxSw7SX7JL30mfsF2g14LBpJ7LZfDm99n5Lg3earhs0ydMkO5N0RR\nJHBeOM2GjKauVkutlu3JyEhg4sQBSjg1M301Qzu1pF7NakiyhbnTApkb7TocaTQaiYxaQGpqOp98\n8iljR01yyNd07dyX1NR0pdHeXwGtQe/y5Ucw6Pnm02OE9vN2ePEb160LURs2PtA2dAb7rPrOGY2u\nlG6ij+CIR6qzh4xbN/3tkCwWtIYH818y6OwtnT86uEMhGbAnqXu37UVacto911G17mOsXL9LUSDZ\n1VW7qFr3sQfal9thNBqZE5PIgZ8vsvHj/3Dg54vMibm3Wul26NT23h+3Q5Ys6NR/rfxTFEUCo+bg\n5d2aZ8b0pv6IrlwsIzMlbDKx8Q8W6rwdfkFj2PNFCrLVrr6TrWaW757NjbzLitpJliU2vb2CmtXs\nHma+oyaSMSmZrbGb2ZGyhbO/nmZt5HLCZ7hOUKdkJdNpRFtyr+VycOV+BvdpTUjIm7Tv1ICZs4MQ\nRRGAxMxsmg0ZrfRNqVavPi+NCmLe/CyWZewgMXq5QjLnLl1l7Y6jWG66MWboGGUdd8JoNLJoUQyN\nnmnkWraf59oT78/ChEB/1h7dj2SxcO7qJbIObiDqwFvcKMoFW5HLF79bjeruF76BE9j+8VpkS/H1\nK87R+AZOeGjH8W/GoxnNQ8bESf6l5mgeBP5+45kaNh9bgdVlF0XJdO+HuXqVynh07MyqvTtxK7BS\nVEbN0/2Hkf/lZw+0L3fCaDQSFffgZoO34Dc+0ClH887So0TO/OPr/CNIzMnglfEDHNyKXxk/gMSc\nDBIXPlhtxu0wGo1EpUwjNWGxojqr0UBP06feYNeWzdgoQoUbbZr35tfTHyGKIhu37CBg8rySSvWU\nJAb268emXTtYvnk9Bo2WgPElVfq3OkJuzdjK8CEdHTzF+ng3Iz09kZiYREyyxakTZLV69an17MtI\nN/KoYiivkMz6nd8zoP0kJSc2I3AeCxPnlEq4Or0WWZadCjd1+j/WLuCPwmg0Mjcxhuj5C/nl8o8M\nndpXua9+EX/gxLlz1KteYrwpWSwYGzZ44G0sTJhbrDqzh3L/zUKAh41HRPOQYTQamb8oxkF19qBC\ngFvriYmczegRY/9w7w9798JwXh0xVmnO9MnypSTOnPmgh/VQYTQaiZyZSGpWImariQKpiAruNVgU\nGWu3sfF/OAn+eyHXKlPHhVuxyfrfx92NRiOLksKVz2MnjuO9o5vp39VHGcjXv5NOzToVSEnLoEPP\nfg6to7v3Hcjb+7fQO2SCcu0mh88hfqZdpabTGDh9/Cy5p6+6zMOZZXsY0iBoXHaCLOPmTtfh40mf\nH4QkW9h96FuFZMCef+j58hDSEjNLTXbfytd07dxXydG8s2czkVH3lik/bBiNRvReBoaO6ntH7q8v\nGVNWMG/AcOXFb8V77/F/7Z15eBRF+sc/rwkhk4CgsnhjyyoInrvecgheiBfgCcq1CkLCkShHQECI\nBjmCymUCRrzQBREV8EAQCQqrgro/3V1cWBVbUVFRFEgykwGs3x/VGZI5kpCZSSe79XmefpJUurq/\n091Tb1e9Ve+bM/vQF2ZalnVIjn/btsmfMxNf8d4qfV//7ZhZZ3UcHeZlHN07H8z9saxwebV8NGX1\nZ86fz95SP40bJpE56NCmSMcb27YZN/o+ul1xMEvk8jUrmDy98twpsSBzXBZH33xpSLTiH5e+E1WP\nJhyDM9Np1e5MNqzYgPILkqRof0N7Pl75Hl9/s51mxx2LqAQ6driaPzQ/hqUvLaTj4FtCDMT219aT\nMWgwD0/N4R8fb4QD0CvtWk48qVyofF8pGzfsYPr0mRV8NGUG663H87jqqhtp1vxY3lryOMn+XZTu\nOYyeV4wM0Z23YirznwlNx1CGbdvMnZvHrl2/Yn/zJce3bMbRzY5l6N33VPv+2U7Cs2L/HlKTDmfo\ngOrXLU/avQPpdEdo6JdVC96necNmFaJ8x/vZsm2bSVmZ9LzqAjzJDfH6Slm8elNE31ddxExvPkTq\ns6GBssCVB3N/DBleO2/8tcGoEaM4v/W5IT22D7d+XGkY+lhQ5qMpGz4rLfGycf4LzByTHfPrO2LM\nSE67/JwKof6/t79l1UtvcOuIvoGozMsfW0qXzjez5t2VXHPvnSHHWZ+3kNQ9P9P3yrMCU5unPvMG\n3fp14cSTjtULMPNWMG/e8xUmBPS5O43UPxxH4mEJdOjUlWbNj6XU5+WLTasYPmQwA/oMYGDXsSHO\n7odfzMbTNJG2bVqTNTp83Dvbthn70HCuHXhuICDm6wUfM+W+yAaqfN0x04Zx9dA/B+q+OffvTM2q\nfKp2OEaOvYczr21RYaKJz1vKB0v+TYqnycE02Gnx//5kjcikc9vmeMr1Nr2+Ugo/+4lpUQw71ybG\n0Bwi9d3Q/DczdNAQrrrkypDy1e+/xdx5VU94iJayWWdFfh+NkpLDRiuurG7ezHy8e714GntIz4xc\n17ZtRmeP5crbD6ZjfnzyY9yZMyQkz8zKvNf5/ttvuX1KVkiPZsWYB8nue3nIYs3MmS/QuqVFQ5VI\nytEnkL9gQcj5R417gM7d+wTWZRUuW0juZL0uy7ZtxmVmc8MFvQNDe/OXz+CGvldwQosTdODVZSuZ\nMnlqyGcceV8G5/Q4MiTE/yev7GLGQxVjlwUzcnwGZ/RqGlL3X4t+C4l7VhW2bTMm51669u8Q8NG8\nWlCIt+gwut/VK3Dd33phBdOzqzciUFMyBt/FjR1C15u9vOEzZuUvCFOj7lHv19GIyAnATOAKQIA1\nQKZSans16jYEcoA7gKbAJ0CWUmp9/BQb4oWnUUp4H1Rq1XHgbNtmZv4T7PX6aexJIjNtQI18YTUZ\nJrNtm/EZE7nxgltJPt6Dz+9lfMZEcmZV7A3Zts2cvHyKSrwc4TmKTS+/S0LDRFKTU2jbtk0FIwNO\n5sziXcx8aAqPPFVA+7/cEhjyWj37KZL3H6hgZECHnzmjtcVhpYkkJKWQNWFC2M+ZO/l+Zj82LxAG\nqMzIlP1/8syJ9Ot1N384sgXbd3xOr7tu4IQWOiFYcnIyF7Q7n34DBtG6zRmkepLISNfDsCX+vSSn\nHFPhfMkpSZT4q04cphOeNQ+pW7zv0NMeW5bF1PGPMHf+LEpKi0hp2IjE/akkNlS8sXA5kii0v6YT\nV952A3PyH6s0+2i0JKc2xusrDenRJKfUPMdNfabWpzeLiAcoBFoBfYDewKnAWud/VfEkcBcwHrgW\n2AGsEpGz4qPYEE+GDBvC8jUr8JU6gTUdH82QYUMqrWfbNhkTp9G8Yy/adE+jecdeZEycFnFKbqzJ\nm5mvjUyS4zxP8nDjBbeSN/NgXhTbthk9fiKtL+zIqX++mB079/Lvz75F+RIZNngoRzU5klJvUHBJ\nr4+z255J+/bteWR8NttfW88nzy1n+2vrOaXR0RydcjzeUn+FOt5SP5LUgJ37S7n/0fCpksHJcZ87\nlflzH+WR3NCeiWVZnHfJuXTpcSfHt2wRMDIAP/20kzfXfEiPIRP50zW9Oeni6xkxIQfbtklJaoyv\npKImX4mflKSqG9XUpMPD1k1tULO0x5ZlMWPKo+Q9UsDQQRn89ONuul3dm1t63MV1V/ZizQur2Lt7\nT5VpsKMlbVgmi1dvwussLSjz0aQNy4zreesqtT50JiIZwAyglVLqK6fMAj4HRimlIg5gisjZwP8B\n/ZVSzzplCcBmYItSqnuEemborA5j2zbTp0znyy+34fWX0qpNa8aPHVNp7yQzazzNO/YiqVwEbL+3\nhJ/eXcTMaTkR68WKYXcNp+tpoY/byi3LmbNAD/kMSh/KuZd3Zc/uPax55TW69xgSGLZ6e9WTZAzr\nz8MFs7hqYLeDmTMLlvNodm7Yz57Rfwjtmp7Nsn8tYtBtFwd8NLnPruK6nl3ZZhczPVdHcLZtm9kF\ncyjyl9AoKYXhAyMHmSyPbduMHp2Df98+br79ssDU5UWLV9Dh5iEhqR6+fv9VMtIHBXw0e38tpnDR\nR+z6uojTWp3NyDHjKj1vLH00wYwYmcXpZ3UIyTuz/M3nOOXEE+Pao4Fys86cSBv1bdZZfR86ux74\noMzIACilbBH5G9ANPaQWiRsAP7CkXN0DIrIYyBKRBkqpfRFrG+osO0tK6D40M9AQj5owidwHI69T\n2Ov1c0JQmoUkTwp7fbVz+z2N9XBZWY8GwOf34mmsG2bbttn8n61ccu2NbFj6UsDIgM6Jc3mXO1n4\n3GISvyth/dSl/J6cwGG+AyRWot9zeApNUprQ/YxePLtkJeqwfRzYn0BCchM2vPcZOYFAnzYjp2TR\n+e4ugejII6dkMWNs1SH1Lcti+vTxTJ48nacLnqP/wN4kJyezbz9hc/sUe/16uvp9s3koN5tvt25l\naO/rAzOtJo7JJHtq5JlWlmUxNWuOnnW2bw+pDQ6PiZEBKCnxhs07s2vHzwx7KP7xySzLqjeO/3jj\nRmSA04F/hSnfDIR6zyrSFvhKKRW80GEzkAQc2iosF1m3bp3bEkJwS9PsvHwuu6lnhYb4spt6Mjsv\nP6Kmxp4k/EGJ4/zeEhonNwi7fyxZt24d6ZlpvLxpCT6/s1Lc7+XlTUtIz0wDYPa8PJoe15xSnxd1\nIHwj/eUXX3P3pT1I73ATQ8/vTnqHm7j70h7Me3ROyDkBBt8zhEX/WEGTlCb0a9ef287twy9FJRxz\n8slcd/2tgcZ5dsGcgJEBnVSs891dmF0Q/rjBWJZFQUEeTzxewCeb/snaVe+w+5efw+b2SXXSI1iW\nxRGeJgEjA7B123Zuu/pC8udW3thalsWMnFnkT3uKGTk1S58cjpQUT9i8M0c0blTnehZ1sT2IJW4Y\nmiOBX8OU7wKOiKJu2f/rBXXxwXJLU7HXF+Ft2RdRU2baADYumRswNn5vCRuXzCUzbUC85bJu3Tos\nyyJnVjYf7HyXlVuW88HOdytMBCjyeWnXrQsvLXoapQ6EbaT3eYsq5JwB8CQ1xLc3fFw862SLSXMm\nU1j0ES/bqyks+oi5iwuY//gCtmzZEtivyF8SNoNlkf/Q/BKWZTEjdwZ5c/N45on5rH/5yYrJ615+\nkoz0QYH9fcV7Kzi/P/nsSzzJDfEVF4UcuzYYNjSNVStfrBD2Z9XKF2nZ0nJFT2XUxfYglpjIAAbX\nSfUkh031nOqJHLDQsixmZWfpWWe+fTRObsCs7PDrPOKFZVlMnxl+xlqjZA+NmjahU6/reXvxMp5f\nOIU7+oyt4KNp26pl2JS/yY0jx8WzTraYOrty30KjpJSwATobJdU8o6tllSWvm0+x10+qJymQvK6M\niDOtUt1JYWxZFtOmZDNnbj4lJV5SUjxMm5LN008/7Yqe/2XcMDS/Er7nEqm3Ely3RYS6cLBnY6hH\nDE9PY9SESYHhs1Kfl7UvLSb3wUmVNgqWZdWK478mDB+czsjsCVza+2ZuvWcQO776hgV5Y2nb6nSO\nOrIJudN0GKDs4aO5/fyrAgnO/vrhaibOji7y8fCBw0J8NIWPr2LG2OiiHViWxaPTI2eFTRuaycQx\nmdx29YV4khuyf/9+XnhzI9lT3fNTWJbFwzNiG+XBcOi4MevsbaCBUqpjUHkhgFKqcyV1JwDjgKbl\n/TQiMgnIAg4PNxlARMyUM4PBYDhE6vOssxVArohYSikbAtOb2wGjq6j7KpAN3AIsdOomALcCqyLN\nOIvVxTIYDAbDoeNGjyYFvZrfC5QtYX4ASAXOVkqVOPu1ALYBk5RSOeXqLwKuQhulr4B04BrgYqXU\np7X1OQwGg8FQPWp91pljSC4D/gM8i+6ZfAlcXmZkHKTcVp7+wFPAg8BrwPFAF2NkDAaDoY6ilKqX\nG3ACsBT4DdgNvAScWM26DYFc4HugBHgP6OCypoeAVcDPwO9AXzevE3Ae8AT6haAY+Bp4DrBc1NQC\nWAbYzn3bCawDurp574KOM8a5f+/Wgef89zDbAeAsN68V0Aa96Hqncx+3AMNceqYmRrhOvwMlLt67\nE4FnnO9dCbAV/XKd4qImy6n7K1AErAXOrVbdaES7tQEedMiaf6AjDVzv/P454KlG/efRM9TuBDo7\nF7skmi9gDDTtAd5B99YOEANDE40mtCF+Dz002RHoCXyGNoTHu6SpLVCADqh6qVN3hdModHfr3pU7\nTktgLzr+XtSGJgbP1O/ol4ULgrZkFzWd5zRwy9CRPi4FBqCD6rrxTB0X5vp0RkcgWeSSphT0C96X\n6FiQlwIj0W2UW5qOBL5z2oCb0XEmC9HtVusqzx3tl8GNDcgA9gEnlyuznLJKH1jgbIJ6DEAC+q1q\nmRuago7zx2B9Ll2nZmHKWqCN4CS3r1PQvfsGWO62JuBNIN/5AsbC0ESly3mOHohWRwyfKUFH8Vha\nVzRFOF4f5zm/2qXrdKVz/iuCyqegDWCNXhSi1DTeObdVriwF+AFYXNW53YgMEAvCxksDyuKlVUbY\neGnAYqCLiNQ0hkk0muJFjTUppX4OU/YNerjjeDc0hcO5d7uB/W5qEpHbgT8BY6PQEXNdcSAaTZ2B\n04BH6pCmcPQDfgRWu6SpLA/E7qDy3Wi/ek1n0Uaj6ULgc2f/srolwHrgOhGp1JbUV0NTF+OlRaMp\nXsRUk4i0AZqju8+uaRJNgogcLSL3o9NMVC+QVxw0iUhTdOM5Sin1WxQ6YqrLIU1EfCJSLCJvi0h7\nFzW1c36miMj7IuIXkR9FZJaIRA4DEV9NFXByZXUCnlNK/e6SpjXo4azpItJGRFJF5DJgOJCvlPJW\nXj0umg6gX9CDKUUPyf2xssr11dDUxXhp0WiKFzHT5KxXmgf8hM4J5Kam6eju/g5gBNBTKbXORU0z\ngK3KSV0RQ6LVtRDtY7scGOgcb62IdKy0Vvw0HYd+G1+MHma8ApiG9tE875KmYPo4GqO9lzXWpJQq\nBTqgh4U3o/1+bwGvKqWGuaEJPRnhVBEJ7Ccigu7plB07IibWmaG6PAZcBFyjlAru0tc2jwKLgGOA\nvsAiEblJKfVGbQsRkQ5oh+2favvcVaGU6lfuz7+JyAr0G+2DaAdzbXMYoICFSqlsp+xdEUkEpohI\na6XUVhd0lacP8H9KqXBv/rWCk0V4CXr04A5gO3qSwkQROaCUSndB1jx0j2qhiAxHr4Mch/bxgPYH\nRqS+9miijZcWqS7UPF5aNJriRUw0ichU9FvnX5RSb7utSSn1vVLq70qpN5RSPYEP0L0KNzTNAxYA\n34tIE2cYLRFIcP5Oqrx63HSFoJQqAl4HzndJ0y/OzzVB5avRvYhzXNAUQEQuQPuQnq6hjlhpGoCe\n6dlVKbVIKbVBKfUIuvc+SETOrG1Njl/nduDPwBfAt+jeTJm/bUdl9eurodmMHm8Mpi1V+w82AyeH\nGRM+HT0G+YULmuJF1JpEZBwwCr3O4a91QVMYPiK6XETRaGoDDEZ/UX9Fv6i0Ay52fh/skq54Ee13\nLx7E6jr1w5nW7LKmM4DfyjvtHTahDXIbFzShlHoFPRGoDXCKUup84HBgu1Lq28rq1ldDswK4yImR\nBlSIl7a8irqvop3+t5SrW2W8tDhrihdRaXK6yA8C9yml8uuCpmCcceIO6DUHbmjqhJ5N1anc9inw\nT+f3pS7pCkFEDgeuAza6pGkluiHvElTeFT2k9qELmsr2bwDcBryhlPqlqv3jrOkHoKmItAwqvwh9\nnb5zQRMASrNVKfWViByHbjfzqlOx3m0cXND0KXq68g3o+GmfU27lLHrdx35gfFD9Rehu/F3ocDhL\n0YuhznZRU0fgJmAoerxzjvP3TW5oQi/QPIAearkwaGvjkqaJwCzn4e7o/Fzt7HeLW/cuzPFitY4m\nmms1Ar2m51a0P6YfenGeD7jExef8frSxmYyepDDG+e4tcPP+ATc637tu0d63GNy7k9Ar97egfZCd\n0KMKu4GNLmlKRA+TdUO/WA1DG7x1QGKV547FRXVjQ4dSeJGKoRRaBO1zErqxnBBU3hA9pl8WguZ9\nYheCpqaaCp3ykM0NTRyMUBBuW+uSpuvR4/s/oJ2RX6FXmF/k5r0Lc6xC4B03n3N0z2U9epZgKXr9\n0ytUM2RIPK8VkIlu8HzOPZwIJLisaZlzrapsNGtDE9pXtBgdgqYYbXSmAU1cep4S0KNBO5zv3ufo\nSPrVWjxa69GbDQaDwfC/RX310RgMBoOhnmAMjcFgMBjiijE0BoPBYIgrxtAYDAaDIa4YQ2MwGAyG\nuGIMjcFgMBjiijE0BoPBYIgrxtAYDA4i0k9Efi+3lYrIFyIy2YmoW9t6bBGJJiWDwVAnMGkCDIaK\nKHRO9O+AxkAPdNbMRuhUuLWtxWCo9xhDYzCE8qlSapvz+9si0gq4k9o3NAbDfwVm6MxgqJq/o9MP\nN4u0g5NWep+IDA3zv9FO2uKjnL+vFJHXReR7J8XyP0Xk3qryrovIJBEJSTAlIk+LyFdBZR4RmSYi\n25whwG0icp8T7dpgqFVMj8ZgqJqT0QEII4aPV0r9KCJr0Nk25wb9uzcVw8+3RAfefAwdMPE8dGDJ\nZsB9lehQhB9Oq1DupL1YjQ7M+AA6q+ZF6MjJR6AjARsMtYYxNAZDKAlOY90YHT6+B5Chqo5AuxCd\n6vZUpdTnACJyDjqRVVnqYpRS88tXEpEN6IjiI6jc0FSX24FLgI5Kqb85ZYVOb+Z+EZmmlPo5Bucx\nGKqFGTozGCoiwFZgHzpD5hPAfFW9xG+voHsofcqV9UGHZH81cAKRY0RkvjOrzO+cKwed7Kp5DD5D\nF3R4+Q9EJKFsA95CJ/27KAbnMBiqjTE0BkNFFDq503nozI9vAUNEpHeVFZXyovN73AHg+Fx6AkuU\nUn6nTNBG5xr0sFZn51yTncMEpxivCc0BC23Aym8bnc93VAzOYTBUGzN0ZjCEsrls1pmIFKIzU+aK\nyEuOMamMhUBfEWkHpALHOGVl/BE4F7hDKRXITS8i3aqhy+fsm6iU2l+uPNhw/AJsQ6crD+f8t6tx\nLoMhZhhDYzBUglLKLyKj0DnV04GHq6hSiF6D0xfwAHY5PwnodLqgU+UCgXz1d1RDztfOzzPQKXgR\nkaZof8yecvu9ifYtFSul/lON4xoMccUYGoOhCpRSr4rIh8AIEZmrlCqtZF8lIs8Dg4AGhBqmf6MN\nxmRnqvJ+dGrjkGnLYViJNigFIjIJPcw2CigK2u95oD+wVkQeRueITwJOQafD7qaU8lXjfAZDTDA+\nGoOheowHjgYGV2PfhUATdI/mufL/UErtQ/uAfgCeAeYA7wBTwxynwrRlpdRu4Fq0UXoB7deZDawN\n2m8/ekLA48BA4HVHRx9gA+CvxmcwGGKGVD1j02AwGAyGmmN6NAaDwWCIK8bQGAwGgyGuGENjMBgM\nhrhiDI3BYDAY4ooxNAaDwWCIK8bQGAwGgyGuGENjMBgMhrhiDI3BYDAY4ooxNAaDwWCIK/8PfFzt\nhAyexiwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "N, K = out['resp'].shape\n", + "random_resp = np.random.dirichlet(np.ones(K), N)\n", + "plot_responsibilities_in_RB(images, random_resp, 'Random responsibilities')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now use the above plotting function to visualize the responsibilites after 1 iteration. " + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEKCAYAAAArYJMgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4k1XbwH+nbdokQAuKFGSl+mpRcYMTENyKW7aCImWU\nTrrYe7dN6S6jiIKvLAcO3AMZKu4JVN+PBlmiiLTQJE3anu+PJ02TJi0tLZTx/K4rF/TkrCeFc+c+\n9xJSSlRUVFRUVE4VPk29ARUVFRWVcxtV0KioqKionFJUQaOioqKickpRBY2KioqKyilFFTQqKioq\nKqcUVdCoqKioqJxSVEGjcsYghEgQQuwUQliEEOVCiEeaek+NjRDiDiFEhRBiWlPvpTEQQnR2PM/z\nTb0XlTMXVdConFKEEK86DqIdJ+j3NJAMHAOMwExg15lyMAshLhFCzBBCvCmE2O/Y008nOZ10vFzn\nrxBCfNLwnTY+QgiTEGJ3LV08nkdFxRW/pt6AyrmLEOJC4CGgAggVQtwqpfyihu73oxxWfaWUf7vM\n0e7U77RO9ASmAXZgB3Cy+9oOXAEcbqR9nQ5qEyL7UZ6n6DTtReUsRNVoVE4lw1C+zKQBAniulr7t\nAFyFjANxarZWbzYBNwMtpJTXn+wkUkqrlPI3KeWRRttZEyKlLHM8z6Gm3ovKmYsqaFROJcNRrsKm\nAb8CA4QQOtcOQohnhBAVQB/HzxWO124hxHTgE5Rv1DNc3isXQnRymaOFEGKOi33nsBDidSHENdU3\nVHkNJIRoKYTIFULsFUKUncgeJKXcI6X8Wkppa8gHUv0qsPJnxzP2dnnGCiHEMJdxQggxUgjxpRDi\nmOO1TQjxuJc1XnCMDxFCJAohdgghrEKINMf7lwkhUoQQ3wshjjg+s1+EEJOFEH4u83R27K0TYKi2\nt2mufbzZaBzP9r5jDbMQ4mfHfvy89KsQQkwTQtwohPhQCFEshDgqhHhNCNG5IZ+5StOjXp2pnBKE\nEN2ArsAKKaVVCLEKmA8MAF506fo9MANFKHUCpqNoMUeBH4DOwLMoGsUmxxjpeL/yem4LEAp8CrwN\nXAg8CdwjhLhLSrndZT0JBKAIMB3wuqO9qTQME8rzz3D8/QWX935w+fsaoD+KwK7s0xd4VQgRI6XM\nculbaTPJAboBG4E3gUo7yxPAMyifwYcon8cdwGzgRsf7oHzGM4BxjvkWUaVhbqrtoYQQg4CXgOPA\nWuBfx34XAj2AR70MuwkY79jXYuB64DGgqxCia0OFvEoTIqVUX+qr0V9AHlAO9HH83B4oAz6rof+n\nQLmX9jtQbDzTahi32rHOgGrtl6AclD9Way909H8L8G/A81UAP53EOK/P42j7pIYxox3vZwLCpV0H\nfAlYgLYu7Ssc/QuBdl7mawv4eWlf6vhsbvPyme2uYW+dHWs979IWiGKzOQZc7tLuiyLYyoGhXj6T\ncqBftflf9Pb7VV9n10u9OlNpdIQQAcBAYL+U8lMAKeV+lG/BPYQQlzbSOheifMt/V0q5zvU9KeVu\nYBnKt+ErvQxPkmfPN+QIFKEZJx2nL4CU0oKihQRQpYU43waSpZQHq08mpfxTSlnmZZ3FKBrL3Q3c\n72NAC2CZlPI3l3XLgQmONZ7xMu4zKeUr1dqed/Tv3sA9qTQh6tWZyqmgH9ASWFKtfRVwJ4pTwORG\nWKc7ip2xmcOeU50rHH92QfEUq8QqpdzZCOufchw2rauAP4DJQnj4RrRx/NnFy/Bva5hTAGEoh/1V\nKBpI5cSSk/eoq+Raxzybq78hpfxWCHHc0ac633lp2+f4s2UD96TShKiCRuVU8BzKQfPfau2vodgN\nhgkhprh+Oz9JLnD82cvxqolm1X7+q4Hrnk5aoQiBTihOFd6QeD4jQE2eYNlAOIpN6FXgT8CGcpjH\nomhIDSHwBOsfQnme6hR7aavUvHwbuCeVJkQVNCqNisNDqLfjx5+8fAMHxbZwP/BuA5erPJgWSikn\n1WPc2RRcWPmM26WUt9VzrMdzCiHaAGNQnDBuk1KWurx3E4qgaSiVew6u4f1gvAsVlXMUVdCoNDbP\noXwD3wT8z8v7rVA8wp6jboKm3PGnt2+0X6McprfUe5dnHhV4eUYp5XEhxC7gSiFEMyllSQPXCUH5\n/XzsKmQc9KhhTDmgqccaPzjW6AVscH1DCHED0BzFiUHlPEF1BlBpNBx3/8NQDqanpJSjqr9QnAQO\nAg8LIS6obT4HlW7HHau/IZUgwVeAO4QQkTXsqbYrtTOJI0CHGt7LQrmOWuJwtHBDCHGlEOKiOq7z\nh+PPW6vNcTmKod6btncEaC2E8K/jGm+gaCxhQojLXNbwBRY41lhZx7lUzgGaRKMRQrRH+Ud9I4pR\nUAcYpJR/1DoQp0fTHOAplDvlH4DxUsotp27HKnXkbhR313e9eTsBSCkrHDE1ScBQIOMEc+4CDgCD\nhBA2FOOwBDKllMdQbA2hQIYQYjhKipfjKDaAW1CM5fqGPpjDw83oWLvyPrC9EGKFy7MNb8ASnwD9\nhRCvo1xrlQNvSil/llLmCSFuRfk331MoOdH+RDHaXw1chyI4qmdV8EBKedCxxmNCiK9R3MrbAw8D\n76E4cnjb243Ae0KILSj2nM01/Z+TUhYLIcagOH98LYRwjaO5EnhLSvlSnT4VlXODpvCpRvGbP4gS\nXPcuyn+qTnUc+1+Ub1jPoUSTvwqYgWua2lf8fH8BLzt+l/1P0C/U0e97l7ZPgbIa+ndHOeyOOsa5\n/XtB+aIyAcXL6hjKt+kCx7+VR6vNVQj830k8W2W8SHkNL6979zLPHY7+U6u1B6PEBB1CyadWDgyr\n1mcw8DHwD0rsjMnx/2cUoHPptwLFiO71/xSK40Ca47MwAz+juFAbHOsu99J/MYqQtzn6THP5XDzG\nON7r5djfEZd1EgDfunwmJ5pffZ09L+H4ZTYZQogRKIFiIfIEGo0Q4lqUb3vPSilXOtp8UaKld0kp\nHzvV+1VRUVFRqR9nm43mEZRvVM7gPKkEga0B7hNC1MdgqaKioqJyGjjbBM2VQKGU0lqt/VfAH/jP\n6d+SioqKikptnG2C5gIUo2J1jri8r6KioqJyBnG2CRoVFRUVlbOMsy1g81+8p66o1GS8pnoXQpxN\nkeAqKioqZwRSykYpPHi2aTS/AiFCCG219qtQnAS8RaIDZ145hOnTpzf5HtQ9qXs63/Z0pu7rTNxT\nY3K2CZq3UIz+/SsbHO7NA4D3pZT2ptqYioqKiop3muzqTAjxpOOv3VAirR8UQvwN/C2l3CyUUr27\ngRlSyjkAUsofHFHG6Y50GIXAWJRAs8Gn+xlUVFRUVE5MU9po1lOVV6my7CzAZyg1S4TLy5Vngbko\nBZ9aAj8C90kpfzzF+21Uevfu3dRb8EDdU91Q91Q3zsQ9wZm5rzNxT41Jk2cGOB0IIeT58JwqKioq\njYUQAtlIzgBnm9eZioqKikodMBUWstxoxF5UhCYoiBHx8RhCQppkL6pGo6KickZwJh2MZzumwkJS\nw8OJDQ1Fr9FgtttJLyggIS+vzp9pY2o0qqBRUVFpchrjYFSpYmpkJM/4+qLXVKV/NNvtvFhezuzs\n7DrN0ZiC5mxzb1ZRUTkHWW40OoUMgF6jITY0lOVGYxPv7OzEXlTkJmRA+UztRUVNsh9V0KioqDQ5\nZ9rBeLajCQrCbHcPKzTb7WiCgppkP6qgUVFRaXLOtIPxbGdEfDzpBQXOz7TyKnJEfHyT7Ee10aio\n1AOTqZCcZUYs9iJ0miAiRsZjMKg2hIai2mgan4Y6V6jOAPVEFTQqjYHJVMjkBeE8Gh6KVu+P1Wzj\njbwC5k7IO2eEjamwkPw0I2VFRfgFBREWd/o8v1SvszMLVdDUE1XQqDQGiZMj6T7AF63e39lmNdv4\nel05KXPr5slzJmMqLCRlbDgxV4ai99dgttnJ2FFAYq6qVZyPqIKmnqiCRqUxiEwayr0j23q0v5L6\nf3TQX4zteBH+zYMYFXN2XqdNiYpkmL8ven8Xl1ibnZW2cuZknf2CVKV+qO7NKipNgE4ThNVsc2vb\n+/thSgr28HgnX4ZfH8zjnXyZFxeOyVTYRLs8ecqKityEDIDeX0NZ8fnn+WUqLGRqZCQThg5lamQk\npsKz7/d5JqEKGhWVOhIxMp438gqcwsZqtrFu7nYmPNoDfYAj/iNAw8ieoSzNOPviP/yCgjDbqnl+\n2ez4BTa959fpPPgrHROe8fUlOjiYZ3x9SQ0PV4VNA1CvzlRU6kGV11kxOk0glj8OEX5rZ49+K74/\nROqyVY2y3uJcI1ZLEVpdEGPGnrpruTPVRuPmkebY16n0SGuMqPpzAfXqTEWliTAYQkiZm0128kpS\n5mYT2DoYc2k1LaDUjn/zhmsBJlMhM6eGc9dtvvTrG8xdt/kyc+qpu5YzhISQmJvHSls52QcOsdJW\n3uRCBlyyBjiu9fT+pzZrgBo82vio2ZtVVBrAqJh45sWFM7JnKPoADeZSO8u2FDApLa/Bcy/ONTLk\nyVB0WuXQ02k1DHkylMW5RhYkn5pv1oaQkDPO8G8vKkLfNtitTe+vwX7oSJ3nqHSdPnboELv/+IP2\nF19M6/btvbpQVwaPVtdoTnXw6Lns3q1qNCoqDcBgCGFSWh6v/1HOiu8P8fof5UxKq1tcjclUyITx\nkcRED2XC+EgPTcVqKXIKmUp0Wg1Wy+n/Zm0yFTI5JpKk54YyOcZzr6cSTQ22I00dbUeuNpekzp1J\nu+UW5N693F1S4tX20hRR9ee6XUi10aioNAEmUyEzpoczuH8oOp0Gi8XO6vUFzJhZJaQmJEVy122+\nbsLGYrXz8eflp0yjqWmvC6LDGdutykaS+00BEzJPT6BqQ200NdlcFn/9NWO6d/dqeznd2sWZaBdS\nC5+pqJzlLM4zOoUMgE6nYXD/UBbnGVmwUDlYxoyNV2w0PdvxyZYCysor2PNHMXMXLDmte122yOgU\nMqBcW43tFsqyRUbmZpz6Q9AQEkJCXp5y8B86giYwqF6OAPaiIvTB1a7eNBoqpFRsL0c8r+AMISGn\n9YCvaY/e9nY2ogoaFZUmwGIpQqdzP1h0Og1WS9XBYjCEMGL0ZBYuiCVyTA+n5pO/bC4dOpy+tDf2\nY0Xo23mxkRw7fYdgQw7+mmwuPkKcMYk7m8oudLpQbTQqKk2ATheExeJud7BY7Gh17gfL22+tdQoZ\nZVyV5nO60LSowUbS4uw4BL3ZXFK3bePh0NAmzWjsypmWbbmxUQWNikoTMCY8ntXrC5zCptJGMybc\n/WBRNJ9qDgG60+sQMHJcPLnfFDiFTaWNZuS4hh2CpsJCpkRFMn7YUKZEnbogzMqrtxfLy0nes4e4\nL79EdOzIR82aNSgWpzGDSF33mHnoEC+Wl59TmatVZwAVlQZysqUDTKZCFue5BGOGe46bMD6SPj19\n3YSNxWLn0y3lTlvO6cBkKmTZIiP2Y0VoWgQxclzDAkdNhYUkR3gGhyblnB2H6/lQ1kBNqllPVEGj\ncqpwlg4Y61I6ILfxSgeYTIVMmRTG0CFdnTaaVS//wpx5+Wdl4s5KpkRFMjTAM4HnqtKzI4Hnmegl\n1tioXmcqKmcIOcuMTiEDoNX78+jYUHKWGRutdIDFXsZL67fjIwQVUmKxBzTKvE2JvagIfQdPB4Oy\nv88OL6tz3UussVEFjYpKA7DYi9Dq3UsHaPX+WOyHGmX+vMVGho+5zuPqLG+xkYULGi7ITKZClmYY\nsZUU4d/s9JU4qAzCrK7RnAkJPOvCue4l1tg0iTOAEKKDEOIVIcRRIUSREOJVIUTHOo7tKIR4UQix\nRwhhFkIUCCFmCyH0p3rfKirV8VY6wGq2odMENsr8Fqt3ZwBLacOdAUymQubFh/N4Z0eJg86+zIs/\nPSUOwuLiydjh7mCQsaOAsLgzy8uqJoP/ue4l1ticdkEjhNABnwKXA0OBp4HLgE8c79U2Vg98DPQA\nJgMPAMuAeGD5Kdy2iopXIkbG80aue+mAN3ILiBjZOAeOTuvdDVoX0PBvzkszjM4cbXB6SxwYQkJI\nysljVWk5OfsPsaq0/IxzBKgtLcy57iXW2Jx2ZwAhRAyQClwupSx0tBmA34FEKWV6LWPvAd4D7pNS\nfuTSPh9F2ARKKa1exqnOACqnjOqlA+rqdVbXuafPDKf/01Wpata/VMDM6Q13NkgYNZTh1wd7tK/4\n/hCpSxte4uBM50RpZs4Hg39tnO3OAA8DX1YKGQAppUkIsQ14FKhR0ACVxdqr3xsUoWhnjfKhqKjU\nh8rSAadq7pnT88hbbMRSegRdQBAzpyuZocdPiHS6RoePUYSbyVRIXp4Rq7UIrTaIcC8u05X4NwvC\nXGp3ajTgKHHQ7Ny3M7i5J7cNxmyzkxoe7qaVqAb/xqMpNJqDwAYpZXi19hygn5TS8ytWVZ8A4Efg\nIDAW+AO4GXgJeFVKGVXDOFWjUTlnMJkKmT4jnIGDq7SctasLGBk2mWXL5jJoUFX7mjUFzJzpXfup\ntNF4lDgwnr70No2JqbCQ5WkuGkpczYkwndpKNWcEV21F1WjO7sJnFwD/emk/ArSqbaCUshToCfgC\nvwLHgA+Bt2oSMioq5xp5i41OIQOKc8DAwaHMmpXgFDKV7YMGhZJXQ7oagyGEScY8Xt/jKHGwp9xD\nyJhMhUwaF0nCyKFMGnd6ywPUh8rqoMP8fIlqF8wwP19SxtacZt9eVOQmZMCRv6246rJENfg3HmeV\ne7NDo1kHtAGeAvYCNwHThRDlUsqxTbk/lbMPk6mQ7OVpmO1F6DVBRI6IO+O/zVtrSMjp51fmPV2N\ntearHoMhhHmLvH87N5kKmRcXzqjbQ9EHKJVE58WF17neTn0wFRaSv8iIvbgITWAQYePql5Z/eZqR\n2C7VqnB2CWV5mpHZXgJAa3Kvdq1x45Y1+sgRNEH1yxqtUkVTCJp/8a651KTpuBIG9AL+42Lj2SqE\nKAaWCCHypJQ/N95WVc5VTKZCFmbMZsee72jdUc9dQ64h8AI/JqaMZX5i7mkVNpXOBJXC7kTOBFpH\nQs7qsTVlZX5e27Xak7O5LM0w8vAV7Xj+06+pEBIfKXj4WsUrrSbhdDKYCgtJjgwn6ppQ9K0Ue0ly\nZDhJ2fUsBeAtw/Q/3oXsiPh4jxo3U7dtJWKRu4n4dJcLOFdpCkHzK3CVl/YrgR0nGNsVOOrqSODg\nKxRHgCsAr4JmxowZzr/37t2b3r171223KucErpqLLPVl/z8m+k3tTh/9Q1jNNtYbP+OB4dfTN7YL\n2cvTSJ2dVf/58100o7C6aUaVKWweiQhFq2+L1Wxj8oJwwp+ezBvvrcVsK0bvH0hEmHJdk7PMyL8l\nh5i3cAcjnr0Jg+FCp41m2rTUGm00J8Phg/tZf3Qvo/vdjk6rwWK1s+SVbWhb1inkrc7kLzIqQsZF\nG4m6JpT8RUbmZNbtkK9RQ6khgNIQEsKgyZOJGDOa0KBA/Hx9GHnDNbw831GC4TzUWjZt2sSmTZtO\nydxN5d6cguLebHK0GYDfgKQTuDdPB6YBl0kpd7u0jwLygF5Sym1exqnOAOcxJlMhE1PG0jf2Cmc+\nsjUpW3lgxE1c1KEloMS/vL34cwbE3c4nWQfJXbCyXvNPSh5L35guzvk3ZuxiXtKJNaPEyZF0G+Tr\nTGEDsPd/h3lr+c8Mn9bDOd/qBd+jDfCjX2RXZ9vyedto16Ijbdq0d/M6S02diWnPTixWO/+5rCsT\nk2aelIb2QO+bmfL0LR4VPue89CXvbtpe7/lqYvyzQxnb2dMHKHfPIRa+UOVmbSosJD/NyLFDh9i9\n9w/aX3wxrS9u7wzyTBkb7rw+M9vspO8qIDG3ZqExJSqSoVov+dasZ0e+tVPN2e4MsAwwAW8IIR4R\nQjwCbAD2AEsrOwkhOgkhyoQQU1zGvoDiAPCOEGKYEKK3ECIRRXB9403IqKhkL09zChlQUsQMSuzB\npnU/Ovto9f7ICkXg6DX1u2rKzk9zCpnKufrGdCE7P+2EY832IjchA7Dtnd+cQqZyvoAgm1PIVLaN\nmHQ7rdu1Z+GCbDdBsv/vQgLbCNp11nKs9DfGjX/2pIz4IYZObkIGQKfVEBLSqd5z1YYmsIZ6Ny72\nkspsz0O1viRc1pnUHrcg9+/lztISkiMUB9bE3DxWlpWTdfAQK8vKaxUyAPZi7w4BZcXu0RONWQ7g\nfOW0X51JKc1CiDuBRcBKlCuvj4BxUkqzS1fh8qocu0cIcQswA5gNtEZxCFgMzDstD6By1qEc5he7\ntSmCpUrLtZptVFRUsDF9F/MTc09i/nYe8//1zx4SpkTVep1mNwvyp33EkQPH0ev8CQzWc6TYzBv5\nX1NRIfHxEfR5sis+QngIJK3eH4vNPafa/OTp+PiUMGTw7eh0/lgsNlYs38b85OksyVW0NJOpkNyl\nRiylRegCghg7yrtNKOjCYCxWu4dGE3RBjREIJ0XYuPgqG41DG8n6qYCk7Korv/w0IzFXuV+vxfW8\nndg33+Gy1hdinDGdrBdXOg3/ldqP07nAi6tzpYCrLd9aXeJtVE5Mk+Q6k1Luk1L2l1K2lFIGSSmf\nlFL+Ua3PHimlr5RydrX2XVLKQVLKzlLKZlLKLlLK8VLK01cJSuWsQl9DPrIKh6Cxmm2snPoJF1Zc\ndlKOAGVmwerULawxbmXdom38ta+Ifb8f5s9//+D6oX7cFdmO64f6MSl5rJtmYTIVcmj//wgo82XS\npAeZOOkB+t7VFcrgsbDuDIntwWNh3Xnnxe84Vmz1nlPN3z2n2u+//8LwEYqQAdDp/Bk+4nZ27PjB\nuebUueHc+ogvDw5ry62P+DJ1rvf8ZqOj4lnxYQEWq6M4m9XOig8LGB3VeO69JlMhy9KN+Aa1IHHz\nl8z/9f/4b0m5hyNATdpHaJvWRNx2M3//+rNT03DVfiI7BDNU60tyhKerc1hcPBm/Vsu39qt7vrXl\nRqPTYaByzdjQUJYb3V3GVa2ndtQKmypNgslUSMLUaMInPEvC1OhTGp8ROSKOjek73fORpf5E64r/\nsClrLz+ttJC/YD1Ls16st5AxmQr5t3Q/j0XcwsCEnjw85iY2Pv8tL83ZxjMze9Z6nZa32EiLoAqG\nh93u9BTbtLmAMXPvcRs3OPZ2/t5bwivZv7g9w4YlnjnVdDqNU8hUtfnj62t3ajJPjAhF6+ij1fnz\nxIhQcpd6xtoYDCFMWZjH2zvLeWnrId7eWc6UhbW7NjvjbkadOO7GZCpkQUw4Ay7yJfq6zsx94Baw\nW2rVPlwx2+z4CIHeX8PMPr3IT1OewZv2E3NVqPN95/NV5luzlpOz7xCrrJ751uoSb+OWE62te040\nFYWzKo5G5dzAZCpkQmoU98deg1Z/AVazjQmpUSxIyDolbsUGQwjzE3MdXmeH0WuCSJm4rFHWys5P\n49GEa6rZf3rywsQt3q+6yv5x/myxFuHjI9zckcuF9DrumquvYUpcspJTzXYInX+g1+Jqhs5XYrHY\n3ISNxWKjfacgJY2NvQitrlpZA50/llLlCk5xJpiFybQDi8XOZZd1ZcKEujkTVGYaCOvlEncTH15j\npoFli4yEd3cXCOHdQ1m2yMjcDHdjfFhcvFKR86qq67W0Ldt4ttsNzrFlfymuzPbiIvSBXmrd/OXp\n6mwICXEa/p25zxzXbSPi4+sUb1Ob1qO6RiuogkbltJO9fJFDyFQdzvfHXkP28kWkzs706K+4Ji+i\nxF5MM00gkSPG1VtIGAwh9XZZrgvmMu/2H3tpBVazzU1oWM02dH5VB5ROG8SRo9It9sVXCq/jWgUG\n1ymnWmL8NMIjHyci9g6njebF5Z/zWP/r2b6lmIpyP6wWm1OjAbBabOgCAhVX68lhPP1UV3S6Xlgs\nNp5fsY34hGcxpr5Q42duMhWyOMfIzp++po2/4N/jFvQBGvQBGsJ61Rx3Yz9WhL69l9iX494FQlJO\nHvlpRnZ+to32Gj+e7XYDHYKUq0NX20pdbC8ez1BYSEq4w2vNYYtJCQ9n8OTJpM+d6xZvU1my2fkc\nRUXo23p5jkM1B8qeKKHnuYZ6daZy2imxF3v91l5iL/boazIVMiEliq7DmnNHlIGuw5ozISXqjEmF\novfzbv8JDenKxoxdblddGzN2ERkW5+wXPiYeS0kAK/K3OUsB9O4VyrJpn7iNezNnlzOO5kQYDCF0\n7ngNq/+7nReWb2P9mm94rP/1BLbSYbPCX3t381LmNqwWx/wWG2sX/8LYUfHk5RkdQqbKvvPc8NvR\n60trTGNjMhUya3I493b3ZUJELwYPvZlVX3zH/n+U36U+QIOtxLv5VNOiBm+z5jXHvszJysa4dj1l\nQS25QKdzjnG1rdTF9lKd5UbvmQXeX7v2hOUAKrUej+eoQbDVVn7gXOW0x9E0BWoczZlFwtRouj7T\n3ONb+y8vHvfQaBKmRtN1mJe+Kz37NgXOGJ2YqhidjRk7nZ5r2flpWMqK0Pl59zozmQpZsHA6v//v\nF3RaDYbOVzBo0AiPYM3KcSZTITn5Rq/vuc45bVY4/YeGOrWa9asKCNS15dG7gzhaZOGdTb9QLiSy\nTNJcfzl5S1YSEzOUxx9zv1YDWPHCNrTa9rRsFawUYtNWZYuekBjJvd190WldruqsNp7P30oLbQB2\nWcEvfxwmNWcFPXr09Hz2mHDn9ZnZZifv6wImZNRsBzKZFG+yvw/s58D+A1zSqRMt2gR72HUqvc7+\nObCffQcOcEnHTrQI9uxXyYRhQ4lq6+lNl/XnIRasrL1kgptnWjWtx9taZ0uyzrO9TIDKeU7kiHEu\nNhrlcH4v/ScWJHhebSnazwVubTVpP41BVQaBYvSawBPmPnPaf/LTMJcdRu8X5Oa5ljqn9us6gyGE\nxXmewaHVD+XKvU1aGM4jkV2cWQQmLQxn3nj3g9lgCGHWtMrSAofQBQQya1oe6cZp6LQadFoNIwbe\n5uz/yjuKfUarDfJq36mQFezYuYPhI5uz+ZPd/Hu4nGFDH2Le/MWUWorQad2F09EiC8WlpYwe3MOZ\nUSB5SgTMyaFHj55V5aOPF+Hbug0rTEX4y3I0zYM8hEylV5rtWBF24cvh3YVMvO069K0vxdylE9k/\nFBAWn1yZMdPNAAAgAElEQVQliF3cms0IyouLSe1xi1MAJEeEey2wVtN1W01aiXN/jiuwcp2OuC+/\nVARfcHCt7s/nY/kBVaNRaRLqanc5nRqNop1E8EDsVU4B+G76r8xPzHFG3ddHCDU2iVMiuXGwn8dn\n8e3qMlLmnPib8ISkSO661dcjLubjL8pZkJxdzUbj77TR/HOklPsf7sK320yMePo2dFp/LFYbWUu2\n0aHDlfS/u5WbRrNs1RaGP3izxzrzVn5J3oo1zIvzUprAS6LOrVu3MDNyNP+5MBCNrw/3XxvKK1/+\nzPDuN9ChZZVtZnVxOXMys51uzdFdFc0iddNWIm69uU6R/242GtfMArUIjPpqMpWcjxqNKmhUzmgq\nbTQe2k9i43uoJUyN4pphWo+DPH/cp3QJuYp/bQd4JOE65z7ecRFCp4OIpGHcE+6uPfy1r4jFkz6m\nTfCFXNLhSpJip9V67TRzajhDngh1ahovv1bA9NlVh7w3rzOr7RjIvxjyWDePK7I3PyjGfPQgTz8a\n6hRA89PfZ37UQx7rz1r2KV2vvZXHO/l6FFt7/Y9yN4cBk6mQpCH9mPJAD+chnvHhNp68+Wre/66A\n2DuqNLLFhYdYuGIVU6IieVpXlVIm7bNtxPe63WMfOfsOseBFz+swb15ndRIYtdS08YabgNJonOUH\nzrQgUPXqTOW8wWAIYUFilpv2c7JC5kQaidlejFbvHgCp1fvT5jIdhyv+x+MJt7l5yj0Ye9VJJeA8\nWfT+gW4eaX/tK2Ljim8Zn/OQU/jFzRhO6+ad0OhBX62stMEQwvTZeSzONWK1HEGrC3ITMpU01zfj\n0ksuR6cNYszYePIWGzmw76CbkAHQaf3x8yln2tw8FucYKbUcwmqD4qN2lr60FR+ND337dKVdm0As\nVjt26YfteBH6gGrXRgEabNU8zZYtMjqFjPLsGmLuuZ38LV8jqfrSaLbZ0bRQrrfsxUXog6rm9hGi\nTpH/+S7F0sLq4f11Mt5mcH6WH1AFjcoZj+Ka3LBrMpOpkIT5ox0aieIpljB/NKkTlzgPWr0m0Ktr\nsfAR+ODj1VPObP+rQfuqDxFh8S42Gn8+XPsTQ2Ldc6INjLuOV5ds56lRPZ2ZoF3jbQyGEBYk11x/\nZsa0cAb3C0Wna4vFYmPGtHDCRk1m0sRPsVhtHhrNL7/+Ql6ekfAIxaNr/rhw8p59yHktlvnWNvre\nezWr3vmWyXNyeOfVtd7LR1fzNLMfK0J/sZdDvLwC33LHOJud7B8KGO9IVVPdztLvmq6kbt5GQq/b\nq7SiXwtIylH6V161xVwZir5DcK02HG/UJcamJs638gPq1ZnKeUH4uOe4dWxrDyHyRe5h8hY9D3i3\n0aw3buH+4d3YtO4nHhlzs8f4H1daT4lGs3XrFqYvTMRHW06F1ZeZ41OchvScfCM/7PySsgoLsSl9\nPcauztjK4Jgezj1+s7bshPE3oNhw+vTwdXMGKNxzmJde3ckFF13Avwf+ICHqLucVWXrux+iaB6DX\nazCbA+hwQQjPXBbkIUQiVm4kZbHidbZ16xamjRvNpcGBaIQP918Xytu/HvSw0UyOiWRga89rqXHr\nP+DKG7qjFxJNC0cOMxdHAFcbjdlmZ+7XP9A6JISA8nL8AoO4f8BA3lu3FntxETsKfnM6Criusaq0\nbtmbT9ZGc7agXp2pqNST/zuwkz76u9zatHp//u/ATufPigdZDtnL0/jpt600b+vD/cO7cVGHIHoP\nuIa1KZsZmNjLw0bT2GzduoXpmVE8l3qXc63pU6OYSRY9evQkZU42iVMiMR39tkYNzPUZzXbvVzlK\nwbU0Dh3ez4F9B0CUcvCwngfvvIp2wUEcPFTEm5t+YfQsRWva+792zE77CJ0mgJKSIkaO7oXB0FpJ\n3Pn8Ngp3/Yy+ax+3NfQBGnrccqtTSL6QNZdZ4fc4bUTG/24lfma6x/XdyHHxLIgOZ6yL6/Ocd7cy\nM3epV488cA/qtB86giYwiNnPv+A89N0EUVAwKf/73Xv25r/r5v3ldgXmWO9cETKNjarRqJwX9Hro\nRsIW3eXF0P8xm9/+1qP/1q1bmGgMZ2TyA87D/sUZH6JrpsFW5Mc1l3c7ZV5ndz18C8+l3u6x1+cT\ntvHxW18CipCImfIs+Jc4r8+sZhsvp2/loWdupE37IOe46hqNyVTIvNQZmA79zCPPXc/H637iqYjb\nq2rfZGyjz43/Yc2b33LxZRfip/Hlrke7EnyxcuWYHPEmM2c+5OEGPT3xLRYPe9hDo3n1QDlz07OZ\nGB9J36s8vd42/lrOfKOnBmEyFbJskRH7sSI0LYIYOa72yqMnorqzQPrmzxl9U/eT1mjOdVSNRkWl\nnnQJ6cq6lE0MSOztPFDXpWyiS0hXr/03vLeeZkEBvL34C2SFRPgInoy+hTYdgvgk62CDr8uqKnI6\nHBNcgjl9tOVe7UEioMz5s8EQQsacF5hnnE7ehM1o9RraXmBAlDaj1GJnTdY2yuzl7P/9GMnTF7ut\nO2nBWOy+Rxkx5Q425H/lFDKV69w94Gpee/5roo19q4RP5jYeGnIDwRcHofH38Zq406e5L0u+KGD0\nrVWuy0u+KGDiIsUmUmouQqd1t7votBpKzd41CIMhxCPnWUOo7izQ75quGLdsI76niw1nR5UNR6Xx\nUAWNynnBpPgZRE8bzhvZW/Hx8aGiogIfq55Jk2Z47V9SVkSLC5vxyJgbPTSL+hZGq47JVMjE5Age\njOnqdEyYmBzB/CTFVbrC6uv1SkyWuv93NRhCWJrlHuy5desWZmeO47kpVVpOXq6jPLEhhJxlaTwS\n0YXXl37lrMlTXahteb+AkdPuds8gHX07G5Z/zRPPdKfEXOY1sNNfq2PiojwlwPL4EfybBzFxUZXt\nJUAf5LW+TYC+YZ9nXanuLNChZSADr7uahK1fclXo5fgFBtXZEUClfqi5zlTOCwyGEDJnrSAk8EYu\nCriEkMAbyZy1osarmGZ+Qdzy0JWsTd3mlnds5bQtRI6I8zqmrmTnpzmEjIurdExXZwmBmeNTeH7q\nx27rPj/1Y2aOTznh3G+8u9YpZCrnfmRsF3KWKbnKKit6+vgIpz2neq62srIKrxpVmb2cDct2ceVV\n17N0+RYsjnxpFouNpcu3cMWV1ylaSHo2KfmrmJvuXvlzdFQ8L7zvXt/mhfe917cxmQqZFBdJ/Oih\nTIqrvdxAXQmLiyfzF/ccaK/uPUjW6jWMmTELBOTNmMaUaLWeTGOj2mhUVLygBIpG0r1fR758ewfl\n9nIOFBSROjWvRmN05bicfKPzSsxbLrKx45+hT2RHt7a/9x7lpRlbaNFSh7XETuugdhz8az/6lr7I\nUj+n19mJiEgaxr2jPPOVfbD0T3KSV5I4OYobB/lRfMTCOyu/4+5+V3vYaFKS3ibe+DDFR8x88vov\nyHJJhZTs/c3Ky8+/BsC48c+ib27DB0EFEvNxfxYtrDnDs+vnsyTLSKm5iAB9EKOjvOdqm5sYzog7\nQ9EFaLCU2ln+SQGTU2qvhVMXvFXeBJQKn1e7VPj8ucCj+Nr5hpoZoJ6ogkblZFDsKIs4cuwQhf/b\nT9s2/6Fdm2Ciw8MxGAxe+09KDufhqC7OQ/uFGVuZGpVOjx49nP0SpkRx7VCdU2v4e+9R3l72JU8n\n9ayyiRi3IkqbkTm7Zq3LG4mTI+k20DNNTaVDQKWN5pGILhQfsfDhuh/Z9/tRAkQzfP3LCTboufbW\nznyy4Vf0Wg3DxvZAq/PHarGxeMFmpiZkOD3IcpcYsdiK0fkHMnZ0wwz1rkyKi+SRy3zRuTgVWErt\nvPl7OfPSGt9IPyU6kqf0nq7U/zUrqW0ai/pmHmhqGlPQqFdnKio1YDCEEBkWR/FRLf0iJnLXsGFc\nekcvEqZPx2QyefTPyTc6hQwo103PzuhB4qwxbv0jw+J4J6OqWubHa753CpnKcYPje6BpZXOryFkX\nIkbG82qmeyXOVzN/cVbiNBhCmDchl2/XlPHjRjOGlt1YvfQdNr3/DTdc04PHnruJK27sSLPmAU4h\nA0pxtDETejF+2hhMpkIMhhCS52eTZVxJ8vzsRhMyAKUlRfx7zMLS1z5nybptLH3tc/49ZqG0hnID\nDaUuVTQbSmUutWF+vkS1DWaYny8p53hpAFdUQaNyxmIymYibMo7R40cSN2Wc18P9ZOeNnxLLmPEj\niJ8SW+u8mXl59Bk4gABH7ZMAnY4+AweQmefpmXTk2CGvto2LQ1u6CQyDIYT5STn8uMrCpzl7Of6n\ndy8zHx+Buaz+WapLrWW8svQrXs7cxitLv6LUWub2vsEQwk3X9+TzbV/wxfcf8/hT97L+lXVEjIzj\njSVKDZ2AAD+34migCJuOl7bwWvbZZCokaWIkUXHDSJrYMJuKtVywbuN3jOnWnfhetzOmW3fWbfwO\na3mjfLn2oL71ZE6GmurdLDd6r/NzrqF6namckZhMJhKT47gzugcB+gBKzaUkJseRkpSGwWDAZDKR\nlZ9Oif0YzTQtiAqL9Xqd5W3e8ckx3BN1M1p9B6xmG+OTY4gaksiG99ZRUnaMZn4tHO7GBo5bLU4h\nU0mATsdxq9Vj3h07d3K3ub3HtZWPny8l9mNu/Q2GEGcJgcQpUV69zCoqJLLUh4Qp0ZjtReg1QUSG\n1V5dNCc/jUGTbvCYKyc/jRTHeutfWUfuf2cxIa8qR1ru9FmMZRpzJ+SSsyyNPwutXitx+ml8sdjc\nhZ/JVMjUOeE8ObwLWl1brBYb48Y/y8XBl+DjV44uIIixo73HHJlMhSzONWKxFqPTBjJmbDwa6UNc\nn9vdDuW4PrezfO+p0WjCxsXXaKNpLOzFNeRFO4dLA7iiChqVRsVkMpG1PJ3j9mM017QgakQsABn5\nWZTYS2imaUZMWNQJhUJmfoZTyAAE6AO4M7oHmfkZRIfFkJQcyz0xNxGg70ipuZSk5FiSk9Ld5vUm\njLLy0x1Cpuqa6p6om4mPjWBM1iNo9RdhNduYkBLJgsRsmmt1lFrchU2pxUJzrdZtv9n5aTw54Q5W\nL/qCweNudR7gy6Z/woOje/Hnpz4u+1JsP5XC47H7B5CZNpPH4q52s9GUlwSw328P/Ud3d3GDjmR+\nUs1XVYpXmWdpabP9sPPneYsmO4VM5ftjZt7DvPDJfL/td1LmZmEyFRIe159RSVU2mrwFH3PHg1dQ\nZHJPPJq7xOgQMsp8Rf9aqBDHuWdAS+fYidNHMn/mMo9aM0putS5uudUC7S3Q+7d2W0Pvr8Fflnt9\n5oZiCAkhKTuP/EVG7H8qEf6N7QhwsvVuzhVUQaNyQkwmE5nLMzluP05zTXOiR0TXYAw3kZQSy92x\nNxOg70SpuZRx8yM5VlzOQ9P6EaDXUmq2Ej03nszJxlqFTYn9uFPIVBKgD6DEflwRFjE3uQmhe2Ju\nIis/HeOc9Kq9JMdyb7S7MNJrmqHVd3CbV6v3p93lF7gdvPfFXE92fhrR4XEkTJ/uvD4rtVj4dO06\nUmfOrLbfYjpcFsI9z97Ka8u+h4oK8PFBo9PyzasmFiRlO/ZVyMTkSB6IuRqtvqWibWQsIPqZ6fx3\n6fP8vucXjvxzFI1vAL4+ZfSfWM0NOror2fmLSJ3jPcmoXhPkVTtyjf1pFqTxelWnD6w6BA2GEJ4b\nksSc+An856pg/DQ+PBZ2E68v/4bp8VFuYy2lxWh1VZ5ub677nuGRvdzsOwNHXk1K2ixyMlc4+y2c\nPx1ZVsSaNV8hfAX333sVg/t1YcaktzGHXux5KLc4dYeyISSkUQ3/1RkRH19jvZvzAdVGc5ZiMpmI\nnZrEiAlRxE5NajT7hbd1ElISuGTYJXSP6s4lwy4hISXB63pZy9MdQqZKADyQcDv+F/kSoNc62rTc\nGfcg8zIW1LpuM01zSs2lbm2l5lKaaZpTYj/mXQiVVV1PZeWnO4RM1V7ujb6JPbv3eMSNWM02fDXu\n/xW0en9Kyo5hMBhInTmT//tsM19teIP/+2wzqTNnegjJZo7Mzxd1bMWT4+7kyfi76Tu6B/Yjfk4h\nEz9pHMPGDnQImSrh8UDM1Wx4bz3jY6bRpm1rEhY/xPgVfYnM6s2na7/j771H3fZlttd8hRQRFsdb\nWTvdnAHeytpJRFhV7E/xkVKvn4G52N1O8dX3W5iQ+ShPj+vFoMgedLy0NaOm3Mkb765z66cLCMRq\nqZrv6BGzV/tO4R9VeeVMpkL2mX7mmcduYtSg23n64W68/tr3FBWZaXdpC6a+/ZFbvEvOtwWMHOcZ\nb3O2YAgJITEvj5Vl5WT9eYiVZeW1FlU716iXoBFC+Aghugoh7hBCNDtVm1KpHZPJRGzKVNoMu5Ur\nox6kzbBbiU2ZekqETebyTHrH9nY7sHvH9iZzuec36uM1CADfav/KAvRaft/3f7WuGx0WwyeZW53C\nptRcyieZW4kOi6GZpoV3IeTXwvlzTcLo4vbt+TBru9tBvHrGRm55+Eq3vlazzTmfwWAgbeFClmZk\nkLZwoVdNLDIsjvcyfnSb972MH3k+62UAxs+L54onOtP60kCK/zGzftFm1qV+xvpFmyn+x4y5rJic\n/DQequa1Nmjc7Wx65Ue3fdWWmcBgCGHe+Fy+e9nOR3kH+O5lO/PG5wKKW/WImAEIX8Eq42a3veZO\n/YBJ4+a6zWWxFXnVfCw2d0E3dnQ8r67Y5RQ2lpJSN8EDin3HYqkSZItzjIwb0ctZdkCn9Wfk4NvY\n+O7PtAzS88Tomxmx9g2SvylgwsdfYmulZ3GOsVECN5uKytIAC1auYnZ29nkjZKAeV2dCiAhgOnCh\no6k78J0QYgPwiZSycevqqtRI+vJcbop9wk1LuCn2CdKX55I+O7lR1zpewxXWcftxj77NHQLAtX+p\nuZTyCvd+pWYrpWYrtWEwGEhJSiMzP4MS+3GaaZoTMySOzPwM/jn2D0ujNvPkhLu4+LK2lJpL+TDj\nK5KT0p3jm9Wwl7at2zltNZW2m5lRC8levYDWMS2dNpL3M75nQWLdr1IMBgMLkrLJzk+jpKyYZn6B\nLEjKxmAwED9pHPeM6olWH4Cl2M67z39D/7i7q0oRpH1Ee93lmPVFaPXt3ObV6v0pL1NsE1azjXcy\nf2F+UrYzV9qRY4cw7d5L+/btCG7d3pkzrdLwD474noUR9I26Eq3+P9xp7sSKWR+xOvtzAgL8qJCS\n1voQ+vcb4La2zt/7NZzO313QGQwhzJ6Sp8TVlB7BVurPgolvEdwukH8OHye4fRD79/zLJZ2vrfpd\nWIrQad0DS3Vafw4eOErYiF60DQ6i/eWtOGg5yLiYHs7SBDOnhDN9TsMDN1VOL3XSaIQQI4EMYAMw\nEHD1M9wCPFmfRYUQHYQQrwghjgohioQQrwohOp54pHP8FUKIdUKIv4UQZiHELiFE1IlHnhscs1uc\nQqaSAL2WY3ZLo6/VvIYrrOaa5h59o0bE8lH6djct5OUpb3H0r+NOwVJqtvKW8RWuuKTLCdc2GAyk\nzVnEkoXLiA6LIePlRVz2dGfuiL+N5zKH8f7S7bw/7yt2rfrLwxEgKiyWDzK/ctvLB5lfOb3TjHPS\nWbxwOcY5SjDlgsRsfl1ZxObs3WzPOwDH9QyNGMg9A3oyZlxYnbRFg8FAZNg4mvkFYi4rYmHGLEZG\njuD7nd+idQg8H42vU8iAIkj6x92N1VbKzh2/eb3SOvy/Uj7N+YMfX7Iw33ENFz31OQqLv+eYOEir\nEF8OFBXSsY+VScljPb71Z+enOYRM1ZrDp91NgN6fgXG9GBx/B207XUh1IkbGsWHpLjfNZ8PSXUSM\n9EzBUxlXEx89k8svbcfIsb3w8/clfk5fwuLuZPyCh7HLf5x7C9AFYbG6P6vFaqN16xa0DVbeO/JP\nCdEjerhpPU891oXFOeeHS/C5RF01mjjAKKUcL4TwrfbeLiCxrgsKIXTAp4AFGOpongt8IoS4RkpZ\n62kphOgGfOyYYwRQBFwGeJ585ygtNDpKzVY3YVNqttJCo6tl1MkRPSKahJQE5/VZqbmUTembSE1M\n9ehrMBhITkwna3m6UwuZE5XM3CXzeT/vTXyEDxWyAv9SH6ZOmVyvfSheaD3drvAGzHiC31/ag3HO\nIu97SUp301yqC6Pq/VPnZGIymYicOpLyACvPumQvjp83FuMk5QoqO7+qrLTibqzMqRROi+QBl2SZ\na5O34h8YgNVcilYfQIDWz+t11O/7fqV//G2sWbSNQeNcUvYbtxHUOpCk8BnOb/Gjop6hIqCEx8dW\n1cZZk7qZD1f/wOCEXmTnpzldp6HSE83TAUJWKNkylOs4d08y5TMJYe5Exd3ZYvsHm0UQpGtLSu50\npM2XsrIKNDqJ3j+IiJGKJpW32Mjg4V1Zv/prnq4W8Dlk7PVOh4AxEfHMmhzO04+GOrWVpau38cTj\nN2Cx2nh+5TbaBQd5LR9ttZwfLsHnEnUVNCHA+zW8VwK0rMeaowADcLmUshBACPEz8DswGkivaaAQ\nQgAvAh9KKfu5vPVZPdY/64kdMZbYlKnO67NSs5Wv0l8jPXF2o65jMplIz8/D3+8C1sZtoEOHi2jX\nuh2piam1HtjG2e6/wrwOOe7uzXEndm+uTom9pAYvtJIax1RqLvUhKz8d31YVPD72Hndvr7hbmGuc\nybHyw9wXc32VG3RyFAuSsjAYDGTnL3IIGZfSykk9WJvyFa/lvM0TEQ8hhPfMzO0uDaLDZRdx37M3\ns2HZt5Tby9n3v38YNuVeWlzYzM3TrGD3L4w09nG35ST0YsGIVyg+YsFS7TOpyROtMqHm29k7nHYc\nz88whIiRccwzzsB06BdGTKkqs/By+hb6PtmNwFb+JM0eRUvdxfyx51fuefROKqSs1SHAYAhh2tw8\nFucYKbUcYvvXP1BqO85b7/2En8aXBx+8miVLt3ktH63VeQpFlTObujoDHEYRDt4IBfbXY82HgS8r\nhQyAlNIEbAMePcHYPkAXoH55Oc4xDAYD6Ymz+WvlF+zIeoe/Vn5BeuLseh/etWEymYhJns5FT/Xi\n+rhB3J88DrPwr9G1+UT7XTTHyNKFi1k0p3a35ppopmnmcYV34PeDFOzYdVKZA2rKDlBiP4aPEF61\njl27f3UImepu0IpGZS7zbjwP0Plyz9N38M6LH7KnYD8rpr3tdh21Ytpb3DnoOgAu6tiSfuPuYGDS\nnXQMbcNFHVs5PM2qgiT9Anzc1vl7XxFvLd3OBcEtWD7tQ4786W4/iwyLY2PWDrc1X5z5GQHWNny/\n2sa88bk1BlOOinqGkUn9+Vf+zylkKp9rSGxPPn39Z7R6f56IuoajFb9zYUctFosNHyFO6BBgMISw\nICWbRdkrua3XfTw1fBxltKXUHsh7Hx3hzvsHk5m/zXnFZrHa+O+GXYyJOHu9z85X6qrRvA1ME0Js\nAvY42qQQojUwDsV2U1euqqH/r0A/L+2u3O74Uy+E+AK4EfgXWAOMl1LWbmE+hzAYDI1u+HclPT+P\nm6IG4K9XruP89TpuihpAen4e6XMWnrJ1ayI6LIbE5Hjn9dmB3w/ywZKPGJLSz2vmgNpQYmxiuDf6\nZgL0HSg120hKjiE5KYNmmhZUWKRXDUDbzN+rIClxpInR+9WgOQhfWne4gAefu4t3X3wH8zEzG3K3\n4uMjED6Co/8cJ/BCvdu8riWZXa+2TCYTh/886lzn731FvPvCNwyIq7pGe2Hap858ZFDpiZZDdn4a\nFvvf6DSBLF24zvm+yWQiYXJ0VRG2kXHs27eP2ZlxtGijYfi0Pryx5Auvz17huH7T6v0RwofeT1zN\n8qVbefjRa3gpd6vz+sxqsbEybyuX/8d7obnIiAgmTprMAw8PRqvVYrVaeWXNai5sfwmLVn6JtcTO\n5ZdepToCnKXUKXuzQ6BsAzoC24FewOco2sVfwG1SyjrlhxBClKLYeyZVa5+NIiz8vY8EIUQeyvXa\nESALxU7TDZgNvCel9OqUoGZvrj8jxkfTZexjHu27ct9g+cKMJtiRI3A0P4MSewkFO3YxKOUxD6+y\n317aS5oXm40r8VNiueLpNgS4HJylZhs7X/qLqLBYp42mX8I9zsP7nbQvuahZO24e45li5tdVRaTO\nyahmo/F32mjuHnIfLVo157Xst7j/uRv4bN33PBlzv3OOVbM24OsvGRBfJSzWpX7GA8NvotRSxrqF\nW7nyiisJ8GnGvr/2YvMtxl8rGRjXk7eWbufhUbd47OmHl6xudpraPtOJCyJ5MOJa59pvZnzD/3b9\nQeLih9iw9EsGxfZiXcZmHn/uJo91Niz/ioGRPbCabbyx/CvufOxq1i/5HL1Ww6E/jiJ8BBd3boWf\nxhdrsT/pC2rORm0ymcjOycFsNlNmt3PcWsig4Vej0/ljsdh4ZdVOZk3zrn2pND6nvZSzlPKwwwgf\nC9wH/J9jbDawSEpZ/8x/J4cPIIFVUsrK0OzNQgg/YL4QIlRKWXCa9nJO00Kjw2a2ODUaAJvZQguN\ntpZRp5ZKLzSA0eNH1pg54EQoMTbuxvEAvT8ldiVAM3v2MiZMTyJ9xMs0a6lDUxHA/MmpdOjQgfh5\nY3go/ibnobxq6ntcGnwVJpMJgyGE+YnZSnqZsj+Rpb5crO3Cj6//zs5dv9B/Qg/adGxJRUWFm+aj\nb6nntoe78NaS7cgKSanVTpm9gjXztqFtpiE8/dEqAWQswKfcjzsHdiVr3NsE6LxH+f/021aeixmI\nafcftG/fnuDWF3vNk5a9LM0pZCrHPhLTjYyYPW4F0no/eQ2rM7cyOLqqcufL6VvoO6yb8veMLTw0\ntBufvP4zYRPuQqv35699R/lkw8+U2ys4vLeC/NzaSx4YDAZSU5TibkkTonjovqudVTx1On/6Db2C\n3MVpJC9oWBltldNPneNopJTHUDSHhlqc/wVaeWm/wPFebfzj+POjau0fAAuA6wCvgmbGjBnOv/fu\n3ZvevXufeKfnMbFh4cQkT3den9nMFr7KWkdG0swTDz4NVGYOqK7RNPPidu05tgWlZpuHRtNMUxXw\nWTr9P6MAACAASURBVKG3E73sOee1XGaWkein4im12FmX+jHFfx/nok4X8mhMH5pf0Jznxg/m0jZX\nMDl+mtf0MCaTiez8NP7vg91chIGN6Z/TN/Y2tHp/bn7wWt7I+ZgR86q83N7N/JGQy4K5ZeTFbkJg\nQHwfMqLW8+aSLxmU0JuVsz/yel3Xoq0vD8SFYjWH8Pz09/jbvIcnnnmPiVFz3OJlzPZitHp312at\n3h8fvyoBszZ9CwNje3L/M914ZdmXHN5bQufgUIKbXcGP75Qg7RZ8bHqCWuncSkO36dCSQZFKsbYP\nlh+olyZiLS1Cp3PP2abT+WMtPezWptTFWYS5tAh9QBBjR9eedFSlZjZt2sSmTZtOydynvfCZEOJj\nQCOl7FWt/VMAKWWfWsY+BawEHpFSbnRpvw74DhgspVzrZZx6dXYSVHqdHbNbaaHREhvmveBXVd9c\njtkttNDoiA0b2yDnBJPJ5PBUM9NMo/dIxFmZ3fkul+zOH2du9bDReEusCbjYaPwpNdv4IHM7yUkZ\nSoDllFi6DLnYQ4i9PP4Nhqbew8YlW3hwZG+Pw/3N3M/QljVn4XjvbtSKsFFco6XNh/KyCvx0Puj9\nm/P4/f3Z8N66KjtJWBwL82bSO/wSj3nWpH7EXYNu5O1l2/jnzyMEd2zFoIQ7qjSNhZt4KOwWLurQ\nyrm3t5Z+wcMjb2PppI1EPz2F7T9sxWwv4ucfdjAq9V6PZ1mb/hE+QjAotifF/1r4aO337P71EC0C\nWvGfy0Pw92lOeVk5Gj3oNYE8+sAA3nh3HV9/9zn9I2/g/XU/8PfBYrR6f1q01NG2+RUszX6x2udR\nSM7SNCy2InT+QUSMqsrwnDQhih73aZwaDSglo7MWfs6yxasxGEIwmQqZMieSx5+92mkHev2Fn5kz\npXHr45yvnPYKm0KIT07QRUop76rTgkLEACko7s0mR5sB+A1IklLW5t58AYqH2zIpZbRL+0RgDnCZ\nlHK3l3HnrKAxmUyk5S9xCoO4sNGN6n1W1z3EJk/l5qgnne7W27NeJT2p/p5wJpOJOcY5FBzazZMz\nnnbOtyXrfYzjF3oIEdfMAdFhMR7vK1meb3YKow8ztjszCNRUZmDM+DBuC7/aY28vJK4hLO1hXjF+\nzJPj7vV4/xXjR/QdfSc7Vx/ycKs2mUxMSI7ivqgbnQLhtXlbaN/agPAvd8TkxLntP2FKNFcPCfJM\n+R/3Kp2vCMZqLmXguNs4dsTCpld+oqJCUlEhsZbYeXba/W7rr0vbxIBxfbCabSwMW0PojR247o5L\n+XT9j+ibaxkYe6dzX/nT3mZQXC8Ekk9f/QlZITEfL8VSZGfEzKqMBqsXbabvM90JbKXn7ZxfmDch\nh3379jF+7mgubNucITFVwm/dom9Jm7ncxQGhkClzx/JY2JXOPhvydzBncq5TiEybNZZ+Q69w2mhW\nLtvKfY9ey+YP9jF7ai65SxZxc1+9RymD7RvNJM9XE5U0lKYQNJtQbCOuXIji2vw38JuU8s46LSiE\nHvgBJWBzqqN5FtAMuFZKaXb06wTsBmZIKee4jJ8GTEERVp+gpMKZBqyWUo6oYc1zUtCYTCYik2dz\nfcww5/XW9xkryU6aelqFTeyUJIKfus0jgPTQfz8nfU6yQyBkcrzsOM39mhMdVnP254TkeI7ajvFQ\n3CCP+fa8/CuL5tQ9Kjx+SixdhgZ7aCZfZf9Oi6CgGgXUyWo0G5ds4YmY+9m6eAeLF+a77SVhSgxX\nPdXKOebvfUd4f8Xn9E+oOuDfy/zBmbam8vOYsDCSB6Kurzqw0z7mgWdvpsWFepZNfIPYzEc8nnt1\nymcMSqj63lep0fSP6Q1AVtzrXNQ+iN0/HyQupz/HjpjZ9OqPSIeg2v3LfhJynnR7vtXGTTwx5lZP\nLW7ZdgZE98JqtvH9GiXWes+/3/HEqNs8+n673uosQRA2dghjpnv22f6GjZR5WY7nL2TkmMFc1M4H\nXz8f7ul7NcEXt8RqsbHtPRvm0mIeeKqzx/O/+98/yE57waNdpX6c9lLOUsreUso+1V7XAFei2FXm\n1XVBhyC5E0WDWQmsQnEuuKtSyDgQLi/X8bOAJKA/sBHFC20hSiDoeUVa/hKnkAHFBfn6mGGk5S85\nrfuoKSXOcbvFkf05nkuGGegeeSOXDDOQkBLvNeYlMz+Ta/tdTdHfx73OV2I3e4ypDW+JNYv/KeH3\nQ79z+ZBO3BJ+PZcP6UTiwjjnfkwmE8VFxbw84w239DVrZr7F2GdieT/jW25+6GpeW/She7nk/2fv\nvMOiurou/rsDTKMJiAVQxxLTTY9J7Bp7CSrYe5deLNi72ACp0oy994JYYi/R9G4SY5xEVBSkM41y\nvz8GB0fGxCQm8cvLeh4e4dx7zr0yw12zz1p778hjtPZ6A91DdKLikgIK7hazc+UJdkQeZ+OCdNoN\nfM30oC24q0FvVcTYyUMJnRFUYS5Q4Tc4jHVTjhPtu4P44J007/osrvWMNdlq1XeyWLJGffmO2b1t\njzxN274vmX6u08AZz4ktsXVUIFdKcfWogXdgG9p5v4RUhBoyObG+e8i4cgeAjJ+y+PWHrN+1N2tK\nCtAY8hEekoekMRQY666F++FcT2LxnPubqqlUDXnm2aYMn9iGIWNbUdvNmBcuV0jR6gtQyhwt5uoo\nZdUJnU8a/lI/GlEUrwqCsARjdPHKH5iXgZEofuucX4AHy93cO7aS36gg8L+CwhIdrkrzsjNSpYLC\nUv1DZvw9eFhJnHKNgWH+I+gX0ce8+nNgG2JSY4hcaJ53W1RSxJWDV6lZv7bF9WxtzHNNfg+WCmue\n3voRA+aa308H/1amhmq+s8ZjVUPExs6ayNHJuD/lhsTaGms7G6I3RtKwVmP2LD6LnbuMhIAt2Mhs\nqN3QlU7DW2HnZMeW+WmsXrqxQhuKMm3N5WUWcWTtT/QN7ly5dbbyCG90eZpLh75DU1DC8Nm9Tcem\nLgnE690hrEheiFtTJ5xtavJ29+c5uf1TnOs44OpRg/b9XyN52hHGhVeuuXXFOWQKGdtXnuHmlRw0\nRVqavOzGqV1f8nb35zmx7XO6Dje65mrXr3FfPk4uJ1ZdZPSQt01bVSujjnMzvwg7RyWCBIumA4mF\nXB+x2HIeklLqQHxKFD3Hv8j+9y88pGCnOUko5I4WO30qZA74jA9+qEZTjScLf9kMIAhCJ2CPKIpP\nbNuA/+rWWcDMaTgO7VLFgpy/4TAxC8P/sfuwpNGcXLwOqVxKqVxP36ldq8z5OO5Tkpckm42FzAzh\n+/yfeLt/R06vO0yP4Mr1ds3dxIZlq//QluD9Gk3B3WJOb73ErZ/u4pMwpsq5F1d9Tn5mPje1aobO\n62vSdDbN24eNXIbXpF6mscMrT1KYn8+AeV0pzCni1LZL3PklG0NhKdELVuHh4cHUZQF08n/DRACJ\n/juYEN2vyoM1YvQaPJrWZsDkHmbHMn66zYFVJxi10NO0xq6VR2k34GUupn2DV1BbdBoDcRMOUK+Z\nExIBBImE1n1fw97Jlq3LD1OuExk6tx0FdzWc2PYFN3/OQVukp4arPdoiHS51HbjxUzYjZnfmo73f\nMKz7K1XE97X7P8V7ansyfspiX+J5xs6rJDVLGg1A0IxRlEuLzTSa3bFfsGxWMsvj5/Lu6Abcycjl\n8MaPGDyx0i59v0ZT+RpeY9YCH7yGPWcik62rv8Letj7WcgliKZSXlWAjB6XMgV7dvdmftgOtPr+i\nhXS1C+3P4h/XaH7jRlyATYBbxVbaE4n/KtFY0mg+jlhNXZkt2MpxsJYRPGbCP6LX3HOdFZVosbNR\nUFxcRJNx7TidvINuE1tW0Tt+Xq+uEtGo1Wq8xvVj8EpfinIKuLjrNGK5iFhejhuurI5NfvCyZnNj\nUu/rAlqhA6nVahZFzOfKnR8ZOM+T9KQTdBnbscr9fJ5ymYufn8Vv1QizYztXHKL7+K5Vzo8fvw5r\nuRVyext0hSWU6W14plFDHF2d+Pabzxi1srsZcWxffoR+oeYCPcCOiMNkZeRi72iLbQ0lrfu+gau7\nE7tijtJjbKuqOtDqk1BeTs8JLUiP/RLrMgU9pr5M1o1cDq25wN0b+ciUMrIy7jI+vCsntn9F7u0i\natWvQfv+r2LQlbA/8Tyj5lVaqVNnpCHXSZg+taqfJ3nLh/SZZpRfM37KYmvESeo1deXWD0U891Qz\nk+vsXkXnuJQobmff4OqVa1hZl2Nrr6BRvWeZEjQLlaohk2cE8GpfZUWeTS6n9n5JWUkZOdfLSU3Y\n/NBSOMsj5nPt18sUF+ko0ugZGtAXD5UbOq2etI1nCZ8dCYjMXOBHn+EvmEhp97pvWDjrv+tCU6vV\nJMasRFdUhNzOjgkBQY/t7/0fT9gUBOEaVc0AUqB2xfd/qE1ANR4PVCoVcVNmGV1npXok+hJKdDrq\nTxphIh7/5fOJnTz7bycblUrFyoWVJXHGTPVDppTzulcn9kbswjO0a2X15+jTrJhcVdRXqVSsnB3J\n9Hnz6D1nCN0DvSscZ+nMmjq9yvn3YLQ6h9IuoM195WhCWT7FWFfNwdGRgb7GKgItvJqzN+ognsE9\nKm3RsWepYV2DBi+6V9F0JILEYmKo0lnK6CXepjV2LvuALF0+r3Zswdc/XaoU/a/ncmbnZ9y8kmVx\nq8jK2orRi/uQlnyWbmPasnvlEToNa0lZaZlFDaOspJy714q5mJwJRUq+VX/DtaArFOQUYe+kwP2p\nWhV1xrQc3/oV3kH39b1ZeZzy8jITydxbc8yi7mwIPY5Wa6gS0Yj3dR71aOJKvaa1eG/cO3yxVWOW\nL6RWX2P6Ej+6+7yIXPk8Os1TpCV8zeIw84e879hgAqePxkYpQRBtKCoqI/u6hhefe5W4+AT8fH0t\nvlcLNJmMD2lhIpC1ySfo1LcrrnVd6D6kFXGJ0UiEMhPJgFHL6TP8BRKSov6TLjS1Ws28ycEMavcW\nCpkMrV7PvMnBzFke9Y87T38Pj1pU87SFrwMYXWPPiKK4/++5vWr8HlQqFTELw1mzJBI7W1tazpxg\nZg54NXAIUamJ//h92VXoNs4etXlnWF8OrTrHrqXpbA/dzYrJDy+s2bJlSxb7z2HP1LVsnZTE9uAU\npHobFiasIHjm5IeaCO6RDBiJoF2AUQcC8+ZtrvWc6TCiNYdTjrFu0hZ+3Pwry6dGYqUUsLKx4uaV\nTPasPMy28P3ETHifa99ct9iPp1YDJ7PreU15l7y7WVw4cIJa9VzQaQxkXc/l6NqLdBv9LoNm9GZn\n5FEzkX73yqO09nqtomR/ubE4ZVBnTm6/xPUfblkU+m/+mMviaVFcv3OdAutbBCb0x39lf0ITh2Jt\nY0PL916gX0g7BFEwkQxU9L0J6kD2jQKLBFZH5cHWbT+gvdclU2sgdcMFWg94yez65eUiafFf4zcm\n2GyNuJSoCpKpvF53nxeJS3mwHJCATbkLPbuNoE3LXkj0LvgFhtG5Zy9efP11wmbMqPIaJyRFmrbO\nwEggI8a9zelD5yp+lqHRF6HV51usGK3VP1J1LDOo1WomTZ6Ej68PkyZbbl3+byMxZqWJZAAUMhmD\n2r1FYsyTJ18/agmaEX/zfVTjMaCgVE8tC+aAgn/YHAAQNMaX4GUzeMvfE2eP2rQZ583F2L0kxj68\nJwwY/8CjNsfSZ/lgkz5zYMUenunZBlsnR4KXziBq6iKzNe4WZvO88mmzde4vR2P3QBUB13rOdB3f\nnh833jD1srG1sefplxuQlnScYQt7V2o0c/ezc/levCZ7msbWztiC16RuVa5nJS3lxk9X6TK6Pbsi\nP8BGbkMb77dJSz2JWC4iSKxZ6bOBxi+6U2Ioo7ysnNPbP6FcFNEXGx/wcqWUO9dz6DSiBZvmpzN4\ndldTRLJpfjoRs+PZk74T6xpleE40J5JR899jV8wxhkzrTB2Vs0VCubfWg5HVvRI1q1ZF8NW3J5G7\n2lBQXoa9s63pnOSZh9Dnw7b311fkuqiJS4lEU1LIN998Q+OO5vZnuVKKtiTT7B7iEuLo2e895HI5\n29ZvRWErIS19HZTLaN2qK1179SIuPt5UigZAq8tHrnAH4PbNPD448DWUiVz/OYesW3exr2GHWCqg\nsHuYceDhra8tQa1WM336NLr36moq8Dl9+jQWLw5/oiIFXVGRiWTuQSGToSv+/TJM/zT+kuusGk8W\nHKxlFuuTOVjLfmPW3wOVSkXUlEWsTI036TZRUxb97h9qdGosrQI6mrWp7jmpN0cTP6BLwGDe8fUk\nOjWeqIXGB5Farebby9/TXPP6Q8vR+I8JZMqyYDoEtLivisB5lk2p/LTtPyaIfuM9GRvTzyxSGTy3\nFzuXHSEtKZ3sjHxc3J0pzC3Cwdnc+6LX6Kn3tAs9JrRgx/ITNH7laU5vP49BK9InsFvlFlvEAa5+\nk4FH4zr0DemGXGlsirZjRTpZN3Kxd7LFsaYtP5+/zdyAZezduoNiQyG2UntSl21GpVKxaf8aJBLL\nFuKczCLuZOQhU5gTyp2MPE5u/4SyMpGIidsZPqszHk2MPXXS474kfKoxf2fp0jgmzQzgpQH2FOYW\nsz/loim/xtZewZvPNTeRzLQlfnSbaOzN87bGg23RH9B92BvU8jDakHUaA4oHGqoVazXI5XKy7txB\nL95kZGBlHtHG6I10bDsEjcbcxn7PeZafq+Hg5k8YPaRFZbO0DYfI1VhhJ3ViSuhUEteEW9Ro/gji\n4uNMJAMgl8vp3qsrcfFxrFheteHfvwW5nR1avd6MbLR6PXLbJ68H5EPNABWJkY8KURTFx9t16zHi\nv2oGeBBqtRr/5fN5NXCISaP5LHrjP6LRPC6MmzqBV3xbVhnftWgHNgpbxHKR/J8y2ZKwBpVKRfCM\nyShbe/DxznQ8Qysf6Dvm7mbNkrVmyY+xqdHcyr7FzRs3adBIhYt9TbPk0RGBg2k/6dUq19694gi9\nQ7qxO+IInsHvsWnudqyswSukUnfaszKNziNfx7WeMbclzncngsQa79AeXDr0eUVEI9C82yusm72N\n0NWjkN9HjDqNnoOJJ9BrDdz+5S7TJszF28tyBsCEoDFkllzDc2JrCnOLOL3rMxMZaAr02DvLadv3\nFdLXfki/4HcpyNFweO1FvIM6VRoAZu1GqrAi53oxezcdNhknjGL+TW7l/MLwOcbq1Rk/ZbFp6TEU\nCgUvNHmNqUGziEuJ5KV+VasWbIs+hq2dlLLSMm5cyWf5nFW0bNnKdM6kKZN48a2XSdu/A2+fp6rM\n3xr9Iw3dnjaLaO45z8rL8hnW580qjdAS139LnyGD+PLCt/j5+JKQFPWXXGc+vj506Ni2yviJY6eI\nj7fcIO7fgCWNZvPJi49No/mnzABz/8A6In+92GY1/iJUKhWxk2cTlZpIQakeB2vZ/yuSgXsNzqrm\n0Ny+epOhK8NM22nBS2cSNXUhRSUaGjepT8uhnqQlfgDlZSCxooa8NtEp8RSVaLCzURI41hf/ip42\n/ZZV9rAZOXUEC/wX0rJlS1zsXbnxYyYX9/9Aeak1EutS3ur1NIJEgl6jN/1rW8OWFn1asG7ybsow\nUFJeQu0GNTm94yvaeDfDtZ4TCnsZEispp3dcpE9QJSHtXpmOwlGBXCnjx0+vkb76DFKFFIPWgE6n\nY8wCL+ycbUkIjcfby9tIkCnRFBuKsJXa0btrXzKyfqXYUMSqyTuo6e6Id0il4L9t+TFy7xRh76zk\nbmYB0YHbsLKywnfFAHMDwII+RExYz6pla00kM22JP119XkWurEXGT27EBe3HysoKawUERnuZrjFt\nqR8KazvkSlez106ulHL3ZiFDllZu9yWsCsfDw8P0sPfs5cms+bNxqWu56nRO7k0iFpkL9ypVQxbM\nSsDPd6DF1s4KmQS5XI5GW4xK1fAvC/9KpRKdTmeKaAB0Oh0K5R/L4/q7oVKpmLM8yug6Ky5Cbmv3\nRBoB4F8oqvlv4H8lovkvQK1WE7psqmn7TK/RsW32BtqOGUCdJvVN5+k1Om5uvYQgingMeLUKMW0O\niWFQRCDFuflc2H6M/IwsJPpSBkf1r2pVHp1Mizdbkacp4JvvLtM7KIC6DVXotVp2LIukdf8mfHXq\nB1r1a8mpTefpOLIj9k72rA1ej5W9wLAFgynMKeLM9nNkXc+iRi05pQaBGz/eIiR1XJXrRY5J4j3f\ndpzf+wXD51Q619bM2Y6NjYhznRpc/fwm8eHJxG6MpOP4FqYtts0L99BlzDvIFDbEhWxgxsaRVaKC\nxUPXIJaJSBVSpqwexP7E83gHVK3NFhe8nY2xu1GpVEyaEUiz/jWqrJUQtB/fmG5VxteEnWTkog5V\nxvclnWRIcGuzsU+361m+yFhWZtLUUOo+W4sdazcTuqxjlfknN+WQEP2+xfdG2BQ/2rW0rhLRrN3x\nE9369uXLC9+yYtlf39qypNGk7U9/4jSavxv/uL25GtX4p6BSqQge5M/0yTNBLlBSYKBEIjEjGago\ncWPQMNNnEiFLptPCt6eJmPYtWEuX0EEU5+ZzZsNBegR6I1PKORC5sYpVufBuEXauzjw3ogUypZx3\nNF05uHIXrb364Vy3Lt5TQkjwD8HKppTMn/dRt3Fdzm4/S+bPt3Fq4ESf4F4U5hRxfMNJPAN6mkhj\n4zxj1YC0pBMIEmjZtzmuHs7IlDJkSil7Yz9gUupEMz1o5Lx+JE5ez7hlHdFpDMydN4WOw9qZttiK\ncotwqKPgQMoHOLrYU8PVzmJU0PS1eohlILGyQq6UPjSr37V+DeJSolixKLqiXUAts7V+uXwLQW6w\neA13dzcOrfq8QqMxRi/vzz/IAP93qpyrKcky/VysK8ZD5caQCcPZGLuHIf7NzRI2F02Pf+h7Y4JP\nKHNnT2Sg1zMmjSZl/Se06NSLQ7uOEL5gyUPn/hGoVCoWLw4nLj4OrUaDQqn8nyOZx41qoqnGEwW1\nWk3Ulmi8IvpXurz81lncTrOTKlGpVESGLTbbJnNzqk3dJvU4FLvVRDIAEhubKiVpzmz9kIHzxpmZ\nD3oE9eVoUjrdxoxCplDgVKcWNlI9wxYNqSSSOZsxaA3IlDIOpx41kQxAYW4hto5Khs4ZUKnhxOyn\n47BWODjb0uD5utzNyLOYn3NvTK6UMmhOVw4mnqdPkx5k37jLsc3H8Q5tZ3owLxu1/qEtp3uOa0F8\n8B50GgNtvF5hZ8wxvAIqO4bujDlG56Fv812asb+L0sahyloHVp+lXlNXyy41Vzf8xoSYuc4caklx\ndDJ3Peo0Br7/9kd8QseglNlRpi9Dp9XjWseVjt17syPpBOXlenIzNaxetfE39RSVqiFz568iMSGC\n3Lwb/HztBnXcGnHjpzuEL1jyWIlApVI9UcL//3c8ah4NgiCMEwThc0EQNIIglD349XfeZDX+dxCT\nGkObwPZmn/R7TuvBgfkp6DU6wEgyH8bvIWiMD1DhcFu0nJRl8UQtWk7dmsZaaZSXm5HTW33asTcy\nzaxYZtavORYLeCKWGs/Raikr0ZpI5t49DZk3iMxrt9Fr9IjlohlpnN/9IX2Cepmd3zugF6e3f8iG\neTto1/8N9FqDxfwcw31FIuVKo6gOcHbvhyaSuXest19bVs/cZ5abszPqOG36GqMMeydbdkSewsFZ\nSecRb7I/+QSxIVvZFWskGXtnW77/5oqxwsTYYNITPjOtlfHTHQRBoEP/V9i+8qTZNVJnpZlaGqxY\nFEPCsjW8+crbvDvgdbbEnDM7d9Wsw3Qf04a2w16kWS83cnS32Jm6x0Q23b08sS53YvWqTY8k2qtU\nDVmyLI6k5B0cO3aBDes2smLZiupo4wnHo1YGGAbEAuuAl4D3ARugF8Y2AZv+rhusxv8WikqLzR7a\n2dez+fTAJ+iL8zkQlkCDRo2o6eBE1NSFVR4uarWa6JR4sgpzOR0aQ7m1aBYJubjX4i2vTsSPT6X+\nC43J/DmDmvXqWIyWEKzRa7UcSk7GxcPeYvTh3tSNdTM3UtOjplmk9CDx3Dv/7o1c7BxluNZzotuY\nlqybt8NMo1k3bwfdxrQwzdFpDFz75jo6jR5RrFop4MWWTfhg88eED1vLc2+psLKR0Hn4m9SqZyyW\nWZirode4juyNv8DtX7MpztMwdGYPPJrUMlYKWHGG5q070X+kN8+98BSO8tqcS/4VbUkRt+7eRBTB\n3llJ1+FvcCD1vMnZVlJgVeV37zc2hIAZoxClIklzjqAtNlBUYMBzVBc8GtUFjImVvSa05sPNV/j6\n1GU0umKUcluWzFtWTRT/cTzq1lkQEI7RWTYGSBBF8TNBEJyAU1S2WK5GNf4S7KxtTQ/t7OvZnFx7\nkh4hlcU1z0YfI2jMDJNTKjo1nkKDFsFQzs+3fqXrzGE0Usp5WdOJzdNi2b5wLf1mjjDNP7/9BNpi\nHd0Cx5Ieu47XezRn29xUOo57j88On6e8tIRrX17FoWYtNs6dx8A5npzfdcFi2+hbVzMRBCs0hTeJ\n9Ulk0Mx+uDWpS3l5ucXz7ZzsyM7IZseKE0is4NV3nybaP5UyvYjcTo6msBjbGkZnk05jYO2sfciU\ntuxcmcavP9xgy9JTGLQ6JNYSZHIZ5WIZ+XeL8WjqxvUfcgGR4vyLvDvoNQ4kn6dchJM7LlGQXUz/\noPc4t/4r0qI/wbGOIxLkvPpSZz774igTo96rzGVZdAhXhQdDpnXny3PfkzLzEGMXdsM7sA06jYGU\nmYcInjjTwisnopBb0devhWmt5AUnqVv/AWeaQoZgI7Ji6aP3FarG/388auOzQuA94CRQArQURfFi\nxbF+wCJRFJ/6O2/0r6DadfbkQa1WE5WcQoHBgINUSvC4sSbyCF0+mTaB7TmaeIR3x/eo2gBtw2UC\nx/gTvHQG7/h6mkjkUNQm2gzvgYt7LdO5R2I3IFNKTXksb3u1ZPfiLQxcFMbu6THUc63L5YwfsXdR\nMmjewEoNZsYWCrKK8EsaTWFOEftjDjB4TuXxLQu2YyOT0Se0331jG5ArbRAkAmJ5Od6TKqsJbHeT\nfwAAIABJREFU7IzYQ87tfMYuGW0a2xW5k7ysXMYtHWYa2zB/B3KlDFtHO97o1Jwty7bh3qgOff3f\nozCvkKMbTuB1n+lgzbzN9BrfEffGddFp9OyKOUjOnbtI5dbU8nCh++i2bI9Mp32/lty+oKW4oJQW\nPYzVtPdsW0OvgJer6C8rAzYyenZfTu/7iGfecOPY5o+RKWzQa0voOOgNdD84smJRjNlrOdpnEOMX\nvVU1rybxC/r7vFc5ptXz1f6brFj858qkqNVq4uLj0Gg1KBVK/Hz9qqOhvwn/hutMC1iLoigKgpAJ\nNAIuVhwrAtwex81U438DarUa/8XhvDJ2HK5KJQaNBv/F4cROn4ZKpSJi8nJiUmMouJ5vuQFaaTHR\nqfEmkrk33i14MCdS9tAtYIBpzMrGhp5Bnqb5t366SX5WPutCF6GQyPnh1s9YWQsmkjHOkzFk0UC2\nzT7KhlnbGLqgPzKlkvTk44hiOYIgQWFvRy//3mZzBs4aytHVB3nPvxfZN7JJDHkfhZ0cvUaPXmtg\n4LQBHH7/MGJ5OYJEQtsB7bmUdsFsjaGzvUmatAGlgwNShQwbG2v6+r+HTCnj0NqjJpK5d/7IOYM4\ntOYoffzqIlfK6BvQg4Oph/n24g84OttzMOUUclsZm8P3s3djGrEJCeh1OmRyOUhKLDrKGj7vxold\nl5BIRJq1aEKzFk3Mzjn1TWW3dLVaTdjCUGp4yCznxdzMRafVI1fI0Gn1pK/+kPAZD9Y/e/T3zbSZ\n0+nq2d1kO542czrhCxdXk80Tjkclmq+BpsBR4CwwvaKicynGxM7v/5a7q8Z/Amq1mqiUZApK9DjY\nyCjIK+CVseOQKpXk3bzB5/t2UyYpY7DvRDbFrzI6yRZGEjwz1HIDNGtbCg3mXT3vZtzho13Hyf41\nk0MxW2netz12Tg788tVV0zbWrZ9ukh5/gMGLR3Nu21m6BwxEppRzMGq9RU1Fp8/irT4diPdJpURf\nhmMtF2q4OtBuSBsu7DptcY5Ybvze3sme2qo6pmjqxpUbnN192rwczYoD3FLfYk/MPgTBipZ93qam\nuwseTd3oNvpddkUfQCq3+V3tRyyvjNblShnaIj11G9Sij18XU/7Nmjk7mbFgKojwccoZnF3qotMa\nLFeUtrHijjoPF3cHk9ZzatfnFRpNOTWFStE+LimaLiNak7bpkMW1nm30Ml/tv4lGX4RSZkf4jD+f\nUBgXH2ciGTCWhunq2f2JKw1Tjap4VKJJBhpXfD8L+AA4V/FzIeBpaVI1qqFWq/FfspBXfEbjWlEW\n5+KCZbjk5aLJy+XS1rV0DBplKpkTsGQ+MWGzycjI4OyHH3Hhu48YGD7cTKOJmLKU6NR4EwndzbjD\n2fVpdAkcYjovPWoD2kIthjw9K4cuw0Ymx0Ymx+P5epzdcpIeQUNNRGVlXdX2rNfosa/pyGeHz1Fb\n1YDuvpU6z4HY9xHQWZwjSKjIo9lEbmYeQ+Z44dakLrETE00kAxUVnyf1JC35EN6T2hsdYxHHad23\nJYIgIFPK6BvYk4gxsabrCBLhIdes3N3QafSov8/A3sGe1bP2YNDpeafnS7h41ODXmz+iKdDRc1xb\nGjzrzvq5B4ny30CjZu5IJALl5SL52UV0G9Gan47kUV5aTmLYAZxrK+kX3MGkveyP/thUzfijzy5y\nLed7DLoyUhadZuyMymZn+5Iusygs4ZHcZGq1mrjoZDJvZXHz7lVUjevhXMMFvwmVJYI0FXXS7oex\nIoD2j70pq/GP409VBhAEwRZ4G1ACF0RRzH7cN/Y4Ua3R/HsInDEdx/49qxT6PJOwFitrK9qM96py\n7PvYTVzNucF783wpzs3no20HufvzLzzn8RQLp80HYP6KJfxw5xqes8dwImUP7cZ4VYl81k0MZ27Q\nFCI2p9J7li8ypQK9RsvuhXF09++Di4dRy8m5cYczG/bhGVKpfawPW4+tszNypZx3RwytsvbasAXY\n1VAyeM5w05zN89ZTXFCEexMVLft2xK6GAwcSttBxxDuc3HSK/lOrfh7bG70P70nGxmI6jYE4v+0M\nnj6Qmu41Adi4cAflJaUMmNTXskYzdzO9JlRqNKkzNmFlZcPIWZU5P2sWbqSt93O82LKJ0WQw7wB9\n/Dqi15aSlnyKkQu6mchh9awDFGTpiQtPpmXLlkwMGs3bo92qRCrnkq5TYMijy9i3TFHTtpXpCIKI\nQmlFXoae1QmPZllWq9WEBS/k9ee6ceq7tXj7dK3catt8giVzlhurF0yeRLPmr1QpDfPVpc+rI5q/\nAf9G4zMrURRNuTKiKBZjjGqqUY3fREGJHlcLrQsKb97A3q2OGcncO/bdrz/TLyIEmVKBTKmgS8gY\n9Both6Yay5gELplL84kDqJubx9FV+8i6+otFLcfJ1Znzn39sIhnjuII+M/04kbqJXsH9AXB2r0Vz\nry7EjI5Daa9AZutA5rU8apaAolF9i2vXe7o+L3VoTHJIPC5uLuTdLsTKWopb48a06NMBFzej26qn\nz0A+2LADUcRyNGJVua5cKcWtUS0Tyeg1ekr0JRTlFXMg5RiCAKUlEOmzCo+n3ZBIJOTdzWfvqiPk\nZxUgkVhTVlJGaLyfuY4zcwhJs1J4sWUT5EopI+b05GCKMd/lHsncu/7oBT3ZtuIEcRuNRS2v/nqF\ndkqV2f9frpTy/dXLjJrf21S1QK6U0T+oK/uST2FTbsvqhIf3HHoQcdHJdGkxmoPnk00kA0aHWtdB\n7YlLjGHFkkj8fP2qaDTpe9MIX7j4ka5TjX8Pj7p1dlMQhC3ABlEUP/07b6ga/y042FhuXfByo0Z8\nf+WKxWM6jcZEDPcgUyooKtUxbLIv0lrOFOfm4eRel85BYzmyMsWillOqL6HIoLO4Vvavt01z9Bod\nH6Tsx7aGC0X5xVhJBfzfX8bJdVsRy3UW1/7ps5/JvpGHXlOOJl9k2IIpprUOJmyk/eDO1HR3RaaU\nI5YJlJbArsh0+obcX2DzAF1HvWla16iPSCuuoWd3zEHy7uQzcYmROLJvZnH+4EmecqzPdx/9SKPn\nGhMc64NMKePm1ZtsWrodhb3Soo4jvS8KkFfoRvlZhRYF/MI8Dd5zuhIaGEJd9waWqw8oZGbVp41z\nZRTf1RIVmfiHdJjiIj1ymQLRymAiGdOaChkaXTFgTMwNX7i4wnWmRalQ/KNGALVaTVxMIpoiHUo7\nOX4B/0yb9P8CHpVodgFDAH9BEH4A1gObRFG8/rfdWTX+EwgeO86k0dzTYT5PWE1smDEXI2DJfF73\nrWxrcHhBNGUGPXqN1owg9BotNZvUo3m/blzcdphDEe/jWNuFdwZ78qZ3D3bOS8RrzgQzq/NzjZ7G\nTiq3uJauUMfa4ARsFTbkZOag0RmorapLw2bP0HH0AGRKOW++14WjqetIi19rptFsmR+L9zQ/6jau\nz4HYdXQZ3de8hI3PEA4lbkCmlFFWWsbNn37FuY4zHYZ5cjDxBIhlGHQl6Ir12LtUNhbbtuQDSkuk\nJASlUqOWEx0Hd2J37G4TyZzcuQ/vyS2RK6VsXVZKjxFGN1r2jWzO7D1NUOJg0pLOWoycDDqd6ed7\nnTLzsooskoi+2DhWt747bd7yZvuyZPpNedu0vZYe/zmN6j2NTqOv0uqg2TOv/OGHr62dDJ1ei1Am\nNTnUTGtq9Sjllb1//q3SMGq1mmmT5tKt7SDkMgU6vZZpk+YSvmJuNdk8Ah5ZoxEEwQboDgwFumGs\nDHAWY7WAXaIoFv5dN/lXUa3R/Lt40HUWPHacWZ+YqJREsgrz+O777+g4ZRhSuYyza/fSJXiESVc5\nHLmOZl1a8dXhi3T0m2AipmOxSTT37kzaonjcmz1dkcMiQp6OlMXG7Z/gJbN5a7yXaa3ts6Np+mpH\n7n73JaVlJWjQoi3MRWaroOB2Jo1fewYEG97s1Y2829kcSdpEWUkZUrmM0pJS+k4eT93GxiKfafHr\n6ek7qMr/OXVSOCMWTaAor4Bzu45x+1oGTrVr0mFQD1zcjNrQravX2b9qA25NanP98g1snZxxru1E\nebnIr1//yoAp/dkYvp7GzZ4i85df8I3pYSKF7cvO0dvHC4A9CfvoMeEd5EopWRm5HHn/I/pMqOwS\n+qBG8/6s/ciVdpSWlKGwk9Dvvvpp2yNOUl4m0C+4MwdWfEvvXhPJzrrFuYt7EK10ZN+8w/pkYyGQ\nsMVBZhrN4ZSLLJn+2x1UH/b+eBSN5t/EpJAwXmrUHrms8gOLTq/ly59PsCLy8RTzfNLwODWaP2sG\ncAT6Y4xy3gF0oig+eW3dKlBNNE8+gmZOodbglqbIIOf6bS5tO0z2lesYtDp6Lwzk/PoDdPCZWGWr\nbdfk2cTNXcTO9IMUGnTYS+UEja3c1tixcwezo5dSp6mKnIxMHGo5kXXtJu72tdA72CNVGniuzat8\nnpbOkAWVCZib5+xDYu1MD//RyJQKMq/+wu5lsdg6OVBWUkr7ob354eLndBzuWWVr7eiarbTyasep\nLfvpHVxpad4dkUb7Ab2MRoFV2+gwrA2uHi7oNXrSktPoG9wLvUZP8uS1SG1kDJ83AplSxt64zQyc\nVlmeZkfEWboONdZT2x2/B+/Q9qZjWRm5nNnxGb9ezkIuKAgYF8SlL86ZOnXeunObboGtyb55l80R\nu3FrWBOJBMrLIT+7mK4j32F/4il6tA3AzaNSzNfrtFz+6gT+fhOIjUki81Y2N3Ou0PApD6RWCsrL\nSrBWCiht7PEbG/KHyOFRXGf/JnzGBdHujb5Vxk9+vIuE5D+XfPpHoFZfIzk6EkNhPlJ7R8YFhvzh\nhm5/FP96mwBRFPMFQUgHXDAmb9Z9HDdTjf9dFJboqHffw9q5Xm26ThrOdwkHsbdRYNDqyM/MsWge\neO7Z52jZsiUtW1btzAkQsyYZz+njuLTzMEOWh5i2wLZOj0FzI4sx8VPYOHU541YOMhPRHVwdaDvE\nSDI5NzO5tC+NsTGzTPN3LErghdZvsi08kf7TKrftti1JpKdPHz7cd9xEMvfW7BPanfgJSTR6uTGv\ndm7G+T3nEcsxlvIv0prOc2tSl+6jKgtzSqykXP8xi4v7f6S81AqDoYyNS7YwJGwggiAx2wJz9XCi\n+/hW7J3/AzJRwRuvv2HWrTN0ejA6jZ6abi4413IEAQz6Mm7/mo1LHQcuHPwcm3JnTp08RF/vUcjk\nCvQ6LUfTNxPgO4apkxfSqd0oXn3euIW0Jy0aRd1segW8UdkcbYkf4WFxj0wSKpWKFVFPrqivtJOj\n02urRDRKO/lvzHo8UKuvsTjYh7HvPItS5oZGb2BxsA/Tox7NOv4k4JGrNwMIgmAvCMIoQRBOAteA\nmRi3z3r+wXU8BEHYKQhCniAI+YIg7BIEod4fWaNinTBBEMoFQTjzR+dW48mAWq1mhK8/585eJG3Z\nJg5HbSbn+m3AGBnY28gJGjORY8vX4VzfDYPGPGfCoNGilPz25yVRZsUX6WfoWpFnA0YtZcDiAMrK\nyvggdT82UkkVER2kJm3n0v7DdPMdbDbfe4YPF/d9wJ3rmaydEcna6ZEcXLUFhZ0t9k72iOVlpjWz\nMu6yNzqNQ0nHKCkxULuBK8fWH6esREAst6KsRCA3q4isDGPZQF2RjvQ1h9kTs4+98fuo27gB+2K+\n4t3+Q+g5ZiQ9Ro7EoLNm45JdFGTrWD19t3kV5/DztHpjKB06jCUmNtnsf+U/LpCjKWfRafR0GdoB\nvdZAH/8OBMcPpV9oV/JvGZAr7BBsi4mNm8zhA2u4/NUJloXPZc/uNDq1G2V64MplCmyUViaSAaOh\noJvPK8SlRP7uaz8peBoTx4UwKXiaKTfnSYRfwAQOndqMTm98/+n0Wg6d2oxfwIS//drJ0ZEVJGP8\n/SplUsa+8yzJ0b/9+32S8Kj25h4Yt8l6AnLgDDAO2PFHtRlBEBQYa6ZpMeo9AIuAE4IgNBNF8ZGy\nrwRBaATMAG7/ketXoxLX1GoiU1IpMJTiILUmZOwYGv6D2xRqtZpRYTPRKyQMSIqq1F0iYkA0YMjX\n8ZLKWELvuWefo36fdzkWm0RH//Gmc/ctWI6sXGRMYADlNtbYS2UEjxtv9kla0JdRVlpq0absUMuF\n0hIJBXeLq4joYDAZCcQHWg7cm28js2Hk0sXIFAr0Wi0HY9fwaqeW7IvdjkxphV6jpyCniOPrT+MZ\nUFn7bM30dciVdnQZ1ccUCe2L38axtSfoOKI92oJSevt4IlPI0Wt1JIfFMH5xIDJFBdEp5AydNpYj\nG/bi6ePJzas3iBq9kcZNX0AoVdDu1WBq1nQHoLjIYHbfKpUK/2EhzJo9E6SgK9BzaMUnZOZkIrdx\nwkampG9wG5P2cnT1Gfz9jC3Bi4sMZp/qASQPaY6mKXn4o0GtVhMWupDOrUeaxPWw0IUsiZj5RGyV\nPQiVSkX4irlmrrN/yghgKMxHKTOv8qWUSTEUPdHpi2Z41K2z/cAPGAlhoyiKv/6Fa44DVEBTURSv\nAQiC8DVwBRgPPOqGZwKwEXgGsPqdc6vxAK6p1fguWc4L4wNxrKg35rtkOfFhkx+ZbK6p1USlppBv\nMOAolRI8Zqxp7jW1mqiUFAoMJThIbQgeOxYBiExJoaDEgIONlIK8AsprOPCu72DTlphUqaBjaABn\nEtfQY9YEDBot/ksWUtPaBjtnR57v1IptYXORyhXoNRokNhIUtepSf2h/ivNy+XjnXrz8fXi5URNm\nBocAUMepLl9/9a1Fm3LN+u60HTGAPeF3WTt1CyOWVhbOvK3OZMfilbw7ciC3f/6JtLhkJNYymvfq\ngrObsedNbVV9inIKOH5gF2J5OVJbJWe2HUKmtEFbXMLa6Ztxre9iIhmoyG1ZPJyDCUfNIqT3fPsT\n57+UXRGHUdrZsj9pO1K5DYIgwbmOq4lk7kGmkJtK3kjlMiRWUspKrLEqr/yz1us12NqZk4BarSYm\nKYUB4yaZtsWO795B+LRQZi2cyZAw8/yYTqNbE5scTcTiKGztpFW2kMp1UovuNaWNPWq1mti4RDTF\nWpS2Cvz9jNpZXHSSiWTAGBl1bj2SuOgkVkSFP9L775+GSqX6V4R/qb0jGr3BFNEAaPQGpHaO//i9\n/Fk8KtG8KYriJ4/pmj2Bi/dIBkAURbUgCOcxVoj+XaIRBGEQ8AowANjzmO7rfwqRKam8MD4QqdJY\nll6qVPLC+EAiU1KJXbTwd+dfU6vxW7qEF30nUKOCqPyWLiFuahgA/kuW0GzCRJwrjk1YsJASnYa3\np0zCpWLs4oLFyGo4WtRd7pVVkSoVvOYznOvv7+D00mS0NlK8FoebIpqtoVN4o28fjsTEoy8soteM\nKaZjPvPnkH8nH3nt2sgdarN1egwDFgdUlqmJ3kyLgX2RKRX0nuZH4thJRAxJwNndhdxbebg9/Sya\nwmJOb17D2OjBJgLaG7GNN3q9x5HkbbT26sWZrfvpOmGEKarZuiACbVE+dRrV4fr3RWRn5FvMbZFI\nhAfG5DRq9iytPDtzcvsuegdW5tysnbWRm9eu49awcodZr9UhSCD7RjbHNh3DZ4WvKQLas3IVrV4a\nwRdfpLF82XSz68QmrKJDH29k8ookVrmCDn282bP/AE8/39RifoxGb8xl8Q8Yb9Jo7kUiJZoy9sd8\nbKbRHEr4HN8hYUwNm0vnzgORyxXodFqmhs1l6ZK5FBfrKSzKJe3U+4iSEoRyG1q/3pviYvNmcNWA\ncYEh92k0UjR6AykXLjM9KuHfvrVHxiMRzWMkGYDngb0Wxr8FvH5vsiAINYBIYLIoinmC8FhMEf9z\nKDCU4lhBMvcgVSq5bSh9pPlRqSm86DvBjKhe9J1AVGoKiNBswkSzY6/5+3MuOdFsrOOs6eyZNMVi\n0qYgqZQPpUoFotSa+jXrUm/YILPox8mtLp/s2Y3MVk7nAB+zY2/5jGXLpOkMnhtEcV4up9duInXi\nImxkNrg2rE/LgX1xdjf6WGRKBR7165NzJwedRoogKOgeMIbNMxYwsoJkjOfJ8AztRtSwlSCR8u2F\nT0wkAyBTKBgwK5SNsxZQoiuljsoNG6mVxdyW8nJzJ6Reo8PKypoPDx6jb3APs2uOWDCEOL8UGr5Q\nD4lVOeVlEvLuaOg5rgdndp+mTe+2pK9Lpzi/mJw7Obi6u7Jt3xwSIqoK8kVarYlk7kEmV1Ck1WJn\nb2sxP0YpM+ayqFQqli6fSWxMEppiA0pbKXHxSwFMbZ2VNvaEh8URG5doIhkAuVxB584DiY1LpKxM\nx+FLq/Ee42XK8t+RuhoP12pf0YNQqRoyPSrB6DorykZq5/j/yggAf9J19hfhDORaGM8BnB5h/grg\nB1EU1z/Wu/ofg4PUGoNGY3rwAxg0Ghykj/aWyDcYqGGBqDINBrRaHc4Wjt1PHvfGJAh8EJnEuyGV\nussHUQm8PXzAffelxd5Gxh2N3kQkuTdu8Nne/dy4fJkmb71B3o1Mi5FR3aebUJyXy4XNW+k5eWRl\nXs7Ktdz/mNdrtGRev0ENN1e85wVxInU7MqUCua2NxWikyevP88Ol77ibcctEMqbjCgWiaEXbQd0B\ngd2Rm9gwZzND5w2qrKU2exO6olKz6gT743fSrl9PLhxIt3hNG7lA6/4N8HjK1diEbHIan+/+lOxf\nsjmz5yytPNtxdu9Jxs6rjGyi18bh4eFhRjZ2CuN22f1ko9dpsVMo8B83kamLQuk0urVJo9m0dDeN\nXZ9FrVajUqmMrRwiq25v3d+jBkBTrDWRzD3I5Qo0xTokctFEMsZxOd5jvLh05Bx/B9RqNXFJ0Wh0\nRSjldviND3witaCHQaVqyOKo2H/7Nv40/pDr7N+GIAitMJoS/n6rx38cIWPH8E1SNAaNBjCSzDdJ\n0YSMHfNI8x2lUtPcezBoNEgMJXz3/fcWj4nl5VXGmj//HE8pHUmfsoD0qQv4MXYNcn0pdk41Ks7R\n8mnCOry7due7y99j0GjJvXGDi5u30Kzru7g2aETrkRNwqtfAoiPNysaaT/cepEvgMLN6Z12CRnBp\n1yHASDI750dR97kGeM8LQqZUIEgk6DVa7JyNbZrvh7FGmRyZ0paC7Gz0D1QP1mu1FObkYufkgIu7\nK46uzrw7dAiHEs+wOyKdQ4ln6DhsKHpNCSsnhJMyJYaUqTG06NUZl7q1EQRri9f0aOrO8U2XuXM9\nD7lSytjl3XGr5YJUIsVzgjcfH72I53hvM8NAhxFdmbVwjtla/j4TOb57B3qd8b7vaTT+PhONEcuM\nCD7e/C2JUzeyP/ZDenSdyJvtPZkyfe4fcoYpbRVkZKjZtWsNO3e+z65da8jIUKO0lSNYCRYrMQtW\nj/+RpFarmTY/hJc7e9B+wEu83NmDafNDnmiX238Nfyph8y9d0Ng4bY8oihMfGI8HvERRrP0bc7/F\n2Dr63qazABzASJjdAK0oigYL86oTNi3gr7jO7tdopBWay9fxibhaWaPs0Y3Pd+yinX+A6dixBfNR\nWFvTavpU09gnsfEkzZxV5ZOlsVpAEoUlegRDKWWlZXx39SrPe3nx4cZNyO3tcHKvg75YQye/IKRK\nJbk3b3Bx80Y6+o0zRUZ7Fyzh9V6dOb9pJ27PNEGwgjf6vIuLh/EttjFkEa713bl15Ro9Qgby2cHz\ndPEbCUBOxm3ObtzHW326cHr9+wxZ0N8UjeyJOMzrPbzYuSgah5o1sJHJ8ZoSYNJo0pPeJ+PKVQRR\ngkQCtg52jAqfWuV3eDBxHV3GdudA3HYaNmvKVye+ZFDYeIry8jm5fZdp+0yv0bMndj/vDmmHvbMd\nR9fuwzvUmDO0OuQYOn05Lu510BeX0S9gcJXrxASvYHrAFLy9vI3ifGI8t+7c5ub1W6hUDXFxcjKR\nzD2ETp7KM6+1qxL1fP/pSfx9JxIbk0xxsR5bWxn+AeMsRgfnzp0jdPIs6nrURWIN5aVwK+MWEcsX\nsHf/Xp5vWVmJOSszi5P7z1CUreWll5/FL8jymn8Gk6YF83Jnjyqlbb44ksGK8D/XhO1/Af96wuZf\nxLcYdZoH8Rzw3e/MfRajy2yihWM5QDAQY+EYc+fONX3ftm1b2rZt+/t3+h9HQ5XqkYT/e7imVhOZ\nanSSWRkMKIq1fDBlOlKlkmc8PIibGsa8hHhcmzThzaFDuPD+alM3yTr2dmhKdZxLWYUgWCGKZZRk\n32HBykjKpTbYS2WEjBln2pqJXhSOWq3GL3wxr4wfyw9R0Vw5e55+yyJMRHVw8UKK8vJwVipxcnPn\nrUFDOL1mM3eu/EiJXo+hxMCn+47Rf/Ey05wPEmNpNbw7ds4OlOpL6BIwgsOxq6nTpF5FLxmjndnZ\nozathrzHxV3p3P6lkNgxKaiaPYVgJef1Hl6cWLsNiY01tRvW57VuzTm5aRPlZSCxgne82/FZupwO\nw704GLeBzKu/otfqzFxjeq0OnaaYo2sOYC2VcnrrMToPHsqBVdvJu3sHOycFiaGp1H/WA0Ei8O6Q\ndtT0cAGgvMz4t6/TGLCtLWN4SA90Gj3xftstXqfes3VYuXYldevUJWZ1Ai93eIurH9zE3tWV7y5f\nJnJJeJWHerFGZ1HHuXDxI7749EcGek9BJlOg12uZMnkhy5ZXtSXHxa9C7iDQa1QX5Ao5Oq2OnSm7\nWLd+IzOmhxE2ezqdvbpTmFfI4Y1n8O4QglymRKfXEBa8mCVR0x8L2Wh0RQ8p1ln0l9f+L+HUqVOc\nOnXqb1n734hoAoHlGO3N6ooxFfAjMEUUxYe6zgRBaG1hOBpjROMHXBVF8aaFedURzX0wEUZJCQ42\nNoTcZ0v+rTm+S5fwgq9v5YM+bDqlOi0yOzuKb99mSWgo5z7/HNv+3lW0n6PBIdg92wQBKwQrgSat\nXufb9BN0CPatLLYZv5q4qZUPrIAZ03Hs2xupUslW/yD6Ll5aZd2zqcl09Pc3G9scHETNxg3Jv3GL\n/osWV5lzZl0CpXodJfoSvGb7cSRuLR3G9qQop4Az69Pp4jfcpOUcit5A5pVf0Bfl0/Ax7cNtAAAg\nAElEQVTVZ8i7lUdZSTk1atch73YmPfxGcWn/fnr4DzBpLdsXpfC2Zxe+//BLykrK+PW7H7GWSqjp\n5kxe1l2kChn52fk413ZhwIzR9zVU20lbT2MG/8XDh7hx9UfGRwyrYiI4unYfPSe+yfblp+k0vC01\n3Y0EdONKJgfjP2Lw5JEmjWZv8jY6Dm2Ng5Mdm2bvpNOgPpzZfQ7PfuNN1ubta6J5PynmkSKapJXh\nTBi+BNl99ma9XsvlKweIiKzM7Fer1bzn3YfA+UHI7yM+nVbHmmXvc/bkKaNukhDHpQtfMqpnOHJZ\n5euk02v49tZuVqz869UCqiOaP4fHGdH85oZoRSWAzoIg9BAEwa5i7GlBELYIgvCtIAinBEHo8wev\nmQKogX2CIPQSBKEXRhfaLxg7ed67dn1BEEoFQZh5b0wUxTMPfgF5QL4oimctkUw1zHFNrcZ32RLk\nQ/rj4TsO+ZD++C5bwrXf2a+OTE0xkQzA7e8uYyOT0jsqCs+ICLyTk1m0aRMtX3mFrxISzbSfS0uX\nIzrU4J2RgbTxncJbw3z5ZMshXuvfx8wl9orvaCJTK7PYCw0GinPyOBG3CiupzIwwjHOU5GRkmF1r\n77x5CNZSZHI7XOo3sDznRjav9/YkW52BXqPljd5dSIvaTIlWD4KE7XPiSRg5jV0Lk8jLzMWt6VPU\nVHmQ9UsmMqU9gxfP4uXObSkxaDi6eiPNe/XiYOwO1k5ZSZJ/OGWlZVzcc4L2gwbTY8J4+gT7YS0t\nwVoGo5ZNZPRyH3zjg1E6KinKKwCM1uae/l7sjIvn9J59ZFxRI1PasX72ZpNeo9foWTNjPTe+yyY5\n4IgZyQC4P1UHjSaPlNkJbF25kZQ5cXQc2hpXdxdjh04pfPTBJRPJgDFK6TcykJj4RLPfk7/vRI7t\n32qm4+ze9j61a7ubkQyATKaoYkuOTUjAo0E9M5IBkCvkJkebSqVixbIVvPDMS2YkAyCXKaskmv5Z\n+I0PJG39eXRa4z3qtHrS1p/Hb3zgY1m/Gr+Ph26dCYLQFGNzM3eMWkimIAg9gfSKn38GXgB2CILQ\nWRTFR2qEJoqiRhCE9kAUxnYDQsV1gkVRvF9BFu77+t1lH+Xa1TASxvMBPmY24+cDfIhMTSF24SKz\nc42RTyoFhhK+/eZr3urc2TTv0urVvLdihdk6XebPJ2raNDbHxRGVksKtisTMWkpbmodMNz93+jxO\nxS5F7mhn2l57pW8PCg2VDyxRq+X0qiTsXF2RWFvxQWw0r/Xti5ObB2AkFk1eLuv9fZHLFZSWltF1\nUhi1GjfGoNGwPWySRWedbY0afLTrIK/26kni6DAcXV3Iz86lMPsQfaZPQ6pQYNBq2TprFiW6Qqzl\ntajZwI1XurTmw+1HuHzuIt9fOMn4hEAKcwo5uHI9+Vk5NHixKTUb1OGVLq05tyWd4rw8ZAoFX5w4\nhntTdzqP7mOeoBnoxdHVh+jh0980VqeRB+9NGIVeq+Ng8lqatW1OnF8StVW1yL2dj6NLTQrv5NO0\ncWPsnMzr2Oo0euo1aUTnQX3Zm7SZQWF9ca0gIr1GjzZfR/7dn0lPW4MgWtOidU9q1qqLTK6g+AHz\ngUqlYtniucTGr+KzL7+iRq2adOzTlbPpp9DrtchkCrKyb3D2w/2UiSUU5N80udIAMjNvc+v6bXRa\nXZWIpnHDRmbXsrWTkpH5E5d+3IMo1SIYFDRv2rtKoumfhUqlInx2pJnrLHx25P8r19n/d/yWRrMA\n0AGdgEJgMcbI43PgPVEUdYIgKIGDQBh/oOOmKIoZgPfvnPMLj5DxL4piu0e9bjUwbpdZ+JR/p6TE\nbMy4VbaU5339cVAqqaXRcCYqgjdGDKeGuztSpdJitFAmk9FQpSJmUSVpvdPXm6cfOFeTm4OusJD2\nIYGmrbgTK2MwqK8zYtIUHKRScrJzkNnb0Xr8aNM5x6NjeXvwUGxrOHM8LgapvR3Nunbm0x07GBgR\nZ0ZmnQJD2T1/Pn1mz640JSTEkZd1h5c7deSXL75mTEISUqWCI3EJtB85AmmFVbk4Nxdn95p0Cwyp\ntETHrePtfp3ZtSAWn+RJFOYUcih2D2WlpYyLn2baAkuL2UrLgV05s2M3nv6+QAmCILFYwsagq3zA\nG/NobIzHFHJ6jBvB8S2bmBgdRHLoKkYvCDNtiW1aGEvRyny6BbUw2ZC3zEujtkMjjifuIzszE4cK\nIjImmabhWrcu3cd6V26rJW6iQ4fB2DvUwLZKnTfjAzpi+VJCp0zhmZbNkSnktOrall1bY2n7then\nLv4fe+cZENW5deFnKFNBiiIgaMaaaBJz04vG3kvsPXZs9CJFwYaIFOlFEey9t9g1mqgxMfUmMV2d\nqNgpUqYBM9+PkQMjo2kmucnn+iVnzvueMzCeNXvvtdfezuCRE4UUXNisBSQsnodSqeTa1RuMGBzA\njrytDPEaJNRoViblsT7PvDNh4NA+zEkIZeLcfkLD56roxSwMS7T8If4dUCqVQpqseoBZebkWheLx\nALO/Ag8jmnZAhNFoPA4gEon8MBXyvY1GoxaE6CQDWPqn3+ljPBLUs7W13D9ja2t23sLUNJ728TN7\ncHcICuHssmw6BQehKy+3uI+htAz/qEhK9Hrq3bOl0avrnvv5js30mRdltn+XQH/eTc7EqVc/Ptux\nmas/qxidnWF2TtcAPzb5BtDk+ed5fezbyJ0c2R4ejsczbeoQX8PmzZE52rFpVigNmzbDVibljXHD\nsXNyZEvEPEYujBFSd1UVFQLJAHzyzh763C+J9h3PiVVbsXO0o7SwlIMZ+yktLGVSSpBZpNLXfyTH\n8vZQWmgyyNSU6ii6ec2iBc71C9e5k38beyd79mVso9OwQcLrEpkUQ5UIiVyCR0slZcV3ObJ+Bxir\nqN+4Ifo7etaHHgaxFegNxMyOExysVSoVGcvTKdeXQQUU3yxn7JyxZtLngdOHsn/5bqQiGxJjzSXQ\nteHn7U3Y3Ci6Dx1EA7eGdBzYgdWpMQTPijdLwXXvO5qMzGUkLYnjiSbN8PBoSvc3x/LO6r2Uq4sp\nLLyNrdiKidMm4PGEK24N3PGdGsjuA9sFkgGTT9rEuf3YvXP7Ax25fy9UKhURofPp3bVmgFlE6Hzi\nEh8PMPsz8bAajRtwodbP1f++vw5yHXB5lDf1GCZcUqnwi5rDuPAI/KLm/GId5dcg2GsK59Ozzeoa\n59OzCfaaYnbdz1SXLEcsN29yZVkOLRwdOTh3rtk+h+fOQ+7siGLUEJ6YMRnFqCH4xi9G6dKAkxnJ\nZucWXb1scf/ywjscXDyftgN6YO/qYvEcuZMjXXy8cfRohFgux9raCmuxlcXeHUV9B0anzkesENPd\n1wtnD3fEchliqbRW8+c1bl26hL52P4yhyuIIaF25hrLiMs5seQ9F/QZ4PKm0GKncvnydkoK7FF6/\nTlWlFX1meLNp4Vp0atOkS51ay970XQzw92Jb3DqyvBN4o38f6ru7CfvoNFqsrI3o1Doq9ZWc3Lab\n3l7dGBgwgNfeepmCimKGz53E2AXTGT53EpFJ8zl92tTwqFQqSYpNJsJ3NgVFOpw8Gln0SistuUFi\n7LyHPmSVSiUJ0TF8evg4uYvSOLv7M5o1fs6iKu2zz79iytTpXL1+hW07lmEEOrz+FtZiEdOjpuEz\nz4+3AydRVFaC22tiImIDKSy5ZdmUU//oZylmpi8TSAZMHmu9u44mM33ZL6x8jD+Ch0U0VkBVrZ+r\n/31/PeRxfeRPwCWVCu/4RFr7BdLoXtrHOz6R7PBfb3ppCU2VSrLCIkjOy+XWPdVZVliE2Z7JeXko\nGje2GLG89OSTBHt5kZyXi+HaNTZPmoTY3h6RTk9Lj0a0nRNuFoG09Z3Gzdw1FN6+w+kV2ViJrDAY\nDVSVlljc31mp5I3JkziZno7YTmHxHF15OUX5+YiAT3Zsp6qigqtffse2r8MYVkvKfGBJLDIHOSdz\nNnPzxwtc+uy/fHX4XYqv3qCqsop9ick807ULp9ZtwNG1EbvjEhgYEYZYJsNgqJE6V0On1nD5y+8p\nK9Zw48JNXJsqsbKxtRipOLk2oUp3nQ3R8UxNi0EikyGWOHI49yhGYxUikTUdhg+mfiM3rKys6TBo\nGCfW72bIzGlCauud5avpMPx11s5didzOgaEza0ZGf3LoHGOjvMwilBHh4wiImMmO1ZsF4kjPXkrn\noSM5vHOTRemzuujXFdyVSiXLsrJNkVJqHuc++diiu0A9mQdXVWX0HTwGewcHtm9YjbW1iCHTBwm1\nGqlMyuCxozi4Zwv9prZn7dz9aNVP1zXlFNv/qnv7LSgv19Zxn5ZKTG4Fj/Hn4Zf6aDzu2fFDTb3E\nQyQSFdc6x/PR39ZjJOetoLVfoNlDu7VfIMl5K8iIWfiH9m6qVNYp/NdGSYWe50eM4FRqCm8GBgkP\n7hPR80nx9zfJnP28eVEu51m1mveT03luyEjO5mTRvLDIjBjEcjkGiZgVixaZ3JzvkduwmEXEZy/n\nOe+pNfunZfLK2LcRy+V08vfnREoK70TH0G9uVE0dJyOTHqHBfLRpE8aqSl4aPoivbKwwVFZx/dvv\nWT55HE+1fx29thxbqZQuU2tqQHtiorG2sWX4ojjEMjm3Ll7g/ZUrGLHg3s+XLrAhIhK5owN3Lv9M\nwZWrNHjCjdeG9sLOuR77U1ciUdjxSt+3ObNjNS7KJ3ixRwf2p2+mr3+NvHlbdB7dJ/iicHRiw/w5\nHF+zHaMBim4W8uawMcIYaDA97B1dG3Llpx+5feUGy0Ki8WjVlIJrN3BsWI/tiTto859O/PjdKTMy\nM1YZLUYobi0ak56Thf80H9Izl/Pp11/zdPfetOvWm105Wxk0rVaNJmM3gzvMISM1j6TUX9dPpVQq\nSUqNQaVSETZrAd37jhZqNDs3rabH6xOxt3PiwLFsBo15m6FjJpC7NMai+sxQZYVULqGRpwcHl5+j\n99RXhBrNweXnWDw77Vfd02+BQvGAAWaKP3+AWW2oLqnITMlDfVeP3EGMb5AXyqbKv/Qe/kr8EtFs\nt3DsfkNMEY+jmkeOuxUVNLKQNrpzX9H+z0A9WzFSZydemjCej/KWYzQYMBiNPO3qytZDB3nGz1y1\n1iHYnw9zVtJrQSxnczPoEuIv7GWq/4jrCASqMSMoDCs7Bc5PPMErY9/G0cNT2FdipwBDFWdWrhKU\naa+9PQZHz0YUXr5M9yAfPt2+my737kevVrMvOpY7ly/holTSYYK5seeAqLm8tyKP8qIiTq1byZ2f\nL1KhreBgVipyBwde7DeQ3n4hHF+RidfSLEF9ticuHrHCFhBhrLLih0+O0/jpNpTeLuaD7Ud4Y2gf\njua9g6Gygmvfq+g8ZjLO7o0ovHYdsa2cziMmCa4B25Pi6Dn5LdybN0Gn0bI1Lps+U8azJ2Ml7q2b\n8ta0CWbeaTqNhmMr9+Bcv4lZ5CSyFlmMUKytbbhTXMTMWYvo1HcyP+UXoNNoqO/qTtd+wzm45iBV\nVXqu/3SD0d1jcHFujOrro8C9uk5uKuUVpShs7fGbEmjRtSEjI4cytQ4HOxmrsuNwbdgckdGaHq9P\nxKW+aQaO8V5TqUQqQ2wjtqg+s7I2oFXrhFpN5vJU1PpS5GJ7Fs9O+1U1E5VKRebSDMo1ahQyOb4z\n/B66ztd/ep0azcHjG4lLnP+L13rYPWQtTUetKUMus8NnxsPHT6suqZjlG0/fZ32ROsrR6tXM8o1n\ncWb4v5ZsHkY0E/+yu3iMOnB4QNHe4b6i/Z+BYC8vk+LMz5c3AwPQq9WcXBCNl58fefv2WnR9NhoM\nJiuYy/nCfevVar7MzCEzfJbF66zatp3+iWmcXZXLG5Mn1HmvIisrxPZ2tLPwmk5dzlcHjwgkU30f\n/efOZrN3IDe/t1xj0pWV8eG2NfQImCQ0ih5JW0nbnt04u3U9iKwYOm+uIAwQy2QMiAjn/bWruaP6\nmQYeTekbMpYD6SuwtpZy68Jlti3MwcrW1G3u4tmAnz49hWPDhny4Zy/DwyPNnJ2HhkSQG+aPsm0z\nbGxtkNnZoXB0wNHVGbFEYtGgs8pQQYe+o9iVupJBgW8hkUt5qdcrrIvJE9JnOo2WPdnbadevF9sS\nVzItIBOJVMYbHQawZ/VaBkwYR31Xd3oOHsWevPUCyeh0aqoMaqZ4+XKh6L+MmdcHqbwJWrWO8LhA\n4iNShYemSqUiLDyGbj0nCFHMf7+YR99O0+o0W4qsTd89dVoNT7V4iiObD9JjZG9BfbZz3SY6j3yW\nQ8s/Im626RpLYn/tKCqE+4mYF06v4T2FfSPmhRO3IP6BD3qlUklc4r0BZuVa5ArpHxICqFQqZs8N\npd+wzkhlErQaHbPnhhIbnfjAPTNT8kwkIzb9zqRiOX2f9SUzJY8l6b/eqeOfhAcSjdFoXPNX3shj\nmCPYa7JQo6l+aH+bkUp2eOiffu2mSiWzxoxhRkAQDq1aYWVjy/OTprJ4/UbcZGKLBCiyMhXj7Ru6\ncWb5WrRXL/Na69Zkhs96YE3pu6v5NJbLeW7gEE6kZ9LZ31d4rwcXxiCRyxGJrDiWnE634BrftP0L\nY8EIhsoqi2Qis7dDW66xeJ93b11j1JJIs0bRHgGTOLl8G928vdm9cKGZ+gxMZFNVWUXJnWIqNFXk\nf/cTxkprek/zRyKTo9Oo2ZUUzcCgtohlYk5u+oQDy5MpvV1GeXGRGXlIZDKeePpJ+swYzDuZm3hj\nUF/2L1tDp1H9+HDvMXQaTZ2I5vxHH3H5+6+xkYjI8E7FydmJ5o2bYiyzITs4DTsnOXqtDkeX+uxZ\nupGG9k8JtZP6Lh507j6WQ5t2U3TnMtpSLUM6RQoks/vdWMRSCVW2FfdIptbAM+9XychNJWmRiQAy\nMnIEkgEoLS3CycWV3K3huDk3o9Nrw7G3c2LHgRR6DO6LTqvhyL4tJMQuMK1fmklhcSEq1UU8nnDl\nxod6gWR+DzKXZggkA6Z0XK/hPZk0ZSJPtm5Nla4SKysbRFZWKORyfH28BYujRzXALGtpukAypnuQ\n0G9YZ7KWppMYb3nUsvquHqnjfQ2qYjnqG39+tuLvwt/hdfYYvwJNlUqyw0NJzlvBnYoKHGxt/7AQ\n4GGobs68q6/AQWxLSfFdeiWnmz2o6/n4czsni68zsoX0mb5Wjeb99BReHjsevUbDl5mp3NVXkpyb\n90CzTv09ibSjhyevjB7PB3mrqaqs4Ornn9E3aj4uzVsAUJx/lfdzVlF05Wcq9RXUc3VHZF3A9W+/\ns0gmTs2a89KQoRzNyqD7PYm2UKOxtbI4TsBorEIsk1NacAe9RmNGNnqNhmvf/YDc0Ykek304kJnE\n29GJSGSm60pkcgaFzOX4mnmIrG3pOWOqUK85kLaODoPG4uxuGsWr02i4qbrK6rB0qioq+GDXfjqP\nHkB9D1dee6sb+5atof/08Vz5/iLHN2ynQqfDrXl9xsdMEvY8kXOUhRHRXL16laiUSEbNHSqYb26P\nOYSoQGxWqK/v4kGPvhO5+MVe/H2nkpGah+rroyjsbHF2kdH+FR8Onou3OPDsky8/JSR4Nn7+UylT\n64Q979y+xrHjmxgytia62bQyjUYNGuCptOP7rz5EIZfi7z2FjKyllGs0KGQy5s2a+8hkxOUatcXa\nj0NDR9q89DSHdhxh2MhxwrybiNlRxMXGPFIZs1rzAB81TfkD18gdxGj1aiGiAdDq1cjr/fnZir8L\n/6gxAf/fYCraL2RtfBwZMQv/VJLxiU9AMnIsntN9kYwcy9e3bqEpKjQ7TyyXg1xOVngEmo1b+DEl\nnRPBYZRevsr5fXsEkjmXl8ObsQk0njID2fDR+MTF15FmX1KpMOj1HFy4QCCb1ydOQXu3lMqKCs6s\nyBXkynInZ8ruFCB3asCg2CX0njWHESmZ2EgV7F2wyEw2fTwtm5eGDsXRw4PXx47l5Ko8tkWG897q\nHKz05ZTdLrA4TqBCq0evUePk0YRdsXGC1Fmv0bA7Lh6xQkGPaTP47/HDuLd4UiCZakhkcu7k36Xn\nDC+znpo+AW9zdv9OwEQyO5ITMBqsqaqsxL6BPdoyHXbOppG8ds4OaMo0rIvO4PSu/YxfGE7T51oJ\nJFO9Z+dp3UnPzWDXwZ0CyZhekzA0qhfWsgr2bcgxs485uX8F/r5ThWL+srx4/AK9uHTxJhKJHFGF\nDO197gBatQ6FjQetWg0mLDQWjJXCnqdP7WPQqAlmfTSjJvlh56ggd/kylmWl4eczg/Sly2n9cnva\n9XiL1i+3Jyxy7iOz51fI5Gg15moxrUaLtbU17x15XyAZMI0g6NV/EJlZj3YqpVxmJ1jb1NyDDkMV\nzAwLwdt3BjPDQszes2+QF/u/ykSrN31utXo1+7/KxDfo143o+CfiLzfV/Dvw2FTz4fCLikIycmyd\nyODssiw6Bs00O6bbvL6O47MwbqCigh/On+fNexLj2us0WzcK6y6pVPjGJtB2qh/q4gI+276FG9+d\nRyQS0aB5CwwVlajOfYRYLsXzuecoUKlwbvwELw4dzvlDBwVhwNO9enMgNhpjVSWNnn6G69+ex7XF\nk8gcHHh+4ACcPDwozs9n77x5yBR2lBcX08FrGt+fOULv4ClCjeZwWh7aEg0iow2dJ01n5+K5NHmm\nDSKRCJGVFS8N6IfCyZH3Vm5Ec7eUGz/+yKTEDDOyuXHpAkdWJjA5rW7jY55fNC7uzbGVSnmlT38U\nDk4cWZ9M/4BBvLNkP9Y2Uu7eukqLRp5U6Q18+vUXzEg3SaL3ZGUxLHxInT3P5Z1GJDLw+pSX6ry2\ne84Z3mw+nVNfbKEKHSXqn1mzyvSATc9cTplaj51cTElxCTdvVNGvx3RKywo5+t84hkd2EpwGti9+\nH3W+Pf37TcW+niOffLKKu6U6uvWcwIEDqxg0ZkKda+emxBIXG8muPe9w7uOPGe8dWEcC/e3Hp0lK\njK+z9rfCUo1m++qd9HyrFycPnGLY8HF11rx37CBLszL/8LVr38P9NZrdm46gU1cyfOxgIZrav+sw\nsTE1tSNBdVZSgbye7f+k6uyfPibgMf7HcFdfgael5skrV8wK+99kpZMVEVZnffW4gUsqFYOnTufs\n8hxE1lY8N2gIiOC/u7ajvvwz/lGRBHlNIWV5Hm2n+gk2Ni8MHcG59avoFFAjpf4gKZ6ym7dQFxXR\nPWQmhxYv5rPt2+k8I7imTyZ+Pta2EqoMoC0pZ0xabo0MOjuNNt278M2Ro4xMzqo5vjQdvaaKE8s3\nCETSbuwIFE5OHE1bjcLRGalMRk8/89l6RfnXufbdD1BlxMrGhk0LZzNqTiwSmZwbly7w7vocGipb\nWeypQQTFBdep0FVwcss65PUcqNIZkMil3LjyE+gMtGnbGheXBgRM8WGs/wwkMhkF125y/WK+xT3t\nxApEGC2PiNbY4uLUmL7tvDn6URoZ90hm5qxFdO7thUQqR6dVs3VNPG+8OoRd76QzqJ8/xgJ39kZ/\nh0hagahCRrfnwrB/3ZkDx3MZONAbK2sZCfGhZGTkcOf2ZctTOm0bMi86gZETfbhw+brFps7y+wbF\n/V4olUriFsSbVGdaNd9/8x19RvTHxbUhImvQarVmw9W0Wi2K+z7ntaG6pCIzeQXquxXIHWzxDZ78\niw9/pVJJbHTiPdVZOXKZAkd7FzoOed0smuo7qCeZ2RksSUgyrWuq/NcW/i3hcUTzGA+MaArylmGn\nUNSME3jIYLRLKhW+ixN4Zpqpb+X2hR85viQWW5kU52ZP8PyIYcidnfg6cymG4lLUzg2FyERXWkLn\noKA617+5Oo+SoiI+Pf81VUYRY7PX1jnnZE4qnWf48W5mCq+NGY9TIw/htY2B03Ft2QpNcRE6tQZH\nt0a8NGQ4p1dnMyJhbp33sHnmfIqu3qTxM23o6Te1lnPAdc6s2U6PSUGIZXL0GjWHcuOxllQgldtz\n/adLjFyw0DQyeut6+vi9LdRTtsdk0nncWNyaNUWn0XBo6UpeG9iXE2s38sqAlzi35wwj53oJ57+b\ntYsbF68zamEYx9Zu5/kunfno0E4GBrxV06cTu5nViXkAhMXNpOuMjkKN5lDGMRoYmmAtUqCwt8Ev\n0AulUknwzNk0bzsAibTm96fTqjm0YxUd2g3jzJnd3Lp5hWkT6/qL7XwnlT59J/LDDzuFUQAqlYqJ\nXn6Mmuwn1Gh2rVuLUWvFkCljkEhl7Nqyir6DB//uiKZaSq0u0yK3k+LnN+3hsmGVioi5s+g1tLdp\nxs19NZpD+3Y9sEajuqRilvcS+j4ViFRskhzv/y6Vxdkzf3Ok4e07g66936xz/N2Dp8jK/Oe4dT3K\niOYx0fw/g1D0vycwCPYy5YUnRc1B7+iEyMrKJFUuLmLlb6gL+UdGIRtiIqvi/CuczslA0cAFkcgK\no9FA0RUV9dxdAAO3vvmBHmELsJXJOLsmh4ILF1DUd8HetSEvjx6Lo6eJLH7OW8Y8H2/84uL4+XI+\nQ+PqzkzfERFA18AQFI5OnFmdR5cZptk0xdeucjR9CQMXLKgx5EzPRFempqzgOmNSF5qJAvRqDe/l\nbeba+W+xsrJGWk/BwNmhJsPNtBw6j/BBXCtVpteoOb4hHomdLbcv3WZ0tKmJtvD6NT55Zy8Yqrj0\n3y/pOmEsT75Wk97SaTScWLOZLuNGkusfjM/y2XWilaOLN3NHrcbJ1ZX+07wovH6djw7ux0glImyw\nq7Rl84pVQHXvSzplFWXY2drhN8VyD8dU75m80ml8neN5aWFMGLsIiUTOzh1p9O8xHUktqbJOp+ad\nI8uQyqpISKwZRKZSqRg5eiwVlVZIJXIcpO50f2UiJ/67lqGTxwJw59Z1jh7cwZDRYwUyOrJnG/4z\nprJr137Ky3Qo7CQWCUSlUhEetpCeXccJ/S6Hj68lPqHuRNb712VmZ1KuVT9QdWYJM/3m8B+b8XUK\n9F9UrmFJxm9rkJ4ZFsLzrz5dJ5r6/KPzQkTzT8Dj1Nlj/C5cUqnwTkigtb9/je4Vi00AACAASURB\nVK1NQgKzR4/GRibjBe+aoWZfpvy2/xB39RU43COZA9GR2DVw4Y2pNcq0w9FRvDiiHy4tm6FXazg0\nL4mqKgMyO0dGpK+oSW2lJ/DahInInZ2oJxaTkptL2+nTKUzPsqgwq9BpOZGZipNnYzR3awwrPt25\nVSAZuGfI6e/L9vBZ3L1VyPaoWIbGzBbqNEfTc3lxwFCqKgz08PHn1sULrA0MQyKVoi3T8b7VMqAC\nsOXFHsNxcvOk+NpdhkWHcXL1BkGW7OzeiB5TpqPTaKhatYZLX3xtRjQSmQyjwYBEJsPO2cGiT9q1\nwtu06+LF0V1Z6DQanN3d6T3J9IVAp9Fw5fBJ4XylUknSIssy2tqwk4vRadV1IpoyTRHrtgZgq5BQ\nodaxZXc0IwbORSKRo9Op2bAtmlZPuhEZFW7eTzMviomRQbUGrG1Fr9dw49ZPQkqtQUN3uvcewr5t\nWykvLeS5Z5/Bf8ZUMtJX073rRIFAwsNiiE8wn9CZkZEjkAyYbGJ6dh1HRkYOSUmLH/g+q2fc/Fao\n71YgdbcgOS747ZJjX28/ZkeF03dQzzo1ml+CSqUiK6smDefj8/Dmz38KHqvO/h8hOS+P1v7+5rY2\n/v6ExsfTNijE3KMsKIRRvn6MC4vAL/LBhp6XVCr8Z8/h/FfnuX3hRz7euBr3Z56l55xos/16zo3h\n633H7v0sQ+HqjL2rK518Qs0dnP3D+Gz7Vj7LTCVoihfXbt/mg7xVqIuK2LdwtpnCbP/iuXTzm8ng\nRUm0Gz8VXbmaomv590w7r1jssXFp3pyGymZoSrSs8QlnrU84uxYkYDDAqbVreXmQqfDesFlzxiSn\n4+CixL6hLd38u9I3YiDd/Lty9p1l3FL9SP3GjRDLZbw8oC+74hPR3as96DQa9i5JolJbwW3VDQ4t\nXUNB/g3hNZGVFTqNBnVxmWCyWQ2dWouhypqn/vMGY3zi2b9sndm+p9duJmCapUnmD4e/71S2r0tA\npzX9/nRaNZvXxePW0olx8WOYEDeGcfFjqKc08PGXuZz9NJfvVVtZsy6J3LwscxJYmk3X4YPNnaCn\nDufgZ0tITl7I0X2bBHWafT1HJLbW5C3LIikxnl279gskAyYC6d51IhkZOWb3qy57gCdZmbnC61FB\n7mArqMCqodWrkTv8dsmxUqkkNiaezz86z7sHT/H5R+fNhAAPgkqlIjIylJdebkWPHq/x0sutiIwM\nfWQqvb8TjyOafyFq0mOVONjaEOxlqq08yNamUmJ5eqXVE03xnOKHXq3GJy6RrAhTH0/1/jdLSvnm\n2+9o7zeL1zv35fDiKAakZvDh8mVoCgv5cMVyoQ7z3KChGAymvYuuXOPu1es4Nmpi8bpFP/+MpkJH\nxJIUPv38K+orm1Olr0Bzt5h3s5OQyBXc+ukHuvqGCL02YrmcvrPms3N2MG6tWmPv4mYxArK2tmVA\nVCxbIvxwcGvAgHkzhahmZ9Ridi+ej7WVFJcnmiGWSSm88QMTsgPNJcszh5E3ZT5D50YC4OThjrSe\ngndXrcFKZIW2vAxbWzt6jPcTGjqPrErntaE9+Gj3fl4b2JetMUuorLBmd9ImBoaMqhnnnLoVZ2cl\nAM4NPenYcxLHVu6gtOAKL7V9muS5C37XN1ylUombuxOHD67CWGVAZG2FSKJHVk/C/txjiKyNtB/0\nGr1m9OSHXT+QFJvwwL3KNBqLPmvWElvWr9mLs8KRcyd2Y20rQSGXkhBb03lfXqazSCDl9xGI3K6u\nJ9nV/Et89833zJgchsLeFt/AKY/s275v8OQH1mh+D0yR1W/LCmRlpfPWgK5IpfeaP6US3hrQlays\ndBITfzlq/V/GY6L5l8GUHkuktV9ArfRYItlhoQ+0tbHR6Sw/lG1M3+bEcjltZgSSnLuC4CmT8YlP\noI2vHy3kcpqo1ZxKTuGVkZOo37ylYPNybt0qOvrPFFJi76UvQSTSUXTlGh+t3EE9tyYYjAaL1y29\ndZMOc0xCAreScjr7hqAuKuSzHVsouHSBem7u1HN1E0imGmK5HJdmLeg8LYBbF39i97y5DFwQXcuQ\nM4vXhk9ALJMjc6jHgHlBZg4BXWZM5P1l2+gfMk8o+u+K87eY3pLXk2Hn5Cgc6/D2CE6t30avad68\nt3Y9HYdPNmvo7DHRn5XhMxDLxHyy7yS9JwWhcHBiQ8ws9iTtRGpnmj1TcqOcHoMnC/s6N/Sk64Ap\nfHNkJVRZsyg5AzuphADvqb/5Ievu6kKzV/ogkcoouHWNfTvT6TXSW0h/7V25hm7j21NQUvDQfexk\nMos+a3Y2jWj33FR0OjVHzmSTkFzXK01hJ7FoaqmwM2969PObZlajuZp/iQN7tzD+rViBCCIC4ohL\ni3gkZKNsqmRx9kyT6qzApDr7PUKAPwK1plwgmWpIpQ9v/vyn4LEY4F8Gv6gobMeMq1vL2LCWYC8v\noUYj2NqkpzN79GhiN2ykjV+N0/Hp5GRefHsijh6NhX1OzApGU3qXbskpdfY/tzQXgFenTuFUeiod\nfILrnPN+5mKk9gpeHeeHuqiAU0tTkNk5COkzvVrNgYWRtO0/lJ/OnMBoqKKL70zURYWc27iGztOD\nKS8q4LPdW7hz6Scc3Bvx2pgJ5koz/ym4NGtO6Z1bGAwGdCUlNHn+BaytbXmh31Ac3T3Ra9Rsne2L\nR9snMVaByBpeHNybz3Yc4s1h3pQXF/LZ/p0YDQZuXvqacek+dQr2q71TadBYSS+/mn6c3YtTuaO6\njJObB6Oj6ubjN0XPYmjobLP+G51GzdrZgbzw0n9wcXRgSN9+JC9bR7tB0wQZ8tF1S7CVSeg0qubY\nme0rSI42RVRp2TmUafXYScUEeD9YmaVSqZgZGUOngeM5snc1PSf0rUMWhzavpfRyKScPH3/gZ6y6\nRlOdPtNptOxcvpmeL3rj4mwyRdXp1Hx7dQtJKYvqrA0PizGr0Rw9vqpOjab6XJPqTMd333zPuF6x\ndYr1529vZUnqg53IHzVUKhWZGUtRl2uQK2T4+s14ZFFVaGgwL73cyoxstFodn3z8w98S0TwWAzzG\nA3G3ovIBrs+VJlubsDCS8/JqbG3CwkzHPT3vHa/k+/Pnec4nxIxk9Go11i5u2Lu5W0x3GY0G/jNw\nJO+nJGMjlVo8p+xWEXev3BD6ZyRyRyqr9OyaHYBYrkBR3yQg+Obgfjp5h7B7ton4Pli9XCCZc1vW\n0Mm71uiCrCReGzMBhaMT72anYO/qho1EzODFCfdk1j9xOjeP/uELhCjlaFYiNlIZ7cbMqIl2lqVS\npdNRXlzI2W3r6DbN/97ogB/ZGpnE8EXTa0Y1L9mKyCih/eCJnFyxVZgv022cL4ezUrCt0KHTqOsQ\niv6+Y4U38vn44B7kTvX55qsfSI9bQPv27fH09CQtO1dorGzs0YCneo4WCvkSqZx2QyezKDGZglI1\n7YdOElRdwXNjSI6u+9CGe+mcRVGkZ+Vwt/CaxfTXLVUxzRs8+dDPmFKpJGFBDBlLsynTajj/xbcM\n7holkAyARCKnvKxuIV2pVBKfEEVGRo6gOrNEMtXnVhf+Z0wOMyMZMBXry0v/On8wlUrFrPB59O4+\nDKlUhlarYVb4PBbH/7505v3w8fEnMjJUSJ9ptTr27jnOokWPbqT134XHRPMvg4OtzQNcn01/apOt\nTd1GsdrHL6lU+MQlUm9GjaHn+6mJvPL2ZL7cs8WyqabICrljfXQlZRRd/tniOWW3b4MB4TWJnR2d\n/ILr3Eu1E7SNWIJerTb9LJNzZm2OQDJgIq/OPiFsD/OhQqPGpcWTFF35mQ5TpgjnuDRvQfspXmyf\nG4JL0+Zc/u9nuLZsweAFi81FCNMDWe83lY/3bhNIBqBh05a8OSaEnHER2Dvboy7Voi+vRCyWonB0\npvtE00iEouv5fLR3OxKpLW2atmRn3FwGR0TX1Ghys3Gq7yEQUOGNfE7v3EjPKdOEEQLh8Yls8PRE\nqVSSklDzLX2Kf4iZWgxMZPPjpSu8NT3UzAam/dBJpGXnkJJgWZmlVCpJTlxMcESYxfSXg21j3Nx+\neWCuUqkkKd5UxwkJiqSewtnsdZ1OjcLOciG9NoH8WijsbS36gyns/zp/sMyMpQLJAEilMnp3H0Zm\nxlKWJP1xpwOlUsmiRYlmqrNFix7sAv1PwmPV2b8MwV5efJuRZqbO+jYjTeiX+bVwlYk5HRPJ4cBp\nHAqczitvT8bRw5O2A4ZzKiXFfIRz5Gxc9Bpur8/GSWrDS29P5HB0lNk5B+fPRuHQACfPJzgwb5aZ\n43Nt1D6u16o5kZmE0WBEr1ELBFQbJsKyZ3TGCvrOms/YZWv5dPsOivLzhXNsZVJ0mjJuXfweB3c3\nyu4UWNzHtVVziq5dNuuXARPZvPpqR744eoYjm3fQ9tXX6B8xl8N5meg1aoqu53N663q6jJnGoFkJ\nNB0wAStbCatnBbAmKpBN0bNo+1Jv3ugxmh1LFqHTqPn44B6BZMAke+4fHMqiJPMUiUql4vvz36LT\nqim8mc+BjVns35jOO+vSKSkusNh5X6b95amZ/tO9Obp6K7p7XmE6jZY9WZsRVejxD/jlz4pKpSIk\nOJJpU8MoKb3LgZPp6HT3FG33ajR+AVN+YZdfD9/AKRw+t1RQhl29+SPLdgZRUFRISMisv0SZpS7X\nCCRTDalUhrr80TgdgIlsEhOTycrMITEx+V9BMvC4RvOvgkkNtoL8O3e4ln+VJs2aobCywlBZiVGu\nMFOgPWjtzZJSzn/3LW+EhdOgZUtTNDN/Hi+Mm45L85YAFOdf4Ysdm7h7/Sr1GnnSQmRg/swQknNN\n67/49BM6Ry7kvzu3UF5wmwq1GjtXNwou/MTwjBWcTI/H1k6KvrQcfZmaXpE1Bfv3MpN5fuBIPt+1\nmaKrV1AXF+Ho7onIUIWDR2PaT55RJ1I6vSKbrrUiI71azQdrl9PZx5fia1f5cN0autaqS2308WVM\nanadfdYHTENkhHFJy+s0ZxYe2Era4kUEzIqkQZ8hiGVyiq7l8+k7u7n+/XeMikqss+bE5mx6+U5H\nr9GwI2Yx5TdLEYsqUdSzo8LGljHR0WZ/g8Lr19gZH8vzzz/HzxdV1Hd05fKlq3RsP5lzX+9E4mxN\nX++JQgS0a0k6nd6ahHuTZsIeOq2GK6f3PTCiqY3Tp0/jFxSB1E5BaWEp1iJbZPYy2j7bktlhIQ+t\n9fjMiMRa5CA0+Japr9GqpRIQo7CzxS/g0SnCal83MzWXG9fvcOP2TUaPCLyvmfPROUNbwsyQcNq2\nftOMbLRaDV9+e+qRRDT/a3jsDPAb8f+BaC6pVHjHJ/JUrfk1X6UsoVKr4fnImlHI36WnkR1mPm6g\nem0b35q1p1OX8OL4CTg09jRFLf7+9InPrEmlZS6hacdOfLV+Nc2bNuPCxYu0C5qFS/OWnEiN5/nh\no/hk4yqzUdCH582l4wwTIXyyeQUdgvxQFxZxNHoxckdnii5fRlG/AVUVel4cOZaP16yivruSTkEh\nHE6KxlBVRZVeT785sbVm08yms1+IIAioxs5ZQTgrm6AuKqJHsLm9za0LFziTt5J+EXNqRggsnMur\no4bi4OrKh+u20G1KgFDT+TAvg6ULTHWEScGhPDl6stm1ji7NoOfEgDp/kyOrk+npMxUwuUC/l7OF\nLm9N5911sVzJVzEuIV6IaAqvX+PU1k30nlaTSju0LI/XO47io4M7qNSreWv2+DqzajbOWcyYkFih\nRnN6+0qzGo1KpSJ9eRZlOjV2Ejn+U32E10ICo2jtMo6S8gIOf7mM/hNraj0nd61lSYzlLvwpXr5c\nVpUzeECA0Ni5c08aTZQKcvMenWHlgxASMounW/Wso1w7/8Ph35yS+y2wVKM5eHTbI6vR/K/hMdH8\nRvybiKY68qixkJlMU6USv6g52Iyuqzb7cFkmHWaGmh2rXL/WrE7jFzUH8ai6a8/lLaV9YBAAF5KX\n4GpXj1slpVy+eAFHBwfuVFTRqVY0cio9iZfGTOTL3VsxVFXyuvf0utFHShrdZkZRnH+FTzavpuTa\nVUrvFODk7knvqEU1g88WRWFTaU3XMUEc3ZyErUKOta0NlZUVGCsr0RQVU1/ZnAp1OV386ircPli7\nnDcmTWbf/DkonByR2NkjshLx/MCBOHl4sHbqVKytbHFt9STW1rY8070vn+7exOvjRiICPty4hbJb\nd1AX3aZti+Y4ODTAYCPm+2+/4bXJM2jYtLlwvSPZaXQZNa1ORHNkbSr9g2vGWh9Jy6PPsDB0WjUb\nYqcgdXVhcGgoEpmMAznZdBs/rg6RHM5aTe8RgWzLmcW42PA6n4fN8+Jo07QFRmvbOqozlUrFzJhI\nOk5+S1CHvbdiL0uiFqFUKpk+OYJ2T/my471Euk2s60l28aNDJFuIjNq3683YkYvrWNWs2zyL02cO\n1jn/UWPGtCDefH1kneOnzm5maU7Kn3rtP1N19r+Gx6qz/6eo7pF5yj8Q9/t6ZO5WVOBuqelSZFXn\nWEFFpdmxu/oKPCwpye51WOrValzt7cmIqfF88oucwzPDxpkV1N/0D+GjFct4buAwjiXFWFaeFd4G\nwNGjMTY2UvpHJ7N7VqBAMtXn9Y6MYdu9HL/Uxo6yuwW8NHos72enY9egAfWbNueFgSMQASeyU+ns\nXRONnViawqtvm3zX+s9fyKncHDr7BN1TqaXy4tDB2FiJGRabakYOXaeHcGptJi07vM6dn3/E/alm\nKBpKydfAM4O9EMvkPKFRszthDl0medGwaXP0GjU3L13gnWXx9JseLkRBh1emYLSuUUTpNaYxBGAq\n5Ld++lmK75bxbs4GrGyg6NYNi2Oc7xbfoKykEL1aZ3H6ZuldLVcuF7I0o65ZZPryLIFkTPtJ6Tj5\nLdKXZ5Ecm4jC3gadXo3RusJyrUdtuQtfIlGYkYzpmLzOsT8Llpo5tToNcjvpQ1b9dqhUKjLTllNe\nqkNhL8E3wNS79G9Mk/3ZeEw0/yAk563gKf9AswfyU/6BjPLzo3WLFhaVXgajwWyP2gq0ajiILTdy\nVhflv8lIY/bo0fhFzqFEX0E9sS03S0ppeR+RaIoKuPrfz7j5/TcYKis5mZTE8yNG4ODpKeypLysT\n/l2Wb7KJEcvkFklJUb8BhzfE4Vyh5eqtm3y+YwvD0pfVEEpqIiKsMGJgY8AUrG1ssRHb8sZkLxw9\nPIR9qsnWpFILZEdoIM6uTeoU/cUyOTd/vEjR9UuMSo1GLJdxZEkeHccFCueKZXIGhi1kW3QIrs1b\nILKyosf0QM7t28B7O5YJfTntJwzho+17TO9Vo+FI5nLe7G4iTp1WjbtbA+KjI0jLyqNMXUH57SqL\nRFLftQlnj2zD2e4JDqSvpY//OCG1diBrLf2Hh3H26DYWxiaxYrm56WiZTm1Rwlx2r2jvF+hFWEAi\nRr3IouX/9998i0qlqkNgLVp4otOp60Q0LVo05q+AqZkz2oLhZl1H7t8LlUpFRNAier8xWbhGRNAi\n4lIi/7URzJ+Jv4VoRCKRJ5AKdANEwDEg0Gg0XvmFdS8B04EOgAdwBzgFRBmNRtWfec//C3hQ1CJS\nNuVSwR1sUpbwbFBNN/5XKUuQaDVmM2WqazS1Eew1uU6N5v3ouTRxcuROdib1KqvwS0xG4dGY/wwb\njdTJmW9CfXmiFjndzb/C6aVpuDRvQYeAmgbM99MTeXnCBGTOzryfkoS+qJDDs4Ow1mt5slEjk3xZ\nJOJExhJhPkzbgcNQODqjLi7Crc0zXPzsHB7PP1fHF61zYChn8rLpEhhsGhmQkcoLwwbz6eYt1HN1\nw8nDUyDM2r8vsUxB8a3r/HTuDJc//1SwyXmmRx9E1gYGx0RSVljMmaRciq/csUhIrs1b0n1qTVpM\nLFXQ3bemdqNXa9Dl5/N5bh7fnP+enqMiqN/QE51WzYe7MkiJqUmDGYFWT7Rgd1ISA0NCzGo0b/aa\nyL68BJxk7hiKbVnqG0HzZ1/EGgkdO0+lvosnfUcFsj2nblrNTiK3KGGmwkhwcBRl5Xqc3Gy5W1TE\ntpwUhk0LEmo0+1atpNcrIYQFJZCQEoZSqTQ1UKblodUYyF0VwuABITRyb4FOp+bQsQxS0uaYzknJ\nQ11SibyeDX5BXr/6waxSqchIX055uQ6FQoKfv2X3A1MvzlyzEQKPWgiQmbZcIBkw2eT0fmMymWnL\nWZIS+8iu8/8FfznRiEQiGXAC0ABj7x1eBLwrEonaGo3Gh2kFRwBtMJHU10AjYC7wiUgkes5oNOY/\nZO0/Hg+ykLG2teH5qCgKMzKp3LiWgnv1m9zIWYDJTLPgnu/Z/UIAMPXQZIeHkpy3gjv3Zs9sjTfl\n5n3iEmnjM5Pmteswb0/kjaBZnFgYRec5phTZ59s2oXBpyBtTfMzIoIN/KFumjMWpWVMqS0vpNTcR\nG5mUc+tX8sVFFWdnTMChUSNhncmuJhFdWSlOTzxBl8AwU9F/XpjFqKeaRMRyOZ38Ajm7ajldgoPY\nNTMMl+YtKbt9m47Tfcx+X/WVzXimez9O5WXzVsQiId21L2EOCmdnygqLeTdrPVKFFNdWT6DXqOvU\nXyq0WrOfb/zwI3q1RnAJOBCXgmf9pjSUOzNj0QK27z3E118fw05uS0pMOFevXiUgZCEujVphZWPL\nf9oP4KNPF3A8byMiaxBhw5u9JmLn4ExZUQHPtGxFA2d7dJ8W8NbgWWa/B4lUjrWtuM7nxX+qT50a\nzbGcHehvien3ljcSiZzr137i0y8SaPJEI3Jiwmnk/hQy63p0f2EqLs6Nqe/kT0ZqHoOG9iIoeD6u\nri2xEdkyuF84x97Nw62RI+7uLqSkzQEg3C+Rni8EIG1osokJ90skPiP0VxlKhoUuokeXyUgkMnQ6\nDWGhi0hItBxB/J5enN+C8lLLnmx/lqnnvx1/R0QzFVACrYxG4yUAkUj0FfAjMA0TiTwI8Uaj8U7t\nAyKR6APgEjAFmP8n3O//DIK9Jgs1muqH8pnkJbwwcYKppqJQmNVRqmGpQfN+mBo2zdf6Rc6hzQzz\nVF11HabtoOFotRo+WJ6JyMqKkmtXcfS0bJLZ+MVXKb78My079uKz7RvQlt6l5z2COpmWSDsvc3Lq\n6B/K+1nJ2N6b5yGWy3H0fOKB6b3a16rutWnY6knaTZzO/ugoKu71iujVak5kpvHaiAl8sXeHQDJg\nilL6hy1kx4JAPt76Dvb169N5xhjKCos5tjKJbpNCapwF8pZgqDTVX/QaNcdyMug81If3crah16u5\n/t13DHl7IW6erdBp1SRlp5ESW/OwValURM7NYtykTEG1tW/PEjr2m86X5/bQf2qkYDWzb/kiYueH\ncebzTyjVlVJ897ZFu/+qCnMXaLjnBBC1yEx1ptDb0eOtYCQSOXfuXOX9s5sZ5xeHRCqnk1bNOxuz\naf/8CFycTWkwiUTOjet3mDM/lYkzFgv3tWdrNt06evHzjQOU3L3L2yN8KC8px2/4cqGpUiqW0/OF\nADJS8khKe/hnMCN9uUAypuvK6NFlMhnpy4Vha38lFPaWPdnk93myPcavw99BNP2BD6tJBsBoNKpE\nItEZYAAPIZr7Sebescsikeg2plTavxomC5lQRvn5IVI2xdrWhhcm1kiQHWwe7Z/zboXlEc9Gg4Ev\ntm2kV2yS8OA/lZGMoarygeacfRcuYUfQVNyfbkvHwJoUmEhkZdnSBgO3f/yBk+lJiKysaP5mJw7F\nzKNXVM0gs5MZybwydrzZtarrStX79p0bw65wkyrNrr4LRoOBz/ZuofhqvsWUmGOjJhRevkb9Jp6I\n5TKc5TJenzSQU9szMVbCjZ9+ou/sAI4lL2fbnHAcXT1o138izq6eKJ95icN5yXgFrjKzi3mjbwCL\n4tPIXWpSRKVlrGDwiGihxiGRyOk/YCaHjy3Fw8WZa2e3cqeohJ8vXsJJ4Uj6xrX0D/NBIpPh0u5F\ntmbNZfikaOGhv39LGk2UT1j8GyqVSpJjE1GpVMTGp/D9xWuUanNp9/oQPvhgO/1Hepvda7/R3qxJ\njqRx/daIrKx45fm+5N+8wvDx883OGzDcmyO71nH92o84yz2Y2CeF/e8ttWgToy6prHNf1VCpVGSk\n5vHZ59/wn2dGmL0mkcgoL/97IgjfgKl1ajQHP1hBXErk33I//3T8Hc4AT2NKe92P85jSYr8JIpGo\nNdAQ+OYP3tc/Ak2VSjZlZOBoqOTl6dMEkvku7bd3//8SqlN1tVFtCVOebz7vpenrb1Jw8QLvpyUK\na27/9CN7gn0pu32LvREB2Iql3PnpBzSFhcK6B7kD3Dh/ni7eYViJrDFUVHI2dynqkhLOrs7lZGYK\nJzOSuXsjH4Wzk7DmZEYqT/fuxcm0DP4zcChwr+O/5VPI6zljMFbSJTCAzgH+OHi4o9fcd12NmuKr\nV9GVqE1uBGpTFtfZ051ugZPo6D0K9zbNsHN2pEGDZvQeFkbJzVvY1TPZr9z8+Scuf/c5R/dnc2BH\nMgW3TSVHiVTOl9/+LHSvl5dVWFRtGSorcHdtQKD3FLRFBoYPTsEgdRZIBsCtmZLOPoNYmxXC/i2p\nHN+bx+tdh+Pe8MG2MSqVipDZi2nz5ni8wlLpOnQ8x99bja5SY9Haxt2tBUO6hdK3/QwOvZuDW6NG\nFs+rNFZQWlLM0K4mHzKRyMryTJd6lr8AqVQqwgPjae02EidFE3Q686y5TqdBofhrIgiVSsXMwNnM\n8JrJzMDZAMSlRPLVtb2899Vavrq297EQ4A/g74honIEiC8cLAaffspFIJLIGlgG3gJV//Nb+GWiq\nVJIdajLHLKisxMHGhuzQsF89dvnXInjKZFONppbn2YmYOTzj6oJVU/NU1qWzp+jgO5Mvtm5gy5Sx\nuLRqTZVGQ5eg2fx3x2Z6LJpbE4lkJfLy2Ek4eHry3MBhvJsSR5egCLMajYO7J2c3LKdHxDzh+Dvz\nI3hu0BAcPT0pvnqV/fOi2B7ojwio0GmwFtvy1d4DvDJ6Ao6NapRuRoMB2mBqJwAAIABJREFUK1tr\nOvmZUnTF+abhaO8kzqVfaHRNSix5Pj0nhmIjlfLupjSOpCynR9BUoe5yOHkprw4fwt4FS5AZGvDx\nu9uxNYg5nJnIrZsq5PUdGbcop2a/Fal06jYRO/v6ONZvTFrmClKWLERhZ2tRtXX10pc0cX2BiV5h\nyGTuXLl8nlvFF+vInt2aKXFu7Ebf4UHotGpO788i2UKPTTXSsnJ5s980s4ik72hf1qZGWEzD2WCq\n90jEcsb2X8T644EWz7t65QdkYkchiunwwjB2HE9iSNcQwcr/8GdpxGeYi0+qkZGaR/fXfJBK5Lz5\n4lB27lzG4MHThRrNkXdXkJBoiiCqnZwfNv7598KkMIul12teSCVytDo1EUGxxKXMflz4f0T4yxs2\nRSKRDkgyGo2z7zu+EAg3Go11q5oP3msZMBHoYzQaH+hr/m9q2PyjEBo+9RU4iGsaPs1ez61pCB3e\nuydbDx6m5J5IIHiK6fxTp08zY8FC6rV8EmtbW9QFBfSaYzKC3BcZQtmNGwxLzeXDVct4fbyFxs2V\nmXQKDEWvVrPNdzIebV/AyspKUJ3JHZ35IC+Lzv4zzdadXbOM5wYN4dza1XTyNSnsTqQvof2U6aZx\nAhvW0Nmnhhg/Sl/C9as3aNCiGV2DAinOz+fcmg109ZqJuriAT/ZspvDKRV5+qiUTRwwhIW8jL40K\nIP+n87y7IQ2DQYNELqdKU4mTSyOKbuYzYMJC3Bqb6i9b0kKxFdng6O5Jxwl1mzbfW72MKo2ODj0n\nkn9+N7nZcaYIIyyRDl0DhRrNxjUzqd+gAT3eCheObVkThVQhofe8t+vIntcERPPsU8/g3tCFAN+H\nK7um+oTS5NlefHhsD1QZwVrEa90GsCMvAZmdgpFes2vScBuW0vO5Kbg41UiV93wwh4LyEoaNCRfO\n27hqMe3aDOX4mTXMGJohkM2dwquc+GQT5RXXaftiq4eqzqZ7hdH+6enCz7cLr3Lq0+0UlV/mhRfb\nCKozlUpFWFgMPbpNqCGhY6tJeIDr82/FzMDZPOM+EGkt4tfq1Hx9fTdLUv//Es0/vWGzCMuRy4Mi\nHYsQiURxgBcw7mEkU4358+cL/+7UqROdOnX6tZf618BkNbMEj8HDuLh/L1VqDf2mTmfZ3CjebN/e\n9HrcEtp4B+Jx70Edm51KdsTMOmQUu2ETPVMzhAf6oVlh3P7pR2xlUjQFBTRs+aRZcb42xHI5RZdV\n7AiYho1eh1yuoLN/3W+9uvJS3stOwWg0IBJZ0XbgUIwGA59v2yKQDMDzQ0dwIj2Zzv7BvDJmPKfz\nllGouoisshK9rpJuPpEcXroIvVrNFzt30dVrpql3Ryan2/RQ9Bo1dw+tEyz6F8Qncf7GTUYm17y/\nk2kZWJfAhNAYs8jApZGSHm/5cnR/lsWaT+GdfPoPDsXOvj52cpPTsFKpJMh/FLPmBWO0kiIyaGnW\ntCGvdg43q9uMGB/DjnXRrAuMw71lC/QVZWANpbfv0tD1SRQSMSlLflnoUVWh4b1dGxnYP1Qgsd27\nEnGq54bM1sjXZ9aByJazpz9gTPdFZiSj06u5U3CbmLhwgoJm4+bSEmuRmH6ve3Pu/FbqOcvYfjxB\nSJ/Z2TljLdWQuyrBIgmYJMy5lJXp+f6Hb2ha/yc83EwD7FycPenTYSrf3thMUnLN+8rIyBFIxvS7\nkdGj2wQyMnIeifKsvExvRjIAUomc8rJfNif9N+HkyZOcPHnyT9n77yCa85jqNPejDb+yziISiSKB\nUMDXaDRu/DVrahPN/1ck563AY/Awvty6ifZBIcJDNGjBXFKA0LgErJo05dyKZTw7eDgOHp608TZN\n1sxYtLDWPnm08Q0wU4r1WpzAbu9p1G/ekoZPtcbG2tasOH9/RFNecIc+EbH8fGAbNtpSbl/4kW8P\nvyP0tHg+/xI6dRmdQmt6ct5LSeLmd99Sr6Gb2X6OjRrzytiJ7A4LxrX5U1SWa5FU2NA/JJWT27Kx\nlUqxc2nAuxmpiG3lFgmhRGcqWCuVSuyd6tFz/BSz99cpwI9doWF1ahVWWCGRyim/W2RRBi2T2GFn\nX58zB1NJWWwiU5VKRdLSjfSbnihECNuzZ9OmtMAsnVZaWkClSM8E32zKSgs4cTyPXpO8hdED+9Lj\nLTZU3g+9pkIgGTCR2MD+oWzYGEB09Bx27NtPmUaLzE7KodO5vN1vARKxHJ1ezY5jS/Dw8KR9+/Zs\n25ZLRmoe5WUV3NadJDnTlJRYtHAJqw4EIRMraP6kB0lLZz+QZMJmLqZbx2lIJHJefFbN+s0x9G0/\nHQ+3Fmh1ao5+mEV8qnkasLxMJ5BMNR6lUEBhJ0arU9eJaBR2vzq58q/A/V/AFyxY8Mj2/juIZi+Q\nKBKJlNVNliKRSAm0A8J+abFIJPIHFgKzjEbj0j/vNv8+PMjP7I/irr6Ci/v30j4oBHVhAedyl2E0\nGDBKpcxISKJnXLK5qebYSTh4eHKnouK+fSotWtZIHR3pEDyTj5bn0Lp7f97PSuK5wSN5LzuJjt41\nxHZocRQO7p4mN+g+wziRsQjVymx61fI62z8vnHa+98meg0LYHeCHg7tHHfKSO9bHrfnTdBgxnd0L\nfBkSkYlYJkeEFZ+8s4meUbNRFxZxJDbOIiHUk9T8VyjVVeBi4f2JFfI6tQoDBnRaNXdu/8zhVcn0\nnBhcY0OzKpnr+V+T/+X/tXfe4VFUXx//THo2hY4Yom5QpClWiiJdqoIFUJCqoQnpBQIkdASSTbJp\n1AQJiCBYwQZIFQv62rChKKxIkw5JNtlsyLx/zGZ2N7ubQhJWfs73efYJTObee2Zmc8+c9j3rSF1s\nTm/WZmXT+ekwK8uo97ApbNkwm4Cglrhcc+eRjsP5fN8mhgbPw9NLxScfrqD/xClW7aEHhU1Hu2IV\n2iWO3Ts6nY4//zxL9262yQd33BFEyupX6fqcxDbQtt/TbFu+ki07l+Lt6Yvg4kK3R57nfNFuwFS7\nol1oM7+/bwPuaeuLj787oZHBDhVfRvpqWcmUyTBqeDyvb0mg9d3t8PH1YKl2us14H19PDIZCK2VT\nm4kCIRETbWI0H3+ZzZLUmZUPVlAlOEPRrAamAu8JgpBgOjYf+AtYVXaSIAi3A0eBuaIoLjQdGw6k\nAh8BewVB6GQx71VRFH+9AfLXKcrcW61DLfjMlmpYNj2mxsqmnoc7xZcuo794gW/XvUqXaGnz/zQp\niR6xs6w29cciYvhq9Qo6Bk/G391dli1ldQ4///QTTexYKSVFRXioVLQfOoxv1r7K/c+O4Nft2zAW\nF7Fxymia3t0WVYMGPDJuCgdWp/HR0gSunj1N41ZtbGppnpi3lC9yl9MkLEJew0OlwtPfD/crl/h2\nWQoPTokyJyksmcvt9Rpweec62rVuIyuSh/oO4+PXpCZnHioVfWfGsStbI7vPigv1bE+eQ7tbm8jW\ngYux2K4V5umiYrM2kkYtbsfFo5TSYhcMl/9h/7safOrXp8vQcezbslq2yroMHce+dZdI1VjXJ+UX\nGq2U1YWzf/PlgfUMT46XEw92pC7j/PGT8nmicM2qOydIyqay3jPp6dk0aHib3eSDk+f+4pnIOOue\nOC9PYtfyzTzzeDQGg55PvkwjMVV6/ytLRS7IK8HHz41nhvYnY+lG+j4UgdctlRdo5ucX2822a926\nLStWJTq8htDQSQ5jNLUBtVrNktSZZGpXUZBfjI+vB0tS7VtlCq4PN1zRiKKoFwShF5LCWIeZgiZS\nFEXL3EjB4lOGfqaf/U0fS+wDetWJ0DcQKdk5MtU/mPjMQiNIyc6xW4xZHUSND6bXiJEcemOjrGTA\ncS3LNaORX0wxGqnrpoa2L0fQqc+TfJqioWuUme7mQGoy/gGmep7AQB4a9yKH3txC6TUj/xz+mSfn\naOR+NgBPzE7ki9zlePj6OFy/tBz5Z7Fej+H8OXI2SPUoqauyOWPiXtukWSIr4vDpCbLV0rDZbfjX\nbyYrjvqBzenw4kj2bszgwuE/aBbYmt7PRuJbrxHhCRrSFsQgGq6xOz2NXmHh8vXtTk8j/5yOgHsC\n6B47UFYIn6VuZPrY0YyPiMWnfkMet2gXUFyop7SowOY5+Hq7W1lGX+17g75hL+Gh8jZduzd9I8fz\nTtw8+TxBdLXbHtrXy0NqBZCWQ0G+ER9fd8LCzVZFfr6Rrl2H897WFJ4yFWoaDHo2b57DHa3Vdok8\nC0pP8sVPWfj4ulnRz0yLSKJPx3A8b5PmmDN9Dv06TLIq0Oz7UAQZqTkkp9l+V319PewqPJFioiPi\nKcgz4uPnTmiEdQKBWq0msaz9s4meprYSASzX+C8H/usaTuE6E0XxBDCsknP+AlzLHXsRKcvsfxaO\n+MwuGKvWG72irLIgtZo2rVuh+/u41cbuKI5y7odvWbp0sdSGwIIlwEOl4uHRwXy5bBnFp45TmF/A\nvaPHcezT/XwwPZpSYwl+AQF4+vpy6a+jNL6rpZWSKbsmsbQUFzd3SkvtF3qeOvSDFU/bR7NnEnhL\nAKmrsomcOJ7IieNJXZ3NFaOR1NXZRE6QmrpFvhxM2JwkHn5eIsPs0GcE2+fNp98cKcVa1bABxRfO\nMmBEHM1uv1tes9OzEWiX5SB4+NC930i+XLGWUuEaLqIr3ftNYNeF2XSPHW2lELpEjuDN17dxX8u7\neTc1gacjF8iW0rupCdzV5BabZxQxdTyRsxJl99k1DPKc5vvjzR13qfnswwy6DAylc9dhfLxqmew+\nMxTq+XJjNiOf6MuwoZNo2qQVri7udLy/P7FRSSSlSFaFr687vn4N6dV7HNt3rEIUSykVS2l5d1P8\nGvjaJfK8/942pC61DrJnaLMlJWPh9hr+xDw+2r2SIb3MTee8PFTo8+x/V0PDJljFaAwGPR99koWx\n0MDTPSbhdZvktpoesdTGhVYVyhmZZy2vGJWfR7V41gB0x3RkpuSgv2JEVc+dkKhg1EGOx1f3/P8y\nFPbmfxkc8ZnVc6+8N3qZ261NSAQBDtxudzZvzlk3N6s17hk2jP3aRLpFTLOK0fScuZDFr20iMDDQ\nhiWgfvPb6B4xjZOr0xk/+Emi0rPobtmbJkND26ee5rvX1uOCq0P6mPZPD2NXyiL2ZiTRI9Qc+N+j\nXcq9Tw9lU/A4fJs2Jf/sWbpNiqDFI10p1usJnjEbPFzpEBVLPdOYYdGxBNVvTECTxkybMIIt29aR\nV2TEz8udtOhINm/ZLLNP36FqZKVkADy8VOQVGvHzdqfYUASiIH0QKDYU4ennaVchnMu7xPGTF3B3\n9SE3bjx+jZpQUmSgd99JFJw+aPOc1Go1qYumsSgxjUO/6tCX5Mk8aeb7U8ifR/4iY9E83np3A/l6\nI3c28uPPbRsQ3aTeMzHjxxCfkMWYlzLMVDbvJtOtwwjS03IICw8mz3iF196JpqHfHXR9bCR+vo3Y\nuyed+HjJHRY1Z4EcozEUFvLp5nWkzEuwkbkgrwTP22zdXtdKrZVKUbEelZ/976parSZRM4OM9NWy\ni6pxIxWd7oqWA/Fenir6dAwlQ5ttEw+qCDqdjunhS+nXYSpezU1uvPClLE2zjfnYHX9Mx4wpGp5o\nHYHXrdL4GVM0LF4WY1d5VPf8/zqUxmf/MljGaGTG5QxtlWI0ofEJuI8Ya7OhGzfmym63YzodLybM\npsDLi8dizK6vTxISKDx3gaZt2uHq5s69Tz9HfRP7seHNXAA8n7Od27C57He2jdMOrllBx4mT+Eyb\nCiUiPV42r7dvmYaHX3gRBJHPcrK4fOI4xsJCvOvXB6B+4B10GhOMd4OGvPHyOEZkrrWaf09GIo++\nbKc+Jzmd3i9G8916LdNfGsHmDz7mqqEEf083oiaZ33AjpiXQ9JGxeFjESoqL9Jz9Ipehg/sRsSSd\nJ2LMxZwfaGZz5y1e3Bc9zEYhbJmSyqhxq+QMsg/f1NCt/4v4+DeUEgE0jl2eOp2OBa8k88PJP3g2\nIQ4PlTf//HmMD7VZNGkeRMmls7y2fLndzTIqKp6gu8bYuKJ2frASXz89hSoDj44eLSuR91K0tL7l\nduLjzW2adTodactXkl9kwNfLk/CX7RdCRkfE07qpea1zF/9m31ebOHXuN5o3akXPB0fg59OIHd9o\nq0SiWYbJwdN5rO3LNsc/+moJzZo1Rp9nROXnXql1Eh0eT7smw60ocIqK9fx8blOlPGsAMaEJ3O82\n1mb89yW5aDJsn191z78ZcbPX0SioABKTcgwp2TkyC3NVEwGuFBsJsON2s8waC1KreXXBfOYmJ7M/\nKgoXL09K8wsIbNSYP66VILi6IBHXi/L4c8VG5k6dLMdoypTFL8u1ZMXFMD1Zy10OONE8VCrcvLy4\nb8jzfL5+OdeMRk5++390mRjGwdeyMRRcoe+chfKc+1OT6DA6GFWDhuzPSKbDyBfx8q9HweULNu4+\ne3GdvMvn8PBWEdRnGDHJWTweNY/GJmURsjCJzHhpE4yYEkx4goZOz0bg4aWiuEjPwbe1pC2IIXVl\ntqxkQEp/fiJmPifeWsnBjC10Ch0mx2g+mLuSgU/OtsogGzg0hh1bM1F5GuWUZkdQq9XkrMrg+TGT\n2bf8LfQFFzGUXGGkZg6eKm8M+kIiXpmHduYcm402P7/EbnD9WqmRExd0DJo0zSrQ/1RUBKe2b7dx\nSVm6yXQ6HdER8Zw/n8dffx0lICCQW29tzDND+5OuSaNPx3CuFlxgx+drePbJaNmS2vTOHO5q2bRa\nSgbAx8/dJrX45Jk/+Of4ZXq3jcCrmWQtvDR8GnmF56nv35g7WzUnLj7cah19XjFeze3wrFWxFkZ/\nxYjXrXbGX7DvBqzu+f91KIrmXwh7TMpVgaMGZuXdbkFqNbkZ5iZZZZ07n5xtpon5dOlSBNEVd5U3\npccl/tOsuBhSVudwzsQSkGUq5Dx+7E9ur6BxmlhaSr3AQDpOmMSnack8OGosP21/B99bmtE9xrrH\nTLfIWA6uXkm3kEi6hUbz+aosmtzdkq825tBxRDANAqRiQrG01O61GvV6Lp86wa5ViTwz39xBs+Dy\nBfJw44XIaTzc5m4iJ44nbUEM2mU5srssbUEMarWaq0VGmtqptSl18yAtej7a7OXkGQvxc/fmNo/b\nuDXQ2gXn6aXCkH+alSlLq7zp3tqsMQ90GsmebcsYMPVFPE1Wk6fKm44TRqFdtQLtK0usxvj6utkN\nrp899xutOrSwG+jPNziuPdHpdEyLTKJ353DuVasw3KvnnY+TufeO3qRrNhIWM4J33lzHwYPfMXpo\nsnW85pl5/H7itWoH6EMjxjM9Yil9OobKqcVv70xk0jPpVkkGowbMZ8tODaOfSKCoWE/0lEUkL5Po\naTLSVvHTLz/SoYXexsJQVbEWRlXPnaJiO+Pr2XcDVna+TqcjM3U1+qtGVP7uhERO+E9nsSmus5sY\n5QP/z/XvxysbNtHGooHZr5mVu91C4+NxG2XH9ZW1jG6RUj+YQ9okVsfPsDvPs5Ne5uS1UrqGml1j\nn2ZoaP/8cHSbNxLg6Umhiwu//HqYRyPj+PXjbXSaOIkvVy6ne3iMzXz7tcl0D40G4N2YUHrExuDd\nsCFfZK2gV4hEW7M1IQo3b08GzF1gdsdpUzBeLkLl4YurlwcPDnmB797fQuHVyxTprzJwlvncb1ak\nsGLOTPl6dDodKSuzyTMY+e2XX+gTl2RTa3N5+2ukLbZ2w0TGJKBq9jjffr2VUkpxwYUHOwxGf+aT\nCl1m5aHT6YiITyTftYQB08bZ/P7b5eto6tlEziwLD5WarMXEJtG9Z7hsWby1ZQ4LF0zlrfffJ6Bf\nP5tA/6nt20ldssRmfpDcY428enPw0DZEShFwoVP7QXz13fsM7DGZ3/5ZR7J2AZMmTOeR+6bajP/i\nhyxWrq5+m2Nz2rSUdXbxnzz6tI+2OS9rUxjP9YulScNAior1fHV8FZcuFdCn20Ty8y6zfefrDOsT\nZeZZ+zrr+mI0pvEfHNZWLUZT7nwEmBG6hAEPTpF/99G3y1icEXdTKRvFdabAbuD/lUwtM0cOZ/PG\nXM5Xw+12xVhiv3OnIMj/bh8Ry3xtGq9qU23GN2/SiEbde3NwzQqMhXouHf8L36ZN+TEthY2ZkuWU\nsjoHWrXhx6wUDG5ulDUts5skYGq9XKzX49usqdwK+srpE+xOT+Tc74fpPH4y//fqKj5fsQLBRZDY\nli/n4+XhR9/RMXyUu5QvN62h96RYduekMDBygZXl9NDkKGYsWkzTpk04de4cJ85doU/0XJp4q/A9\ndoQPNLOtYjTfrksnY7ZtPfGQp/sRPT+dwSELZRfc1sx4kmeH2ZxbEdRqNdqF0xj18ssY9IWyRQNg\n0Bfy6w9H6DjK7KqKnpZEcmIsmqRY0tOzyS8owdfHjbWvLkatVhMYGEjk/PlWMZrP168ndbbjdsen\nT1/gpwsbGfy0OQ1667splBqu4empoiBfcgv5OiAF9fWtPGHF0bUnaxfKWWMn/j7N5jMa7mvZg5/+\nPIBYWkoppfh6NWD/N28xpE84Xh4q/vztBM8PnY6XpwovTxX9+rzAe59moS88R/sHWldZyQAgQL0A\nd9Z9NZMiQwGt27WoMLCvDlKzeFmMlHV2Qco6Kzs/JnyWrGRAssgGPDiFzNTVaNIWXdc9utmhKJqb\nFCnZObLlAtLm2SYkgs0Wgf+KYGkN/f7rzzSqQlOxX0+csjtX1PjxTFmaRMcQc93JL5lpLJs/F4Cp\nizXcMzGCu1Uq1Ho9H8ZNpVivp/2QYexPT6ZbWLRNjKZYr2d/ZjIPjx0jy2PUF+Dq7kbfWfNQNWhE\np3Zt8PXx4WpxCS5GA2KzJhz+6x88vFW4urnRY5JUpV9w8azdeM6ho3/x1OQwzq9ZTZ/oSNmCaRrU\nkkfGTWLnklhatWmLv5c7GbOn2WxaOp2OuHlLGRyaLCcVeHipGByykDe3ruOxxx6ze790Oh1pGTnk\nFxjx9ZGsE7VajVqt5rXly4l4ZR4dJ4ySYzRvz03iyQHxVq6qbr0jSMvIITV5ASkptsFutVpN6uzZ\npK1YQb7BgK+nJ6mzK253fPL0CZ57LslqncFPR7EmOwqDQY+PSZGEho9nWlQivbuEyQpp12fpJKZY\nK2JJceRQcNVYKWuATqeTu3M+NECyAtZuncWgx6YQ2KQlRcV63vhkKQX6y4DkpioyFljFdho3DmDY\nM6Ec+HZNlRIALNeOC0mk/wOh9FBLa3/8XYZ1BZ8dqIPUdgP/+qtGvJra68vz343fKIrmJkVVAv+O\nIFtDUyVryOOPI+xOiKfXAnNQ/oBGw0Njg+UxZRu9PZhbQWdz3liCv7sby6bHyvU390y0Vohdwmey\nb/4cus+ex8NjxvH5qiwuHv0TVYPGuLq6883ruVw49gc9pk+nXqCU+bZzzmx6hE2nyZ0tKdbr+WlV\nGpkzbNtSlxVrunt5yYqjWK+3azmJoiglLVwTbfjPmga1pFXbtryaYt8VpNPpCJ+ThGeTIKvMNTCl\nSReVWJ2bnp5Dfr6R0tICzl4spufAGDlLLWp6EilLY2Vlo505h4WpyRz6/U/q1w/Cr7Q5AQHl4kAW\nFoYjqNVqh26yMrkytDnk5xnx9XOn2a3N7SYXNGl0G58c1JKojZXnTUyZRkZaNvn5Rnx93UlMsVbE\nZYqjqqwBGanZUgtoCytg3OBFfLB/JUN7RuLloeL5x6eT+VYIm3doOH/lb3C7xslTf9I84E55niKD\nHh+f6nGUZaZk0/+BUKu1+z8QSmZKNpr0qiusMqj8HcRv/K/P4vtfgKJoblJUNfBvDynZObSZat78\nG9/Vkg4TprI1+CWaPdSBf37+CVXjxqgaNJLn/TQlkXtaBDmcU0pgsP2jvFpspJ5KxeWTf3Povc0y\nPUtjVzcMm9Zz4tx5Th06hId/Pbz963H/kBHUb34bl0/+zfdvbeTKmRP4BwTifa2U4p1bOb7Pk3oe\nbmTOkDa90FnxFi0MxpuKNTUgusnsAPWbBrInI5meoWbLaU9GMvWaSy45wVWwy3/m5+n4XqYuz6bD\nsHD2bVlJcZHeJk3az0v609LpdMTEaOjeQ2oJ8O57ifR5OsYqS61rnwheGB1Cp04PEB4ivfX7udfj\nuRFaPL1UfLQ51a6ryuc6XVVlck0L1/B4pwg8AyUCzf2fTsXQ1XadQuMpVmgzbAsoUx1vwhmpOZKS\nqSJrgP5qiV0rQKTU6v8ugiuDeppjH+u2zWZg/zE0D7hTIuXcv4qlydXjKCvIM+LVxHbtAgeFp5Uh\nJHICYcGzcCtpgIvgQqlYSonbJdJz/ptuM1AUzQ3DMZ2OZAuizOgaEmVGjQ+WYzTlA/+VwZ411Piu\nljS5tTmdJ0yl8OJFPl+WxsHlmQiCC6JYiq+hiLmzq08y6O/hzrk/j/D92xvpGm7e6Pctms3M/v1Z\nvOF1hqx+1ew6S9HQ8YVgVA0aUWIoontYrGzVFG1eR9SE8aSuyiFOo+Xnw7/SJSaW2+6SrJypSxLJ\niptG+rwY5i1JZntyAp1GSv1O8k6f4bNVy+V4zqW/jtNrmnSv7ntmKLtWpdB7opkQ87u16WTGO+Z4\nzSssobm3iof7DmP7umT6jYmWYzRfvZlG2nxJEaan58hKBiSlZq9bZb2mLWnefgyRM5JIXRxLvr5E\nPq9Tj2Fse0/DoKdiZFfV/l1akhMdp07LbqsyWpdybqsMbY6kZEyKwNNDxbO9ZvLmm3MZOnSuvM6e\nvenkrsuw6zbM0GaTn1eCr5+bDW1MwVUjXrfYcR+ZNu/yCQCii8GuFSBYNAEuKtbT/JaWVsprzKD5\nvLY9llZtW+Pj48HS5KpxlOmO6chMzabgSgm//f4Ld/oeIbCpmb2iqFiPj4PC00ohgoebD4M7hMgK\ncet3KWUVA/9JKFlnNwDHdDpeTtTQKtysFH5L07J8Ws2IMq+X5Tk0PgH34bbFl5eyszhTZKTt1AgK\nL17kh82vU/D3cR5ocQezI8Ltzn1MpyN1VQ5XDEbqeboTOdG2kdodz52bAAAgAElEQVSg8ZPpn5xh\nW1w5K4rHlmhsjr87eQIBD3Sg/bPD5EQAgMOaReQZS3mgXOFnh7FjZGVU+MYGMhZJb9oHDhwgRpNF\nn4j56C9d5Jttr3PxxHH8mzTjrk7d+X7XmwyYPU+qFfrzD3YtXsQD991H03p+VsWd9hA+PZ4mXcfg\n4a3i0pkT/N+OLZQajZz67VtWpy2R4zMTJ8bxcAdzYsDW95PpPWiyTbfKnR+vYMBzURiK9Jw8tI78\ngnxaPfKyfN7Fsyf4YtdGDHmnuf++VnJcxx50Oh3TwjT06RAh0/3v/FpLYnqMPGZScByPtrFNWNjx\n9QJuad5IdomFhdnehzLes8c7mbPdPjmYRqLW7BaLDk+gbYMxNorjl0vrCI0MZlp4In07hcnyvbNn\nEV5u3jzRMcZsrXwQzxOPvCzHaF7bMZvBPUNp3DDQSp4Dvy1j+ZqqZ7vpjumIC0liwL3h8lprd8Tz\nRJeJBDZtKcdolmTaxuWqgpiweNqrRtlc+yH9a9flinMWajPrTFE0NwAh8Qm4jrbd2K+tzyWzhkSZ\n1wPLGI1sDWVJGWs5G9/gx6PH8PDxoXVggEMFUzZPyCIN9wab5/kxR0vmLGsF+lxoBHfZaWy2c3oE\nfTQpNsffmTyBJ5PSKbx0kUNvb5GyjkpLufrjDwxMWW1zH79Yt5xu4RKZ5d+rlpGbKG06YTMSqNdv\njI1L7LPXVtArOIqzuiPsXrGUW9StcL3mQkOhkE3rrTtP6HQ6qdbGRGUTMSVYJpkMn5NEh2Hh5tbN\na5Lp8ugL/Pp/W0hdIm3qUVEJBLUYK1s05y/8za69OTw5NFaO0bz/TjLdBrxIw6bSBnrw4yQu/X2R\nIhcvBow0x3L2bdWQoZkpr5+eZk4osCTSjA5PoHXjsbK1AlIDs8PncwmNDCZDm8PBL75jzFNam3N+\nO5tLsrbi72R0RDytbrFlJJDSnxfK902O0Zg28zLWgAxtNm2ajrJZ++AfWfj71UN/tQSVvxvPDOvP\nu5s/ltmir+RdoXOLKbbK6/yGagX/Y8LiuVdlqwRz90XTqnVbfPzcCYmqHk+aJaaMnU6PO2zTv/ce\nz2LZ2uqnfzsLSnrzTYYrRiPN7ATu/ylxThaKJfvAeVMNzsyRw1mSu4l7gyO43UJpVITUVTmykgHp\nmu4NjiB1VQ7pr5g3q1v8/ezGk1yLi+zHmZrdzvaZsXg3bUq3CDP/2fbZM9CXYwgoYyAoG+tvEaPK\nKzLSxE7hpShK5zdVt+TWwNYMGhiLoUjP4c/SiIxJIE9vxE/lzpCn+5G0aiMdh0bQ3OQWC5+dRNp8\n6c09bV4soyaE4t0gCFcXd3r2fIlGTW6jYeMI0jJzSNUsICws2CpG4+fbCA+hiF//bxm//3kKT99m\nVkrGUKTn+NGjjO6TwtWCC+zftJJrLqVQInJrgKesZGKiNfTsZm4FHROtQZMsKbeCPCOeAeXccx4q\nLpzLk+MyAY8P4q2PExnSf5psVXxyUEtiWuWu19OnL3D0l5Vy59PHOgyjcaNACvLNCRBqtVpSKqk5\nMo1MWSJAQZ4Rz0Bb+VwFlY3CsMzc0+l0TA9LpG+HULPy+jqDpemVtrGyQsGVErzq27r1Wrdqx7JX\nHSdPVBUOizmVZAAFdQlHRJn+bs774pVnHwibmVAlpQHmvjRfHv4N7ysruG/QczQICJTHnTFYK9Co\nCcFMXZJkQ1+TFDediHlz6DlnnjnbLSWFTs8Hsy8lQVYyZfP2m7+YL5Zn0TPUvLFYMhD8tCyDrDjz\n7/y83O0G+eU6nUI9LqUuGIr0fPLmfDw8vWn92FjZggidHsLQ6RlWqcsdh0oMz9rEBajVatrc1Y72\n3a1dUJ5eKvILpHugVqvRaGLkrDNfX3eWL58vK4zIGUn4+DcEJCXz2UdabrulOZ4eKpp4qBjS01y4\n+PnhdADS03JkJQNSZljPbhGkp+WQkroAHz93DMV6G4tBd/woLwyUFNiBbzbj4uHGijdC8fZ0o/Oj\n95OYFlPpW7xOp+Ofvy8zon+UVRfObp2H4+NrvZ2o1Wq7gX9H8lUWE1Gr1SxNn2ZiaDYpr/Tqu7d8\n6rk5UAS1sx2GRI5nRkgiA+4NMxds/pjO4szqKcT/JSiK5gYgenywwxhNXaOitgGWuGIwUt+O1VVe\naRzT6ZiyREPbKRE8bsH03PG5l2hg6kfj72lLeZMVF1uOvkZKTb739Tc4mCEF6QXBhU5DXsKnfiO8\n69e3W/ty+cRfVq0Dtr8Sj2tRAYVvbCArbprVtUVNCiZkfhIPjImQ3Vu7VibxyLBgydWlnc0d9epz\n6sdcbg9sxN2PTLXKBmvcvJWD1GXzPfH1cbfpumko0lN6rYCI2ATy9UZ8Ve5EhEmp4tqsHBYmrZCO\nTQ0mdXEsaZk55OuN6AsucfLYUQrzjPRo73gjzi8w2k1DLlNuoZHBdmM0Ac2bc7XgAjsPrmHQ0+bi\nzy2bZxMa4TjmY4mM1BxG9J9vlUQw5PEYVr0dwuZ3V1Y6HiTamfIxmh0H00lMq3wjlpSXrZtMCu6b\na3ZCIh1T9odEjreJ0Xz0YxpLMivmpatqWwB1kJrFmdPITM1Gf0aioFmcOe0/zeqsxGjqAPaC9ADJ\n2TlcLTHi71a1rLOqKomKxjvKTCs/T9jMBFSDbeNI+q25VhZN6KwEPJ63Pe/rlSt4dPRkuzEae5Ao\nX3I4ezmPXw4fpmvIDJoEtaS4UM+hV7U09XWn0Ysv26zzQehkmrRsD64CXBNxy7tITuL8CgPjKSul\nGItLiYHSkhLw8sHf053IyebNdfyUONr3sLZMPnw7ma4vTLZJXT53YB3axAXy/JFxGrr0j5AtoZ1v\nzcfd25uuz5jjK5++o8FoKKTX8AT52JfbtKS+IrmTDhw4wLSZGQwbvYj8qxc58H42Qx83u7V2fqWV\nLY6oyATuVI+1iZH8qcslJdUsV/msswxtDr//kke/wVNsxh49us5u4Wd5TH4pji53h9oc33UoibWv\nV+xqLf9cLLPOymetVQe6YzriQpPo394cD/r4kJYlGbGog9R2lRAgKQJTPCgkcnylvWdmTNEwsI15\njQ9/dUxR878AJRmgmriRikYiqLRD81/NDDNHAfvqtHSuStsAy/WqEtgfMy2O5hNts5U+mRbOI61b\n22Sd2YNOpyNkgYb7xlpYGikJBDauT0CTxkROkjaCqUuSaPeymW3g5+VpzBw1gi3vb+eqwWijLGqC\nyJgEAtqPtbJMzpw4wr5PVjBw8nyL1GWtHKOxvJ60THNgPr8gn7u6TbGxcna9ncnAF6ZZHTv97Tq0\nSQvo1mMwz4xMkRXAhXMn+GL365w/fYSu3R60sjjsxWj27NfKMZqK7vuI4ZG8FJxh87uvv85k1arK\n4xPR4Qm0aTRGtmjOXzzB3q83ojeepv1Dd1dY/V9XiAlL4B5f2+D+T/nrCIkMJjR4Nm7GBri4uFBa\nWkqJ+yUycuZXS0HEhCZwn7ttW4AfjP87bQHKQ0kG+BejtloxWxZVXj55gp/e2sw1V1dGhIaxMSO9\nSsrmn6t5tLDjfjpxNc/m3CC1msxZMaSuyuGMaRO3Z5k4ijd1btOa9EVVu76UlTmykgEpQN87agF5\nH+WSvtg8h+Ruy+asiW2gzN3miNqlJggPCSZyhoZHB5gtk1+/3sLSmVN5c6tFA7X5tpXtarXaikBz\n/NQ4u7UylpQ+ZcfOXzQ9C8HLyspo1CSQJ5+fxqY14TZZYGq1Gk1yDItfSePIkVMYigpo28ZxMW1Z\nhtqFc3lcunjGbvHnb4d/ZvKLcZVSxUhuuST6PhxBXv5FdnyWw9De0+S3/OmhGpZmVB7rqU0UXDXi\n1dBOweVVI6/MS6a00Iune5hrWjbvTeKVecmsWmurcB1Bf8WIV4DtGvrz/11amepAUTS1jJq2Ypbn\nMRVVXj55gm/XraFLlLl2ZEqipkoW0vGjRwm0oxSOHz1q9/wgtdom8F8eUROC5RiNHNhfpmVZXNXj\nTVcNRhrZyQa7Wi4eFKRWyzUxdQU5fbnQSKMG7hw+kIaLmw++KndSF0sbZnUVm6/KftymLDvO8thf\nOtOzEIvsKgBwTOt/6ayR5/su4mrBRfZ/9Tojh0dzT/vbmTEz3Mr6iY3U0OvRCO4JUtHy9iO8viGe\nF0YulK2hDa/N5KlOMXINSUXKQq1Wk5guZZN99cV3jOuvta7+f8Bx9X9dwccB5YuPvztffX6M4D6p\nVjI+1yOWnJ2R1Vqjum0EFFjDpfJTFFQHZW/8lqgqNYzVPCaKmZ/e2iwrGbC2kCpDQGBzDmg1sjxl\ngfuAwObVksUSQWo1y+JiKH4jl1Or0il+I5dlcdVzC/p7StlgligutE0iqGvodDrC4zU07TyWNgPC\naPH4VM7rRWZNm0yqZsF1v5VHTA3my21aDEXSNRqK9LybM4u8y+etjn28KZmA5tKzCJ06htUZ49n6\n5lI+eCeF06eOsGX9LF5ZaD9AnqHNoXenCK4WXOSTL9bQf2AIL47NoH3bqcREa9DpdICUodbrUXOG\nWkCzlgzsOZWs9Jd4Z+MrrF0VwVOdQgls2pJzl/7mg8+Xo9e7Mm50mDxHeZRlk7Vrd4/VxgvOIY8M\niQzm40Naior1nL38N2/sTmTN9unkF+QjioJdGb08fKq3RlQwH/4qrQHIMZqQqOBKRioAxaKpdUSN\nD3YYo6n2PEs1XHN1tZt9VRULqXnjxjTo8ThfZa+QOcbufX4Eqr2fVEuW8pAsjet/Y42aFGwTo/kh\nV0tmQt1n4VlCuyxH7rAJUkZZp2fN6cvXC7VaTeorsWizcuSsszua+RHUYTR73jM/i869hnP+8Hvo\ndDo2btnLhLBsc8fKtdMZM+Jx3n5rO+vWvW9TlJmfZ8TzdhW7dqYweHCMdapzV3Oqc0GebYZaQLOW\n3Bn0ECUGAw28b5GVzPb/e5WnLLpmxkYmkZTquGOmI0viRteLqIPULMmI5ZV5yfz5yzlG9Zsvu8mO\n/JjAiXNHCGxiTS9zZ+uAaq8htwU4b90WQEHlUBRNLSNIrWbZtHKtmK+DaqasqHJEaNh1k2eWKb0O\nNVR6tQ21Wk1mQgwpK3Mkd1lRAU193ZmTtQJ/D3eiJtSMB66qyCs0Emgvfbmw5m/karUabZJF3GZ8\nKAd3vE7/kWZGgI83JNHiVk/SMnLo2te6Lqbvk2Fs2byCYc8ssFuU6evnzqkzR7h09UyFqc4+fvZ7\nx7i6ujNwUCiZK8dSVKxn/w+bZSVTNkevLmaFZQ+hkcFMD9XQ9wGL6v/vtCzNuPHfL3WQGn//eozq\nZ83CPKrfApa/E8LUQVmyjNu+1aBZMeO61qhO4L+q6dD/BSiKpg5wva2Y7c2zMSP9ui2k2lJ6dQG1\nWk364gUc0+mYulhDu/FT5eubulhD1oy6l9PP290+87J37b+Ru7j40LvbKPZtWSF3r+zdLZifvl/L\nz799x29HCxAEFzp3fY5GjQP57sttspIBa0slLDyY/IJ89u5dgijC6dNHuPVW8xu7waDH10e6hrDw\nYDlGU6aw3v1IQ+/uL+HpqaL9fe3Z+a2WklJXuwrrh29/R6fTOYzXLM2IISM1h4tn89D9dZTmAc3J\nTMmpsI6lPKpTA1MRCvJK7LIwt7unDT8WrEN/Wqpp0ayYUecbvlU6dICk4GZM0fxnrSAlvfkmwPWS\nZ94MCJ2VgNcQ2xTsordya+SeqwrKYjRl7rPiIj0H39aStrD2s6aiohJQ32ld+3L69BF2713B0yMW\nyFbOB29r6NHnJb7YtYFnn5huM8+u/QsoKXKlVxez4li3OY6B/UO59daWGAx6Nr+VQO76xVYJAWNH\nh+GnCsLV1Z0unZ6jUaNADAY9f5zIJSw8mHGjw3j+qWQbyyc7NwyVp4p2991OXEK43fsi1bFo6GdR\nx7L9kJYlGZVvqjUZWx4xYfG0q2eb5nzw1HJ8fXwpuGLEp971K7JqyfI/kA6t1NFUEze7ovlfxtjY\nOAKDbetyTuSkk5tUc96pymCZdebnbSbNrOrYtMwcmRutrJeMo3OjYzR072lWELm5IYycmGmTnbZj\nWybnTx7mxVGZNhv/hk0hjB5qezxt1RjUt9+Pu6sHtzS/RvaaDJv1Y6M09LRQUHs+05KUEiPT4cRG\nJlkpsA2bZzHo0ak0N2Wj7fxGazcbLSYsgXa+tpvqz/m5aNIr3lRrMtbePY4LSaLfA+aK//e/1lBc\nXMTQDrPNLAA/aVmSWbeWxZQxcfQMsP1e7zmVzrJ1df+9rg3c9HU0giAEAlrgcaSGqZ8AEaIo/l2F\nsZ7AQmAkUB/4HpguiuKndSexgrqCv4MGbv4elbuvdDodqStyuFpkxN/r+oo31Wr1dQX+JZ4y67qb\nyBkaOSXa8rwynrNGDd059F0aLi4++Pq607Zta7v1NkUFp9Fq49GmaunZ1bzxv799Pojedl1cLe7q\ngEupgJd3CfGzbd2qarWapJQY0tNyKMg34uPrLisZ+fepsYwaHkKjei05efo3hvWaTnNTjxYvDxUP\n3jmMcSPDaN2qrVWPm4rqWCpDTcbau8YlmbFkpmTLjM8evgbEfxqy9YssBMGF7u2fY8A9EWSm5lRb\nkVUHSjq0NW54erMgCN7AHuBuYDQwCmgJ7Db9rjKsAYKBeOAJ4DSwXRCE9nUjsYK6RNSEYH5eqbVK\nwf55pZaoCRWnjep0OkLnamjQaywth4TRoNdYQudqHKbk1jbSMnNkJQOSgnh0gMTabCljTIyGoBZj\nCQp6lpMnRX755RRgICwsmMaN/OR05zIYivQ8cN/dPPbYY2iSY/jzr1y++i6dP//K5fbbGtGwwR2m\n+hqLMQY9rm5uFBhPk5Tq2O2nVqtJSV3AytVLSEm1Td9Wq9V06vwAT3afSmDT1rKSATh36QT7vt3I\nqP4pdGkVRpvGY5kWJt3vsuwzS5TVsVSGmox1dI2a9IUsf3UJIZHjOfuXgcFdpzKsVwxPdpnM9v97\nlav6C+iv1G0KtpIObY0b7joTBCEc0AB3i6J4zHRMDRwBYkVRdEiYJAjCfcB3wDhRFNeZjrkCPwOH\nRVF82sE4xXX2L8YxnY4FqWn8+vcpjAUF3HNnEHOnRVdonYTHJdCg11gbZuZLu3NJW1L3PnB73GgA\nP+5NZ/UyyTUycWIk97afSn7eRfbsWcOgQeYOmfv2aYmIGE5iynp6DDRnou39MIn0lBl2r33ixDju\nvO1Zdu9dw9MDzHNteGsWvQa9TN6FXaQmm7nO0tPMXGeWqdEVoazFsyHfjUFdQ+Q38rd3pTCwx2Qb\nos9fz+cSGhEsx1mu6i+y99vXuVDwN23vdxzXkderxRhNeTiiptn6aRYtHvCrU4sGbv6ss5vddTYI\n+LJMyQCIoqgTBOEz4Ckkl5ojDAaKgc0WY68JgrAJmC4IgrsoigonxE0GATibb6R3+CK5riZkgYbM\nBMdv51eLjNxih13Aklm5LuHnoPrfVyW9iet0On785TgPd1CxY/sKWcmA5Orq3j2CdeuyKCkoZNdb\nmQhuLoglpYilhQ7X9PVxx9evIb16vMRHe1YgiqWIpaW4q3z4+fstcmtnSzYAc02MpkJrpwxqtZrE\ntBgWzU/m9Y8TeKH/Arw8VFwrNVopGZCYmwvyjKY6lhhTHct5RvZdYKakCdGwNLMCK8s01jLrrDaU\nDDh2y50vOE5KpG3DvdpGddOh/5fhDGaAdsBPdo7/DLStZGxb4JgoikV2xnoAd9VcvBuDvXv3OlsE\nGzhLppSVOdw/xpr77P4xEaSszHEok7+XfXYBP6+694Hv3buX8JBgPv/Iuvr/84+0hIdIrpG0zBzq\nNb4Ng0GPKJbajav8ceQUg/rMZsjAaTzbN4YhA6cxqM9s0tPssz6EhQez51Mtvn4NGfxkFP37TiFP\n/w8tWvgw7Nmu8mZeng3A01NFr0cjHM5bHmq1mtVrMlizaTG/XsrlwB/pXCk+hqGci8uydYE6SI2f\nf31ZyQAcPfk9/e6PICOl4nXVQWo06QtYvnYJmvQFtfbW78gtV/8Wl3+dZfFv3A9qE85QNA2BS3aO\nXwQa1GBs2e9vCvwbv1jOkulqkdHKBQYm68RgdChT5ORgvnldKyub4kI937yuJXJy3fvA9+7dK1X/\nL47h1KFcftybzqlDuVaJAHl6I537vMB772sQxVK7cRWDocCuAirIt2+VlZFpWsZtctctJmd1BocP\nH5bPs8cGUNG8jlBGNbNizRLWbkhnx9daWdkYivXs+FpLaKT5fuuvGq3cVL/qvpAoafKc42SwpKYB\n5PYBLe4OdIo8FeHfuB/UJpSCTQVOh7+DTph+FXCfqdVqMubGkLoiR2ZWzph7Y1mDy7M2W8JP5Y6P\nf0MeG/QS+97PZuOmeEYMX2gVo2nTJshu1b6Pb8XX7ahSvwyO2AAqmrcySGSaMVY9bhLTre+3yhEl\nTSWdM+sKZdQ01m65WNbmrnWKPP9lOEPRXMK+5eLIWik/9nYHY8Fs2Si4iVDGfXa/RSfM79dJ3Gdr\n1651OE6tVt+QwP/1QG47MDCCZ16ay5m/j7B2fQjtWremcWM/NBopBTk2UmNVu7L7My1JqTWjcLHH\nBrD785rPW2bhOEJoVDDTQzT0u18K7JdcM7L9ey1LM51HeVTmllPgXDgj62wX4C6KYrdyx/cAiKLY\ns4KxCcAsoL5lnEYQhLnAdMDfXjKAIAhKypkCBQoUVBM3c9bZViBJEAS1KIo6kNObuwCVNQ3fBswD\nhgHrTWNdgeeA7Y4yzmrrZilQoECBgurDGRaNCqmavxBIMB2eD/gA94miqDeddztwFJgriuJCi/Eb\ngb5ISukYMAUYCDwiiuIPN+o6FChQoEBB1XDDs85MiqQX8DuwDsky+RPoXaZkTBAsPpYYB7wKLADe\nB5oD/RQlo0CBAgX/UoiieFN+gEDgTeAycAV4C7itimM9gSTgFKAHPge6OlmmV4DtwHmgFBjjzPsE\nPAxkI70QFAB/Aa8BaifKdDvwLqAzPbdzwF5ggDOfXbl54kzPb/+/4HteaudzDWjvzHsFtEEquj5n\neo6HgVAnfafmOLhPpYDeic/uNiDX9HenB35DerlWOVEmtWnsJSAf2A08VKWxNRHaWR/AG4my5hAS\n08Ag07+PAN5VGL8BKUPtJaCn6Wbra/IHWAsyXQX2IVlr16gFRVMTmZAU8edIrsluwHDgFyRF2NxJ\nMrUFViMRqnY3jd1q2hSedtazs5inBZCHxL9XY0VTC9+pUqSXhY7lPl5OlOlh0wb3LhLTR3dgPBKp\nrjO+UwF27k9PJAaSjU6SSYX0gvcnEhdkdyAGaY9ylkwNgZOmPWAoEs/kHqR9q1Wla9f0j8EZHyAc\nMAJBFsfUpmMVfmGB+yhnMQCuSG9V7zpDpnLz3FlePifdp8Z2jt2OpATnOvs+lXt2x4H3nC0T8DGw\n3PQHWBuKpkZymb5H82sqRy1+pwQkFo83/y0yOZhvtOl73t9J96mPaf3Hyx1fjKQAr+tFoYYyxZvW\nVlscUwFngE2Vre0MZoDagF2+NKCML60i2OVLAzYB/QRBuN7qsprIVFe4bplEUTxv59hxJHdHc2fI\nZA+mZ3cFKHGmTIIgvAA8AFS/R3AdylUHqIlMPYHWQG0TjdX2fRoL/APscJJMHqafV8odv4IUV7/e\nLNqayNQJOGI6v2ysHvgUeFIQhAp1yc2qaP6NfGk1kamuUKsyCYLQBmiKZD47TSZBgqsgCLcIgjAb\nqc1ERmXj6komQRDqI22esaIoXq6BHLUqlwkvC4JQJAhCgSAIuwRBeMyJMnUx/VQJgvCFIAjFgiD8\nIwhCmiAIXk6SyQqmXlk9gNdEUSx1kkyfILmzEgVBaCMIgo8gCL2AMGC5KIqOmVfrTqZrSC/o5WFA\ncsndWdHgm1XR/Bv50moiU12h1mQy1SutAM4i9QRypkyJSOb+aSAaGC6K4l4nyqQBfhNNrStqETWV\naz1SjK03MME0325BELpVOKruZApAehvfhORmfBxYihSj2eAkmcpjtEnGmj7L65ZJFEUD0BXJLfwz\nUtxvJ7BNFMVQZ8iElIzQUhAE+TxBEAQkS6dsbodQuM4UVBVZQGdgoCiK5U36G41UYCPQDBgDbBQE\nYYgoih/eaEEEQeiKFLB94EavXRlEURxr8d/PBEHYivRGuwApwHyj4QKIwHpRFOeZju0XBMENWCwI\nQitRFH9zglyWGA18J4qivTf/GwJTF+HNSN6DkcDfSEkKcwRBuCaK4hQniLUCyaJaLwhCGFId5Cyk\nGA9I8UCHuFktmprypTkaC9fPl1YTmeoKtSKTIAhLkN46XxRFcZezZRJF8ZQoit+KovihKIrDgS+R\nrApnyLQCyAFOCYJQz+RGcwNcTf/3qHh4ncllA1EU84EPgA5OkumC6ecn5Y7vQLIi7neCTDIEQeiI\nFENae51y1JZM45EyPQeIorhRFMUDoiimIFnvkwRBuPdGy2SK67wAPAj8AZxAsmbK4m2nKxp/syqa\nn5H8jeXRlsrjBz8DQXZ8wu2QfJB/OEGmukKNZRIEYRYQi1Tn8Pq/QSY7+D9q1ouoJjK1ASYj/aFe\nQnpR6QI8Yvr3ZCfJVVeo6d9eXaC27tNYTGnNTpbpHuCyZdDehK+QFHIbJ8iEKIrvICUCtQHuEkWx\nA+AP/C2K4omKxt6simYr0NnEkQZY8aW9V8nYbUhB/2EWYyvlS6tjmeoKNZLJZCIvAGaKorj83yBT\neZj8xF2Rag6cIVMPpGyqHhafH4AfTf9+00ly2UAQBH/gSeCgk2T6CGkj71fu+AAkl9rXTpCp7Hx3\n4HngQ1EUL1R2fh3LdAaoLwhCi3LHOyPdp5NOkAkAUcJvoigeEwQhAGnfXFaVgTfdB3NB0w9I6cqD\nkfjTjmBROYtU91ECxJcbvxHJjA9GosN5E6kY6j4nytQNGAKEIPk7M0z/H+IMmZAKNK8huVo6lfu0\ncZJMc4A005e7m+nnDtN5w5z17OzMV1t1NDW5V9FINT3PIbbyqEcAAAT6SURBVMVjxiIV5xUBjzrx\nez4bSdksQkpSiDP97eU48/kBz5r+7p6q6XOrhWd3B1Ll/mGkGGQPJK/CFeCgk2RyQ3KTPYX0YhWK\npPD2Am6Vrl0bN9UZHyQqhS1YUyncXu6cO5A2y4Ryxz2RfPplFDRfUHsUNNcr0x7TcZuPM2TCzFBg\n77PbSTINQvLvn0EKRh5DqjDv7MxnZ2euPcA+Z37PkSyXT5GyBA1I9U/vUEXKkLq8V0AE0oZXZHqG\ncwBXJ8v0ruleVbpp3giZkGJFm5AoaAqQlM5SoJ6Tvk+uSN6g06a/vSNITPpVKh694ezNChQoUKDg\nv4WbNUajQIECBQpuEiiKRoECBQoU1CkURaNAgQIFCuoUiqJRoECBAgV1CkXRKFCgQIGCOoWiaBQo\nUKBAQZ1CUTQKFChQoKBOoSgaBQpMEARhrCAIpRYfgyAIfwiCsMjEqHuj5dEJglCTlgwKFPwroLQJ\nUKDAGiJST/STgB/wDFLXTF+kVrg3WhYFCm56KIpGgQJb/CCK4lHTv3cJgnA38BI3XtEoUPA/AcV1\npkBB5fgWqf1wY0cnmNpKGwVBCLHzu2mmtsWNTP/vIwjCB4IgnDK1WP5REISoyvquC4IwVxAEmwZT\ngiCsFQThWLlj3oIgLBUE4ajJBXhUEISZJrZrBQpuKBSLRoGCyhGEREDokD5eFMV/BEH4BKnbZma5\nX4/Cmn6+BRLxZhYSYeLDSMSSjYGZFcghYt+dZnXc1PZiBxIx43ykrpqdkZiTGyAxAStQcMOgKBoF\nCmzhatqs/ZDo458BwsXKGWjXI7W6bSmK4hEAQRDuR2pkVda6GFEUV1oOEgThABKjeDQVK5qq4gXg\nUaCbKIqfmY7tMVkzswVBWCqK4vlaWEeBgipBcZ0pUGANAfgNMCJ1yMwGVopVa/z2DpKFMtri2Ggk\nSvZt8gKC0EwQhJWmrLJi01oLkZpdNa2Fa+iHRC//pSAIrmUfYCdS07/OtbCGAgVVhqJoFCiwhojU\n3OlhpM6PO4GpgiCMqnSgKBYi9fcYCWCKuQwHNouiWGw6JiApnYFIbq2eprUWmaYp32L8etAUUCMp\nMMvPQdP1NaqFNRQoqDIU15kCBbb4uSzrTBCEPUidKZMEQXjLpEwqwnpgjCAIXQAfoJnpWBnuBB4C\nRoqiKPemFwThqSrIVWQ6100UxRKL4+UVxwXgKFK7cnvBf10V1lKgoNagKBoFCiqAKIrFgiDEIvVU\nnwIkVzJkD1INzhjAG9BZxElAaqcLUqtcQO5XP7IK4vxl+nkPUgteBEGojxSPuWpx3sdIsaUCURR/\nr8K8ChTUKRRFo0BBJRBFcZsgCF8D0YIgZIqiaKjgXFEQhA3AJMAdW8X0K5LCWGRKVS5Bam1sk7Zs\nBx8hKZTVgiDMRXKzxQL55c7bAIwDdguCkIzUI94DuAupHfZToigWVWE9BQpqBUqMRoGCqiEeuAWY\nXIVz1wP1kCya1yx/IYqiESkGdAbIBTKAfcASO/NYpS2LongFeAJJKb2BFNdJB3aXO68EKSFgFTAB\n+MAkx2jgAFBchWtQoKDWIFSesalAgQIFChRcPxSLRoECBQoU1CkURaNAgQIFCuoUiqJRoECBAgV1\nCkXRKFCgQIGCOoWiaBQoUKBAQZ1CUTQKFChQoKBOoSgaBQoUKFBQp1AUjQIFChQoqFMoikaBAgUK\nFNQp/h/GmFKpvr5bRQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "out = EM(img_data, init_means, init_covariances, init_weights, maxiter=1)\n", + "plot_responsibilities_in_RB(images, out['resp'], 'After 1 iteration')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We now use the above plotting function to visualize the responsibilites after 20 iterations. We will see there are fewer unique colors; this indicates that there is more certainty that each point belongs to one of the four components in the model. " + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n", + "Iteration 5\n", + "Iteration 10\n", + "Iteration 15\n", + "Iteration 19\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEKCAYAAAArYJMgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlYVNX/x19HmFUFSxNzqaENNds0y9LK9n1frdTcBQYQ\nEBfEXXEdkE0UsdQ2bd+Xb5uZtpctllK/nNtiaZo6ILOC9/fHnRkYZkZBQaTu63nmQc7cc++ZO3je\n97OczxGyLKOioqKiotJUtGruAaioqKio/LtRhUZFRUVFpUlRhUZFRUVFpUlRhUZFRUVFpUlRhUZF\nRUVFpUlRhUZFRUVFpUlRhUalSRFCjBdCbBVCOIQQ1UKI25p7TMcDQoiDQoj3m3scjYUQQhJCbG/u\ncagcn6hCo9JghBDPeyfKHw9z3MPAQqACsAAzgW1CiCu8/acdg+Eeanw3CiGKhRDfCiH2CyEqhRDf\nCCEmCyF0h+j3oBDicyHEASHEXiHE60KIPg28vOx91T7veiHEwSP5LE2NEGKV9zs7JcwhQZ9HRcVH\nZHMPQKVlIYRoD9wCHATihBCXyLL8SZjDb0CZfG6WZXl3rXOc3PQjPTReIXkdcALrgbcAPXA9MBe4\nXQgxUJZlZ51+mcAc4FegGGgDPABsEkJcJ8vyhnoOoQdgr9N2PE/WhxvbVcdqICotD1VoVBrKEJS/\nGwswHhgOhBOakwFqi4wX0WSjqz/VwBRgqSzLNl+jECICeAFFTBNRPqfvvTOAGcA24CJZlg942/OB\nL4BSIUR3WZYPa5XIsvxT432UY8IhvzNZlq3HaiAqLRBZltWX+qr3C/gO2I/y9P89YAMMdY4ZimLx\nHESZ0H3/3g5MD9Hu+/2UWudoi2I5bAUcwB7gReDcEGOSvOduBywFfgeqgNuO8DP2847plTrt2d5x\nPhSiT5H3vWvqeY2DwPt1fq97Tw4Cj9bpdyXwhvd+OIAfgIlARJjvYAhwO7AJxYX5tff9KGASsAH4\nC3ChWGnLgJg657KGGV/t8UvA9hCf0wSsBv70XkMC8oEO4e4J0NHb528Uq+8T4IoQx58MFAI/e4/b\n6/2bzK97P9RX875Ui0al3gghLgR6AY/JsuwUQjwOzAPuQ5kYfGxGefIfBpyCIi4CRaC+AU4FHkFx\nWa339pG97/vccx8BccAHwGtAe+Bu4FohxNWyLH9W63oyoEOZpAwoggTKxHMkeLw/q+q0X+H9+U6I\nPm8C8d5j3j2Ca86g5n7NoMaC+MZ3gBDCDOQBu4GXgH3AAJTvoC9wT51zyihuvauBV1BExfd/vgcw\nDeWePYsiWucBo1HucW+5xtLL9Y7tXGAJ3u8JRTRqXysAIUR3YCPKA8CLwE/AhYAZuEkI0U+W5T11\nurXz9tkPPI4iOg8Abwkh+siy/KP33EYUAeqE4gJ9FmgNnAmMQhHRuq5JleaiuZVOfbWcF0pMohq4\n0vt7F5TJ+MMwx38AVIdovwLl6XVamH5Pe69zX53201AmoG/rtFu9x78KaBvhcy71nm9Mnfa/AVuY\nPnHez7S2ntcIsAgOdb+87/UE3CiWSZs67xV4x3tXrTafReMBLgtxvrZAuxDtD3r7ZdZpf4w6VmeI\n72B7nbb1hLAAUZJCDgIrQ9yTaiC/Tvtw73tLa7Xd6m0zhxhL9LH8f6G+Dv9Ss85U6oU3eH4/sEOW\n5Q8AZFnegTKZDBBCnN5I12kP3Au8KcvyM7Xfk2V5O7AC6CWE6Bmi+wRZlt1Hef0bUZ7qfwQerfN2\nNIqrMBS2Wsc0BWOBCCBF9saGapHp/flAiH4vyLL8Ud1GWZYrZFneH+L4p4Fy4JqjGaw3O+1ylIeC\nJ+u8PQ/FKntACFHXq1KJYo3UZjXKA03fEJdy1m2Qa8XcVI4PVNeZSn25B8WtsbxO++MoGUfDUYLr\nR0tflLT71kKI6SHe7+H92R1FDHw4ZVneejQXFkL0BdahuNzulWXZc5gux5KLUNxTtwohbq7znkBx\nfXUP0e+rcCcUQlwNjEO55+1RhMzH0WYGnuf9GZSFJytu18+Bm1AswR9qvf2TLMv2OsdXCyF2ofz9\n+fgQ2AksFUJci5I1uEGW5V+OctwqTYAqNCr1ZTjKRFf36fQFlED4ECFEluz1XRwFJ3p/Xu59haN1\nnd//PpqLeuNP/0NxT10ny/K2EIfZCG+xRNc6pik4EUVQsg5xjDFE265QBwoh7geeQrFe3kKJtzi8\nb6eixLyOhqhDXR9FJGof56M8zPFV1BJCWZbLhRD9gFkobrR7ACGE+AmYKcvy00c0apUmQRUalcMi\nhDgVGOj99TshQma6GlDWzbx5lJfzTTQLZFnOPOSRgRyxwHlF5h3vOa6TZfmbMIf+DPQTQnSUZbmu\nsJ1Z65imoNw7vtayLLvq2edQa1+moQhLb7lOarIQYuIRj7IG3/cYE+b9mDrHNRhZln8DHhHKH+T5\nKH9/KcATQoi/ZFlef6TnVmlcVKFRqQ/DUZ6m1wP/F+L9E1AywoZTP6Gp9v6MCPHeFyiTY78Gj/II\nqCUyANfLsvz1IQ7/EGVc1wFP1HnvJpRxf3gUw6n2jkmEsAw/By4ALiaEO+oIOA34PoTI9EZ5aAg5\nNkJ/Z6HwifVldd/wxvsuQomvlNXzfGHx3qvNwGZvtYoXUayc9Ud7bpXGQU0GUDkk3qfFIdRkD42u\n+0JJEvgLJX5w4qHO58WXdtyt7huyLO8CngOu8KbzhhrToVxq9cZbNuZ/KP8PbpRl+YvDdPFlXk0R\nQvhdPkKIs1Hu0f+hpAsfKWHvC0om3EGgIFRlBSFER286cX35DThTCNGh1jmiUNKnGzq2IGRZ/h1F\ndM8XQgyq8/YklLTlp2VZrptCXi+EED2EECeFeKuT92dQkoBK89EsFo0QogvKH1sflKChATB5TeHD\n9dWhLOR7CCU4+A0wMVRmjUqjcA3Kupc3ZVn+K9QBsiwf9K6pmQAMJvxk5WMbygK+B4QQbuAPFGsg\nX5blCpT1KHFAnhBiGPAZcABljUk/lEkqVDyi3gghTkCxZKJRYhTXCyGur3OYJMuyf32QLMs/CyFm\nALNRXIjPUVOCJhIYJdejKsAheB8l1vCCEOJNlMnyW1mWX5NleYsQIgkllfknIcTrKHGVE4AzUCyH\nLJR76/+Yh7hWIcqamM1CiOdRYjI3AjtQvptQYxsPrPAeXwn8KstyXcuuNvEo66HWCCHuomYdzbXA\nLwRnlzWE64CFQoiNKO7KvcBZKJbMXqD0KM6t0tg0R041yjqKv1AW4r3JIfLzQ/R9EuUPaTjKKunn\nURZmBa0YV1+N8l095f1+7j3McXHe4zbXavsAqApzfF+UyWu/t1/dygAGlInoK5QV7eUobpYngdvr\nnMsK/NLAz3VqreuGe70fpu8gasRvr/fvuHcDr18NvFenLQIl9deKsoq+muDKABejZMbtQBGiP4GP\nUTL+utY6bqi3/5BDjCEe2IJXNFDK7bQOdz+BdBQhc9a9P4foYwJWecfpRBHHPEJXBgi6J+HOj5Jh\nlwN8iZIqXYkiZEXAqc39/0Z9Bb6E90trNoQQI4ASIFY+jEUjhDgPxRf7iCzLa7xtESjpkdtkWb6j\nqceroqKiotIwWlqM5jaU9FP/Qj5ZlquBtSiuD01zDUxFRUVFJTQtTWh6Ala5Tul2FItGi+KrVlFR\nUVE5jmhpQnMiSiHBuuyt9b6KioqKynFESxMaFRUVFZUWRktbsLkPJcW1Lj5LJmRZeCHE8bproYqK\nispxiyzLjbJJYUuzaH4AYoUQ+jrtZ6MkCYRatQ4cf9shTJ8+vdnHoI5JHdN/bUzH67iOxzE1Ji1N\naF5FCfrf62vwpjffB7wtH1/VdlVUVFRUaEbXmRDibu8/L0RZwXyTEGI3sFuW5Q3e/Sy2AzNkWZ4D\nIMvyN0KIdcASIYQWZRFXAsqisLplLlRUVFRUjgOaM0bzLDWVZWWUFb2g1Ee6CkV8fK/aPALMRSkD\n0g74FqUY4rdNPN5GZeDAgc09hCDUMdUPdUz143gcExyf4zoex9SYNHtlgGNB6GK4KioqKirhEEIg\nN1IyQEvLOlNRUVFRqQeS1cpKiwWPzYYmOpoR6emYYmObZSyqRaOionJcIFklSi25uG3laKOjGJme\niinW1NzDapFIViuL4+MZFxeHUaPB7vGwpKyM8cXF9RabxrRoVKFRUVFpdiSrxIL4JBLjemPUaLF7\n3BSVfc3E4gJVbI6AqWYzQyMiMGpqyj/aPR5WV1czu7CwXudoTKFpaenNKioq/0JKLbl+kQEwarQk\nxvWm1JLbzCNrmXhstgCRATBqNHhstmYZjyo0KioqzY7bVu4XGR9GjRa3rbyZRtSy0URHY/cELiu0\nezxooqObZTyq0KioqDQ72ugo7B53QJvd40YbHRWmh8qhGJGezpKyMr/Y+GI0I9LTm2U8aoxGRaUB\nSFaJQstK7DYPxmgN5vQRagyhEVBjNI3P0WadqckADUQVGpXGQLJKZMYv5ua4ceg1RpweO6+XLSG7\nePy/ZjKUrFZKLbn+yUnJ/Do2KbFq1tnxhSo0DUQVGpXGYLx5KhdEDEWvMfrbnB47m6tXs7hwdjOO\nrHGQrFYWxptJjuvltyryy7Ywobiw2dZfqDQfqtA0EFVoVBqDhMGTuDomOaj95V9m07FLhxbvTssy\nJ/NwhCEgKG/3uHmi2sGcwvxmHJlKc6BWBlBRaQaM0RqcHnuARfPHPz+z87f9XH9KOvoYxZ2WGb+4\nRbrTPDYbxpjArCSjRotn785mGlHzIUlWVuRa8FTY0LSNZlRqOiaTatUdKWrWmYpKPTGnj+D1siU4\nPXZAcZut/WweQwfM9ouPXmPk5rhxFFpWNudQjwglJTY486u5UmJrI1mtZCWZmTRkMFlJZiSrtemu\nJVmZnxzP/e0jGH1WJ+5vH8H85Hgkqemu+W9HdZ2pqDQAX9aZw+bBEK1h364Kbjp1QtBx7+/Kp+jx\n+Y1yveWWAlzlleiiWjMmPanJLKXjNUYjWa0sSognpXscRq0Wu9tN3rYyMpbWv5xKQ5iSYub+9hEY\ntbVciG436/6pZm5e/VbV/xtQKwOoqDQTplgTiwtnU/T4fBYXzuaEmLZ+C8eH02PHEK0JfYIGIFkl\n5sRP4JbIHjzcqT+3RPZgTvwEJKt01OcOhSk2lgnFhTxR7aBo1288Ue1odpEBKM2x+EUGwKjVktI9\njtIcS5Ncz1NhCxAZ3zU9Feri0SNFjdGoqBwF5vQRYVOej5bllgKGdb8Og1YHgEGrY1j361huKWBe\nYdNMsqbY2OMu8F9ls2E8uVNAm1GrpeqfXfU+h29NScWuXWz/7Te6dO5Mhy5dQq4t0bSNxu52B1k0\nmrZNu3hUskoUWUqx26owRkeSmD6yxcX5wqFaNCoqR4Ep1kR28Xg2V6/m/V35bK5eXe9EAMlqJcuc\nxMTBQ8kyJwXFHVzllX6R8WHQ6nCVVzbeB6gnkiQxMT2N5DGjmZiehiRJx+zakdHKxF8bu9tNZD2r\nBvgqGQ+NiGCC6VRy+vVD/v13rqmsZHF8fNB9H5WaztIvy/zXtLvdLP2yjFGpTbeqXlmjtYgLIoZw\ndYyZCyKGkBm/qMms12ONGqNRUWkGlHhIYoh4SJH/CXuyOZ1bInsEiI3D7eK1qq1NZtGEHKskMX3C\neO69eiAGnQ6Hy8Wz761n5sLFmEympr/+UcZo/JWMtbUqGbs9LPviC8b27RuyonFN1lk5mrZRTZ51\nlmHO4oKIISHWaK1hUeGcJrvuoVDTm1VUWjillhy/yICSRpwc14tSSw5zCgsAGJOexJz4CdzYuTfv\nl22kutrF/1XsZsayYxuQLi7I94sMgEGn496rB1JckM8CS06TX98UG0vG0mJKcyxU/bOLyOioBiUC\neGw2jJ1iAtqMWg0HZdmbvh3sgjOZYo9p4N9uq0IfYwxo02uM2PdWHbMxNCWq0KioNAMeW3mYNSs1\nk54p1sQjU5IpTE1jZv8rap7m52bTtZbl09Q4Dhzwi4wPg06H48CBY3J98MaOCo5s4tdER2N3e4Is\nmlZCeNO3m79wpzE6MmiNltNjxxj975ii1RiNikozoAlTrbjupPfWunV+kQFvxlXc2ZQeA0vCh6FN\nGxwuV0Cbw+XC0KbNMRvD0eCvZOz2VjJ2e1i8aRO3xsU1a0Xj2iSmj+S1sryANVqvleWRmD6ymUfW\nOKgxGhWVZqA+MRqAiYOHYu7UNah/0a4/mL9m9bEZaxPFaHxxEHdFOdomjoMEZ511oUOXzg2uaBxw\nTsnK8kILTns5emMUY8xHN/7jLetMrXXWQFShUWlKlIrHOXhs5WiioxiZnlavyas+/bLMSQyO0Ael\n2j5e7fTHco4FkiRRXJCvuNHatCE+KfmoRWZ+Sjxj+3b3uwSXfbGNSXnFLaLUiyRZmT05niE3dceg\n1+JwulnzxjamzmsZ468PqtA0EFVoVJoKn2WSUssyyQthmRzN+bNHjia91/n+Cdmy5RsyS0uafSHl\n0TAlxcy9J0UGCeizu6taxOr7yePN3HBeJAZ9zfgdTjdvfVvFvMXH//jrg5p1pqJynFBqyfGLDCgB\n/ZQ62WNHi7PKw9LPNiFaCeSDMk6d9vCdjnPcFeUYuwQvwnQf2NtMI2oYTns5Bn3g+A16LS57yxj/\nsUYVGhWVoyBc9lhViJTZI6HUkkPW+RcEPfk3lpAp7jsLVeXlREZFMfIoYhYNQds2KuTqe22b5s8A\nqw96YxQOpzvIotEZW8b4jzXNknUmhOgqhHhOCLFfCGETQjwvhOhWz77dhBCrhRC/CiHsQogyIcRs\nIYTx8L1VVBqXcNlj9V21fjiqbKHrblWV24763JLVyqL4eIZERmLu1IkhkZEsCrFSvikYlZrOsi+2\nBay+X/bFtiZdfX8kSFYrWclmJg4dTFZyTdXoMeZ01ryxDYdTGb8vRjPGfHyN/3jhmAuNEMIAfACc\nBQwGHgbOBN73vneovkbgPWAAMAW4EVgBpAMtry67SotnZHoaeWVb/GLji9GMTE9rlPOHLb8SdfSl\n+0stFlK6d69TrLI7pZamrzpgMsUyKa+YZ3dXsaJsJ8/urjruEgEkq5WF5ngeNkSQeEoMDxsiWGhW\nhNhkimXqvGLe+raKtR/s5K1vq/5ViQCNzTFPBhBCpACLgbNkWbZ620zAz0CGLMtLDtH3WuAt4HpZ\nlt+t1T4PRWyiZFl2huinJgOoNBm+7LEqWzmRDcg6q++5F8UnkBJXk52VV7aNjOKlR32NSUOGYO7U\nKai9cOdO5q9Zc1TnbglIViuluRY8Nhua6GhGpga6DbOSzTxsCC5d84Sjmjn5/46A/6Fo6ckAtwKf\n+kQGQJZlSQixCbgdCCs0gM+HUNdvYEOxzhrlpqioNASl4nHTpBqbYmPJKF6qCNmuf4iMiiajeCmg\npD77J0mvuElWK6U5lpqU6bTwMZfIqNBxksiof3+cwWetJPeKwxgdg93tYaE5ngmFNaVtPDYbxujg\n0jWenWrAv6E0h0XzF/CSLMvxddqLgHtkWY4J3ROEEDrgW+AvIAH4DbgYeAJ4XpblpDD9VItG5V+D\nklKdQEpcz1pWzo88OCWTp7LnktKjlvWzdRsTwtQF88VofO4zpVjlNjKKm2ZDsaZGkhSRdZfb0EZF\nKyIbxpVVH2tFtWha9sZnJwL7QrTvBU44VEdZll3AZUAE8ANQAbwDvBpOZFRU/m0oKdU965Sl6cmC\njAy/yPjbe3QPu0GYYi0Vs6aqisKdO1lTVRUkMsoWyklMHDKErKTgrQyOFyTJygJzPIOiIog/LYZB\nUREsMIffftljswUICHitFVuNs2Rkajr5WwJL1+RvKWPkcZaw0BJoUenNXovmGaAj8BDwO3ARMF0I\nUS3LckJzjk+l5aHEV3JruaBSj/uneaUacZeANqNWi76qKnSG2p7wrh7F7Rf66VyyWlmYmEBSzx4Y\nu3bG7nazMDGBCUVHHx8Kupa/LL8NTdvoBpejKc2xYD4/zi8eRq0G8/nKLpyhrI9whTY10TVJFqbY\nWCYUFitxnJ170URHB7jWVOpPcwjNPkJbLuEsndqMBC4HzqgV49kohCgHlgshimVZ/r7xhqryb0Wy\nSiyYmcfPX5dxmrEVQ8+NpX2EgYXx5mO+fbG/FE25DU1U9GGTCTTRoXeAdEZGho65HGGqdWlODnd1\n7ULJ559TjUwEgru6d6c0J4c5BY0Xk5IkK/OT44nvG4excyfsbjfzk+OZlF//LC53uQ1jhxDxlIrQ\nIjsyNb0mRqPVYHd7mP7BxyRZcgOOM8XG/ifcZE1NcwjND8DZIdp7Aj8epm8vYH/tRAIvn6MkAvQA\nQgrNjBkz/P8eOHAgAwcOrN9oVf4VSFbJX1fMHRGB1erh3vOncc11yvbLeZumktK7g3dPmNwGb2dc\nU7csMDhfn34L4xNI6d4DYyev1RCfwINTMnnz2edw28rRRkcxKjUVkCnNyaHi710k/fgDk/peypkd\nOvhjNBMXLSIvTIzmSNizYwdrd/7OuKv7+8+35L1NRJ5cryVv9WZFrkURmVouv/i+cazItdS7HI02\nKoyF0jZ0GrgpNpYHJ2URH5/OqVHdkEU0l569iKVz19K1uOu/ZgvlhrB+/XrWr1/fJOdurvTmRSjp\nzZK3zQT8BEw4THrzdGAacKYsy9trtY8GioHLZVneFKKfmgzwH0aySiyIN5MUd56/Htm8TV/Sv/cs\nTopSJk2nx86mL9KYdOl5FO36jQWP178yck29s8DgfH3qnWWZkxgcqQmwQn7as4dlW35g8lXX+8+3\n+POPaB3ZitTzz/W3zVy/gRO7nkL7zp0Dss7yZs1ix9atVHrcnHbOOaRPn3FEFtotl/Zj/tX9giyk\nSe99ymsff9rg84VjwvDBjIoLTrNeUbaLhY/WpFn73GsVu3ex/dff6NKlMx1O7uJf5LnAHO93n9nd\nHgq/KWNiYXiraLx5KhdEDA2xq+VqFhfObrTP11Jp6ckAKwAJeFkIcZsQ4jbgJeBXoMR3kBDiFCFE\nlRAiq1bfVSgJAG8IIYYIIQYKITJQhOvLUCKjolJqyfGLDCglYib3v5CPt5T6j9FrjLhkg3dPmIYt\nhgwXnK/PnjGe8uCV/6/+9JNfZHzna+ep8ouMr236wMtp36UzcwoLAoRk969WOmpacXprI/IvP5M1\nYtgRBfFPO6VbyJjPaac0rkWjaRt6UaqmbY3Lz+deu79DBMnnmci+oR/VO//gsohK5icrCawTC4t5\nuryaZdZdPF1efUiRAbDbPAEiA8rfgcPmCWgLVx1Apf4cc9eZLMt2IcRVQC6wBsXl9S6QKsuyvdah\notbL1/dXIUQ/YAYwG+iAkhCwDMg+Jh9ApcWh1CNrH9Bm1GiJlCv9vzs9diLkSu+eMA3zySvB+cA9\nY4xaLf/8YiUrKdnv/hqZFpxoYEcw8d3P+a3iIHqtka7GaiocNlZ9/CGyfBAhWnH7eX1oJQg56Xt2\n7Qlos8ycgc7uYMzAgTXurvXrscycQcEqxUqTJIll+UtwHahA16YtY5PHhSz5H9UxJmTMJ6pj2BUI\nR8So1PSaGI13zMVflDEpv8bltyLXQkId91rytZcyft2bnNnxRBbPnE7hY2v88RRJsrK8IAdXpQ1d\n62jGJKUFiY4xWhNyV0tDdI37zbfeJumcOIztQq+3UTk8zVLrTJblP2RZvleW5XayLEfLsny3LMu/\n1TnmV1mWI2RZnl2nfZssyw/IsnyqLMutZVnuLsvyRFmWj774k8q/knD1yNyysj2x02NnzYbJ6M7q\ncESJAHYhWLTxQyybNpD78Uf8brPx85497P3tDwZFtiH+ZBODItuwICEwPViySvzyfx4qWp1B/E2l\nxN9YygW9JlOFIP6iCxh/2SXEX3QBT3+xEZvDGfqpv87iyl+2bGGcV2RAmZDHDRzItm++Ua4pScwa\nP47rYjty34U9uS62I7PGj0OSpKDPNTItnaLNgfXIijZvY2Ra46X3SpKVkjwLkdFtyfzfpyz+6hee\n2VMdlAjgqQhd8+2sTh0YdfXF7Nr2vT+VWZKszJmQwM09NDzUvzM399AwZ0JCUKqzOX0Er5ctCdjV\n8vWyJZjTR/iPKc21KCJTK5st6Zw4SnMDU8aVNHCv1ZOkWj11UbdyVmkWJKtEljmFCYOHkWVOQbJK\nTXatkelpFJR9G1CPLHfLlxjPasP7u/LZXL2a5S8somDNqgaLjGS14vzzL+Iv7k/qgIGM6nsJj379\nJbM/2ci0y64OmPDN3c+lNKcmq6nQshLjwY480H+C/6n665+eYP4NVwX0Sx9wKX8cKCf3m+8CJv2C\nLT8yMi2wplprrTbkhKypqkaSrCzLX8LDV1yEQaeIrEGn4+ErLmJZfnBo1GSKZWJhMWttVSzbvpO1\ntqrDuqMkycqUVDMZI4cwJdUcdh2L79jstHju6hpBwsUmZt7RD7nKHjK1OZx7rZUQGLVaptxyOSuW\nKJP/8oIcHrmuBwbvdgoGnZZHruvB8oJAV6Yp1kR28Xg2V6/2/x1kF48PSAQIu96mVlFTJQ08nof1\nESR2jeFhfQQLE49NcdKWQotaR6Py70AJzieRGNcbY0xH7B43C+KTmFhc0CTZPqZYExOLC5WssL1K\naZYppcsb5VqllhzSvJuSgU8YrmDKpg9Du7r+Kff/brd5aCVaBbhuIuQKjNoOQf3OPeccUhcsoDQn\nB8+uPWiiopgYYj1Ll+49Qrq7TO1PYEVOLi5nJQZdYIzFoNPhOlABKJN/7txZ/PHTVirdbk7veQ4Z\nU2fUK81YkqzMS41n9KXdMeo6YXe5mZcaz+Tc0OJUkmdhdP84jF5BMOq0jO4fR0mehezcQPelz72W\nUMu9lvfOxzzc/wL/PXJXKFszuCptGHSd63xGLa7KQDcjKH8bvsC/kmywOGAtT9j1NrWKmpbmWEg+\nO9DqST7bu4anQE2NBlVoVJqBUkuuIjK1gvOJcb29acV5Qcf7UpP9sY70tAaLhCnW1OCU5frgKS/H\n2KnOfjRaLa6D1SEnfE2tNS3GaA0HZWdAnKBatA3Zr21MjLKm4zDrV8ZNncr4e+9h+jXX1MRoPtzA\nQ5dcxJu7L4+pAAAgAElEQVT7bFRpInG4XH6LBsDhcqFr0xZJsjLLPIrEy3phPPty7C43+W9tZPLY\nYcxb9lhYsfHFQ7Z++wUxGsG+SgdGnVYRjku7syLPwtzc4AnXfcCGUVdn8zOdFveB4L18TKZYJuUX\nsyLXwo9ffMDJhkge7n8BXU6M9t8jrTd5QNc6GofL7bdolM/oRtc6fJKHL9kgoU8cxk41a3kenjCF\ngnlz/e4zu9tDwfdlTCisiR95ym0Yo0Ks4fk7/EJZyWplpcXiXzs14hjtA9RcqK4zlWOO21buFxkf\nRo0Wt6086FhfavKgiCjiY05jUEQUC+LNTepqawgab2HK2tjdbk47+2wKtwW6ugq3fcfItFT/ceb0\nEXh0e1m7aaE/TtD7rIeZ8u6GQBfZj1uDXGThMMXG0qnXORR/8jG5H37Iis8+46FLLuKE1q1xyPDb\nTy6Kn9+Iw+UCFJF57N1NjE0ex4olFkVkalkYyTcMIEp2UZIXOoOudjxk6tCBDL77EtZ8spkde23+\nc7gPBH+vANo20dhdde6dK/zmZyZTLHPzCsl96lkOtmnHCW0M/nu07PMyRo1TYkdjktJY9b+tOLzn\ndrjcrPrfVsYkhb+HK3ItisjUskwT+sTx5rPrmFBYzJP2apb+tosn7dVBiQAa7xqegM9Rx+oJuGf+\nfYAiSOrUiSGREcdsH6Dm4pivo2kO1HU0xxdZ5hQeiGgXIDZ2j5u11fuDLJosczKDIqKCjn26urxJ\nLJSG4ltDk9S9l9+CKNi2hQnFRQCU5uTWqqQcnHUmWSWyp1so22JFr2nNaT0689CIu3nrmXU1lQLS\nahZ/Ku6dHNwVNrRtoxmVGpxNJUlW5puTGHNBzZqb5Zu/Q5x0Bpe1G0O54x8+KluNaGWnyqMlKrYN\nJasLyBg5hOG9gtez5L+1kYiTutC2Y6egLK7J6Unc3EMTZD2UPPUhbQ16PHI13/3+D4uLH2XAgMuC\nxpmdFu93n9ldbko2lZGZEz4O5Ese2LNzBzt+/5PTTj2FqJNiGDUuMK7js7J279zBn7//yenduoU8\nzseE4YMZfWbwZy/5OXAtT8gxeWM0PveZ3e0h/4cyJhSFzkybajYzJDIiyGpdU1XN7DDlgJqDlr5N\ngMp/nJHpqTUxGu8CyqKyr5lYHOwWctvKMcbUiVlotHj2VjTJ2Py1z/zlYA5d+8wUG8uE4iJv/GcX\nmqiogIWacwoOLYamWBMla4I/94DLBgSPTbIyPzmBsX17YOzc2eveSWBS/tKAydNkimVSYQErcnJx\nV5SjbRvFpMICFk1bhl5rRK81cvdFNcvT3vtL2XZA2yYKu8vtt2hAsTAOyjJlW38k4exo3tm+HVt1\nNcPuu4XZOctCxkP2l9uxedzE338ZBp0Wh8vN/EwzZBcyYMBliljkW3BVlqM5sSOPbytHQzXaNlFB\nIqMIhgX3gXI8RLD7t+2k3nA+xrgzsLtOoXRDGaPGLfT38QmRu6Ichwyyzcacmy72C9m8cfFMXhIs\nZL5kgyBXZ9tDl+/x7Wlz0GAgY+OnnNbtFNrGxIQVGfC62ursA2TUavE00vbfxyOqRaPSLChxl9xa\ncZfUkHGXY2nRKNaJmaTu59SyTr73pzwre73UKsAZwkJpSqakJHFvB03QZPjsHg9z8w5feywjKYsL\nIh9Cr621bsRtZ3PVkywqmBMYo/FOzPlvbeTvShe3DezJx99vZ+yd/f3isXjtRk4+/WwevLh9gEVT\n/NwGRtx0UZCVM+vpTyhetZY5GfGMuLq7/zwr39tG1qLgyX/jxo+YljaW02LaEhkRwXUXxfHi+u94\n+IredGnvjc243LwkVZOdW6hYSP5kBC35r33E6KsuChLO53dWM3dJoOUQEKPxfvdLvyo7ZL01/xqb\nXjV9CraUHXaNzX/RolGFRuW4xhejMced77d+Csu+YWJxYaNnqGWZk3ko0hg0AYzf8C6nndML544/\nST2nd4AITVx67ApwZgwfwqi4QOvhj302pr76Dh1jTqLbGT1Iy5x6iIlRIjNhIbd0T0KvNeJ023lt\nWwHZSyf476Uv6+z3n7Zi92aduZwVRNj/ZsiNFwaJx7qvbNj37fSnEztcbmateJOF8bcGXX/6qvc5\nu3c/bj0rMug8r/5URXZOzSQrSVZSh99LxgMD/Odd9sIm7rj8HN79pIyEmy/1H7vq610sLllDZqqZ\nuzpH+oWl8PWNJN/QP2gcK3/YxaLSYHdYTQXpcjRtow5bQTor2cxDhmDBePIw+9X4YjTjutcI1JJt\nZcfdPkCq60zlP0NganIFmui2RywyklWixJKPq7wSXVRrRqcnB66ZKLdh7NQuoI9Rq+V0vRH5p19I\n7dc/IFic1P0cSnNyD+seayy0ddw7f+yzseqLr1gUf6d/Ms4yjyC6Uzf0rWR0baIZnVwTwzHFmshe\nOoGinFLs/3gwRmsCREZBoG0Tw8lnRWNsoycxZSzLCyz8/fNfAeIASspwpKgma+FS7yr8PTirBbv3\nGVn8+HZ0Ogd3XdmVLicpWWBuInBVlmOok2mmpB4HZmgtL7D4RcZ3zNi7+rPmjS+QqXlotLvcaFsr\n7i13RXlAFlurViKkK7B2soEkWVmxxOJ3MTZkewJlB84QLrCdh3aB+fYBWmmx+N2tx5vINDaq0Kgc\n9zRGarJklZgxKpUxva7D0EmHw+1ixqhUZqzI9U+0SvZQsJ++lRAcDFcC5p+dRzWuhjAqNa0mRqPV\n8sxX3zL2zisCJuOEG/rw2FubGHXn5ThcbuZkJJC1aGmA2CwqmBPy/JIkkZk6g1v7P4heZ8DpcpCZ\nOoOE9BFMTXs/ZMrwlh+2sKwoh7FJaSALMuMXM/7GdX6L6dGXsnjoJg+r3/6KKdmFvPHCujCpx4Gx\nEPeB0IJUVV1Nq4PKQ7bd5aZ0QxmZFiXVWNs2MMZ0x0Vnk//WJpJv6O93BS7/tIzJS4q9n9fK/HHx\njLm4O8ZTlHU/88fFMylEDCcU4bZr0NRjWwZTbOxx5SZralTXmcp/guRhYxgUfT4Gba31I24XT9u+\nIf+x5UDoGE3Opg8Z2rsvz/3wLaP7XhI0qTxVZW8Si2bjxo3MzZyAVq7CLSKZkr2QAQMG+LPOtn7x\nCZ5qF7NG3hbUt/iVD0m4Q0kmcLjcvPp/HrJz6hHDSZ1E7y5XodcZ/G2/77Ty2qZSOpzUjv1/Wpky\n9Gq/9bTgiffQt9NiNGixu3S0P+ECBkQlBsWAct4eRF5pDgMGXMbGjR+RNX4sp53cFo2I4Po+cbzx\nzZ9BMZrJ6WZujQt2sWWWvM3Z5/XFEAHa1lGMTkkPSASoHaOxu9xY3t1Mx1NOQysryQY33nM/bzy/\nDveBcrZuK2POTZcEWTzP7aoKiuGE4khjNC0F1XWmotJAfv3RiuGKiwPaDFodv/7o323Cm0FWSKkl\nl7JPN9BJRDC0d1+6tGvHPb3OI2fjetIGDAyK0TQ2GzduZFFGEjPvvMY/Yc7NSIJFBQwYMIC5eQVk\npiaxp+zrkNZBq1pTQ7gV8aBMzMsKc9i9awd//PknHKzmz1+sXN7nbjqeeDJ/7/2Lj756gvFDr8Gg\n1yL9cTpTVr6LQafhgL2c0SOvwHRqBxxONyvXbOTnH7ZzzRV1qiFrjfS76Gp/ttnK4rlMTbsWg16L\nw+kmf+VGMqbmBlkQY5LSmTMhnuHX1CQNLFq7kTlLSoLSpH2YTLFk5hYrWWcH9qJtE8W85asChSgt\nnlH9lcoF+b/+FCAy4Fv3E36hZcD1Anbg3IUmOupfIzKNjWrRqPwnuKb3Vcy+/N4gi2bqhmd59+v3\ng47f+NFHLBybxLzrbvALy7T3PkZoT0aO/Isefc9vsqyzGy+/lJm39A960p7+2ibe3PAxoEyak+KH\nofHYib/jCv9kvPTlDxl0TR+6dFCyskJZNJJkZUH2DHZs38Kgm/vwyoffMOKh/v7Jv2T1Zs4/8x7e\n2LCK07pFERnZihsu78PJJ52Aw+lmauEaZmfdikFfS+CcbiZM+pCMG54Jzmrz7u8yKcPMtX0jg/q9\n80UV8xcFC7Y/tbmyHG3rKMYkNWx757pkppq5s2tNskDx65sYcXnfI7Zo/u2oFo2KSgM5rdfZ5G18\nm5QB12PQKjGavI1vc1qvUJu9wpvPPItW14UFn+0hkkqqaM21/RZxUlQ33t+Vz5yC+Uc1HkmSWJ6b\nh6viALq2bRiTmuIv1a+Vq0I+aWvlKv/vJlMs84sfY9HsGcx8+gMMOg0dupyKR2PE5fZQ+NbHuFsd\nxPqHjXkLlta6rpVZkxORXTZSh17Jk6995hcZAINey+03ns4TzzxOlvlOv/g89vzb3H3dJZx80glo\nNa0CxMLXT9/2AK+XLeHmuHH+GM3rZUvILh4PgNNRjkHfKaifyxHagjCZYplnabwJ330gMFng9n69\nyP/fJpKvqxXD+Wwbk5Yc2Y6kKuFRhUblP0HmzHRSHplG/meb0eDBgwZH6yjmzwxd8t5jK6eDMZLL\n+kw65H4lR4IkScxJTuWRPv39iQlzklPJys/FZDLhFpEhs6XcIvC/q8kUS9HKwJ1AN278iLmLMhie\ndh16gxanw03xYwvp2rUbJpOJZYU5DL7xbJ545RMMei0H5YNBovHeRz+T8shtAeIz7O7reeb1D3jg\n5suptFfhcLqDLBOd3kB28XgKLStx7PJgiNIEVEPWG6JC9zMcPnjeGNRdkNq5fTR3XnoOWW98Qs+4\nOLRtouqdCKDSMNRaZyr/CUyxJvJWzaJLnxjanhFDlz4x5K2aFTZNWhMdxR09u/LSx9MC9itZs3FK\nwH4lR8Ly3DxFZLxuPINWxyN9+rM8Vym/MyV7IXNffNdfB8zucjP3xXeZkr3wsOd++fXn/CIDoDdo\nuWPIBRQtV7YncNnLMei1tBICh9NNK9EKhzOw3lhVFSEtlqqqgzz19pf0PLs3JY9+5O/ncLopefQj\neva8wF8NuWjNfBYXzg64v2MT03ni5W0B/Z54eRtjE4PFXpKsTJyURHLKECZOSjrkdgP1ZXRKOis2\nbQu4r69t/ZOix9eSmDUTWQgK50wnM7VxrqdSgxqjUVEJgWS1Mj8xiTu6nspLP/6Bo1qHtfxPspfN\nD1kepqafRKFlJXabsk7FnD4iSMzSho/ioTPPDWj7c+9eFv5vPcbWJ+KS93PSKW3YLf1BtDYiIOvs\ncJhTh3H9oNOD2t9e+wuFOY8xaXwS15+rZ3+FnWff+pJbrzovKEYzY+EbZCUMYX/FAd787HOqIw6C\nG377rYI1Tz0HyGSkjKC11o2IALkaKt1aFuWtPKw1IElWlhVZcDnK0RmiGJsYHHeRJCvTZyRw76Ae\nGAxaHA43zz69lZkzlh61teEvUXOgHG0bJWsNIDs1gVGX9vC70FZ8vJXM3KO/XktGrQzQQFShUTkS\nJKuVFTm5VOz6m59/+4sOJ/ckpkuHkOKhHC+RGb9YiVFojF4LaCpTlyQGiNPklFRuPrGL36L5c+9e\nVnywjfv7z/b3W7d5KhExf5O7aGXIbZbDkTE5hYtuiPZbNABOh5vP37KxaF6eP0Yz+Maz2V9h55X3\nvsG6Yx8ReiOaiGq6dGrDheeZeP2drWhO0jAobQB6oxan3U1p9gdMS8/1Z5AtK8zF6bChN0Qz1pza\naJPyxElJXHalBkOtz+BwuPnoAw8L5h8+TbuhZKYmcWdnTZCr8sU/PWTnNt71lBJGObVKGKUd1xlq\njSk0qutMRSUMpthYRqWlsae8Aw9f/Ch3nD6NCyIeITN+cchtCgotK/0iA6DXGBkyYDYTxs4IOH5M\nagqrvtqEw62U6n/u8+/8IuPrd/8Fs9HJRpYuC12ePxyJY1J5buXnOB2Ke8jpcPPcys9JHKNsT2Ay\nxTJtXhFvf+dkww8HiDmtN6vWvc57H37J+X0G8MAdF3NOj260PjHSLzIAeqOWkZlXMmF6PJJkVZIR\nFuezpGg18xfnN+qTv8Nhw7bfwWNFWyhdvJ3HirZg2+/A4Wya3drdFbYwac6Ndz3JamVhQiIPaXUk\ndOnKQ1odCxMS/9VbA9RGFRqV4xbJKpFpTmX84NFkmlMbbQ8aySoxyZzBuCFmJpkzDnleRTxSA0Tg\n5rhUCi0rg47dt6siIHHAd3y3qNNZmrPM32YymcjKz+X1vTt48ufv2OUSIfvhbo3DGXovl/DIOKvc\nPPvUep5c+Q7PPrUeZ5UbapVtMZli6dPvMtZ/8wkf/fA+dz54Pc8+9wxjE9N46uUfcTjdaI2RfpHx\nj8mopevpURSVBIufJFmZMDmJpLQhTJh8dDEOt1uwbuk+ru+yhLt6LuH6LktYt3QfblejPFwHoW0b\nbl+c8BulNZTSnBySevYMLGHUsyelOQ17kGipqFlnKsclklUiOz6dkXGXY+ykw+52kR2fTmaxBVOs\nCckqsTwnH1f5AXRRbRiTlhw2sF/3vDPjs3io+x0YOulxuJ3MjM9iRNZYXn3xeRwHKjG0aU18kpJu\nbLd50McEi4Bjb+BGV5Ik8VPZV1zV2R6UpaaJaIWz3BVwvMlkYl6eEqAfb54asMumrx/aSg5Wt2Zi\nRjJOezl6YxTxiWmHdKUVrchlUPpFASLhtLspWpHLorlKBYNnn3uGosfnMKHoTr9brGjGHBLJYvrc\nIpYV5bBjhxOn3R10nkhNBA53oPhJkpWpcxK4+5Ee6A2dcTrcpE4cRueOsUREVKPXR5MwNnjfHF/f\npctzcDhtGPTRJIxJQzhP5N4+NRUG9Foj9/aZw8f7isJ+7qNhdEpa2BhNY+Gx2TB26RrQZtRq8ezZ\n3WjXOJ5RhUalUQkVDAdYZlmK0+ZAH21gbHrCYUWhxJKniIw3jmHU6hgZdzklljxGp6cwJzGDYb2u\nxBDtTQ9OzCCraFHAeSWrRElOHu7yCrRRbRmdlsIyS5EiMlo9AAatnoe630GmeTwT4wdh0OlwuFxM\nn5DOzIUWjNGakCJQN8V5eV4uybdeyNPvT+Pui2b5Yy2Pvj+ZBy65i59139aMS7KydFkuTqcNvT6a\nOx64j7zpi7ijV0ZAjIb25VT9Xsmtgy7BoG+vBOqnmJkxtzCs2NjdNvTGwMKgeqMWu7umJlt2TpZf\nZHzvj5lxI9mJWWz++CfmLypAkqyMTb+P4ZMG+sWoJPt/XHFzD8q3B6YjL12e4xUZ5Xy2fQ5k+QDX\n33GiP5ifOXU02bNLgvaamTo7gXuG9ERv6ILT4Wbq7AQ0lXHB4q41Iqp1NAVKRYGllOTl4D6wB22b\n6EZPBAhbFy3q2KR2Nzeq0KgclvpkUvmO8wfDY5QJM2PkPKocO0nsOwxDjB6Hx8nUkZOZXTrvkGLj\ntlVi7BQ4sRi1Oty7Klmek6+ITK304GG9rmR5Tj7zCnL8Y5mbmMrIXpdijFYsormJqUS0bo8hVh9w\nXoNWz6ntO2HQec+n03Hf1ZdTXJCHOT3F+5lS/SLwelmufxGiD9eBCk47/UyG3aDhxY0ZVFXpiYx0\nEt3GwUd/vMOsomnKuCQr02aYuefBc9Ab2uF0uCkpnUfKzMk8ubKIn3+0su/AX2hay7T6zcDoR3oG\nrGd54LbzKC7KYcGi0PXVjNrokJaIUVszoRmjNSHdYsaoGvE0mWIZMSiDeamTOb1XJyK0Edw69mJe\nKfmcmamJAX0dLht6Q832Ba8+8zXDx1zhD+YbDFoeeORcFllmUVTwmP+4eQtnUCUqWPvkF7QScN1N\nvbhnSE9mJGzgyq72oAoDxqNcv3QoTKbYRg3812VkWhoLExL97jNli+4fmbC0aay04w01RtNCkawS\n481TSRg8ifHmqY0Wvwh1ncz4xVwQMZSrY5K5IGJog4Lhd/TKoPXBEzBovBaERs/QXvdjmbnokNfV\nRrfG7g50N9ndLrRRrXGVHwgoJQOK2LjKK/2/l+TkKSJT2yLqdSnS79txuJ0BfR1uJ5F1HpYNOh3O\nA5VKaf3i8WyuXsX7u/LYXL0qYBGiD12btjhcbjq3P4HE2y8i5e5zGX7D+dgj7H6RGW+eyrDBQ7wi\nU7PO5Z4Hz+GV155h4rQUOp7QlbRrniTj8pdIHLCSl5/Zy1+79teMS6/FaQ8ft0kclcorJd/jtHuT\nAexuXin5nsRRqf5jKva6/O/7cNrd2MsD3YGfb/6I8cV3MShjIPelXEa3M05ixIxrefnNZ+rcq2h/\n8gHA/j2VARljoIiN9OtW/++SJLF951ZuHXMV96Zcx80jB/LiC9+wf7+Dbr0OUvp+Ok63d/2S284b\nW5dgTju69UvNiSk2lglLi3jS7WLpnzt40u1iwtKi4zrrrDFpkNAIIVoJIXoJIa4QQrRuqkGpHJqG\nTP5HSyjxuDluXMhguN3mCR3UFnUmHY2eX7du51CMTk+htGyDX2zsbhelZRsYnZ6CLqqNP2PLh8Pt\nQhdV8yfpLq/wi4wPo1bHKV068uS2l/xi43A7yd9UyuX9zws8n8uFvo1yPv8ixMeDFyH6GJOSyqpN\nX+HwBpUdLjerNn3FsieUDbZ831en6K7Y9tt5ovhTHl/yJU8Uf4ptvx2nszzkvb6n9yzeeKPmXjmc\nbvTG8O4WkymW7MmFfPWCnXce/Y2vXrCTPVkp45IxJYmRSffRKgKeyHk/QIyWTX+DzLTA7QPsnvKQ\nlo/dEyh0CWPSeH7VVr/YOOxuHI5AIXM43DjsNUJWVJLLsMk3BLjv7jNfw1uvfkdUOyODpsaw6M17\neWnrLFZ9bkbbZSdLSywteiGlKTaWOQUFLFi9mjkFBf8ZkYEGuM6EEInAdKC9t6kv8LUQ4iXgfVmW\nj83uTyqHnPwXF85u1GvVNxgOhI1nINeZdDxOHN7V9uEwxZrILLZQYsnDvasSbVRrhkxJZVluAft3\n72XKD6tIuvRWYk/qjMPt4rEtH5BVVGMlaaPaYne7AsTG7nbRofPJ/liNc68DfZSBCblZrMjP5b4O\nJ/pjNM+8t4GZCy31vk8mk4msnHyW5+XiOlCBrk1bsnLyMZlMjDdP9X9flfsP8vKKn3jkihEYtEoy\nwqoVj9H+jE5UHQh9r90O5TM4nG7WvvItM+Yq2xYXrchhb/kupO2/07lzN2JOOhnzaGU9iy/wD4q7\nbsq8BG4f0xO98XSus3ejdP57rCv6EJ0+koOyzEmtT+Xee+4LuLZRExXaDacJFDqTKZbZWUuVoL5r\nDy6nhjnT3qRjTDv22vbRqWsUO6S9nNGtZpGq3V2O3nhS4Gc1atnxZznDEwfQsXM7Tj23FXvdX2PO\nHugvpzN1diKzpxb9pxdStkTqZdEIIUYBecBLwP1A7TzDj4C7G3JRIURXIcRzQoj9QgibEOJ5IUS3\nBvTvIYR4RgixWwhhF0JsE0IkNWQMLZlwloPDFjz5Hy0+8ahNuHpf5vQRvF62JKBky6oNmZRX7sDh\n8VoQHicrNz3KWb3OPOy1TbEmsgtzWbymhNHjU3h0QQHXte3B0B7XMO220az5Zj1Lt77Ha47/C0oE\nGJ2WQumWjwMtoi0fMzotBVOsifmFi1iyppD5hYsYMGAAMxda2PCTxMuffM2bX/9AVUQEw4Y/wI23\nXE6CeSSSJB1+vCYTY5JTaaXvjG2vjgWzljB6SBLffFLm/74iqlrzyBXDApIRHrliGG4bbLN+E/Je\n/7VvLy/8z8oHX1YwY24hIJMyZTjSP99S4dnDid007Nz/f3TrG0nm3JSgsRatyPGKTK01MZOuxmDU\nMGjcZTyUejkx3dpTl8RRabxW9EOA5fNa0Q8kjkoL8dljWTivgPTkWcSefhYPjnyQiLatSM69mSFT\nrya14HYckXv9FolRGxXSfdehY2s6dlZiV3t3VzI6dWCAm/Guob1Yuvy/kRL8b6K+Fk0aYJFleaIQ\nIqLOe9uAjPpeUAhhAD4AHMBgb/Nc4H0hxLmyLDsO0/9C4D3vOUYANuBMoE19x9DSqW8mVGNgTh8R\ntNq9dkXe2vjiGYWWlTj2ejBEa5ien0xh1lzWfrYKISKR5Srk1h4yZmY1aBzLcgp4+LxrAybolGsG\n8b+KrczLD7Y8TLEmphTlKllnuw6gjWrDlKJcwiUgmEwmFlhykSSJ9KTRHNQ5SZh8q/9JemJWIgvm\nKIHbopJc7K4KjLq2JI5O9WeASVaJzMQF3NzLjD5aqV68dn0uetr5vy+9NsL/GXwYtHq2/1zGXdMv\nZF3ONO4/pyZrbe13WZxwxkFSM6b7n+JHm4dyUFRz+4O3oDfocDpcrCt5jXde+IRBiTdRWJLL4uw8\n//kdbht6Y5eAa+qNWg4eVNbWhLJSlHsSS/akIopW5GD3/I3HDtH6GBYtnc5BdwTVVQfRGGWMmmgS\nRynpy4XF+dz+0PW8+uIrDErvF+gaS+vDwiWzWLrkMRJHp5KZncQtoy7wZ7WtK3iHO+7vjdPh5oll\nH9GpS2CFA1DExuE69FbJKscf9RWaWODtMO9VAu3CvBeK0YAJOEuWZSuAEOJ74GdgDLAkXEchhABW\nA+/IsnxPrbc+bMD1WzwNmfyPBskqscxSTNu2blZ9aubkzrF07NIhZDDchy+eUZuuq4opseTjsh1A\nF92GrPT6rXmpjau8EkP74Am6dgJAqLFkF+Q26DrFhUvQGw5yx6jrAwP2Qy8le8EsDnj2cMuIvv71\nIplzksnOUlxkhTmlisjUWv/xwMBUnllfyLpNi7m//3iQdTjczgCxcbidxPRoS9czTuKmTA2vrEmn\nqlzPjr9+ZfjcvkSfcApFK3JYNFfJiir7eSujptyD3qDzjk/H/aNvYcH45VTsO4DDdaDOfQqdidaq\nlVCSBZb+SPak0GtGTKZYEkelkb14Bta/tzBsek2689qcj7j5nguJPkHHhDmjaafvzHarlX7Xn4Ms\nqkLGd7b/sc17XhPZmQWKaLvL+WLj97irbLz94jdERLbiujvO47HFm3A63EHldAy6/0ZK8L+J+iYD\n7EERh1DEATsacM1bgU99IgMgy7IEbAJuP0zfK4HuwH/adq7JhFrN+7vy2Vy9+pCT/5EgWSVmxE/j\nynvgXBQAACAASURBVIgBPHTqfYzvl0grR2XY1ObDjrcwB8vjJWQX5hzROHVRrYOyxay7d/C99WcS\nx5rJSM+ol3vLhyRJZExKJXHcKDImpfr7OioPQGSrkE/SP/3yg1dkagTolhF9KSpRxMxe7g5IyQVF\nbHQaHTf1Hs4rXyxj+z9byX9lWWAywivLuWpILwBO6tqO+zL78OD8szm1j5aYLtHedTA1AfhIjcYv\nMgC7//qHV596jxM6taV00Uvs3R0YrE8clcbLy38McIE9Om8DGldHvlrnJntS6DUjkmRltHkoo8ff\ny76D/+cXGVBE44G0y/jgxe/RG7XclXQe+w7+Hx1O0eB0uBByZEjXmLOyps1kMrEoO4+ixY9x+YU3\nMuycUvi9B1V/dWX98oPc0GUqJYs3BJTTeWH1FhLGBLvuVI5v6mvRvAZME0KsB371tslCiA5AKkrs\npr6cHeb4H4B7QrTXpr/3p1EI8QnQB9gHrAUmyrLsDNvzX0Yoy6ExWWYpZlDcvRg0yv7xBo2BQXH3\nssxSzPzCBU123XCMTUtilnmi331m3b2DR797h+FD4tHr9TidTjInZpG9YM5hi1BKkkTmzDRuefAy\nv+spc2Ya2dNzMLRuA/8cDPkkrTNqQwqQ3VUBgDFKi9MdvP5DiFacFN2V2/qO5bV/0rBXHuCJd94i\nopUMRPJP9W7anhgoUE67G+Hdk7n2OhjJKrFn116cDhd6g47df/3Dm8+v577kK/2Wxqrst5AkyX8f\nTKZY5k5eStGKHBzuPRi0USxb9EytLY4lMsZNwnHAgaGNgcRxY/nj9z+YnZdOVMdIRmReyQuPfhLS\nQpG97je9Udl64Mq7e/D08nVce+PVPG15y+8+c9rdPJ27gbNO6xXyO/FZ6bd2n+y30p/5diYxp8dS\nYlEsm7PO6KkmArRQ6lW92Ssom4BuwGfA5cDHKNbF38ClsizXqwKdEMKFEu/JrNM+G0UstKF7ghCi\nGMW9thcoQInTXAjMBt6SZTlkUoJavbnhpAxO5u6Y24LaX9j1Ckseb54EQ0mSWJZTgKu8ku+tPzN8\nsCIyPpxOJ5u3fsYiy6HX6GRMSuWCq08JsAqcDheb3/uNxLEp/hjNg2Ou98donlv9MSeeeDKXDTo1\nSIA2v7qHRdl5gTEabU2M5ubzR9HW0J5nvp/GLeNP4r1Hf+fBs6f7z1Hy5SRaxeznfvPVNW6p/Pe4\n9eELcTvdPLVkEz169ETbqg07vqvCo9uDJuYA9424hVefeo9bR/ULcot988J+Fs+tidMc6p5OGTeD\n2/sNQq8z4HQ5eH7j4/z8549krLqKl0o+5UHzFaxduoFbxwSXtnml5HMeMF+G0+7m5dLPGHjneTy3\nfBN6bWt2/mojQuOhc2w7IjURuPdrWTLv0bBC4VsY7LB58IhKbPzMPSMu8n8HL63ZzNypBQ2qZq1y\n5BzzrZxlWd7jDcKPA64HfvH2LQRyZVluaOW/I6UVSnXAx2VZnult2yCEiATmCSHiZFkuO0Zj+Vdj\niDbg8Dj8Fg2Aw6OUkGkuTCYT872B/8Sx5gCRAdDr9dgrD5lLAoDdeSBAZECJc9idBzCZTFgKSpgy\neQLZkx+nTZSBCKFjzszFdO3alQkzErhjzCX+ye/RBa9xWtceSkXj2FiyiyZSmFOKY5eHgxEuTu5u\n4It9T/Pj5i95ePK5xHRph6z9CafbgV6r3Mu2rTrQ7/5uvLLqI+SDMi6nh+qDHp60bELfNpIky01+\nAXpq9mYi9p7I1Q93pXDOarT60Kv8v9v2JSNS7sO6/Te6dOlMTIcumEcG1xsrWrLMLzIAep2BuwcM\nZvHa6eiNWoQ3jnPl7eeyLncj96cOCIzRDL5QGdeSDdwyuC/vv/gdwzOvRW/U8vf/s3feYVFcXRj/\nDbCVJiggiordJKZoioktliTGXqKCJXaxgYBiQ7GLDQEVLCD2qIjGisaOLTFVk2jy2VfFBgLStgE7\n3x8LiytrS0w0Ce/z8MDOztx7Z5eZM+ec97wn+T5HvvyFgrwC0q4XEBf9aCMD5l76mAn+fPzpexYb\nuM2f/WQDWoqXC09dRyOKYjZGz+HPxmsyACcL250L33sc0gp/H3xo+35gDvAWYNHQTJ061fR3s2bN\naNas2ZNX+h/G0NHDmDpssil8psnTsPF8AlOXTn/RSwNAaatAq9WW8GiUtk82hEq5nSn0ZDpWo0Mp\nLyYuikot48J7mQzKklXzGN5/LDpNPhujDnA/Iwu3yo509fsAe2clg4O6U9WtLsFjphC2eGaJOVWq\nq0THRPD7yWs4Ormx9adlfFZ/KHKpgsaVOpOweCY+s4s9mt3R56hSuzxN+5czy4v0DKnHAp8D7Fgi\n0GNsI1ZPP2Ix0e/gLtBmVHW06krETTnAPfU1uvT9igl+s8zqZTQ5GpORKYJcpjARBZp3eYONUcfo\n4duUtj3eYVv0KVJv5lLFrTblFa/wy55cRL0GQW+Lg5MS0SCa1uLqUQavkU0BOBh745lCXhptFnLF\nQ3U2Cika3UOCnk8pj1SKJyMpKYmkpKS/ZOy/vfGZIAiHAIkoik0f2n4EQBTF5o85thewFuggimLi\nA9vfAn4CeoiiGG/huNLQ2R9AEeusWAxz2CMvYtVVFUvCl6PJ1KFwlDF81JA/dcGrVCqiF0ejzlWj\ntFUywm+EWchEpVIRPG4S7T7uZMrR7D6wvUSORqVSERURgzpLj9JBim+gD0CJHM3uDccJnRKOp6cn\nYyb483brciVCZLGz9zEguB07vzhEhyHvlri5b1/2NZICe0InWQ7vqFRXiVoRjlqfhai3puC+Aily\nFA4yOnZrw46v4lHnZaGUODBi8CjmL5nKR4NLlpd9EXGEj7zrsWPFt6T85ID7KxK8xzco9noi99F+\nSH1cKzma1rZz+Xd0HNyAZcFf4ff5ZL49cxx1XiZnT6jwbT/RzNhodRrWnZ6Nlb0G75FNyErXcHDz\nGa6cu4udwokataoitbKjIL8AG6WxsLNT6+7s2LuZ7376hs9Gvs2B+NOk3jIqC9g7KXC3rUNM1JoS\n33FUrPHzUEod8B1crEz9qAZuy2YfIm7ZF3h6elpsNFfEviw1Nn8ef3uHTUEQDj9hF1EUxZZPNaEg\n+APzMdKbVYXbPIELwFhRFB9Hb3bGyHCLFUVx5APbJwAzgZqiKJbQNvk3G5qX4YlOdVVFyIiZdHm1\nL3KpAq1ew5e/rWFG9KRnXovqqorQKQtQXb/IgN79kcvkaHVadu7fSei8WSWMiNEYaVDaKiwbI79Q\n2tb3MeVMEn+KIXSxMT0YvWwham0OSrkdI4b6m44dMWoAH/eoXWJt0TN2MnRyV+JX7MYrsEmJ9+Mj\nk+jS50N+3HWf+aHm4R2V6irBc0fQ1reuySBsnv09FZyrI0hAKbXDd0iA2frHTPSjfndFCYO2cOxO\nqtRxRXNXSaeai8lWp3H8YhyiLBeDRo7OVsXAeQ3M17bgON6BTdGq9cwevIXab1ekXrPqHN78C7bZ\nHvRu6mfK0SzdMQ+vua8AIklbf8FgENHk6MjNymfg9I8eCJ0do23fd7F3UpIYfZbQ8dEkJyczdtZQ\nypa3p4d/MUEhIeI7IqatMCMgBM/xpe2QN037JC7/mdDxRmVqlUrFxBl+dOpTz+RVbog5Qst2Dfjm\nwEVmTV5IVFgc9az7lqgnO12w5i8lyvxX8CIMTRIPdk4yoixGanMqcEEUxRZPNaEgKIEzGAs2Qwo3\nTwdsgTdFUVQX7lcZuAJMFUVx5gPHTwYmYTRWhzFK4UwGNoqiaFF1799qaF6WJ7qxfhP4QNbGlHMA\n0Oo1fKPbw7zFs59R/Xk+2VnZ9BrQFrnsgbCYTsuPv//wxET/gwjyD6ZemS4lWGBHr6/Cwd3GVHTp\n+0DRJfCHPZpdsafw9mnJgXWXiF5QrFIMEDTJj3o9io1GSnImibFn8Bra1uRV7Vl5itmTIosLQFVX\nCZ4zgvbDio3ThoVHaTvgXeydFSwZeIYRbVaXOO8tv/rTa36x8kKRR+PlbzSOC0ftxMXDkcu/3iFo\nSWey0zUkrbmEqJFSINFy+coVxkR3MTu/DeFJdB7W0AIZ4Fu6jzQasNObNICA6v5pugxuXGLf0wm5\nzJ+1CJVKxcBhvRkQ+mHJfbZkE1Yon6NSqRg4tBdl3WVYW1vTos27uLo7o9Xo+WF/Crk35bR0Mz1v\nmnD47iKi180psb0Uz4a/vZWzKIrNRFFs/tDPG8CrGPMqoU87YaEhaYHRg1kLrMNILmhZZGQKITzw\n8+Dx04GxQDcgESMLbS7GQtD/FJ5F8PKvhCZTZ2ZkAORSBZos3TOrPzdw70qmeN3MyADIZXLUuY/X\nR3sYlupasnMzuJp+mnodytKyby3qdShL8KyRpjoalUpFZlYWK8MTzeo3VkXsZehAfxLXnKJhy3rE\nLzxmVpcSvyiJ5u2MVe1KCwWFan0W2RlqNi88RnzEUdbMOkjLTh+Y8kTZGTnorbIZMqo3QcH+hfTk\nqgzvPYEVE4+zwH87kWN20KBNbVw8jLU15WtJTQrHRdDq1VxTqczXFn6C5l1fN70u7+lE5+EfYOco\nR66U4uLhSLeJb9NsaGWsBDm22mqE90/ixkVjU64bl1K5fv7eE+nNmrws1HmZWAmCZTFOfZbRU5k4\nFmdXpcV9Hmyq5unpSZ1X6tDLpw3eA1vh6u5s3K+QUv4s8kileLH4U/1oRFG8LAjCHIzeRb1nOC4Z\no6F43D7XgIflborei+QxCgL/FTyL4OVfCYWjzIxFBUaPRo+WAT19Gfhe5FMJgKoz8/j65hZc3cuh\n1WlLeDRKW/NzfRIs1bUc/N9a+k0yVw1uO/AdomIi8PUJxH/CQCR2IFFImBm4hko1XLCRCEjtBaLX\nzKFK+VrELzmMo5uUyNFfIpXZUKFyOdp2a4ijky2r5u9nefjGwvxDhCn/kHE3h8TV/8N7VNNiyZUF\nJ3i3cX1OHT6DJkfNwIntTO8Fh/rR+ZM+hC+fToVajthIyvJB21c4vPkMZcs74OrhyEeDq7IqYDT9\nWy8whQa3fheC3E3L5siTJF/MQJ2lp+brHhzZ/BsN29XiUMLPtOn7DnKlFLfKZUxEgpTkTPZMT6fr\nmxHIPzKOtXLiaNKk+7F3VCBYYZF08GCtj0LiAAgYRPGRPXGioxfTsWNLtiXusriPQmpupJUye4s1\nTUqZPSNG/j0KGaX48/jTZABBED4Btomi+NK2Dfi3hs6CfENeihi1pRzN2h+jsFHKMWQr6Pne5BLH\nWApvBPmGoDqfzEedG7A3cS89Ovc05WhWbogjZmXMM9VQPJijycrN4NDpBG4W/EjQopLPOIfXXCA9\nNZs7ackMHN3NFM5avSgBmT30DCxmhG2P/p6s+zn0DW5OVoaagwk/cvd6BrrcAsJDl+HhUYkJs/1o\n6/O26ZjFY7cwcnHrEjfW2QMSqFTLhd4jzd9LvnyXL+OO4TPj02LDtPAYLbze5JvE3+geYKxdiRy6\nj8pVKyHobBFsNbTo54mDs4L18w6Rn63k86AOZGfkcGjnSW5fv4NGrcHZ1RZ1jp6y7vYkX0xjwJSP\nOLnhNm3LRpQIM+68G0CPqfVIvpTKjpivGTSt1WNzNAD+EwdikKrNcjTbF//EvJBlhIXN4ZNPPuBu\nSiq7k3bRfXQTizmaB7/DidP96dC7gSlXs3XVScoI1bARbRGtdRQY8pGItigcJXTyasWOzXtN5I8R\nowaXEgP+IP72HM1jFlIW+AKoUBhKeynxbzU0lnI028/Ox6miFBvR9m8lB5hYZ1k6FA4ysjW5NK7e\njZ0HN9Kh7qinMoaqqyp6fNYXv1E+ZGVlk3QkCYPBgEE04FzOmZiYmEfPb4FdVpRUDp02nysXk+nX\nJYBdJ1fQYUztEjf8Exuuc+r4aUYv6GVGe964YjtdRjQosf8Cn91IJBLkTiLaDIGC+/bUfLUSTrbu\n/HrjGEPCPjE7ZuPir+g5tiSBYENYEqnJmdg72GLnqKR5x/q4VHBi89JDdPCxUCAZdwqDwUCnoe+T\nuPgc1gYFnca/QsrN+ySu/I7Um1nIlTJSrmUxeJI3Sbu+JiM9HddKTnzUvT46TT47Yo8zcHqxwYgJ\n/gqrO5UZ1rLk55twMRDvObUASL6UyqbwJCrXcuHW+RxerfkGEiUoJEbGGAhExYZzN/UWly9fwcpG\nxNZOQbVKdRgXEIKnZ1XGjBnNu+/WQi6XcTcllcPHj5KPnvQUNXFL1z+Cradi3oKZXLl2gdxsLbnp\nIn3rz8ejbK0SXszEEbPpULeY/LHzbAyzoif8a43NX0kG+tsLNgVBuEpJMoAUcCv8+5naBJTi+eBh\ntWSDtQ59voYPnYp7zwcPC/tbyAGeVT2Zt3i26fXwgaOQyxQ0f7818Yfm4NVg/FOpP89fOIsZ02fQ\nt28funt1M9KWExMJDg4usX8RVCoVE/xCafu2j7GFtF7NBL9QZi8OxtPTE4cy9vTrEoBcpqDZW58R\nH74Mr1HFhYeJcT9gl1eFapVrlyjktLLGYi7B1kVg6PwWxU/3005z/4o1jd/vzC/y/aZjUm+mk7Tj\nJ5Ivp1oMFdnYWOMzqy27Yr+hg887xIefoI13Q/LzCyzOm59XwD2VlhOxaYi5tpxT/cLVgPNkpeVi\nV8aWSjVcEaxAk13AkcRjeI1pWMxyiziOIR+TkSka0yf0U1YO/cWifI6VbXEBrEcNFyrVcqWjzwec\n3qQhbOaDPW8KWWRD30SufB2tujaJy0p6KCNG+BEQ4IukwA6rfDnZeitSU9S8UecdosLiHnmjvJ91\nn8+HehWrVS9ZSBvJeFwcKplCsYJgMBkZMOrMdajrQ3R4LPMXz3rk/88/FcUPmoGm1ul/1/X+rHha\nUc2jFn52YWSN1RFFcedfs7xSPAkPdn+0tbOj+1uTXzg5AEBpL0Or0+BS1p02LTuy82w4G76bTtx3\nAY+9EBo3aUzIlBDiln7B0rD1LF20GisJzAsPJWjcKIvCmVERMUYj88ANpu3bPkRFGJ/Q1Tk6U52I\ni3MFWr8+lJ3zz7M0OJHTO9MInbgIGxRY59mSfPU2mxcdZd2M48z328SVc7ctikO6VbMzF5icUo90\nq/MkqVZQvqo9WrWe1Jvp7N10kvbD3qFfSEs2hT9EIIg4TrOub5ok++VKKV6jGnNw6w9cv3DX4ry3\nLmQya0IkN+9eI1tyg1HLOxCwqCNjY7silVnRuPMreI1uClb5eI1uaLbG7oFNSL1936IBq/iqHXvP\nRZq1T044PYlm/auYzS8aDCRGn8V3UKDZGFGx4YVG5oHc19A3iYp9SP9WBEl2RTpVm0XzSiOwznQn\noMUa2lQZRz3rfhaJIlFLF9HWq7m5WvXwjzhydbXxdWEvpkeJmqqzzD/Hp8Hf1Sr9z8BIBgp86HoP\nfCHX+5PwtBI0/f7idZTiOeBlIQcA+AYMIThgJm0b9MWlrDsdPupB4rdrWBkZ9dg8i+qqiiWhXzCg\n0fxivbDvZtH40xrYO9oRPGUModPmm42RnpJV8rylStTZxhuM0s5o9B40Nu0bDeLMjX2EhRrzREoH\nKbUNTdkWto0Bn8wxzb0maSJfzD1Gr3HFSfzlU3bRc0xT8/mUUgQ7LdduXaJDr5psjjqIRGFNC+83\n2BV7CoNBxMpaYP6wrVR/3Z38PAOGAgOHN5/BIIroClWN5Uopd2+l0WZAfdbMOELfkOI8x5oZR5g/\nZQnb9yYgKZNPZ78m5s3MZrYiIfI4n0/4CPeqThYNStFYD3tWbuXc8R03mqjwOE5//Qu2lXRoy6bi\n4FzFtE9MyB50mRC/ch2enlWN4cqYCNT6bM6dPUuNlo3Mxn2YRQbGm2OnumORS5RsPDEXma2U7WcX\nIBRIaF6rl+lG+WBY9UHJoJQ7aRzZfgaDVsqNO8mkVE3GQeGMwVqHnb3SolemdHikfKJF/FM8hZfp\nen8SntajKcU/AC8T3dPT05PQyEmcvruHw79t4PTdPYRGTnpiMt9iT5f3JnJk22nkChltuzcnaql5\nyOb3y2cs0nyV9sYbjK//UBJPrEOrM4aBtDoNiSfW4es/1LS/b+AgDpxeZzIyRXP3bTYLMtzZOv8c\ni8Zu48u4Y2Rl5VhUW/ZwqMeQDrF8syaXWm9V5PK5ZA7H/0z7we/jFfgh3fybUrFaOS6dvU1BgQHv\noGZ4jfqQzsMaIorG2hqtWk8ZFyUXT2YyeeQCTm/ScHj5dU5v0hAzL57GjZug1mdhZWU5pJd+J4fU\n5PvIlRIzjyg1OZONC45SkG8gbOhWki+lmtaduPisUQetqidhi2dQr3kVvCa9xWe+Ddm14hTxkUfZ\nvuxrbO0VNPmgucnIBIeOpF5nZ1r2r4nPjLYkrvmO1OT7Zp/Jwyyyou6wKVk3yJXepkOPTnTt1Yu2\nXu3ZcymKLE1aiU6xRZJBKXfSSFxxjtbVZ/BZvdkMbb+c3T+vYOXhydy6mkbH7q3ZeTbGzCvbeTaG\nEaMGP+5frgT+KZ7Cy3S9PwmPJAMUFkY+LURRFF/aUtx/KxngYbwsBZx/BsP7jqVlpWEltq/7YQIy\n91wMGEhJzmBN7AY8PT0JGh9IpTeUHFp9ie4Nx5g8kbX7Q4nZEP5A8aOKqIXLuHs7lZs3b+FZpRrO\n5RzxDfAx7TPAy59WtUs2i034fjrd+nchYW8U3pPeZuX0vVjbWOEd+GFxjmbmGT7ymE45p0po9WqW\n7O2BtVMWPcc045vE340ejZXAB21fIXbSV0xY6VVSwmbp12jV+dxRZTBu2Ey6dbVcATDMfyApeZfo\n7PceWWkajiScRSwQEClAnZ2Lg7MtzT57g8TV3+M9qinZ6RoSV/2Ad2Bx07KYiYlIlTbcu57L9i/2\nFRqPq0TFRnD33i3upF+j3xQj0y75Uirr5hxBoVBQt0Z9xgWGEBUTQb3OziXOYWP0PuTWLuTnyrh9\n/RYL5s2hcePGpn2MTMl+7Ph5EW292peQvtm5cTtV33Ay82hUKhXBU4LQ5VjTrvasEh7LtkPheL0/\nmtMFq/EdPZDo8Ng/xTob/vl4Wrr5l9h++O7Cl6oQ1MzzMl3vEc/tev+7yABTn2EckT8vtlmKPwlL\nrZT/SUYGHt3T5WaKCv/gLqZk8IQZgcwOiUCty8GjanVaD5Wxa+scDFoJVvI8nKqKprCOUmqs/vf1\nH8r4wFn0bT8FuUyJVqdmcJ9ApoSOpnHjxji72ZOcepFTv+1GFA0IghXvv9oOQVqAVqvFSpaPVq3H\nvoyCZl3fIGbsIfLzIF9rhZtrRY5fiqVJjcGUc6qEQuKE1FHP4fif6f6AQdoccRSlowy5UsrvP9xg\nd+z3yJRSdGo9Op0On+ntsXeyZenoKLp17VaiHqdT667cTLtKjj6H6NG7cHZ1oduItsiVMrRqHfGL\nd5N+1+hxpd/KImLELqxtrBgZ0cGcADCrLfOGbGbJ3DUmIzNhjh9th7+BXFmX5EtuLArYhbW1DTYy\nK/zDvE3nMGG2H0qJHXJlebPvTq6Ucu+anr7t5iOTKdHp1CwMX4iHh4fJmHfyasWUEcE4litjUczz\nnv4KC0abd/v09PQkdFoYgz8PQv56yRCpVCI3hYw8q3r+6cT/39kq/c/gn3S9/+2imi8C/xWP5t8A\nSz1d4g5PpMOYV/CoVnxj02p0nNl7C0SBep94lFBijpqxnhHzOpF9P4eDW38g7VYWhgxHBrYPRS57\n4AaiUxP2xRAaN3uXLHUG575X8XmDBXi41DIWLe4PpnHbevx8/gQfDarCgU0/0m5AA+ydlSzx34+N\nnQGf2a3ITldzMP40d6/m4JBfG4N9KsnJVxgfV9JzmT0wni4jGnJ8228MmvnJAzTjfVgJSpzKunHl\n5+tEhy8iev1c2gypX5ynmfkV7YbVQyaXEOG3k+CYYciVD5y7Wkfo4OWIYh5SmZKghcNJXLcb76CG\nJT7rhQE7WLdoO56eVQmaOJK3vOxKrDXKfy8jFnQssX1VyAEGTv2kxPbNoSo6tix+5tTp1FxMXkt4\nhFFFKsg3hEq5H7Hhu1kM9x1bwqM5dWYHS5cvtvi/ETQyhNfs+pZ4CNl7bBkd3x7G6YLVz6V+7K/2\nFP4p+NslaEpRir8LnlU9GT6hF3HHxrN03xiWHRqFzuGWmZGBwv4xuhx8h/qTuP4kWo0OMBqZNQt3\n4BXQjOz7Oezd+DWdhzXCd0FHylUsY2ZkwChJ41RRQsNennTyb8DomM4k3ZtPauYN5FIlAz4JZcvG\nTVy+do718w9hI7Xh4OYzLBmzC+eqEpOR2bvmezoPa0hAVDt6hldBL6QhkduwY/k3bF54jJTC3IVc\nKUUmk5MQ8a3JyBRt9wltRc59HW27jcZn0hxCZs/h3fbVTPtkpediW8aV+HmX2R17AUdnBzMjYxxH\nRrU6b+FZoyHVX69gNMCC5bbKrpUdiFpR2IY6L6tEzkd17g7YWJaTqVixIomxP5qx6FbMTKRRPXMl\nKJlMSW5Ovum1OjMPj7I16ddoBlsS1prlzfYe/oJxE0Y/6l8D38CB7PvFnBm39XAYjWp2IPF8BL6j\nLUodPjOKW6Wv5vDdhZwuWP2fMzLPG39KgqYUpXjeUF1VsWTWJgY2iDB5NFGn+lruHyOzM4ZVJocT\ntWwhGl0OCpkdbm7l8ajhSsLSg3QvrE4HsLHNQ6tTmxmbwz9/weCpncxpwOM+YOe0OLrWm4pcqqSs\nsyvW5QV8ZnYweRZx03ahU+chV0rZFfsN3QObPmAQNCgd5PSfVlzVvzn8GK37voODs5IKFRqQmf27\nxRu4ws747CeTK+g6ZCSHdy/EO8CVlOQMdiy7waddZiGTK9Fp1axY0A2tWlfCo5HYlOWTdgFsWvU5\nWo2Opm0bER++z6x2aHPkUVr3fZdfdxtZYUqJQwk22o7lZ6hQsYZllpqLO76DA4mKiUCjz+bs2bMo\n7Z2wty1rdk46nZrzv59jeJ/xKB0k5Au5aPPUuDpUok2NESTGbyDfSsv9vOusXLf0sWQRz6qekfBv\nZwAAIABJREFUzFkcRFREHGkp2aiuXaGSe0Vu2B547obgr26V/l/DU3s0giD4CIJwWhAEtSAIBQ//\n/JWLLMV/Byah0AdZZ6/OYm3YbjOvJXHNN/gOCQCMMfywORFER8QSNicCt3LuaNV6DAaD2Q2yWe+a\nJBwLQ6srfCLWqUlRX7AsFikrfmrOs1KbjEzR+wOntOfWlYzCeUSzMZK2/ozX6GbmxmtUUw7Fn2bF\npEM0aDgYTbZg0cvQ5haHeGVyBfla47Pgoc0X+bTLRGRyZeF7Slq2m0DcjC1o1YWfi1pHfMQJ3mvU\nB5lcia29K1uX78DeyZ6Pu7Zi6+IfifTfweZFRiNj76zkf2euorqqwndwIIlLfjGtKfliKmKenKYf\ndiM+/KSZ5xI7ZTe+g42K12GhC4kOW8m79T/gk16vsfPIVHSFn69Op2Zt/Bg61RpNy/J+1LPpQ8Yt\nPZvPTDcZm45v+iGXSli59vFGpgieVT0JWzSDVZsiOfLNTtZuW0pY1IxSb+Mlx9MqA/QBFgNrgDeB\nlYAE6ICxTcAXf9UCS/HfgjozD3n5Yo8jJTOZry/sJjfbnpXT9+JZsyLOZcoxOySixI2pqK4jPSuV\nqPFJYFNg9jTu6lGGj4bnETFxONWq1+DmbRVudSzXlQg6oze1+YdplKtpY9EYVa7lyvLgPbhWcjQb\nQ3zI8BTtn3ozC5l1Zcq6ePBhiyBiJ85m8Kzi/i6xEw/Qsl1x+Een1XD196to1W9RoJebjEwR6rzZ\nmG+OLyN0UBy13ngbQbSjYZOxOLt4oNOqyb5/n26j3mfXuh3cuZpJbmYu/ae2wKOmi9GrmXaaJg5D\n6dGzB6+8U4UycjeOxdxCk5fD3dQ7CNZ67B3K0LypD9sit4G1lgK9DXn3pSU+e1+fQEZOGIxoK2Ht\nrlHoNLloczPo9uo4KpUztiyQS5V0qhvEicwlnC5Y89InsEvx/PC0obMAYDZGZtkgYIkoij8JguAE\nJFHcYrkUpfhTUDpKTKyzlMxk9p5eSffGQcWNy/4Xie+SAJOOWdSyReRqcyEfrqVcoMfY5siV7jRX\n12HpxC9ZOSmJATOLab0H1/4PdY4e7/FNSViRTqOOdYibuZ0OA5pxctdl8jVSLv9+kbKOTkQf7Uvv\n4A4c25tu0RglX0nFykpAnaNj/pAt9J/yMR41XDAYLKsXOzgruHP5Dvu+GoeYb0stz4HMGbAcUcxF\nYSsnJzMfW3tj3YlOq2FD9HyUZQxsWngA1e/3MIgT0GSDtY0VclvI18vIzkyjUh0X7t45i1gg4ejB\nLN5vMpDDiUuwkuZwaPNpMtNy6T22GUmrL7FzwW84Kd2w0TnwnuNQvs2PYfiyYmO3btYBysor02dM\nW06f+B9rYubS12ccHbsMR6fVsCZmLqNGjrL43Yn6anzcbowptPfl6mDKO1Uz20cuVWJVICsNS/3H\n8LSNz7KBjsARIA9oLIriqcL3ugOzRFGs+ZghXihKWWcvH1RXVURFxJGbmYetowTfQKPG1YO1QDt/\nWEb794aWYBmdyV+D7+iBjJ82htY9W5oozwmrttC6/9u4VnQy7qvWEz/9LDKZAqQa0Cto8mYvNmyb\nh29ka1bMTKCimwcXbvyGQqyBt/dsEy13w9pJ5OpUBEQMIvt+NtvWbGHA5DamG/Lq0ESkCmt6ji1W\ndV45dS8KWymClYChQKTnuOKq/g1zD5N+Nxvf8E6mbetnfEtGegbD531WPO60nchsnLFzktKwXU3W\nzduNR41yeAW2IDsjlz2rT+EVWKyxFhuym87DG+NRw6VQ1uYI927lIJHJKV/ZgfaDmrBpwT4+9nqH\nmycF1NeVpmZhm89Nod2c8iUMYrjvZgZP6MqR7WeoUestDu44hFSmRK9T81HHluhTdSyYG2b2Xfbt\nN5IO/cLNvC6dVs3xNVF8/l5xbZJWr+Z0/to/bGheho6y/xX87aKaGLth2oiiKAqCcAeoBpwqfC8H\nqPA8FlOK/wZUV1WM9w2jdd0A5I5GT2W8bxhzooLMagPSdNcta1el5RG1bJHJyICRhdatf1d2f7mN\n7n7NjduUUiRKA50/HGs6/ubty9zPSSN81FaUdiKXb/+OkG+Pdy+jkQEjU6pnn5nsWDWP1bM30W+C\nN3KFgl2rjiEWiAjWArZlpHTzN8/DDJjaml2x39DN/0NSkzNYNHI7CnsZOrUerSaPviGfsH3paQz5\nNljZ5NNqQB1ObP+f2Rj9pnRgSdAmHNzKI1PYIJFamwzLrhUnTX8X7T94Rjt2rThpWotXYHO2LTvB\nr19fpUw5OTtjjiG3k7N29gG2rfuKqLA4U42IQZFrMcRXta47h7Z/CwUK6r7zJnXfedNsnxPbksy+\ny+Bh83GQVC0R2pPJlaTor5s81CKPNHRpyaLYp4FZQfJLLA1TipJ4WkPzK1AL2A8cB4ILFZ3zMRZ2\n/u8vWV0p/hVQqVRELYlCrclFqbAlK0VnNDJSJan3b3D0ShwF0hwG+PRnZewqE+MnyC/EsnaVo4Rc\nbYYZCy3lTipHvzrB3TvpbI4+TLNO9XBwsuXyxYto3zcyzW7evsz2Qyv4fOB0Tv0ShdfY95Erpayf\n+rPJyBRBJlOSLbnDx708iZgYTb7egHOWHU5uCj7tW4+khDOWSQSFHSftnW0pX60sEqkT+XlS7qgu\nsn+dinaDBiJTyNFptOxYFsftq/dZP+dnbCRaWnjVwtXDiUq13Wg3pCGbFxxGqpA8MfdTNGfRa02O\njgqeLnT1Kw6JrQjZzbjJM7Amj29vjKCcdTXy8g2PVJS+m3yfsq4StBot2fezOZp4CkO+DaKgw83R\nzrR/1II42tYJ4MtflqHTqkt4NK+9UYXT+WuN+RgHCaFLx/xho/C4jrKlobiXG09raGKA6oV/hwAH\ngROFr7OBTs95XaX4l0ClUjEhZDytP2uFXC5Hq9WyZukG3rBPI1udxr5bM+geUixlP2GWP7MnLiQ5\nOZmTpw/zffZZBreYb/ZEPHtJEFHLF5kozyl3Utm3fT9dfT8tDqMt2Y0m3YBWp2bukv7I7ERk9gIV\nK7/F8a/X0Hv6+6YbrESpR6dTmxkbnU6NU2WR49tUVKxagW6+rU3V95ujdiAImkd2nNSq9cRN3kvq\nLT0dhwdQ3rMaq0L8aDeoPzKFsWuoTCGn49CB7Iw5zIddJ6PXqtmxbAqf9s1DKGxN0H10C+b0W2ua\np2hsS3M++Fr1+13s7W2JC9mBTqunYbs3cHKrwOUraWhys+nQuzWVa1ZnY8QywoZvxvOV2ogGWwSr\nXHKyb9OuT2Mu7M+mIN9A3Pzl2Cmr0r7jBFNY8eDeSJOK9vc/n+Sa4w3yDSLbV0yh06BpphzNyX2R\nhM8Jeio2WVFI7O7Ne9y8dZOqlavh5GZvFhr7J4lIlsIcf0gZQBAEW+ADQAl8LYrivee9sOeJ0hzN\ni0PQ2CDeaPgacvkDbZm1WrZHn8JaKtIhxLPEjfNg3FmuXU2lbz8/srOyOJJ4iDs3blPrlSpMmzMB\nBAgNm8bla1foM7IHu+L30G5Q0xJ1NpF+XzBxXDBLN82h39TWxbmUyV/Rzb8ZLoW5nJTkDHZHJtPu\n0xDTzXTd2rE418pCInGi0+APS9SqLBq1EQcXGDzr4+Lamsl7ycnUUrmOKy293sbeyZaNYd/SoK0f\nX+/YQDf/niU+n61Ru2jpPQ0AvVbN5vBeDJrVGFePMgCsnrYHQ14Bvcd/8lQ5mqXjd2IjSBk0pUux\nNzN9G3UajKb2W03RadVsXz6RrgPbotPqSFx7gE4+c4oT+DFj0OdeISosmsaNG+MzNIDX3x5cwgj/\n/N0ycvV3aOvVwmTcN0btwXC/PDZKJVl5V1mzZtFTG5ngYWE0cO/OoV834NUoyKJW38vSUfa/ghfR\n+MxaFEVTrYwoirkYvZpSlOKxUGtyzYwMgFwuJ01/ibJ2bhZDQReunMen/xTkcgVyuYLu/Xui1WpY\nu2YhCDBhjh+th9fjjfSy7Ni4hZtX00o0LJMrZJR1t+XbM8dNRqZo/AHTP2X70hN4B34MgKuHEx8P\nyWPJhJ7IZWWwdRJIy1JhuFWOilWdLFbfV/SsTa3anxExfAoulezJSMnGRmpN5drladG9Pi4VjYai\nR1ADNi/cjMFghU6jNXk0ADqNFsTisaVyJeU9K5mMjFatR6/LIydDx7alJ7GyEsjPg7k+G6lcxxXB\nSiA9JYcti09yPzUb6wIZBQX5jIvxNm8fMLkzC8csovZbTZHJlXQaMovju+ai02hNRgaMOZUuPvM5\nFB/MotilIMKlCzd5p2HJsOL5S2cZMqa7WY6sh28bti/4CalNPotjn87IQLFa8s7vl5qMDJQMjfmO\nHvhI0dhSvNx42tDZLUEQNgLrRFH88a9cUCn+XVAqbNFqtSU8mldfq8n5i+cthoK0uXrk8ocEF+UK\n1Ll6Bg31w96jgKx0Na4eZfAe04xNCw5bVA7I0+Wj1mchV5YzH0sp5e61TNPcWrWeXStO4FihgOzM\nZJQyO0I29WXn8m/J02Kx+l518Xsysy6i1+vQ5EgYHtbNNNaWhQf4tO+7uHqUQa6UYiVoMBgK2BWz\nivY+/U05mm3RW2jQulhyRa9VI1UUF0YmRBwm444a/wij4UhJzuDglotUerUK53/4lVpvORK0tC9y\npZQbF1NYNf0Etg4Gi8ZbYVv8WiZXUlBgxf17mRYT+FmZaroP6sPoUZOooHzTYlhRobSxaNyzpCpi\nlsQ+Ux6mKCQmigYzbwXMQ2MvWkSylPH2x/G0hmYr0BvwEwThPLAW+EIUxRt/2cpK8a+A73DfEjma\nvVv3MXuGUW59wix/2gxsYLpJr527F32WBK1WY2ZstFoN5cvXoEmLzhz/eiMb5x3FuaKcVr0b0MKr\nPqvnJNBvfDezHE2dGq+ilNpZNGbqVBsWDz6AsqyBe7ez0Kp1uL9iR636HnQcYmRwNetWl60LvyMh\naq9ZjiZu+kb6T2+HRw1X4sP303GoOfusq//HbF28H7lSQn6+gRsXM3FydaPd4Loc3rwSQ74NeXoN\nmlw7bB2Nki16rZoDX0xCrkhhoW8CTuXtaN3vA+LDkkxG5ssVyXzYZx5ShZICcRJe/p6m9/Z+cRev\nqRs4tWWexfPV5BZ/JzqtGsQ8cjLvWEzg5+kzkSnkVHCpzicePdmxaSFtvf1NYcWjB6KoXrWaReP+\nxhuvP/PNt0gtWRCsnqia/KKkYf4pzdBeVjx1jkYQBAnQFvgcaINRGeA4RrWAraIoZv9Vi/yzKM3R\nvFg8zDrzHe5r3icmJpL0zFR+O62i87uzkEkU7P81km6f90AuV6DVati8aT313/uYMxcS6D62mDyQ\nsOggLbrWZ93Mg1R9rSKCYIUoGsjLElg829jKecJcX1qPeKtYJXlCIm9Z9+Na1o/oyUdvd5MsTSZy\nWyXpKi213qyNtVxL817VSb+TxZdRx8jXi8gVUvL0efSZ3AaPGq4AJEQeoFvAxyXOOdLvC4aGdSEr\nPZf9X1zgxsVcXD0kdBjwmik0duNiCutmn8W1ck1uX/4dp/Iijq7uCGhIPneZzyd9RNyUvdR6qzKq\nCxo6jlmHVGG8CZ/4Ygx9xrwOwMaI76jfwWiAMu7c4JfE6fQc+UFxjmbaNuq8X5yj2bZkHE7lMiko\n0IBYlY+7TzflaA5snozEJoPP+vZnf8QxvN8MJiXrBocuxlNgbSA19yLrN0YbP9cpY8xyNInxh5n9\nUPfTp/r/eMoczYtEUR+dkvmh56MY/TLieeZo/igZwBHwwujlNAS0oijaPf6oF4dSQ/PyY7R/CK+U\nKZaAv5dxg6Rf1nA76yw6vZbeAyZxOGkNXpNfL/G0vnT0NsKmRLN9z5YH+s8EmG54CVsSmBE5BY9a\nFUi5cR87Jw9Srt+gotIdJEqE8tm88kFDvt34C169i4s2v9w6Glu3dLoHGvu9JF+6zbrQbTg4K8jT\nF9B2QGN+PXnZSER4aE07Yo7Q3Ottvoy5RZP+05EqlOg1ao7FhdDVpwIOzko2hX9Dg898cHZ3R6fR\nsG/lFj7xGYVeoyZ+WhAOdvcZOMtYzLl2zk80/XyBaY5j66fi7euBXCll3fxfaNyruIAy484Nfj0Q\nxz3VjyisJPj5jObkdz+Trc7HXmlD2v2LtPdrQOqtNNaF7cW1UhUwKMFKTU56Kp908mbnum10rxxC\npbK1is+rMPHuO3pgMUMs8wKeNTyQSeXkaaVYWdliZydh5MiBz2RwisJSKTfvkfwI1tmLxItuhvYi\nwnYvomDTDKIoZgqCsBcoi7F40/15LKYU/13kZuUhdy1+WiznVImuH07ixKVF2JYV0Ou0ZGquIVe+\nbXacXCnl1VdepXHjxmadHB9E9MoldB01hKNbvsZrfAgyhQKdRkP8nFlo79/GZ+p4Vo5ZTt++y8yK\nNh0cy/FZ4AfIlTJSb6Zx7MtvGB3bw+QprArZRf3mr7B62k76TSlWdl49fSef+TfjYPxlmvSfb/JC\npAolTQfOYOm4nlSrV53aTTrx3e5EMOSDlQ26XL1pvwo1PPDya2kyYFKZnhTVBf53fANWghq9BuKm\nHWbglBbY2GjRa9SmeZzKV+L9rmP5cX4Udlb5vPv2u2bdOoOCA9CqdbhUKEuZsq4YtPYYxGxSbt3B\nsUwlju89jTzbjcO/birhXQyf6F0cQqpu3L75zDQoAx+1LA6vBY0OI2zB01Gb4eVXS36RzdD+DYWq\nz9SPRhAEe0EQBgiCcAS4CkzCGD5r/4zjeAiCsEUQhPuCIGQKgrBVEIRKzzJG4TjjBUEwCIJw7FmP\nLcXLAZVKxeABfpz8eR8JP43ly2+ncy/DmPrT6tXYOkjw8x3C9u0LcfFwsah4LLNSWhq6GFKB7/d9\nz6cDhyNTGPM+MoUCr/ETyRfzObR+EzYoShRtWsv0JhLAse3f0XV0c7NcTP8Z7Tm69UduX0tlSVA8\n0UGb2bL4AAoHKfbOtuTly003/4zbyRyOC+f4F0vQ6K1wrlid4/EbEMRMbGxyEMRMcu/fION2MgB5\n6gwS446yZeF+ti4+gOcrtvy0fTzeI6rQJ+hN+ox+BbFAzdrQPWiy7rIj3OgJAeg1ao5GhdG6ek+L\nve59fQLYu+JbtGod7fq9g16rpVX7SQzyX0kHr3Fk387BTiFDdMpi/hFvdlyewemCNYQuDWJ7/D5T\nQzAwJuutRGc+ajnGzEh/+GEAixaZz1viu7+qIsg3hOGfjyfINwTVVdXjv8cXCN/RA0k8H4E2r1DV\nu7AZ2vPqgfM4PK5Q9Z+Cp6U3t8MYJmsPyIFjgA+Q8Ky5GUEQFBg10zQY8z0As4DDgiC8IYqi5inH\nqQZMBO4+y/ylKIbqqoqo8Dhys/KwdZDgO+rvDVOoVCpG+EzG4JhB4NI+xQWRc6dTkGmP1uYOr9Ux\nhm5efaMGb7Z9jYTIPXQLKBbJXDVtN1YFcoYGDEKQGlBK7fEbFGj+JK0Xyc8TTUamCDKFAkcXZwSr\nDHLV90uwqwp0UhPjTDRYZnNJ5BLGL+5lWk982Fe837YuCeEHsZKURa9Rk3s/nVNbV9JsWJAphLZr\neiBODtZ0Ht4YmVKGTq0jIWIfJzfH0aj7QPK192g3sJ1p3KjADfiF9TSnLU/tyK6Vx/hsRGuSL91h\n9cTeVHNviERnRbeqA3B1MD67PVzQ6OnpyYg+QUyeFIIgEdFk6Tm2PYI7t7KxK3DC1lFPl+FtTeSN\nr7bsxTdoHJ6enhaLJrGxsqiskJPz6ELKf1py/UUy3v4NhapPGzrbCZzHaBDWi6J4/U/M6QN4ArVE\nUbwKIAjCr8BFYAgQ+ZTjLAHWA3UA6z+xnv8kVFdVjB/xkN7YiDDmRD/9xVOUyM/V52ArtTPLi6hU\nKhYviyJXq8ZWrsRvqC8AUbGR5OqzsZXak3m7ABu5lI5BLUyeg1wpo/u4j9ix8gB9R/ZAq9YxLnQ0\nDhIn7J0cqNf0faKDvkSmkKDNzcNaYo1zBSveG+RJdkYOR+K/p09AV16t+hbj/ScB4GZXmV9/O4tO\nozEzNjqNhvJVHWk39H3up2zji1Wj6NU/3BT+uX0rhZVTz9JhcDOu/qZmzcxfkcp0tPSugWulMmjV\neipUdyErPZfdsccRC0TktgoOrP8WqcyWvIJMds0dhWOFaiYjA8bQWPvJEZxZPw5Z4XnLlDK6BbZi\ngU8cR1eGYF/Gik2Rp7CSOSCx1lLOvcxj5WdkcilSmRqpdSrW1sXpUkvhHVNzuVdjixUXzkcyd/ZQ\nJk+eRp/hn5vo6HK5nE+7tiZqSRRh88IshpDIN1ikQNvZSR6ZWyiqnTF/Sg98qeVkXlR470WG7Z4X\nntbQvCeK4g/Pac72wKkiIwMgiqJKEISTGBWin2hoBEHoCdQDvIFtz2ld/ylEhceZ9MbAKFbZum4A\nUeFxhC1+8sWkUqkYHxpA60HvmzyR8aEBzAk2fn1jp07gk55tTTUjoyaNIU/MpEtQc+TKymjVOtZP\n34PCpoLFgkirQlkVuVLGx4M/5If1Z9kWuRNRqWZYeHHNyuKRG2jm1ZLNCw6iycml37T2pvdGzxpO\n+kU59k5lKKN0YNOcmXiPn2TK0exbvYg2Pq8jU8roPbkzc/ssJyrcC2cXd9LTb1P17bLocvJJWHKB\nTmPWmryR7Usn07q/nu1Rx/i4dwP2rzlFl5GfFtOfJ20hLUNOuco1ETJOkZNqMBmZIkgVSgw85GEp\nZdSq70GLbu+ydaWKJgOKSQSJoaO4cekulWq4mfYvkp9JTU7nq7Un8QsfZFrDtnmhfJwXyLe3E0oU\nNFpqLte2dgDb49dQ+/WaFgtsc7XGkFFx0WSgKXdjENI5eGi+KXym06k5ejSSgADvR+YW1Jl5ZCvS\n2Pn9UkTRgCBY0bxudzSaf85T+t+Ff0Oh6lMZmudoZABeA7Zb2H4O6PqkgwVBKAOEA2NEUbwvCM+F\nFPGfQ25WHnJHC8rId5/uQo+KiTQZGTAahNaD3icqJhLRYGMyMmDU9WrTpyO7t3xhtn/vyW2I9t1p\nsSDyQf0uuVIGEqjkXoEGg6qYhY/KeThxeNOvSBS2eI0xVzZuF/g+i4dv4fPQrmSnubAj5idWTBiL\nRCbFo6Y9bXzexsXD2bhGpQyPKhVIu3efAnkKUnsNPcY3Icp3D53GmCf0P/x8OsvHdsFals+ZpEsm\nI1O01oEzu7J41Hby9RrcqrpjLbUxS9aDMY9ihXmUWKfWYWNjxaGt52kyZK7ZnG2Dw1k1rifVXquI\niBIBNbnpt+g07BOOJHxL885N2LPmALmZuaTfzcClYjlWnvMjesGSEh7qw83lir57zd08bMsrLRbY\n2hbW2lgKIS1cPR0EWLQojpycPOzsJIQtCCIq7NG5hXwhl8Sf4vBuNMZ089x0cj7ur5p7baV48YWq\nzwN/iHX2J+EMZFjYng44PcXxYcB5URTXPtdV/cdg6yCxrIzs8HTueK4+x6InotbnoM42mEmtgNHY\nWD307yZXyhAk+SSEHaZbYfhMq9aREL2bVr1bFK9LrcNWake6/o7JkKQkZ3Bs609c+fUOdd53IeP2\nLYuhpcp1y5Kdlsu22Os0GbLQ5CEcXW7utenUOm5eu4edexW6TQ3i5OplyJVSbORlLHojNd5+jfM/\n/Mrda5kWPwcbKw2f9n0HQRDZEb6Wr+YE8en4MNP8e2cHYaVXoVN/YMrRfLkwkVaff8BX8dcszilK\nnKjeKBA3z5roNWp2hI3i+/iL3LuexdFtJ/mwUyOObjvJsOn9TLUtUasi8KjkYZazerC5nOkz1qtR\nOEjwHT6U8ZMn8GnX1qYczbro9VR3q43qqgrPqp6PDCGFh5tve1xuwdraBu9G/mZGyLvRGE5kRpcY\n93ngn17V/7Kz8p6EZ2KdvWgIgtAEIylh6Iteyz8dvqMGsvdsJFp9IYtGr2bv2Uh8Rz0di8ZWamfq\nVV8ErVqHmCfw+4VfjTpeD0Cn0WIgv8T+b7/5Fh72nqyasINVk74kacWPWOdJsXOyN+1zIPYondt0\n4bfff0Or1pOSnMFXa7/jnTbvUb6qO+18WuFSydUiI81aYs2hzRdo4hNi7pUMCeHgxrPGtal1rJy0\nA+daDeg2NQiZUoFBkKNV63F2szaxuYqg16iRynTYOhhIS9FZ/Bwy0zTYO9tTtqIrDi5l6e5bi183\njefUijH8umk8Xn610GoKmNN/BVH+G4gK2EjzrsambRJrrcU5XWq+wvf7N5B+5wZShZKOQeGUdaqJ\nRJDy2bD2fLv/B7oObWemP9aqf1Mmz5xkNpaRQWX+3SeejzTefD09mTN9Nqf2fcPSmTHsijxJ1yoz\n+NDJn+BhYc/EDFM6SkhOu8jmr8OJPxnG5q/DSU67iMJRglAgsyg3Y1Uge8RofxxFxIN61n1p6TaS\netZ9n/lcSvHn8IcKNv/UhMbGadtEURz20PZooKsoim6WjwRBEM5hbB0dXLQJ2IXRYLYBNKIo6i0c\nV1qwaQFFrDN1Vh7KZ2SdWcrR7F1xCgepM7Val+XwhrN06dvLlKP5YtEq5LYi3cd/bNp/d9RJFoRE\nlai1UKlULI5ZRK4+B/KgwJDP/y7/RqMeb7Jv9TfI7WwpV9EZnVpDF/+uyJQy7t28x5ENe+k2qljZ\neFXIDhp1qceelWdwr/UqBuS83q4PZdw9ANg6cTju1Ry4dfEGjYfO4vf98bQbaVRYTr91m+83raCF\n9+skRFyhvd98kzeStG4Kn/ZzZ/Xk7SjLVUApLaDflHam84qPPM7V/91DYqXF2jofO0cFIyJ7lfgM\n14f9RP0+IRxdMp/qr9dE9fVW+k/tSFZ6rjFHM6Q4R3NkeRjveg9A6eTMt3HL+KiPUSNtT1gAOlFN\n+Uq2oEmn58guJeYJG7mC8SPH0617VyOBIzqaO3fvcutyGlUr1LRYGPk4peSigs0neQcnjp9g7OC5\nVHCqjpUgYBBFbmVcZl7sOLbH7zMbPzUrmYO/bCBbvM3r79Z6rh5HqerzH8MLL9j8kziOBCC8AAAg\nAElEQVSHMU/zMF4FfnvCsa9gZJkNs/BeOhAILLJ04NSpU01/N2vWjGbNmj15pf9yeFb1fKrEfxGM\nLLOF5OqzEfMExGxHYoP3orCzpkaV6swJjmRu9Aw8arrx6UApe7dsRMy3QrAx4FLWnqw0B7bMuYS1\nVE+BXkpOqpSZ8xdisJZhL5cQONz4RO3p6cmC0HBUKhXj5vrzid97XJ93gdNHrjFobiAypRydWsvG\n0FVkpefgopRRrmI5mvdszc5lx7h58QZ5ujy0unyObz3L8PC+xRTiyPm82XUMyjLO5OfpaDp0Evuj\nluNStRa/CxJ0ag0ypQLnCu686z2II19uISvtLJumelHl9VpIZTo+7VeN3TEnsJbYULGaM9Vb9CMh\nZjtWBi0GKzmvdfQB5S5a9O/CgcXLuXf1gsU8VE5OAV+vWY6VTMnJhO10G9CELRFJpN3LQmpXga0T\nh+NWuy6ClRXveg+gTAWjgTRgAArzPK7utPYfi16tZs/4Xhb1x8pVq8fcZRtxr1CeqCVLebdBI65d\nuEcZ2/Kcu/QLYf7TLedxLIS9vjn0E798c4m+jWc8kZYcHRGLXKKk8/vDTey2TcfDWBsbT/C00aYE\nd7YmvTBfM9aUr3meVOd/Az3470BSUhJJSUl/ydgvwqPxB+ZjpDerCrd5AheAsaIoPpJ1JghCUwub\nF2L0aHyBy6Io3rJwXKlH8wD+SP2M0YMJpNXghqYn96XB28jT5qNwtCEz5T5Tx07j29MnqdvNtYQk\nyzL/3TiWewfBBqwM1tSp04wff03k4wFjkcqV6LVqvt8SycLpxdXkoycF8GpPF+RKKRFDNtB/1khk\nygdk9tVavor7ki4BnR7YpiPafzEVarhxLzkDn/mDTBTiovcTos+Qp9MgFmTTetxsDixZzvuf+6PO\nSOOnzVG09vscmVKBTq3hQNQSUi5fIisTqtR/HV3qeQz5eTi7O5F+O4NuQa34asN1I31ZqUSvVrNr\n9kw+6NqSy6dOQb6W6+fOI5Va4VDBg9TbeiQKJTn3UrB3qUrrCTNMXsvJJTPo7PU6iHBk149cuZhK\nu5kxJUgE38Yto2m3YexfPY93+g6kTEWjAUq9fIHfVk+i39hicdFN0Ueo32YCtg5l2bfYn07t2pK0\n5Xu860803dTXnJxETMKcp/JoFu8diV/rRU/0DlRXVXT5qD+jOywvkQuKOTqKoz/tNuVNvv/6ND5N\nFv5lOmKlHs0fw/P0aB6boylUAmglCEI7QRDsCrfVFgRhoyAI5wRBSBIEoaSv/njEAipghyAIHQRB\n6ICRhXYNYyfPorkrC4KQLwiCKcAsiuKxh3+A+0CmKIrHLRmZUpijqH7mdUVfmlUayeuKvowf8eR4\ndVTMQpORAVCdv4ncLh/fRV0ZscCLUcv7sWjdfBrUa8RXy7415Uu0aj1b5yeB3I3mA/rRashwmvb7\nnJPfrePddj2RFrKZpHIl73YNIGJJcbVzbl422em5bI08iLVEZmZkAGRKOSk37qErzJHo1DrWTF6D\nlY0NUqUCN083MyNjPEZGbsrvfNrbk1TVdfRqNW93bE/S0jnk6TQIVrB95gxiB48gce5Mcu/doHyd\n6jh5ViPl2h3kdnIGh/fjnXZvk6ORsj36KJ/2rMzXsVPZEjya9QH+GAz5/LzzS7r41KNHUDN6T+yI\nGnc0QmXazo6h3ZwYuizagKyMI7kZ6cbzVyhpNDyEVeG72L/1KDcuX0NuK2XvrLFmFf+7p48m4/LP\n7Jzna2ZkAFyq1yItR8LSyatZH7GVxRM3U7/NBJzcKhnp1NYyTh0uNjJgfLLv22hmSfWAojzOA5Xw\n8V+HUb6Mp2Up/0xz7yBqQRwezrXMjAwY2W1F24oS3K+9VvepxvyjsHQuRTmpUvw9eGToTBCEWhib\nm1XEmAu5IwhCe2Bv4esrQF0gQRCEVqIoPlUjNFEU1YIgtAAiMLYbEArnCRRF8cEMqPDAzxOHfZq5\nS/Fs9TMqlYrFsQtR67M5++s5KjVvZTI0e9YcYei8Xma03n5Tu7Jk0iJWRa8zK8x0kFWh0chhyAqf\nzGUKJZ1HBpMYF43CUQmCHkQpb7foTY62+OZSoBbZtjgJB5cyWEkEti/eRJPPWlC2glE5WafWkns/\ni4XDFyKXK8jLz8d7ohcVarijU+v4P3vnHdbU/f3xVwJksRFQhhZ3HW3VamsdrVar1r33FhXZAm5x\nIS5AQAERwap14KxaZ9Vq66h22KFVq1WjoFb2TEiA5PdH9GIkWtuvdv08z+Mj3Nz7uZ8EOO97zvuc\n91k9OQmNSlMporGpIuOLbV/Tuv/brJs0FhsnRwqzMvmh+AKjF/ZFqnjTcH3wFvKKrDF398C2hgUt\nu/Tg551J/PTFZU4fyaZHzFbUudlsjVtI3v1CXF5vhmUNcxp27sFP2xIpyCnGSSHl1P5fcazTiFae\nvkgUD4BVoeBdv6mcW7uK9hMnG47JFTjXrkU//y5oVCXsjN9Ptdb92R7iiX2NWhRn3sXO0QGVpoj6\ntWugsHcw+nlpVSpq1q1GnxF9SY07SmfPhdhXNagDaNUqtEV5KDOy+KQkAlGZhPdrD8fZprrJNNKj\nJbU/nLpCFVl1ur45iuMXtgvNg5kF6Ry/uI0yXSm5+ptCVRrA/TtZ3Mu9abK6rVYDN6N7PSwaOHN1\nLzq9DrFITKt6PZ9bQ+J/oTz4325P42jCgBKgE1AILMIQeXwP9NLr9SUikUgB7AOm8wcmbur1+nRg\nwO+cc4tn6PjX6/Xtn/W+L+3Z+2eUSiXTFk+m8wRDFNNCVZ8dKw7Qefh7OLs6IFVITJb1iqR6PDw8\niAyvyIC+16M3zR8r1y0uyEFbfpdekyYJaap9sTEUpd9nwhQfLCUKsrJykFpZ8uGkbgLHsjtqLx2G\ndsXKzoY98anIbcxp2eNNjm68hP+q8Uad9v2n9Oej2RsZs3D4IxzNQTLvl/FOj8Yoz19lxiYDf7Mz\nch89JnUQri/IKUZWrRF9/eYLKbEvV0byRr8JHA4Ppk98KurcbL5KWIKm1Iy+8R8J551cGUnTgV4c\n/Hg5I2d0oFQnRSQWCyDz0CQKBaUlFc9WWrUKC3Pdg/3L6OfTjZ3rvqRfdDJ7p05g/NzpQrNp6pII\ncldH0HTiFOG+x5fNpq6DmIMJJ7h3S4ulTRVh3S/WLcDV2ZFeA4YLZcu71sXS7ZUAbORVTDr1hxFH\niN9smlqMQCZR0P61AWw9E0mHxkM4dmGLkejmo7zKnbt3GN52FltPRTGoTbDA0aw+Mo0Nn0Yb3af3\noM7M8VvJ6A7hwnnrjs1iwUo/k7/Df8YeLQ/+t5c6/xvtaUDTGpiu1+uPAYhEIj8MRL63Xq8vASE6\nWQmseuE7fWnPxZ61f2ZJdLgAMmAAkf7+Xfl0zVEG+nWjpFhjkuDWFpURMDWUwpJSgeAvLSlEo1YJ\nEQ3AuUNbGTDLADIAUoWc7gFDOBCfQvXOb3Byx0nSbl3Fb42PEXj0Du5J/MQE6r5Zk07jWmJTxZLE\nwFTcGjeqlCZzreOCmY0bKyZvxrV2VczlVrw1ajSW9nZsnzYH7+h+wjVl2nKj6z/ffolWfksei0BC\nOLs2EZmtA+rcbM4nzaUoV0uPqCSj89r6hfB1yiqKMw3gXVqUQ2Z6JlqVyghstCoV2TeukXc3DYV9\nFU6tCqfb0BbC61KFDLFOg0ShwKVOHYry8jm8ZSflehG27q9gkZPByblB6MyliMs0RIZOpe0DBWul\nUkl0QgpFJaWIyjWoM9IY4jPZSFqm7+jB7E9aj1QqfmqXuW+QJzO9l9GtQQBOdu50eGMgaz6bwYw+\nG544drlmjVq4V6lL16Zj2XtuNUWaPLIL72EhFTN2iB+ubu5Uc3PEd/I4dm87LIAMGB58RncIZ/e2\n9bRpa1qR+8/af0EJ+d9oT+NoqgHXH/n+4deP8yD3AKfnuamXZjClUklwQCheY6cTHBCKUqn8n9d8\nlv4ZpVLJz9d/NhmxFGWU8OVHF3C3f4V183YIPSQlKg3r5+/EQl4LpzajeLWHP05tRhEwJ5IarlU4\nsnEJmgdcg0atIifjhgAyD02qkFOQXUDqovXU6TwWm6rOJjkWKwcFfYI+wKm6A1KFFJHYDMysBK7m\noWlUGmT2Vem27GN0sqq87zcRezcXJAo55jK5sHZmWg73rt83ur5MJzMZgWhVRajzsrm4MwVrRzsc\n671m8ry829cpzskgMz2H8jJzeviN5LPwmWhVD/gWlYqTccvoFBDCkchZbPMfwgd9G+PoVvGnpFGV\noBNL0apU6LQajuw6xJtjptDGZw71uo3grlpM54AoeoXE0DkgiqmLVnLq1CnAIJwZuyyM0CAvitOL\ncbJ7xaS0TK7o5u86WY+aHixKmMqp3ERWHgzg5M97qVO1iUle5Yezl5kw0o/02/fYcmoZIKJ944GY\nic3x6x5NYLdVjGsVSX66jmrajkz3jSTnfqFJLkdV8Pyrwv4LSsj/RntaRCMGyh/5/uHXj/MhL/mR\nF2BKpZJp/pF88GYgsmqGdMI0/0iWrnj2GR+mzKOmB0viQwz9M/cN/TOPC2muSEzAztnVZMTyeoNm\n+I0PIDohhbK0uywek4rCFvSlZbxSrQEtRy8waoxs0T8Q5eF4ivIvcWrvAtDLQFRCmSpfKCV+aBqV\nmqo1q9FxfHf2xKxCLHc0ybGoinRkphlI9GOpF1BprSm69DNJwV8zIWqskCb7OHwv5tZV+X5dGJnX\nfkX53Y9cPHyUgjvp6Mu1bA77hOZd3uBQ8hc4uDry8bxdjJjXF6lCilivMhmB3P3pe8pys8i/eRHH\n2nUxszA3eZ5rdQtydWasmvYpY1csQ6qQY6kw55u1ceh0esRiEa0GDcPe1Q0zMzO6DHuTo+sPMmj6\nCKF8e2f8fur28eXA/CnYWkl5N7Ci6fTS4b30Dlhi9Fl/6LsQn2le7NmUIvyOxMUk8eFb49l7Jtmk\ntIwq37ix9mm/N6s+ijaqFDMl9Ghn7s69Syr6NAvGWu5A6ulliMVmDGobZBSxDG4dxO5vk+j2TiAb\nvgyipPqfV6n4I/ay1PnvsSeWN4tEIh3QD/jxwSEzDArOvTCk0B5aU2CbXq//xyoo/xvLm4MDQmng\nMKrSH9/lnPVExb7YkswJgX7UatucL/ZuZoB/R6GceeOivSyYvJiIpC206B8olOUe3byQdsPe4FDS\nXtoPWioQ0A/tl09XEBrkxcrkCqXnPl36E7Uhidae/QWO5uCqdbQb1Ykq7k5oVCVsjzyMvvgWIxYM\nrJBpiT7E632Gc2HPBtRltjTsN4Erh/aiK9OSeeUiqszb1G/TBpVKh0Scy6BpHwjXbpiVioWFmKFz\nByBVSLn76z0OJBxl+PzhD76/y86I7Vg6KLh7owBbF1dsqtfl9X5jkNtX4UTMEvKUN3mn5ft8eWgt\n9dq2wKOrFz/sTKWtX0V589GF0xnm1xQbByvig7fjXq8mIl0pd35N413v2TjXqit8Nlq1iuPxEdgo\nirj53a/ozSxwq1eLzLsZKBxrkH/nHm+7tuHbnG/oF5EsXPdFXASdh1dOdx1bs5DG7nYETJpoIPK/\n+5kJfcPIyL3DoR/W0nfE0Ec4mlQ+cJ1ImuXRP1zma5SCesDRbD0dSddmY7GWO7D3m0QGtgqipFRF\n3Gf+hPRaXWmNLaeW07/9FPZdCqNcZcaHDQMFjubgpRgWJzz/dNY/pdT538AT/ZUNmztMHHtcEFPE\ny6jmuVtxoWnhw+LCF//kZSWTY2Vrx3s9h7Jn9QGgFF2ZmFrODdm+97AAMmB4ku44dDZf7Q9j2Lyx\n7F2xlg+GzxXW0qpVWMksDE2YCyu3SPnPCMbcUo7TKy4CyICBn1BYSSjWvcKe1V8j0mnRiyW8OdQT\nezdX7t0splXgFC7s2kQ7f3/ByR+cH8q9W5k413RjoN8HRvzOyPDBHEg4TEFOESeSznLnRj66EnN2\nRO7B0k5Om36t6DtlILvjjuD90Vwhstg2fw46uSt6RJiV6jl/6Vtc33gNddY9Lu5IoUn/cXy9dhXl\npWVkXb1A3wnNcHKvQlZ6NpbScnqPbiWA3frwxbw5agbOtQx6ZfuWLKDLhNEcjovFvn4LenqOrTTK\n4KsVW3CRuhkLc5qJTQp1mpuJycrNF0AgzTyeEq0KZ3s3ujQZy4GNOykXabiblsbotxfjbFOdq/cP\nAg94nVUpFfzapMrjmB91kFbOIlad8MNV0QCRSEzXZmNxsjGUW+v1hqIGmYUCiVxskhcUiQ3HH3I1\ncctTUGUZouxnBZk/6rBfhBLyH93Dv20Wz/OwpwHNmL9sFy+tkllamybtLa1f/AwKfy9vQuaH0m5Y\nf7qPGotGXcKOlYlMmxLI2m37cDMh+FheZo5UISMv8xfBAWrVFU2YpuzjnRuYGDeIA6tP0G5s90rN\nmHqRFImljNZjBiJ5JMWmVakpKS7hyqG9AsiAgRv5cG4YuyaNJfdaBtLHxj5LFVLURRr2rrvK2/7h\nvPEAnM6uCKNN94Yc3XAcRGKGLPIW9iJVyBg4dwz715wk8/odnJ1r89b8aZyOmYtMUcRvNy9yPCyA\ncjNL5HILXKo6cvHLdByq2XNy22nGzB1pBHajZg0h0mcaTo1bIZZIkVsrsLK3Q+7kgVQiMTmcrVRc\nSrcWg9m5fAltgqYjkSto2Lknn8TMoE/gYuGzPvbRUt7t2JXd8ZFMb28g6ts1GMz2A4kM6OqFs70b\nPVt5sv1AogAyJaUqSkXFTBjpx4XMLLr4h1HtwXr+cyNZMb8iVWuKSL9Q6kuvt7wrRQgikVj4un7j\nmuy/HEu3BgEVCgGnl/Ne06EcuhjDkriQP6xS8aT9/J7Dft6lzn9mD//GWTz/qz0RaPR6/fq/ciMv\nzdj8Jo+r4Gge/HEe+S6GpSte/AwKDw8PAsdNZHJoCFXruGAm1dNpUgtWbIzGxqyGySdpM/MyNKoS\nHFwVnD00h9xbapo3amzU6f+4XUu7zjuKN2jTvwUHVmymq//QiihiQQoWClvMzUo5GhNDx8BAJAo5\nWpWavQuXIBKVoivTmiTipdb2lKqzTPI79+9q6BQx1wicWvqHcm7tPLpP7s/GWRtMNoZSpqYk8zfy\nLHO5f/kCkvIi+gQMrkjLhW3ind5zMZcp+PqzzWyIOEdJbibv5hXi9MgepAop7q81orl3CKdWLqFV\nn54cWpVM80Fe/LQ31eRwtos/neG68jLIpWz1H4G9fRXqvuKGIruYLaGeyB0c0GrU2FWpwoH1q3A3\nqy84MWeb6nRtNIH9hzaTqbmBukTF4DdnCyCz7Yf5SMzlaJDTJSTMKFJ9c3Ag0atSiF1qcH6PE+mF\n6hwc5TVI+CwIF9tadHx9qMDLdGvmWSlaiFueTG56ITdv38DV3Z3fJEcFkPkz9iRif+xgf16t15Ay\nUTFmYnNE5VKjSON5KiE/rbjgSff4/8gT/R1aZy/tGczDw4OlK0JYGZ1CcWEpltYW/3MhwNNMqVSy\nYs0KikuLsLSwojA/H88Vg40cdRUfB75dfYFvdsSY4Gia8Gn8VjqOaoe2RMORlcdQizJYkbwSf08/\nk/suKSpHo9LgVN2BTqNbcmLtVspK9Vw7r2REWB/c6roAkJWWzfGUaO7fyqO8tIQqLpaos7VkXL5o\nkoivUrc6bw+awI6oFPoHd36Eo9kK5tYmwams3AKpQkpBVh4aVUml6Oq3y5exdRLR26cz2yPCmRTh\nZZyWCx3GlogUSmWWtAqq4Gs+iZlPn6Gv4eTq+GAtDVk3bnJwynjKtRrO7NLx1hAv7Fyr83rPwexf\ns4pu48eT/stVPt+SSqmmFOu6dei6IFJY82JSDItmhnAnLZ3JkSt5f1a48NqpRYsxSzMzIuqdbarT\ns5mPkSDm1fsHkdtaYFdNTqdqU9jya4LJ0QRff3uJEN9QfIPHGTnIzIJ0Dpxfy+A2Ffpk674MpWpt\nBS4NFVxQ70IuscB71mCjtFLo0snPLT30JIdtL6rJ6/K+7D+fLIwieFHpqT8DGv+FiZl/1P5yrbO/\nw/6NxQB/pSmVSqYsCaGDd3vBKaeGbaOb7wc4uVcxOver1d8zw3sm0QkpZOYVcuP6JUpF+bjUr8q7\nA9ugLdFwKPkIg+YPE9b6YuUxIqctMwIbpVJJ/7GjkDroGBnWRzh36+JPufFzFq61bBmxoL9wfMuC\nHVjI5fSaMqCC75iSQrmFCx/OCxMc7RexkbQd3RMH92rk3rnHd1t3knf3HpYudcj/NZ28nPv0Tdle\nCZzOx02nT0AXdizcSInGjIHzxz/C0XyESiOmv187zu87i05bTl//yv3GUX7r6bI8sdLaP6+axRC/\nzoZKuEWbKczWoNVbIKvijDnmdJy6qAK0l8yAojxKLWzpOWUJX25NpMXESZXWVO9ajwiQ9x5V6bUf\nZyxHkq8zaqZ8GFk86mSVN5WM7hWMX6eVbPxxOU2CvCrrqi1dzrA3gtj/Swy21SxoY+uDzELBtjPL\n6dnCq5KzPJUfz6p10cL6T+JDnoezfxKxv/ebRACT+3vepP+T9nAqPx5LKyuTvI0RRyN8LtH/OI7m\neRYDvASal0bQrCDqDapdKc20f/V++gX1MDp2NfUWUeHGnd0V0VAxVy79Qv9lQyqtdXPzVZYvjBLO\nD1wyl5YTB1Ccm8/XO/dw9/IvIJLgXLsGurJSfj13AZnCnJpNa5Fx4zecPJxpPfh9vt33LTodiMXQ\nvHtzUuduorRcgnvjuqT/fB23+m7I7Wxp2q8n9m4u5N65x56ZS5BbyVDl5tHBtx/fHb1B66C5FR3/\nMcvQFWejIIfuPh+SPHsXLq81wVxcjk4spWHfEcjtq/BzyjxK8zO4c+UeAXEBRu/xzvW7bFpxgj4J\nlfsxPvEeRc3qEiQyGa17vIeVvQ2b15zg7YDZ/LgsFIm5ORkZedR1dUWsUXP2pysMj9qERK7gQFI4\n7afNrrRm2lqDSHmN0f6VXvtudiQ9nQcbycOsTTWc/2h0UVCQR85VM/q87UuBOofU9CTe95teMQ4h\nfhlmt4vp3zIAa7kDX+TGUpShp1v9QPZ8ncCg1pXTuCs/82VhfBC7tx5+IJYZ88Kc/dMq3z6/kGpy\nf5/fX0H8x0v+53s/bQ+7L0agLVMzsMmcJwLswwICdb6BJ/r/XnX20v4fWHFpkcnGyNz0PIHn0Kg0\nHIs/ybLpUZWu9/DwYHm4QdZ/wITR7Ev4EjOzctoMaA7Aye3fk3WrGL9ZoQSNH0fsmlW0nDgAqUKO\nVCGnRb9enNy0i87Bo4RSZ7Ml6yi4n0lhjope04ewPWwjJ1O/oqv/MCHS2BGWhJnUHH2JhvKi+/iv\n9RL2unf5Bup1+pDLhw/juTpQuOZA9DbQwFdJcYhEYkRiMc1HG3iOH1ZMxdreGguFNa0nzzF6j/np\nady9qISyMhDLWTMzmfGLDMrQd67fZWfSaZxq1zGZytNhzt0MMeUlueR8fBprWwl6rYFfSku7h0ij\nof7rTXB0ciRo/DiG+ExBIleQey+N7Ju/mlzTRmKB6MHXj79mptLhZFOdni0msf+XaNauMoDM46T1\nuguhtHt1MFtPRzKodQjW98V8FxmHTibGQitmYE1PbGpXlCpb6C1ZtMqLuKgU7muumkz/WFs4siAw\nnlFtwrgtLTYtlvmcuIjHif3LVy/R67VgnGzcEYnEfzg99WdKjk0VF9i7SXjPfspTeZt/+8TMP2ov\nI5qX9sSI5vu1P2FlqaCotBgrC0v8xgc8kSNSKpX4LwrnTc9xSBQKMq7/ypHYJUgUFtjUaETjvuMM\nUUFSDOKC3yh1tEKv0yESi1EXFtJl6qhKzZs31hymMDuX85e+pxwRPmvnVuJODsZtouvkfuyP2kr7\nMR/g6F7BhcSPj6Nq/ToU5pZQVlyIk5s1rYZ2ZH/CMbpEVu7rOBDkRXH6ddxef5UWgUsFB56fnsal\nlGj6jh8kDHLbsWoTZVI5CisL7l5Np094FMV5uZzdsonWARX6Y5/Nn0mrMT441a5riJ7iImnSewhn\n1yfwau++XP5kOx/MWyKc/+PKCHJ+vU730FWc2pxI01bdOfPFVtoEVPA+JxaHsjVqMQC+iyJp7Bko\nvPb9qgg8yiVY6C2NnpSflOL55FwcHV8fyvGL2/gtT4l/18rjnLaejqTXW95GkYjyppLxfWcw+t0w\no2hCp9cx5AFv86T02rNGNH++bPjhjJtkoxk3T0vbPc90lveI6XSoWjnSfN7R1Iu2l6mzP2gvgabC\nlEolMQkpFKpLsZZbEOhtkJ7xnuWN3laBHhkiShDlq0gIT3jm4oOAmTNx6N0TiUJB7t07nEqJxs5Z\nhlgsRqfT8ZuyAJl9A0RlerKuX6DnnAlI5DKOf7SLjOvXsXWywaaqA61G9sLBvRoAl1Z9yuxJQXgv\njeS39MuMi678x7suKJJe0wZi6WDD50l76B7YB4CstCxSl31Ol0UVJPqZ6IWIiu6Rlamm24r1lSKB\nb9fEc//CBSzMdJjZOtBxjgEAzkSG0W9oJ6TyR0BOXcLW9fsQWdlToLxBv0URAOTevcP3e3ah1+lJ\n+/473vH0o9Y7bY3uc3ZtIu+M8iLVdzgD1mystI8L4bPIKCzHzsmVriOnknM/na8/345OpEOsF+Oo\nU7F1nUFe8KZSSXRSCvnaUmwlFkyeMI6aJn5mT3J+MYcm4dUhCpmFgi2nltHnbV+TYCSxK6uU+hna\nZzzlxebILCyxs3Tmw6ajOfLTJoa2mQZUFAw8zhV5zxrM7q2Hnwogf5bfeTQlVfqg6kxcLv3d9JQB\niEc/l5k4/5Sm0P/VXqbOXtqfMqVSSUBoJG/1C8TtwbCxgNBIpkwcjF7iwlujfASn/HVi/B9au1Cr\nodoDkNkdPp8qzhK6eD9C5s/aRKu2g6laox7aEhV7E2eilZRhbWvGxKSpQmrr08iNtPUcgKWDLdYW\nMpYnp9DAJ5CCFYtMVoOVajTsW74NxxpVUeVVKCF/sfVrAWTAUFnWavJsDgWNR3H1NjoAACAASURB\nVJVxj0MzgumyOEp4v6djImjavz+6sjLaBwaT+euv7PYei1Qmo7wohwNoKcMMc8pp27Utji5VUd9L\no/2SGXyzJkFIYdm7uvH+JD9DBVh5OXfOnzMCGolCgV6vQ6JQoHCoYrICLi27gN5uI9j+YzxatQqH\nqu50GWIYJaBVq8g8tUE4v6aHBysW/b7zelKlU6Emh7hvfTGX2lBmVsCGs7MY2TJccO4ffTGLWq87\nM3O+McjMmBSJd7tVQun9ttORaErV3C34RbiPk407XZuN5ZNzccKIZu9Zg0kIT/3dvpM/UzYMfz4l\n9TxLjv+XptB/g2LAn7GnDj57af8ti0lI4a1+gUbDxt7qF8j0BUt5y8vHyCm/5eXDMG9vxk6ZTMCs\nGU8U9FQqlQRMD+XiT5fIuH6dr7ZuosZrdRiyYLhR+e+Q8GFcPLtVuK/CwQUbZyd6BPU3ao7sETKc\nr7ce5HR0KoGe3tzJzOJ8cjQlORlsCU1AozJoc2lUJWyfv5peU/ozerkXH0z4kJJiFVnphv6ZjNt5\nJp24c92aVKvlQllRJp9MHM0ur7F8Nmc6el0559am0HTAIACc6tShf3wiVS1ewdzRjUbeM2kRMp9G\n3jM58MmX3L15G+satZEoFDTuN4gDixYYCWYeWroQSgopvvkzZ+IWkX8nTXhNJBKjVakoyc0Rrnlo\nWpUKsUbPG7Xa4N8+gs+ToowGn329I5ZAb88//LP3DR7H+lOhRsO/Pjo+B7uadekZGEefyTH0DIzD\nwsOOL3Jj+fz+Cr4vX0/yJ0tJ2rCyMgi8ajzTaGDrEPZciiJi9WyjIWPWcgckdmWsTl1KZFwYu7ce\nfiZRS1V+6Qsdhva4PQTiR+3Plhw/5G2+L18vfI7PkoJ7GMU1NRtFh6r+NDUbxcxJvz+U8N9gLyOa\n/6AplUpikhIp1JZgLZEROMELDw8PCtWluMkec74yBToz00rFkupu1B83BK1Kjf/iMFbMCMXDw4Ob\nSiXL16Rwv6CQyz9f4f3RM3ivWXf2xUxl8Mr5nElKojCnkM+SDqLX6RGJRbzTvw2IDSCRez+N3Jzb\nOFhXMdkcma28g0SrJzR6ARd+/JqqdapBmZaivCIOxK5Haqng7tU0eob0w6Wum3DdoPmjWD85EbdX\na+BQ1dIkUS6xKGf4onEk+q9B6uJKxwWLKviUmVPYP382MrEO51rVEcttuFt4k+4Jq40bPCfPYpPX\ncDotMkjq2LpXx8LGllPJqxGJRGiKi7C2KKP/2B4Cp7MrOZq6A7z4cVcqTXoP4dCCKZhrS/gyYhHv\nTplZ0QezfCmuEsN7crZzp3ftURxLSCSrPI3mTesTu2DKn+ql8qjpQVUPW/Z+lyAMFytXiJBa2nBq\nYwJ6CzHNugykdf8p3P96PTERT44KVAWm5ZHMkbM5aR+21Sz4IjdW4IkedbLPGjmYisDSs69x+eol\nvEdMf+5P+xVRSGWO5s/Yn4ms/mwU92+wl0DzHzOlUklg+Hze9hxGjQcVXIHh84mZNRdruQXaEpUQ\n0QBoS1SIy0tMVy9ZGHRSJQo5LSaOJHrNagLHT8RnSSQNvQKpo1BQQ6XidHQkrbuNxcmjLhKFHFWR\nhs8/OkqPkP6PpMR2UFboSO79NM5+HonjKwpKy81MpsPy72czeJEnUpmEu8X36R7cn6LsQk6lnua3\nX+/j4GqOg4udADIPTaqQUa2OG939+3H313R2zpzCh4siBCf+VUw4H45qYdBRs7Hk3QcgY3iPClr6\nBvDzqkUMmT1S2Peaa0qTIGxha4/coaLHqPmY8Xz/0Ro6eAdybl08vQZ3EzgdqVxGX8/+xAYEI7K0\n5fruTfQfMRIrWzvWLQ7jq2VLsLCygrJySu/8RqcGgcK6znbu9Gk6gdP34jEv1bF00UosLaX4Bkz4\nw4BT1dWRJrWGIZMoyMhPZ8u5WIa+6YtUokCjVbE9NZK3Bo8lM7fwqesonjDTyEbsQoeq/o+kirwq\nAcGzNis+nn5Kz77G3u8SGNd++QtpwPwnTOH8LysGvCwG+I9Z4MzpVO3VsVIF1/09Rwmc4CVwNJIH\nHM3XO2OYMnEwS9d/TDPPiYJT/nxVLK2G98XB3UVY59OZiygu1NAhYmUlUPouPhGxqJR3/ftwfMUq\negd1qgQgn8w7gczShk5TWlKUXcie5UewsrUQ0mcaVQnbQhNp2qsrV0+dRaRX0TNkAEXZhRxbe5qO\nk/wozsvlm107yFJex8HNhvZjOj9SaVZCwrhYqtSpR25GITq9ntL8HGq+2QiJRTlt+rXA0c2gDL3K\nfy2Or78tVL417j+QK9s30Gf0OxTmFHJm90l0OhFpV+/QJSql0vvd5z8WB4+atAqaXTHhcsF0cq/f\nwMnFgfHzKsDioX00fSUDpkyvJDGTHDqDN958Cyd7GwZ060Lcks18+Lq/wH/sOBeOxMqM7u9PRCaV\nU6JRc/hkCkuiDP01cdFrBPUI38njn1wZeFPJDJ9ldGvkx55v1tCpozfSR8BCo1Wx47s41Lk3+PLE\n3if+jj3kaB6mz0q0KlJPGWRnnB+Iaj6J/P4jJP+jxP7lq5cY13L5306wv0gO5Z9WRPCyGOClPdEK\ntSXUMDFQrEhbYhiGFRZiVHUWG2aQtXF3dyc6aQ0FWi1XL/1MS59RRiCjVakxc3TH2lli8glfJ9LR\nvONQjkTEIbcWmUyJFatukpcDUkU7pAoZtvZatFo9G4JXIlNYYONsTSff7ny793s6+Y0jdWoYUoWM\nzxKPCCBzdutHdAvuV9EXE7WF9mM+wNrBij3LP0XmUotyqSNdowwVY1m/XuVC4gJ6zR9eMeclci/I\n7Wg5rgJYT8ZGIdbkUphTyLFNx+noOxGJQs7960oOz5lCpwUVkdGZ6HAk4lK6DmrPqdWLKdObYS4q\np8+4HuyL+BhzbRkadUmlKjWNSmMEMtm/3ePM4c+QW7ty9fxVvJfPpk3bNri7uxMXnYzqnkHJ2K2O\nPW83HIJMarhWJpXTue04lixaTt59LV1aTELmZnD40wOWsCR2ukmw8ajpweL4qcQtTyZbk2YEMgBS\niYL827eoV8Ot0rWV1nnw9K/KKeXnixcZ3HyOADLw5CfxPxI5PJp+8h4x/YX25DyLvejpnC9CWfqf\nYi+B5j9m1hKZyYFiVhKD0/Pw8CBmWeWnIw8PD2IXhQMPemIWh2E3caQgZHk4NoXmA334ft92k2k2\nsV6MpW0VtPnF5N9NM5kSK8goQF9mLrwms5LTL2hg5Teh/9YwBVMiMUyZLBcjUcj5csNaAWTAAF5d\ng4ew1mcFJaoynOrXJU/5C528AoX9Odapx2tec0gJmY1LbReuf3cV23pv0n3JdOPxywHB7Bg/glM7\nTgggA1C1tgedx/dnx9iBKOwd0RTlU64uRGohxcrell4TDFI02Xfuc2bnZ0jlFrxa61U2hsUzPNRH\n4Gj2Re/ASVJTEM3M/u0eRz/Zz/ujKzrxpyyaxZZV7gYHu2Kh8HFMmhAsgMxDk0nlXL+axrCO84xI\n+S4tJhEXvYbI2HCTvx8GleSFBAeEotGqKkU0VcyccHZzNHltpXUegECIbyg2Zg5Grz+NSP8z/MU/\nQR/sRXMo/4T03Yuyl1Vn/zELnODFueRNaFRqwAAy55I3ETjB65nX0AOOMhsOhMezffI8dgTNpflA\nH+xcqtOk+0BOxUYaVVh9NmcqTuXFpH0aj4N1Ge1Gd2Jr6HqjCrEtM9chl3rg4OLBlhnJaFQliMQi\n4ZyHplGVgMgMrUqNVl3CvqgdQClalRr0ZSYjJZm1JcNTYukxbwqjN6zk0rZ1QpUXgLlcQWExKK/l\nInOrhyorw2RUVqV+QzLSc4xGEoABbFq/04JLRw5zdEsqjVu8R8dZy9i7aisadQnZd+5z4uN9dB48\ngiEzp9OwV3fEZjIS/KNYNTWSlCkJtLYcTKe6o9gaGYlGrebM4c8EkAGDgGUX/3AWRsYa3Vt5U8mV\nS1co0ajJyL5L6mfJbDyazKaDieQV5pocgVxc9PtP+X6Tx3HwTASaByO9NVoVuw4sQ29ehG/wuN+5\n2rCvEN9QvEdMp6Agj90XI4wq2vb/EvNM6zyr+QaPM6pmS8++RtwRX3LvFxLiG/qXVGb9FZVwD0E4\n/uMlRMaF/SdABl5yNP8pUyqVxCbHcS/zPnfS71PDoxZycwvKykAvt3xqQ59SqSQ6OZGMwjx+vnSN\nloGhONapZxCqXBTKW4O9cKppmAyZey+d83s2U5ChxNHdhldEMuYEzyR6TSKZhfn8eP4cveeP5Oy2\nzynIyqekuAzrak5kXb3F+JSp7InciVhRhbLCPMpV2QxcUEG+74/axZt9e/PNzn3kpKejyi3Cwc2R\nslIZDu5V6eJfmfs5kPAZ7wdVNCNqVWpOrNlBq4Cp5N1J57t1ybQJnlqhqOw5mv6JaytFZTsmjEZM\nOePiF1Waf5O58wgx4Uvwnzkbq17DkSgU5N1J48LezWReusjY2TMqcS+7t35Km8mz0KpUHA6dDr9k\nY64oQ+YgQ2NmTb+5cUY/g9x76exbPpUmTZuQdv06LnJHbt1Ip0sjT07e3om+qg0dPCsioP0Js+jb\neDTVnesIa5RoVVzM3PbEiOZRO3XyFIET5yKzsKOwKBdzxCjkljRuUYtpcwKe6OSUN5UEjJ6DhcYB\nsUiMTq8jX59GnQY1nqk58s/aQ34k404Wv93OY1SbsN/leZ6n/dM4lBdtL5UB/qD9fwAapVJJ0NIZ\ntPX9UHDax2P2UlSkoMXkORUS88kxxM0MMQIbpVKJ/9L5NPcbVpEqW76BJkN9sHWrbnCUIb70WBAn\nOLkvkxbyWqdanFt/iNq1avHrDSXtg31wrlOTo9EraDOkLYfXn6Pl5Aqy/NicafQJ7AR6OLLuK1oG\nzkadm82XC6dg6yAh61YG1o52lGnLaDviA06uPIKLog4dV37IjvCPKS2TIirNZfCiCmXl1JlraBcc\njJ2bq9HnsS1oHjav1Eedm8O702cagUrWtWt8mxjPB3MXCns7NHsab4wYhXU1Fy5+FM+HPqOEz+JM\n/DriQ8Pw8PBgdMg0PEb5GN3r9Ipw+o4eWulnsmN9Ku8EhgIGILsyJ5H+Db3Y8d0CbmTdZsCyZCGi\nyb2XzpldyXQaPbVC1DIxgu7VB3D8/DZUZlraT5tdSV35k3Bv/HpECKT8oW9WGXE0SqWSmPgUilSl\nWCksCPSpmJr5sBu+QJ3Nwe/XMrB1iLDO/isxLH6C454w0o97lzRG8i6pp5fh0lBK0oaVz/gb++ft\n73L4L1qN+p9mL4HmD9p/CWiUSiXLk9ZQqNViLZEQNMFQZTR5dgg1hrxe6Wl/T9xp2vo8MlpZpUK9\ne71RN3nA7OlUGdqx0lP8scRPae1jkBP5NW4Z1aysycgv5LbyGg72UvLLi+k5b/Qj0ch23h4xnO93\n7aVcV8brk+ZVrk6LmU3/mYPITsvg+MfHyUnPpyj7Ps5udgwImyistX1OErK79gxuPIWPM0MR2Vii\ns7ClvLQMfbmG8ty7ONd0Ra0qo11wcKW9H0/eQfMJvnw2cypyB0ekVlaG6rJ+A7Gt7s6OUcMwF4tw\nrl8fcwszXuvckW927uaNsZMA+HF9MuqMe6iycnitTl0cbG3Qm5tz5fIV3pgYjFPtesL9vohdTK/B\nvSpFNDs27qDd1AXCse9mRzLm1RBKtCpiD43BrJor3YLDkcgVHElZRrvBvpWA5KvlEQx9K5C4k6H0\nm1tZh2zPUj9e86iOSC/B0sq46kypVBI4K5KWPQORyhRoSlSc3RtDTLihAMQgSxPAtjNR9HjLq1K5\n8g9lph33e826m1RlTjoZyBfn91U6/3nb36kl9m9QXX5e9rLq7P+pKZVKfBctoamnF04PnsR9Fy0h\nbuZ0irQqk/yFubjc6JhEoeA3rXFOubC0BJfHeAmJQg56w3lalYqqNtasCK9wOpNnT8F1eDMjYr5b\n8AA+S/yUZn17sm9ZEs1N8CB5mQbuqEp1Z2SSckZGjmbj5FgBZB6uNWDBBFI8lwFgmeXKb+U5vDGy\nN2dWRGPl5Ihzzdq0HPQuAMej42k32UeIQI7EJPPGKMMMl06LlnE2IY42k0MMUjPRkbw2aAjSUgsG\nxIUZAWEnv0kcTdmIR7uOZN68hdOrDTCv4spvJYW8NbAPUrmcumo12xdH8vb4IJxqG1KLv924yfbE\nZAZ4eSKVy9Go1Xzy0cdozC2FtbUqFRYlBkpUJlHQsH5jCrKKDWrJcjEFBekmB49lau5ToMqmtKjY\n5GRTdaaKe6U5xK5bUMnhxcSnCCADIJUpaNkzkJj4FGIiwgSCXafXmeR6VE+o6JJZWJrkKmQWlibP\nf972VxUGPKmU+b+YJnvR9hJo/kW2PGkNTT29jKqlmnp6MXyCLw0bVjdZ6VWmMzNaQ6tSYSsx/oO0\ntpChVakrRQWILNCqVFxaHcPM4YMJmDWDglINNhZSsotyqPkYsBVlF6D84Qp3r9xAV1bKmagwGg0a\nja17deHe2uJiYW/56VlIFTKkCqlJkLSqasPa+zOxM5eQn57BT1u30Ht1SkW6a9kCLEQllGHOx+ND\nMLcQI5LIae7lj2316sJnJBaLha9bTw7hgLc3LvYuJgsCcq7+Ql76HXqsWGUQ1FwWTvex44VoRSqX\nM2BGCB/PXYxjnUaIRGI6+kzh7N5Udu8+gLi0FJ2FBQ0n+PNj6mbhfZ9dEsnAmmMBQ7RQ1dWRsMhp\nhqfjglLyVVqTQOJi7c7n32/F1dydzxOX8b5XRWrt+OpIRjabzrELm1g0N6pS2qpIVSqAjPC5yhQU\nqQwA8rCcVo+5yQbMK79cQnlTWQnAajVwNenoazUwTl++KPsryoBfdCnz/zf7W4BGJBK5AzFAR0AE\nHAUC9Xp92u9c1xzwAt4F3IAs4CQwW6/XK1/knv8JVqjV4mTCOSpsPbhzuYDfYvbSPrCnEUcjLlII\n5ciPcjSP2mRPr0oczcH5K3G1dSUzJRY7vYrAyDCs3d14c2AfLO3t+TJ4Bm88AmzZaRnsW3GQanWq\n82HI0Io+l8hoGo+ZjNyhCqeilqHNySM1KAWxppQ6bq+gUZWgF8GnUakgNkcs1tOy33tYOdhQlFtM\ntcaNuPb1Bao2a07b4CnGIplT53B2VRzvhkw1RCvLDdHKj5s+xrqaC3bu7gZtMbHY6POykCvIzv2N\na2e+Iv2786ArB7EZjT7sjF5sTqdFEahzsjkZuZSSW78ilQ8z+rykcjlVa9fhvYlBFcdkclpOni58\nr1Wp0N2+ybWEZVz77grDXpuBs607JVoVBy/FsDi+4meg10MD91c4sGIWXf3DKzia1cvo22gYmw4t\nxUHiivS3ctaFDKN+7ZZIyizoX3MszrbuDG49laSTlRtErRQWaEpURmCjKVEh0mkI8Q1FlV+KbTUL\n8hQ5rPsy1CD5/4hIZq/GwUbO9eETvrZYz4pz3gxtOQv3KnWFYV8RyTP+p4bGZ732rygD/i/Lwfwd\n9pcDjUgkkgPHATUw4sHhcOBzkUj0ul6vVz/l8kFAQwwgdRFwBeYA34pEojf0ev2dF7fzv9+sJRLT\n+l1lEnq0m8O312K5veUnikpVWFkoWDErEj0QnZTCbw9k5B8vBABDD82KaXOJTk6ksLQEawsZW5Ya\nymwDls6lRcBgmjwAoM+iN/DWiKG8G+zP7jlJ9F4wFqlCxqmtX2JV1YnO3t2M+1xCBrNm5ASsajak\nvKiQnvOnYyGXcubjLfxw4wZnxyzGxrUabbw9BZA7FrWaksIirF55lTYhs3lLpWL/zDkmIxCR6JFo\nJSiEb5ISaTt1OgcC/alStx7FGRm08qtwwlqVCoe6NWnU5UO+WRVN/9lBwrC1HYtjkNlXQZ2TzVdx\nsUisrLCv31DofXloGrUabUlFWkmrVpF1+bIRoJ+cH8qrUjeqYo3fstns3naY63cOorCxYHF8COnp\n6UyZuBBXm/qYiy1oVb8/394K5Zu4GPQSM8zLRPRtMAwbS3vyi7Jp2KIe9lWtUZ/OZmzjaUafg0yi\nwFxsPLgOINBnXCWO5tTOCMzuq2nXxAdZVYO0S+qVxdTwcCVy/xhq2DVCbmHFh03H4mzjjqONwbn2\nHtTZaL9DW85i/0+JVKthh7ObIxHJMwAq9ML+YBTwRyOIF53C+i/Lwfwd9ndENBMAD6CeXq+/CSAS\niS4A14CJGEDkSbZUr9dnPXpAJBKdAW4C44F5L2C//xgLmjBe4GiEMcSRcXRvNB6pVIFYbEn0wspk\n6LPIyHt4eBD72LUBs6fRwm+wkFKTKOR0mjyS46t30bRfT4rVcDDhIGZiPVnp+ThUl5tMgdV66zWy\nlb/RsP17fLN9B+qiInosCEGikHM0MpF23sON7tEheCKHYzZhJrN8cEyBXXV3kyD7eLSi1xkk+B3r\nv8rbE705Mms6pSVq4fwzyyN4a9gILu5MFUDGsE85/WcEsiE0gh+3bkbh5ETLSX6oc7LZvyaObuNH\nC/zLvqSPKCkz/Olo1SpOxkbS7+1R/LAwFhUa7l65wqRmYVR/8LSfEF55jO+CwHh8P4gzGhrW4zUf\nzqTvZESn2UJk8fFnC5m/bAqnzv9Idkkp2aosk2muUr2x8vDDn2lMeIhR1ZmdrowPH4wYzixI59iF\nLRX7qGvYR/vGA3F60OUvs1CQcTvL5H67ve7FFf1uCgryGNXPl8KCIoK7pTwWBUx+pijgnxZB/BMa\nRP9L9ncATQ/g7EOQAdDr9UqRSHQa6MVTgOZxkHlw7LZIJMrEkEr7T5uHhwdxM6czfIIvClsPJGUS\nujcaj5NDdTQaFVZWz/ePoLC0BDeTRQLlfLttN70iZgkAcTR6LbpynUmeSGxuQb8l09joE4rb6/Xp\nONVLuE4kFldqkHx4j+wrVzgdGYHezJw677Xl6JxZdFwQXhE1RC3jzTEVkvkPgefh/xKFgg/Cl3Ag\n0AcLS0usHJ3Ql5fx/a4dqNKURuoJYAAbBzdXcm7fxv4VD4OCtUJBw/G+HNi2CXFZKfevXePdueGc\nC1vG3uDJONs706v5IJyquPJqnabs3BGPZ7u1lRzm0vmxrFoXDRic6sMekIfnDGodwt5vEnFxqcJP\neVvJyShEeesGtjZ2LN+wkw8Cw3CSK7Bu/iFJETOZ0G6RAEZbz0Ti8YqHyZ+hh4cHMRFhKG8qWbog\nlusX77P3biLtGw/k+MVtwlCyR/ex8kAANRzrIxKJaVW/B+l37zCuzXKT+03Pu4aDwpUJbWPY83XC\nH5aJeZgu++GrX3in/T8ngvgvy8H8HfZ3KAM0wpD2etx+xpAW+0MmEokaAM7Apf9xX/8K8/DwYGNS\nHHal0OMtbwFkjp2LwS/w+XViQ0WRwKOmVanR6aDwzj0jgKjbphmZ129xMHKz0O3/27XbbPSNoCAj\nl9SgJZhJrLn/SxrF2XnCdQZgqHyP+xd+pquPJ2JAr9VyNiGRkoI8vk5K5OTySE5GLaPg7l3kVRwe\nXGPgaOp368Hp5ZE07meQtpEoFDjXr4+VjTXlOh2tps6gVchUFO6vCOoJD02jUlN4PZ3ynAJ0ep2g\nfmDrXp2WQdNp4huMQ+M3kDtUoYaZB+PqTqX47n1srOwAuHvvOr/e/pGdP8eS+m0EGQUGylFmoeDy\n+VtC9/qTOszLdKU4uzriGzieklwd41rEgL4aHwSGCUUCzjXr8sYUH2KPBLD1dCR7v02kQ+MhOLs+\nWTbmYVqqjY0PIT2S6NnCiwPn16J57In94T7cqtRhUOsp9Gwxib3fJeDi7PbE/RYU5Qr9NCKR+A/N\ndHl0/koVaY3nNg/mz9ijSgchvobepz8zU+almba/vI9GJBJpgCi9Xj/zseNhwDS9Xi/5A2uZAZ8D\n9YH6er0+/wnn/Wf6aB6aUqlkZUwKRUWlWFlZ4BdY0Yj3PO8RsHSukD7TqtTsnxfPq841EFuY4T6x\nnwA2x6OTaNKtJV9tOcLdC7/g8mpNtOpS3vMcwrnUo7TzCn5EGTqKVp69sa/uQm76XU6v2UyXaV7C\nPT6LSkGdV4TITEqHORXNpgdmzqL11FnYVq9Oflo6n82abqgo00NZiRqxVEq1117n9UFDsXM3pH60\nKhXfxkVTVqrl7aBpSBQK8tPS+CE5EV1eJv1mBAgczf6lK+nUzAupRMHWM0mIHa1pE1ShKHAyYjFv\nDBvJ+RUJuN6xwkpmR07hfcxkYn7LvoWlkw0jx8xGKlWg0ajYszWRHnUmYiOvwifn4vBobk1kXNgT\nGw6jDnjyduum3Lh8F2uRC01rtmf3nY30Whxb6WdzImwBk16bY2iu/J2mQeF+j6XbVh4IwK9rbKV9\n7P0mkYGtgoXvU85ONqmcHLPPG7HYnKm9koFHRzdPqTTTxdTeHv0cnjT2+fFChBehmvz/rRHzWe1f\n3bD5nIEmERgDdNXr9ceect5/Dmj+rD2UmnlYpjzZ08sIoJRKJTHJCUJRQP8uPdl+6FOKSkuwspAx\n2XMSHh4enDp1Cq+wedjVq4O5hQht9n36LZgIwOapKym8l8nIhIWcSNpOy2F+lbiVUxtW8MFUT7Qq\nNRvHT6N609cQiUWIxGKa9OuFwsGBL1Zt4L2gYKPrziR/RKP+g/nuo2TaPgCBL6OW0dLbF3V2DufX\nr6X15BABHL6PWExm+m3s69aj1bRZ5KelcXlNHD3HjqQoL58zn35KVloab77akFEDBhMbu5H335/E\nrduX2fl5IlpxGTKFFRRocLBzJTfzDl5N51PdsS4lWhXxh0IwNzPD0cmVzkNHIJU+UuGlUXF488eU\nFZfStdlYLqh3Ef/xEpOOLfFYMI5VHOnfZIZwLPnoTMzsrGg1f2alsuddweNpVvtVQwT0O07Xe8R0\nXpf35fjFbej1OkQiMe0bD+Sj4/OwlFozrkPF6OatpyPp2mwsTjbVheu3XZpF7n21keRLyrHZtG3Q\nh0M/rMO/60oBhDIL0jn602ZhdPPT9vZ442VmQTrHL24jW3OLJu+8Klz7iomTHAAAIABJREFUooHg\n/5u0zLPav71hMxewN3Hc4cFrz2QikWgJ4AmMfBrIPLR58+YJX7dr14527do9663+M6ZUKvFbtoCa\n/T7g5v4vKVep6DHBk1Vz5tGmTRtDBLNsDm/798ddIUOrKiFiRRKxUxcYgdFNpZKFm1PpuCJRcOhH\npgZz79ptpHIpxVn5VKtXG4lCjq5cZLpf5eYdtnhNx1xbhkJhyfvBfpX2qyks5IsVK4UpnW/064te\nV85PWzcLIAPwxqChnIpaRpvgqTQbNZazq+LIu34dq5JSdMVqegdMYEdSskEGZttmeo4diVQuRyqX\n02PCeDRqNXcOHaNNG4NE/8KFkfyQm0XPpGTh/X2zMBKbGzp830s2Ukt2tfegz9u+7Pw51ghkAKRS\nBRmqNIY3m4m13AH5g/4lj5oeeM8azJyQIMTlUnRmGl551YkP3WYY8SCeHRex7vh89k72xuWVBqhQ\nozcDzd0sasjqIrMyfyZHWCYqZv/55EqSMQ5W1ZDYlHEqPx5xuZQzX51mdNtwI5ApKVWRmZ3Fgpip\nTJnoK1Sd9WoxiVO3N2PjoCD19DJhbWu5AyJLNauTl5oEgUcjkytXL1Hf/BruVQwaek427vRs4VXJ\nwb/oQoGXFWYGO3HiBCdOnHgha/8dQPMzBp7mcWvIM/IsIpFoFjAF8NXr9Zuf5ZpHgeb/q0UnJ1Kz\n3wd8vfUo7zxII2lVKgLnzSEamL40DKlHVY4n7aJF/w44uFflbf/+xCQnELNwmbBOVHIKrwZUSPFL\nFAo+WBbFbq+xVKlTC8cGjZCYlaNVqRGb6U1WixVl59DTfxHXj+7ErDyfjF9vcHH/UXQ6PWKxiBrN\nX0et0tBqhq+wz9MRS8m4fAnrqsbNlrbu7rw52pND3v64ub2KNE9FlTtiJnaIY8evUUhlMiydnTkV\ntQxLM5FRqTIY+mKKNAZeycPDA3lVe97zM35/LWaHcGycf6UOerFIjMxCQVFhPhqNqlJEoxDbYC13\nMCKSlTeVxIdvYew7UQKhv+bodAocso2eqgvVOZTrSpnSIYECdQ57f06mT7epwkTMLZ+GolQqfzdl\nqtFoBSAAgxMd3HoqiSd9WbzQUHqtyi9FrlDw6berGfP+gkcinAjcq7vRpm0btuxPFORX0iyPCiXN\ni+ZGkXQyEJmFJbUauBKRPOOJIPNoCXNrBxVrj8+i55veQj+OKcL9RQPBywozgz3+AD5//vzntvbf\nATR7gQiRSOTxsMlSJBJ5AK2Bqb93sUgk8gfCgBl6vX7Vi9vm32dKpZLla5IoKNViYyEhaPwfH9tr\nygpKNdzc/yXvBE1DnZ3DN4mr0Zfr0Evl+EYupFfkDIEnOR61mraju+LgXpXC0pLH1imlmokoRWLn\nSMuQ2ZxPjOO1zq34LOYjWgzoyonEKCOO5sCSedi7uOLsUQ99x/4c/iicG4kb6bxgQcU5M2bydkCQ\nkbNvPWUa+3wmYeNWudRZ7uCAh2NDejT1Yv0GX3w7xCGTKDDTSPjywCHeXRCOOjuHk/Nmm+yLsZJW\nVMrll5biZuL9mdkqKpUW6/Q6SkpV3C1KZ+euBPr19RY4mp27EriZf7kSkRwXlSJMpwRDZNT7LT+S\nvp2Hq3sDLErEdPYYyLGfNjOuw0JkFgp2n08UQAYMQ8qG9AhjZUwKUTFPfqpX3lRy63IWsuqVHXXN\nV2oSvyiVrg0CkbkqeMdRxeYvFrPl1FIUEitEIjEdXhtCmuVRwHTvivKmEhsbOxo1avy73ImpyGRs\n+3BSzgbRoF7DJzZevmggeFlh9uLt7wCaNYAPsEckEoU+OLYAuAUkPTxJJBLVAG4A8/R6/cIHxwYD\n0cBB4IRIJHr7kXUL9Hr95b9g/y/UlEolvkvCaeLjieNDPbMl4cRNn/U/g42NhZSS3DzU2Tl8v3Yd\n7/oYuIwvVy6i/czpRr0s7YMn8tXqdbSf0BdrC5mwt+jk1Vy6+CMOJqKUspISJAoFDQYM4dzaBN7u\n35sfDxxBV1bERp8xVKvXAIWdHe+OGsOJ5ET2xU8jLzMbhwYNaT1pohGodF28iK+SU3CcXPHHLlEo\nkNrYIMnN4UJ0BK9NniIA06l5odQ1s+PX9PU0qv+q4MQ71BrK6luLhFLltvPC2JsUJ6TPNGo1eyJW\n0sDhFUFuxVyjMRmFWZUqiD8ymSrutSlXiDFT6Sghjd0XI7C0taN9h/HsP7AJvb4ckciM9h3Go/4s\nppJzVhWUIqtWsXZGfjp7clLpFl2hjp0atYyizOuCc9WJdSYnYhYXPv2pPi4qBUdFdZOOOv3eHca0\nWm4EeEPfm8Hur+IY1DqkksN9nJDvPagzCeGpz9xk+aTIpEG9hk8Vw3zRQPBfHjj2T7G/HGj0er1K\nJBK9jwEwNlAhQTNZrzfqOhM98u+hdX7wf5cH/x61L4D3X8im/0JbviaJJj6eRk63iY8ny9cksSJ8\n0f+09mRPL9oPHcJPqVsEkAEQi3Ume1nKS3WcW7GD2KkLBH6nmf9I2nV9my8jF9MqZEZFWmt5JNYP\nIg3b6tVpPNabb7dvQV9uxp1L1+kTugDn2hVzU3qHzuf0xlVY2NegXGyax9GVGjtRrUqFNiODjzZ+\nbPisklP+r70zj4uq3B//+wEGBAXcckO7Q4t7ZaVtYmXZtdu+3Mwsl8RKRUFFcMV9RXZwhxKtNOub\nZen9dSu1ssW6t1VTs2TcNVdEhmWA8/vjmRlmOcMM62j3vF+veQGH85zzmXNmns95PitnTSZCdTo2\nJi60VjyYODbBuvJoFdqBNmXtrIojtEMHurw8hvffWEvBnl/R+3dlUPg0QgJbWCdJv/NlfDs3kdsS\nKiPOvp2biPFcHqG3dqLrmLGVwQYrEokZPpiXoybRJLgFjzxeGbxQUmKkrPSS030ICtHZrYz+bdhI\nxNQ4uyZofWLj+WjaKKuC8KnwUe2I2ThYV2VEljHfRL8bB/HWl0l2EV1rPk9Af/01qsU0C5QTbDuV\nYTfhqmXuzxmXwMM3jvTYd+JqZVLhW1kSR21V1BCKQCuWWb9obQIuM4bFT+SaV4Y6bc9bmctriUlu\nx8tVx3IKTEUE6wKtUWIWHn5xOIaz53kical1285li7kn6kmnopobI+NZvSiFPhERxEyfQtMX+lv3\nOX/0BN9u2ErR0TMYC410G/Yihs92cPHoUcrLTIS0a4+uSRPyD/5BYOMm/HP6DCdZty1PQdEJiioa\n2a1o5PmNvDNyFI+vfrUy4GDKJFr7+tGtU0cmjJA5Q8nZOVw0mQjR6YgdIZu6GfIMTBmdJE1C/kEc\nOXOAdWeXcc/CymTPL2ck8HzjkXQwO6KhMtLImG+ie+BTfHRkI6WBFfgX+dC/wwDW/jaHexanO8lZ\n9P4aTu87jOG0kUGD5lpNZ2++mYD+qiDWv5trf4/yDEwZtcRqPsvZm8idCZNx5IcVcwg87svDncap\n+mg+2ZXGM8/fS8qsbJtSNo+y68Tb1onYElFVUHTOGnVWoVTQvGM5IaFNuUnnHPb8kymXpEz7SddV\nZJYMhZ5gt6+rcv1q0WPv7V5CaVkRA8zVCmoTUVbbEOjqjq/PkOvLgSs96kyjCkJ06vXMgnXuo75l\n1NhMekU/Q5jZ1xKTOJP0+NlWZXNNWBh/+vjZneOGxwfx8ZIsHoiLrKw3lvQqfafMZ9Hrb9C+fXsu\nmoppZaOImrVvS/+Jkfy+dAPDH32a8VlZ3DNrZmXOSUoqXZ54kp/WrcVXoF4+xlfhtqf6sWnJWj5L\nSeWeCeOt47cvSabr0wP4vyEv0LhVK1mzbMx4wnv3odRo5MXpM8BfR4/4KbQxj/nnxEl00jWjTZuW\nRE0byHtv5WI8IyeBzNixbHg9l3NmpdS5rKmdkoFKB3NQqI6SwiJ8SxV0ioKvSaHEVIRvSGPVlZch\nv4CThrMEljZmaUYkIU1bUVZcwlOdX+GE39dO90kfrmfh8jgWz0ln7/eHyPctUq3cfGjPQTKSEnjv\nrVyKikx0uDaA/x5cilACaBysI3riQNXSMPff8BxZyTmMmRjJpaJLrPxxEi0bdeCB7oMIMQcmTJ0t\nzU62Crm41MjWvWksXOZsknJl9iqrsF91VuU7UVuZNAvz555mcbWOKKttteXK8Z7Vaavu/v/raCua\nywxbH41l0v1xabZHPpqY6ZO46oU+TiuT069/Qfq8xYAMTX4xYQZGv0bcM7bSNPTR/GkUnz9Jmy6d\n8PEN4MYnnqWp2RRmfOdNhCi3W9FYjn3h9Y+owBf/F553UiTfrMqm5yuj+Do1Gb+SUv4+crT1fJ8u\nT6fPsIdBwMerNnLmyGnKiopo1FRGvodcrafn8BEENm/Ou8OH8M/Va+2O/3lqIrdFjXE658+Tk3im\n7zi2fZ5BzPhBvPPhVi4VldAkMIBxIyuDKqrKnXji2f7Ezcjg8ZHzrcUo318xjQ5/CyF81BSnc34c\nE0Xs7faT/UO3DCc4sLnbXAxDnoEFM5P57uRxHp6WKHvQ5B3g07R5tAu9hmLTcV7PyVC991WtMgJa\nF1JS5ssDt1YqkTf/lcB1nVoydXasXd21rBSbp/IJ6k/ljuey5MscPbef9s070e/GQXbRdZ5Otq6a\nmL3/x1xahbX0eLVQ21wYS7dR5/FrVMdXd/8rEW1F8xdGr9eTNXkaKatXUWAqJVjn73EgQIGpSLU2\n2SVTZamVcL2e1+bOYVZyMtumj8PXvxEVxkuEtWzBH2WCCp8gwAfFOl42SpsVNcrqo7Gser7PWEtm\n/AziU1O5VuVJX6koxz8oCL9GgdwwZBifrn8dpbSUY//9Dw+MHsCOte9TcKmM++curnTqJ8n6ZYHN\nm/NlShK3DB1OQGgoxvPn7CZ4IXxUVxdny84QEBDEjd2fYsqiFB4dG2d1+o+fNY/UWdPR6/VVOpjT\nluVYlQzIHi6Pj5zP758tY3d2Kt1HVK68dixKYEgX+/yXZ3tPZNOuLPyblrl1WOvD9axam8ngp0ax\ne+EyLpZd4KJvIc/MWW4NDBg7O4nMmROdPgNVrTL+PHWM5//u4Oj/x1z2ns918n/YmskspVjOnyog\n7/BBwtqF0Tqspdnxn8bDncZRUHTOKS9nzecJhN/QstpP9Gp+m6NnD3Dy8AX6Xx1rXS2MeGoSBaYz\nNG3ckmu6tGPSzBi789Q2BLq647Xcm+qhKZrLEL1eXyPHf7AuULWBWROdvfIJ1+vJzaxskpVnMDB6\ncRIPT68ML/4icSE+KPg1DqLisAEFyIyfQWr2Si6aignRNSIzfgZ6vZ7DBw/SQbWysi+lRiNKRQWh\nHTpw66govkxO4sYXI/l6y6c0adOW+ydVrkr8g4KImBjPdytX0HvcBHpPmMiuZVm07NiJ/+Tm0HNo\nJE3DZGkZxVyLzPGcpsJCzpw5yqatSxg4b5Y1jPlS/nku+vjxXGw8PTt3YsJLkS4dzK4ahiECyJoW\nY9d2oSOhqia4AuUEK5erJy2q0TqsJf39hvDOryvoM3GqXWDALYPGk7oih/RF9k/Krpzrxy/up9NN\nnVUd/VVFqdmZn/4WRHE7uTrr2bQfy+ZvYLTZHPndf36wa+XcSBfEsLvn8kN5brXNRmoKf8OuhVZz\noOX4L949nw07ExnWZxbFJiNxIxZa83iyknPYs2c3vZvXPAS6uiHU7vb/q/tvqotmOruCsZSTsZSL\neebBR1jy5mp6RT9jXXV8l/G2nY9GjbHTE/AbNMzZ9LUik4g42VRsd/ISsqdOceplA/DkyFEcqyin\nj42P5YuUVLoNfJ7DG94kLMCfIh9fft23j9vjp7B/ywf0fGUk3y1fRkSs8xP/zuQkIibI7R9GR9En\nfgqBLVrwbVYmd4+X8myZNB5dYCD95i2wWw35Hy6keUETRHNfbhnyCN9t/YCi/HzOKSYemLXQuu9P\nWUtYlVD5fgwGA6krcrhYZOLAnl955KVkp4ZhJ/+zlrQlzk7yDoX9+Oq3zVQoFfgIH+7q+BhHGn9S\nbR/DlNFLuODrR8Rk58CA3a8vJswv2G7iApwm6dydCcxIi2LTOx/RpZmzo3/v+VyS09Xlsr6X/R9Y\nS9Xc1elRvtr/gV3Gvitzl6sgAE/euyURNDBUx/lTBTz0N+eUurQtUTzfZwpXhbSn2GRkZ/5S8k+a\nXK6yqmPGs/O5eFCnrar9wfm+XIm10zTTmQYGg4HoxNncGv08bcxKJTEjh/hBL/H26x9wySRXMu6U\nDMgExbZumop1j41jTno6r6WmOo0Pa9mSpvf145tV2ZQZjZw/dIjGrVrza2oyGzIzEMiwbd9O17I3\nNZFiXYA8vrmkv6seM6VGI03atLW2Zc4/fozPUhZzZt9ebhsZxferV/Dt0iyEjw9KRQXKmUsElwTx\n3G1xrPt+ATs3rOeJAVFsenc1D0ydY7dyumlMHJMXLKRVq1YcO32GEycu0D9qLq0Dgwi95QCbsqfx\n5IhKH803m9NImx/n9N6feLY/M8ZmMPy+eVZfyKvbpjMn03kirgp9uJ6Fy+J4YUS0amDAb9/v45E7\ns5wcz46rslXvLEQfrqd9h/ZMGptk56P5+L9pLM50bco7dewMvx1ZbxcG/daXSZRXlNmZheo6gdIS\nWmxROEcPn2D9kURuDu/Lz4e+sEbKNWnUjO27NzLgrgk00gVxcO9xhtwh67Q10gXx8C0j2LQry1pn\nrboTe2gbHWu/mUqxqZBO3cOrHF9VyPXEMQmXVW+dywFN0VyhpGav4Nbo5+2SLG+Nfp63X//Q6viv\nijyDgdTs1eSbSvltzz5aqEaF2TcV23vsqOqxYkdEMioxiZ7msjSlRiP709NYPnsmAhizaD43R0Vy\nVVAQ1xuNbIpNoNRopNszA/gyJYneEyY6+WgsuTm3DBtulcdUWIivn477Z80jsFlz7ujSmSZNmpBv\nMuFbUoJvixbkHT8pO04KPx4e8DIBjQI5X3he1Z/zyx+HeDA6jjPLV9A/KtauFP+dL0Tx4epYOnfq\nSpMgHWnz45wUtiHPwIy4xQy/L9nOFzL8vnm8t3EtEX0iVK+XK7OKPlzP6zkZjJ2dxC2Dxlt9NB8s\njmdItykuJy61yUuv17M4cyKZqTkUFphoHKxjcaazn8eWY8ePEdnbue9M5tYYO0XiaQJldcxHtma7\nO/tUFhV94rYx1vI0b36xkEvFssVEsclIsanQTtldFdKe5yLi2XYqo8YRa/36VL4fd7jKvdH8N85o\niuYKpcBUTBsVx79juRg18gwGxiQupHvMK4QGBRF44A+2z5xC39kLbUxfidwyvLK/TanRSFmhc/Ih\nSJ/P8viJJGfncKrMRIifjuXxsmV09LSp3BwVabea6Bs7mi9nJtB79lxuHjacXUuzOH/wDwKbt8TX\nT8cPuWs4d/B37p4yndAOHWRrgelT6BM7iZbXXS+LY2alsWySc1vqiWNksqYuyJ+ARvL6lBVcUl05\nKeWK3FZWYbeCAKlsOnbvSnaauinIkGdgStQSmvmEq/pCjGfK7Pa1TLhlopDzx0p5onucalisXq8n\nc+ZE5iZl8MueQ7Tx7UDb883o0EM9FLsq9Hq9SzOZo1xBoTqXfWdahXawUySeJFBWN/xXrTzNiH4L\nrC0LGumCGNRnCmlbRrN+ZyKnCw9RoSvj6NnKopxQs5VVXRft1GqnOaMpmisUS1MyR8e/pVxMVaRm\nr6Z7TGWC5FXXX8sdo4ay+aUhtOnZiz/3/ELjFi3tmop9s2QBN1yjd3nMcL2erHnOX8oCUwlXBQVx\n/thxvn/3Q8orwNcHWvlA+bpcTp45w4mff0YXGkpgaCg3DhhE07D2XDh2lJ83vkn+8WOEhIURWF5O\nxZb3OBEQQKhOx7JJctIbMz3BLmHT8rRNiaCkuIiARoG0DmnN14mLuDN+slWRfp24iGZtZWABfj6q\n5qrgRq4nhqyUbB7qGsMHu1aqtlYOCpVfLcf8jvU7E3nydue8kaFPj6HXXTdbn/qb0ZiYGxfTSBfE\nxq9S6nziUlMEX/4RRfE1zue55HucjOUZztFqVUzCcvIe7/A+Xbd1drUKUJQKu799hC9P3j7GupLy\npCinO+p6BTImNpKYYTPQlTTHR/hQoVRgCjhH+po5NTreXwFN0TQQeQYDKdk55JtLpkwwZ7HXlPEj\nRlp9NBbH/38z3iAjfqbbsfmmUkIdTElXXX8trcLacMeolyg6e45dman8mLUYxccPUVFGcPElZqpk\n97sjWBfAn7//wbfvbOXO2MqK0TtnJTDlwf7Mf3MDT7y2tnL7kkR6Do0kqFlzyoqLiZgQR2gHmc9T\n9nousSMiSVmdw6TkNPbs28ftk6bS5nq5yhmVmMTyeOm3WDAzmXdyErnv0cGgQMkfR9m9IIWKAF98\nSsopPHiQngvk++n27AD+vTKJvw+ZaDVX/Xd9GpmzXE9YxvwyGrUP4t4bnuGtnck8GxFr9YVs2ZvO\nwmXSn+P4tGyp9mxLI10QrQM6crPvUOtTv+3k17f7AKcSMu4mVHdmKzVFMPD2qeTuTLDrO7Nlfxqv\nbshwWoW4O767ydtxvOJboqpMLX5Cy98dWnSsdlFOd9fHsV2B5Vy1UeT+foE80WOsTQWExBof66+A\nFnXWAFjChzuPrfRh7MtUN/1UB8eoM8cmZq6Inj6NwMFPO5mSTq/I5URJKV2jZROxX956E+PhQ/TQ\nX0vCuFjVYxsMBtIzKzt9xoy17/RpMBh45OWX6Jex3Ol8X8dN4M6kVKftH7w0nDa39qL7PwcQ2qG9\n9X+/L5hLgamCm8ZUFtP8PCuJm18cbjWxlb2xxrqy2rlzJzMS0hnwzFQKLp3j88/f4fTpIzQPacMN\nnfrw0eEt3LdARq2dOXCAz2fP4tYbbqJVs2DGj6y6Y+nEsdO5KWAIjfyDOH3hKDt+eZvychN/nP6e\nrFcXWf0zjhFaG79K4bFeI50mVEspF0uSYeGlS0SERtWooZgnjcKkXDFOY9//Yw6twlpaI8DUzuPJ\n8atKaFTz8Wz8cY6cnLvHOaxWoqyrlTWfT+fpXuO5KqS9nTzVjXZTixh7dftU1ZVRTaLE/irJnFd0\nh01v4G1FI8OHhzpXO34zl0wVc1N9Y+ujsUzYu9NXMmXQYHKz3+LnIwfxDQ2i89/CSIgZ51IZGgwG\nJsQn0affOGt9ry8+SSMl0d7p/EzMOMJjncNVt02I4b7UDKftmyOH82BGJkVnz7H7nY0yokypoODH\nH3kwPds5DDt3BXeNl8UsTy5LZ+1iOelMmDCNjtf907nr5ZbXeOrBaI6d/J0NH2fQtkNn/I0+hAYW\nsvZd+84Trp7cLT6ah7rGWFcyGz9Ppl+3Qaq1xmwVhmMYbmVXSzmBbj2UyJk/z1FRGMhAm7bI7+1e\nYu31UtWKoqos+TGxkWQl5/DdVz/wch/nNs6eTIaeZOFXFf6blZyjOv6z8+mEhDS1Krknnu3Pe299\nZP374sUL3NMspsbZ//byOyuCnG/GW1dGtcl7caXEt51Kr1H4t7fQwpuvMFyFD581eScKJVyvJyt+\nCqnZqzlZVkqonz9TBg0mc9EG+vcYR99r5MT50Y9pVPUpS8/MsSoZkB0l+/QbR3pmDqnJlV/81sHB\nqs54Xxfl+FsHtufTibEEtGlNRGxlmZxPpk52qhDgHxSEUl5hHRuiqzR3FF4qVe16qSD3D2tzHdcG\nXc+g8DjzRJdmV0XYXRn8hUvjGP7cWJqJcPx8dDzUYzitQjrQMqTSkez49B4c2ByfxsXszF/Kwb3H\nCRZt7ZRMsclI3uGDRN6RSkHRWTZ/t8KmEKa/y0rKtnK5MludP15gnfyv6/mYXWdMxzyQqjh17Ayb\nT62wawt9VUh7O59GVQEDruTTKY2dFIZt5F5VK6nqUNN2BZ6iBQM4oymaBiBUp1OdUEN13vvghev1\nZMybb/07NjqB/j3sm3H17zGOzJQckjPsv/wWf9OuP/bz64kVRNw6gBYt5UQZEBDEpUJ7BWoJf+4c\nbWM6zEgjaVI846ZPp8+8eTbl+Jfw6J3D2fj/ZlmVDEiF0m/BIr7NyuLe6MrVkSUMW5ojU1keXznp\nNG7ir9r1UuBj/d2nwtdsupmNv18g9zQbZp28416JcspQt41G0ofr6Xx9N6fkRVtfhNqEm75mjp3C\nCA6UQReWiTOsXZg1N2TAXZVtB7adSgfcR0m5muhsFdj23RvxFX5kbB1DQGM/bovo4ZGpyJBn4NTh\nfIZG2ObaLOH+G55zmkhdBQzUdCL2JNrNExqukZp6Muf/IpqiaQAmjIh06aOpb6RSyCbfVEaozo8J\nI0aomsKMF000aqkSputQsiTPYGB0onwvfc3v5V8LkvhHj+G0aNmekhIjTRrbf2Ftw58t1ZMt4c83\nr3mLX6dnUBHog1+pD4/2GEpwk+Y0atFUNfflouGQVWmXGo18MnMaPqXSN2M5poXo6JeIi1vE/X1f\nsZr2Nr2bQf8+QykpMbL+/XmEtWzBD+VraBfe0s4n0kgXRLuQTqqOe9snd1eTlkkUOvVYAakkEmes\nsG6znTgvlZ7HcPIgRQUmHrza9UToztHuKs8lrF0YBUVn2fr9q069aTw1FWUl51iDBSznfbZ3HFkf\nR7F+ywq346uSz5OJ2JXyqk7OTk0VgafnqCuF+FdC89HUA3kGAymrs7loKiNE58eEl0YAVDvqTB4n\nh4ulJkL8dUx4qXqRalIpLKFzTEylgktPZ1l8nNNxYqMT6BbiXLJkz8VcuxXN2OkJ+D3v7G/6de4K\nHrx3pKqPRg1L1eBzpwrY/dteHnlyEm3bXU9JiZEdO9IJ7hBA6MtRTuf59MVXuLrZDdYOl74l58jI\nmePaMW4wkJGxmsLCUqCUirJyfH2CaNxEx9iYl6xyqtnVN36VrOq4V/dFVO3Ydtd3ZecXO5kZlcnw\nvvPN5VRyVM1aan4fV3LZlnWx+GYM/ymwhge7GlsVrvwPWw8tJudt90mOFtTkq+lE7C44QU1BANU6\nf3VL1PwV0IIBqklDKpo8g4GoRUvoNqpyct+zPJ2lk50nd7fHWbgN4fjIAAAXnklEQVSE7i9XroJ2\nr0pj6RTPjzN2+nT8Bg9xDkJYt5bMefPs9jUYDEwak2Q1n1l8NIuz7JXGkEmTaTvaubzK9pgYel/b\n2SnqTA3pSE/iH90qz7XuswRaXtuUtm1bEB09AgWkuc1hFTh90EDee+sjjBdNBIW4LmtfXdQcxEfP\nHmDLz8udwn3VkhNtJy3HiDGQk/mmXVk8FxFvt80ywd93+2NE3lGZlW+JMjt+8QB33XeL3UToSdSX\nGoY8A0MfG090/6VO//M0csvxOkk53/AoGq6+cBf84CqnpTpy/lUiyaqDFgxwGZOyOtuqZECae7qN\niiFldTaZ8+e5GW17nByrkrlw7Ag/bX6bcl9fnhs7lvWZmR4pm5MFBVyjYn46WlDgtK9er2dx1kQy\nU3IwFpgICtY5KRlw7W+6vXtnUj2MoMtKybEqGZAmusH3zOXn4lySUiqP4crcFhGhXtqlNqiZU3ad\n2MiMtCjZeKwKE4ijOWf04MmqJjcfm5wQy7bzx+W98ClrpFpOZfn2GKeJzGKaWTw7nYN7j1trc7nC\nogjPnyrg7MWTqqa+vb/9yujBk6tldlIrZOmN5l9VmRIXzEymojCQJ3tX5rRs+DKRBTOTWbU208UR\nq3cODfdoiqaOuWgqI0Rlcv/TVOZihIvjlJoINSuZb996jd4TJ1if7EcnJrIsPt6tsjly8CDtVZTC\nkYMHVffX6/VOjn9HJoyItPpo7PxN8Z77m4wXTTQKUfEH/Wn/pXVVbaAusTWrhLbR8dn5NHRKYzul\n4qpmmStc+W0qbLLcLdvyDst7UeFXrD7Gr8TlefJPmhhyxwIKis7yyc9vMuzxWLrccrVdrxbH0v83\nNjlA9idTGdFvgXXiXf3JZJ68baI1h6QqZWHrf5DtAipDpN1l/9cXVTn3d3+V5yTjwN7xrPrC2fxX\n03NouMfH/S4a1SFEJ9sk2yLDbqun00P85crhp81vW5UMSKXVOSaGlOxst8do2749O1OSrfKUGo3s\nTEmmXfv2bka6JlyvZ1n8RMreyOXEsgzK3shlWXz1Ek+DQnQUl9pfo+JSI0EhDfultUzCN/sO5f7W\n0USERnHpT4W4OSOtUWU1YUxsJFv2p1Fsku+x2GTk1c+mcqHwtN22t75Mon27MABGxQ4hafMI3ty5\nmI1fpXD07AFe3T6NOUnO+UdQmdlvce4/efsYxv49k4jQKKaOSsKQZ7DZrzJCrX2L63nitigWbRrG\nus/mkbk1hidvi6Z9i+s5ffEIm79bTskFX4YPjLYewxHLCq5bt+7qwRL5DfuUb3u9T188yvqdiaze\nPonCS5dQKoSqjI10jWtwjlS7+7dlf6rV36NRNdqKpo6Z8NIIlz6a6h0nkqiFSyj39XXRSdL9Cims\nRUua3t+Pb1euRKmoQPj40H3gIBp/+km1ZHEkXK+vVaLpmAmRTj6af+1JY+HShg3/rOtiihbUoo7a\nXhdMr+Ah1rwYIXy4/4bn2Ke8hyHPwKZXdzDxsWzrKmPVp5N4dmQ/3nvrI95c9aGTSctiytn4VbI1\ngkztPaiZfNq3uJ6O7W7FVFZCsyatrErGMRrNnRnscnnKt1zvBTOTyfvlDMPurvSp/S6mqxbevKZL\nWI3OoUWS1QwtGKAeUIs6q0mpmTyDgefGjuXOpCQVh/46J4e+2vhRS5Lo5Fi+P652pW/qAmuv+osm\nyiikrKkf5boAQv11jH+5dnXgPKWuG3hVxctDxnLi11K7TP8NXy6hbVd/QkKaOjmzZSDCCpeBCLJJ\n2QO8800a4x7OcvkeXDnKN3+3gsd6jWTR+0OZ/PhaNn+33G2EnSOXWySWq/ea8e/RRP99uV3dMUuF\nhfrkSu+yqUWdVRNvl6CpDTJEOVElRNm9j8YyPjk7h4vm8v2xtSzmWdfkGQyMWZBE95dsoutWp5E1\ntf6VoSdhwnXF6MGTuTHwKbbv3miXUf/V6dc4dOgIrQM62mXZu6qJZomkWjw7gx++2oeiKAyKmOz0\nxG55D2oRarYlb97dPxfF5EvJBV8GRUxyknvVF+NZucF1S2rbQIO8wwcJaxdG67CW1ZpU62pCdvXg\nsPVQIs1aB9dJKLWnXG5KuCZoiqaaXMmKBmySLsvKCPVznXR5JRI9NYHAJ53zcoo25ZKxoP4DARqq\n5a6n4dMWJfDxz2+oTvzv/zGXsiJfuwls1ceTeOr2sTbFJxNY/e5Cu4CA4QOjraVyLMrMVnENHxht\nF14N5tXA1rEEBgY5BRnYUptJtS4nZFcPDjvzl9K4SZMGXVn8FcKhNUVTTa50RfNXZujEyVz9ovNT\n6OHXMshNqv8ChLVJHKxZB8nKCTXrY/sSN1CZb3Ps4j7V/634Ygwj+yx12r7w3cFc16YHfr7+NO9Y\n7hS660lSo+P/ZYfLKLcVjWszqdblhKz2HioTZWc26Mrir1BY84rPoxFCtAfSgH6AAD4BximKcsSD\nsQHAPOB5oCnwIzBJUZQv6k9ijfoi1N9FHTh/9w7lujC5uCpp4sm5qypsqSZjaBt/u/Dprt06q0ZE\nFSgnWLJyOsvmpzlVHPAxBamO6RTWC4HAv2kZU2c7B1W4c2Zb/j/06TG0DujI4TP7eS4i3mqSa6QL\n4va2zzB8YDSdO3a1u961yTGpy/wUtffoF1qMcrw573+71GqabIgQ7MslUOJyocHDm4UQgcB2oCMw\nGHgBuB7YZv6fO14FIoHpwMPACeAjIcSN9SOxRn0y/uVIdq9OswvB3r06jfEvVx026hiabGka5iok\nt66pKmLNWcZh3Bj4NKf3VfDbj8ep8C1lTGwkzVoHW8NlLRSbjNzQqyMRfSJYsHwiP5Tnsu1UBj+U\n59IuvAVXNb5adYyfj44C5USVT+oWpbp03SLV8G19uJ5ed93M47eN5uqWnez8PqcvHuXTX9YTeUeK\n0/W2TKqOMnkyqdZmrLv3OCY2kjN5pTx5+xie7T2Rx3qNZOv3r1JQdLbeQ7C1cGh7Gtx0JoSIAZKA\njoqi5Jm36YEDQJyiKC4LJgkhbgJ+AIYpirLWvM0X2APsUxTlCRfjNNPZZUyewcDc1HT25x2n/GIh\nN14dztTZsVWuThrSka+GJxFro4ZNICI0ioKic2z9PodnbSLOtuxPZfS0gaTPWudUE81VRJQloECG\nIVeOyfl0Go/3GsWRxp841Tqr7mrPohxLL/jZ1URzF5xgWy3gk5/f4IzxCF1u+RuTZkZ7rYaYq8/I\npl1Z6HsG1/vnpC7ruXmDK9109ijwjUXJACiKYhBCfAk8jjSpueIxoBTYaDO2XAixAZgkhNApiqLV\nhLjCEAoU7zcxutN8a16NuxwOb5cEcWcaMeQZ2Pv9Ifr9PYjN3y23KgaLnA93Gs8bOUspLSti064s\nmzpcRVWeM9i3OQ/dMpzN3y239qkJ0AVZm61Zzu2JWU8N25yUNZ8nWHNSyipMLitZO+exzPM4F6c+\n81NcfUbOGA+TFJtS6+O7o6Zm2b8i3qgM0A3YrbJ9D9DVzdiuQJ6iKMUqY/2B62ovXsOwY8cOb4vg\nhLdkspqhbGqfWcxQrmSqa5NLddixY4dq9v+W/Wl2lYFbBnWg2GREUSpUJ+mDe48xoMcMnouI59ne\nE3kuIp4BPWbYmd9ssZwzOLA5A+6awOO3jSa/5BQdbmjMY0MjrJOzJ2a9qtCH61m1NpPV7y60mu7O\nK3lVXm99uJ6QkKZWJQPw+8kfrf4Qd+eryqRXU1x9RkLa+Vx2K4vLcT6oS7yhaJoD51W2nwOa1WKs\n5f9XBJfjB8tbMhnzTXbtCUAqm6KLJpcyuZvo65MdO3ZYn8RtfSi2T+LGfBP9bhzEW18uoUKpUJ3w\nik2F1SrhonbO1e8uZNXaTPbt32fdz5jvYvVRTb+ErQJ4dUOG2+vteN49R77ySkkaC64+I9d0qnkJ\npvricpwP6hKtBI2G1wkKlbXPHHvhBFZR++xyKAlSlWnE1sz14X+zyfl0GpH3z7fzQ3TqHl7tyCRP\nzDH1EfHkyfW+3CKtXMm8JneNV+T5X8YbiuY86isXV6sVx7FXuxgLlSsbjSsIu46LZh+NJWejqknh\ncraB276nF/vO4ujZA2R9HEXXbp1p1jrY6k+paadJT89dl8d1d70dWy2UlZu83sL4cv6M/C/hjaiz\nTwGdoih3O2zfDqAoSt8qxiYA04Cmtn4aIcQsYBIQohYMIITQQs40NDQ0qsmVHHW2GVgihNArimIA\na3hzb0C9JnolHwCzgWeAdeaxvsAA4CNXEWd1dbE0NDQ0NKqPN1Y0Qchs/iIgwbx5DtAYuElRFKN5\nv6uBg8AsRVHm2YxfD/wdqZTygNHAQ8CdiqL81FDvQ0NDQ0PDMxo86sysSO4DfgPWIlcmfwD3W5SM\nGWHzsmUY8BowF/gQCAP6a0pGQ0ND4zJFUZQr8gW0B94BLgD5wP8BHTwcGwAsAY4DRuAroI+XZVoA\nfAScASqAId68TkBPIBv5QFAIHAJeB/RelOlq4D3AYL5vp4EdwD+8ee8cjjPZfP8+vww+5xUqr3Lg\nRm9eK6ALMun6tPk+7gPGeukzNdPFdaoAjF68dx2AXPP3zgjsRz5cB3lRJr157HngErANuNWjsbUR\n2lsvIBBZsuZnZKWBR82/HwACPRj/BjJCbTjQ13yxjbX5AtaBTBeBz5CrtXLqQNHURiakIv4KaZq8\nGxgI/IpUhGFekqkrsBpZUPUe89jN5knhCW/dO5vjXAMUIOvv1VrR1MFnqgL5sHCbw6uRF2XqaZ7g\n3kNW+rgHGIEsquuNz1Q7levTF1mBZL2XZApCPuD9gawFeQ8wETlHeUum5sAx8xzwT2Sdye3IeauT\n23PX9svgjRcQA5iAcJttevO2Kj+wwE04rBgAX+RT1XvekMnhONc6yuel69RSZdvVSCU4y9vXyeHe\nHQbe97ZMwP8Dlpu/gHWhaGoll/lzNKe2ctThZ0ogq3i8c7nI5OJ4g82f8we9dJ0eMJ+/n8P2hUgF\nWKMHhVrKNN18br3NtiDgJLDB3bm9URmgLlCtlwZY6qVVhWq9NGAD0F8IUdPsstrIVF/UWCZFUc6o\nbDuMNHdUr+F6Hcmkhvne5QNl3pRJCDEIuBmYUgs56lyueqA2MvUFOgN1XWisrq/TUOAU8G8vyeRv\n/pnvsD0f6VevaRRtbWS6HThg3t8y1gh8ATwihKhSl1ypiuZyrJdWG5nqizqVSQjRBWiFXD57TSYh\n8RVCtBZCzEC2mch0N66+ZBJCNEVOnnGKolyohRx1KpeZUUKIYiFEoRDiUyFEhBdl6m3+GSSE+FoI\nUSqEOCWESBdCNPKSTHaYe2XdC7yuKEqFl2T6BGnOShRCdBFCNBZC3AdEA8sVRXFdebX+ZCpHPqA7\nUoI0yV1b1eArVdFcjvXSaiNTfVFnMpnzlVYAfyJ7AnlTpkTkcv8EEAsMVBRlhxdlSgL2K+bWFXVI\nbeVah/Sx3Q+8ZD7eNiHE3VWOqj+Z2iGfxjcgzYz9gMVIH80bXpLJkcFmGWt7L2ssk6IoJUAfpFl4\nD9Lv9zHwgaIoY70hEzIY4XohhHU/IYRArnQsx3aJVutMw1OWAncADymK4rikb2hSgfVAG2AIsF4I\n8bSiKFsbWhAhRB+kw/bmhj63OxRFGWrz55dCiM3IJ9q5SAdzQ+MDKMA6RVFmm7d9LoTwAxYKITop\nirLfC3LZMhj4QVEUtSf/BsHcRXgj0nrwPHAEGaQwUwhRrijKaC+ItQK5olonhIhG5kFOQ/p4QPoD\nXXKlrmhqWy/N1Vioeb202shUX9SJTEKIRcinzhcVRfnU2zIpinJcUZTvFUXZqijKQOAb5KrCGzKt\nAHKA40KIULMZzQ/wNf/tX/XwepPLCUVRLgFbgF5ekums+ecnDtv/jVxF9PCCTFaEELchfUhraihH\nXck0Ahnp+Q9FUdYrirJTUZQU5Or9FSHEDQ0tk9mvMwi4BfgdOIpczVj8bSeqGn+lKpo9SHujI11x\n7z/YA4Sr2IS7IW2Qv3tBpvqi1jIJIaYBccg8hzcvB5lU+A+160VUG5m6ACORX9TzyAeV3sCd5t9H\nekmu+qK23736oK6u01DMYc1elqk7cMHWaW/mW6RC7uIFmVAUZRMyEKgLcJ2iKL2AEOCIoihHqxp7\npSqazcAd5hppgF29tPfdjP0A6fR/xmas23pp9SxTfVErmcxL5LnAVEVRll8OMjlithP3QeYceEOm\ne5HRVPfavH4CfjH//o6X5HJCCBECPALs8pJM/0JO5P0dtv8DaVL7zgsyWfbXAc8CWxVFOetu/3qW\n6STQVAhxjcP2O5DX6ZgXZAJAkexXFCVPCNEOOW8u82TgFfeiMqHpJ2S48mPI+mkHsMmcReZ9lAHT\nHcavRy7jI5HlcN5BJkPd5EWZ7gaeBsYg7Z2Z5r+f9oZMyATNcqSp5XaHVxcvyTQTSDd/uO82//y3\neb9nvHXvVI5XV3k0tblWscicngFIf8xQZHJeMXCXFz/nM5DKZj4ySGGy+buX4837Bzxl/t49Xtv7\nVgf37m/IzP19SB/kvUirQj6wy0sy+SHNZI8jH6zGIhXeDsDP7bnr4qJ644UspfA29qUUrnbY52/I\nyTLBYXsA0qZvKUHzNXVXgqamMm03b3d6eUMmKisUqL22eUmmR5H2/ZNIZ2QeMsP8Dm/eO5VjbQc+\n8+bnHLly+QIZJViCzH/ahIclQ+rzWgHjkBNesfkezgR8vSzTe+Zr5XbSbAiZkL6iDcgSNIVIpbMY\nCPXS58kXaQ06Yf7uHUBW0vcoebTBqzdraGhoaPxvcaX6aDQ0NDQ0rhA0RaOhoaGhUa9oikZDQ0ND\no17RFI2GhoaGRr2iKRoNDQ0NjXpFUzQaGhoaGvWKpmg0NDQ0NOoVTdFoaJgRQgwVQlTYvEqEEL8L\nIeabK+o2tDwGIURtWjJoaFwWaG0CNDTsUZA90Y8BwcCTyK6ZTZCtcBtaFg2NKx5N0WhoOPOToigH\nzb9/KoToCAyn4RWNhsZfAs10pqHhnu+R7YdbutrB3FbaJIQYo/K/eHPb4hbmvx8QQmwRQhw3t1j+\nRQgxwV3fdSHELCGEU4MpIcQaIUSew7ZAIcRiIcRBswnwoBBiqrnatYZGg6KtaDQ03BOOLEDosny8\noiinhBCfILttZjn8+wXsy89fgyy8uRRZMLEnsrBkS2BqFXIoqJvT7Lab2178G1mYcQ6yq+YdyMrJ\nzZCVgDU0GgxN0WhoOONrnqyDkeXjnwRiFPcVaNchW91eryjKAQAhRA9kIytL62IURVlpO0gIsRNZ\nUTyWqhWNpwwC7gLuVhTlS/O27ebVzAwhxGJFUc7UwXk0NDxCM51paNgjgP2ACdkhMxtYqXjW+G0T\ncoUy2GbbYGRJ9g+sJxCijRBipTmqrNR8rnnIZlet6uA99EeWl/9GCOFreQEfI5v+3VEH59DQ8BhN\n0Who2KMgmzv1RHZ+/BiIEkK84HagohQh+3s8D2D2uQwENiqKUmreJpBK5yGkWauv+VzzzYdxbDFe\nE1oBeqQCs33tMr+/FnVwDg0Nj9FMZxoazuyxRJ0JIbYjO1MuEUL8n1mZVMU6YIgQojfQGGhj3mbh\nWuBW4HlFUay96YUQj3sgV7F5Xz9FUcpstjsqjrPAQWS7cjXnv8GDc2lo1BmaotHQqAJFUUqFEHHI\nnuqjgWQ3Q7Yjc3CGAIGAwcZPArKdLshWuYC1X/3zHohzyPyzO7IFL0KIpkh/zEWb/f4f0rdUqCjK\nbx4cV0OjXtEUjYaGGxRF+UAI8R0QK4TIUhSlpIp9FSHEG8ArgA5nxbQXqTDmm0OVy5CtjZ3CllX4\nF1KhrBZCzEKa2eKASw77vQEMA7YJIZKRPeL9geuQ7bAfVxSl2IPzaWjUCZqPRkPDM6YDrYGRHuy7\nDghFrmhet/2HoigmpA/oJJALZAKfAYtUjmMXtqwoSj7wMFIpvYX062QA2xz2K0MGBKwCXgK2mOUY\nDOwESj14DxoadYZwH7GpoaGhoaFRc7QVjYaGhoZGvaIpGg0NDQ2NekVTNBoaGhoa9YqmaDQ0NDQ0\n6hVN0WhoaGho1CuaotHQ0NDQqFc0RaOhoaGhUa9oikZDQ0NDo17RFI2GhoaGRr3y/wGaFM963llf\n+gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "out = EM(img_data, init_means, init_covariances, init_weights, maxiter=20)\n", + "plot_responsibilities_in_RB(images, out['resp'], 'After 20 iterations')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plotting the responsibilities over time in [R B] space shows a meaningful change in cluster assignments over the course of the algorithm's execution. While the clusters look significantly better organized at the end of the algorithm than they did at the start, it appears from our plot that they are still not very well separated. We note that this is due in part our decision to plot 3D data in a 2D space; everything that was separated along the G axis is now \"squashed\" down onto the flat [R B] plane. If we were to plot the data in full [R G B] space, then we would expect to see further separation of the final clusters. We'll explore the cluster interpretability more in the next section." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpreting each cluster" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's dig into the clusters obtained from our EM implementation. Recall that our goal in this section is to cluster images based on their RGB values. We can evaluate the quality of our clustering by taking a look at a few images that 'belong' to each cluster. We hope to find that the clusters discovered by our EM algorithm correspond to different image categories - in this case, we know that our images came from four categories ('cloudy sky', 'rivers', 'sunsets', and 'trees and forests'), so we would expect to find that each component of our fitted mixture model roughly corresponds to one of these categories.\n", + "\n", + "If we want to examine some example images from each cluster, we first need to consider how we can determine cluster assignments of the images from our algorithm output. This was easy with k-means - every data point had a 'hard' assignment to a single cluster, and all we had to do was find the cluster center closest to the data point of interest. Here, our clusters are described by probability distributions (specifically, Gaussians) rather than single points, and our model maintains some uncertainty about the cluster assignment of each observation.\n", + "\n", + "One way to phrase the question of cluster assignment for mixture models is as follows: how do we calculate the distance of a point from a distribution? Note that simple Euclidean distance might not be appropriate since (non-scaled) Euclidean distance doesn't take direction into account. For example, if a Gaussian mixture component is very stretched in one direction but narrow in another, then a data point one unit away along the 'stretched' dimension has much higher probability (and so would be thought of as closer) than a data point one unit away along the 'narrow' dimension. \n", + "\n", + "In fact, the correct distance metric to use in this case is known as [Mahalanobis distance](https://en.wikipedia.org/wiki/Mahalanobis_distance). For a Gaussian distribution, this distance is proportional to the square root of the negative log likelihood. This makes sense intuitively - reducing the Mahalanobis distance of an observation from a cluster is equivalent to increasing that observation's probability according to the Gaussian that is used to represent the cluster. This also means that we can find the cluster assignment of an observation by taking the Gaussian component for which that observation scores highest. We'll use this fact to find the top examples that are 'closest' to each cluster.\n", + "\n", + "__Quiz Question:__ Calculate the likelihood (score) of the first image in our data set (`images[0]`) under each Gaussian component through a call to `multivariate_normal.pdf`. Given these values, what cluster assignment should we make for this image? " + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.48112744909e-07\n", + "2.95757712022e-09\n", + "0.331459620105\n", + "16.5271595911\n" + ] + } + ], + "source": [ + "means = out['means']\n", + "covariance= out['covs']\n", + "rgb = images['rgb']\n", + "N = len(images)\n", + "K = len(means)\n", + "for k in range(K):\n", + " print multivariate_normal.pdf(rgb[0], means[k], covariances[k])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we calculate cluster assignments for the entire image dataset using the result of running EM for 20 iterations above:" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "means = out['means']\n", + "covariances = out['covs']\n", + "rgb = images['rgb']\n", + "N = len(images)\n", + "K = len(means)\n", + "\n", + "assignments = [0]*N\n", + "probs = [0]*N\n", + "\n", + "for i in range(N):\n", + " # Compute the score of data point i under each Gaussian component:\n", + " p = np.zeros(K)\n", + " for k in range(K):\n", + " # YOUR CODE HERE (Hint: use multivariate_normal.pdf and rgb[i])\n", + " p[k] = multivariate_normal.pdf(rgb[i], means[k], covariances[k])\n", + " \n", + " # Compute assignments of each data point to a given cluster based on the above scores:\n", + " # YOUR CODE HERE\n", + " assignments[i] = np.argmax(p)\n", + " \n", + " # For data point i, store the corresponding score under this cluster assignment:\n", + " # YOUR CODE HERE\n", + " probs[i] = np.amax(p)\n", + "\n", + "assignments = gl.SFrame({'assignments':assignments, 'probs':probs, 'image': images['image']})" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
assignmentsprobsimage
316.5271595911Height: 194 Width: 259
38.08362978275Height: 194 Width: 259
32.89751022995Height: 183 Width: 275
30.00571564051932Height: 183 Width: 276
310.9352260395Height: 177 Width: 284
325.2614963611Height: 177 Width: 284
38.86657966748Height: 194 Width: 259
310.2395807105Height: 183 Width: 275
311.6378582377Height: 275 Width: 183
268.5294981075Height: 183 Width: 275
\n", + "[1328 rows x 3 columns]
Note: Only the head of the SFrame is printed.
You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.\n", + "
" + ], + "text/plain": [ + "Columns:\n", + "\tassignments\tint\n", + "\tprobs\tfloat\n", + "\timage\tImage\n", + "\n", + "Rows: 1328\n", + "\n", + "Data:\n", + "+-------------+------------------+------------------------+\n", + "| assignments | probs | image |\n", + "+-------------+------------------+------------------------+\n", + "| 3 | 16.5271595911 | Height: 194 Width: 259 |\n", + "| 3 | 8.08362978275 | Height: 194 Width: 259 |\n", + "| 3 | 2.89751022995 | Height: 183 Width: 275 |\n", + "| 3 | 0.00571564051932 | Height: 183 Width: 276 |\n", + "| 3 | 10.9352260395 | Height: 177 Width: 284 |\n", + "| 3 | 25.2614963611 | Height: 177 Width: 284 |\n", + "| 3 | 8.86657966748 | Height: 194 Width: 259 |\n", + "| 3 | 10.2395807105 | Height: 183 Width: 275 |\n", + "| 3 | 11.6378582377 | Height: 275 Width: 183 |\n", + "| 2 | 68.5294981075 | Height: 183 Width: 275 |\n", + "+-------------+------------------+------------------------+\n", + "[1328 rows x 3 columns]\n", + "Note: Only the head of the SFrame is printed.\n", + "You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns." + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "assignments" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll use the 'assignments' SFrame to find the top images from each cluster by sorting the datapoints within each cluster by their score under that cluster (stored in `probs`). We can plot the corresponding images in the original data using show().\n", + "\n", + "Create a function that returns the top 5 images assigned to a given category in our data (HINT: use the GraphLab Create function `topk(column, k)` to find the k top values according to specified column in an SFrame)." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def get_top_images(assignments, cluster, k=5):\n", + " # YOUR CODE HERE\n", + " images_in_cluster = assignments[assignments['assignments'] == cluster]\n", + " top_images = images_in_cluster.topk('probs', k)\n", + " return top_images['image']" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Use this function to show the top 5 images in each cluster." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "application/javascript": [ + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", + "}));\n", + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"https://static.turi.com/products/graphlab-create/2.1/canvas/css/canvas.css\"\n", + "}));\n", + "\n", + " (function(){\n", + "\n", + " var e = null;\n", + " if (typeof element == 'undefined') {\n", + " var scripts = document.getElementsByTagName('script');\n", + " var thisScriptTag = scripts[scripts.length-1];\n", + " var parentDiv = thisScriptTag.parentNode;\n", + " e = document.createElement('div');\n", + " parentDiv.appendChild(e);\n", + " } else {\n", + " e = element[0];\n", + " }\n", + "\n", + " if (typeof requirejs !== 'undefined') {\n", + " // disable load timeout; ipython_app.js is large and can take a while to load.\n", + " requirejs.config({waitSeconds: 0});\n", + " }\n", + "\n", + " require(['https://static.turi.com/products/graphlab-create/2.1/canvas/js/ipython_app.js'], function(IPythonApp){\n", + " var app = new IPythonApp();\n", + " app.attachView('sarray','Images', {\"ipython\": true, \"rows\": [{\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxITEhUSEhMVFRUXFRUVFRcVFRYVFRcXFRUWFhUVFRUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGy0lHyUtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIALcBEwMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAEBQIDBgABB//EADMQAAEDAwQBAQcEAwACAwAAAAEAAhEDBCEFEjFBUWEGEyJxgZGhFDLB8EKx0RXxFiPh/8QAGQEAAwEBAQAAAAAAAAAAAAAAAQIDAAQF/8QAJREAAwACAwACAgIDAQAAAAAAAAECAxESITEEE0FRFGEjMnEi/9oADAMBAAIRAxEAPwBRXtX1Nr5gE/Ix/KdULFrQIRXtBaxSaxgJIIiPHhL7e4P7HYjleo26XRwJKWMKdMK+lQEzCCZWRtKqpPZRBQphetpKDaisD1JsdJFwhdtUGq1qUY9psymFKAg9yk2st6YYe8UKjghDcJdXaXnJMIqTN6Fmu1nPJawY/Cwuo2j2z6Zmel9OFmAEqvdOD5EZXXiyKejly4uR8wFboheEkZC1V/7LEklsN8R6eiUP9n7iY2Ewu2ckM5XjafgrDwelfbu5AB9MJlpns5WqEnbtHGfK1Ol+zLmGTH2S5M0SFYqr8GStdKqvAdtIb4PfyV9XT3MkkY/0vo1KzgAQhNU04OGQuf8Ak7ZZ/GWj5deggx2mWj6C6rDn/C38n/icOApnaWyPJGU40q6a8GIHoq3lanoWMS3pk9N0ilS/YM95lEV6IiAjLSgOkW21npcbvvs6VHXQltNJcTucBP4+y0NlSIC8p0yOUdaU1O7bHmUjoUmsRbaQXPphT2UBgvHFXupIauYCKAUmuQha2pQoOuOkk1msAD8SrMbeidVpB9zrjmyAJWS1PX7p7g39jXYmPsVZR1emC6ZnweyoV65eAXNDQDIyuqMal9o5rrkumFUbFu0biSezPK5V0sgHcuR7N0Ue03tWWh9Fn7+JBwJ7Hqs/oNy8vDdxk+e/qmXtPorKdUbGk7zPOOZKlp9kA7dx8vPp4TzwUdCvk67GLHvBcepwmdo8kZ5QlpTnnymVvTAXLbOmUEUWoqmAga10GjJCrfeEjClxbH3ocsVwakdpduHOUyp3khJUMZUWVXqn3qrrVZXlIJlPQGwgOVtDlVMaVaMFAxfUAhBtpyZ7RfKjUp+EEwtEGW4VhtmnCsDJCstqXlZsKRVQswCjW0grmU1cKaR0HQMLULn2YRzWL0tQ2HRnrvRWO5aEH/8AHmAy0QtRUwoMITrJSF4oAsrKAjf04VoUXOS72Nor9yFBrYK9NSFU9yKAEU3rt6G94ourraMFuqiEk1rUGsbkwuvtQgL5/wC19895gcBXw4uVEcuTig+617aCR9FnbzWXPJnv8fJKHXJ4PCoe6V6cYUjgq6oP/V+OekdbXBqN2u656+yRALRaXbt2+SR2jaSQJT3oOp3tMADGFy8Hs+053Fcobj9lP8n6NdrIBbwCRlILFrHZEDP9lONS4O0glZKSxxIxzJHH2XPjnc6Oi60x7VvabDBIGO0HR11ri4A/L1SC6JqvAPnk/Ppaiw0ljMxLiI+XyT1EyuxZurfXgrvtVDJlsnCopay9wLmUyYx5A+ZTbU9KJdvGTwAeM4RdhpTKVJzR8Rd+71K3KFPgONt+ie11GofEfaCnVpcy2SUPUY2kwvdGBMJfbXLqp3bDHXhBpV2hk+PTZoGVwcgoi2rgmOEnoW7+W4HJTynRkAxlTpJFJbYxt2zlXVAOEJZsIPOEwdtIXO/Sq8IUoUqhQb7oNMKz9W0raZtkKtUgYXtpdGZKGu70AFKqWpmYI/4nUNoV1pm0oVpRQesta6ieITuhcSFKoaHVbGbKi9fUQIcVRdXMJeI2wi5uIS9+qMb2kmtXzsEH/i+f3uq1SXZIyuvF8fmc2XOoPsFvqDXHBTFrwQvkXs7rBbgkknJWptdePJ4S5PjuWHHnVLZqbhwQVO4lKauut43cpjZvDhKTg0uynLfhbVa4jBVdIHgo5sKogSl2HQuvLMHJCxftJpjs7TjwePuvotVohIr+g49T9FbDkcsnlhUtHyY27pgCSp0LF7jAC3FxpdQuw3H5VdPSHtORn1Xf/IRx/UxPaaNIh/Xj/qZU9Na0YMRx2mdOxLcmVGo0+FJ5GyixqRWx9QCPC5WuPqFyIB6+3a0l0Zz/AO/VZPVbhjGulpc4uxJgeZWh1y9qBgFMEkmMLLX1J+yajSJxJ8/wFPCvyxstfhA/673j2ug/DAj+fVbKwrnaPp+V87p0yDPr0tLbaiIEyDAj1Vc2PfhLDk03s1dxdiNpxj+lKq/vHD/6/wBvnglVmtuzMnj5Z6CYMuQGxBEZmIH0XNridW9ma1OyqbQwuL3T5wPRGaPpFSACSGzJ8fQI51w1sEyQTiOTKYOv4gSGhPV1rSJrHPLZfSc0ENCYU3gJXStC47g4JoygRzlc1aLzsl+oHS8B/wAgVz2eEBdVnN45Wlb8C3o68pcu3JHcaoKZy7HClfXFQAkH5hZi8vdwIIz5XXixb9OXLl4mkpa5TM7j+V5b3jScHhZqwoNcdruSJwU4pUGNgA/cp6xyhIyVXbH9hqTQPiICLdrzWiZCy9RlMA7jjpJrzkljjHjP+0iwTTGrO5R9Go+0jT38vVA6trwOAV8+bWfMycLx9R/JJTr4sp7Jv5baNDqWrFzDB4Wced7xPZyiKFvJlxVmwGYAaB32VaUp8I1VV2w2nRpNAh2Rk+qJuNRa5rWscBHIj+Urs7eMlwA7kdI+qKIy0OzyeikpLZWW9foXXG8Okkn8CFp9K1lzGweOklrVqZHc/L+VOi5rhAPC1rku0aHxfTNVV9p2Mw4plpuptqt3NMrF07Ck0EvG4n8Jn7NU4dLQdvGftP4XNeKFO0dMZKddmztwSrjSC8ouEKbzK5DqSK/07YQtWiJ6R7WqD6MrbM0Ln24cleq2oY3dwtAKRCX6nbOeNvlUiuydLowz6bSSc/dcnx0aOiuXX9qOb62X0ADkoLVrf3g2/wCPY8pPp2rPBDXCCeJx9E0r3XGDMeqnwc0OrVSA/wDgqQEjB+c/hFmwpubAGQIB4S+81QDmQUrZqVVxOwmFVRdfkk8kT1oeuomkQ+ZPEfLtB6nrsna0CD3/AAh6tSsQHH6jz6SgLimXOmI7PgJ5xr2hMmV61I3dcnYdnO0AeR5+qQVXuPJJPrKZW90WyIBhW21YZc4Az6dJpXH8E6fPXYXoOp1dwbIPGPQfNfQKF6wNG4gTHPnwvnlvbVKlQFgkCIIEfMJ69tRrIe0mMtxJkeVy54VM7MFtLs07xguaEqy4nM/6V2i6o2oIgiPOFbdBs4/C50nL0y7aa2Z280+pJ2/G3069FmL+zDTJBb8wvpjGAMn7rE+0ly3fBmPl45XVgyNvRy58aU7FNKjj4D3I8+oRXu3ERMnz2ltK42OxwjTeA/2CulpnLFSeXNrU2yl9Km4mAm1K/PEmFNjsyIn7FZU0FxNPaYBUsXb/AERZ0pznCIgdJy2qzsCVVWumf45P96Sc6KLFKFVwzbw0Hr1+gQdSg6YIIKdU6oJmM+qoq1clp5I5TKmLUJkLa3H+efyAjnNG2YVFrEZIUKl6G4BJyle2x1pICqMc52GomztncwjbSHR6pu61AiEKya6DOPfYtZZuJE8fwjtPin+04J4PR7XlavEjhDOpTn6qfvpTpeGttLgHtHCqPKxVhLc7yfTwmLtQDeyVz1i76Lzk67NGbhVPvBxOUls7veDlGNptGeT90rjXo3LYYbg+F5ReS7PCHdcwJIMfJVC8xMY/P2Q4m2MzTC5IjrjB2uTfVQvORTT0drcvE5/KKvGNa2TxCaVTLYj5pDfXciD+VSadPsRpSjP6y7cPhAmcnyFdpemO28AHvyo3zWn9vI8IzTbl234vwuptqejmSTvbDbZreEPfspzkDKsbUacxlB1aD3GRKRLsdvoX3tGnPwSZ6CeaF7NlxBqD4eh6IXTLWXBb+x2ho44S5srlaRsOFU9s7T7FlJoa1sAI2pbgjhUtriUfRcCFwU36dyS8Ri9Z0iq0l1L4ZS4OuG/vPC2+q3Aa0mJhYrVLzfJ7j4YXTip0tNHPklT2hja1HFnUEJXqGntcz4my+IB6579UkstcqUSWOyOPkmbfaEOE8eQrfVcvaI/dFrTM3XsyP8TCFIT691ZrhgYPKQ1QATHHS64bfpxZJlPpnu4jyvfeHyvAV6D3CfRM413REleMqkGQV1QKCOg7DmX7uyoPvnShQpbUOKDyf7LGVyFca05kz46QYCbUtPGzcXZ8eEtaQZVPpAtK7cCDKb2+vSYOP72gP/HA5Ex9FJujF2GnPrlJXB+lY+yfBvqGoNDQAckf3KAtdUcTBEhWWmiy5rXklvBI5BPBH16Wz0j2coUgPh3ujLnDk+Y6ULyY8a/Z0RGS3vxCKowtAcATjMCY+cLyo18hhpPl3Eg5W8axo4AXPDSQY449FyfyP6Or6f7EOl6I5n7jyMjsH0Ka21k1vE/UotgXOUayOvSswl4DusZjpsyY5+SrvrBvuyGiDz6yjDV6CruHygqZmkfNrvRbve7a1sSY+McfUrlviweAuXWvlV+kcr+PP7YuZctE4P8A2VVeaeHtwFTbV9wCbUqoAhTe5fRVf+l2Yt2nu37YIAOSnLdKDWkjmJTVxYXT2vbxoj4Tn0TvK3oVY0jNCniSIJlGsoBzWgH5ob3FYuJNMwODBTPTdMcPin6Qf9qlUkvRJXfhdS09rR0ERSYB8OT9UFcCuXwGS0fROrSy43CD6KFPS7ZWV+gSo3bxPr2jLdzhwcIi4t2xntLq1Q0xIBLRz6Ke9j+Bd7bmo0tmJHKyVx7M1ACQ+YGBHH1Wsp6g1zA4dqLqs5TRdR4LczXp8quqADoJBPfoVbb2tPkux6I/2qsIql7e+h/tLtKuAHQ/j+V6ifKNo8tpTk00dcUqHRMpe+ktNTtGVAXQI9IXlH2ea7Mx4ygsqn0asNV4ZptPzjwucRELUUvZZ0QXY6jlVu0JwMbMfIBH7p/Yv8ezMlRK3VHQiQBE+Z4SnUvZvbJa4eY4+i054b0avjWlszcLlcyiSYhO7bTabR8bZOMdz/CpVqScY3RnkZQu4bt/3laA0qQGxwEHwEFc6RSzteR+Qp/ZL9KfVU9pgFPUCJEYP0hNaGqta0Ej7JM6zI8Jpoukmq4NI+HszkfRC1GtsON5N6NJ7OVm1HOcOB181pGuSmw0xlGdk55kyj2uXlZqVVtHq401PfoSaiiJUGlXtAUSh41xUmFTfThu44Cos6u8SBhHX5Ns9rOgSOksr35JiCMSE0/Tumfwhq1gSZdx0AqRr8iVv8C9zTOXGfmuTltk2OFybmheDM7W0x1Iy3I9UztLTcBPKZ3NPcFGiNqzyNoyjTINtWjEImjatHSk0yVY4qbZTRE0wrKdEEoKnUO+E7o2jjnj0Qp6MuyptkPCIFsFdBbyF0E+iTY+gC4sgSqrjTRsIhM6dOTkq6EOTRuJhDpzqZLW8eDwPkpvpENI7Wiv6QkwDxyk4oE8q6vZJzoxmp6TcPOBP1HCAq6M9rQC13yxM+sdL6fZaa58xwOSUzsNKLAZgyfCt/Lc9EX8VU9nyr2e9lrt9SGiGETuJIaM/k/JbZ3sVVDYbVHA677ytbQZtxGPRGsOFHJ8q6eyuP48wtHzdlu+nhzSIMEkdohlAuycLa31EPlpAjH38pJf6U4NcWZwSB/CVZdj8NCavtaJJwkF/Va/PEeVY/UA6ZEdEHygmWhcSWT4jr/8XVEa7Zz3W/AK8p06Y3CBPaBNUEzif70mmo+zVR4wfp0kNzpVaj8TgYnkZ+668bml72cmR3L/ANei+uHRE/31lCAHiVS1z3FfQtD9mWOpMqVcvLQSOInpbLaxLsXHLyvoy+k6PUqDeANoMEk+k4Wv0jSvcsJkHdHXEI/9IBDGiAFd+kdx0vPy/Id9fg78eBR/0AIVzGFXe4E4RdKmGxKg2XAmUXJlY2279wVghxAAjyirGjtd6JGwpA4ZBgjHqiWUwBxjowrLqgCD+EIzdETwtsOiwUhyouYrRVwqatVYzIGiuVZrLkexRU6/EwrWVl6+2A6QtO2eX4HordE9sYMqFSqSQj6Olkdot9gIx+VN0imhXpFuDVkjIEhaZkIC3tNpntGtcp29jytEnNCrcvX1FTVq4SoJDfC8D5QznSVfSCJjqjVXTsATJRYaFazCHLQNEqNIAYwroVO9SbUShPKjVCelaXgqtwRTMVtdleVeFMBVuESUdmMHQ9lZqVHVTDdztjW+J5JVmn6eaZiOz9ulrKgnMQqK1CchdP3U/SP1JeAApCELc2zHAhwBBwQUXcyMKjaSgq0HWzMUPZZrKu5mWzInkf8AVs7cAADgRCGPwr0VkMmSr9BETHgcKbVFw5VLaysY8KRUqpWuZKLp0gFWagCqNdYAU2mAZKvpunhCMAPatDo7QCRrvIPMoZrjC9ubgIcVZRQGECoqqr1W96V3V44E4x5/lUmWxKrQeXLkrb75wnAlcqfX/YnM2f6VgGclEW1JvQA+SGbUkyjabgudssi4MEKJwvQ7CHr1Eox5VqqIroKrUJVJc5HQNhrq+VW6ohmuVoK2jE2oqmEMwIpqBiwLi9QleFuFgkhXVragKCLCpAEIaMGyF25CSV575DRgsFQqvCF98TwvCD2joxOo6V5sMKbGhU3Fy1o5TIApvHgFQbVQ15VkyhXXBCcTYXdV0OK6CqV5UBWW0bY0FwpC5SttVWAlbRtjE3K5tdAR6r0FbRtjendwFCpdylhrgdoS9vwGmDlNONtgdpDWpXAySgH60wH4TOfsk1xqO4EEDPc5S/3oHHldeP437Oe8/wCjZCq9/wCwbuindvoILRuieZkoH2Vr0xRaeZ5+aOrXBceTHXhc1tp6RadNbYQbGMSvF4LhvlepNscm0Itr4CX+/C89/lIFMYvuEJVroepcAcIdji4raDsYU2SvKoIUKFXaIVT68rG2cr2oT3isFZY2w5jlYx8oIVZVzHoaCHtIXsIZlRWIBLXLyFQaqrfcIaMFyFU6mEK67UP14R0DYX7kKJaEGbycBRNVHRtl1zcANICWOM8ry4qiUG6smSFbCnMacIG6YJiERScueAimAWPoSuNqjHOCg4o7AUttoU9gU2uVz7Vx4RMDFgQ9xWawZMIi5pOb4Sx9EPMuyqxKfpOqf4Ba9+DAiSq6n7gTx5/hMTprevur224EA5V/siV0S+un6Bv01jmEgZPCKs9EpgDdk/dFsAVvvlF5q8TKrFJfZ2TaYOwROTkxPp4RIqQEG26MRyufUUW2/SnSLzUXIT3i9WMWfq14b1cuW0DZBtxJRbK4AXi5K0E9/UKBrLlyBj0VFNtVcuWCXNqomi5cuWZgprlY55XLkoxVXnpLqlUrlyKAwV9UqIevVybQoVRZhTrLlyxhfVCqFElcuRMTFBwUvdErlyBiX6XEr2nayuXIhCKFiJz5R9ZmMYXLkGzCoN3HPGUquGAOwuXKsCUcZUXOXLkAkRVUhUXLltA2e+8hT97uXLljEtwXi5cgbZ//2Q==\\n\", \"height\": 183, \"channels\": 3, \"width\": 275, \"type\": \"image\", \"id\": 4947632400}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxIQEhQUEBQQFA8PEA8PDxAPDw8PDw8PFBEWFhQRFBQYHCggGBolHBQUITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OFxAQFywcHBwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIAMIBAwMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAADBAECBQAGB//EADIQAAICAQMDAwMDAwMFAAAAAAABAhEDBCExEkFRBRNhInGRBjKBFKGxQsHwFVJy4fH/xAAZAQADAQEBAAAAAAAAAAAAAAABAgMABAX/xAAgEQEBAQEBAAMBAAMBAAAAAAAAARECIQMSMUEiMlET/9oADAMBAAIRAxEAPwC0UXSOiiyR7zyEpBIoqkEijMNiyNKu12xz3kl9Df1c3s1v28CEQkRLyMpvSZXGSltaknvbPbyzRlBKLTjVRa8I8DA9Ri1cMah1dXtuK43fVSbSX3v8nP8APxuLfF1mtjS1JrqXCo17PP4M8K9xTj0XXVK43/A9DVpq1ODjxcZJ064OLviurnuRbVpyvevgw9Smj0enSmrae9rfYx/VcHS67dhvjvuB3PNYOXT2/l+QctOlyOZkK55HQiTnEE4jDRVxCAMcZdxRNEUBlHEjoCqJeMAaICgT0DLiV6QaIaiXjEskXigMqohIot0g3rMa8t/CFEWU4x3k0v8ALEdXrYdr/lCWs1PU2/wZ2TKPOC3oxn1rYnLMDnIDOY+F1bJlF5ZCk5gpSDjaJ1nAqIML0SLJEIsjscyyRdFEERmWiESKRCIDLwQXevgHEKpP+ACtENhk00+a334JWDh9rodnKCSSXahL0actH0/1GVJN7JP+GTq9S589u/cD6Zp4ye+yrtV/kvn07jf5j5a+TlvPP2XluENQKzVj+THa32oTaphAFkUXkiFELKdJ3SFUTnEXRD6S0Yl0gkYi0QukjoGVAt7YNHCvQXjEYWMicaW/YGthPVZulVe5iZZjWrnbM7NMtzMJaHlmKzkXySF5sYqJzATkTIHJmYOTIgQy0EYRtjilnCmegRdIqi8TtcyUiyRKRKRgTELErFBIoDLRGNPG3um1XYBFGz6RpY5Odun+/wDyxO+smm5m1aMLfT2Vi88a87ptUOaqSUnS+G/9kCjh6rppVVXdtkub/VLBNHlcNlz3TG8uZtiULT+rb5rfYOpX8on3PdNyPCMHB9X7r2rwI5tO7f8AzYag0WpVff8AOxM7JcStBprcG0MCEWSLKISEAWirCBdRCdJMUJaZVRCQgWSD44C2ipHAZfqjcZbPtx4N+ETz/rWRObp2lS2Nx7Q6/GLqm+WZuQ0NQzPyo6YlS8ykohGDyBAvkQvNhsjF5GFVkxKtnJgZZs4q2cAz1MUXjEiKCo7HO5IukQkESMDkgiRyQSKBrG9NoOqrcVbWzdf3NLTJ4pSTrpSclW6+KM/Diu19XHZuk/kti2dNul2I9e/1SeJnL3JXxb38KxuDTpL9seyq2/LDYUl2V703FP8AyV/p2qapVSfN/cS9ym+ti8IKnfnYrQy8VkR0vbvTl/uSvSkhKcthv07UKPKTT2p+BSUbJhsgX2DFdUl1Pp4sX6BlROUDaGBQxhlEsollEW0ytF44i0Yh4IWipDCXnOMdm0r4srrJuMbjyYOpzNvds3PP2a3Gjr/U4pOMVbe19jzuoyWXy5BPJMtzzInboWVi2QNkYrlkUIqwGVlpZAGSQBBmwE2EmwZmRRxeCK5ACC5HFWjgC9nELFFIoKona5lkguHG5NJctpFIoPh2ewtFeWDp5GNBpJZZKMeeW+yS7smk91f2Y1oNVLC24Vvs7Vk7bnn6aSb7+PRy0WPHj6fpurly3J92Y8dJGT8vxwP4sbnilklLdb8bUuy/52EtNlp2cnNs3310dZc8HzaRxV9kCeS1TGcupb57iEp7mm/1qbxvwwsMtbp9mnfgRhkIySfBsbS+TJbCRVlMeO2MxxhrRRKiyiFjhG4aJtbCWyGkIqJeMBqWna7HRx0DWwFQoU1et6do8+TQ1K7Jc8mTrqWy3ffwjc+tQn6i3tP+PBm581lc2bf7CGozWW55Ttdny+BaeQpOQCUimFWnkF8kjpMG0Zg5MDNh5RB9ANHAGVUbYd4xjDp6VsXRwB46F8iHMzFMm4BLNkBOkkzY9lBjOJJi0QkTtscxv2fwWjAHiytDMHYnsE1oYJyipbJtW/htG/8A9OxqVJp2uqO1t89+Ox5zDKmu9G/D1hfR9KSimmr5br8cHP8ALOt/xW+O85625RjLG01tVdPHHYQloo9FJbpcjukyrIupcPYrq5rHHlfCfc4pbLjqslmsJ4ndPYBPE7NbNL3Epd7rwJ5sb8HRKjYTUAzjtuFnBUn3KY4N8m0HYcNsYxY9ycWTpfG3kc0soNr57i9bDTK7HpkO4opItLpXyUcuaIW6rJiM0EykcK7lcadhpwe1A/PG/fSXrChjxtvnhLy2eP1cpNW6Ue0Td/U+SulN8KzyepytnT8XPiPyX0tmmJzkHygHE6EgZMHQd4y+HDbBaOFfbJ9g0v6Uah6e5REvRpGJjwWdDT2+Nkb2j0FL6lvvRGbTqK4+9eRL0OMbFpq3ZTUSQxqJUZ2adhYvl3AyQw0UULDrAdJBrY/TpNJ0cJ9obK14hYgohYno1xCJhYToHFBIxAI2PKO6eSEIxDYxbBle+0OJRhGvCf5QlrMfXPfdR2pbDfpeVyxQb3bir7binqmpWLhbyb34r5/ueZzv3s/rv6z6z/hrBgil018+SnqGG1t4F/StS5Tl1cXS8Gjni2tgdbz160zrnx597BFwdqmlJrx/kpFF8/qOiNpcloRXYrKHkvBC6JjBkrZ238+DnqavzwJrM42u7qwsYOW4bxP2h9r+Q1j1FhXmFJzjDmlfHCsFLWQ46lZK8y/istjC/UOVue912PP5Dc9W+qUuEk653Zlx0zlv2Oji5Eev0lJApwHc2Gv/AEK5+R9LimFfg2NDpI31JX4TqmZE34LadytU2J1NNHqMeli92l3+nwdJ0C0TcY03f3KajJyRUdkzGVqtXsw2XIZmq3Y0gWktRksAsQy8YLIxylpo1/096Wssm5ftgupiEMZ6b9PKKxzS/fLpS/vZPvrw3M9MNwW1Lb7HB4+j5Hv0vckh4s87FhIyBpF0j3HmDRmEjMCkEihcDTEcgzpZpyXV+211fYSig+NC2GlfQ9G4uEej9tKvgV1ujcmr+pcPtSuxj06vbio1Sils7S+L7ka7UqC53rZeTyZbOvHo2S8+svG+iW9/u48fJoS1f1V/paMPJq5P6n54rajsWrlNqP8A3bccX9jpvxb7UJ8meQXJkjKT23bf2+4eMNqRb070+St5LSvZVu3fPwOvBFPYTvuS5KPPNzaR6a57ELIkH1WCk93fZL/DEdQ1CLk+Vt/PZB5yxrsquTIuW0hjS6uL2tbd/C+TyufM2+QP9Q0UvOxOXK1vX9XGUvpbdbfFfBiPVNdymXLYtOQeecmNbtHnqW3Z2XWSe10vgUshRbD4Jr3C84dS2ROn0l8jWRqKoS0ZGa18DOkxb2Vhit2MWooFowzLJQKc7Fv6lMieUXBRkyCOaaOzTFMrDgOyZQNkSOirMw+GLk6R7f0L0r24qcu9OPlmR+nPR3L65bR+e56fU5ElUeEqOf5Ov5FuZ/TWT1Hd1svBJ5+efcknimvPpFoh440WWE9v7PLwJIIkEWElYWbQxEUEidHC/AaOknV06ur7X4BbBxtfp3XdHUpP6eV8MP6hrll42W6834Zj5NPPFBOSrr3X/iBhlbOTrmXr7R0Tq/X61oSzJKufK7DOh9RcKSUaTumvPO5mRTYzi25B17+jPHoMPqXU90l/crkTfF/JmYnQ4tY+O1UQvOfiv239aGLT2v8AdmB69njtFdnubej9RxuouS6uF4/Jk+u6OHVKUnUpO0l3VVv44Nx516Pc/wAfHmtR09hGTG9U12F1A6o5wWBmhrpthVBAtHCHtsc0mKqbCe0m/gO0uwtoyLNgJwXdnSfInkmwQV8uZIUzaqwWaQDGrYcA9gnSs7JqCvSByAEPLOygSGJtmxo/RZSV1v2sXrqQZNYLxnp/056D1LrmtuxXT+ldMvrVfHk9jGCjhTWz2SI9/J/Ipzx/0vNKKSWyRl67PQTU6muWYOs1dicw9rp59zjLnn3JKfUn2ek9qBXpS8FFJUR1Hf65bg3X9ifc+wAlIOF01p7lJRVXJpHqffx6fH08yit1V3Lyea9MzyxuTj3i48eSmXJKUu7b5IfLz9rn8W+O/Wb/AF2vzzzSt8LhLhIriwNUu7D44dJf364fZ2wb/I2f2ohts+waORKjL93u2THNbDeWnTWnksX1OVrbyKvN3BSy2CctaZxSB6jO3z9gPuA8kg4GgTVsh8HSZVsIJSK2VlIFLIbBHciPeFXNlPdFsGG55AE8uwGbBZJAELK7Yxgw0jtHh6meh9O9NTau33pcWL33g886zMOilLtzwEn6VK9z1C0/Srrft8fAPItt+SP/AKVT6MjQ+nKLTfKNqCUVsKwdFp5RLdNPF9TqPNbcfAhqddLy/wAspqcpl6jKGctanU6lszc+Wyc+UWT7lueU7VrJAuZxTCa9GpF7FI5C6mdmOfTUZIusgomel9K0GGEOvLUsj6ZRjbqKe6TXd+RO+pxNpuOb1chjBpMcMUJNvqyRad00nyZmoydPA161qU5Jp7JUktq/gzJuzm5lvtW6z8g3u2Ke5yEhITzSp0ivMTtXUwkWLwCKRq0EySKKQNytk2Zl3IpOZScxfLkNjaJLKDnlASmClkNjDSyFHkASmAyZgUTE8gL3RZyLYxaY3uyVHydDLtQOeQURY5af2Nz0z1eSapLelv2PMSkaXp+3PAncmGlevw6u3vv+dmVytsW9KyKbSr/4aetilxsc98qv6z22AyTY4kL5FV2ZmbqJMy9ROjQ1mYxtRK2V5hKFN2ys2F6K+4CZaJ0Ns444IN1MsmQokpna5zGkyuMk1W18pPsaKzv8szccPP47jCyUQ7y1TjZE58jb3KvL2QHNLcqmLgjvJQrdnZZg0xgHUiLBphEAVokzlRVMHnYGCnkATmdNgpSGB05gZTKzmBnMArZMgByKzmUTFomok2DU6KzmIcX3COuxdOxrTY/IKw2DC3u+BxTrZcAPconFcmJfTN/0pt108/3PQe26+vdmb+ntJ0fVLitr/wAj+r1SOfq+q8zwLJlpGXrM52qzmbny2NzyFpfUzFI+Q0/qZ0kkXkStAyTBdHdhG0L58l7IYEOaOAM42Nr0DGfT/wDV9l/k447O/wDWoc/7JnySccQUUmVZJwQCZBxwayQsSThTOF85xwYBWQKZxxmLZAOQg4AgslEnAoxxEjjhaKcY9j4IOEoxZmj6UvqX3OOE6/DR7L/R/BlZ2ccQi1ZepYtLg44tyl0FDkHnOOKkKTAvuccEFDjjjM//2Q==\\n\", \"height\": 194, \"channels\": 3, \"width\": 259, \"type\": \"image\", \"id\": 4947633040}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxQTEhQUExQVFRUWFxgXGBgXFRUaFxQUFxcXFxUVFRcYHCggGBwlHBQUITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OGxAQGywmICQsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIALgBEgMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAEBQIDBgABB//EADgQAAEDAgQEAwYGAgIDAQAAAAEAAhEDIQQFEjFBUWFxIoGRBhMyobHRFEJSweHwI5IW8RVigjP/xAAaAQADAQEBAQAAAAAAAAAAAAACAwQBAAUG/8QAJxEAAgICAgEEAgIDAAAAAAAAAAECEQMhEjFBBBMiUTJhgaEUcZH/2gAMAwEAAhEDEQA/AM4SubWcDIJUiFAhfU0eCN8tzx7bOMjqjKefNJDCLdbjy5LM6eSbZbl4M6nNBJjmZFy2+ztr34qfJjgtsbCcuhycO17S5rmm19x5dEBhcKQ9satJ3ngOnRFZdlwBIc4GRAE2jrCvxFZjW6J2tt8KnunS2O/bFuZVKTHkONzsYmOPkm+FzAFgAvax2+SBxWW0qjNWnSQAJLiZKGOTkGQ+LbXn/wCVzUZLZqckxpUrveA1tiY8vJPslFQCah8uELN5VlVUODw4i+5g27LVYLCVZl5BaP7sps1JUqHY77Y2p1xsgMyZNwjqlZulZbHPe58A258IU+ONsbOVIJp03zbZFU8MXfEYHRe4QhrZJny/lD4vMIgBFtukZpBj2tbYXSrHPurGYjqo6NRWpV2Y3Zn88awUyYkm3NZvCYFzxLTtwWr9ocEWsJG37pLkHhJBm8dgrccvhaESXy2GYBpbZwgDoiBjiXQwE84RJIcNJXmHwwZYbn1S20+w0FtqBreqR5hV94+Btx7ozM8OQwnV80ky+sG73JWwjqzpS8B9LAHip/h9Nyf4TLLW6ocduXExvHNeZnTb6ienl0Q83dG1qxJW0ibSUsLPESLSmVTDXtJQ78IbnbzT4tC3ZS2oQuxuOAbKXVcQQbiyi1pqkDYJnHyweQK/EOed0XgsLHxI2lgGA23VzhG65z8I5L7JU36RZD13uNwCicNT1O6BMa2lg8Vj0G3dK5Uw6ENDCOfd48p+qYU3sZb5KmvVkEsJMbyII677JNWkODibz8kxLl2A3RpPxY5LkrGIC5DwNsucFAhXuCIw9Mth1xeAd78oVjdESVleGpNaQXgOBMWuQf08puL3hFCo3VAJIFiQZnjccTPHij6GF960gQ2BuGzBO7d9tkmDdDrzHNJT5N/Yz8TRYB8AFsHgZH7IrE4AVQdMNeRvzSnAU2ubZxA6FPsDSbsHHhY8VLk+LtFENqjE5jUqMcaZnwWPLuFPBZ1Dm6pt+bl91qfaPBmqSWtDSAPFI8XQpXlXs8DVAqNJB4gWt5JyywcLkBwkpaNNlFZunUXa+RBlP8O8EEi/7IfKMlpUWnQBcze9+nJe5hVgQTpPMcV5c2pS0XRTitg2YyAbhI69QCPEIMG3z9LoHPcVXa2YD282mYHIjdZ6hmBmxl0GGnZ3Yc77KvFgbjZPPLujbDEtf4QCCI+10LmmHdTbqftwBNy7hHVKsjzprRrqbjwt78YCPq5l+IrhtiG3nkOnJY8bjLrRqkmgLD+/1yabtI9LrVZbTBaC6xReAwpibR9eqGzWq1ux8uCROfN0kMjHirAM9aHNN7BZjCVwyYbE+oU8zx8yAZvaEFhZmCDJVePHUdiZTt6CqmKdqG2n6d0ScbBQRZvAS9jXvcQNm7zwR8EweTQ0zavrbpndeZZl0AG0d94ElUOoPIt8XCOPNdSzXSwNcPFpgdRtDvuFlOqianu2Oq2NYxlrE2EW7uHK8DqgaNY1HEnb6oXCYb3plwk+gTRmCjoltRj/ALD2yymByS7OngNMb7JkBCU5vSD4k7clkPyNl0IHYad1ThqRDwBxR7KdyCV67CgEODv5CrsTQzwuGG5XmMwrTtuoNqNA3UnYmAkbsZoFp4k0w42kQB0Bm/09UywLWPYCfETus+97qr3NaDBi/wCkjYnmOiYZXldRtQNe46eMGARG/ZHKKS32YnskMtqvcTSFgSNRNv5RQ9m2XJuT5AHjA5TKdjEtgNbZo+f8KmviAke5LwHxQl/483n81yJOL7rkfKf2ZSFauZVdBjjv+/aVBzVzHkbL0WrPOTC6WJLbtN4uPsl76p/v7Kb3TcqohYopGthOWhwMttz7T1WkyjHta8tB6CZ+qy1Os4AgHeyIGI0OBYZdF5E36HmlZcfMZCfE2rq7BXDQYLmahuQT904wzPDcxyHFfN6Wd1Nesm4EeQWpy32rpljQ8w+4Jj5yoc3p5pKkV480X2OqmMLTpd4WqD6gqS2N+N5CSVM0a4OY1wl1tUydJvxKFbjjTOgEucYgiT5Jawv+QvdRpDl7Wt07zzWT9r8vw7GiGlrxeW2k/wBCfYc1HgB+pp67JP7U5e5+1QWERwciw3GatmZNx0jC1KrncS79lvfY3CUiGPdPvCNuCWU8mbTaxxE6o8jy/la/CYJjAHMAFk/1OZONIXhxtO2NatSBZK8dQFRpBG6Owp4QSpVacLzU6ZW9o+Zv/wAVUtLdTQfQo3GYtjbixKN9sWsLNocNlhaldxsST+y9XHH3UpEU3wdD6tiTUIARGEwTwT29eSXZHWlwERzK1VVzAN7jjO6HI3F8UFDasS4lhaAd+gnfl1XlbAmoA4/Eef8AbKVfFhxgQjMGARuCVjbSs1UwWi6qwWbYD1TTCYrU0Sb8eivFLwxZZ3E4o0nFrhF7HmgS9wK+I6xAHdK8VXaJlLK2fRZKcbjSZg7p0MD8gSyIY4zGN4XXmG1vEAWSnDYZ9RwAC2OAwDmtGqB2R5KgjIXICwODLSS+97I1+G1GwVg0g7phQrtAU0pPsakhO/Aupy6194V4f4dyArMzxoA5pO3FlxhalKStnNpdDWg6SiatGRZV5fh+KaU8KSlSlTCSsRHCnouWg/8AHtXLPeN4GTIUqdAuMASisJl9SqYpsc7sLDueCb4H2XxZMtbA5yPovTnljHto86OOUukyrIMC0mTTBI4yCB3B3Kr9qm0QWhlPS4iSRLQb/pWjw2SOZ/8ArYi0iRHcaV5XwYqMaKtEua3arfY38NgXKL3l7nK9f7KfafDifPRTuJsJ3WuwmOo06bWsDTVIMO0tEGOPzSnMMtBfppO1AiY0xG9oHZN8j9lzIdUE97t8wU/PODjcn/AvFGSdJFeAyN1Z2o0hO+qDpPcCyji/YaoSSA0Do6w7CFu8OHNEF47AWXlXGgeHYnioP8rJfxK/YhWz5JUw4o1NJPwkguAMDnA5p5lWIZTpl51WPhMb952UvbrDtAa8ETMEc+IKy+Ex726hqJBEQZIV6XvY0yRv250aPGe0bqsNp2d2lV18HV0t9434uPfab2SbLcb7ozHYj6pszHumXOs42mbg9EMsfDUUbGfL8hu1pYxskPaNxP8ACIyfFsxB0Nkafyncclnsyrus1rgNRMSC0Ai6e+x9HQ06i3UbkgyYU+SFQcn2OhK5V4NTTbpbBSvH4kmQASmT6zWjmgqtUO2UUe7KZGHzrLapdrdccBx6rN5wwB0NbHOF9KxlH3nhmyzntLkeks93u7d52EL0sGdWkyPLj1aMhhWOnwceP7DomFXF1Gy2oLxaOPIpzluTaTLjq/btzWjoUaR3AJjiEeT1EU+rMhidGGyrAPrkgSBx59FtstyCnSgmS7mVe+KYOkBvYJe7MXEwJKmyZJ5OtIdGMYdheZ12tEiLeqwXtHmPvHQE29pcY5rZAN7dlncpw+t9zdU+nxKMebFZZtvihZCZZblb3/CC4duPdbjLMkotAJY0u5m9/NN9bWiBAHQLsnrPEUbDB5bMbRy2rT/LHzRlPFPHheIHOEzxuOAG6QYvGm6XG59oJ1HoKxrWkSPkk2Jx7mGFRUxp2CZZDlfvTqfe9gfqm8VBXIG+TpAuEaargL3WjweThsGE2weBZT2AldjKtlJPM5Oojo467OosAVwrBJaWME7qFTHzZqX7bbC5IefiAuWaNaovUXs/s7mfW8JgRTEMADeX7ymVJ4iyzNb2notDmOOl4BlpBs4flVOV5lqa0h5M/ljwi+5Kllim1bGLJG6RpKknjCoJ4OM91OlVbad1fVa0i4BSuhhkPafJxAq0KY94CXO0xLhB3HFZCl7SVmvh8wOBBBC+rRBvYJP7U5HSxAEy1w2c0CextcKzB6iK+ORWvv6JcuGX5Qf8CjKcXTqv1NLi48DtyMQntZthrbZY+llGLwsuplr2jnYx/eqIwHtoXO0V2aLXN7GOIRZMLl8se1/ZkMqjqemPMzyqnXbD6YcIseI6g8CvnXtH7PmjU/xNe5hAvvDr2MC3Bb3Ls5D58YiYg2RmOLS3U1wnmuxZsmGVf0bkxwyKz40GlrodLfK/onGLz10aQG+iYe1GVvfU94HtcdIluoBwvwHEXSjLxSdVDXyBsZXpqUckVJogqUHxND7MU3VvFoa4NtJix6SneNww0kghhHH9uyoacPhqbhTfp4wXGJSmnnLah0PdM28KgalOTlFaLE1BcX2WYfHPNQtdOq95lpHT+UdQxzbbgrPY/KqlE+9pEuafVoPNV5X/AJX+J0RuOfTqmyxRkuS6FrJJOmbM1mgSCDzuluOxmsWbqb/bhe1MPcCwYLnmfRM6FamBDYUuo77H7ejMNrPb8Pw9QVMV9Fybm8LTnDtdMhZb2kwDmAmmQAen0+ybCam6AlFxVjKnTNQS4qh72UZM/wALO4TPnNbpcC6LTCAzXHF7gACeidH00uVPoB5lWuxvmuaMNo1eU9lnKVF+uaYiUfQaGeJwIMWBTvK6Bq+IADyTbWKOugKc2VYPFVA0BwJceAEp1Ty2o5mpxj/1TLLcBpHiRlWwXnzzW/iiuOPWzEDKn+8OtwjgAEpzzBmnefCeHELX43EBpJKy+c4wVJgiAq8M5SlfgTkjFIQOr6dvXmnuTZuWRq+E7dOaX5RTZr8Ym+x+q3GEydjhdrY7JvqMkI6kgMUJPaZ7Sx7XAGUNj6uoQEdisA1o8LQOwSGvjwPDF1HBKTuJRJtdlNClHHuiqYHAKmgxzrpnhKIaPFujnIGKKBQcuTD37ea5K5S+hlI2+aZG2t8TGzcyd5PEwkOGymph6gaXA0jvBNjyjdOP+RtJDdLpJgR90bh6ocbxPLiElSyQVPo7jCbtdkqbWtYBDj1gn1Vr5i1vn8ld7y1vpshMZrixU92x3QKcaXktAkt36eaMpUob4jJ+izlKo9lbgeHXrK1QAIujyLjVAwdgWOI0m08185zDJy7FQzxavFHAcwV9FxVQAQF5l+FYACGCeZ39d0zDneJNoDLiWSkynLMho02AOY1x5kA36KBoMpy0NBEkwbxN0wxr3RaEpfrgkgHkBv8AVLUpS22G0l0jNYn2ZFSs5xdDZkBo2B/L9VLEeyNKS8uMx1I790+p03b7dFYKLn3gAcp37qj/ACMi8ifZh9HzPP8ALDTLSHEtNr8I4JTT1NIcNzMdea+l57lL6zdDmt0i7TMeLgJ4LNOyaoBpFzNtO5AtDiQIj5916GH1KcKl2R5cDUtDL2Yo16jZqvIZyi5HUqftDgKLG+9a0teLahIt14FN8LXFJoFQtsBAbskWf5mcS006TZg7yAFJGUpZLWl/RRJRjCvJnGZs7UTOrUIAJtPCFpcpwVWZeWxFiJKxdH/E+Hggg36Lb4HOKXu/C7YbGFV6mLS+CJ8Ek38mPPeaRuElzWq2o0t1X4KNXNKcDXxEqkYQvIe0w0cOfKFHCHF2yqU70jFOY51QsAOqY4rVYPLAymJgmJJiD2ug80xRp1dTWjVsZG/YrQ5LQfVBNWATs3iB16/T6VZ8j4J+BGKC5NeTJZw8Ohogd4snGTueGAAG3LinmIyHDjem2eceLy5Kvw0z4R6bR0SZZ4yjxSGrE4u2G0K1r7qVSrIWefmAdUgb8k+w7bXU04cex8ZWZb2hdUgw2yy+GphxMi/S63PtDh9TTBhZ/L67WTAg8eqvwZKx6RNkj89kcuwVNtQPfMDgea2uFxYLRpErO0YqmDcLSYSnpaFL6iXLvsdijXRViXEi4WZzRtO9hq58U/zbMQ1ptKyNdhrPsCO26P08H29GZZeCzLnETeY+gUKuOJJvborq2FFFog6mneTcx+YDoeBStovc78xuq4xUnyENtaL/AMW9coyF4ipfR1m2pVnOcfd6gTsImUxy/VScdZIIjckHjw48Umo1HMMtJCMw2ZaXanS/qdwkZINqkLxzS7N3gcRLBYt77+fJC5niIYXT8N459EuqZ+x4Aa6/LYz/AHik1RtWo7WHsaDIhztwDHwqCGB3ctFssyqo7DcsqPdV1OY8BwkeEx0haumywn0WXyvHVJJqeFjbE7yenROcLimvMscXDjyCzPF30FiaoKxLOiCZWcDEWRzGOm+yjiaAi26nTS0NPCJ3Q+KpSLKDXOG91b70FdVHdiV1Co5x0yGjjzPFEU6TmCSSmtR8CAlmYFwuNkfNy0DxoFxTnGRNv6L9ErxTGFha8uDjs4SIPNGYKm5xMkgcFa+iAZIlNjLixbVmEoioX6HOLmgw69yOa1GGyoNYCxkN+fdV560VG6dIHI8R6XQOW5zWpj3dQtIFhO5HDurJSlljcdfomilCVS/6Qz3D0Gg62GSPi4grMUMIb2fH6tJA81uqWGbVe1+mSRadh1hOmuLLO+Wy6Pqvbjx7/k5+n5u+j5u6jUMF50tBsXgiewKP/wDNgCxNjHQ9QtfmdZj2lroc08DcLE5zlrWt1U2+gTMeWOXUlQM8bx7iyrE5hrq0nGbHbud+6Z5HmTvedCN/NZ3Ct1u8Q25fVaNmVvfDmPNPuB4upHNNzKEVxYGJybtGsf8A5RvDQNzxWZzjEllmAkXv159lfjMc6iwNnXA3jc84Sk5w2r4XiOCkxYn+VWinJkXXkFy5pL5D5dyAC1uV4ao4S4nsg8iyVlM6mybXlaKdKX6nMm6iHhxtK2DYjLmkeK6yntFTZTb4RdajGYwAGSsniqra79Iuu9Nyu30jctVS7BvZ7HAOA0kkmJi3mty0yEtyzLG0wLIzE1A0IM+SM5/FBYoOMdi7MqU8vNIqzdPwggg3noNyOcmwTPG40EETcc9o5ylLDJ/vlKbjtLYE6s8e8u+L4evHhJ6lKsRSGskbck+qYfUIVtLBNAl0J8MygLljcjPADkVydOYzmuTPeX0D7Y1LVW5qJLVAtRWR0CwnWWV8PDRUDiRJubTzStzFWWLJx5KjYT4uzb0KuHqtjhw8RBj1RtDAU2gaNQHRxv6r59hyA4Ez5LS/8ggBrLwPzWg+e6hy+nktRbLsWeL3JGjdW0xwHzC7WHbFZKrnDnvAdDRO4uUfkuNLnFrjBk2PLmp5+nlFWx0c8ZOkOnhBV6DRcgz3/ZMi4cLqiowpCdDmhYMwa2xnzRDKgeNxCFxuFndUUqY2lMpNaAtl+IqBqXvxzSblFV8HI3KBo0qbZDmz3RRSoyVntV8iwlL8VgHOuR2TimQ34WqGJrud0RRm09AuKa2CZFhnM3Nk1r0WESbnnxWfxfvZ8JMcYRuWm3icT0RZE38rMg1+NHYhhJiBAVzaILbkBGBzOSoqs1bJfNh8TG5zhvdv1Ma0fftCEqZnUIiDq4X/AGWmxeXS66Mo4KkR4mBxjcgEjsVavUxSXJWSvBJt06M7Ryl9QS5xk8jYBOMp9mKFMS8F7pmTwjkArXPFP4duXJW0szad0mefI1Seh0MME7fYz1tYLBLMyx1ioVscDsk+YVrJWOFvYyUqWhaMVrdDnEidlqMHQZpGloCzGU1aYedTb8/stTTxI02VHqHVJCsKvbLamL07pJmOPLzpbuuzR5KW4CsWuuhx41VhTl4CKWVGZddEvwzWq+pjbWKWOqOqG23Nb8pbZnxQT73kQFSXanQSvW5cPzOPqrWPpMOwW2vB2/ISMAxco/8Ak2clyX8wviHlqgWossUHMVqkebQG5qrLUY6mqyxEpAtAhaokIksUCxGmDR7gsQabgeq0GG0YiZNhwPPkCs2WKdJxGx+fy7JWTGpbXY7HlcdPo3uCYGNgXAUqtXksjgcwqUSNRseBmPVX1811vIIgWjTuoJemlyLo+ojQ4q1hsbdUvrsAMhx8lHQ+p8LoH/sLjndEHLbaWvItcnfyQ8VHthcnLwXYcy3mgcawC/FNMLT0iCZhV1cOx1zv2SrpjKtCzD1HHgYV/wCHBvZTe87NUWtB+IgLWzqKxUjwiFEYdnKFbUZTBBb/ANryrWkfCsv6Or7B3UgNiVB9Rzd1Go/yQ9av1RGBH4pnFQqYoflSmu9A1KxCJQszkMsVVJS2pVEqPvuZVbyOCbFUCy1tReV3gC5VRrxuFXWqA8ES7MKbAyEzw+KgXP8ACVGiRf8Av/agWuGxlMl8gVod164jeUC7FtNgIVFOo48FWWeLaei6EV5Ok2H4WjeSZHJGvqBgsEHRxYYNoK8rMqPvsO4+S6nJ76MtJaBcXjnO2XuX3NwSi8Lg6UXJJ7wEZhaLGbMJ7n9k2eTHGPFIXGE3K2e25Lld74fo+q9UnL9FFD401E0kUWKBYm8iOgR1NVOpo4tVbmo1IFxAHU1WaaPLFB1NGpAuICWKssRrqagaaJSBoGBO31UsPYzMR04qZprzQt7OVobYPMIESCTzsj8PiQ4kSAf7tzSDC4XUdwP7yRwwUQA2ST8QER81HkhC+yzHknXQ2e8s3Pmg8Qwk2Jv5BSp03Awb9d/+kS0EcB5lSvRT2Cmg4C5HoqTQkSY+6OFQfmPkqnU42/ZZZtHlKkI+IIbFUwNnKuuShKmIPfyXKLOtFdR57oSoeaJNSeaCxN0xIFsorVOqGdV6KT5Q7uqakCeVKsqh5CvdS5LyAiMBpPdeSeV/oin04XUtPET5rrOoH9yphhHDdEHSNpCHrV+q5OzqJdiiMO6OMeSCovi+mUaK09PJdL9HIjig0kEucT1QtV7uRPJTq0CTY2RNGg4QZ9FqlxOqyWAc8CdA80W7FOPIdlCm88ZKnoZxme6S5W7YaX0UnV+r6rkRqp8guWczeJtC1VuYizTXnu+q3mS8QIsVZpTKZe5H6vl/KlPIn5H06LPdCWL7FGhRNNPNffzVbqbf0rVn/RvsfTEZYoGmnFSg07yEM/C8j/fJMjmTFSwtC001A00wdQIVZopiyC+DASxXU8Q9vXvwTGjRZFwvRTaNmyekeSCWaPTQ2GGXaZTSxbju2e2/8Lx2JbxJ6hwXV8EBcyB22+6HNObA9uCCsbGcskQmqGP+FwQb9QtdTOCO9vVX0qRYJLgfP5IXGK6YUZSb2hU+rUGzh2K8bVdxEptiA13L5IOrQHD6obX0HQDWrkcAh6lUnkr69GeCpOAPCPVGqBbYK6pPAKDh0RAytxEyB6/ZUOwbgeMc+A9EWjNkWYbUQJXlTDlp2PmL+fJMabHBuwPnEzwcB0mEPiKjv1f3qeKG3YQCGngFVUa7kPkiTW6SqawJ4QiVnFPuuvkqXMAKt0OC8c4m0BErM0WAECZC8FXmAqDTfwCr0vXUdYe2s0C6h+MtYE+l+3NUNwxMl2w+ZOw+SvpZO6o3US0DYDkOUcFlLydZW/FEdO6Hq40oill5BLZHUdeY6qGJyx7SQY9R3W1FM62C/jSuXn4Y8vouRVEG2fZffN/U3/YKJrt/UP8AYLly8/kx3BHjqzf1N9W/3gvPft/Uz1auXLuR3E896P1M/wBh91E1m8XN/wBh91y5dyZvBI8NdnNvqFW7Et5t9QuXLTCBxg5j/YKl+NZzA8wvFyKJzRYMxZ+of7D7qs1m7hzf9guXLejGrRcMUHAgubA38QQlesw2BaB3F1y5GgHf2U+8HBw/2C4Vx+pvqF6uRJgtNeT0YhvEj1C8qV2RYjyIXLlzSOUmAVaw7Hy+6Gc502I9QFy5c3RqVk2VHAQXA/8A0J9Ve2oyLvG1/E03Iieo+i8XLFMNw/ZXqbsCIG1x+y5tVo4tPeFy5NbtdCFFp9kKhadi1vYhB1aLTvU+YXLkEXsZJFbMG0Gz/VXNot4uHlC9XI3sWm0yurVpt3g+YQdTMqfAfMLlyyCvsbIrZjZkAC8QCd78Ov8AKKweOfZoaw3tLtly5a6B2FV4aIboLzuZ2P8AeCVVaLybx3kfdcuXLQDk7PPwZ/V9Fy5cts7kz//Z\\n\", \"height\": 184, \"channels\": 3, \"width\": 274, \"type\": \"image\", \"id\": 4947632528}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUTEhMVFhUXGBcXFxcYFRgXFxgYFxcXFxcXFRsYHyggGBolHRUXITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGy0lHx8tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIALEBHAMBIgACEQEDEQH/xAAcAAACAwEBAQEAAAAAAAAAAAAEBQIDBgABBwj/xAA7EAABAwMCBAQEBQMEAAcAAAABAAIRAwQhEjEFQVFhBiJxgRORofAUMrHB0ULh8RUjUmIHFjNDcoKS/8QAGQEAAwEBAQAAAAAAAAAAAAAAAQIDAAQF/8QAJREAAgICAgMBAAEFAAAAAAAAAAECEQMhEjETQVEiMgQUUmFx/9oADAMBAAIRAxEAPwD6Nc3wyeaUX9xITGvwtzjvACA4jQAxzC7I0c0rFVSmSzAH8qIYYzKNoPg5XtcAqliURtHwMEzmJynVmWEQ5o1EdOqR03CIlDG9ewyErjYU6J8Wrfhq4iIfMgdVqOF3ZqNaIA5kTOO6+d8V4u2pVZqkQf8AK+h+G6DC1tRpwR84RyqoqwQdy0YD/wAQeBvbcfEa0Bjug5/9kLw3hIfRcS1pgb7bnYnsvr/E7JlVha8Y+o9FhLrhFWm74VJjzTjLvnhHHmuNfDTx07Ma2waQdO3SfvKArWLgT1/ZaO2oQSAxxg5kSR6qi/uWnl6q6lslRmallGVH4YGQmlQNdt9coCtTIKexQd1OVGnSgiUXTbhWfCWswTZcJa8iKzRPY6vkvo3h2zbRp6MHM5y71I79F88pN06XRK+geEXCpDpJIwOWPTlsoZeikOzTC21AtJGxwMb8ysJe8Gc2oQ8bkOLjzA/eF9DdQDTI3P3lUcSt2PEOIx/GxXNDJTLShaPhl20tqFwEAOxjv05rW8Ovq9BrH1TrcTyGGt7kYJM/TureK8H1veAHHQIEGSRJyRGY/dd/ptWlQaRq+HpILT11STB23+i6nJNEEmhZxqt8VrvhNLSDq8s+cSJETt/CWcK4S6r53fmkOGwGM6XBa21Y2J/6wABB/hB8Oc4OIOJ5z0OMeh+iKlqkahPxHglVrmk0szOlr5BEkwP+OOis4lf/ABaT2ljiWtADPYeY+mkptxjiIa0wfNtHPPP6LL16+oaGfmcf+WfcnfCaNvsD0L7ajSJaHHTOCYJ0559cdAqfwbjW+EzJLtI5A956d0X/AKa6mWucJE7d+hgps23LixwY1pY+S4AbDIB7d/1VLoUynFbR1Kq+k/8AMxxaemOnZBJ34jqmpcOLtM4HlGIGw74SosTroDOYBzUXFTlcUTA7wev0Xmh3X6K5wCgFqDYbY3NFrdNWh8R2okPFU0yAWtAaQAQYIJn/ALKi+qsc6abPhtgeXUX55mXZz0VACkWrJUBs/Sta7AKR8Xqh2AVCvXMboGZMrzIwrZ1SlZW2iRzU3vU6rsSgaZkqvYheqaj+qsdWA3Sy+cCSZiMwilYGxXxS1DzJMLUeCeM6KXw3O2dA7BZZ9cPxCopOLfy+qq48o0xFKnaPudrUD2jPyRAhfNuAeMoZpfAI58vmtfZ8cp1Gghw3hcE8Uos6o5ExhWsWH+kZ3jnPVYbxJ4YBM0wZ3Pp/K2hvQfymVV+IEfOZRhKUTSUZHyR3DixxBx6oCtTyQvonErEO1QNJBkeiylWy0vPP0XZGdnNKNCWhSzCNdZmMBMqNqDkCEXbWpMhZzAkKqFnqYR0TLgWqk9pBIExA5ouytYcQeYhF2NtnI2U5SGSNL/qjPykQRzmfvKV8SvhnTvz7rjRIEQljqZa6R1ypRSKSbCCPhUnVI1PJIdygdgkN1xckNb5seuZ3bC0P4/EaARznmieF8JoucH/Cg5jcifROpJbYtX0Ym8vXUiRpOQCBtvPVKmX9TzZOYAJ5Qvp91wOlcAmphzT5nAxHZYfxPY0qZ0skwcGIxjfr/dUhNPQsotbMnXaSZye6qot0mUa7HdUvMroJhr+NhzSxzc8j/PX1UK949zSxrhHrhLKrIRNG2GkGZneDstSNYI+zJdDXBzvX90LUHIrQUGU6GpzvM4A6Rt80iqQ4kgRPJMmAGcFFsrVeGPD1OqDUq1WsaCQ0HOpw69lsL/hlkWMDm626XAhulsPIjVIGokevJK8qToZRs+SSvITfj7bUODbX4kCdReQQTiNPbfdBUbJ7qZqAeRrg05jJzAVE9WKUMwpSjatmAA4O6+Utg9s7O9UM52dgiA+x1yJyqqeFB7wVUKq886A9juSCubcyS3CkKikKvVZaMxXXY9uSN+6qfTD2gxsjri7bsdlV8ds425AZ+aqhBO+0BMEwfoqa72tloynt1TZvzOUprWzT5oTp2K0KHvMHeCpWdw9pw4j3TZtnDf2VTaEHIhNaBRdS4nV5PdPYrQ2/GnhoBJlZ40SILc9oVrWEzO6nJJjJtGktrsv1EnEbzz9EteMnI3VNnABmZjA2RVFhJiFOqGuwyxogb7plbUWk90JQo8spra2491KTHiiDrASHdMomjbBr/r80yoUA5qtNt+U9MKLmUUQavQbEpfUtAU7uaXlQ1CmgpBaE1e3DREJzwzS5pABHfkgeIUicAKp146k3SMmN+iftCrTJcSvvggtaQDO5Ej3Cx3Gn1a8/Ec0NG0NHLomV7cZkiSfv2Q9S3LmEmAIiJ+qtBcScnZiK9LOFUaR6Jvc0gNvqgHrqTIi+5pwhqby04R9ZsoVzIOydAK7msX7oXbZG6FVUo8+SYA44XXZVYKTi4QQcQBjc43/unHE7lpLWM/KASTG8deixbXaTLV34p/UpXC2Gwm9tGEy0wCT6Dqm1GkNDKYYA0GSScEmJceuAs4CTiVqLCmC0NdOAjLSMj3iljU82k6mQIcYzhJK/Di4yION9tsLTXToaWNHlHMnc9R2WbDXZyfqhBszNpUrloKppXhlL619MckPRfmSSAkUPo3I1VGpMKdzTxIKW03ODMGef+EXw+vOCfT16KbjWxrB3txGc/RDttjgCd9+ia3YzMbZx/CiyCQe22yNmoCq2zjLJ29F5ROkQSFdd4BO5+qAt7qWkEfNHtALBWEmcRyVV3XaTIE90PUtnEyF4yg4GCjSBYZRJcMffqmVhvDhj0QvDrIzkpyy1IOPqVOTQyQXQ4Wx2WnKkyzcDsrrCBE7ptSeRuJC55SaKpIEoN5FMKVvp5SOqtpUWO2weiMpUdPdRlIookrenHJEli8pj5K8BSbKpA1WlIVLqUAo+FF7VrM0JqlPSJO52SatbOcVqKlvqMlUVaTQFSMqJuJlqnDeqBOlpyJH8cgFormTIOyz/ABF+nYAq8G2RkqEnFKjXbUw3ffr1CR1qELQXddrhGmB7pZXph3L7hdUGSYqNIqg0/mmjXgAgjKBLSTOyohGAVmEboV2dyjbgSSgqlOFRAIBi9+HyC5rVdSDdXmmOcImLLa0aY8rnTuQYhaPhNlpnVy6pN+MEeRse+BGx7qf+tvEg8ykkmwqhjxZ2ntI9kgfcgGAAuvb51QoQUgmjGlsDY4oVNpAMK1lMuPl+SKo8NH/L791azhrpxPyz9EG0agnhlE6SCTOI5owUHTiD32IV1jQhsFv0+yr202gyAR+6i5bKJFNNrjI1HG6r+EGnM9kTWYYkCSr6dKR5glsNCa6GrAJBCBFGDlP69s3VIwey9HDGkg7jn/KKmkDiB0LaYkYwi6vDmiCQR19EytLcNIE4RF/woAEtqtg9/opuexlHQjo74AhOKbCQPuUifTe3cTndEW9dwxK0lZkzQW9qWxgSjWa5/KYSO2un8ynFvfkDmoyTKRaGVAdimVByW2V2SmNOoei55FohTWqaiwqSmVOXLlyxiuohKjSjXFC1qiKFYpu6MpLe2BITm8uYSm4vhzXRCznlQhr2GUM61IaSOSYXVcEyCllzdOMgRHSOq6o2RdCq9pQY3QNcHoPVNWWxMuIMD917d02aAZMn5AjorJiUIH9/7oCsco+5AnB+/dAPCqhSExsibbhtSoQ1oMk/rzUbAw8EgEdHAEe8/qtzwzh5aW1XA/lwB7wO+6E58QpWZ3i/Bvw9Mag4uAEluWyRJyOiz7n9Vv8AiXF2tpvY9/mdMdsECey+fubneVsbbWzSpdEmO6rzQVMAKQq91QQ0lvRJWgtYbk4++yWUrgRGlcCRnJG655bKLQ+bByIPddUaOaWtui0CCI98Ixt1qGBPZTcWPYQwYUlBjsdFJpShJaV6xkLgphKEm1WATuqmq1qVhPXWofA6ZXlPhRkOiB6/orqaIfUJbExmc5/wlbY1IXtB6Jnb0pElU0wS7dF0pHL6JZMyQRbADATWg088IKk4NyrjdqMtlVoYghSQVCpKK1qbRVMmvJUdSqfUhajWWucgbpvQx+ivqOwg6tZMkLJie9c7oCEgvG+y0d04HsUgvi0TO66sZzTEteRzQriN0RcDOFCtTjM+y6URPbJ+o6S7SDyOQUzqWYFMtbE8yRM88dN1nKzjKJ4TxBzakasHecouL7RkxRxDhr9ZwQ3qZAVDeFAuY34tOXODZnyieZPITjZbulSFZ514B5Ex8h0VnFfB7QRUogAgAxALTGZIjKPmS0zcG9oT2HhT8PVcX+cAODZaY7kf8vWIyiuKcYLWAbco5k9ew5o654k4NaajpcS7MR1ABA7QkF80OeZznI6+6RXJ3ILpdGV4s5z6hcR78kJTcAt7w74Lg6aflMAy7HaFOta21Rug0mjRIBEgwep3V/KlqhOBgS8KBPZaY+FNTjpfpGdII1HaRkQCO6Hd4TrAxqp/N38J1kj9F4stZcZkY6o+3cH/AH+yDrW05GO0r2xlpStaCg8g04kSNuyJpVi0hw58kL+J5STO45IqlSacgqb/ANjINoXGsxt0RRzjZA22oOzj90Savb0yptDos1gYXrLkTC9MEZVNFsEwWxiespaCHBWNVQKtptkgDcpGMTpp1ZcO1QSZH3hU2FoWmHtkexTJ1DTlh9uXsoTl6RWMfpC44ewCPkUtkjBB/VOX3IiCRKGaIEuSpv2FpehOb0zCJoV5I5qriJBBIb/9kNw4kHKpWid7NTb7Kyo4hAMuIC78SZBUOJbkMC/KjUag61XOFMOd0JWoNk3FAXRjKve93RAcQDhunihJMXXNYlJ7sDeUXdse3MGOsJRc1swuqETnkwetGUBVqk80VXaBkobWOi6EiTB6ju6Aq4R1TPVBVlRAYRZcYdTIJGqIgbCOndbbw74gr3R0U2NLxl+p0ANJjHWByXzkp14W41+Hc9ukn4kZaJc2J2//AEly4046WwwlTNV4h4bW+MymdMPmSMYkBL7+wFu4DU49DE8up5J/ecRyGuJJEOyBy29Fm/EHEHVQQ13VveSoY3J0mUnSsqtbokwDI54jPpyV9cFrSYSbhFjXzpad/syU5p2VV1My0+xkqkkkxVtEqAljd2iNp+aspVABH90JRpls6g7pkQqA8c5lCjWUXtm9ji1zSIPMyEEWEDK+icR4U5zhLNQmRnPuuvOA0qg0imGuP9WMdf8ACyzrVmeJnzl1WTklMbSi8nygx1laq48CNA1B+fSf0QdpwqpqLWlrSzDgd87Rjmm80JLQPHJdglLWBG56FEWuvZ4wr6wNM/7hAdndpExHM9RPyQLeISd8cxCXsPQTXpEkBo8sbqdlYOJnog7V7i/yCfTutbwzh8Nl5yeSnOXFDRXJgj6TMcjsSqmXzWHJ3wnRtWZAb80Kzhoa6YHpuoqS9lXFlB4xgiWx9890Izjp1hjiNMxMgCFDiHDjqHwwADupDwv8QYJDupyE6UEtiXJ9GipCi4B7IPSOqOokOC+bl9SjUNN0gtP9Jwf5TjhnGvN5nQBgf3SSwurTGjlXs1la2Gxx3U6DC0fmBCV1OMNcIz02yUVahrRJnHupOLS2UTV6AeK3zcRvzhBUbvzDJVnGeI0S1zWQXHmEpomIlWjD8kpS2aYXXmwU6tblpaMrGUrxofk+sJ/Y3lKBBH7qU4FYTGFw5s8/ZUtpg5dnorTcMdgFSKmOVXtNj2kObI9Fj6vhzUSWEHPP9FsjcRsqXukz9+6eE3HoScVI+fcQ4K9h84095kJNWsXQXBzXAdDlfXajWuHmAKz/ABrhFHR/ttDCckjb3XTjz+mRniraPnJmO6Fqge63rvDDHNaWu3ySTy6bJN4j8NinqqUqjTTGYJlw7bRuuiOWLdEnBpWZFzVpv/D3h+usahkBrXCRG5Gf1CzNRfUPBNiKVoHOIbr8xcDmDy+ib+olxh/0GKNyE/F6waNUTBMu5kZ6pUCagwJ77fZWiu6rSTDRHJ2Pr1QI+GDGM8h/ZRjKkO1su4M4hnYbz+pRV5dRBDtI5d8817a+HqVQgms8A7gEAekpzU4ZbU6chuw3cZP1U5SjY6i6M/ekOEAgyNucpLdWT2GA2cTuP3Ww4fwdn5ztyE7Z5wrLrhVJzpeGT3E45JlkUXQrg2rE1PxTI8m+56/2TOztTcj4ja5bO+iI+srB2rm88Hr/AIRzOKvpkCm6Gj5T1VZYf8RI5Pp9BseH1KW9Zzmf9on2hIOLXb7es5wDTqIMbz0nor2eKaL2AOe/U3o3fuOyR+IqtN+Wuc8wPPzPUR7qOOEuX6RSclX5GXEuIVrhhHw5I3bhwPoZxCA4RwLXDH+R5zp/6g5M/wCF54YtLiu/TTMU27uLZjsO6+gWHB6VGS3Lzu4mXH3K2TIsX5QYQc9sXWnDadKAG7c+fujqonbHZXac59lVXqCcLlcm2XSpFJpOJ2UxQMZ2R04lLbu+0yeQQVvoLpFdW2kqxjIG8LN3niGDjf73QtTxCTgtJ7q6xTZHyRQD4jcRWJGxS+k7urbtznkn/KCbMrsjHVHM3se8P4h8MyIJ5zlOqvipgYdLPMd5WN1kKpz0rwqT2MsjXQ6NcPlwgdVGnWzvKThxVzHlHgCxpWuRKnT4gOkJUSuY0ocEbkaKxu3B0mSFpLPigLwHEAEdViqF0Gt6norjdgidv1Up4rKRnR9IeWxMhDl07L58/iFTk4+hPRaDw/xz+mqR2PJQlgcVZVZU3Q9c7qh7p2oEafcq6tcsOQRHqo0KZeTybyPVItbGfwTcSpUm09BJbzEE7pRw60cWvy14mRqBBkTGCtjUZpMYKpqVhs2CegIkeyrHI6EcNnyN9n/uEOBaA7zA5jOVq+AVKuh1NzTpH5TGIjkruP8AA9dUQNJcfn1KuvuEVaLG/DaQBgkldM8ilFIjGLTZTeNhhhJRcAOEhzT16ymtO4dA14K910/iB8a3QRGYkggT/ZLHXYXvoXV3VDGmoQ2Bzg49E04dw6vdQHVHMp+0n/KFq2NRxlzS3Vtz7/KEbw6pVpSQDMQ0E4A7IyetdgS3s0lKxFBgDQ57ux375Q1S6ZJ1w09DBWUu/EtdpLa0h2Pl7bbbpfU8SvJksb8kscEntheWPoY2vhyR5ic9FO/8Llv5cx13W6Fo1oEckHWbLoLoCT+5k2P4UkIvDHhZ2v4lZrSyDAO89Y6LcO4exwAcGwOUD5Ie0cGiAiDc4yufLklOVl8cIxVE6FGnRZpptDRkwBGTuT3QVxd5Ua93KEqOHMpEvbGb+EzcndB1L2DlTe8dUDVAKpFIm2PaFyHt3gIPidlqadLsoWg4gQETocRC1U9G7RinWg1ZyZ9lVcdA1aw8KaSCf8ry44a2NgF1LMiHjZh3OcF4Seafca4WaTQ6BpPMSkpqACFeMlJWiTVPZSaknK4QvTpccCF4aOlOKTc8oynRBbhwLsY2xzjul7nkYlWtqINBTCWtg5CuxzGPVCUhq3KucTyjtG/8lK0EGc4TlTNwCIhVvozleMpEeyakKEA8gUZRoPAnl6IamRuflCYfimluCI6SkYyI3JcGyx0R0wo0/EVw2fP05D6KLqmI5H7xCpqUGRvnogor2g2/Q/o8cfp1NHxZwQM5PI4wmthe02sLn0nUnE/1NI+qwNOoWnyyD1Cd/wDmGs5gp6WuAHMEn1JU54fg8cn00PC7ptSqXwHuiGwCQB6nmmXEqdTSSYgjaOfcpdwupTp0muJAc4AkNMZTK6ql9Bp25Gd8f2XLP+Wi8f4mJu6DpLYn0HXl9Efwe1aw6qunH9MyZ/RX1g9oIkQeh29EMOHPc3W0Ejtv0V+VqiVUx9ccWoU2ZAaDjHLtjZZq7qiTzadu47IapbvGW0i0T5i8ZAxJIdEj+U4pW7Q0O0tdAg+XEZWWNR2BzcjI+IWsdoeD5oIM9Btt7pLpWw4tbUHg1C1+ojH9DZHT2/dZU0iO3uu3E/zRzz7PrPxjEqmm/Ud0DW4qGjT8Ooe4Z5T3BVX+qdKNbl/7Z5xnJ2z9CvKO80jDAQ11c4XljWD2A/lOQQ7DhBLcjpiR1BCA4g6DE/JCKthb0RfcKDrpCPeqnOVeJOw01pUWPEoNr1LWjRrDnXEbIulemN0jNQqTaqDibkNX3BK5tbrlL2VVMzyQ4hs941daqJbHoscymZkpvxwO2yg6NqY3yuzCuMTmyO2RxH5fdQDx791fVbp2PshuUkKiELqdIO5BSqWUbZCop1uUfqj6T8RiPvog7RlRU+joGMyutqTp1behj5KyoCB9lStmPPOEPQSYphxzg7bZx+qkOHjMfsrRU0DJn1Gyl+OEYj6FJv0NoDfaubjT6bqZtn6ctEemyuF/1yrzcaxDQR3P7LWzaFxsnRI9sqo27wchOKTSBEfL90Q2pTH5jHT++63Nm4oROoyd8+kQjbG1bJk/wvL11GPKRPOCT81Tfvc2AC0SAccwevdNt6B0X1a4D5DsjIxzRVv4iDWn4r3uJnygAARtvz9Fl7l+eZKFdKbwprYPI10PrvjTN2F5P/aDHqmnAvFDT5K7t8AiQB8tgsZpUg1F4INUBZZJ2fULi+oupvLHNc0CMuGOkeqy7b6pp+G7Sxhg6hAnpgc1mNK1vh/ilm2lor02zAlxbqJyexgBSeLxrWx/Jze9FpczygOdXcN4bLRO+eQ2+SW3deg12n4DJG8ggz7Ba254nSbTFSm3S1olobDdXRsRsZWGvuKGq8vc2CeQ0/u1bFcvQclR9moo7N9UXU5rxcuWXZePR1luh77dcuQXYX0AvVTl6uTinjVIr1ciYrK4LlywCdLdGUt1y5KwojT/APVHoUiP5j7rlyviJZAOtuuO3suXLoIkWKx23uuXLGCaPNNbXYLlylMeIv4ju70S+guXKkehZdhLd/YIzhv5vmuXJZdBXYyofmKBu9/l+65cpR7HfQnr8111s3/4heLl0kWDvVJXLk6AzlNi5ciAkV4uXLGCrj8g9Aq6mzfT+Vy5Kgs//9k=\\n\", \"height\": 177, \"channels\": 3, \"width\": 284, \"type\": \"image\", \"id\": 4947633424}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUTEhMWFhUXGBgXFxgXFxcYGBgWGBYXFxcVFxcYHSggGBolHRUXITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGxAQGi0lICUtLS0tLS8tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAMIBAwMBIgACEQEDEQH/xAAcAAABBQEBAQAAAAAAAAAAAAAEAAIDBQYBBwj/xAA4EAABAwIEBAQEBQQCAwEAAAABAAIRAyEEEjFBBVFhcQYTIoEykaHBBxSx0fAjQuHxM1JiktIW/8QAGQEAAwEBAQAAAAAAAAAAAAAAAQIDAAQF/8QAJBEAAgICAQUAAwEBAAAAAAAAAAECEQMhEgQTMUFRImFxFOH/2gAMAwEAAhEDEQA/APUS5T0myEIKLi4gDZHUMMcoM33VmRRypTsq+o2JVpVH+VGzCtcZv2WToLRna2CJMgAE/wA1TOIYGWG1hr9le4ujePolj6eWnJ5zHPaFRT8COPkxDcA5pMHVBYrgOaSD3tK2dKiH6CFJWoN0Cp3WmT7aZ5+/grdCDbcCfZV1eg5rsrW6mZ2jlC9Jq4cAQLLPcSw86a/p1VYZLEljozOL4UKlMlov8oO8LK4vhTKXredL23nSy3XEcQ2mALl20TJPXl7rzzjfEPOcJblLZtMhdOJNkpF/wjG0sP8A1HMdl2MSDpuPblqtJgPxApksbTc4Pcfhc2GCds0zPzleVFxiJMcpt8k7CFoqMNQSwPaXgbsDhmHylUlgjLyGMmj6R4Jw8VarcUX3ZItEOJEHtErQmuLwqrgPEaNagx+Gjyi30QIAAtEG4IiPZEOuvGnbls7o6WiHHOa4Fp12Kh4KA4lrdtU3H0svqlAYLHVQ8+WBB1nY7fdOo3HQrey+4hwajiMpqNksMi5Go0MbKuw3h5mGDxSqvax5JykhzWuMfDaRpzv9VFxLi9RjDJgj+7Kd+UafJUX/AOviA68G+twOUowhka14NKcEySnwGobFsyfS4d9T03WhdwaWQ/KSAAD2C5gOMU3sD23GoHJUnE/FDWVZcSKUXt/ft7H9kfzk6N+KRkvEfB3Nc4HqvMuJ4VwdfVev8d4ox5aLgkXJdYjYHkqVnh1lZ0B2hnNBy5ZvfmLhduOdL8jnkt6PLCyDDgf0MdFZcU4y6oBTpyyi0ZWsnbrz/wBreeLuB4Z1NxY5n9NsSCLQNz3leXlVi1NWb+ihPo0i4gDU2te/JXPhPgLsXWDAx5aSAXNsGzu4wYC+ieH+DMFRbTa3D0yWQWuLQTmAHqk6m2qlmzRx6Y8YuXg+deI+FcVSZ5jqTizYgSYtcgTGqBxHCqzKTaz6Tm03mGuIgEr6sfw6k74mAzzvbkm4ng9CpT8p1NhZEBpaC2OWXRcv+v8AQ/Zf0+SUl6d+JHgF7KoqYanTDXSPKZDSIvIBsdemgXnOKwVSmS2oxzS2JkaTpddMZKStEmq8g6S6kiKfWMwSVM15IXarZHUrtWhDbG4XlnYPawxfRcDxtoFHRLnWHzOnzT3YKdXH7If038Gsp53A7D9VJjsLmEKUNgABNfiBCFu9BpezNtlqktEkqo8eYirRoOqUIsPUXWAB2aZHqvbW5C8zxPjbFGjkJAcZGb+7KeQFmkaT97rux4JZFaOWWRRdHpdfjlHzDRDwajRdsiQNpWU8ReJm03CnTGZ51JNm9DzOi88diDUqPfUJcXanc2j7KZlQGGtboCuyHSqO2Qlmb0XdTxCXsdLSXxAMjKLfEBrOqzmNotLjBM/TRSfmABGQ3XKmLEklpvb6RquhQrwTUgPISG32J7JUmNcYGY9LSeg6rgqRFtJHeVynUDXAgac4N+xBBR2V0e+eCKGGwzG0qVT4hLmZgfWBDzI1dIv2Gi0xov1BsevyXgfhTxBWGLpPJLwC6WuIu1wa1wbyMARtYbL3xtb0ywGCJ/x0Xk9TicJW/Z04pJqgrD4cPEu2QPFuFBozU7Hl1Q7+NuZiKOHYwE1CS6TdrQJm2nvyWjyg6rlfKDTLKpHn3EOCYys30PAvEG/zXm+PoYn8z5Vd+XKSAcnpI2MTovoenSgmNPus74g4NSqOaSBmGltF04epp00SyYbVnnfB/wAwWmmHFon4g3Un+2J0/dL8RfDrKFIVpeIIc4FxdciIkzGui9Ew+DZRaBAnnBK8/wDxRrV3sDWDPTBBJFnAhwN76Sq48jnkVaQkopR2eYOxlXM7LUIJi02y9J0Q1PF1GOinVe3aQ5zd+h0lT+W+XS2Haa6RtCgey5OW9jroV6HEnyiFfnXeX5AcQJJcYu4m5k9ylw3hzaj2N9bi65DBLo1MDstz+FvhVuIrGrWoB9MBzfU4RnI1yf3D7r1/h3hTC0XZqdFrHREtAFuQgWC5MvVRxvjWykcbkrRkfw94BTw5L6AflcYd5nxSANRH06r0hjhEIN+CyfBJk9FNTpndeZknzdnRCPFUOqPaNVD57diialJpEELN8bqeTvqJSxXLQZOip8T8Rw2GqitW1eQJMmD0B020WT8bcTwIozUbnfUIcDTi5DTBdeIgx7qn8f8AEnVaZDgCGuEeqCL8ovyWAq1JAAm3MyvRx4dJs5JTuyFxvy6JJJK9Cn1tSMXlcwteSQvGW+MMYaflGqBJH9QwHNEi3psB1iYJW88GVHUqbnV3hw9Ls4qebOaATOzZ0C4svSyxxtsbF1UZukbnPAUTqo1JEKB1VpbIMzofbqsfxniTqLnmqXuohgLGANE1Wycsi5sJOy58eLk6OieXirNjRrU6olrw4X0PIwf0VdicfTHwVGi8eoggn/oJ/uMbSVmHeJaTsEx1R4omoC05LubA9eW2uoEj6ryrGUCHHK81GAkMc6QS0Gxg/Drp1XXh6Pk3bo5svVKKVbN9+IXi1jsO7DwHurAiWvBDAx8Zrakuabd+y8pe0DurKlhp1Gi5i6Q2F16eLFHGuKOKeVzdsAFUAQAuZzEqV9MC+v6JjuZVaBaI6lckKNzs2q64LmVah1QxzVxrJMBPIT8PWLHZgBNxcSLiD9CsMmNDHNGcOAIIi4zXEhwHLr1XtX4f+LvzGGd5rfVRIDjNiD8J+3svE8RULzLjJ09hoByHRdo1XNnK4tmxgkSOsKGbCssaZSE+Ls9m4bxCjWxVU0amZ7SC55MDNJ0J6iE/xlx7G0afm0nhrAA18QTmLhleJ15e68eHEHhmQPsZkQNCIIJ3FtERhsVVrFtN9ZxB2JtDRYQbTYRKl/lXJN+F9G7ro9l8KfiVQqU2MxDiMQbEBpDXGYEHQTbfdaLD8cw9ZzjScH5TlcRcNdHw9T2Xz5h6NMCXOBzNIaNSxxMZnQYsJjrFl6Z4P4Xlpl+FcHtq6AhwALRBLgTLb9VzZ+mxxuS/4Ux5pvTNlX/qPPlumAM3vP7Km8Q8I83D1MsF+Ui9ri4uNLoHwxwrEUHl1Zzs7iQWtJIj+0QUzxt4srYJrB5DDnccwLiC5oboLei5F7qUYtTSg7HbTjcjxzij3seWOBa4G88+6Zha7B/yNzA8pDgdjPLopvEHGDiqpqmm1kx6QSY9zqq+mLheura2c1JGt8PeNKuEgUpLRo0j0xrtuvUsB+J1Ko1lvUQC8TGXnc8l4c0m2XTkVKMNWqMz+WRTaYLg3c3gu1Nh7QoZemxz20GGWUfB9G8L8W4evUcxlRphoMyL845wj6vEmg8xEyNPmvM/wv8AD2GOSuW5XiSA4uhwuAYNnDflotxx/iDGNIkSBMaCAvKy4oxycYnXDI3G2XeGxIcJVbxulSqAj05xcDnvEey8ppeO3sxMlxdTkz25N/dTeM/EVKsynVo1XNdeQxwuTFnDaAqrpJqSEfURcQPxzi8FiWsFJmWpJLixoAnQjnr91h8ZwcsuHgiY7d1e8PwzHUqlY1GhzZcAR8TzfXS5VDjMQTd2+w0+S9CEKVL0cjm2yuNLqPmkuwFxNQ9s2Lmn7ew/0FccK486gxwDA5xEAnRo55dCQofyhB6A+nqom0fVf+FO+MlTPMVxdouaPjOoxjGtbnIF/MJN+ka9Ss7xDidWs/zHuOeQZk6gASBMDTYBTOaYdKlfSvbvotGEIu0h3OclTZVeW5xv+w9gLDU/NWFDC5hHLdH4WlOUnnadVMJuDohKYVEAq4AD5aqt4hhi1uYQRvYyO60wPqA5o2jh2wBA1KTu8fI/GzzeoCdVG4LccQ4NnJdJB2EWlV1Xw/BGd8ki0Wj91aOaLFpozFPCud8LSewXMRhXMMOaRyW5wPC20mw2STqSUHxnhhflgi3Pqgsyboa2jGhhTXs56q5xtE0h1Nvkq519d1VbCpAZakynJhTlifhh6v5yWY6kCVGCbGUyFYOnLI1m6lFG99CJd0PPulH5EWELRdw7Is8Ve1rm03OaDrlJB9iLx00KGxAcTGw+gU9Oc2WLfRZpeyabLPhvjvH0aRpsrZpmHPaHvba0Pde2wMqirYutW/5qr3xJ9b3O11jMbLTeFOCDEVGMe7KySXmQCRPwtncrUeI/AbWS+jnLSD6D6i0tY42tNy0a8/Zc7yYsc6qmyy7ko36PMMJw4OcJmN+RXrHhHgNHyHf0WupuMEESCffVD+F/Djqoc19N1JrRclpGcHQSdxc+y03E+J08DRaKekWHPKIJNui58+ZyfCPktjjS5S8Hn3iTwth8PU8xldg9f/FJFrGWO6b/AGRtPjrXs8mliKbMpMCIaZiSSLOHyKG4jx2lVNR1XLJEQRIE2MbhB8IwmHIqCrkc2G5CRFhMwRodFSm4/n5RO1f4m5wHFmNpmqxoflORxYAQDEy0TfbQbqh8SeJ6TmVYJDwMsG85hIj5hZLiPE8jSynULmj4dBH/AKxP6rP1MQ5xlziSbkkyZTY+mV8mCWV1Q17jzlPpstJP+FEQu3XXRE5UcQYmQoijaVAAZig33KVoaLIYSTyEktFLPWatIEQf9Kpq0CDBMiVYYirFlDTZN1zwtI5JpNgzqLSIvfcrtNob35op2FIErjcK4p+S+iqLIG1TM3T7xeU40iDCIFFBtBVsHpl0g/VWLTZBOZ1XWAj+4pZKxk6DhUPNMfSBOY6hRgwniop1Q9jZQVepdGOEoTEU/wBU8RZFHxNodqe26r34YECCJ7rSVaIywAPkqx2GG2q6Yy0TZR1KJBIOyjy8lovy7dSJO6ExeDGot+iopIFsqGEg2JClknndTUqElFNwyLaQydgHlHmUVh6YGkzyJsixQC6acaJHIdDuG49+HeHsAJFocMwvqYO69VwvjCg/Dtql7WOmCwlsgiZBkC0bgLyRtSRJB+yifiQJt/lQy4I5fJXHmcPB6Zi/G7aEvcZFQTTLBna6BuJGXXcg+y804xx1+JfmquOpi1hJmOyr8Q6TI0K4BZPi6eGPa8izyyl5Ea0yJmfqhKlR3wg2GiKLUwYedFcWLoFJJ1JKcxnNT06MJFp3CwzkcpMB1U3pCQp+n4eyic2N7oCCxlQECEGWp7imrUUQyF1JJAc9TfTkJUaRhHGmk6nMaCy4OZLgRtTwuZLe8LgZtKUYbWp5u6iAU5tumVTZFfAMEq3Nk5lLnKky2XGvT2JRw0hGqTU9wXaI5oWGhjkPXaSLa9UaKd017DO0BZMzRVkOaLgIa51hXzqPZCYqkANNVSMxXEqiIUdRoKMfhz0Uf5c9FVSQlAlHDiVK9oGyJZQtYharwd4bc+oypUpsqUiDIdMjkYIg/VJkyqKtlMeNydIxD3gboUUyZ1M6SvesT4ZwxYabcPRA1u356Xn3We454Qo06RyOYw7ekTMelrSTa/dc8Oug9UdMuknFXZ5BWaRN4I22Qhp3VrjsKZMiCJsrHgXhHE4n4GgNgHM85WxmLbGLxBsOS7nOMVbZzKLk6SM2ygTMCY1TKjIW98XeGn4ZjRTAcwN9Rbz3LuixlSiTqhjyKatGnBxdMhwo1JRDWNXadKNFIKaZsCAjhnSdANr7J4bHsh8ey5PRDUaxmC6AjQxNVeQZcR0AKGxFYOMgInFMkgAg2317lQsw8kXEaT1RTDRHTI3SNOLqX8ubz2RYweanm0G3dZsxUvF0kYcEBqbpLWhrPUfMAJP0Szi3RQtapGsXm6Nskn9fokaBF7xrMH5qx4Pw0VD6jAnSDf3Gi1dag2A0QABbp2GijPKoui0MLkrMHiqRbEggnmI94Q8raHhQeHZoJvDiJjtCzWN4Y+nqJETImIHNNDKpaFnicdlbVoToVC1pBRoC6KciVZSI8SBtTYqZgCY+lKcGQg6CrOgwVFXEgid5UiRWWjMHpTodtOqjrnn/AAouFFXbKZPYrWgOJIP0TXRHuU9xKQYYmDHZUFH0WhzoJ9J12gb3W5fx6hh6ADKmYiAAOXIDYLCig6MwEhReW5w0KnPGp1b8FIZXC6NJjPH1Un+k0N7yfdUPFeL18Q6Xvnk3RocgHMcDBH7rjaJcYaDPZUhihHaQks05abNBT8PVK1JoFZuZzoygGYgySZ+Feh8D4c6jQZTcRLWgSJOg1krzXgPFH4d5kFziMrGzGpub72XoR4p5dHzKhGmbqJ7Li6pT1H0dvTSh59lX4n4swE03QSRe026rzTitFod6NO9lofEuMbVDnts6YPUXWTbQJldfT4+MTnz5OUjjGWJ2GqZVxLWxYgbnWBzA3RzmZGQgaWEcZLx859rLoTREqcU8EkZpA0MRPdBQtM7hlMySLcghMNwkOdoY6p1NBKt1YT0IhT0MGYiDGpMFaTCcIY0yQCdtIRWJoCNFN5V6H2ZTEEHmIP0/dSmp/Ty3Eb6z/lF4ikLg/opBhPSIKe0KVrnRuR7rilfhTK6joNnoQYu5VI1ilbTXl8jo4hPCOJeVIdJaeWoKbxHipqk2gRA56zP0C7heGvqOgN7k7JY3hT6fxC3MXHvySXDlfsap8a9EnDuI+Swx6gde/ICVc1KbK7D/ANTaRFlmKuGIAOx/adE6niHNaWAmDf3tdCUE9o0ZNaZp6HDKDRIYDyLhJtuqrj1YQKbQD0AiI0iO6iqcVq5I9IvE8raQhmY4g+kAW5AkmNSfZCMJXbDKUapAowVT/oVD3VlgMXU8wEy6futFUotIEtGnIWTyyOL2JHGpLRixTnT+dkzIeSucZwi5LTHIR9FVva8EA67HT2kqkZJ+CcoteQYuUbweSIqPvcfSD8k3yhzj7clRE2DPbzEKWjVcPS0OjsihRfob97iFLSh4iw6fotyNQHUpBxguc13SPqrPB04FjJ7R+igxAyxAEd7qfCZgcxII7GQlk7Q0VTGvwxJIaWk9Y/ZEcLJ+LIJYYlsfdHVMO0kPABO1rrrsMcpLQA46gb/dSc7VFlCnZSYynSc7M4OaZsYv0uQuYin5pANUOi0XbblA7a3RtTB1C1w0kbiW/uPkgsPwV4bGeJ6EQbb6EQOiopL6Tafwr62DptgVJA/8TnHz27Jr+H0Q2QXTI3A9O7hOqs8Lg6zM7ILpBgiY9ibBR4/htRtLMWNGUD/yMdbfUJ+e6sXjq6KvF0aLWtdTf5jpsCYI6kaoWTml7QQeUg/qp8NiKb3tGRrTMOMenvGYQtTSwdHK4DLDmxmF4HUza6aU+GmCMefgy76GGc1paKgO4B/+rH2UvDOFl85ALcyB213Vxh+DUYGeo4k6FsRbmI6pz2U2/C2I0Op6mAUjy+kUUPbKWtRLdRBR2A4BVqszx6DMEFsg8yHRZdxzaRMs9R1gGAdtNZT6RxkS3M1p9hyuNfmg5Ota/pkle9lPxXhDadruJ3kC/a6rPKIEK2qiXGDm5n9UHW+qtFutiMqSTySTa1chxB2SV6YlnphwTxHpN/dEUuHvDmy3ccu+ytCxzbxI/mykp4kTH6rwu4z1+0ggPdEG385oZ+PyuDQJJ1hEMqc1FTwbcxcBvKRNezNP0Mxj2uBDx8VuoVE7CtBm+WY5E/sr7H4YvgA3nU8oVY7h7zOUSAfrAlUhKiU42wXzA1rwIubc0GaIsY1R1FoDxn0mCrj8mwgRblEKnPiT4WZ/D1SwiARaJjVWuF4jJDXanSJ/gTcZiCx2UAZdrJ+GrNgSBz94QbtXQUqfk5Xa0n1TrtZC44U4jW2+vdH4hrHg+qD0VXWwZuCQeqMGLJAzntyiQHA/RL8i3+wx3uP3UdbBvaBAntdDte4blXX6ZF/tFmzCgESNttPbkpH4dgh0CeZVUcQ8mQfkiaeIdab/AM7INP6FNfDuJD3CPLBH19kThsM0R/25aD6aqB1d0ekjsdU9tRxAtJ/X9lndGVWGZoMmAO6Le7MJAJ7RKgoUyBf5EqVlK5iw/nJSZVHaFEgENPq63XACZDoEamJ+qnbWzWbYjUhcfUZMOI9zqltjUiJtCmGwyfb1So3DKPU1xB0tcd9wiqlVotohKmPaIzR0JI+xuirYHSKZ+EeHk0mAAmX5iwmflKKp1A1pa4AhxgkWE8iAJCWIr0s2aM3QNvPOynZgs7QQJnY2jeSFWUtbJpfADF1WgAgRsIzWib9VWvpgnfSVpWcIcXDSxuFPiuDtMz6TEA9UFligvFJmOY9zDmbAm07+yaXOg5i49ydFq6XAYDZiST1gc1LU4RlBNnOtY7D/AEm78QLDIxrSLW1nmgsSwEabwtnivDYMua6DsNlT1fDlUGJBE6/4VI5o/QPDL4YzE4WpmMRG2iS1VTw0+TJH890lddREn/nl8PR6NRM4gBAMXlDEuAluvJdbh3uuSOy8Sj1xnmBT0ai5imRBhRCpKwKCs0rlRwiNFA2qosSfTrusgNHDw5roi3XmjajWsaANkJgKpBy81cDAA/Ff6IylXkVRMpjjmdKgII0JC0HHeHhrc7G6fFE6c1RMdKrCdq0RlHZEaj4uVEKz9J+aP/KuOiTcI+dvmqKaEcGVmZ43K6KhOoBVzSwfOEQ3CtGwW7iB22UtOnOyf+VPJXflDYBMFPnZDuB7ZTflDyTfyrhorhzR/IXBSHJHuA7ZXeY8c1z8w8c/nKsjhzyTa+COoWU0Dgyvo4oz6voi24Nsy0nre/fqhhRdNxbsrjCUGgb+4WlKvBoxvyBV+Fl1xUOm6psRwupOWAYBIjc8lsAxuxUT8PJme/b90sczQ8sKZjqeAqBwzSBuSbdJhXxwsScx9cQdxpy00XOJECYN7A/ZR4OvAipcAe6eU3JWJGCi6JquHfThzX2MSN+6KOIc6BqgqvEqMEZyV3huOY92VgOb7KburaKKrpMsjTebg2CCxWYXWkCErYcEypRyFnjM3UxTwoanEHDXVWuMwxhzpAjptzVbhsHmOd9xsDv1jkrKSF4tAbuKmdPqkjamFbOg+QSTco/A8ZfS2p1UbTcqilUVhScuZoqGkSIVXWYWkhHCpAuUFiK+aw0/l0EEYEiEpTo1hY1HcNQJcCOf8lX9IwFTMoOH+9EUMYYjfdLLZqHcTxBLDl1GvO/RZwU3a7CNo+X82WhrVGkSOUFBuaCABoP5dNF0hHGyuuuZij62HFtPb7pnkjkm5A4gJeeZ+abmKPGFB2KjdhoR5CuIMKxU1Ks4mBqpKeBJ6I78sA0X9ys5I3FgdBrjcsRtNoUtLoZQeMDm/CTHtHshysNUFuYBqgatPYOso87xEiQnNqc2/qitCvZGaDhyTBUeNJU7qnQrlOlnsm5fQcQc4tw2TX4mTZzhzRLsJeGy6NwEOMIeV+q1o3FnK1JpI9Wpv9kM7CszRnI9pH6omrh3CbJtLCExZZS/ZnG/QJX4ONQ8HuCERwmgaVQRodeyIfw18Ekj6qB2EMkCPmtytVYeCTtI1GayhdUVXSr1AACQYUjahUuJaybFsD2lpmDyQVUBoAGgRDqqGrJkYgJ6JKJzSupwCpOVlSKqmao6lVhKzBddmYQh34UgCL81J5qcKqASKgwyJFlZtcg2vThUQYSarXGiCrvk2TsS8usIlMcx0WgFCjEbX/JIOUb6bm/4unNryIPz37IhJ9QImU8UylTcm4h3yQATU3Fp6IttQEKpFTqpA8wShRg/zAASFA7FTqhC9SU6RK1AJWYmF2rXDtk1mGO9kqmGO1wjo1EZb1TSOq4XJpqIgo6Z5onA1QEF5kp1VsRJHNY1FzUrgAKHMCqr8ypBiYQ4hDyBEKKlTgxtsoWYhTGqtRid0QqfFmDARrq1kJVpt1MlMgMZRaToPeVO3NGiVN4iNE4vRMQymuclKa5EwwlcTHLqIBBStSSSmHKeikksEkKTUkkAnCnpJLGHBCVxcriSyCOabKMFdSWCcapRoe6SSBh52RTdAkklYBEpEpJLAK2ruolxJOBhfDxqhMYfW7ukkivICIaJjSuJJjBmHRTUkkrCiMlSO09l1JYAJyUiSSJhhXHJJLGGFcSSRAf/2Q==\\n\", \"height\": 194, \"channels\": 3, \"width\": 259, \"type\": \"image\", \"id\": 4947633552}], \"selected_variable\": {\"name\": [\"\"], \"dtype\": \"Image\", \"view_component\": \"Images\", \"view_file\": \"sarray\", \"descriptives\": {\"rows\": 5}, \"type\": \"SArray\", \"view_components\": [\"Images\"]}}, e);\n", + " });\n", + " })();\n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", + "}));\n", + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"https://static.turi.com/products/graphlab-create/2.1/canvas/css/canvas.css\"\n", + "}));\n", + "\n", + " (function(){\n", + "\n", + " var e = null;\n", + " if (typeof element == 'undefined') {\n", + " var scripts = document.getElementsByTagName('script');\n", + " var thisScriptTag = scripts[scripts.length-1];\n", + " var parentDiv = thisScriptTag.parentNode;\n", + " e = document.createElement('div');\n", + " parentDiv.appendChild(e);\n", + " } else {\n", + " e = element[0];\n", + " }\n", + "\n", + " if (typeof requirejs !== 'undefined') {\n", + " // disable load timeout; ipython_app.js is large and can take a while to load.\n", + " requirejs.config({waitSeconds: 0});\n", + " }\n", + "\n", + " require(['https://static.turi.com/products/graphlab-create/2.1/canvas/js/ipython_app.js'], function(IPythonApp){\n", + " var app = new IPythonApp();\n", + " app.attachView('sarray','Images', {\"ipython\": true, \"rows\": [{\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxIQEhUTEhMWFRUWGBgXGBgYFRgXFxgYFxsYFxgYGBgYHSggGBolHhcXITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGxAQGyslHyUtLy0tLS0tLS0tLS0tLS8tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAJwBRAMBIgACEQEDEQH/xAAcAAACAgMBAQAAAAAAAAAAAAADBAEFAgYHAAj/xAA9EAACAQMDAgQEBAUDBAEFAQABAhEAAyEEEjEFQSJRYXEGEzKBQpGhsQfB0eHwFCNSM2Jy8TQWJIKy0hX/xAAZAQADAQEBAAAAAAAAAAAAAAABAgMABAX/xAAnEQACAgICAQQCAgMAAAAAAAAAAQIRAyESMUEEEyJRMmFxsRTR8P/aAAwDAQACEQMRAD8A69FQRRIqIrps46BxURRYqCKNmoT118WkZ2IAA5aQo8txAwJ71r3wp8WLrXeyUi7bkuVIa2VBhWVhzNWXxJ1XTWlNm9qRp2uK21siO0gxtn/tPNck6RfXQG7ctXrbubNxWZSSZeBb2KV2tDQSZjaDTI0UnZ12x1qy+pfSqwN1F3kSPYj3EiR61YxXz/8AD3VDptfbvNcYBWC3H+oEHBkqcgwB9q+gxnjigpWGUOIOKiKLtqNtNYoIrUEUWKxijYAUV6KJFRFGwA4rGKLFYlaNmBxURRGFRFGwA4qCKJFRFNZgUVEUUioijZqBbaiKKVqIo2CgcVG2iRUEUbCDisSKLFQRRsAKKgrRYqCKNgBRUEUQioijYAcVG2ibaiKNmBxUEUQioijZgRFYlaMRQNSdoBngifUTEfrRs1EFaiKU6Jrv9RZD95YEYwVJHaja/VLZQu8wPISSTwAKydmrdGF3Uqhg7p5wjN+oFerXLnxcpOLN31gxmvVP38f2P7cvo63ZMop7lQfzANA6beNy2rtgmfykgfoKX0WoLaNX+smyOGA3Hb2M4J/Sl+g3Rb6dacmAtkMTzGJ+5rz2tP8Aku1TZaae6LihhwZj2kj+VZlaqfgnU/N0VluYBUnzKkg47e1WtjUK5YCZQ7SCIIP37HsaD02ajRvi7oly/wDPuao2LemQAq3yvmXAFDS7MoDCMEDjMGuZfEGqVmuC38y7atpbCM9sowXxEtb+WAEtGDhhnPFdR+LPjVrF17CaT5u0KS1xwtsSfxA9vXOa5r1v4i1C3nZNQty5tUOLaqbQ/wCp4B4dtwKGOT3ee1GUlx2GF+DXbqDc9trW1zs2hbhIWAC2Cc7hnvE4rt38LusnV6Q7jLWmCfTAChV2jAjt71wzqF4E70t/7ZYEMTuIbb/0/mAAQOdvtXQf4I6wLduIVdnudwngVVyWa5OCSQNoHlSp7pDyVxOxEVEUXbUbaeyFAiKxIo0ViRRsFAoqNtG21iVo2CgRWsSKMVrErRsxz7+JPXb1hTatXLYDpkAn5vi8JAj6Rmdxjmmf4X9YOo0uxy7XLZMs0Rtb6QCPKDitc/il1Cz87YlpA6qfmXCgDbjBQAyJOJmDwIqq/h/8QXNNqrVpr6Ml9ofcGOzLAbW7FiPbImhz+VFOHwO0xUEUDq+vTS2bl65hLY3H9v3IpqJqlkqBxURRdtRFGzAoqIou2o20bMC21EUWKgijYAUVEUUisSKNmBEVBFF21BWjYAUVEULquo+Tae5/xHlOe3cd61f+H/Url7563CWIYPuM/iwR+YEVuaujcXVm2RUbaIVqIp7AD21BFFisHUwYie08T61rNQM1S/FPVBp7JjLt9KxPrJHlih9R6r8p2LHarBV5JPhLbioHnMT7VqOp0F24dzOdoJI9FnM/c1x5/WKPxj2dWL07/KQz8O/EF21Y+X8gEhmIYmAQzEkwBOJifSh/EPXrzKAFVvEGHgBA5nmcwSJoB0RYYeFBAJ/rBH6+dYHppc7t5kMfCZygxJZcc81xr1OVrs6PZgn1sbbQ2zneSO0cR2wOK9StoX0naogme57AdvYV6p7KG92eqWz0K277mHytreEuZTkFmMLmMtSXUPi1bFjQWVdRKqboDEugVCyiJkSQBkHmuSvqSmmW3LeJp2yY55is7TMCFiIWF/ef88q6nlS/s5nC2zq38Lfi3Tppks3bio5e8xLTyz7lluM7iJMcVvHw/fW584hbikXCrb12kwBkdiOeMV84dEu9j2BnPma3f4H+PX0m5G/3bUyEwrIT3Vu4PkadLlHXbBJUzZv4jdI0NljrNVbNwv4UCqIDRlmE+IwMccZrkmsvIlogNDBxEAzt2z/49xnmtq6z8StrdUpNsXN7qtvTu7QhnYfmAeFd/hhtwiJIrTerIqKVEPu3AsQQdwjcQDMDt68ipZGGCBdX1F/ds1CkMoQQy7XA+WotyMfg2kY71t38GboXqCruI3K8RjcQODPbvWn6zrV2+CLhUtJYueSdioPYwgzT/wAB9VXS6y1ffKo3iAMNBBGPOCeKF7KVo+odtYmtB6d/EsNe23bQW0zAKwPiUExuecEdzHFWvxF14JrdBZRhD3Sz5EFGt3FUg8ZYwPURVnjknTOa76LXqHVltajT2DzfZ1kzA2ozCDwSSsRVltrQ/iNieq6X5gWA4Ns7toICtKEEGXnPl2roEUJaoy6BbagrRYqNtawUCK1iyzjicTxFGK1rvxnrraWTauC+BeBRWsoHM8kAecAnjIopmo5N1rUaVPnsZa/se2qn5jiSSDde620sx8gAB61rC6hVaxcS6GuA7tsFRaYOSqbieM7p9c1YfFPSLuk2ofCriV8QJgkR8zJ2GM7ZMCkdNdtWrd5L9v5jsAodCITbc3Owx45APiU9wOKSUrkXitHQvj/r6/6G3pmuF9Qy27jbirBgwJMlAFYgnECJWujdD1Iv6ezdBkPbRpjmVEmuEdeNqxbS1aJcmWMqqlDA2AMu7cIyRPJ4rs38ONV8zp9mQAVBXbMsoBO0N67Y7CqKbZKUEkX2yo20waxK0eROgG2oK0bbXttNyAL7ajbRLlxVKg4LGB6mCf2FLf6km+bc8Ww0d5LET+VFMATbUbar73Vgj3laB8tEYCed+/8A/k/lVmxAEk45n0prNQPbVf1Hq1iwP924AeyzLH0A5qg1/wAX3PGLVsBZIVydxxiSn5961bW3/mtucs7YgtE4zOK5c3q4wWts6cfpZS/LSLDr3Wruo3BCAv07f+3kySOTArSNR0u8z4eBP4SfftzwKvnVhmY/L7VUW+oMAUYGT9JzkTBwO/FeevUZJSuztcMcVVDlrXaq0P8A5l6VHG4t+jTirbQ/GGstjxEXR/3oAT91j9q1i/r0RgBLEScTz/OjW3e4Bgr5DGIHrVf8jMt2J7WJ+De9N8frtJu2SvqrSuePqzQtV8XfMkLcVQewMH7sef0rSDpfNmJnicUxpb+YAAHnyRuntH61snq8klViRwwi+i1WB9RLt5iT/wCqJqOpkjYGGfqiDzBAqu1124hCoIwZ3THl6UcWti7mfeAAxIEDJjA5qSlKi+rGl1BKKqqgAP1bck+REweKIdQTO76iAMHaI8iKU/1EtCBiAJJ2+nA/rUMpJB7f5iaDclsPxHl1gPYYx9I/rXqXtWWjCyJr1J7khqiaFqGi3AIYlplTM9/sBWFrqn/MSP3+9Ht2UjeYACFoHc5VRmqS4ZJ967FT0cg9pdaQ0KBDYjymfzp3o6+JjOePX3iqE070nVrbeW48+SKtjdSViyVplzp/9u4LlxwSGD7RGSuVkHB44NVep1bX7ly5clmckkmJ3E+mKy6hfAO5YIbuP2NCsa5QSWURtIAAAAPY+tbI96NFChYqY7iptGDNYbufWjWUM7cST+tIMbXpr25VPmBWB6jdtX7TI20qw2EwQCcMSODiMelCsOQEEHkg+X71hcCPetkea44nMkkdv7V1ZctxSIwhTZZ6vr5bVLe1O9ypz8phZciD4lKQEJ7kCTJrs3RvjzQ37e75vyyIBVyN2YzKzu96+etQ+7ZlTumCRwOIJNW+hZ4lgoBGNvFCEecnZpaR9LjNe21wvp3xXq7KlEvMFAEA5gKTAWeOf8ir/onxxqLVu4p/3goDKzsdyjEz/wAxmYJHv2pn6eS6J8kdUik+q6j5NprgRnKgkBRJnziRjzrW/hz48s3rf/3H+3cWS0KSpE4YRxiJmtb/AIi9fFwgJqXNjad9lbQBefpi409+Meec1NwcXsZK+jmXXLhutcdLZDeNrpU+ALIEAHIGY/Ki/D2nuXNLeaFa0t23vGybm6CQbbEY8iJ4ORFLdSuIiOAbe64iyoJ3LBBgiInuBnjNY6DTXF0xcOFR7m0qWO4kIGDC3+JSGjdEYiai2WRlr5YFuM7YxAAHhKtM5j9PWux/waffomMGRdYEkzOAQBOYAMVxG/IHDFVx4jIXv4f+I7wPSuo/wfvLprr2btt1u3cKxbwkJkgLx3+pSZwO1Pj/AELkWtnWdteIou2o201kaAlajbWV5woBPchR7sYFZu20ExxJx6Zo2CjlvxR8VKt+yQ8i3fbcNniQI5QniSHUkAD/AI1ba3r6WdXdfDj5G9NpHAyd36Y9eK5j1e81wLMEm47ckt43Z/ET+LHFH0WmvOrySCQVWTAC9z6D09KnP1PGy8cHIY1/XWe64LEnUW0XOYKZ9wPq/OmrPxVeuadEZyUVEXaB9QUBZLQCxPqarTqNOjZPzLgXb4QWI7HjjJpXru42gYCjHhH4AOP71xyzzevs6FijHZdrqtxggL6Fs49FpV7u5pAEdyfIYMDtxSeg1xe2XA8QUA+ROIz60iOqAwHA3THOOckedc3tttj89Flfu3RvwGBwq9xJ/p60K7Lydu1iADI8j2gkD8qnTt8zg8fhEZmealTB28sORJ/XzNHa1RtMrr2jIYlWYD88+0ZpnSW3V0nO6QWIjJ4H5Rx51Z2UiXIXaBKg8k9wab09lW8TA4+ndkT7fy/aq8rVMHD6KRbTXYC7twYg4IgDz7R/Sn7XTjLG2IAgzHlALHsFk1apbUSQBnEfzjypxbfzAFyDAkEwCAPD28OIo05dB4ryJdO0Ns+J/FA8W7dB7mTM5ps21YEqg259Wxxg8D+lGtdOZgCreA/VAgfbP+QaMwCjaixJMt9P29oz96V8vIyoTWzMkJtXGTx5e1YLYETzE+w9qavauRsEEDiP5jtQXY/hHnzjjFGrASLccqc57cV6oe4QYJBjv5+tep/bRrONpeMROIisZ7VjtrLTvtYEiYPFdJzhdPo3uEhRwJM0Blitrv8AVEv29qHafqIjOOMxmq+x05L8sLm0jncJH6VJTfclQ1fRUWtO7/SpPtUXLDr9SsB6girlujXwZBB/8W/9VGq6teXDEMQNoJBwBj6Tj703NP8AHYK+yr077GE47TE1ZWrSoVmDOQ34dvl9qrLlxW/DtPeOD9jxTen6iQoRoZR6ZA9DRd9oxtOnti5aa4hD7YJAwQPFyv2H51X6i4UKuOySQFA28AE+Xt6UobiWrT/KLA3AynM+EgYx29aF/wD6ZZCp2iVAn1keftRnNzS/QqjTYm7KIAAmCCSJnMg+mMVddAuhV2sveYMgN6jsD7VrqsO/FXfSbrDwkQM7ZUiY5zxV8D+YmTo2zVae29sPZncuCCcwe/2oFixegG3JjBAgMJ5HqKx6Mw3wxA8sxn3q/SwQQVAn969Kzl/Qja6VdAG0KGWcz9ansf1H5UPXdE1G1SumvEkhdvyndZ5Gxh2PYnA862PTtuHtTdvrP+mtXfmC4EZdoKuFbImVmQB2kj2qGd/B0ymK+W0cd+Iej3LTM0BkAQl1ZXXxyFBYHDSpEHOKrtPduKrFZjAOJBB7H0kcVcdUbw3NtpbduRAVmYc+GSxJLQDn1PFVSaqLWwYMg8HPOPIAfzrzaOosgz3LcvAMDmPEBgEAe2T6VddF6hdtWUC2UIW8GtPslt+TtDbgACVGIzBrX0voFIUEGNgBksQRlvIRJAArH/VKxIbCnaMeGVXHHBMdz3p8cqFmrPqL4f1Ny9p7dy6oV2WSAGX2O1srIzB4qwK1Q/AWvbUaKy73N77c+EKV8lZRwQO/fmtgbAk8UW9k+JoXxl1MjVWrW7YqPacN/wATJljmIAxnzqt6z8avct3La+E7pDKY/wBuDjzJNLfHXXgbpW3+GRcP/KCdvbIG4j/BWsrpDcA3BlE+LzxwvopqObLWkVx40yh1zsqq6mBJOcn7DvFZ2L9zViX+YyyBBYIhPfCiT/er7Xaa1diUEKIXnbjiR/Oq/XOLZteLao8RgT+nHNcfup6XZ0Vx8mduybe0JttrjAEmRM/aq/rzkWiD2bnvmT+WRTmn6zbutsQZMyTMAZk+9I9fKlY5E5PnA70keXuLkgSarRh0XVlrb5+gGRzJM7T/AJ5UkbSEqtxl7evPbnFG6K1v5JSYZ28R7mOAB25pB+lXbj7Uh2JgKDBPkJMD9a6Ypc34E8IvbHSrWNpjPIn7+cVZC2gwpJAODy0AECT9+K0tbGoTgMI8uPWmdPqL/PzYPABB/pWljbXYykl4NtFuATz4gTOMdh7EinLNoXPpMMZhYxHn5wSY9c+VUdu64K5EkATDZ85Axn+VXmmvOWm4UWe43d/87VzuSj2Ui2y40mgtq0OBPYTmMd+/Fe1/VrWmjAIMCZI7Dk4juKqTe8jI7RI596X1qB8NBA8+/c80Fnk1XQeCLodeV08IE5lg3fsf3/Sq27q3cbZMTOT3/nSyIqiBHoMQKE18DkxSucpMZJJDYuKsl2wPSldd1LadoXnkk8dh+tBvXN8TIA9ASPX1iktSpu3TjwnMk58pxx7V1YoxS2TlJjjagnsfyNeo+jtwsBu/bxdh3869T1AW2czNeNer1XIkgkZB/Wi2r8HI/LFArxFYxZWuqsFZX8QOBkiB6RWWq6mHCrtBUCIIEj2bmquvTS8VdhthSk8f+qhDnmoR4oikHkxTAClGGQZ9s/nR7moW7tD+AhQox4IXjjg0O3qo7eg9B/Omjo7dxQbbjd/xgzHmf7UGYW1Vpt24rIx9OQYEHgRmJrZemdKvvtZWLWW+mThfPJ/zFa+jXtP5hT2OVNWml+KrlsEbVhhB547xAwYNPDI4u+wOKZsHUeiNav27AcG45A4hQTAGee9Wvw5oHF7YbgAyCDzI8vIcmtQf4qFxwWtLGPESS69pHrT2n+KLaNLkFxuK3CCTJmN2yJ8siqP1DapgWNJ2jd/i6+Ftqtt9u3g4LsRLCfKT+lU/WdJeuW1uEADaDtxwVgLA5Y9+1V174gS5aUsAXLSbkmBAEqFb8QXuT3qdR1tNhKN4SoG4kmCMQP8AO9c+TPxj8VsqoW9sr73RQzKnyytqTJkA4MEnPqI+9VOu6Gh/+OWPvBnMdqvzrgfxQIM/MPJ7eHFY6TWJbb5jkFl4IUwF4I9oM48gK5sbn5Y7gjXdLor2/wCY6BV2uDgL+AjA88DNY6PTE2mYTtLbGgBhxgsD2yePOrC9ds3EM7j9TKVySAduT2JnAqmF25YZShbaCHAYQCexI710wb8kmqOmaf4j/wBLDKGW4ABuBA3gY8S5BGP1q30f8R3vWr1q4CHKN8t1AGcYaODk5iuUN1FrrW5MnjueO3qa2rovSibbXWmT+HhghIE/rP2pnNKDvvwLxbkqFNVcDK8nu/bsp9fWmdDrBcChW3EtBEx3n8hXur9AuG4qgKYK8d/PcOy5ms9TctaUIQYY7goAKgERJBHbJrhe1+zohHewFnTXXN0kwgO0LOXxyD/xivdR0nzbAeSFBhjiYA4HlJrN9RcvAC0MSOxBgYhcc5qGYvYezCndHiySAO8edJSbTeqHaVaF7Oht2LZ+WwLOZ3yCB6Scz6RSPxDs+SNhJLHJyJIGc+fpR9J0O1bguxPluEKpJg9/WftT1jphvqttbe62GJEMVE8Fs8CAPzp1x5crbEa10al0/Wpb+q2dxPO7H5Hj3q4sdbtlxhgJMHvxAq40/RtKqf8ATDtMFidyAr9Sgd4wOarW0+mVm3WlyRGfMThe1VlxlumBKS8mK61GbarmfNlIBJjHJmnbFoTmCfXz4n0/tS40+m2hhbMGOJnPHH5U2mgtgKTaInzPAHJM/wCZqE68JjpML8tVIJI7ZJz5YFGZn8I5wSsgQA2JHngc0PTW7JANsKR6CQPv50fUXktrMyx+lApLGOfsBmoJNypD9InnjsKVvXG7Y9zTFrUqyyMT5iD7ZpXU69FO1pH/AHAYoq+qD4Atcbsf/flUkQcxM9/2o2g1FprhRgPCSczOR3PfinrpDNPh2xAgiTxmTTPXgVIq713bE9+wH61Nxdg3HjBntB/aiXdDJWe55nJB7Azjim9bYBABnHIkTHqo7cGnrVgfdCFtj2j8q9TOm042yTBOYn+1epbQaZzKK9FEB9Kg+1emchjBrJbfmRXqkAngVjHjpz2I/nQ4o7fasC/r+lYwMVOO1Zi56/pUFh5VjGen2kw0j1BH35FZusE7ZgcZzH25oIMnH7UZIBE9ucfzrGH9F1coNrAQcSMNntJnHtXn01u4SVuqJ4BBBnyNVjEf2is0WcD9qXju0aw2p0T2vq+xBBH5ilmf0qy0KvbaSdohvqxIIgjPeg6r5ZAj6/xHsf8APSijCaOQQRyKbTql1eY84gZPnIpVk8v8/OvFcZrNJ9mLS11IEglQQOZ5JoX+vbac95z5DsBVcq1LoKHFBtmyaHUqVOwbnKSCMRGIgen7ULW2NoUEgk+MqZOBnLffMYpT4fZgzBRKHaGMTGZA9JIAn9q2FHlfmFAbh3KykHwjy+4O6e9K9DJWim0tzZfV7atPKyNwj7xnnM1tmg+IbX0O2ySDzAPHLcc9q1LqupZNoQmAIgYED9ao/mt6gHt2pMmFZOwxm49HW2YPJ3CGETOM9ifKgvatsASGgcDHoP5CtU+DdS5JDI9xQRnBVSc5U8+eK323q9JM/KuBe/jWd3mMRt9xXNLCoa/2WUuRXm9aAYFdvcZxtH1Y75/c0iuutqxBUKCZBUTmPxTkedWeo1Gk3HwsG/5ESAvfd/alE1OlkblUD8Uzu+3b2pqTj0gMd0GltsFcsDPHkPeOasH6fanw3lBj8QcDP/4/tQrVzT7Tt3BMfTMR24ExxVfrRpiV3MecS0GfKfepQhu/+/sZ9DOn6SLSrbRrRW0GIIuqTDyTkxOR6HFVlzpdtCGI3EACTG0kd8d/vFWllLcwcCCJnsR6c/rQb7AkyuduRjw5MY3Y+3lTSk2u2ZRRU6vS/MEAkHOR/npQX0RBwzHEQTg/z8zV41tCJmcgY/DJiT3ikn0toTFye8naY/WkXLsJWW1a2i21BnuQcSfYZrKyck7T4exHPtmTmKcfTIQT84EifCNs8A7jJyPak9TaCN4bycjmRjGBHanSd2BsV6nfRFbs0LCgMZnvH2NJ6/UIdoD5iZAPGCCZ9JxTOs6cFKbbyyrNBJJMOcr/AN0GSJ86xSwzFkDWx8sAJIGOBL479jXSnEk+RQnqB2457+w4pnRa9mBYsw2jz7/3q5/+lWuEFrtoj0IHPkaaPw5EojKBiSdpj2AyfOtzi9IVRkIdO6i7nxCQYMecftVlY6ohSGAWZlT3PvxMVhpvh8BmloHYgqT+px7U6/wq1zad5CgMQoK7sfUxPHekajy6H+VFQOq20xujyyTj+Veq2ufDSgmQnpgMY9TPNeoVD6Ybl+jmYivQKwr1dhzmcTUiR3oVTJrGMtpqIqVn3r32rGIANZi2T2qVcDtNZW7lYxNlypwBPtNGGhc5I2g5E4n2qfnqOP0rMkvEmB6/yFAwS2lm2PF4n9Mr+lCfXPmMDtCjAmceVE04SY2z3JJgfYCntOUaSqDB7jH96MYNglJIpmuM31Ek+ZNDdIxmts0WhRiTsCmMHkd5x/nFPp0q1G0iW7t6/wB6qsE30I8sUaMtlsdp4J4xjmjLoHOZGeM10C/0a0QsCCOcyGHlHaktX0nwg7OTheIA8jUs0Z41bQ0Jxl0zU00GYkcdzmfKgHTErxOY8iP61s9zRc+ERiN3M+/esE0KurbpBUEsAeI/qSKnGdj6K/S2jaRmTyAIPngyRWV/XNuDIzS6lSAPPMzwfepewEWfmAExiJ4x96Tt2Ll5wiCe4hTgD6mgeQ5plG+gOVBWulnCuq4G2Z8U8AzTfT/h9bq7mcKCVA7sSTBkAwAOZrefh3+G5uANcHy1KkyfEzExtMY2iMxTPxT8JJoLCPZJJ3bXYgSZ4H5zTyxuMWyayxcqKDS6NdMDatuCc7cwSZmD5HFD1fU0tFQQIaSMERBj96odWGDC4BjDESQTOB7EGrSzeN4AODwSJ5B5I+9cTg+27OqMk9IsLWosurFQTJ858PcZ9yaVtJaYlstEwCNseRIHP50rqNKYDIxjMjsQIx+vFY60fLsfMBJYtAEYIjMffvR+UlVhdLs2HRdQRdqlQI48j705d1+nMk2A0CTuZuw55rR9N1QGN9uO4kEqY85puz1FrCqQ8KwMArII4IP3pI4pRfkPNNGzLr7TLvW1bC3FJEF8ATMDdgn19KSuapLhAUiYBj8UHgH/ADvVZY1dhkAtuF5AQ+HbuyYJ7E1Xi2jkkXFBBwQ2eAAYp5Y012wcmi6v6xVyxxxQTfQEx74PP2NJXEkDxqcjnvHn70U2lIGFBIgkH9f5VLhFDcjO5dBhtvhPeBgf5FYCCSSvHGRmO8jjAomn04RQsho+xH5VF6yygOhDRgrPi9I8x51oJcqQH0Vuu0xUAgFkQkkT4i1zufOMAZ7VN1SoCm2MgKxB+oiOfWadfTO48R7D1x/WldVYYkKFJjyFdKnF6JuL7Kh75BlQUj1Jp+11F3BJLbhkEGPyolnppclIwOD5+dMJ0gr+IeRGK0pQ8mSkD0XUbu4kMPF5/wB+9Mt1i+CCjYyCsEr/AOQjiai1oVQzIMkYnH3p1LSop8MAdgRBBzz70jcbuhvkAPxIQTO7PbbujtAJ7Yr1Ra0m8TEff+1eoXD6N8vs0p7NE03TnucD7zRWtUTTuyfSYrqd+CFgbui24796zRLQGSx8xHf+lH1FzcSe559/SgAEVv5NYT/ULjaGkcCMfekrxY/hgHsBAqwtahlyoUYjj+tYXbjNzWSo1lWVjFHtac8t4R5nFO2bMHcR7U0mkD85ogc0iuayUddkHIIPnGaw1SMuWwTJ/Wr29p1BH3gfYT+1I3NLvAk9yBPvOazVOgKaasqrbmeavuko7/UwE+Yj8h3qvt6OCCM58qtBpnOSZPtVsXdiZJKqHdTrBbbYkEDlvWmNL1lVxtPqe/pAqv8A9Aw5BEZyOfKKfvdGvj5Siywd4IMZYscZ7CutSkc74lmnWbYIDK5PdRz7TxTnWviTTNpxZFtwyMGHjDZIIYGF4z28qgfAupCgkruyWh8nyEkRWvdR+H9RYQvcGxd+wmZIJmCVGSpjmkzxco0xsbimAudQW2StwsVYCB+gOaFp9V8y4tu04XeQu58KJ7t5CqrqOkuLs3z4lDLPdWOCPSouaLawB8IKnI85IH6iK89Y0jp19lhqH3K58DKrBA47mZkehAmY71tHwHrxbuaZVDR8zxFbeWd1ICm4SPAonw+hOa0waEjaG3AMJkcnB2xJiJHPvTHSdRftMnygWuBgywCzKRM7FONxE8g1bG+LJzjaPpD5tVfxNoxqNO6TBHiByYK+g5xIoq38D2FQ92QR512OCao5+VHEdRbKEI4IgjcIzHPH5U6EBCkEEx9+Oaa6re+feun5cMC5LTgqkKMeYAj1qqGqZCGIxwQRyOx/evLy46ejqhIys2WRSJlSZjy9fWsOo6optUCQORPGZBr2p6mqtEQpzPevBRcbdgqR3qVO7aHb+jw1fzlBAz+IUl1kKQpUR29qsLenVDK84kVXdSgRRjXLQHKXkV02iV4ls9xt/wAmmU6UoOTMAnisraqLYZcmI9jSq651J2xMEZzzg88Gq230ZMZTQopkSw8jHtkd6as6dD27djVV/q3/AMFZ29S3/d+VBxbNZdraGNpI9Z/kaIb3EcY7/bP9KRVyG4OfTmaftPvOZWARlexz+9c8o12UUjLdzOaBcv8AaiNP96weM0qSH5Mwt6srwBPfGSDRLurBO5RmIMH9xQzZHNCZCOBTcUwcmjG9cKwfUmY88xTWp1B2g4mJII5zxA796WLisBczFUoXkO6PUFQQOJ/pXqw09vBwRn+leoUvoPJlJdtgE0Miigyc15lyRXQjmugQtTVjpemFyAgEnEmImJ5OKc6DpUe+qsJEAx67lH8zXUtX0XT3Bta0sAGABEeuO+K6cWLkrI5JyXRxS7pWQkHkYPfNYPb24p/VOd0diAP2NK3WqElTopGTaBB/SmtKx4Ail7QpvRjJ9q0VbBNqiNSJyTEeXlWdi3vCqAXJYwBkmQP51s3XOl2rehR1Xx7j4pM8xxx2FL9JHy+n37q4dgF3dwNwXB/DjyqzxVJWIp/Eruk9I+Yw3JegMQ5VCQoXEf8AlII9K6R0j4a09k/MCs25RC3IbZIz9+351q3wZqXGdzHcVBliRyx4nmt9mr4YpR0JJ7M7ultMQzW0JBBBKiQRgfkKOXpTcajdVhRv5lc7+Lr72NRcuWnksoDAA+HcDE55gEg9p9a3DqGpa3bZxEqCRPFcz1vUne784hZbDADwsBEhgTmYE1DPJJUPGL7KJyWiSTtECTMDyHpRrtlwVkDAER3yTn15oeow2BGJx603qdS1w72PiOD24EVxsrfQrePA4I/L7eQirromiv8A+qtlLe112vAjCnILE8Ag596pd+ZrofwEgKXLp+t2gt3ggNHtJNVwxtiTkbn8yoN2lt1eJruIlYnR0Gqa7jYUPhgRuYndPnVX8a9OtJYRl8Py9tsDttM/r3rZCapPjLxaS4D5r/8AsKnkgnFoMZbOdG0rHxGB7fyopQ28hZUd1Pn5io11sfMP3/pU2HMJ7x9q8ySo64NUZ2tQG4YHnHcUr1FOBTl1ARMCfMUhq3JImkit2h5IKLe23H39/OggIGkimL/hQAUuEEj2pok+Q3auW5APHp5UcKO3f9aWsmFHHPlWR8JMUrHTGUPdcE9++KZS4AZJmcEff9MH9KT2ys+RoqCQK1Dplla06OcYicH0xz37Uj1LRsDCZ7TyMVCMeZPB709b1TKzKDgR+01lBVaDysrUskAE9588xzWIQd6vbJ32xu9o7UjqdMoWklGmMis1FqMjkfrSWuQBpHkPSatC0HFC1FlWyQMVSEvArFtM5jJP2Neoi2hXqPIGz//Z\\n\", \"height\": 156, \"channels\": 3, \"width\": 324, \"type\": \"image\", \"id\": 4947633040}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxQTEhUUEhQUFhUVFBQUFBQYFhgXGBcYFBQWFhQVGBgYHCggGBolHBQUITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OGxAQGzQkHyQsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIAMIBAwMBEQACEQEDEQH/xAAbAAABBQEBAAAAAAAAAAAAAAAAAQIDBAUGB//EAD0QAAEDAQYDBQcDAgUFAQAAAAEAAhEDBAUSITFRQWGRBhNxgaEUIjJSscHRFULwkuEHI0NicjOCwtLxU//EABoBAAMBAQEBAAAAAAAAAAAAAAABAgMEBQb/xAA0EQACAgEDBAAFAwIFBQEAAAAAAQIRAxIhMQQTQVEFFCIyYUKRoVJxgbHB4fAjQ2LR8Qb/2gAMAwEAAhEDEQA/AOlpUoXYeaySECFhAEVd5gxkgKObva8Hg4SclpFWSMu693AwOXNRNOtjbGk3udC+1GZa0aZg8SOK54aqqRvkULuPBXtl5v8AeBaMxLS2cj/IVxjSM5bvY5m02usX4nE/bZbpRrYzqRoWWgXj3vLP6KCuDasFlMtwOGMRAmOi5s2SKVTWx04YSbuD3NG+rrrPAFR3kMzpxXP0+TErcNkbZoyaWrf+xjWrsoWAERnrLmzB5SuiPWQlLSn/AAc76aSjqosforS0AzkF02cdkFm7Pta6XZiMoyzT1BaNxjAAAErJoUsPEEeIhTGcZcOypQlH7lQgVEChAUOAQAjmoGRYSgBWsyQAhpDZMRC2yAaZTqiwJg1IAhAhIQMSEAI94HFAUMxznKBkVR2yYFKpZiSTicix0aYqZKS6EdUyQGkjdUPJA6GVASMkWFGJarjc4k4uCpTFSJLuurATiE/UKZSstbcF+z2R4Mg5HgVNlWqLrrJiEEx4CErJtFcXKzjJ8UWDmSi7gBATJ1ETMdH34khwjlmonBTTTNcc9LtGvYL9PvOczE+IJ4az5Lgy9HKS0J1E7FnglqfJmW+01qr/AHQA08Btsd1vg6SGNeyMvVOexbszCG56rsR58nbHwUyTEvxjy4YceQnImPRNVW5SvwVrntlYOjMtnMbocYrdA5SezZ1FOSMxCRAjXgzBzCAHNQA9MBISAQhMQ0hACQgAKAESASEWAx7wBJMBFjSswbV2hpZjCXCdd+eadSstRjXJcuy206oOAxGoOqHaILT3NGZIHikUVqtoYD8bP6m/lZ9xf8TNOzL8fuhlnsrhTbT4DUzmqctzTSuSWlZnNHxHzSsHQ4kNk1HADfRPkhiU7yokT3jR4z+FLbTqilC97GG86R/cBzVbkaaEfb6TACXgznlrnxTSbE9jRu6syq0lrhkJg5HwCxlk0y0tGqwtx1WWGU50E+CpyS3ZmotukStpbmM4I4qXNrhWVHGm93RNVp02yDjkCQfdIPTRc2PqMsn9v+Z0z6bFFXqKNRgcOUrts4uGMZZBJM68OCVj8FvuGtYajiAxgxO3AmAI3PBYZOo0vSlb8G0MDktTexk1u01lgEd5zaGgkc5JAVw7/Ekv73Q548Ph/wAFC19qWj4KZ5YuI5wtYqctnsZyjCG/JZsPaGjVEPa6m/hniaeW49VGnLGW9NfsxtYpK1szQo2doMgarSzAsosBgposQ4hAChADsSYDSUWIaSiwK9a1hrg0znpsgAtVXC0ugmBMDikOKTM2hf5aQTSbnl75keijLjc1Sk1/Y1xyjB21ZmXp2mqvJw4WcIYIBjiUYen0pJtv+5pPMndKinX7TF9Pu6wnZwAbGWWgzW0MGluSf7mUszlSaOefXjaFvVmVklltpafdMIcRnSU6hqskjMDXTyWD2KRz1pccRkDVNLY0PRLXaGtEk6bffksuQRg2vtK/D7gDTOZyOW2YTeJSe5pGTjwYtuvJ9UguOggRktFURaGyt3mSL3K07EtOzPIkAkDZQ88U6ZS6aUlZLRs8nNDy7bCWDfc9A7P2FhEMngCcok6rxsnWOEvrR6L6aLjtI2m3ZUbJa6D9lq+qxZKTRzRwzhvFlY0uJInmcyuvuJUjk7UpW7E7nf8AnNNz9BHF7M68b3bTeKeFsACXGczv7uayhqdyv/Y6ZQikotGg1gdTD2ZjOSJIOfPMbKoZU5OLZjlwuMU6M29LO19PA54YCZ1iY+q2bp3VmULaavY4x9mYypEhwB8lvbaJui3ars74B1LwI0CmL0hJ2Q3bdzxWa14wgGSf7q21Vojc7hrFkIdhQIEANLhpInxQ2lyVGLfCEQIx6jX0XSC9zZMgkkZ+KtbiYlW98My5oj9vEoURNg/tAwRlJOsEZI0CsrPv6m7UEROR9MwnoY0yjV7QviGzEzJAPlnOSHjvllqSXgxrXejqmRIjy/CuONR3FLI5FSqHA66cVaJIJBzKe4DnVKefujlmUqfsdlTEJVbjssOvR4YWhxg8FOhBaM81+aVDO1vG+gPcZmBHgeeYk+CyjHa2aU7MQ+8dU3KjaEN9y1QrMGUSuacZPds645IrZIsspg592s3JL9RVP+k6rs/TplvwmZzkcI+q4ZwlKdM6O5pjaJa90NfUcWtdmcso8c1Eck4Km1sU4wlua9y3ZUY04QBJyn0K5s2XFOW7/YNTgqLlO7KpMuqgwYiQABJ2XRhzY4L7Wc2VOfDGWq7CIcSHAagHRdcM6m6po5njlFXyWDexiGtAAEDis/kIu23yJ9Vvsjn76sffOx5YuQWuLp3i2T2KfVKS3W5Nd7CM4AMRpGS2hijFGOXqJSYlusmMEZStkctnOPuJwdJ4nNaahm3dtmwgiIUMGXTRCCRcKAAoA5W/rVaMbmsJDZERkeuq1go+Rb+Dn7UyqXTUzJic54LVNVsTTOyue1jum4iAQI124eK55Lcso3hf7qZI7vE0fuzA6FVGF+RO0cjeF4mq4uIAPJdEY0Q9yGz2ggg7JtBRcq3mcUsAblG8qFD2O2Vn1+JPjGSdCI6lqblAT0sZSq2oqkgZA60FAEeMp2OggqbGojKgMIbKSIcBU2Ojp6FBzuC5Z5Yryd+PDJ+Deo9l3PbiB8uK86XxFRlVHofIpq7Lt2dmgD70gjUEc1E+qnPaI44IQ3Z2lCjSDAC3MQMo04rnXTyT9kz6q2H6YwuxNfgAE5azMrnlLMnWk0WSOn2bFOvTA184Wcekyvc55Zbe7Kdptzp9wiNwIXb0/RRi7kjDLmVVEpEk68V6aSWyONtvkjNdoOGTJ/mqqibFTM2IQmAsJiY1yBURuPJFjoAEWFCp2IRyLCivaKhAybJ8UIDl73vepSqe8A5pHwxpuJW0YJol2jnbVeGJxdpnIG3JaqNAT2O/TTOkgmSOEpPHYrG26+O8BloTjjoTbZlvtGUAZK6AhLymArWE8UWOhX0+aVhQ3uhuix0RmlsiwoaLMTwSckUoMt0bpe7SOoWMs8UbRwSY6pdrmmJlLvJldmtirWoFuRCetMThQ/2fkeijWVoR62y6m/tLQRpAy9V8/PUnutj3Y5YvzuadiAY3C8tOe34XO+nlN2lQ55oryWatqYRAYBz28F14OleN3ZwZMzkQin5BdTyUttzHt29y33NIQcRO/wDIXG83UN/ajZY4eys52wyXbFutzmklewx5KtMzaIbVaAAIAG5Jkn7BOKle7G3GtkYd4X8abgAwHc4h5aLohHV5MZKiGydqASRUAaOBE+q0eP0Z2bdC1tdm1wI5EFZO0OiV1VIbQ01QmITGmFDHVEhUMfamNEucB4mEwor1b5ogfG3yKpQl6FaRj2vtQwSGtcdjMCfDiOi0WGQlJGPaL+DwRUY12x0WixVwxajHqVmngNVdMRDUew6NjzKpJ+wsSk5oPwjzQ7oRpm8aQbHctJ3kx0WOiT8mlozKgaSSBA2mYV20t2PSmwbZidAVLzRXJounlLhFmjd9Q5Bjj5LGfVY0rbN4dJN7JGvYOx9asCcmgcSuPL8Uhj43OiHw9v7nQ+h2Rqh4bUGETE6/RD+IKUbgrYLolGX1PY2WdnqdP4SXHmI8VzPL1GTmkbr5fHxuaNSzU4GCk1pHHXqoh08398mxS6yMftiZjrmAMgld8djhnlchLRYWxOAT5KjK2VTT5BAWdc+sSAMgBoAMlyxwqO/k6pZ23+DRpWqnqW+9Hl0XHPp8vClsdCywe4jrawfCxvQJxwT/AFSYPJHwhX2jHq2CqhB4+GEmpLgjY07StZTj5ZlHHLwhajiERkmEotFG12lzRIbiHHktVXslQ5Obvi8a0ZZM9fNdEIwk7Zk9cVSOTq13E5yV2qlwc0ou9yanam4YcPMapU/AbF6wW2lTMhzxyGp+yTjJk2kXXX8wn/q1RyDWj1S7T9E6hKnaIt+CpiEaEehkBCx3ygk0uGU7V2trftLR4D8q1hj5J1Mx7TflV5kuO2sfRaLHFBuVTbXHUq1FEO/I11qKdIKIjVO6BpADKls0URSxLUPQIAUakLR6LFGyvdo0nyKylmjHlm0ME5eC/ZLiqvMYSOcZLnn1uOKuzoh0U26aOos3YunlNUcwvNfxLLLiJ3fJYo+Tq7PYrJTYGkNhoykgnmZXnyj1EpN3yb9xRSS4KtovSzUvgAOZzESFtj6TLL7jOfVRXk5+09rQBhY0tE5nFJPou+Hw9eTkn1rvYZS7TN4nrJ+y3XS14OeWdvyT/rzDxJP/ABP3Vdpozc7LFO14tAUtNCslBO6LCipabdTbrUbI4SPsqUX6C0ZT75oTqeifbkKzsKRzzblG655KX6WbQlFfcrLbrW1oEMAzEjIyOMyMlxZOnyy/V/odmPNiS4osutoObAGn1CmPTy4mxvMkrRWD3zm9x5GMvCAt1hiuEYvMy5Qrlc+XAnyb48urYdVBdqMlEaiqRtTvgqCy9Frra2Fpg1fBl226gQYcc89AfqumGSS5Oeag1SOWvixvAz4fzRdmPIrOOWO+DnSxdSkjHQxhpHZPuRH2ZeiFzCrU0ZvGxCw7p6idBG4JtlKICkVGtFvG6F7lVrI0EjLNlos3kpmscO1kjLOdYUvIvZccX4LNnsZeYa0ysZ5VBW2bwxOTpI0adxkENeQJ3089lzfN6lcTf5XTtI3LPclmDcgXPjOCIXM8nUTe7pGl9PDhWwqPdTgMDuHuxHlqto4IvdnPPqpcLYZ+oEa0gP8AuPFa9iPsweeZFaKpeci7/i3RXGCRDm2ILvMTA8ynrQtyjeFMNyc7yBiFcNzOWxmVarOA81skyRKZZxMeaHY9iwLXQZoHPPPIKNM2O0gqdoXARTa1vPUprEvIW/Bn171qu1e7rHorUYrwFNlR7yU7LUBmEqdRpoPZX1RoGCOZM/heWo5L3l/BerF4j/I1s8YWlfkycvwShoiZHhmldvgdUuRwQKxWuhTJJouMnexbYSd1zycEdUVkZI2jPFYZMrS+k2hBeR5u3FMl2fMrjeafhm2qC8GVV7HsLsWNxzkg5rT57MlVEf8ASu9JBX7IUpkl3pohdfnSpGmnFLfSQ1Ox9PC51OXZZAlNdfltKQ9OJbVuc5aOy1Q/Cw8+XVejD4jBcswydJfDGU+xdUk4yGgcVo/ikf0q2ZLoF+qWw49lGMzq1mgR+2CekqJfEMk9ow/cuPSY47uRFUu6yx7tUzxxD6ZK45Opb+pCksCWxTo2SligyRuP7LolLJp2OePbs2mOHdlgs7C3g7R88ydQuPR9epzd/wAHTrdUlsSUbE3CIpAGP3AfUIlu95CU2lSX8DWUng5UwfRVUK5JeSY4XZJlxLc+BVrJXBjKLfLIzZabT/1Hf1rZSk/BhJJeRr7TSbpUaOhVpSfgzuK8lSteFLXvejSqUJ+ibj7IXXswD/Llx4gqu1J8hrS4EbbbRUkNa0A7j7lJwxx5Y1Kb4Rl26mWuON0u4hbQkmtiHF+TNe9WNRInVExsSUWCiOawlS5pGscTJRRWbmarGkPFPYKdRVDu4OyWtD0npNotoYJdkBxXJH6tkYSg48jaV5NdofJU01yLRtdkdS+6TdajcxORn6Kljm/BDa9liz20nPIjKCDP2USVFqi2KoKyb9lpei7Z7WD8R6AArjnj0u4nbHJqVNmky0AAYY+65nFyf1Gmw11rVLGGpEL65PFWoCcyAO3J6rTtoz7jJmVslDxIpZWOdaSo7EfQ+5RUtIDhmf55BUsbjwi1kXkwLxpkyIJHM/ldeONK7M5TUnSVmLUu4n4W9M4810LLFcsyljk+ET0LojUZ9I6jNPvaiJY9J0llswgZxyH4C8/JJ3sdcNNbktSytOsn6KIymuS3o8IoW+2tpBb44SmzLJJJHI3lflQu910DYflepi6eKW55ubM72MOtaHEyTK7IxS4OVuyEuVE0OY4cUmUWaN4BmgCh47GpUS1L+qEQ2G+AWfYiuTRTkzOqVS4ycytNlsUokZCLK0itoEqXkLWMu0LvJ4ErnnmOiOA06NyOyJAaOa531CfBro0+DToXPS/c4HzAWbyyBssixWdupb1n6KdUxMstpWaP9NLVMWk4213tVqACo8uA0BOXTivWx4McHcVR5uTNOe0mVRXjRbVfJkM7zmigL9gvl1KQ0iDwI9VlPEpclxm0adk7UOn34I5a/VYz6ZVsaQy77mgO1FPZ3osPlZGveRp2DtHTdlJHIrnydNJG0MqNelbAdFzNVydCTZYbVUah6BlR6uMjOUQpVJRJhFExUKZekiLldsmkR92wuBcJ81L11SZcZRT4LYqsb8LAFj25S5ZfcrgzbVULjJhdeOKiqRzZJOTtjqVWBzUZIu9jXFKNbsKgDh8TvKAsvrXo2vG/bM23XWwjjO5JP1WsM80+RyxwkuKOIvahhcRM7L2cE9Ss8nPBKWxmmkV06kcziNcwjVNSQtJGQnYqHU7OToCplNI0jjsuUbte7Rv0WEs0V5OiOMnbdL9IHVQ88S9DNKxdmyfiIHquefVrwawxG9ZOztMbk88h6LhydVI6oYya12KqAe7DY2bJI8yueOaF/UdDxX9rMt13VnHMOK3+axpEfLSJrN2dqu1EeOSiXWwXA1g9mrZuzTR8Z6LCXVylwaLHBFwXRSHBR3snsPp9HjJrL7Kj5VyE71AxDUQIewEpNodFmlZnnQeoUOcUWotl2jdrzsPNZSzxRosTNq7rCW65rlyZdXBvCFG7ZHkZcFx5I3udEJ1saVN/NYNGtkveJaWFkXekLXSmZXTJm1+az0larIn11ookNiC0aIaGmi9kROKFy65J1R1rHFrkxLXaXScOnCdV3Y0q+rk4p/dsXbscC33zmuTqJSjL6eDswRhKO/JeFQDSOi5ncuTopR4KFvt4iIHRb4sG9mOTPSowqoZn7snwXoLV7OHbkzqzPlZGx0XQn7Zg1+DPtNgfGI8VrHPG9KCXTS06itTsjycmnorlmjFbsiHTzk+DRo3NWOjHdFxz63Ev1HdHosno1bH2YrEjFDRzI+y5MnxLGvt3/wADoj0TX3M37J2ca0fGCV5+TrsknwdMcWOPg0bPdbW/u8gsH1E34HUfCLzaTBll9Vm5SYCEtGiN2O2NLwqSFbGmoE0hDS8bqlYg935kW/Qv8TxShZgSJIC+zlNpcHzsYq+TUddAjX0XN8zvwbdlEDbmBOTh0VPqaXALp78j7Rc+AS5wjw/ulDqFN0kLJ0+hW2LQrsaPhzGhyVShJ+SFkivBB7U6ZBz3VvHGqI7krs1LHfPzieYMSuefTf0s3hn/AKjSF+Mge66dsvrxWHy0/Zo8sTQsN6MqSAcxwORPhusMmKUN2bY5Kd0y534WdFCmqCmthNWN78JteiUMfXRTBje95piRbpWhmA4iZAOcgAZarnnGepUdUJR07nLVb3GLQuG+nQcV6kcDo895o2bF1W5rgcJncaELi6jFK9zswZVWxpPrtiSuNQldI6u4mrZzl43m0Oj0Xp4cEqs8/LlV0Uxeo0iB4rd4HyY91FqjXDhOo8VjJadjWLvcs0KgPDjGaxmqNoO+C5RLdvRc02/Z0QgWhahzWPbZq5bUK21eKeghyJG2kpOItQ72o7paEGpie1HdLSh6mHtZ3S0D1DTbyn2kLWMNuKrtoWojdbCqWMTkM9sKfaJ1HmocvqDw7Ju9O5UUW2KKxBkEzujSqpit3aHVbU50YnExpKUccY8IJTlLlkLqquiBGvSoCZj0UBapOBHgsZ2mdOOKkty9d1OHB2RgzG3Nc+adpxOrD07tSRPbb8IcWtw5cdZSxdKnG5GeXqHGTUUNs/aBw+IA+GSc+iT+10RHq6W8R7O0AnNmXI5ofRutmT8yr4JKt+Nj3WmeE6KY9LK92OXUKtkZ1O9qgM4p1yOma6H08GqoxWaadjbVeb6ggkRsN904YYwdoJ5ZSVMqd4tqMyWzW0sMt1UTxqSplwm4u0Wal+VDsPJYrpILc1fUzaKde1F5kxPJbRx6VSMpSct2RY1RJJRtLm6GFE4KXKKjJxex19217O7LvJJ4GGHwGWa8LqI9THfTt+57uGXTPh/vsZl5X6WvLabQA0wcWZJBz0Oi68HRaoapu2/RydR1ememC2/JLdt9sdPfEM+UgOIO44wpz9JONdrf9h4eqjK1N0aP6lQyh7dtVy9jN5R0PLi9kZvyiHFs/wDdqPBV8nllGyPmMadFltta4SCD4FZPDKOzNFJS3RWqXtTH729VrHpsj8MzeWC8oSpeNNoxFzYOYjU+SccE26oJZYpW2QMvykf3EeIP2Wj6TKvBkuoxvyRVr7bnhE7Gfsqj0kvISzw8GfVvZ5HxegXTHpo+jCWdlQ3g75ndVt8vH0Zd+XsxywjgV16k/Jg8cvQsHYo1L2GiXoQTsU9SFol6CDsUtSDty9AWO2PRGuPsfan6BrTsjUgWKT8EmeiNSK7TuqLdOyVNisHnx8WdEelyrei8bE9zMycWkRkRzK5vmIRntwdMunlPHu9/9DMqUHtMFp6LtjlhJWmedLBOLqiNziNQrTT4M3BrZiBxTtIFFkgJGqm0+B6GnuTOsdSJwOI3AlZ9/HdalZs+kypXp2Iu4f8AKcuSvuw9k9ifoZgdsehT1x9k9qfoDSfsUu5H2X8vk9ELiRqqUk+DNwadMUOTJocHoYDu8SoQCqk0NMWpWJMkknc5pKKWyHKTluxGuPNDaBJ+h7GuOgPRS5RRcccpPZDnUXj/AOhJZIst4JolZZnbrN5omi6eXsR9nchZYieB+BfZXRM57I70bD5eVckRs7/lV92Hsz7M/RG4OGqpSi+CXjkuRoqEKid0HelFIk6L2Rp4eq8fuzXk+i0wvge2yUx+31UvNkfkenEv0k1INboAPKfUrOWqfLKjkUPt2Fc8HWOiSi1wS8jb3ITSDsiMlprcdzNpMY2wtBmFTzzaoSxxTslbZmzMZqHklVFqkWqbY4LGTs1TJ6YnQdFD/uWr9CvZGrY8QlF3wwe3KKTrCxzpIAk5nX0XSs04xpHM4Qbtj2XPS1xNE5GA+Y/pA+iT6zLxX+X/ALGsGPlDqthpkzAOxLYPRKGbIl6/xKljg3b/AMiRzclKe5TexWcJyAWypbs57b2QyxWJwkCdZAictk82eD3ZWHFNEtps8jZZQyUbuDMO0WZ+hDT4gTG+a9CGTHymceSGThpEBsRy/wAvxgnPqVqsy/qOd4Lr6f2/+iix/wCzq4p97/yF8ur+392T+ytjJoB6rLuy8s27MK2RE+wNGcu8oVrqJcGUulhyR0KbCdD5q5ymkRCGNyqi/TLWjguWWqTOpVFAbTIyCO3XIa/RA0niAPBW68MzTflErDGSh7lJpEmIKNx2JKYhS5ILK9oEjQHxWsHXkie/goOsh5DwXSsyOV4be4z2Mqu8ifl0daLABv5BeF8w2e92EiOowNyM+i0jJy3RjNKOzI5CvczsUFJjTJWuA4T5/hQ02WpJcoXvEaWGqxza8cY6KXCylNrgf7Xu4qVi9Iruy8smF5RoXf1lR8vfK/gvvfn+SI2kHitO20Q5WIazU1GRLaITagNY6/laLG5LYz11yTNtbYlZvFK6NVNVYrrYOIiULG3wNy9kH6kKL/eZj0OE5AgjUH+y1+XeeH0uv8/2Mu92ZU1Zofr4qN/y2YIgOznWYg7ZFcj+HvG/rlZ1Y+s1rZFPFPE/wytqrwEXvZWtlLE/F/twnfSJnVa4p6Yafzf/ABE5vrnq/Ff8ZDUYeBP19VpGS8oylZCKcf3WmuzKqGOpSqU6M3GxBR5p6xaK4FDQp1MdCZJqxMSQjcmwlArExBG4WhrqwHFNRYnJLkhdbG7q1ikZvNET2xqfZkT34h7W3dHakPux9ittLTxScJLwNZIvySAqP7mqjZZq3sTqY8FjDpEuDon1TfJWNvC3WBnO8qE9rJ0hHaS5DW3wO9oPzfRLQvRVgbWdz6IWJCc2J7Udyn20Gtie1p9oXcHNryk4UXGVj2uUMtJkneqdJbEFccXAeaeh+ELVHyyG1PBGTxvGa0xKS5RllUJLaRWp1y3RdEoqXJzQlKL2HC0GNeMqdCuzRZJVQheTrmnshU3ySUKzmmWkg55+Ig/UqZxjNVI0hqg7iXP1d5+PPKJ0PLRc3ymNfbsdC6jJ+rcjfeRPD1VLpkvJMs79Fd1sctViijF5JkRrOV6IozubEFV38CNMRfUhe/ejTALyDXVHniU0oIl9xkXvKriRokHvbouIaZexPe3RcQ0S9iGd0WhaJexpanqJ7YndI1h2bA04Qp2DxUJhHJPUw0JDmxy9FLbKioid5zHonX4BS9M51181Nx0W+iJnbJqd/R8TfMfgqXBeAVjj2hGgYY8YS0FW6osWa/mE5y3xzHoplAqMmmMtPaL5Gg8zx8AhYV5G8r8E1lv5rsne6fTqk8dcB3Gyz+o0v/0Z1S0MNQC9KfztR22PWvApvdnzjr+Edr8B3WKL0pn946o7bXgfcT5Kr76pz+484/KtY2ZucSeheVN2joOxyUuEkWpRfBfo16Z4jqCsZKaOrG8b5JmWmmDGITtI+6zcZtbm0ZY1waNns+IZNPDgOPmuSebT5O7Hg1L7SwbAfkPRZ/Mr+o2+Vfoq1LOflK1jmvyYy6drwQ93yPRaKf5MXifoaW8lSl+SHB+hSxvzehS1S9fyN44+/wCCIgb+itNmbgvAmXGU7ZOheRCW8/T8IWsTjD8kNU/KfGVpH8mM14iRCsNCrcH4Mu4k6kJ3o4T1RpYa4vgaag/hT0snVAaam31TSJcvCGH/AJJ36RLg3zISB8ydv0R24eZC+6lci1HEgJaj6h1jDG3ZH1ewvH6OKlbWRQSgAlFgEoAEgCUwCUrChcZTsKQYkWFBiRYULjKLFSDEnYUOFRPUJxF75GoWgsWa8X0zNN72HWWuLdPAqJxhNVJJ/wBzXHkyY39Mmj0C5f8AF+tTpYLRQZXIiKkhjojR0NIJ55L53qf/AM5hyT1YpOH45X+G53w6tcyu/wAElf8AxVY/WykeFUH/AMQlD4BKH/c/j/c7IfFIQ8P+ClX/AMRGEZUHTzeP/VdMfhElzNft/ubP45BL7H/BWqdt6Z/0nf1Bbx+HSX6jGfxfHL9DKz+1rD/pu6hbR6Nr9Ryy+Ixf6SF/adh0Y7qPytF035MpdanwiJ3aJvyu9PytFhoxfUtjf15uz/T8qu2Z95kdS/W8A6ecBNY0S8jI233u3oVWghyb5FN8t2d6flLSIP1hmzvT8ooBf1dmzug/KekQC9mf7vT8o0huBvVn+7oihUxRelPc9EUx0L+p09z0KVMdIT2+n831/CimKjnJV2a0AKWoKDEjUgoQuUSn6GkNDlKlVjod3ip5RaRuMqHNjpCYlOp+woJT1P2FCh6ayMKHCotFkROkXGq1IKDGk50GkMaNaDSLjT1BQY0agoMaNSCg7xGoNIneKXNINId4nrQaRe8RrQaRDUQ5hpDvEnkVhpDGnqQaQ7xGtBpELknNDoA5GoKDGnrQqDGlrQ9IY0aw0hjRrQaQxo1oNIgepWTYKGLO2UCQAgAQAIAEACABAAgAQAIAEACABACynbChEWAqLYCJACABAAgAQAIAEACAFlO2AiQAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAH/9k=\\n\", \"height\": 194, \"channels\": 3, \"width\": 259, \"type\": \"image\", \"id\": 4947632528}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxQTEhQTExQVFhQWGBwbGRgYGCIcHxwaHBwYGBsYHiAcHCggHx0lHR0aITEhJSkrLi4uHCAzODMsNygtLisBCgoKDg0OGxAQGzQkICQsLCwsNCwsLCw0LywsLCw1NCwsLC8sLCwsLCwsLCwsLCwsLCwsLCwsNCwsLCwsLCwsLP/AABEIALcBEwMBIgACEQEDEQH/xAAbAAACAgMBAAAAAAAAAAAAAAAEBQMGAAECB//EAEAQAAIBAgUCBAQEBQMCBAcAAAECEQMhAAQSMUEFUSJhcYEGEzKRQqGx8BQjUsHRYnLhkvEHM1OCFRYkQ6Ky0v/EABkBAAMBAQEAAAAAAAAAAAAAAAECAwQABf/EAC4RAAICAQMDAwIGAgMAAAAAAAECABEDEiExBEFREyJhcdEUMoGhsfBS4SORwf/aAAwDAQACEQMRAD8AoVbLEKpU3jcGYYkE+kCPvgvLPUIDQSoYgqT4SIuSDfuPTEGVhgBUJA2BnvEQJtiXLsLIJa9iPq7iTETvjBdQEQ4Zx6L0yqEktErO9/CTEEEbXi1sWzJ/EA0qriahbSQveJv2xTKlJxUC/NI0kEWi0GJjzMYJyJlC30GCNp3AJIj8UT35xow5mQ2piOgPM9IpddpU6fzCRIJAHJ0kggd7j9MXVGRFFRoWYmbb7D1x4tSzAFPQVVnMsGiTJG6zsARG43nizjI9dd6gpzUZUUgsGBCm2loMzEDyttscWbqdU5Fqer5bqFKp9Dq2+x7Eg/mD9sJs38RxVzChCUoICZEajcyrci0HtHM4pGVBprl2pnS6OXGoC4g6xC7q3cHk9icKM/WrU31KwKsGMQ39RVwRsFVtQuZsZmRKFz4lKl5r/FZ1saUElQFpwTBDOTdbSUKE9sWjKVGNNWeNZUEgeY23M35GKL8K5/Mqy2Wu7QTqqhQoI8IHhLTpPa2niScXtS3hZlCWuoMwe0xfFEN7wGLczXIMDf7W5ww6ZWOxMjAjdNJqF+Ithrl8sFG2LORVRFBuT4Hq1YxOcBZmnOJiMYZTxlRYGIcrWEgSJ7emJ8w0Y7vDINM46NPvgTL54H9/liDMZ1maBthtJi6hDw8zG22JNEcYjyOXIvgiuQInCnmMJDUXAznBNYxgOo2CIpkLHEerG3OBnczAxYCITN5mqFE84WVKjsoJMgnHWerQe84gy4aYEe+LotC5Fms1GWSr2A0kHBaSd/8AjAZlY574lSoWN7AcYmw7ygmswgJA4F8ZRAQ2AvfEzxgd10yx3OwH5Y4eJxhFRNW/2wKKYExAvjWYd1kiMC0XmNU+398EKagJ3hKm47+eO3aBiDM1wACOMcnNKdr47SeZ1yUZeb/v9cZgKpmGkxMemMwdJgsTxmqFJC0w3cHTfmL/AJ/9hgfLowqI07kAbC/YnafPGNX2kAWAWOwK9rzaONz5Yyn4BLDmSIsCLX5OPDPE2EbSw5xNerSTr0jYgDUJ8t9mv28sB9P0KtOBci97gmw9t7bYgoVDpEEEydUfeB6e+3njqrXmmZBllBY2JgTEcknz74QK1VOqTV8ywbefwqZ2kR3tbiwtiXonUKaM3zAx2YpP1BSWNxfaRz+WFuXQaYkem1osT6EeeCc1k4ppUAmB4jAHhOlJvBgwDbuTPaijmoCJZsv1ul86mSqj5bJpvaAEAJ5kaSfKdsWjpHSmYnMVAzrmNN18Ssh07zBYECwjzMbDzVEVocmPDbyFwAT6g27Ri9/BnXx8k5dKgUKFabksPxqAfpgHcevGLISD7p1y8dA6BTosX+TSpOSVENqLL+A3jSYFwJ23w5rJcDHnlbq1SlmVLaVBqMAz1ARqJ0lwACWAAI406hP1HFuyfVar5t6QRWogAh1aYPIPn/p8sWVoDH6C2NjGCMYWvgzpsrgfM04E4IGOaySMETpUupZpkqBkiVHNxfEv/wAwB0KvZo3xB1rKOktEib/59MIyv3xvTGrKJkZ2Uw2jmGVrG2HfSqoJ8UYrtCqsid/3bDDJZxRUBNwP+2OypYgxtLklcEW3wIrySSDKnHeRdWGoDfBNROcYeDNfMDrCcBVMGGsNsadVIww2ineI8zWgxPGICSJY9sd9Upwwi84Gz0gXEavP9MalANSDGbVVN+TiFqoBIBvMY1l13k/bAXVK60g9U/SokDuYJj8sU2F3J79o3XNjbnGnYz4fzwtyGZ+bTSqoKyJg7j97/bBSVFO5n1wAARYjWeDCarnv+/XA+bzJ9wcSfxKCxwLUXX9O2Cq+YGPiEVM4TaMFU4ie2F1KtpWPtjRZpA/LnHFPE4NDmZGF8Ds5MBbL3AxArAWA++CFeRJPljqqG7nIDcMY9MZiQA+eN4Fzp4OraySd5P52973xM9QuukQbxYbbAwe0j3wNlfDNuL3M+33P2xMlWRYkAnbvMkx6T9ox4NTdUNy+cAGkRJMmed5EDiR+eN1MyIKICB9QibSZPoP0nADH5Zg+txwbxt64l1guCskjczI8h52n7+eFA3+IandSr8ywWCJMfu+8mOJMYYVeoMy6GhgAdc/0keFB5A38oGF1ZwXta4JjYbg298dUKwWBG+2oRYzv7cd8DcbidO80m62vO3c3n9/4xDliwJido4Hhg9uY88GZekSzCNgYuI7g3O8R/iMQ5qmFdZBKsWIAN+YuN79hH64fmdtLt8N1WqUqdOswaSwDnTK6mVtfikli42Bi8kbAXT/w4ro6Fl1r4ihViQCVA+lTPis5a+48oHkaZ36QWEQLkkxyQtrHa3lO2HvR/iWrTAH1KIYCSLggsrGQSDJ54vY4ZctHeKZ7pVKqC7GFUEk8AC5JwnzudOlilWm1No0tqi7TI13AEFCpA4/1CEdH4wfMoadNQtTTrDEkAifpgHUCf6rj74FragS6U0+WlIyJK0/mMyh0B+qAAIcAhQpEE2GkNe4gnoNI2GO2OBqdSwPl+974kV74eCJfi6rFG0ySB/fFPpgbnHovVaGui691MesW/PHmtVSrFeRY43dKQVImTqBRuMMqBufbBVHSZkep4wsyL+LywdmYjwyB64qw3iqdpZ+l1lVAJx1m+roBGoWxTkzLRvbtjAQecQ/Di7Mp6220ZUurjUQdid+2GFDOdzhBScAW3xj5kt4cOcQPEAyERpnOoKX08Dnz+2FWbzJYy1xwBx6YiqEC3fEeey/zaehWZDI8S72vzxhwukWBELFooPVyKleCCqCApMywuSe0Djz9cK/jfqDk/JVvAV8SgbkzbyIJU/bCsZpVrMJFwwcCd5ENB57jfGswDXrs4BiZ5M/0qBE+3p2x575TkGkHkywXTvLz0xlo0VUmC7AAkkkkxH77ROGFGirKWDTBI9xvhD0/KM8M7ERIN77FYtYWi9zaMPaKqqqogKosBjagYbcCTNGRVqB3P/Pric1LBQLfriKrVkE8bD2xJQqQontip4iDmdJUI8NgcZTK6rtuLnEVGmSSTtjqrTUeWO2nbzKlIE2xlNtIi2B+o5v5KKSfqZVCjcyQsx2EycaR5nbe5wAb2ncQ1qh/rP5YzCDMdWCsRoJg760H6tOMwmpPMNmec5fLs8bErEr+KIB23P2tPEzgGtT8UAEDWDDEgqWOnbeLj7YITqTBA1vCIA5iCt+4IMd/tJ0UHyqa+LVUdTJH4S4jiMeV6a37ZtDNe86pUCxiCxYEKYi4mJJMQOf878UaBAcNAv6zxH3H6Ya0RTpVTpi2oRBaGABkiY3gSDsOIjHOeY5io7lVBpJCsNuY1XEzxAMScO3T2nzF9TeI8sxFTxA9mgcWkx6f5wbUphWGqysCQAD4eAYtPNh98bVwWLaPAgAXtPcze5/d8GpTq1Ek+JR/pk6oO5/pvt5nGWvdUoJxlpJiS06iCTuYI/e8XxNmcszMur6IsfTmPy9MQoCrIpAVgbpIgTcC3BkWPkMGrUEHkmBBvAgg72nc73nYRg2o2nb3vFdNSHFOAQbjmBceZg3N8T08yUMR4Z5G4NiCft9hiNaJJNThjf0geEeem8d8FBhqAOrSTZ9QMSLzbYnnzxNl91GAkRx8O5tqVYMGcIPqgHVEQY7E3AOwJxaPhT4las7ZWsy6WAIBFk1av5a86YIEk2nmceeHMOqxIb+5P78sGZeq8EafEbsW5bw3Bm587+1zgo5XacZ7d0bMCy/NZ/Da+raASfCCCNr29zZypx5p8E/NAFWkoXUkOhJOprhHNrCzWBE+HF0zXUXQFtGqYCIPqYzczsABB2mxxuU2Lix6lTFC+JkU12+XfafI4f8AVev06CkljMSNNzH6emKr/FMxJM97/eMa+mUg3IZmBFSKnbffBPzpgb4ERdRJxs1GJtjYRczA1JaxBsu/OOaCQfFbElGjBknGqaSTbAuGpsiTbC7O9WWm6qxI1bWtI3HrgypIkCAML+tsgoPqGqBwoME2B9pwH2UkThzU4z/VqdMMdQZwLLPPYnj0wrX4jqMzEaQoXVB43UA+UkT6Tis/MswuVJWWPmB9oA/I+mOlM6rg2vxE2McAi3No3x5D9VkZrJofE1rhUCS9CpCs9QEeJ0dpNpJZYF7gRB94E4snTyyrTSmnhWAQsanZbMeAF1A+Ik24jFXyx0MpUmTAkdosJ9DNrXjBPT+omk40kknXBmN7z9/1xPF1QBG0Z0JG09Ey6KF2Aje9vvid2gQBOKE/V6tVStSBTadQjcbj7Wv54P6d1+q7rT0gyAe0gCCPSbj7Y9AdWmrTRkPTNS2Ksz2wF1DqS0iim+q0AixkC88Xwk671gMrIkgDnUVliQAIG8dj5e1dyzkEs2oqou8zMiIuPtInEc3W02lN4VxWLM9DqZoaS7MAtrk2jiMVvrvxGjUyKYJV1aWI84K/a9j2wt63njVRGWQmkKVJESLlj7Wi22+0o6lZjUBMkTpAJ3MAi15txzhc3Uu4rHsIyYq5jWt1R3NNqjhjTcaYHpqW9zwPUHFk+G1b5bfMki1iDysHffjCPovw67BTUAVD4mM+I3nSBwP32xdqTIoVJAtIXmPTD9NgcNryGLkYcLE9TpVGT/KqeyyPucZhq+WDGSzAnjUR/fGsaDgF8CJrnidATKNCwRv+Xt/xhoKGooqT/WdpMAxxvsYg7YYp8P1NQauq0BVGlFdgr+EDxBDfaPExUeYkSsqrR1OivI1NGm8oNgSYBnby8xjzyyoRW/0m4IxFnacmZLiwkCbCFFvIcHeNjOO8pSIBqO3y1JMA7kqAQCNokge21sbfNM6baQWA8MbDb1YW/ZwCx1gIoGsHbk+5/TEWdm+IwCiNs1n0ZQqs7BR+I6dRECSALCBtJ2F8D5/qlQqVMKrASq+EEe1ztvgVKIUuWJIHkd52twCLxjFq/MMAKeYEXG8ST5EAL5zjseHsBBrr4mlV0Ew20kRx3/Invzhpl83CRLEi/iEyDc3+9/TAD1CJJa30xME8D3k/kcTUG1SRAUKJ8rwOLcW/zhHQg+4QXfEd/wApqdOKgJY1ZDHYLp03DEXDDcDY+4r0wijc6kUsOVBESCO/nET5Tg7p3RKlSEo5ZXIWfmOGlZA/CFK7iRPnbs56X8O0l1DNZgBV/AGnU+qCzHaBa5AiGtIkWK6lAqpwAG9ypAkWbVLDtH1Qw3i42j8sG9LaWQEyAAWIg7mIE3a8D7YI6rTSpXRaC7zYNqncTMRJ0mFH34Fh+HPh1KYqmsrllUiwggl9AZdiwMaiQfQHEvSszjLH8O9RqOSRl1NKF8aEeFiZKbCYnVF7sb4C+P8AOV6JRFsOCYHBaJuD9ENEiDfCimmY6f4FXQv/AJggEq0GysfK0GOd8LOtfFVTOKoqASPGIUEQRpK34iSAfO9pxU5Sq0eZMiQdT6lXdHdixmATEXAF94GwsPPDj4ez+qmW2EgCTcsRJH7OKfUzjMjIGaObx2Fx6bn1xvJ5lkCEjZgYnfTEbfu5x2LqtD6ojYrE9Fo1NycS/NAGEHT85Vqk1AwjYrp8INjaRMxNxhhB5iftj3MbjINQ4mJrXaGipI88aYmwm+ByxuRbEdVyFYzBi3OHIoXBdzrOdWSnAsRszE2BiQLSTeOML6vU9SVZECCARfcfmCZ/LFfrliWOnm+43vB38UkmPIn1Gao6ahE247R+Vu2PHy9VlsitpsXECLgtaipY6ZnmSIsZ/frjVCSGaYmAOTzxPf8AtiSnli/zJkC0Gd+CD5CcTVqXhIjva/EX8/X1xgo8TQILSbUTfcx78D8gcEPRVdIAki1z5e1+Z3wC9Q/MEWG095m4HewwUd/APDAPckgb/vtjtLdhCRDTXU0ap1EMq+EcGDfzk3PYbYH6RVFDSxIZyDpjibz+dtuZ2wC0mQBAbxD0uSPy5xLQoaSTYtJAva0bf52uMUctse4gCiddTrXYyTIgX7bT5kjf/jEtGqwp6AykMZJ28o/LEK21BpY3JjYDe5HMxbyxFVqE+cmSBMm36b+mJEG/kzqjVqK6FVTqCSTb8TQfD5CNz9sMemZQVnARP5KXLk7kgNAkE3N5538sLOkmFHigM20ElewEkXv5xfB7ZwJUPynOghS4/wBQM2M+IWIG3vbG5cioBY37yLWbqWbI5VaQPiuxmOAbk6R74U/xuut89IIUGnBUm4MypB5U29cazecZ6Iq6D4XIItAA/GNQmeLdzvhRRYsyqDDMYGwkggiSfv5nF8nUgsoUbcyIxmiTLgep0jvUUHtfG8VOnQosNVSowcklgAdyZ8v0xmB+Nfyv9/WH0x8ys9RzVWtWZ8zVZyCViI+ki0GxH64KXLS2tfCyCPBsSCAABFiAQsSdvYWY5BEKvXFGlRYE+NSGJgmIPiCySwt28sCpV0inSp0ilOTqqRNRl+ld/ptYSZgjaLKoUHRj3/8APqZqYsRqybD+8Sv9QpfKMkLqgHSt1G/1R+LSD9wcDCkup2qqFIF1ItqiY8J3mLeZw/y3RTUcGnoWizXO7EyLcHafEpMknfAXxD8OAVSiM248MRAIJnUYEzbYce7HpSDrO5kjlB2GwnFCjRRQzDUKiqTpsBJMCBza23GBqeVdan0sAZ0C8Rb87iwntibK5B2pE/TRX/7lSwCk7pG7iAIE/acMsnTWdFIt8ptP85xDkRsiEwqyT4rn1jABUt7Bv+36xtJC2x2/vEGzaFHRqzAtOoU1NyZ8OrfTE7b7WxB0yrLEuAVmyEeG1gSGkW78Y1nKglVQIbz3YySRJkiYUXv7YXfKbWIJiCw553jvEXPnieRG1b7wq4I22EsfSfiL+Hq6VqVNDJdQ4EzFpj92Ft8K8z1t9TahqBIibwAWaCDIa5BvYRYDCrOGJmN7Qdvy/Py9DjNcqDzH6R/jEWJMcLPUf/DwUqlVOWO4JCkEKxUyPrm5PPhAvtix9S+IKbfNTxKtMadSglheJJDzG5G30kzjyDouYKMpJbStzoJBG5EHcMDB9QMXLPdCqGhRry5Dm4LaoUXM32nVFreU2KOQNhARcBzuf1VQwd7gqo2OkggWntNzOFzJbUBMSCQJHBiwkfn+WImoFAYJkcgAzsQ0egNvbyxJdnAFhe202mPODf355ykMzENCKgrPJUMJM3IubgzPkOPKcEVMrp0rDNNgYF4IjyEXxPmciy6GIU6gfCDJ8NyCL32I9zgrMZRi7arAAgCxJ0xJgn3PriqdMSagYhRca5HOqlCdUap0+RgwAI7g+uFyZyaympsgEGd4bmRzcxgI5mQA2wnbym37/tgfN1DrjY7Hyi9o53/LF26p9hXEkMMO/jmXMIxcsCpDAACRa224t2w+yeeWq+lNUXvFoEyQYvutv92Kf8pVdFeo2kzqKg+oj9/fFn6KGpk0yVIEaY8xe+5tBmO+NvRMzXv3kM4A7QyvkAxC7RtFhe5MDnfFb69lFSrpL3IkwYJHO8wJn7Ys+azujxFWbgBR+vb1xW+r9WLZkSqllpjRyBJIabb/AKDtNq9X6YG/MTDquZnqYK6qdSmABI2OkdrATJvOElWsFLIbgKZnkEfkAZ9I4xsn+cCb3I2iZIt2iD+Qwfm8iajggBdRgflYXiAODvjyQvqksBuTNy+zvE9UEkGdKzPnsBBPHp/fBVEgnffudpsZt7W3jEvUFKjRBKRBJGzcGQLEEWO4jHFKkGIU2DGSdvCJ24vEbjm+DpptJlLFXJc4pvpI0KQCZjnngzB229sbpZfWQaMkRHjAmTMgdvTufTHeUy6mbwgJATkjYTckbSN7CfQnJuHMIWusQIiTI39O+4NpxXDiBJknaoCmWcAgrAJuRcDz/wAcb+5i5YU4fWIWSZiSBaIAJmdNvOBM4PGXKUnqTqKkCD3P4YFyTI8N8Rr0fSEquokmRTG+o3/6j2FhfsTg+hZsCD1LG5hmS6OrhjWMFjYWmNgSTJ22g+d8B/8Awsh5TxLq0mDwfpJPee542wZl8wGbS5CMqho7SYIM+m4jBCUBDJomlMkzcfTtFgN+JsdsXfECuw+8irG4nrZUuwpsQBq8RVQYkDeIneTG3bAVbMsNIEQkxHYag0exnDLqdICf4VmZaw8WlSFnzJBhQJm/POEdaiUMkSNIIaD4oA1Eci/PqcYciHepcVJa6XujMbeIFhNhwtsZiSilTSNLGOIGMxHQ3j+I2qpHV6RqUVqzVGUm9R9JAXQWBBBMktELt98RdUYhmVfo2QNKsLWi403Im0xyoiW/Reo1WoVaRMCmNSgrKllaVUQQR4gFAvtFsJHyJY/MrvpRZVQNzFyZ3373O5Pf0nypjX27RVRsjb7zfQzUFemKVxrX6QbybCGjiRHkDwDhv16tozWltT1B4SNYKlSQQDAsQ3JIiQNhdNS6uYanQWRCpcy2kGfDqmDvz/bHPUSFKI9pY3VYa0eMkgHXPkLRiSs7DmhKFUQ+TCMz1Jq1SlRqgaVARUEaQBDALFiTvN98EZjMaWekwCQGBmb7r28M2sORiLpmYpozPTE6WJuIA4J3gwGUf+8+WE/VOqCtXNQAiwEXNrzG322+84dSMa0PMm9ud5p8sS4cGfGFgTYQOYA8rGf1wbns1qBZPCRAeBYHxDRHbttsbYCyil2OmwFzEzp9uPfBTUPlLqIBDyCIPgiIJ87kgHaROynCsx07RlUXvAhk4A1ESTOkSTz3sDv9+2+65XUVGmO8ntt/bHVJBBQwSIuSfQAQDfzP/fWXRRPispAMCQZmYn0j1OF0UJzOJLklOmOCGJF77/ni05X4rrhFyxINMqTayjcaSeBHtYbYrWTYAFTMRY3jVsB6ce+O8s5FxPaIHn/zxGMxYodv1gIuWTq2QqaFICopvEwTJdQPyLQTfw+5dDO0aZVmaCwAJ2uex7naObb4r9KtKFAVuVA8N7WgGfM+mOBT8DBgCLCZmDZp8vQbzgfiip1KICgPMe9LrtWzdInUFB+Y0jZKalmttcEj0MHA3ViWVKlNmkmWv3E2t9V+T3t210eoEpZpjAYIAhmx1son3F49e2AemZpSrK8lb+R1A8HcHYRF/Y40dO5cm+8OUAKKgVVmDCWF9p5gfYA/vnDDreXZK7ggghoIaPIi8xt/bBOc6UqU9WmXkNZZKwQQIBmDcxffE3V8oXzdUkDWxll3Itcb3iBYczAw+TAyNXfmBMoZDFar4kLCAGAa8xEgyANtv2cMaIhg12b8JKngIdWwJiDY8gbYDr0kpVpIDU2AMAnc/hM3BU87jvbBekFwyyNKlrmxZRccQLsLyCPO+Djy6DpEm66t42y/UAyUm3BJmPKYn/HceWKv1qpGYZoA1KIvYgGZsJ2v3wT1HqheglJUVSm7DextbbgziuZmiajmZaLz5WAY+mO6jqFyrpnYcWkwqkC7h2YwLmBteJJ/Y9cG5TrX0h2soIiLHVDSeSAQBG5vwYwjA0DUD6d/fG4WRI7etgMQTIU/LLsgbmN61b5wAELcAi/eLiZgqTO1j3wZlskXb5bNpYeGm5J0gzJE7QZI9TzhGSxINhFhIkk9z+mCsnUWpCswBEzxfjgzfv5Y4/8ALsZwOj6Rx/BMhNNgUAs4NiNiZuJngHvYXBxJ0vPhZcGPEVveAeBJ5FyfIcDBQrNnqaKjg5mmdMkn+Ymh2AJm0tABNgTviqZXONO3hBBP77n3whdtqNVGfEBvLnRmqzN4tUELsDJXSbnbwzEcE98Q1KtQsGJIVVPygVJ1ExYEW0gixmSO4vhP0rqY8SOGemTfRaIi88Cw+wvhzW6vTUhA6Opn8ckQDxqsRI4J/t6WDIum7+syZFN1UhzmUasqrrVmsSZAJm8AxwANpmD7lZLotRUIDCmSbgEkQBEb3kb/ALOA6WeBsNTIoMmCY2IJNud/TzOD8tXqEfLWkfCBLNUEX30ldUn3F+2LAY2OrmSOobSSpWSiyUwNWsgPcxAO4X6RB54jAFWhKtTIGt2YBoAMLdVA3AAnbeTaNzK+Wd4HzIUBTCLpvqIEhi1hE+2DKXTQKrVCWYsIIJkG957mwtsIwzYmc8bQK4URBleiqUBd9LcjwH8zjMWdqom7geVsZjvw2KL6rxT1jruUy1IUconzawCq9VlBjgGwgGeFxXK3Q6roatct4mXVaQikFpZVM2EduMA5+s9IIzUgjEyAQYIU2IvD3i4lRbm+GOX+LHCPraQ0GY2sBpiYAET5nuDbDhxYgbY2Zvy5chFKKiCmookmdQUiLETPG8ngbWm+Dc1nf4hg2hVdp0lRA2O8k+ImBJ+53wrzVbXUmp4p/pte1h7++DKa6QPF9J7eZ54/X2OJO44HEKqRueYRkummnMso1gqfHcCwB/pkNDf+zvAKhqD3keIHSwE2Yn7X2t2wwoV20sHf6V8MiSzHQADxAE3F7D1FoynQldaTtUQZjMaPlUgR4AEBepUMTJCloF4aJ7IWF7d46KSN+0WdI6XU0oEfxn8AiyGxaSYBi2kQSJ4nE3UOky4pq0wraJ2Zubg7krMeRtbD2vQWj82mhpVIAbUwmYRbzH9Wyi/+7Y1utXQvDAhdQ5JvaTtNwL3kTscbcWPSvu5kcj2dp1W6MCoDIFqBbsNj9Q1RMWiPteYjWZyoSmdGoDTdiPqaRY2GlIg3HbDrPZuirioA004FhIkgBj/tjTJO9u16r1TPSDEw7EsYIG1gF2kSQb+wky+dVUfMlitjvxIURhcLBEi5vJsOL3tAvhzRpkUlDgF6rwJBOhQLf9RncbXwJ8PdLXM1aagmmLmoSJARZLMI/wBO3mRbB2froarafCJGkTcLG3h2g/a+PP8ASGoTSWpYMlNQxptGoHuSZnff9+eJAV1MAwgqd+4vPe+1u+N56oKegINRO5cyZMA+0T574DZQxBQCTAO/O58o3/M4XqMCgnf9IuJiw4j3OKFyisGn5hOpAZ0hLKGWN5aQZI3kXxX8tl38NVWiCZkGRsVO1xY4c/FNRKFRkpHU0jUSti5HjHA7fvdEM8zQfCTsYAEDb1i/f8th02w9whyA8S6fCdf5uZpifqqKb720kqRJ3AbfC7rHUFapUUhgSzXhZAm0e9u+++CvhAk5lalwtOm9QnxTZGCkd9zt29sKOouS2ohTJJkbkGLkGLwNxa5tjTmyEkkeJNEpAPkyPMVVmGDK2kagex8j98E5KuytT+WoPi0ydrRaYFubX9cAsCRqiSCZM3tPi2JI7+3fE9XKtTIgeEXktbgyD+XOM6A3q8Qk9oF1djrZoMk7iIJBN/ff32wDl8z4p4sIHPlthrmGfcGx45ME+XnhfTVdXhmBIFoub328hF8OqK5uHVpEgqMHeGMcT57x7m3vOM3YgCTA9dv+/HbHD5eGmRAifQgEYKbLaNDiWVwSGUXkEqytvBUwYjYjvgBKNGV5WxOVp95ki35/4/LBtDKSCoWIIk8328rzx2GFlVysDfsB7+XGJ8tWcXBOxvPe0k834G98EAA7xSCRcKdygUg3Vrrpgxbnv7GDOHtbKDMZM1aAp6qQZW8ALfLEBJkGIUESADa3YVjMKYvJJvbzwz6VnqlBXVTpWqjIwBuCywSOxj9yBhSpbgcSiOBsYGAzsRULOVFgx1CPIkwogcbnEoidJtMaZAJBJmx3xcuv9H/lrnKEOriaiiNUm5IG0EA6ojb1xVswNRZVBYwPtaQN5F+fzwQNS+07ybrpbeNejZE0/mMwABiRYzuRYDtO3GHNLKGPmqS20q2yWsYvA2/42xQ0zZLal1DYiJi3EXHe0Ys/SviEgAVSLeEMLEkkjytEiP8AONPT50Hs4mXJjY78xhnc78tmUkaioMHkeIDbvDeunCjqPXXCeEm0g+ZEcj8Jvsb2nmQcxnWq1KjaXKSwV1BgaTG4iR4WO8eJY5GI61FSQGsQLgN4WH9W28wIFr+eE6jqXugZVcS1xvBqnVyx1NBJ58XttbbG8BeE7U192g4zGLW3k/tH0L4jvMdLbLaVqzUok6mpElwpIMHUpASpAMMpB9bjCnOdPUI9Sm5NKZBjxIzKIpVBNjYw48JCkjkBouXJLqG8dQXmQpnkzcx+98QZMNSdwHpFHJQqxkMJICG8liRwwIN5BFqrmDH2iMBtRlWUyLhZvEduxH6YYtXGgAgnwjSefFcmLyDg7N9CQktQcQIDo5sjEgaRUIC1AGtaDPBiTYMp0ullaPzKyh8yVAp0mcIqsQSGJYjU4EQqyQY7g4DmVVTAsu65Mq1RJrBPApgFGtDkafFNonz5wqXqjHMmozMSLsZjUSSO3ckxtbzwqzvU6j1HZz4jbzBFue3njhamp5Ji1z3Gx/L8vzbECps8xMrWKHEtVeqhbVrs4nUWLQy31He29ztPnh7lMxQFNmB16BbXAY2mLxc27Yq2UyIeoV1OzqZB28og2iPSbDnElTIurCoSdFOVrEEXe7aQRaSeDsRfHqjKcaliJi9L1CFBkHVU1PFPU8CBYRvBMqJgsTb+0QPTYBKlMkFrAET3vMncEARINjjb1BpFSQpkgBWvba9rDje0m82Y/DvTPn1qaBwPmNLTB0qZLGf9mqIMTFsQvlm/ola4Uf0xlkMjUy2SYgxXzfhEn6MspGprcsYHpiat09KlN2QD5sXY2lokkRF94nv7476j1v5uYZqewUU0H4QqkAeZH4pxwMytPUSqxWbgkgARMwOw1RyLetulxros9/2keoclqHaVjN0WIYiAVubfhMXEbrJF8NOhdPJalqHhAFRiBNmMCxMbbDz9MEkKzIlzsBHMwwmDvqg33AbD7LZFjla9dd2qBB/tAVRBubGSbegNsef1SKraVm3prK6mlG+Jq3za1SuwM1CbHYiTGnyiPtvfGsi2sksZJm4te5AIPkP1xLVyLtpJVxTvpYgkCBde3pEWAtjgJJUTFgQRGwufbDXo5G0kfd9Z6J8MFV+bGolKLKSbxIMAxa21x2wizWUpwCSdOm6REMZ5jvNu23my+FPFlM6RIqFAsncKBuD6sOeDhRmMnVZgAQQYmCOAQT5kHgcQecU9TUWZVviKylVUE+YqyZ0Ea/lnT9MLcTEwAZEHaRhrLMpOmRuQCJA0kj+1t7DANRQtSKgMKwDDYiRzPH73Nm+Qz2mppKlVbSYA2UL+Qm5wmLKh9r+Yj6hxK9XK2Ugi0lrGQfOJHG2Ac4BCimsAXP6zJF+2Cut1gjsmkaSTcm7bXufsO2FT1DChDA/3WtuIHn74jk/NQ4l04EjRDM2j8MxJAIsf+cGpXGg02XcgiB+IeHTG0kESPTCxAVmRJ+95vz34wdlKw1KDG4IMT5wRv7i/rxxlVPaTUaHzCTMKN443J9o3Pl5xjKaQR+FSO4Nv6SfbHGYGi6kwzDSbQQxKgmOdIkkf4ndHLk3LS3Y7Xn+8cHnDAlt6iMK2MysADFwCOBffsY45++BqjQR45taLjyH9vfBlCacsYXVcLNzq2gRaJkz5YBq1A19rxPEb7nkW7YUjvOEsnwx1x6Zi+jUJUPCsPxIYIEkBgDa8XjFp630paYXNUTTqUWjUkErTJ3K76Vkn6h4dvSm5R9QChgyhZEQNwVYS08x/+Pni5fB3UUJqZWsSzPJIJ1K4IA0nSYmANUW1X9WvQdSxx7xpaVPqeZp/M1aSlpUCEXxAXB3PoRPHqI51BVXUCxgamkAcsYUGI89/fFo+LPhY5eoayACgwJnSDp3LK1htG8gxO8E4qdSg5qU1AgEPExZVUEmdhwJ/7nmtjqigadp3llgFFhV2IDAkjeNgBa+/9sc5ik0kao53MAC4vYyO/piam7EalZmUGCC20eU3E+v2xFSr6tYVL3kdh2jb6sSC2YbAkZqn/wBMN/qPPnZsbwJ86kN6bT5N74zHen8idq+I+y+a1FqjDxaCO20CbX9eYiJx1VrhDdQLDTCyexA97e3GIaWgGkVUeEMCx/FMEFgREzM+tojDQVAKRrwhq+HXa8KAq3HMAc+XJxm9l0I43mUmIRRU8G2lQNMAg3JF2sduLdzgZ6L1QrKzU0E69JIXQLGVDQTJAmORcYBzHUHcioWUGwBY2FwJYQOxHe2GPSeoVsqXYK8kFFJ1KjblWjVpgRyLgHe02woxfeBz4msr8K0iGrBSUTVuCZgbjZje11BkMMMqPS8uKLeCKhECILBiSwMTy1hPkDzgPrHWmqimikka/msbkEEsSdLHUAtzH2FsJqr1KeZC0z8xnMryCGMfSLAETbeMeyuTGo4mBkZjzLXlx8sNpVfmVXExcAqFbUT/AEgAknv5tiudXzjZh6dCmpFIeJdjrexNRo1GW4EbCNicS/EGZCRRV5Vm/naGJE2Y0hzEEAm24wpyurLVFbwhVja8zNrAcceXG2Is/qsGr2jj7/aWC+kum/ceft953nqaoSrKFqa50wQImTAnw3m8mx34w16dXWjlatUSKuZ/loANlsXK3mLGY54gDBNbp7ZoIQdIZ9LmPbVMDYLpM7H3wrzdcIxRYdKfhXw2MSTN7SZ2Pbe4wudNT+n25/SdhbSpfvx+sFyf4G1aSASIgEb/AGtcfpgrNEuoI+sNBJJAY3m3BB1W2vxhdRUqKiKhZ3MLpP0mQYECGvAgYlTMPc3EwQm5PA8t5/v5qLQUIppjGORybL82udQWkhkz+IqVBkkeR7QRi8Z9RlcjlUY+JtLkWBkKDufO/qMV/pvTHNHJUWY6szVLMh5RIJ+4SeIkxhp/4k5jVmEpGYpp9IiCGsJPBs2wO8W3xiDasoPz/E3sNOOvj+ZDXzusa4DHXJWZEsuwWPqnn3k4qfU0UFAoZeCurUvIEE8zMwTvg3I1XDwwnUAqmeIFxN5vuZO+2M6llTT1gQ3i424BEXiIb0AOPSyrrXYfWeajU1GOvhTM6clXNgoD6mk7KaOwHcMe22M6nlSyAkqsDdVPYqBvcEGLjnE3QaaHpNeFGrWB4vPQpPpKn7YrYzzioqOGlTACEhrSJAmJjeVbnGfpmADBhyZo6hSdNeJH1OZBZSt9HiMgQTMyDN7+4w9+H8+jL/DsquwttHhgSoO835N/IYCp5AtRDVGYIRsNLMAZZdRYhli9wNzucQVVpU2fS7GpsVAKkmPrEjgwLE98LpbGdaxDTCpz14o1cVVUKhULBAiNjJueB7Yrmby2htKrpBuJva15J4w3KhdTQWIF+02kb+R++B1UVLMIAuCSdzuJ7R+gxkOYkknvGC1EjXsAZ5gTPnbHKuweZiPONsMEDUDqICofCQb6pBjgjz9hgGsTJJZGB41RHpqjt9sXGkixHANw2lU16AbAEmdgAEqGeOT5YmSquoKoAIHDWsOQOf8AjAOSpMrBgs6bkxI53I44Pkfuy6igFZlOoowDBNUATx2FzzxGGVyNo7pYvxI6hLjU2oEiB5KNudo354vgVUWCBGqT7nyFv7+2DM1WXQAFAkbAd/3beMLoGwPHPpf0/XES28AMnXMKCova3hEExeLecYPTqNMVKbIpTTct9R1SNTTOqLc+3mhqVAZC2njv7/2H54zTJtv5f8f3wRYnT2T4Y63/AB+Xai403BK65+llcNOkWMCQRHqDaof+IWVqUM1T1MDK1CpA2nTMRzA9Y+5g+E6ZWaoqfzgPChbSHk/TJIvF/fjFq+LM4uby1KnTp1HrD+aht4WSS1NuRqTUokESV7YcEgfBh2YfInm38YyqQ0aidiNwZ8WOstm7FTGpjYi02gAkHYEyB357mdVy60qcxrNRQy1gumVMlfUlSJtI2mdkmVzRDAixG3Pt54IfSbk2XaWRfhqwOuncT9Y5vyuMwuFdv/Ub2Ygeu+MxX8Tg/wAP3kfTy/5Sy0KAp0BWLfzNWkqDqBabWP1SIjTbcjfABUuTqJg3uPpMgnc2JHbbbfHWQzdIP8zNG40mjGlqcfiQzb5gB9hcDDHrWcFQUqrKUimV0ARAEaRuYi1oA8r4zNh0rq7zU+QE0IvrrqdWBJgQxFpkiWjaYHpt2wBn8w6GqlRnekNIi4G63uBcCcG0q6ixECAZ8+Nge+M6rQ1qdRX5arrZgJINlAMEATMb97QDEsJfVvvFMcfD5y5yjCozmoi6iQQA020qxJXWFJE+YtMRxnM0lGpRFNGSs4FMajrYeIguIFyFsNzsOLw/DVGnTywrVkLUkjxaiD8zVqKggwwsoPHhA3nFc6i9evWeqQ0EnSALKo2g9h5bbmBjS2TV7R+v2jKugajz2+8f9Oyyiq6IupX0szahCsFINttYidyTLeRUv4o+G6QCMoZiWiAQN1CiBa1pgYi+BckrNqaPmBmWCb6QQQsaRYzO9hvO2GuZ6VVqZpVWoCjtL01adJ8MkELItO/rycbsbAIS3EyOpLe3mD1qBpUYpt42OkSQB4QdTGTAt4fb7VbL0VRqqBmZbKAQDqfVItE3v5yN8PPjfqSjMaKWnRTgCRYibsLwfEoG398VZc8zNciRsOJtLC/h2G2M4yqbc7Mf4lMi1SDgfzC6NY0mkyCGWVPdSLN2Enf9cM81TWvAKnWSwHhkXm4HK8z+sYrssrEsNLTtvtfz574tPwgA1UVXY6KaFie5jabnk34jEm6lkBXtGx4AzAy7dCyU55JM08pQKqNrtp3UCLAEW7GwxUfiWavUHquPAH0IJsxGqR/1A28j2xc/hWaeUrZh58bOwJJPhsF3m0Anf24x5jWzYbWSZgzJ3JG0nvF/OPOydKq6yT2/mX6onRXmGZjJ6QrFtSmflkjsboQTyNr9scUyrgimSoqQTI2Pb9DNz5QBhpkqIcEGpBMte4UQN9xBuZ8zgLK5ZtcBg52Fp5nSNt4JHrxjcQoPt4PzMAur7iW6tQ+X0iJKkvMrAJJcwAbjyxVulFUdWskMYMQwm5nxRpMgTB57XuPWrdOoDcu6yBC6p1fqTtt6ROEeQ6SqJUqamAIuogFYFwY59I53F8L0ak2QO8r1e1fSL/iLqXzwPltMghkHe8xE7jntN8J8pQkpTcgEi/e4jQZ47Ce4GN9Tp6fpYNTK6gWmQJHMxzHOIlchZggGAq2IJiSR2gXm364XOXL7iLi06Ywr0kCbghGUMRsbReSCt9N/PCennVliRpgzJkwu0fpff74kTNhCVNMPUvGoTp3OoAGCYJIN++E2cyzNLE+XEkxIO36+WIaewldVcx27Ag6oIMwAZkDcCbzz9sJc309pOm99rAgW/wD6v6Xwd0GGSCVmQTqMAaQYvwZkAc4dPl6dRUKkKQ0MAL1AZJ50gxAEnftviAQo20PyIi6PlmFNqhB0awrQDIItM7eUA8/Z/mOmHSEqsw+WoadX1I+lwZ5gdzuMWbonwdSbLMXp3AM1DocfSCdLBgebEQPcTilUlY0qoL3CNTOptwVYIVFyLgzeIZIG+LuCtGWxkGwZA9ALd1dVPiQHlSZEneY4tHOErRLHaT+vEdoGLH16s3gZ5Klf5evhbHSIgiJMk+gwplLggDw2b+nuTFjOwFvqAwjEHjiJpINGZlgG84nUY2HJJ2Ed8SvlaUakaTzKkgeY0giD5HtiCkmobSJ2kwDYajAiZtJmJthrkenGFLBkVgIOnUbzAO0AkHcek4CqTsISQINTZabQtQGBMaXFpB2K/wCMFdC6r/DZgPqIlYJAI0gkGYKxE3j3jfHFQKq/SZkgybE3Cx2tfzkcbrKrErAgj9LffAIo1OVu4l5r0aR/+mrOxoVdVTLOogU2JJqKq9wx1ATdCewmhdW6ZUoVjSYCVuCD4WU3DKZgqRz7bgjBqdWii9Lg6WRtmpupkMpEQQcem0OgrnsklKtpFRJZXRr3uDJEQbysRtG04O3JjkauJ5KlRiBZj6Ax/wDqcZi3Zpc5SdqdOVRDpUAqbLbc3J5PnOMwK+JO4Pkelo9M1qtRnpoSDJawiYW5uDPAnviutRJfTrJUCTO4BNvvPHfjjWMx6WVF08TKrG4Tks8EBLFjNhzyJPrFr4stTpSV1oFSRrE1NQkaYkx+LX9IG4EzNjO8ZjzCdIseJrxqGcA+Ys+IeqHMInyytPLUDpVQpjUBckbkzYCI3k4VEMKKvJOptKs7XJmLBZKi5Eao8Nx3zGYqqgbCB2J5lv6GRQoh2oLVrV7rqChVEXY33mLAc22xa8jmno5J69RgXfwpbYEXNh6n0jGsZhMxOoJ2hwgbt4nl/XsuQ0GSVaGM2BMcTcmDeOPTC2lTA0sIm9o/2wR53ON4zF8qgSGM3zGWcqypaAo1ReSZMybG2xNsWfpSCl0+o9lNUkSokgSAAZ4ufSTvtjMZjzmYmvrNuHk/SW/4hP8AD5BKVm1QssTcNaCQOb3G07d/HzC1IqWBNl3AN7WgW9IxmMxpx7oSZPP+YD4ll6bm1p01JAh9QLxJMMVmI4JNvPtfDPLZ9axX5X/nKCWLE+gMxcxftMY3jMXxOdap2/1MrD23LJ8UuKVHKqqyQuoHyUEt/Y+d7YQZfOrX+a4AgCHp/wBSRzNtUbHtAPEZjMa+i/LX1k+rPv8A+oqzvTmY0aSz8oklPMEagCCd97xa2BM/8P16WpioK2P1CF9L9rbc43jMa8mJWG8zI5E76f035nghNSAEgyZMyT6Rffv71brbJ8wlNWk3BNiwIsx7A7x2N74zGYy9TjVUFS+BiW3nOUzEKREGDDDsYmb82++GXS0AgkSCRffyJg25xmMx5WWaxxcavX1U/wCUCuhNTwdJa4HiM33HFrWtdZmXFNi/ywQywwJ/GR4j4TEgaSOJ4MY1jMVH5bhBNwmrlWzGXesTqNIACTsimGj1csfSO2K/mHgaTb8R7knb7Cf+o4zGYmniXy+fiTUKhRdX4Dt6kWnm9sE9N6nU+imSXa0zEAAwAT2ABv2tjMZix2IqZxuDIWR3tEASBtcjfneOecdvkiACsQZIJ3MNpnsIMj7ntjMZjmEKwSpTgEs1v77wP84uXwT8SvSC0ql+VJM2HFu1sZjMLpFRwSDPWstoqotQQQ4BBK8EWxvGYzEqlrn/2Q==\\n\", \"height\": 183, \"channels\": 3, \"width\": 275, \"type\": \"image\", \"id\": 4947633680}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMSEhUTExMVFRUXFxoYFxcYGBcgFxgVFxgXFhcaFxgYHSggHholHhgaITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OFxAQGi0dHx0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0rLS0tLS0tLf/AABEIAKABOwMBIgACEQEDEQH/xAAcAAABBQEBAQAAAAAAAAAAAAADAAECBAUGBwj/xABAEAABAwIEAwUHAgQDCAMAAAABAAIRAyEEEjFBUWFxBSKBkaEGEzKxwdHwB+FCUmLxI3KSFBUkM0OCstIWU6P/xAAYAQEBAQEBAAAAAAAAAAAAAAAAAQIDBP/EACERAQEBAAICAgIDAAAAAAAAAAABEQISITFBUQMTFGFx/9oADAMBAAIRAxEAPwDv4TwnShevXlNCUKUJQmmIwnhShKE0RhPClCUKaYinTgJ4TVRSUoShNDQlCeE8JqYjCUKUJQmmIpKSUJq4ilCeEoTTDJJ0oTTDJlKFS7S7Vo4cA1X5Z0EEk+A25ppi2kuYq+3eFEwKh6NH1Kycd+oZj/CoweLzPoITTHeqLnAakDqV5Hi/arFVPiqkA7N7o8gs52Me43cbppj2xlRpAIcCDoQQQfJTheFiu4Wn85K1hO28RSjJWqCNsxI8jbdNMe0wlC8xw3t5im/EKb+rSD5tIRq/t1iSO62k3o0k+pTTHo6ULzCl7bYubup+LB9FqUPbmr/FSpu6FzfnKnYyu6hReQBJIAGpOg6lca729gXw/wD+g/8AVc1237T1MQe+YZsxun/dxKdjHXdr+2dJkiiPeO/m0YPq5cxiPazFPNqmUcGtaPUyVz5xP5ZSpYpsXkmeKzbyakg+LxlSoQXve87ZiT81VNM8Uf386Nj5KIPIeSzrT3CE8KUJQujBoShShJQRTqUJQgjCeEPFYllJuao4MbxJ+XFZFL2uwjjHvC3m5rgD4x80G3CUKi/tzDAZjXpR/mHyF1iYr29w7XFrGVKn9QgAnxv6IOphKFwVf2+qH4KLB1JPyhUXe2eJJ+No5BjY9Qmj0yEoXl2I9qMU7/rOHQNHyCq/76xJ1r1f9bvummPWyma4HQg9CvGMZ2hVcMrqlRw/qe4jyJhS7K7YrYZ00nkTqDdp6t0QezQlC4bCfqGI/wAWhfix30d90Wv+olOO5QeT/U4AekoO0hKF5niPb7Eu+EU2dGknzcVRf7UYt8zXeB/T3f8AxAQetOssPtf2ow9C2b3jv5WEHzOgXmWI7QqO1qPf/mc4/MqkZKaY6ntT26rvtSApDld3mR8lzFfEvqOJe4uJ1JNygkJQikQmKJVahlUMEo3STlAxSY1ELJsBsmNJ3BS8pDDiAE1V8iAiMoTrYcT9kGtXa2zdeP2We0+Fws8f2+qG6uSbBDOJd/MfNB9+6Zk+aoLUcTrKhKlTxLuMohxXENPgJTauBhp4FTp0iTorFPEO3t1Se93JZ7mEwHmeic5v5fQqsX9VJtYxqg9/Q6+IYwS9zW9SB81wNftrEOEGo6OVv/FZWK7RA+Ilx6yfErr1+3PXp57QpCP8WnfTvN+6DU7aw4MGq3wkjzFl5Y3tVu7T6KNTtW9hbmmT7PL17DYynUnI9roiYPHRZntL2+3CssQ6q6zW8LfE7g0eq8u/3nUOkDmNUzGEiTudSb+MrHLIsiWKxr6ji57y93EmY6KTRIuEJrOCRqxvKy0RpKIowih390i0/umgZThsp/dhInyTTCEzZNWqD4d1Co47QB1UC2dxKoE2xgpyiGnxKiQOKupiEplMxxTUzyMppidKnufJEybnwCRqRwQX4gHn4LO6uCNqQbIjnA/dVTiAoOxLttEMWXSkKaqHEO4pMqk6k3TyYtuLRrKA5zY/dDqUyoFo4KSqsZ2cPVOKoGyqt4xCfITYILXvydPT6KWeEMGPLVIuyiTqs4IYmoQOZWe4otWpKETyW5MEQUilEmyOKYHxft4rVuAdOmXdOJ0RAWjSZ4lCqVD+yG53NQELvNSpudshtbIkmAPMpNrxMHX5KUFe2NT4f2T+9i2UeJQGPuSkXDg4qDadiHHdCKJSqbEdU5pjWbLprOAqTWpTa3mnbVA5/m6Wg1Kx25qVGob28/qqlSvfqpmpAgn86lZUd9Ukw1OKPH0QszosA0eviiNdHE33Wbc9Ag5CECvXjRQfWj9kKpiGxxSKXvk4qKuKo4JOqnitItCpOqkD0VH3hO6VzupVW844qHvROnmg5Y1S9UFkVeEDooPqkaqBCa4ElQJ9U6SoSoSlKoISkoAqQVDgI1NhG11Cm4DVT/2kLNtBA8jZMXTqAEM1p5KJeG7SfQfdTBYazwUg0BUYc777BJlXLoL8T9AlguvgXNuAVDEVsx5KD3EmUMqyBOTsZKlRpyVbGRoib+R8kvLAIHKO7bid1Vq1Cbk/ngi1K2awB4objl5nj9kggKR3sOafMG/f7IT3c0qdMu++yv8AoRfedeKTuICKykJ3PgiaWFuJ/N1NFVgJ0BR7i0jzCn7o7kjqT8giClHBTsq0Bb9tYTisYiPNLDuBuAQeBPpCM2oCdBw2sVx/fnteqnTO354KYI6I+dhtEcLKLA2JAn5q/wAjj9HVVdqjjvfEPAa+eycVBJ/NAnDQRO/FP5E+YdSdVgfTZB99w1SrUXaiSOG48FB+HcNlvjz435TEKlYndQCYiEguqJBSCiE7UDgXRm9FF1ROZOxWaGi+qeVHNyjqpOHP0QJ/P+6EXFFaBsTKRofn9k0BUoRfdgW3UwA3XVNVFlLifBJ7gLBSc+yASkEi4cPVRc6dkoUiBqgVFm50RIZwUTVI2AQX1JU9idSqXW2TPYOM+CRfOwHRRfmNvyFREt5qTMPuSoSBPHY8ESlSc7UqWogacmyI3Dga6qzkDbD86qtiKvRTtaob3XtbkhS4mBJPijUqBftbjt4cVZENswEnc/upbiKwoR8fePCbBKs/iY6fZSDSSQTAHC99EVlEAfk+Km/YrUridB6lFa3UkG1/zmmNdsE6EHx/PuguxLiw310+39k8qicdPwi5RgHfzjyCq4eiG3MzsrIwxN7+BA9FOVkU9F5aDIIi34eKWHxe3z0nVDr4nuGQQePXUqlTrDR1r7eq4ZrbXo1mvNzBG/PfT8sp1XwY2jXWVm0HjQRAk/unxdcCwnQdLlZzyLLHgx+a7FX8PSsZMfusrC1YI2V8YppIHLWfzdTlFE95YjQbcfFTpVBEfPdL3gIjc8PNVamHg6kwR0hZnCWJg/8AtLXHLl4jyU30KYtl13usltn5nO4nqj1MYA6J4a8VZOUviouFjR/CCOunNDDuDbEG8bjQ+CE93ly/LKnXrEMJDjO2v1W85X5MamHxDXaua4hQfVZPeAvveFjYOi897Q6yeHH1SdWMASZkyCnXz4o6M1WsAytF+mqjTqNqOMiMulr348lkmsA2SZjQHSdE+FxDTI3P8Q34C6z15e9GwKVMiRElCfhmgEguPJVsBXhuV9iCVMOm83k92LSOak5c5c0GOEGodfmhtwRn4vGEWhVFi6IOltEz8QA7XNtKft/J6EamHJtLTHh6IJwjt48FZbVBkRN9eMX3U67yXANifot8fzc/RiuzB2uDPVQFANsdT6cEes8zNuvBUsaXTYeK1+zlTEajP6p8FBjSVfpEQ3NcG0cDMXU69D+FpGmhGnQ+C3Pzz0mM3qneI6rRp4EfxQ78/LodTCtkZWnKdXTpx6q/v4mM+nAubogrunumPkrFTDtMtbOYX/ZUmkzGhmPJdJynI6rTqugm/K5KmzC6F3lt4qu2idZU2PdwJOs8kv8ASYu1Z0GUdeHIKq+IvJ6GyA57jMg+qTqTzaDx8FJx+zExUymwmdVJuHcSHOIDef2Cq06ZJi4Wm0ZGjMZ34m6xzvX0sjNxmFvIJPG0Hn1QpE32+EcOq03YhsA2N7/sliCxozZbrM/LflcUKQGpMk+XRW2uto0+KqOeHWYMttYtKIwQIgHnCt5GMp9SYH5bVQ97uBf6jdV2PtrpeOZUqbgG639PH82TFaGG7w1gxMGFWfWzOunbWyiR0VMVLlSQXRWg6k/mys0qx1NgsyiZ6brco4IWl3WDty4qcsguYd4Nx+c01avrfr9xCTqUDu3POLhQZ3Xd682F1zist8gFx3Np1I2v9ELD1L5idxbkVp42nm9fNUu0WFrWgN0Mkz8/RdJZUxfbX1MWMwUzaPvQRoOennusw4gl0HYafJa2Fd3NgFL4FttMMADYBi/Axa/mVn47BkkOLmxe+8nSeXNGq1QYuSNfFTo1muEEA8J46XWJs8iuzDNcBM92J5k/RA7YAGUiBFjAEcrq9VJJIbYD57wgYyoGsIcJPDpEStS+RTwVeCXE/uVoNxDS3W/TfUwsj3ZIL2iGjW/yRaNaIIWrw3yNbDYhwY62hQMTUzDMGkHcR81RdUIDodY+qVDFuAgb6ypPx55RpVKxGUmBBA8Duo1MQ33ljII/JVXFViGACIOo3VJrzqrOHyrZr1CCCNxpPDT5qOIECZJm4EaQg4TGACDf85phis3xCb2GkcvmmUHpVS5o+fG6eljSdTEbHxK6H2T7Aq452Wk+m1o1kmQOTQNF11b9Iy4y/Fiw2pE+uYJOP9DzvD4siZ0/NlXr4t5NrDbjpuF69gv0/wADRy+8fVrOAuCWtaT0aJjxV8ezWBHwYKif8wLvmVqfjm6PEqDZBEkTqf3RaWEaHNMF8ESDmhw1gmdNrL2Sr2VRERhsOINoossRwlqt/wCyCNADwAA+ULc4mud7I9mOzsRTBdhK2HqETDqtQNPHJL8xb4Kb/wBPMGfhD7xEVah+a6JmFnn1J+qN/s2XXKAtDjsX7AYcHu1KrSONT7sMLLxX6c1S4e7eCOb7+fuwu9x3alOiwuMgf0skrHPtvhiO8K8cctieBvbyUHHdsez9DBM/4itVdVOjWZS2OJLmCPBcV2xjJOZsjaOXMLuvazFYTEAvo06peRBcZ2EwWCb25LkanZ7hmLQTbem6flA89lizyuMduKi/RSqY1zgbGNlZr9nPfFsoGpjhrYcAhmgR3WAvAJAMCDHKUyJgbKrt5JG3hon9243PzCbE4Ks/vPGQA6yL+DSmf2fUJs9o/wBX2TFxjutAuoGxhRfUJMqM3C1iDvfYIZKn7hxIG7gCOhm9vFQqNgkTI2MRI4wkE6Tr/dXKePcBAKzQUfIANZSyDZoY4lsnbXT+6tU8W0tNhPMb/Jc7TrgaiVZw1QE6wbxOnn5LF4RWk54gkOk28LpnulpE2KzqzXuJ1ubzqjYgODc1uVxZOoRaDUnaLyj++EQ50RoBqs7DOmQSQDqZR6DTtcQY53VsRZFS8zMWV3DVAZ4keCyMRRIOYTl368IKKMTB7py23v8AJZvDRYpY/bcHT5p+0HlxytFyL+KrMwr82bUzPKStrA9n13izARmiczRfgZ08fBXrisim73bgJnjwQnsc4lwYY8Y811vZXsZisRlyYdzmuNnNEAjc5jqN5C7jsz9JquZnvqrWM/ja1xzkbXLSJ5rQ8cbhHkxEE8bepV3CdnOBl214F9F77S/TLBNc0nO4AzkdlId17txyW1hvZ/CU3Zm4ekDaO6PO+/NXyeHzvS7PFQju1HSZlrTEc7K/g/Zmu8kNwlU8DlsemYBfRbXBo7rWjkAB8vFSL3HQH6JhrxX2c/S+pVqtOIo1adO8y5gcLWsZ+S7rDfpbgKTszWudye+R5LsWAncgqLpG4P2vumIzMH2XQw4inRDRvDQL+SjWxAnQjpHp+6tV3GCDO/5ZU67ja/79FZATB12t+OZO+UfQlSrh8mHPI4CIHkqxdJ9PwojK+XT0GvWFQOq/iC7/AFn5KLaY/lYOuafValSoMozbgH9pI5Kq+mbFptMX4nYQoK9OlNxlP/da3BFGHe/fKNNZFkPHVxSpuqPAMAmzSXQOAXN4L22wTg5zw+m4OIgsc4mDqMsh3hxTR0GMw5IyF0Agi0EH5HdcJ2l2BVwwcWy9pk/BBbJFhJXZ0O0ffUi7DvD9PiDwW/5mkA6FTfhPeCHPBMHUGAT/AEk8kHkeIqOJAIYWiYzk2EGdLTcrVdWaGsL/AHORokObnBHATefMLbxvsZXccxxLAJtFMDTYm8oT/Y5wBHvC/cSGjU6AlthPXW0KNOfx9TBPDgX5XOJgTqdAZLiLTdVqXZVAmWv97bYt5T9eK18N2LXa6XiGzoDDtYNy1Z/a2JFFzppVQMs5nOZBPh01hTKazsX2Tky+7bnJBJgPNht3RbqVQFCsLe7I5Evn0RH45zwLuayIltRzRGrWkF0xsIVc5Tfv+Z/9UHIVGOi7ZnRwVjCUCXgCIiHSRManSbBVmWt8Q4SYV3CuqAm0NMd0zZt9Y25K1kV7y05GAgMuJOk/FPn5Kh2hmc+TEkCdpt81eJJGa9tNLnhfT63UcfQAAe1v9LjIidRAgQYWYrMp0XbCfX0TsV3CO0Ea/nFEOEa8mCWkSP6bLXZGeKO8zyvK0KbSzuuNtiIt5fl1awFQUe6crhBktAJIMiLxa/FWnsa+nYkuLoApsGYC8ZnC6arJxA927uweH3Cs0qbJBIcWmQSZtB357Qr9Ds97DkfScSQIIBJvYCOPVb/Z3so+rNM03MaC6XAOcHHUAiDBm3LVSji+0sOGvhhmenpwCVFrgNYFpHFev9h/pa94aatUMbmks92Ji38ZANwNB/fsMF+nGAp/FT94ZJ70RrMRwCqPAMPhvfw0Eg6fwxFtXOIFoK28D+n1esWii5pn+ZzQBHMOK+hMN2bRpANZRptbNgGN+cfkIrW5fhptAPAAH1hB5Jgf0kxJyirVptGSDl7xD5tEjSN7dF1fsx+m7MLVFV9c1ItkLG5YiDvvPDZdma7thpx18EE1HG1h4/OExdW6dNjAA1rWgWgACB9lF9U7edvuqTo1NTnqfl5IbKtMCMzjvMa+JVRoTPhz3TCmdfsq9LENEd13yHmmdi3E2EeJ9fBBaa8cPnxRACfNUHvOunMz90jXeJlwjWzdkGi91lWrVTwQHYnYHX4dNvFVnVSd5vHHjMcEFn3x1Mgfkef0UKuJ4tA3uY4eqG/CuMQCY5nTqU9PBEv7wcW8j496TfoEAX1gDYEm1gNVYw7Gxme297CQJOgM9dTCLWbldDcwlum+voqdV5adXAeEnlNvyUE6lQEzleyLTqPGdPAqjjKLv/sBOoh+oHKNeSlj8Y1jHVajgxgBzE/CAOGt9V5piP1Ec8ltClFOYDnmQdmkCLTI80Hdw1wh7rDU6xGt9VYoVaTYLWNIH8Vsw53C4HAfqAwf8yiSY2NyfTedeK2x7RUcQ0+6ptc6IykEEHS4nXorLpXZsxuHpjNmphrtbtG28Xkm0BVn4qjWJyVmSTYF0OA5AuuJC8nxeLr06kGoGwJ7re9BBJHOLeeqNTxpqAZX0wcwzuqZiYvdsG2unIws2rj1E0agmKrTN7m//bdAean8gcQdbExfXLeVyfZjK7nAitUfTkS1rCJF7NdUdYWB58F0tM1Q0ZHMe4n+LLpzDRPqroPe5IcP39dlWxGBbUHeawi/xNE81I1sS346LHc2Ei3SfomPbrAQHse06XEj1CIxe0fZChUdmDA0wQYNr75Ygceq5+t7DwTFQxtLPuV3VHH0HxLmxuCDbeASEVrKW2SP8w/9lR89YOi1sy6GkXkiDcObA9fBBxTxfKQbW06+Y+qsVKjZIAESdRxuNPl1VJ8EaQG3OXhEWGlyVynkVwR8pnW+q08U8OpAQCdb5bN4jgAFnNHG8gb/AD8VvYLsGrWpn3YAeNSSxrdhebxw5+KvyMduFc1gdYi5BG4Bi0qzTa58ZWvLzYw3id/Ndh2V7C1ngshoAiQXCDrmyu+EWv0I1Xedh9gUMO4OpOdmbDHfEdpggU9CZM6c1dXHntD9N8VUaKhaWSe+X2AEatIPe8Yjmuq7B/TBjR/i40lpAJYyQd9bz4r0tldhGQxG8TlgaDQdNEWjSZ8LWtAbIEAbcjEH6KjHw3slhKX/AEi46zp5Xt06LZwlOlS/5bGsB1NrnqdSiGBEyToLz5OMKtUc03IAaItczAI1AVxFx+KbbSTPW35wQhiHQIGUbWva5tZZ9d4AbGjrTAtvwuma7K7Id43ECbyBeImEF2niHEnvHeZGm2/RTFYTBAkeV9BPFVmNyAk2vra53zTYHmrDWg3HSOPj9kEcxm5gzGunS0SolucHNe/LXpopEPG2v9tfNBptbs7SSYgka6QFRNtIDRnKYPW3JOx44RxknfjPknySJBMzbn0tZMGE79SfrOvVAq0bwZ3nUcpRsoHhfkbeSgHAk2I8ogb7/JFouBNjP1P2UDZzMNtG/wCbqNSmCBmM7ECL3+/BM+QQJGpkEamb+CC7Emwc2SXECBw5mw80Bm0IAF5BOpOuu232SDoJ8tBc+CT6kv1cLaagjoCgsdMu1BIsdARraOG4CC1Tnc6a8uianWgkGSAREk9T1TzPzBvB68FVqiCXQf5bD+I9duZQE7SIN9QQBoLTF+aq0HMFxJy+HkN44IzmA2Bgj1vcRpyWe43MtvrIER1hBi+1eGZiqTmNljxJbJIba8Ec9F5mfZeufiaLXGVwJBmdrWXr9VjJhzbncgmOEh02VM9ms2IneJgeRhOsNrzBnZQa4e9pAC131CLzqANRveFqYUMwxD6fuXPBtlc6x20dz00XaHBxYEXnTfYg+vkqOO9msM9vdY5r5nYAHSQ3QDkOKl4rrC/+YVn1O+2lUzd2HAZRxyuAkTpr4K/QrgtvRY1pF4ALbwSBmaePBZOL9lazZIIfNssEG15mYKHgcran/EtyxeCYaRzNxMdNE9Ht0Yc3LLSCBrEiBzLSBYcAr2AqObam2TGazie6baGDvxWdia+ANM08prOJlrS4nTQS2QI1jQqOC7Oo0muc0Op5p7uYmJ/pBsQfKOFldn0jcqGs5jgwRe5ESJvOkE8uSzamGxLQRnLnakPZI4R/aEPC1n5YbWNhoZk+n5Cn/vCsDd5J53V6J2CY2nVPeY6k8Hq3/VFvHgjNoMFvfN8ifWyd2Me74gTPXj6IjMK94zCkSDvE+sqyYW6//9k=\\n\", \"height\": 160, \"channels\": 3, \"width\": 315, \"type\": \"image\", \"id\": 4947633168}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxISEhUTEhMWFRUXFxgWFxYXFxgXFxUXGBcXGBUXFRYYHSggGBolGxgXITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OGhAQGy8mHyUtNS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAKgBLAMBIgACEQEDEQH/xAAcAAACAgMBAQAAAAAAAAAAAAADBAIFAAEGBwj/xABCEAACAQMCAwUFBgQDBgcAAAABAhEAAyESMQRBUQUiYXGRBhMygaFCUrHB0fAUI2JyB+HxM1OCkpPSFUODorLC0//EABkBAAMBAQEAAAAAAAAAAAAAAAECAwAEBf/EACURAAICAwEAAgICAwEAAAAAAAABAhEDEiExQVEEE2FxIjKRFP/aAAwDAQACEQMRAD8A9LK1ErTGmola9FSOMXK1ErTBWolabYwuVqJWmClRK01goWK1ErTBWolaNi0LkVoijFaiVo2ACRUStGK1EisYCVqJWjkVErRswArUStHK1ErWMLlKiVpgrUStazC5WolaYK1EpWsFC5WolaOUrRWjYABWo6aPprRWsYAVrWmjlajprWYDprWmjFazTRswDTWaKOErZUKCzEBQCSTsANyTQswEW6V7X7RtcLb13Tn7KD4nPQfrVL2r7cW1IThk94x+22ADE4EZ/wAq5Hj7d1n97xB1MW2dhJEYwDhfDFcub8qMeR9OjH+PKXX4WHaXthxV46bK+6H9PeY7/ajw5RWdk9kcTxVsvddiiydVxyQpKs2Sxx3Ub0qqs3i2wERGMbTExvk5HhV1xV86blkHuj3c4EO1sC2cHJHeYxiS55GvLzZpS9Z34sUV4h7irQs2LnuCRHcuAmD9rEDnJ/Q7xvs/s4e7tuwhiS8ae6ur4ZE7aVPLdppfs3tBLnvQ506yoY8gfeAqQSOYDA78zVd217T+8Z1AIUwLeAfheS2dpUkc65UpSdHQ3GKs6nhb/vQ5Q6ytxUUMAys2rvqPE6sHO3hVRf7X9yxVSoEliGJ1AnrqM+tctwHHXLaLoZlh9cgxBMRPp9axrj3GZz3yTljzMAU7ghFkbPpziCltdVx1RerEKPU1SXfa7s9ZB4hTHRXM7bELB+VeU9pdo3uIfXfuM5yAWO0nIUbL8qV0ggABZg84PzNevFNnmuKR7W/bXBhNZ4mzpP8AWs7TGnefCKornt7wQJAF5h94IAD5SwP0ry3TtyPI8ue9Ne+eCpIAOYMQcbr0O3rVFD+ReHsXZvafD8SJsXVcxJUGHUf1Icj5imWt14/7/wB2Vu23OCYeYupkiD95dpH9RrquxP8AEQk6eKRSP95aBBB8UOG5nBBxsaLTXgp2ZWoFaNwPEWr6C5ZcOp5jl4Ebg+dSa3WUzUKlaiVpkpUClPsChYpUSlMlaiVo2ChYrUStMlagVo2ChcitFaOUqJStYABWolaOVqJWjZgBWolaYK1ErWswuVrRWmCtRKVrNQuUqJSmCla01rNQuUqOmmdNZoo2ChbRWxbpgJW7kIjO2yif8qGxqEuN4m1YXXecIpMAnmeg61x/afbw4pWEFOHUkkEw19YAgjks6jE5Aqg7Z465evPcv6mIn3doNCosnQTGx0keJxNa4PjLj2HQCIGRGSJaM88n0HnXm5/yXJVHw78P46i7l6K8HfS1dNy2gOWIRu8BEwP6oAP1qF24Lgm65Z2BGcAY8B9c4x0qTdn6EVhJ1bkCIJneZ9ZjO1R4lTuTJYjJ5jkY+tcjnZ0a0WfBW1tkWrSBmYbzJDH4snA28OdZd7PYKfesvdGod4hSrHVnbU0jUBByBQOA0JLudR2UZBBWCCIOZgj51UcfxTXHZmJzsN/sx+FSq2U2pDN/ifenuDEx47GZH2cClHtDBblPjy/CBR+G/lqRMB2LHqcR6wT60lc4ieXy88fvzorngjd9ZO7xYUqYBnA5Z2B+UVu3xcDG3Klb5AgKCSJI8yT+Yp7hDpQBlQnM7EjJGk55RRaVGTdl5a4kONsiRHk0TmoFTVL2bxgS8S7QJn4gFknx6Tygb1a9p9paFMaYK/FEwSJB/fXxr0seVa2zknDvCZatrcIHhSnA9oLdGNxueTSNx+FMJvmY5xy8frXRGSkrRJqgtu+QZ8duvn1oyupmSTMHzzGeu9I3Fg1PQQJkH501i0Opxlyyxfh3e2JGVYiCNp67nfqa9L9lfbuzfQW+KZbV4Y1nFu5tBnZWPTb8K8oF/wANx3geZ6j8fWsZgT3QI2id/OlkkzH0O9mgtbrx/wBmfbPiOEIAJuWhAay5kacAe6O6MAI6eFetdgds2OOt+8sHIw6HDIehHMeIwam24+momUqJSnGtUM26ZTNQoUqJSmzbqJt02wKFStRKU0UqJt0djUKFKiUpspUClbYFCpSolaaKVEpR2BqKla0VpkpWilbY1C2mtaaYNutaK1gF9FbFuj+7pbtjtBOEsPxFz4UAx95iQqr8yQJrOVBSsj2jxdrhrRvX20oOe5JOwA5nwrzDt/2q4nibg92fd2iO5b3LA87hE97+kVT9u9rXeLutdvE8gqbKiiIAHXfO+TSvCPtMjmd4mCQB0J/SuHNnclS8OzFiUXb9CGyyZn4pz4qRIjlkxJxW+zeINvugEkgyMwWBBHp3qPxLhzqkAGH0wO7iCDH9vPPhStomdQwZkZzGfQVx3a6dNU+Bra5jeJIXIWZ9IitcVdUmFzAGfH9/lULlzBz1BP19MUvbu5E5kEz5bT0GaT0P8ELxyDMAgQPEz/lQSTvuBMnxxA9Kjw7guUiZEyeuc+G8VPi9It/ME5yf3+lN80BLlguLVjbLhgcwB0Ec/HlRbPCw5k/CBMczEbmt2+6uR90t0EiYpe7dZngnBkeYDCguqgtJUwvC3FUsx+IbTsNzj1oPDliJBO/WhICVuHoNvM/5U5wdgaRg8/rkbeEUXwCd8F73DNOiZETIk7yRgHNKcVeMCd4jGMdGncfn9bng7B1PAnQpAAGCSFgD6/U+VV2hwJBJAzv8syflVYsm0D4Xi9LgiRjIkgGAYk1edm8WHQCTqUQZ9Aa5u5l3jqQBnGYHjT3ZPFFDETqxOZxicT4VbHLVkpK0dAJqaHoYO/zFCao6q7bIE5rBcoc1k1jBi87UzwXG3bDi7ZuMjrkMp8chuo8DINIzW9dEB7T7Hf4i2OLi1xOmxfiJJi3cMfZJ+Az9k/Imu0NoEwCCRXzAa6v2d9srloqnEXLjWxs65uJ5SRqHzkeO1SeP6Gv7PcDZqJs1zvC9uJeti5bue+3iTgmBggbEdDBpe92rdVTBKkgDGAsfdHWOZzttSrYLSOoNmtGzzribPbrWBAZjOSJGZ33Bjzqq7S7VvcQw947afug4A54JyfGm7YKPSRYkSMjqKg9mvJnutGGYb7EwfMTVx2B7V3OHIS7Ny1tBMsnihP8A8Tjyp9ZULaO8KVEpTPC3bd5BctMHQ7EfUEcj4Gtm3U9xtRMpUSlOG3Wjarbm1E/d1nu6b91Q+Mu27Fs3braUXc8yeQUcyelbc2oNLE1yf+J3F2LfDC291Q+qdAgue626zIXfP61Qe0ft/fYOtoi2IIAWC2di9w7H+2K8/vObranMtzjIGCY+efWpZclqiuPG07NDv4EdB1InrzNN8BwpZxqKqgA1NIwDJA/uNIK8HG8kz0/cAfOjIes7AR18/wB865JXXC8WrGyxuECBCKASBAxJk/eyfU0G7eA6chP2twPQTNR4niIXSIG0kH/mIzyBAFIcTckagDJI/OB4YyaklZRsYt3TqICjSD8zEn8QPSo37PdBnkZPWTt5fpQ016lZfh7xc+E9fE/jWXLkggHkAAOpzWDtwmnE2yoldxHPkCRVfxMzpBjVz5ACTmjLbJ8xP4RJ8Mmhi1NzT9rHoJBIH1plSYkpNjjOSjqQDKgjO5G/61u5w5TS7GSR/wC4mTk5+g3pZmIi2sknAPOKZucWAwnvNkDxhSCcHHI46UrteDXfoC6wiOcnV4jGPLNWPABWtqfe27YOwd1UwDEgEjGDy5VW8Dw5uAMSVDFhLfC0ASEgEs2JOwHWh3WGo4J8SJ2AjntWavhk66y1t8UA2kA7Fm67QkTtmicaizJ+6rERyEaYPPMHTuZPmB2bykEkZC6Ry3IPd8oX1o1y+Buo3wMRCk9M8j6+lBTmrtrSzvHdVtj9ojV/9hn5+VSWwFGptpOB/URE9AVH1p280JB2mQD9lR9syMkjUflzmaX1MSyE4+yoG8GEbHI4HhJ61Uk0X1qz3EIWMAQNp5RG2Kg9uOY9ZpXhuLCyjSSu7TvGBk9YwB1rBeO8EjxHh1HOunHNtEpxDTW61Ztu4JVSY3xR17PvEhfdPJ8Dz/Cq7InTA1lPXewuIXe2fUH8DS79nXRurelZTi/GZxaAg1ua0OGc7D8KIvAXTyH/ADKPxNNsgUMdm9p3OHbVaYg4noY6jY11HCe1XvoW7CN1Hwny+7XMJ2FfImbQ87tv/urD2He62/8ArWf++lc4hSZ2yOp2z47isv3FA/OuOXsziFjvL8r1r/8ASo6OJE95R/6tv/uqbmrKdov7u8g0ImqQ/wAT95f+pb8fGpFOIIH8yP8AiTr4Gn/9KXwT/S2dL2R2xf4V9Vl4n4lOUb+5fz38a73sz294e4ALyNaubYgofJiQR5EeteMjg+JZSRrYjAAOMxJxyqFnsbiG3VxvvucTAnnUp5oy7Q8cbXye+P7QWYkBieQwB69KpOP9sFt/FdtWxyEgn8yfSvIbXs9fY95MZ5ifDc1L/wACYRNsZ5yMZ86k80Y/BWOFy+TvuO/xQK4tFG/qYY+SiCfnBrj/AGh9rb/Fvqe7gCAqrCLjOkHM+O9VfE9nMmnSOUHbJJGTnYTSw7POsqdOATOoCck4yM7fWp/tvpT9evCFxiQJO56b7behHrQtDeQwc7np86cv8GwVm7o0xAUgzgc5gefj0rTdn3nYr3AQsk61YTnaD3sfdkVPdGa6KETsP03n1waJxANvMz0EZn/X8qbXhTbW4TBcKAOQyPimP9Jp3h7XdDTIUso28gSTzxgVCedI6sX4+ytnKlXU95Tgxsd8GfHf8KM7mAoU5JJxsoAz9au+P4n3YtquWmWkCSSQYA8M+lV1zi5BChyxJiBLGDOABtjajHI5K6EljjFtWIWuLi4V+zpgeExJztzqVoHXAj4mORIxsfpR+HRVVlIOpsjA3GBJ/wA+dTe8SVwFMEYzI3+WXFO5fRJIXuPpUgZJBB2jGrI/SjraIukwDCkHO0jH78Kg9q1sJJU56fFE/WrvXaKaLaMFwCcFzEADqo9CfKpznS4iuOFvrEEsqWBXVIQ7kAAmBgHLbRPjRuD4RQGChm7oa6ZhSJEL1M+BjBpcJanVp1RgqCSFE7kfMb75pq7dI95eZi8DQMaQcyAFGMAHMGpybKRimLKzLNxUItiUguO93caYGFiMeXM0S12HfMlASCZmcZ6d7OIz1mqftPiyrAhp3LDl3jJUCcDArobN64UQkJJQSXEknqJ2HQbU09opNfIqUW2pFbYBUBuoIMGSTmR6fjRbd4HIE6diPDSTGMnP1OOqrGSIHMgLONQ0zGJGIHjTFq4qgjkIg7hoyYA8gPoOtdTIIDxtsHUfiJABnOkyBGQZ5kA8gOpqF21/N1bMQZEiLWqTJYYB1GJ6+JEGXiNQkiSSXhjjVBC4/pjbfvE1FnDMQ5ls6jG3dMb4xIz86ZCsSdlY4HcDES0qSD8TATueX9x+Vp2Wt8qsWwVJgnXy+W8VUXY1anP/AAiDEjkfkNudXfZPbIkIQQuwJ3Hixn9Inwp0ychwWyJAJE753qPuzPlVg1mj8N2aW8B5TVVI57Kx7jndj60ErXZcL7OW4ksD8o/Gnrfs9a8PRf0opsFnnpStrYJ2BPkK9S4PsGwudIJ/tX9KubHCW12QegprZjyThuwr7f8AlPHiI/GrXhvZi5iU/D9a9SWOgrDWCcFZ9m7v+7/D9anc9nLv+7+q/rXbTUHNBoNnBt7NXt9A9RWJ7NX2+yB5mu2ZAdxWkQDb8TTClF2b7MXEyzKPWuhscAoEEg1O2+nb9aY/jm6D0pGhlITbs+1+xQT2Zb6/QVY/x3VQaieJX7goaoOz+ytfsmwd1n0qv432V4R8lCD1Bir57qfd+tAuEcq2q+gbP7OVu+xvDRjX/wA3+VV3HeyVoZXVtHxcvSuwuGkuNOKDhGvDby+zlv4Fwuk6WAAA1AbDblS3Gdm6wQ4H5DABgDmetXtxz40u7H9iuSeCC6i8c86oprfB2kILWw/9xP0/fKtJC3NQC6IjQARA5gQYg43HIeNPXj40Fx41zvGiyzzKziOA4Z7hYo4GO6rAL6R+dFscJwamfdktnvMZO0bTAxAwKY0ZoZQUrjyrMs0rvn/CTWeEg/yzJMgTA8MjNRucHaaMlYUgBQBgwT9fP60NrY8K2Fz8qk4tFVnYjY7KUMAtyFOXMZLTgGOUUa/2UHBVrwRfeEyFZuniPE0YJmt3Bg+c0W3aYY5aTRPg+xeFtjukFuTtBbzk7HnjpWXuyGuMSbqLyHe3HXPnSbJTDGaWnd2H96qqOasr8T6YXUVAPeOpsznnA6RJXwofCQyxA1EE/MmDBPLB+U71OzrYrp5M53MLIALc86YHz5mtoy/yxuNQ3MFnyoJHIbYO0jxn0znNcQUMqmQJzMZnGRsSOfiKUttLS2Rv494tgx1M48+k0O4ZwxzksSYjJwIHhy6n5lDEHTnczyEy0+e+B40aBZC+mto+0OXSRy5ajjy+tN9mm0GGu4FgqBKltQnOkQJM+IzQL/EdzuZLfaJYnK4HTYnb84quCEEEywxMee08zviihWex2ODR1BSNuUdOk/StHslzs5H0rlvZLtt7WtWaUG1uAMnJJaN812/DdrI3LbcAzHgarFbHPOOrFuH7CaZNw1f8Jw2kbzS9rjUPMj5U5b4hPvCn1aEsctCqvje3CBpCsjT8XdYYEkb9ceOIBmKsGZWWJHLcTsZ261Q3AxYnQwgSPeBSGliACgJIkgGdwAeZFTySkuIrjSfo5wvtIW1fDIGFbuNI+IQeexjf0ml+A7Vd7rXLt4BBBUJlTnIyvQGT44jlT3+KZveW7iAupJTujOqSBJAMnbMDBncU52IzC61q/CKxMoG3kjSBmCZBGMd3lkVG5Nq2W1il4N8X2q7uFAOg51ZCxjYx09J6VacPxoAh5GJk8/8AOfxpN+Htpp0NqXWgbMsJZZU/SCMj61Di+OVV1QCTIGcJOJxzyP2atdekn3iRb2bwcSKmKoezb7YIBA3IwTmTO+F/CasL/FqV+ILmJnYjkfl+NOpcJuNMsayaRu8SV73djGC0TMfDg+n4b1Pg+NW7OkMIidSsvIbFgNXmJGK2wNRkmoGtk1AmiA2TUGNYTUWrWYG1K8TtTLUvf2oPwCK5xQGFNXBS7rUpeDoTuL5UB7XgKauA0FwYrmkUQr7nwoTWxTJmhMTUmMBNuoG3RpqBqbGQIpWmXfFENaNINYsR4VOpkVuKxrOIe+xQAAFSWEAySFCQs7xnaKNfSJiY1HScwIDsZbwZhkePSo2XBKgzBfSB3ZI1AbjPIfvdhRrZcwYLMY2zAgDcRkY8PE+jtQaEHgNGNWCx2GRsBnYH6mi2kUqBgCO8dyZKkz57Dpnxon8GSWhgfKAWxsQSPDHjQFBCgN3e4GkxnUJBk5M4H+lFNMwxbKsuIOJJgATnMHA9Y2otrh1IgYiIHOY3nzH08KFZvd4gHugdBO/Od9pmjhkzEn7UYkbE+WZ9BSsZUb4a21oRO+DH4x+xmul7BuW1GtdSz8QJUg+u2x26+nOWNTvpIMbtAg+W2OpH7HX9ndmWkCIbF4MGUtcWCneMQ8tBBzjlvFXxXdkMlFrw19XGpCCKct0ottB/s1gbxsSORjeKIjV6C6jjfpY/xIQSfpv8qpe0e2LpJCqUkagSct89l5+HOaS7R7SM6dAicE4mPEGhW+GvY1tgnBORkwAGBxJPz+lceVuTpHTjSirZYqPd3Fd2IlmwxLd42y+pXmPiQADfv450jf48akZnKsWYH4jKkRDKPOB896Le4hiIacOpkGNOq0wURgZ2EYkcqE3FRbUMO6fhJ7uqO8S2Miflt4VGUV8FIv7LG5xyjg3eCZElphu7kPBY6YI5AyBR+0L491bxp1GMkANoZSPiiOvIxzrnX4n+U8HusrKVGSMEEs22xOfrii9l8Qbt5GMOV5NJJMEEiTp2CZHUYNA3hbrwGsTcvg7IGBK6ZMbrg74Pl51d9l9nhkPvBqwIbmw1HMjkYB+tIcPdR1a2UKnEggNPd5gZHST0waZ4HtDT/tAAkgahBBmArMQYGN55imVInK2M8PY0y1sle8ymFEQGIgdOXh880K9xnC27oa64LAagxWdGGUmQDAgMPWluL4iNGte4wLtJUspwzKAx0jJHU4FEs9lcNeJJZrhUw0kgqSCAGQQRhq39A/st7XFW3+BwTzE5HLKnIqTGqC12Gtpy9jmoDISVaAQAFII7uDg9MdDdDAAiPDePnTJsSSXwTJqBNaLVEmjYphoN2pk1B6BhNxQWFMuKC4pGMhO4KE60y4oTCoSQ6FCtDdaaZaEy1FhsXK0J1prTQ3WpyHTF2WoFaYYVAipjWLFayKMwqMVjHFi1/MU6u6obmQZDTjP3jn61lhQxIgASBhvEbz5Uh/ExqLSIxOZJ94GweWUOR0o/A3zmAAp70Z+8R3jBkxny5V6Li6GTVjgUd8DETI3MquofQY86gvASxCj4CqnSJU/ywYncHcGJPlQFHx9JY4IOYKnpyAqXDNdhtIiGP0IHkPh38DS018jLoPs9WOYgZB8xJn+nl+pqdpTqyASSM7ySCR4D86AeIdGaeZktAyScn1/CiJdXQSxxgAbE4Mgc4jfyHWm7YPguOyr99QSCNMQ0EBoY6ZicjA3xtXa+zfD3WK3I1rotsdJZCD3pJDDvnIyIn61xfYR0cRbe0whclrkqjRGMDumNvHrz9e4OzaZUm13lAIOJUkRggCYGJgTAq+JkMgrx3DsRIXy61WX7LKNjsTHOPLnmPWutkdPWgcXwFu6MkrggkGMSCcxjbcVaWWVcIxir6ef8Ezt1dnAIOCNTQQMA+OMetM3ODuRLZAjVAE6CFjCkzyI8vkG7nAhLlzQyvb1poRGyJGnvArnZYjnPiawE8K5F1g5OqAoY3A5LNywYk4J6YiuVSkvWdHPgpOIsgFpcMV924BnvIHJcTjBUMfx2EtcVYPurQKq40rIzKlu7piMyYETPOnn4Jbp4ica7IuIUAb3dwFtbLmeaYk8+uK7tPjQOFtvp+K2GYrkAFAF1bSNKxvEjGDAzkwqips8aRauhsONULO/xBsdZ/EDpVpwfCXDchzEBEBIAAzyJwIjfxrnw6ox1FkYFQVkHUAA31HLpV5Z4249y8FVWZhpPdyw1MCCo27wBIn1pVJjNItrPsu4buXu8BnSGjaRkH5f6xQX4y4t0pcJZE7rQCNROlral1OOoM7b7mr7sziLqIpKKTz0sgLTtpk4IiI54mK503mu+/uqAtlrkCDoLaLSoSk7DUhknTjG+QXJJE1bfS3Nx7klGVgAQApuam6yEEkHGTvp8aX4lmuIf5xtXE7oDXGAeBBnSBzBieW4pazw1shWsgo0/CqhgkTJMgiJIHIwSASYBveEtXLi6WK6RgES2c/HqiTnfBx40bsD4A7H4riwio4t3YkFzcCXCAQB3VDKxz94SelXT1z3aPs1aYnvlS2xBAOo/Dg4YxIz0G+Zb7J4hwot3NRZQBqYQTgAGByOTPy5UUyckn1FkTUSawmok0bEMJqLGsJqJNazA2obUQ0M0oQLigsKOwqBFIxkLMKGy0wwobCpSQwHTQ3WmIqDCpSQUxYrUCtMstQK1FoaxZlqEUwy0MrQDZ5SRA3Ez12ifnO1Ga+VBQaR8DEmSSdOfGMjFIM36/v0pu/pUnIJG3PaBnl1x+NeqMWfD3Q4yqjvbrImSN5+XhmTyo54owQML97BmT3tKnmW8NqqeGvHIUETEkZYxz6YPQCm+G4kgE4gAKQwjcHoMmQfHwqckUi+B7NxtyI6Agd75gT6fSoPYUjvKD0iUjn1/I1jXZWDpjYZOeZwJ5nn1oacQcRK8sHl4ig0/g1jXC2FtMLlr3isDIgkgYMZIXnHWvR+x/aM37D20XTdVfhBKgk7FDzE/hXmrcTAgMD4yRPyNM8NcvAq6lgRsdM+pxihjyuD/AMvBJxUlw9X7M4y4LaBxpIUAjoYyPHNK9u9rhAFFwh2OyxqIzyPLxrkOH9sLo7ty1bc9Q7IfmCDUeI7efVrFhySukgtq3iSpC4PrXRPPjapMjHFK7Y4OAfvXvfOG3DN8Q30hkVSp5bGMRyoLNcNrNw3cmYhRtsJTugAjEgRyPNu52qHtgWyVMT7t+7G0iTEnpHUx0qz4g+7VG7xR4WBgDVkFoPqc0FBS/wBWFya9Kf8AiroezeVnaJV7ZtspgvbtnurPvAGYZGxQeVb4K8r8GVBUEo9tIdROgFBqxOe7A3gdKh2lZEBfhVj3c52J+I4IBFsFSTvO9UfAcZqsojoNRYnUcaZYOwzjYyAf1lZRGTsnftvcN1/dsToW7hRBQTqPxCMmDBzAq87HsBpGov3yRpmHQSSqsZMfzAcgxIA3rn+E7T0NcV3kMHtmGIPeYhRj4l06Z/uXxq39nu1P5MP31UhSA2kFVRQo3BIBWIGwY770r4M+lr2xxjqjFZDSFW4bjMx1RqYI2IBbAOwXaIqHs+ysoWIX4ebo2kz3yc7j1yd8x7S7Ttve4YKYBW7KjS3fYAR3sYX3gB3HzMq8BxLvde2ri2upmBbTb1EgzqDZYd3bSQZaScQnfk3wXl/tprbaCFeRA07HmwJEkQAfMAzTbceqNqUhpg9wgagQDlcSBM78+W5qeLW17sogZrilfiaQpBnSxYxq2hOc7AGa3wDvbIUqCjSWIQKy3MEgg7rAiF6jYCj4I1Zf8BxV5yZCeIVgTudIJMfuasLtzSCWBEZ64rmH4X3pPuLjpCqSFHeDkmVYsdPSM5zVaLVxLrW3uEwNUC4pYGTARSBqPPIP2eUUyYmp1h7TtnCnU0atI3iQJztRrVwsoJUqeYPL9aoPfXRgXjqXvablsMYyIIUat8YiYkDeneF4riGIFxMHOtNJUg7FCW6Eb5xgUbFcSyJrRNaJqJNCxTRNRJrZqJrWYi1QIqRqBoBIEUNhRTUGpWEHFRYUSKiRU2ggSKgRRSKgag0EERUCKMRQyKSg2eMrv9KMzAtkEkkzBAkknbumsrK9UoHA0EQVnmMsfmQABHny51r3mkgiD+Ix+frWqylCbscQBnSMHfMHwOc9at7NougYqSDkaCRA2xE4nEf61qsrMMeifu2BiViTliYPy3H0qY4VCZMg7yrH8RMVlZST4YZt22Hw3J8CRcP5kelYEvbhx5Sw+mKysqEuMZeBhfvDE3PIGfy/OneG9ob6mT3gOTKW5cs4PiOlZWUkX3g7VrpaN7T2eIa3K+7e3czM5D23TUpbaCwwQdgKruzCrM4Oy8RdyBiHU6YUsc4PWM5rKyu620Q1SK2yFLWVYMJdwxMZVgAhkxuEg9YarPs+wTaaFPecyCSFGkgOTEQZx5A9K3WUkgoJxWEe6IDWStwQNtLHUFMQMMR0MAZrC91rk4i6usEzrKAlYGkd3qT0PkaysrUCwnB8YVJK2tbF5FvIKkgQQpEN3YyBz1TnO7f8U2ko3eIYi0qatIUkOqCdUBiRERnltWqyh6Bug/B3uKtnRcAtqxAAQZdhHd1Ke6JE41QSZzXTcPZsjui4w2w5caT00vk5JYT9751usoWB9N8TY1BQLnlcBgrAJlhkROIxvyoy8BcMFrjA8xhpE4iRgx1BiecTWVlEm+D8Riok1lZQFNTUTWVlYBEmoGsrKwSJqJrKylMRqJrKylYyIGoEVlZUmYgRUSKysqbMf//Z\\n\", \"height\": 168, \"channels\": 3, \"width\": 300, \"type\": \"image\", \"id\": 4947633296}], \"selected_variable\": {\"name\": [\"\"], \"dtype\": \"Image\", \"view_component\": \"Images\", \"view_file\": \"sarray\", \"descriptives\": {\"rows\": 5}, \"type\": \"SArray\", \"view_components\": [\"Images\"]}}, e);\n", + " });\n", + " })();\n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", + "}));\n", + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"https://static.turi.com/products/graphlab-create/2.1/canvas/css/canvas.css\"\n", + "}));\n", + "\n", + " (function(){\n", + "\n", + " var e = null;\n", + " if (typeof element == 'undefined') {\n", + " var scripts = document.getElementsByTagName('script');\n", + " var thisScriptTag = scripts[scripts.length-1];\n", + " var parentDiv = thisScriptTag.parentNode;\n", + " e = document.createElement('div');\n", + " parentDiv.appendChild(e);\n", + " } else {\n", + " e = element[0];\n", + " }\n", + "\n", + " if (typeof requirejs !== 'undefined') {\n", + " // disable load timeout; ipython_app.js is large and can take a while to load.\n", + " requirejs.config({waitSeconds: 0});\n", + " }\n", + "\n", + " require(['https://static.turi.com/products/graphlab-create/2.1/canvas/js/ipython_app.js'], function(IPythonApp){\n", + " var app = new IPythonApp();\n", + " app.attachView('sarray','Images', {\"ipython\": true, \"rows\": [{\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUSEhMVFhUVGBgYFxgYGRsaHRoaHhcaGiAaHRgfHighHR0lHRgaITEhJSkrLi4uFyAzODMtNygtLisBCgoKDg0OGxAQGy0mICUrLS4tLS0tLS0tLSsvLS0uLS4tMC0tLS0rLS0tLS0tLS0tLS0tLSstLS0tLS0tLS0tLf/AABEIAJgBDgMBIgACEQEDEQH/xAAcAAABBQEBAQAAAAAAAAAAAAAEAAIDBQYHAQj/xAA7EAACAQMDAgUCBAYBBAEFAQABAhEAAyEEEjEFQQYTIlFhcYEykaHwFCNCscHR4TNSYvFTFRYkcpIH/8QAGgEAAwEBAQEAAAAAAAAAAAAAAQIDBAAFBv/EACsRAAICAQQCAQMDBQEAAAAAAAABAhEDBBIhMRNBUSJhgQUycRShscHhkf/aAAwDAQACEQMRAD8Au4pRT4pRXs2eXQyK9ipFScCihoXP9JpXNLsKi2BBJqX+Eb4/Op20VxRxAqFQaXffQdtdohZI5ryKlaTUF66qCWYAe5MU26lbA48jopRTbF5XAZCCD3FSd47129fJ21/A2K821JFORTRbo6iPyz7U0irVHAGaGvlT8VOORt9DuCSA4pRTwtWGg04Uh27cCmnkUULGLk6K3bXkVfX9SCMxHtVRdQkkxilhlsacK6B4pRTyK8iq2SGxSinU21cVhKkEGePgwf1obkGhRSinxXoT4rtxxHFKKftpRRsFDIryKlW2TwKmOjbvQckgqLYJFKKkK16LJia7cDaDuM0h71MUpu2lYaGEVDfUDsPvS1bkfhnBE1V6+7sywbJ7Gf8A1xUcmauKHjCzSqk0QujPvUIqZdQRTScvQYpBdhAn4fzqf+JMd6rjqDTfN96g4N8sqppdBt3VEiKALxUou+wqJ5PM08EkLKTZ6bkj2rFeNnVrllGiFYbiTGGI4EewJrXXrgVSzGAMkntWL1lgXr63DJ3AkBh6dsxj7VHUySjtXsONOTA9VcUahvKYiyiSCGGD9MRRmr8RIli21ti16TuZh8jBH0PPxQVnoqMHSdpaeBnnA+lZHW23ssVafSSJjv8AWsa3Lo0SbOj+BfFNktdXV/idiyf9oG3I+OKv+h+ItLf8wKdpVsBm5BGMVxew5HMScZ+n/unC+UIKnINU8sk+yfB37URHYD5oVrHsa5Dd8Q3m9TXC2eDx9vzqPS9fvCDvYbT6R95/vTrVNehZQTOt3XCRuMSRHzJgfqah1/WEspvd4WYxnPtXJeoa57rF3Ykn949qg8yRtkkTMH3+nvRetv0Dxfc6a3jHTxuBZhuAIAznvmitd4ot2mYMJVQDzkys4H1gVyIvA/wae9wsQTJ+Z/ftU5alsdRR0bqnjK0mw213o6sT7gzEf3rN63xVfd5Q7BK4B7An+81nO3tHFSadWZSwUQMmPbikepyP2d40G6jrd03C0tPvJ4z/ALqC11Bk/CSPaDQuoumcQQeRUaXRxE1K33Z34NDd8T3jcW4DlVgAHA7SQeZxWj6B47gFb4EThh2B96w/TLO7zfZbTN+RU/4obP27g8U/kmubOSR2np3VrWpUm0wYAwfg0YmnzyK5B4d642lJZBIaJHuJ/QxXQvC3jC3fuPbdAjH/AKcnkRwSf6q1w1FqhdnJp0WOKjvXD+zWe8VdTay1u4mRJDGfSD7ETiROfih9J1Zm3mcEblkcAxHbjmR8fNcssVLkLTrgviaXnwJMQKyut64d0N6QDEe595+DH50KOrO1vapJJJ+4mIA7/TvRlq49IRQZc67xMg3BYO3EcGZ/UfT3qj0/jUbjuAIZhGYCiADmPefyrO669DyPS0xEQxz3H5j7VRaxSCQRlWzWfzZH7HUUdh0muS6rNaz89jjsakayIz+cVhPDnVvIX1KCWAyzEQPpHHxjImtJY8Sad/xMVjie/v8AlxWqOoi/3dkXB+jU0qo7XiW2fxKR9wftR2m6taf+oA+zYrRbFTTD5pUO+sQf1T9Kp+o+LrFlyjByQs4Hfsv3pZS29jJWaINFZ7xB4ut2G2IBcfuAcD4J96xXWPFV/UKqj+XAM7T+In3+IqjuLkzPGTPJrJk1C6RWMSx6t1q7eZi7mGP4ZwB9PvXStEg8lSVHptjAPEAVx8AkgdpH2zXT9Pr1s2i26VNpZ9gYyPrWa7dsrj4BtJeKagFyBbOAf/Izz8Y/Wgurvp2t3R5ihizuARJn0gFfjnFZjqfVA+49zkCOMn5+lU5uEmaWO7kMmGapVBkemABt5/WoHYTiaiMt8VFkUyRMK+8U8W4UHdmhEyf3xRCoSfpSy4D9gmx6c4iCYn9/NQDcxwAYp2peB/ioBeyTMT8UiXsZ/BNtAIJmafcMyOPpTMfv3qFswB2rkrAkSGZ9gOK0XStOPJluGPJk4mO1ZsXgAIz/ALrUdC6+ba7zIZMKo4Izz9KbrsMWG6Pwut0SFEc5O32xVd4j6E1jaVtnaRmAcH6n3mt30TqwvKvqCs+4iTwRmIA5o3qKHyyty6SxEzgAweQAMdx70+5PoptRk/AnhF7tu9duSFZVQDvDEgz9IrD6zSNbuNbJB2Myn5gxXcvBWoF61eaJ2GPtsP5zFc68R9JtC8zBWm8d4cbuGPMe49qdxtE2jFlR/wAVPZsn+mJH2qz6t0Hy7AvK5I37CCu3+nnk98VUaJ/VHP3qUk0hSyXqrm06vME8H3jGe1SaHUsUK/0kjarH2kx9I9vYUHfO07hEcHuPyqbpbwNqn8Rn6dvtUpZHtsKJ7tyJLQYzkyP7dhNQXbzSrz6Z/FPxEVJqtOCMjaePk/InvUdq4CuC0gHnAP3zn7VnT9lPRFqurs7Dc24jj7f45quvbT6pkloAIjGM+1LUwTM/Aoa6+36iMe9bIdUTr4LFtYY/F/4kfAjHsB/oUl1QA7c+01XgD8QgT2pjvmJP2Nc47mFI0K6uRTk1zKOT9CaEmKguPPArX5mZ1BFqevXdpCmMEGq3cxO5iSTySc1FZ+anI9oqGTLJ8MeMUuiNeZ9uKjckY7nmntd7V6ec59vrU7Yw1p949vmpLGpO0gk+rt2nsaive579u1RJ6j9KZKwrgYDOB71J5RDerA/OvUMSfmKQmCe3vXOQT3Pf8qY5z7+9FPaOzaFzJM1GqiINJvOo8QoREZ5n2qJroAgD6mnPYIML8UU+mRRtIy0VzkjkAvc3D981PpkiDjHv3qV7AAyPvn+1M25gduJ+lByTVIBHqm74P79qGS5JEZJMAUZp1VpDR3AipRpFQhiR6SCB7kEESaMckY8Mb7l//wDbv8OobVq0kA7MqOe5OTQHUijR5YCKOB7/APPzUviPrtzWXjduRMBYHYDt+v61WO/q9RJMYis7Tcrsd5bW1JEuk19y0UIMFW3gfv4FXeo60zXPMbI27YECJHuZn/isnqr0EH7V414kz/T8cVZRbQsTpng/xbprFq9Zvhitzkg4gggiAB2NZfxf4mF+6FsW0t2rcbYBngSCfr2FAdIVYLMCVMbcEzP75ojUpbyptAbgQp/fzH50vnae1nAr9VZrQs4IndJA+n1+1RSqwfST7+30qtvWijbWiRHyKeIK98cfWncQBkzIbIb2796mBVVlQVGOB+WZqusXCJEcZmf8Uc9slHAKncBEnkgjj5xFLOPNHAV28GIBBJnOZn6VZ3mELBI24zOe3MdzP0qlvW2n5GT8f6qezdOXk4/Ln2+9GUE1wMg7U6VVBaft2+kxzVTf04bIMRkT3FF3dVuAOBM5Hv7RVY0yBPHNHFFo49UnJA4qNWHJJHwKbeY+9O0zLndV6OoutJcgeofc1IsxxM5oj+BUOZuqQBKxwT8zFRrp5wbiDnMnn7CpyUuyVA9xDP4a8NpjGR9P8T7VYaXTIG9VxSNvGcH70kByd6Azj6R7RQe4KKy4scngdqhS5LqJkcmt5pbdg2/WtsHEsMn2mIjPtnnmp7YscFwQYBIxjvjaO3ahua9FNn3MFcuktE14zRImB3rTN0bQgSNRcJkjPxH+6h13TtCkMrXLpn8O4Lj67eaarF2P5KC36mABBkxirHVAWwAMbR96tOnrpASw0zbh+Gb8z/qqLqLFi2FQSIAlo+J70s8bbR1cEb6rdwSPimediT+dT6e2otn1CWJBhSCB7z8e1QLZGJcYH/aTPPb/AHXbPQvA/TXROBmfft/7p5u5JMD6/wCaMs6ex5f/AFNrHmFPtxGKBu2QDtDyvO7acfEGkSu+BnRCbhJnMD9zXjXIHM+2aYqEAkHJxEHimWbMGSCY4qmyheCcXtoVuAZB+g/ZohtSIDTPYGKb0vS2mUm8xBJIiJAH0PefmptfbtgDy2mP/AD7/iNLKCuhvQBc1BIk5+a88/cOSPan3lmBAA/PHtxV/wBRuW209q2q21CAwVJLAlcmIGZzTKCo5JFI18SIIB9zmD+Xv/ehwS7epgTPHtxyOP2aI/glOC7R8If916mjtCYuXAe38sf33cU3HQVQZdO1QqPB7+35fviq6w7EMSZ2SZ/wPrzXqWgGk74kR8574o3WKmxTsVcknaT688OJgCO4FTUKClZU20a6ZAniTHzGPpRep6b5akm5PxEVpul2rY8zbYsghQSPMYBf/Jcfij+1VHUbVsofU2+O/wBfr+tFt3x0FxKrS30kSfg47UW9xVgSS4PBOB+4oLp+j3sFG3n3iatP4AmVJTAgAsTH+KacV2wDLOukSfo3zj/FAa24PVG0AASO59XA+e/2oi70xi0B0UfUmj9B0ZPxXXRRn8ALHHyRHNKoqPJxTXdMTBUAAwRnP3E0BdstvgBif1q+02iaZ3J78n/Aqy6fokDQ7LlWG4bpzmBA+K7yOL5OVmRu6cKhLbw8jau30kdzu3YPxtP1oYPW8s9LsNgtuPbdx+le6founUze/h4iAF3Ez7nFNHNfaGR6vULPa2P/AORUidQs/wDxj8hWdVvbNO08twMdyf8Adanm5owLGaA9Rtf/ABr+Qoe51K32tj9KZoukA/8AVNy2THlgWmcuCY9IkT+dAajTMCQFY5idpGZ4+tLLI7CsYY/UFIwgoZ9WJ/CKM6T4b1Wp3CzaZtuGmBBiYyRn7Ube8Eay21s3bLKjMql19USYjaDJPx+tJvKLGUNzU54FSnXCCIFdLPgbp213uO6C36TtcMS+cHHI7xAmR2ofoPQ7ulUsFXLgo5ILOOJGDCAZ7eokUksvFjrEzA9O6ffv7zZsvcCZfaswKGFt2IVFLMewBJ/KK6n0nbYN97dpkIuKXZp2rA5IIVQxnI44q58P9Gs7zcS0tu+4bayOSAOdxXgTj86XypjeI5LY8N6p7i2Vt/zHXeFlZC+7Z9P3/Ko+odFewk3HUXd23yRlgfYxifjPNd7a2SZN0tdeATaUCIGCQSS0An8uKB6n1pLVsWiLwbPrJYsIiWG/uPb5BmueRobxI4W/S9SrANZugkBgNjTtPeIq56R4duEMb1jUNIG0W/SQTMs0qYAjj6ZzXT+idVVnljbnI2sTuC4gDt2k5yR8Vaabqnmr/wBRQrA43ERAk+rOPgDjvQWZPo7wo5XovDFzU3ytvQXUtqm2fNK+oEjzC7JBmD6QPanJ/wD5rqFci7cXYATutQxMRGCQBJkST+ddE66X09prtu+HSQduMniTGCO2Y4qr6f1G+6J/Lby3baNyghvdFMDbuOP81N5q4D4o/Bgep+AdVadUBDyrMWEqE9gxOJOOCRnmqjVeHtSjpbay4djCiJk+wg5P+67f1G61m3bR19SsAygCIjkCZYYiMTBr231vTNa8u84dmB5GyAODAwCJ59hTOavsHiicpXwisFbuoW1d2b9hE7QCQdxJAPH9JJ+DWe0+luXARbBYrlo7CQJz8kfnXaeqdW01xUs2hbaUEmBBjkFY5xMmYmjOn6y35G0vszuG4FlKlt3sB3IiY47YpFlV0F4kcw0XgbUNINy3uUKSEdH2ychgDMgZgTJxVf13wfrNOHe4koo3b1jaFz+IkiDjgTXatP0ywo81xadiWfd5dsARMRALQI9+1TWSjgh9tzO5jcUHsNpiTAEdhFU3+g+NHG7fhbXLbtzaMXRKAlc/meYzVDq+k6hDtexcU7ioBRhJ5gY5+lfQV7VDR2wW/mElnfhZkgTxwAYge1UOt1yXmR8zu3o+6QkGdwJGDjb8TwJoNpHeM4nc096wT5lu5b3DAdWWY55Gf+aF1Tkjg19BHS3b1vz01CreJhAwDCJIAj+hmnJA78Vk9X4Atshuap793U3ydnk7doYSQvq7QAPUc8CKbh0K4/ByHRyGBzgzUwWrXTeF9QdS+mIVbtsw8t6VxMs4kAcc+9Ravpj2iyXCFcBvSZnBA/X8Q+BXTfoTkq3tzk04XiARJ4/yKL6l069YCeZgXVDoQZDLMSCD74NASc57UquuTiVLxBmTU2m6oyvMng/2oNweaGY5popN8ndMPbqLgSGMgjvRFrxBcPLE/XNUpuekj3j9KZbFUUEkOdFHS9JqNPcuWXuC8PW6naY5HGMGQZGMfaovB/Tke6bVxf5gKlSSeM4ABA5IyZ+nNTaLSMtpdfpdQlvUW3I8mRLKBMgd8TIPPuDXvQdQly+lxkCq0bh2gESs/eB9fisWbNOKtDKKo3XWb62B5mrXzGx5a78IdvYclvcnHYd6h6NqFLWNVqLiMLgbyld5M4iDGMf0z7cRWGd01GpcM4S2gOPZRiAffgSa1/hTqdo2X8wBBcUqrGCE5AKyvfn7Uvk53SY/FcF5Z1iXr1wm0lotNoFgyXNp9J/mREYxzMUbqLVy2rXk8p3WCGUAEgf0gfnk8yYiqPQ6lmdLbul1SdiN5gLKxDZZRnZJBA+lP6lasW7llTqWQH+Vc2iFJgls8Akkcg1ZTbBwLrmvt2JYC2wKeobwzK53c4iMx+Rp+g0V3UWP4m2UZihVSzDBGCYCziOKn11npKXQlxFUqvBkqd0Dn4g1W9J6LcuvqDodX/D6bdtVdjOC20EsrFoAkxI4zipqFuw2CdA8QrbfbqwbqEHJIaDnEdhkiO01PpuuWP4piGAtjaQVV8gZ2bQR3nPya5z1ZyrG16cMVMHd+HB9Wad08bi204RS2ccZJ/4ik+uiW92dZu6rzGtXrF1s3WtNtEgAncIGPYfWa2Fp3ZVWBtYSHbkYBHp/7pPv2rjlvWF1WxZKm5duJkYChQoBycZGfpTn6x1DR6pNMrrcgPcHMXBBMDuZOBFXj3yilm80/TCbF/SBQbiMdhkgtIDBg0SAYj6jmmeH76WrVzS399lvU8OBEYkgyZBIPHY9qxj+INQrpq2KOduzaZXaSJ2/inA2yYHIxVs7X9btsXwoUNNy7O8qIGAGIgHAqceeUugpnnTfEY3JaXYls3ID2xA3HvsOIIPHE1udTq7RsrY/6pOwFVwSJB3ACPcGRxXMfE9mxo3tnTOu7a8ggEgmFAYZ9QAiYHA9s23h7ximmS0txPMusGBcEEDJaZj54+aMLTaZ26zX+JNYtu2TdtXCMADcsMFggGScZPuea5p1zxI16XSx/Drt8ttvqV4JYAkgRgkVdeJ/Gz6my1g6e4HOSdpxHcYz+lYe3prt1wiIFX0zuImCY3EffgZqc3uf2Fk76JG1lwsiMxgCBu+pjPYSa6Z4GtasWLi+Uj2ngoXaN0DaRHq9JI5+8Vg/FPRf4O4Le4tIVpAiYwQUmQfbJBxxmrbwz1+6EGnF5kUIzoCBjvtkdiZ/Zwiag+Topp8nQr1ll8tls27Sbt9wCCMY2zgSZMGBXnUerza/kllZdwGOYBxu457zz3rMdb6yqo2mtnfHlsSB6RJLtJJyZA/MigdJ4uFlHRkUi5umGIiQBgZEd6eWdJ7X7H6Z50XVanUayyzuogwA7FivvIjPqyB9Pat5p7hF+6CGusiRbYmZEEmYxzgmOwFcj6VeGlJvb2MsQs5McAgf9xE1rukXWusLiXSn4XdQSwZd0hTmN0rBwMVklq1i5n0vZeGLf+090rem7uQo7hnQBjtZs42RCkmRurS9G1Kpa/nMTyAsyB7Be/595rKdf02oO+5ZuSWaWBABEntkCB8ntVcNTZtqLWquB3A3SxG2SZJEH+5rNDW5Hcoc/bm1+DS9NHiPRurmqtXgbxClVwsk23BiCv145kZrm3W7vl3LnnWVuhz6HOSbYwF+BH6zgivfEniPzBNi7uAADweIgCCcdvbisrqrxgu3mkAmJHp3H5jPMfQ1rhPNkalLj7ezLNY43HtnSLHVrF/TsupsrcQKCqu34TG0FDmO2B7Viul6zTfxFtBp7WxT62eWBgk8dhgDv+tVVq4fLa0wIB9SH2MjH+aWhdFsXHYeqVWZ4HJERz6asnNXud/BGkbnS9G02o33raKJlxbgKuH2HJ4mJA9mFQ6zRWLbOl7TJb2yVKDJGAMEdzP5VT31bZallNsEcEjmBjOTPer49ZuWQtk2l2R3fMnJlDyDOT71kyZHw4q3/JfFG00+F/BVuulJhUYSMSs5+Yihk1iEx5UR7Tn5giR+tFeINDZ1Fk3tN6bikcHmWCkR2zxWc12huBVF2N0mGB5GP7U8JrLH4d9fBGeNwddjuoJtREP4x6y88H2GPVxzQlncjKwf8RBkcjPJH3mrK/pdjnzHG0xsYTJZhIke2DzzFAdQZQ6rtYKpYGfaREExJIHNbIQbXYIpdFjq+oqq+UF3WwYjvcP19poxJdbnnKCwEACfR6ZwO3f8j9w+laMXLkkLt2MFYRKmcA55jGPerDqfVUtwtjZO5RAkFoHuIxmPyp4YIx5YrCdLstG81sF2RLYttjcCTJuKScTBx8VQh21upRblyPMZQx7Dj+n86M0wIZ7h2Wl4DR6iGIG6fYbT+vvQqaF9PeuXLO5xtYKxG31EE4MwSqnP9s1TYqQjQP1Po93S6htNcZQSJVgfSwAMMPiJM0f0Prep0uo/h0vHbvAcDIaSOAfeO3MxQmp02quX0LqX2eXJkBgGPbn9B2PFTXfDhN8m3u9DbmO5cHcIHpA24n1e54p9qj2clRRdSuM1y58XG+o9XBz8+/arfRK1livlkkpgTj1AGW5B98+1Wmt6ZavWAiHfdJYpyMs5Yg5M8d54+9OTwVdmybrpsLKLihvUokAz2OPrUM2bHhaU3+B44Zy5igHWaw7FKYubkKllhjIgAZMzAFbRunakzcdUDuQxWfUvp/CJxg5qRLmntxbt21JWCDlzKnB94kc1VazxZeV2TywttZ3bGP4tm6IP5mK82Wu1GVrwxqvk3LSxgt2RgfUdSL7BbhHoZWaZJLSJHAkCeZoHR9RfzWAZUBgiBlgTGD/3CD+lH6HqNu+zXr+1ZMBRIaAqy+4ZiGzivU1FrTLcNu15wSXDluVBnIAA9Jad3yK2LWyTpx5/t/citPdO1TKrxMfUYs7iw2o4BEqD8H59vatJ0fw5a/l6lm2H03FGSYAiMmIEEgmT9O5tvpqu9vUM4t4MIBxuG4gvj5zB4NR3tS5YW3ZFVSJYA8TgbJBkkc/8Vjz655YVidP3/BbFpUp/Wv4Jv4MlroC3GBeMkAZGckmYmfbNRt4eKXA9q8FjtGGbduMtOOIiM+1Aa7qd+0ttEYkkt+JQM4jEnb8R/iq9Ovam5v2kRaUs8ESQIwMHODn5rNeqnUtyoq46eL2y7J+rFr7sl5B5llQuGwJ/qIyfc8/aoOlW7ju4tpbZR/LYHJIGZk8CWPzgU/TeIfNUMLW1UYqwPq7Yg+8E895pmk6ydzhSLW7aqEe0QM+/+TFanlzK3X1L/wAMtYlLu0O1vQbmnstdWGJzcX8USxgTkwBBn/yrN2NWd4UjcsdvbIJn4q26l1PUC21t3Yz6WBiYmfuP1oHpGi8w7CduQWM++Rj71SEpbHLLX4FyKLdQugq2DqXAX0m2YloCjvJM8mPtRuit3LV24W1G3J2hENzfI5jGIxurwtp7CXVuEXT5pZVCrBGIO7MDHH+6rr/XSzpcezJC7UCn57RG0Yk/T60qi53GK+n8f7LxUMdW+TTt1vSKoDMtzEMSSCZ7be2PrGM1zrrt31nYNyZKk4w2QI+B3+aku6DczXVbKy4EQSJAmJxzU9vTbra/zCGuHIMcBjn4ESee9aNPgx4HuTfJnzZ5ZfXRDoCwUFUPqIJ/tGM/StFpeseZa/h74CWvwrAiGHG8c59/rWl0fhXSqnpdywAm4D7R2GO/f3rE+J7W26CYaMEgQHWYkfqPsDUI58Wpm4pdBeLJgW5+wC/rfMurPoI9MySPYn4NP12qV1YXQC4nYw754JHPNVuqtwfTkcg+3x9qfZfucyI44E/p/wA1uUFxRB3+0O0fUGFoqSdrEZySAACQB2BgfnVt07xBNs2mG9mPcDgZEnk8Vm9ON4gNEEAYwffPv3+1TxbVhseSDBY8e2B3+tJkwwl2gwnNcIt7HX/QTA8yIUGJIH+BRVnV29Qq+YQvJj5EA/7+9UtrpNtlFw3s5iFmCJ5H2HfE94r3T9K88iR5e0Ge8kmZ+MGpTxYf3XX3O2utzZr9Z0a2yLdm55lzayQRAaOAODzG4zArPp4dvBbjuN6kGWGVEEfh7sfn4HPa21Wpuaa3YN1vMkQttJEAgzubJJzt4wBmaB1HivU+ZBASSoG7BCkj0xiQQoH0qGN56ai019/8I9LJiwpW1RRaK9cs3BvJXaQZImQO3zjj6mrW11C1cu2pYr5KtGSJJI4kn5rZ67pZe2P4h0VzjcqD8pLZrmHXulrYu+WLgbmSOPcR34FadNqY57XTMubTvEuVw/ZsdCtq/c2oXcKZLHA57kmTLCZEcRRPXNMysbhKtbcbQU53fYcn/VZ/p/jJrAhVFwMqhZ9BG0NOBOM/FSt4pbVKUIAZ2HcgAAYI/wCc5xQn/U7+ltQcePFKFX9Qbobz20uOzSXIVJ9gJ3MfaI/OrzpmlcBru1jhioOeFEEDbkj4+eKzVrpd91BFtrhDw2wZggEZ7Zn8z7VpNX4ma15a37e0hcKRuMiVAKwD2Jn5pNRqclpY6bOwadTlWTgg6Vec+q2qlrYCs0Rhhu+o54k/Sg+p6+7dlWIgGCo3AD4+TIBjv+VHaHpX8am8A2VYglQJBYdwZxPHxFSa7w/cs3E9Pm2g6kkyAPUMMJMD54rLLU4XmuVbvj/vRR48sIbY9WUNrw1q3D3EtkblG0bgJHeYifyqHW+H9RZtL5ibVkSFg8gDJnkZrqF3qG0RG7MSsHIOe/A96yfiDxQqK9lGO9lKnAwfUDIzP1kcVDDr9TlnSiuyuTSwWO5SKDwES14rdI2BWIU4k/8Ab9Pj4FbHquqtbvKNqPNGzcBBCnHaJEEn5rMdP6Q62fNcFWYb1IJAiMExyT7fFarVymnVmhmVJQmCm+IwR8SJ7V2ralmUvxx8h00WsX1Ez68qbWF27CXOG2hdq7SeJz+v3qm651FhqECsCjpMqCzRuYHiPTj+/vWGGouahi28ggA/DHdJk/M1ZdMdmwCqGNrOBClceqJ5+nNWWhji+pvn2Tnqdy2x7sstXeUqiraEOSN7k7meeZ9+Y+taHofSbKKLcLcuMDv5lp5+wquHhneLVy3fcm2waGAVQO4BAmeeZ5orW6LUKA9kWjsO4jIMAGcjMR7e9Z8s4ZEoQnXz/Po14sNbp5F0v5CE6Hp7N4FUgOZ27i6hu/p2mDiB/wDqasb1lLx2siuGkAsAZjn5AxWZ6f4mFwNuttaKgq3rLeoRB4Ur/wACgPEGpvXUCWFe4UhhdRSGBXOXUmTB9/nml/pssppTlTXseM8axuUUmvgb4st27NwFlhEEAAmZkyZMSIKkDOBWRua9tsWkxyWbJPyadrOoX7g8lvMcrEi424yTE5zmfnn8odI7adjuVHA/GpHABAIn78ivdwYdkEpcv/J5eRuTbiqQFq2ZoduO4nuDkVvPDXXLDJ5d7ylQAAoR6iYy27vVD1TqQ1COUA2kL6eWXaNvtxxWZAmIBJ+/P/FUlhWeG2XDQG/C7VOzUajU21cm2T5YLL39Sk4gkY59u1C6vWMwOCQYK+0DAz9vzofyPSCwMkCSMY7T7zJ/ZpaW+ougbC5BzD7QMwBx8+9FQS65oxt3wT//AFHUkhfNfaB+EkAiZxn709m9QfkFSILjGWEwTgkAfuKJPVmTeNqbQsrtQE895PPP5ULqusv5cxEnJ2oc8wMfrjNIk2+IpFrk0NOxg0YJ+3zkVGNJhDMEgzPYcCM8kf3qruXuQAJOZESD7cfpUra4lY7mDIJwB2gccc1bxSXQqkXui1dq0PLa00t+FhEkkwAARx9SeKsG8MNZVm8w7XEOoGckYGcj7dqC0XiFS1tr9lGCjapcsYG8tIOTuljFXXVPGJViNMeP6/k+3+6wZfPGaUF338f8HSgvZntjeb6H3MGHA5juPtyI9616Wo4xgYj9xWTueI/NWb7F2AO0r+INyrbu4nEUHa6rdtkwxzzOc0c2nyZF8CZYr07LS34mdmEAoy29kkTOIiewn+wrO3rtzf6ibgX0ye8fc/3pUq2RhHHe1CTzTk6bCRrbqjcrtJJMSCAZ9jxj+wqe901rs3XZVAWSGcSe8r7nnFKlXT+hrb7LYrnFqTB96mEEYmMTz3n70St60htpbsxcDL69+4yYxxEH2NeUqdwvsjBtM7Jp9ZbtWF8sAp7r3JOT+eKqbl3S6i9supJyy8sTyP6YxjivKVfKYsCuck3avk99v6Yl9qNStsBFUsMwqjC4HJ/Wsz1zxqiLssqCV9REjkdv3xSpU/6dpMeV3PmhdTkeNcFL1fxq5VPKt5ZVz3WeYPcEfArNdS6mNXqPNK+XgAkGT9TgSee1KlXv4dNjxRuCrs8yWeeV7ZdFpdsXbduzvEK5BI4Pb0weO351ceHujDUsXvtNtDFu1Jy0ZgTgARxSpV5ufI1ico8PnkvjW3PsXRp+o6mxp7LvdRAoO0AKJJMcfvtXPRqVDjBZN8kkdhnj3IjvXlKh+nY1LFvftsH6hKsirg13SfE6OXRdq2wwCrujEZ+AC35T3qXq3XtPbUo0M2Ay7gctHqEYaARSpUz0OJ5qL4dTN4+TDdRbaGKfh7n3BE5jv2n3rU9B6/ZTTKbTKqJg22PrZuWx27x744r2lWvJp45cX1emLgk4ZnXsdetre2NbUEO/qcmSpUYUnv2iqDpHTHfqUrb9IPqkfhBP4wJ9xIpUqxLJLHHJXpMtkdTSXyjV9b8LhgXtruuq0n0gFh3Xdzke9ZTR+C7l/UXJ/wDxlb8KMu4gR8MO896VKsWDX5oYnTK5sEJy5Mz1C2bT3AZLI5VhB4B5B7ggD2j5pmnVyRuJWey47ew78H7ilSr6mLuCf2PAyLa2kS6rSqSNuXYgFcyff+360n0Ds2y1/MKiXCD0r95z+lKlSObjG/hAi3RV3re05EGSKmt2liYkiO8fcc0qVWviw+iz6kht6e33t3PWmIIjBB+9VNl/+6YbvSpUmF3H8grkP0htNuUgRE7hIK/fuO0fNE9X0NtLdq5baVcR9x3/AH7UqVJktTjT7f8Aphj3R//Z\\n\", \"height\": 152, \"channels\": 3, \"width\": 270, \"type\": \"image\", \"id\": 4947633552}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUTExQWFhUWGRgaGBgYGRsaGBsdGBoXHR0ZFxoYHSggGh0lHxoYITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGi0fHyUtLS0tLSstLSstLS0tLS0tLS0tLS0tLS0tKy0tLS0tLSstLS0tLS0tLS0tKystLS0tLf/AABEIAQ4AugMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAEBQIDBgEHAP/EAEAQAAECAwUGAwYFAgUEAwAAAAECEQADIQQSMUFRBSJhcYGRE6GxBjJCwdHwFFJy4fEVIxZTYoKSJDOywkOD0v/EABkBAAMBAQEAAAAAAAAAAAAAAAECAwAEBf/EACsRAAICAgICAgECBgMAAAAAAAABAhEDIRIxE0EEURQigUJhkaGx0QUjMv/aAAwDAQACEQMRAD8AyptpwWlwAAAwI58YFM8gkJHvcG/jvEJcsnNg2fyi1BCRi7YuGBH3nCLRqKUzbqy/H74iPrYolIAIIccoomKYlSag+UcUplBi3D6iCxBouxpIZWJ07Uig2ZKQ4cB2xiy+7OeIj4zgJfmx9YAwAtJUQGw9IkmSb4AGcTTLJU4wbGL7EkgknSsBitBcu04JBIAq49IhazvPk3clsXiiQDTFicsoJnLKQ+NRTEnnCJUxa2E2UqEwAaDEliOkObjHjjCrZ028d05OQX8tIYpW5f76R0wdDpF1omVYn9XnT9tIla7QlV0Vaj8Yp8OtMOMTIAqRh1qfsd461PRGUNlKbQwUKsl+gZx6t0gSSnxA7sAX41gq1LF1wKmhA0f5RTJRlXUjlEZZmmN4lRaldWFGwJ5QOuczh8mc8fKLSKjh1gGbO3qAMC1cDzjnWWTlszgcNQkffOC7GpSXwu88+kCGaHDkAEYJBoeDmLRaRdZqCg+Z4xWMn0LpF8qYgneULrEl6PwBPz0iEi2DGjgAAAU6PnxhTNW4A1iubM8NKlnBI76AczD1Ss12Q27bDOmJl1YMtf8A6j74QWmeWELrLKISVL99ZvH5DpE7x1jRQWw1U1GLGg19DrAVy8SAwTXE1I6xJJUVJUobuQZweLZxO2STVq4VDMARwq/OOSzo7KJsoipSWamnTWKFq3klnbv15QZZ3Ky+AcBx8oHtxZSGb39K4YQbFYeq1hmKU8W/nj5QPNm3iRVtMMsYIIqHwo/nSK7HUrdqAN2LfKBFpo3ImqzN2b0iqR7yg+AL00gqTNAcEDKoisLZSlag0GB5xmwMpkg0GAi1ajTMPmB6xQhVaRBS8OkbdgD7FN3jgx0xr9mHUtQ3SMKCEFlULwKQeh74w7lJwyYhvPjFIhXYYteb1aKzOZNft4jNUPSKr94t1iikMytU6lc384nZZgckqbIgYn5RXNAJww7ZtxiMlLK5AGpeEbMFTlbtAzd+sIrVMOJoNM4ZzV1I1hfaAagkN5xOhZKyqbOe6e/lBSw6Q9IDUKgNlF8l1KAxej4QylRFo7LkOoeUC2pHizhLxRKYqGqsh0ENlrTKvqNUpBU/LLygbZNnaVfV78031dcB2h5zGiqRTbpJCsD1hTMmMSNCY1s8ywjeLEZ+82bBoxyrEVG9vb1e9YWOZmUR5JmhYAdzk0WKRi6SDhn5ZGBEyjKAIOTinp9IOse0AA6u93TX9ogW2j66lRN0AGprz0hVtEJ8RGL3vNg1YZzJqHKgCBibpzLYQBbJN+ZLUHIKi5D0FMTlGCqYWDQXtPsEwFZJgcg44eWEMZNmvFicsMAP3j47MSVbpuhIzqSeHeJqai6ElpgazQZEtHJ6GCubVxbhB0gEAk0ZmGJL/wCl27kQHNQS912qS5r9/SOlBB5o+IRShbkRK1BjXjAyDmINAY12e1+uDGGaprHHMHpCWyKDhzDRFSBTEerQvKjJhk+e47RGXND1JD0plEZ0sBLggin33hXap7Gr4wVLl0ZsczkbhI1DR8RUtoPn+0AptLoOQcY17RCTai5oav6YwLrQEy6c7PABmnUdounLoOsLlrqztrDpDMsVM3xpnlnBiJjFyTQUr9IRFe9rDNE3dYtCNE6Cdqzb8lKQf+5MQk8iajyhlaReZKaYACMxPWVqSkEi4x/3KLBuQc9Yb2mcWACXPEO3LjAYXpH20JpCVJUXIBD9DwEfS7ZQUGAygS1e4rGgzjiSWwTBoyOyppUjAhhqDhpnA00tTSuFRjWJIlBW6DdfNnT+2USulP8A3EEKQap1HP8AaJ2kVk9BVlsxIHxDUH5GIoaXOSDW89GiNlUCrcpqCW51zga0TB+IS1WBhVdirs1EpaMwnlj3eOSmdk3XehAoKZaHjA0iYCLpSBShavX5wLJte8reaqmbCh9Ig9hk0H7SsTgVDBy5vN1f6wokWYhKlEi7hnX+NY0HiJmC6slQxAAJwy5wpkbQqdy6zJqb2HbypFcOW479CqWhTtOhbzgJCoN2us366Px6vC4YdRHUtowxsYJUAKvD+RJF0qYoUkYE4uDhpGZspYuOkNlzJlwXgoPgpnSRw7iOfKmBjCyBJQGx4VUeGghVtOi2bz4YQXZwAgEBRriCK6uSKQTarN4iSpZUlIFEhNepFBzMThkUJCi7Z29uggEF+cStFGw5Jx5mkS2dIQQKG9+Z2B5HM4UixaEJD4kZv2HfSM8y8gt7BrQ7OeOMJpkxzDW3P8WbmsIlHejuXRYvUC+MEoOWsDoTWtYtnoUlJOYBb+YVgpndmqJWpWQJ5aegPeGtoLiq2GN0E1IyaANmWcBIORLtwFPP5wTaVOSXA+8ITtisrmSwUXQ7mnOkLRalCl00+9YumC6wUTlhyj5Mg8e0Ewy2CBPnplndRvGYorUQlCarUXDUSO5AiW2LWlU0pRdSA4Q5BZIZkkkuSHzzgbZFvTIkzUhxMmqSCpVUiU9AlqqKl48JbZx9tqyS5JS6jMJa6tmQpL+8lve5UrQwjimyzKZ8sJAUSHJDAEXiKuqmAygSdMKZgIpuiPp04TKPuhgAznDFRpj00EEpQDNUUgMlIocmAxvGsZaFYwslrJQBfGrN66xFVoD45l2o1ThwgedPGIbJ+DQqKzrSJrHYrNtsu0guoEDiXV9nlA+05ISxZaXZnq9dDAOxNoKoGJFKBz3g/biAo3wVDQMyeQcuTHLTjkEQj2tKqFVIIqcoBR7p5j5wzm2PxEgglASSCCllHhUsTC+QrdJAzH3SO/FNNDh+zrIVuSq6lONCcdGz4QwtC87166GDJZLDiM6ZQFLt0xSTLloYf6dKOa56mOyp6koIYi8CAGoNecRmpN2Au2faFymcAOHdwXfDDAwxnpTMS8yYQH3glQZqe8G+sLkTXFa4BtCIs8eYiYEVSMwQcGpQxKcb2jNDEXQkBKipIOFAAciFaQIicFKqyN1nZyKYAa41ge22rwkqKWINHSpjVssM9IV2W1gsDzrWJY8b/wDRNINt7kPUDJ829ecJru9Di3l0BZUScOQ+QhROoa9I9LE7iURNEwpUDmIst84zAHqokef8RVLN6JyjvpTo6vvvDUh70MFUAaja6NFkuWky1Od4YPR8X+XeKkpJBcsGyzjpS6MRTpj6wohy1SicA7Y4Gjc4gLuquw+sfTzQghLA4EkKoGcfekBi9xgmCE2dBACU4D3gFKdRGb4AcBrHTtGWQuUqqPeKSLgKgPeRV0LGmCsxFOyrUCXUAzgEsgtxJmJIAi/bWz5d7xBcINKTZZIV+YpQEsO0TXRbtBEkSUkoTLSFGoU6kjCoIUSCW1NSYAs027MnF2OAwbEUdQaLLdtMoP8AYBuEMSopOFMS5BHEkQDsycWWL6gDU0vCvDD0jKIJI5aNxwCK5Av59coHSumBdoZWG4tBvpSVA8QSKVLCnRs4nbNkAC8gpSlRYIWTfABZ6io5QeSWmLQPYZheimqK6RpZNsKAlSTUYuL3UV0hRsyxAuARRnUCW5Rbbpdy6xcOa5cj9YlOMZMHEJVtAklamDmpSAMeBcvAM6YlSllDhO73Y1rFSkVvU707REWhADJbItxGMUhBR2g0kFWGUXYOXxBoDzOUMbTICEuFqw91wQH0VpxhPLmhWBb740gm2rF2jsdSKNyhMkXditgYWULBdnJzi+ZtA3gTQHDi2v8AEASyFEEa184ItEpKi4L8agaZ4DpB4L2CgPac1J+Bj+aoPYwNLUQxAFD9tBe0bS48NIQsAO6aluBxLQFJVvMcM615iHUf0h46HitoDwWUCVHpzJ6YQClbigPMl24MzRdZpJXUVbE4EcxF/wDT2STeFS2LdRk0NjiktBSJImhKXerH30p0GBA1yo0Uy5JCnAe6N7F9T2+cW+FuMa/xDXYs4XQVFiQpQ5k4H5GC7Wx0k3QNLs6iksxBaorjnHTZsAgOCQMnckNhE7JbPCJZyFFQLtdLE4CqhHFT5YN6UkpLhzeJFGIA0/aNTA0ivbNkKcQcHPByA5yxpFMval0AeDLLABy701rDCbMQVoUS6VsFEKfA/ENMO0ETNn2Vy0sM5+JX1gNmUL6ZOVYkyFqYIaoolsNC1SONcoMG0DKTcK5ZStx/cBuq4AXbpatRHmSbYtKgpSlEguxJL+caC0bZBSEuGIcXqty06QvCmMpaH+1ZMhCAAEJKq3UIUzn8xUukZWbYVyVMJa0nHCmNFDprrBNnmIK6FRJZ7zqSWxrlT0hzt+0TVIlAzEoIlMXxKXoD5QvJ2kB7M54hvAkhlO5wrmGahgte01FMuWF3kpWCkFqULgnHH5QmnWQkl5oLnJ/lBmy9nC8FKW9ePzhnFMW6NVKm7o8NKGchQqK0xpzhZaVT/wAyMaA1HmMOENrPZkkYqMXTtnIIoDwr9RCRjRN5KEQ2epbXjLB4EAdsYuRsVP5x2J9BDAWE5OOv0josZxvzHf8AOoReMmc7ab7BbNs2QFgTJsu6XdiSQAKvShelY+t1tshlkJUlRZksFBgP1Z55cILGzkklwo3gQSSag66wvtfsxKalOZ/aIShylcmVjOKVCGy24Xg1GeqTiePDGIWqeV0qTwDBya4ZQen2ZUPdUkvxilXs1N18/wB4rSD5IfYoExSCU4B6g6+oPEQVZpzpIEwguGSpmPFyCPTGPrRsSaDg/F4H/pswGoMPxsdZI/Zptl3gUBSUKBOAYvlUPG42n7JoIC5UurAqllwDTFP07R5dY9nTXoSOpjUWexWiWB/1Mwp/K6iMOJjmlGayJxl+wJyjKLRNdgSH3cHi2xWJPho3TVKSOLisEzbWFoIYuoMeFYI2fOT4SMXCU5cOdI9LlByPL/7YwvsWS7EkXqBwo59fnFZsqQPv6Q3kTB/crirP9KWiokghsONGpiDkeMOuLiCWaalQvFkKxeTUoq1DQZgdYj+GJr8kxZOm/CKB3YDPn8oH8Ma+cFYkxH8z6sxcwAm7dDu3KDZsqXRLVAg+bNWu8rw3zJrTiSBFBshDqZuh+cefZ7ROaq5RD/LppAarXMWTeJLU84cWdJd2DN38oqTs1W+brPm30gIEhUghRcYCGYZKEnMkcqQKuyKAYB+UDLlqLUbpBoRyoeSbUzYxYu3KoyiCYV2SxzDr5w+k7HUoNURpCc4+wqwT1Kxr2g0hzRBNccoWq9n1t7wH6oE/wzNyKTyMJ433YOeM0cqzKfdK09En1EHXpwFFJP6pafNjGRRsSegvdOPwluzZxK02efdYhZ5vEZYZ32UWTGak2pATfn/h0oGJuqvf8Rh1MZq2+0sm8fCs5uuQFEqBOirowzpCmXZZqVPdUDyI7xNMlZU5HE0isMTRvJBj+y7QkzEg+Cslqi8KecTmXCaIUngSDCiSgpIcF+Ar5wfKuqJALkGozEV2kc8qbdB9mko1bp9DFtrmgUcHhUQP4RHuu3HSOIvFnFOXm0FRE5Kj4gFJYgUOdehaPtkW9P4dO8Hup3RUkszYYxG0zriFKBLhJbzakc2Y0lSUuGulwagkXcdHc4aRnaY8HFxLLMU3A9DiXcVNYrtCpbMO7EFxnhQQZ+NJJ41ri+umFOkctM9QZg9KnTvjDxbIZeK2hHOCB8Yd9WDdYqAH5x3g2fPV+R+gij/6/IRTk/s43GIs9nk3yobxBG9dD0rXjF1uspvkICil8W9eML7BeSykgf7xQ884ZTvGUt7oroSQOZcU7xyOaR71SJ2TZZViW/UW8jBI2ckKLramtPKKZ9imKTRExSsRcKAnq7qgaRswrLrVNQM0qAJ5hyPOE8kQeORZahZ0YLvHQP6wvNpKqIQTz/aHs32ekD3Z6lc0fMFuMXyPZsiqJo5KBSDwvBwDA80F7FeOQNsiVN/K3QfOHoCxRvpFmzQZYabLUBkQ6knkpMO9nIs82gSgn9RvdjCvMrIP48mZ5d/NJPGhHlFIJepIjcp2XJSKSxyY+VY6LFKzlJBycCD+VFegfjS+zDJn3cz5RwWwnBzzjd/gEH4EN+kPEfwKMPDT1SIT8hMP47MjJmKUaIJ50HpBQsijiEg/feNIvZqCPcbkWgO2bKW39tQHApf5iD5xfx2JV7P1IA+9Y+seyZYKjf8AeL1HABgekE2rY9opdnkE6I3XHBzlFM2xW1IBvpWQ4xunGm6RWGWVtdjeCjpsiSWC86UZz95RRNsxTUhx9iKJcyZXxAUkONM+dP2izw7xCsc2OD+rfWLxlJISWNdC/aJQrw0Gl5VTQURvFnrU3R3jvjIKipmoyeTuT1p24xZtaQoJTNISgoUMAWCVULvizhXSGFnQDLTQCiQaOzUPpGbl9mlFJaQClIUzByNMYOk2QtvC6MXIx6/KCV3gN0Adn8opXJUcX7k+TQrtexFFeyibY0OXDjW8x8oF8OR+U91fSCVWQvRL9/KCxZ0fkV9/7onJSfstGGP6Mjs/YkopBE0KGW+BDqy7NSfcrr/cp9YwBQpVfEW+hp6RZKKgzTZlKs/7xOeBy9nfzR6LL2QjMKBxcLeL1bL4qI++8YaVtOaA4mEtqHPqI6NuzirdmkagJT6GI/iz+zc0buXYCnEPzDGCZMgKoUHpGCl7dtJa7MJb8wAfvh0aJo9o5hxUp+bj1hfxZX2ZzR6VKlFOBLaFqdhFe0bDfKSyCygaqAocdI86m+005qLUOo+YMCf4ntQ/+dR5sflFI/FkvYvNG82jbrRZ1PLUShvzX0+pI6tBWzvawTKTPDfQpI8ySPKPP7N7U2glzcL0JKW8xA8y2EqJu3XLsk0fVop4PsXkey2LaEubRKkFsgoQcbMpqANz+keNSrUS63ZWoLHo1OlId2H2ktEugmP+oP8AOJS+O/QeSPSk2dWDN1/aOKszYMepeM7sz20B3Zxb9IUfl840Vm2jLmDdmJL4A0VE3CSGpFZkvpTh6R94OpLaQTMnpTiDzenlFUy1SxithyJHcBoyBxBJ1ilke4knkMYFNhKfdDcKQ1ROkTKCag8HaLjITk/R4pHI0TljTM9abGVBlpBTgoGrjThSFFhWqzr8FYJTUoUa3hn1GfMHOm0UEsz10rA1tsiZiQkhiKpUki8kjBQOo84oszF8YhmWmm5dBOFAQe31gb+tzZdJso3cbyH9FQamYZSiiagOzhgm4tsSkO6VZlFeFIuTabMoOJg60D6HKHcrB466EX+NJLt4c1tbo9Hi7/GUj/Lmf8P3gq1y1JIKJctQVgygFUxo1ekAHaqhT8JMp/oT9YNIVprtHlsua4AeumkFSZJNKdoDlJCqYfesXS1LRleEdFFGwpVjWKhn1+ogS0yl6DiQK+US/GDOWfOIeKg4EpPNoALKryhj6CPkLxjtttKaMcm5nWBEzHFDXj8oKQQ1S6VgWfO0im8c4+MNRmxhYJoukN5s3EQdKU8KJanDYHX6wSiZMSASHGUChGxtKmEcvKLCoNT6/wAQFItN8OzQQmYwhaApFqJhFSSrmajrlB1mt60lxTjif3EKkTXxMWylaO2g+WkK4jKZudj+05BCJuB+IGnUElhxHaNIhAULyCQ+aaj6R5NJmm8WNKUOB15GGNl2nNlEKlLKSPhfd6g0MQlj+h1I3lsBXRUnxhmVXUt3BMKJ9sUgkS7NaSkYb7drqsIlsz2qvkJnAJUfiBZJbnDtE9w9erHsRE6p7H5aM5P9rbShz4F1Oi28iwJhXM9t5hoQ3BAAHnGytUuXMF2YAocQ/nCyX7NSDVMsHmD84pFx+iTkZhe3pk3dSkkZXi7ctDxFYKsyZ15K1pSSCC5oWGRUEl+0aJVhlSU7wQgaUHmIFE2TglSeDGvpD2vQnNiWZbLUmZ4gUABRsUs1SKFic8PlFattTzXX/Ur6wdatg2taqEFGIwB/mBv8KWr8qO4+sOnH7Gbvs8/RKKcT98YOs6pmCVA84ZzrOHwis2ZP7t8xFqF5WQTKXQqKW0165QptclSiSAQMs+xz5w6kWQFQqo8McPWGX9OXMwQoNnhC2kwcn0ZVGyyQ5IjqNm6hqRvLF7KrOKmhgfZWUBvLUTwaFeaKClL6PNE7OJNGj7+mHUdsI9Vs/sxZ2wV1IHkBFqvZqRhcJ/3ftA88TOMjzSTs0gZHjpFhkkHGmgj0uV7M2ciiVf8AI/KIzvY+ViL4Oj08xA88TcJHnKbFeqkXD3B6ZR1dlUAXckaYfxHo8n2UlJ+JXVvpFdr9nwP+2vooehEbzRYlTR5xLT94Ra0ai3bGpvIKVP72RHLXrAC9ksAWUQ+SXPlDckwcq7Et6Jy57tWvn1h0rY6CKFXMhvKKrRsRQqK6axnQVMDQKt6hx98YbWPapSUyxuJ1vV8/o8LZtnXLN1abpxY1x0Ip0iubeGHQ8eMTaKpmoFplTC19ayAVOnQY0zhRMtljUaWiYOBvJ9BGbtS5yi1CdUE+bFoGFgmqNQ2pNO7wY4wNo2J2hZwndCphGD4f8lCGOx1hSwrw0IIq4dXqBGb2X7OLJCphcc389I00i0y7PWcoJyFMcMIWelSEtN6NFLZ3ALnn6ZQRf4Rm1e2FkR7qionQEkwYn2gJD+BMrX7pHM4MsjBKUCMa9/TKDrDs74lAn99BEdmWUEB03e1OcOVzbjeGLz60A5/tHXKb9CKJfs6yywM0kY0A6PDtBTiBSEsoXhvFN/sOz1g+yrIBcuOMc8my8YoaoQDRuWUTuYuAD94MfKF3iqyJDVYBnHB4vkSyz3anXHrEWyvEIXKwwHr6wVJlpxLFsKtAjPmImkKGDnyp6wryGWMJkTpdSkhRfFJBA4Ui78R/qSoaQuMoVYBtH+QxiYtAll1qAHYdsYm5N9FFBDISUqrgfvIxBVnPAwmn+0EsUQCpR0Ho8EyJ09XxJl4FlG8puITRI5mFlm4L9TA8cQkyX0+UDLsZFQSD3HaDyhTbocg1JVdB6CvlBKZazVaEBA+J1O2VCkGGx/KfdEZYExKizEhlgffOKbVslF3hwMaDwEXXvOCWACSP/LH94n/SAoE3a/ekUX/IwbqmRfxmYm0bN/KARoW+cJdo7JJBSjdci8HABbV8431s2UEGpKRqWbzLj9oGmbIWEullBxV3+cdUfkY37JvFOJ5/Y9mKSBeArkNNXwhxL2chTOQeBHq0Ol2GYCSoEDRn8xEES0pG9TJyGxivkj9k3GRKyWUJAzPCg6CJz5Ut3WA/EftSAbVseYN6zzVIJqyjeQe+HSEu0bftKWCCiWoNikAns7+UTavpjRVDi1Gzo3kCXfPu0DvwIqeYhcdtTx8MnvGL2ht+0h03LijiplXul47vSM2pSjWsPHC/ZVHo9jtN5CTUOPvlFypwFSW0i6RYwASlyMW+kfKY6caP6wLGqgEk3woE444vyEObHaCRdLOT9uXhXNQK3TvABsgIskS8/PX9oSSRSI98ZuJzCXPkItXaDgCL2ii/ZCPnCG1TQgO7viCbqQ2aiPSLEbSkkHw1XsyEi6HOZoCYk4WVTNJ/VhJTfWQkpqxb/wAQTAUn288YncUyR726+PHOMtaViaFJF5ZOJDBI/wBxx5CJ2KxCUk1vPU5DpG8arYeRpLd7QrSgqANRRy6u2AjJWr2iWpRvvkXIpTFwAxgtdmWuowyfCK1WZGC/eSoMKspw5fUCGUYpdBcmN9gbQlkIW916bzcS7tTIdoabUmS5b3ZqStV1RLKISk4AF8TvdzgwEY+xzJYJvqYAUHXSAdpbfTLvEJeZMN5gzaBzyakcX40pTbQJSPS/8WyZUr+2yCGegJURkmrq58c4W2H2zZZXOtRUTglKGQA+P20edtMm+ESXchUxsE5oQkcBWlXVDgyZJClKlsm6141VnVr2PPB4r4Yw7diKT7PRLX7Yybo8EFU1TuSPd4jL+Iz+2/aOYhN9awB/l3jeIPxEJIL8OOZwQbOtyPDKkFCVfACBVsgTTD5w02ds78R/1M15pxlJpcDUdIwIpmIisajK2tBUmx5sm1FEsTJigVs4SUlYQk5Zi9qa8KCJyfaaeZlVpurO4lgUhLh1EAUJw4CPlTfDBQoOpVS2AGh0GA4xm1WFRKpid1qkh2FaAa8uEGL7Hs3w2wE3kzbgAPvK3QAdbvkIzVr9r7MSr+2Al7qDvErVwCfejOrCm3lEKUxIQwKlZODiABp1gfYikz7RfO7KQSElviauOFA3WD4otXLYtm32TabRPTuy5UgAsFLBL0GCCokdTHy5Exawk2q6pr25JlJQz1JUtJJrShiuybWA3krHhgUBDl2PXKEu3NpTCpCWCrySFYgjDDzoIZNR6dBqNbG20tkqCPEWETU/mSHHY+71hR+DT/lo7D6RKzW6bJSRWSgiviEXT0JJ8tYkja1nIBvysNFfIQ0fkzS6shLCm7RGVNcltIot13Jwcx9IhLmEOzF4FmE1BN2lCMRHf6EB12a4tKiCQoseuozgu2aYKyAwA+kAT582UnfUVg0CsR1AFI+sG2EEXCxWTiRU/SHePVjpkZ8pKgyw7YA4ds4qFgUahQGrUococIlA1IBP3jpHTLQH3h+lsTwrVondDpWDWclheYcR/wCoEWqnD4WpUlYcds+UAWmxrXgEqGpLNybOISdmgEH+6og4KXumuF0nCBxQbDpYmzHKbwTheUq6gDggFuUQlWkFJSpQUS9y85UEpcM4wcgk8IOkqV8agRklIoOEINuWO9OKUBjMZ8kpAYnew6ZvwhUk9MNg8hPjzAkboUoAzFUTzrXrErds4yJhEwIvq+JKgvdwyNMNY+nIXMPhKDJAYs1aYOMgMY+TYksEpKBxFR9nWCzaojs2cPEKQd1Smc0xZycGFGYZCN5a5NmkS1VSqjpQkk/pBKiXzLcIxH4a5UMDqD3aI2jaRAAFSaBOJOGGjsz5ROUHKRk6LEKKphRLBCVXTMWMWWQGc58I9XsNjTIkole6woH1ricTV4wVjUmSuXZ2SsrWlU5Q90UGb/CCPsxu7NtoTllEpBKUsLy6A0qySHOUTmrCl7JzmKglYwegGL5nU8YRe0EveSgF0F713EBxkMTl1aHO1ZxkochicWFAGNQHfgOLDOPP9rWxVpUmVLd1gm8QU+GHqtsSTwbGOfhvj/UDe6BvaC3pWoos6ZqlJopQvNKFBS7yqeLRpPZ+QESQiXKKyRS6zPreVRzrWPvZ2ySbMkIBKsbzlkk6qGZ5vhDexWii0ouskumpS7uSEvTdbzieXMox4xRn+nsWT9kLSUmYq6nAol0U4D1WaqHJoWeOqUsiUESb3wlgpnI94ipLc4O2kJlonISQUAKIWbw3Ulga4DgI5tiWhDBJe6lV1dCXpUqxy5QkJPSlv/AqF5tqVFpmLUTdAZnYKJBxAdxTgYr/AKlJFDIPYf8A6hVbrWpBUl8VOohkijGrUI59o4izkgHdqH/7WsdscKq2NY+SDw7R9MSn8pf7rTKLbNLJDk0NYsnKBBGBw0juOcVrY1yb9SeTRm7Zs8ImCaKJBDjg4FI002WAkJBIbT1hVtGSZkpaXqxFWqekNYScq3qv3C6hUpZLpIyww6wcmcDib3AMG7Rntj7QlqRcmHfArlUFmpDpFrIoyEABwUmrcf5hWtjIMUk0LgDTPpEJlqScAVNQHCvKKZVpulmSq9m7PxGvKCZT3nYXceMAYulWNziqowdxzOTRLbFlBlO4F0uSeGOEFWK2OSLpdqBmocHfCsXy5aiSVskH4Qb3cmnQCEkmmFHn861ql/2kpClzKu9Mc2Fcob7NsSkBlC+TUqOZ1jQW3YcspvjdIyx6B8IU7atpkywlDLVUGlBpzbrGdy0hloB2hMloUCtykM4FHbGtQ8DTZtnm79nRMSR/mXW4gEFzllHRYSpN+aGxYUAfU6wIicA6QCeQcCCor9wqTVjP2ftCJE0TZwvlzuGif93eGf8AVnneKQAl2CXuuPyhvSM3MtJUQFi6GxdyBxbLlFNqtDEIKiAoAXgwZOfvVBMLLHexL+jS+0ftNKIKUBa5gULgK76a65UfANUAxf7K2aZKlrnzVJvzSAUEbwFcVZfZjK2efZ5V3w0JUoKZyTe/VQ5cKRs9h7WlfHdASzJB3nAFSSaExy5k4Q/Sv9mi/ZoNlyBcM6ad0Gl4UcEGj5CleMTlzJcyYVKoXu76Q1WILPmxz0jNTvaNc+cZUqiEPUHcDY5Opie7QTarTLSkS0KBJ3Ru1UcdA5etY89/Hl/F2/7GbtjS3WZKU+GGUFEquhTEMRgTgRkOJjIba2CZawaTPEUHANQpQ9wHQUODQ2lrVVkB8SondVkwctVm1rFc3aUiVLSoqZUohYa8XIPwgnE6fzHRgUoOlsKRm7RKAe+99OOG6Q4IpgOOJgA2/ijyjVezew5m1bQq0zj4VmBLkMCWI3R3qqPY5PstYgkAWeSwAA3AaAavWPTigP8AkeTJnAMCTT7pEVTtPvvE51jCSTXGBZxakVJAG0QpyUVOZfEaNSKpE+8zpI1PD+YNKM3PCBTMcEuafOGSCK9q7BCleJJUAo4g4cxxhabNaJNVBKgC74txIbCNGoKuvTBwHP28VqmE4khxVs+b9Y1mRPZyyof3E1FAxBDY04RoLGBRz0y/eM7JlhCQkO2mj5A4tWBdibSUm0iRM30vdBrR6uQ+91hX9jI280bwu4GhOWuOcWqkqYhGP5sT0im2zfDSpm3SMAPKFo9o1KUlEtAClPvKwDcBErb2MHidaUOm6iaTg1FB/wAyXhJakovud1T3S5aucNbR4xSQZgFCSUJuqPVyYUW1AEtbgKYBTnGKw2ZsuMxKwwCd2gOLnkIWTbC5Lm6C5q2A1EDbLmGoyOOvSD9qbIFwTCouosOQyP3nGcUnRrM7abUHdIcPQkOVcsgIbWbb9pEj8IEyfDIIJMsKmG/iAs9nZxAmz5QWlU1Xw7oDM3L6QWZSjQEffKNLRkJpWyLqgThUMca0yii37KUgBQJUDidM61JjRW6UEpN593TOrVhUmZXFTsc6MIKb9gF1l2xNlC6ggDMgMoh3YkYjhB+zPaVSVb2CiHWzrSNEHLSrs8UWmyeJv0DlsPlFQ2UAHKsMgPQwZRjLsw62p7WklXhUCqkkbz6nhygKyz1T96aokBRISAMWFHyGEJEorGj2dLAl3BrU86fLCEeOMFSRrPSLRtlFns6FoTfCwUkJYBwKHphzAjKf40tgoFkDIaecRsMwJs4Ck3khRABJFWdy3GvWAitRqAgA1a6KPlhEo0tFeR//2Q==\\n\", \"height\": 270, \"channels\": 3, \"width\": 186, \"type\": \"image\", \"id\": 4947633680}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUTExMWFRUXGB4bGRgYGRoYGBobGx0dGBgYGxsYICggGhsnGxsbITEhJSkrLi4uGh8zODUtNygtLisBCgoKDg0OGxAQGy8lICY1LzAyLS8tLS0tLTAtMC8tLy0tLS0tLS0tLS8vLTUtLS0tLS0vLS0tKy0tLS0tLS0tLf/AABEIAKgBLAMBIgACEQEDEQH/xAAaAAACAwEBAAAAAAAAAAAAAAAEBQACAwYB/8QAPBAAAQIEAwYEBAQFBQEBAQAAAQIRAAMhMQQSQQUiUWFxgZGhscETMtHwBkLh8SNSYnKCFDOSorLCUxX/xAAaAQADAQEBAQAAAAAAAAAAAAACAwQBAAUG/8QALxEAAgICAQEGBQQCAwAAAAAAAAECEQMhMRIEEyJBUWEjMnGB8EKRscEz0RSh8f/aAAwDAQACEQMRAD8A5gygqbvBSQCSoMSQ3IBw1TEwRzFS8pU5YElqda1tpG65jIW5Ls1De1DWoZ/ARbZsohAQogA6Bnq5c8q6N3iWPikNl4Yk/wBtQWS9DyFiKcetYB2jiUk0SQGoOWkNMfhDMlllCxDVt3fh++nPYqUczEWDeUbOXSqZP82S0M8IQUJGZgEjR3LOQGPEmCsQoZaBmpUu9K30++uOzZKjLSWYNfueN72AN9IrOAK7uLllBTkdd5uvlBXofRBNcBIcl6tXqOZenubxupLaEnmG/QdA9o1lYoZ2bdD5RVgH+lK8YzmLza9W+6/tAM0CxZy0P5qkffPSA8OjNMTbUngaWgvaCdTUnv2rGey5Qc1aja6nlCa8RkdtsOxMkKG7RQPymqmYvcbwI56OwgFMrK6ksQD/ALanB4kA3fp9HLnF9KBt4OdTbgNfCPMdhBlMwO4IzVckVrU3A4aHSD5DsGnlJSVJBJGliCSA1Lj9YHcpllOuZyWrYNBk2UAUqcHerTkSDzB0is0pOYtqw5k0FoxS8TYSj4THBpqkEKUHDgVfUJvUl+IoSIP2XgZk2YsISkHKSyqADMLOL109oKw8j4ORSUlK00UTck1BbgWPCw5RMFjVy1LUgOogCzuSezVFC4traCqqbFt3aQB8IoUoLynKWZROV+OVqtz8o9kT3VQbv5lAU4ADubisHS8M5C5gzAn5RlygqcVGatWLnRo020uS7ISQoVJBBDkAaEghn52gqYClugbBScynOXpXuxa9DvVL9a+XVuhSyqmUVoBVzVt7UVbrGCpxSkpDurWzln978hDzYqBkILKLvukc3Soku2jDTQxq2c3WwBwyjMGckbpZQCdf4Y5k/Me0UkJFwC9aqt3Z2I7Qw2mSSxDf0ZiWLCurvofSMpMkgBh+nPzjRfeIBn4I5lEuOBIcNXQF4BnyKFgOz3Gh4UeGWNklNnL3D68mo3l5wMZQmVdWYceIdgXP3WFcsoXAEhW4oB215Nr98BFMMjN8vzX1IUHb3hivBKIG8CaF/wCXqWJ7W8IGn4RctSVLLOfmBFzrW/e4e9YLgK0bolJyHOhROrNR6jMDYNbTV4X5cqlJpyfsfTjDVS1UM7dBO7MQCz8CRUXtVJ4QDjAM7ulTNvJYB8t8ope7a6R03xRlaZTEYhJ65Q54Dh4xvsdWZamruF/btGUsDKKMVg3ransBBOwUpTMXauUf4uc1uQP2IKC+JYm/Cy+JNiefr+pgDCqImj8tL06MH1MF45LcbWNToP8A6PgIXyphMxJ9RdgfrDcrQzHYxkJDgOz9H4XMMZs0IUSwTnKjXhvq0tvKSOqYGlgMpRqtiQHDafV+0CrW6VOd5bJFGDAuB0p5weBVHYvI9mEyWklDHRm1FbnmQIDnp+YDUAe318DDKfJbK9aMRyFHgCYN5VXAID6WIA84DtFJB4rsCVLrb7pDVBpQsOeX3EDrluSAPlL+je3nDXCzE5QCkEh33RxPPhEsB0+CglhawCWFSbnQnStbQVMmZstHUw03flD0BfqW94rg8QEhZcAkBKXOrjQBy3zU/liSJGYXKU2f86jqTwFOvSHYl4b9ROR7r0LyppSVUByCpS7XBIc36Aawjxc6qqaPHRCclIZwQEjd5AjRrvHO4sBTijcdWJjcsaUSZbyMd4aelPzjMQHBNgwpQ30H7QPhMMTLzlglRPEEtz0HSC9rT0lLS0hlFgQ5IbSttPGB1pSlQCWIs5ZRJse1NOTMKx0nUqZSuD2WQ5yvWzV8YsUtXy1PduvCM0zLkAO9Oxs0YrWoHp318B3hbdHIyxs0OS7kH9TzNfSL7PkApdRF7DoG7PAGMklIZ9GHuecM8GSJaRyJpzrW/tGUnJoCD8N+pcS3PT7HINFyhg7C7Vc5ifYDhxEZS5jXYxtNSVXq0F0qtG9TvYHKWMhSatbpWgiIlOmyjzApm4EmlEuWu8Z49BzULbotxjodmzTLlJlzZWZBQ9N4ZiHzWdJBvpqDxT0ttjlKkYTDNmSVT1TCKBIASA41S4axPDvaPdiYHOhSizZmAUpgDQZyNQH1I1rCyZMUAtAUcr20JGsE4PELEkZEKKkkqKy4SnSjlntYO4jYvdmyjppDKfiJqkqlpUEoKXJACE5WqnecqLcDqHhMtSVrKQugcqUScpA1/qVyAqTBuFICZU2eFTAFEhOVRlgfORWiiSQTU8zHuzELxM6ZMTLBGYKY0QnRIKuAS9BenBoY7ZPSjbMsPs4pO+ATMZVQzAkluAPZoKQsSx8xDA8CCHBdjejeEb4/DKTlch0tRJYZamjWsIvLwmcP1oW4cWrwrwjbS0D0yltgSlusn0t19Y9mTS1KaGM5koCg68/EtGCiDyg3E2KrkK+G9H0HI9PGPP8ATJKCphm0appw0bvAiC5yhidOfuDBEjE/DGVQsSRUWuzt1gNeY1lZSVFyzAUercyRwGp9I3m4bOn4ZLE0CS5HHMCCWqxpS9432FKK0EuL14g8AdPekGr2VmDhSQDoWUHN3oybnhpBV4RTyJSo5GVOXLzSjZmL1TWjtwLio4vF9p4D4fw15krRM+Ugk2YMXHE8+GkGbYwqpK0Zfh5gCxRUEVSoKfoaVvCnFTkLWChORy5Tok6gQr2ZRyrPfgkpBDU8afN5xvsFJJWOLB+eVbDq8TDoZJA+31jbZYZK2oSulHPytTmAotzh2KFTTEOVxaLYgpUXFdexWfaBcIWmAmuUEjrQE+BMehKnUCaadgfL6QPImusj+k0/y/aNyuNaGwvzH+HkpUVMzkWBenJ70DQNisOMu7Rs5Rzyl0/9VAGPcCGUFEOK2vb1YU/WNZgbIBcBIp/WKjwCfKHYdwsVkWxaZhzZjQBAJIrcufaBEqCCAxsCa0BNdLn6CC5iQ00AUc1vRIHsPSBZwddf5k/+QaxLnW9lGLg2ky80z+5Q9f0ibQlFCyONfGLSlMtI+6havYQbMnJN1Mex5+8IYcuQXAMxXercxxhjhWFbsTS9AdOTwJsdBVLSlq1PiSP/AJ14x5iiUEpuD8qrGpD9XH3wuxqkiee2aLwiSDPAysAGoQaVbmxB/eFE6VmWKsCR4VPtDda3lh7DMQNCXAr5sOULEPnQPTxPaOyR2iaG5s1kTVuUBVB4Ec/SNJswmpJAeg08BTXhxiuFSDnUSzmwBJL6AW4XIjQy9fI6CJ48aKpLZpLB1NALC4H3XWPPggCz/do8UQ3uOAqfSIpQqrMDWpDtfhxgkrYEnURbjlnMXt5DkOUOMOBlqbC3sxhPNIUoDiQCO8NFP/aOZb7MYuXYP6EkevX9AS3jGiSOavuz/rGcuWW6n7qI1lAOAfHlz7xsWmgXdi3HTApZajsLdNI6dZIlkhQZns1BzevhHKYZZMxLmpUC+vGOjTKmGWpspG85FFEEcD7Ed7QqPmyhuqQpSR8FB1Klk8xugV6g93hwjASyjDD5s++rNYBIzZRoHU4e/GEhmj4aAdHFuKifeC8DtFKFZVs0oLKVCpOYhgAb3LdeUAhkk60MNs45UxMvDJO+DvE0SE0bMdBQE2oI2KVSJZQQE5aoUCSFHKFKQVUcuQWZw7pdimMvw7glzCuZQrmuXLshIOY5m4pHyhy2U0cRpjJhaYhQCiksof2pCaeHrwgot8iJ/N01o8O8kLL5VOOhqCCOROvDpFp2IABFHAIez820P3rCZKsqlS0kkEuSXqGFCHp9G77hWYhwAB9gD69YJc2M8qKX4dHfyaKqar/fjGk+UQASRW1rfbQOAaj3bzh3WLogJsKa386axopYVQghzXVg/iNLcYphVNVyO5Nuserd8w49GGnf6mFt6CCcHOMpRRndJsUkVq2vp9YfqxSwjM6VyyWNFDKaeDuHHLtHK42aFBwwWDoG7hoeJw6/hCY4WCkOzpUzWIO6vxGrQSdICUbZnt/EgzpKWSrLUBywS7sokBywrSEe3g+ISrK2cZqPXnWodveLIUFT0vW4aoNElhUjkL2jT8SgieCRXIC1aaNvVPWFrbv3GUor7AeJfIGBvVu0F7IdMo5hTOTzZIqx/uDd4FlTAUZiWuWJ5H6EQfLRmkpSKOFCnEqdR/6N3MU44+O/YnT1QMpYZQ1q/UpJb74RnsrCZpizWgah0JPvFHNVNQvTqmCvw8o/xSS3yhh/kfeF5avRSm1HYZKxLLHXlc7vqqMsXaaoUAmoSOglsB5wVh5YU9ny0/uFQ/cQvxc1syQHClJbgSndJ7luxEP7NfdiZvZhi1g5j/NMNP6Wr5pSPHjGGGmOpSy7BVP/ACnygrES05k1ehKiOKqt6GBnASp7vmrrUW4NWF9oQ7EzMZlTEkVICiQRoM/D+70hlJWlIZQST/kKMP5S0LtnSgpcwkigDdKl/LzhjMwij8rENSrRG2rDlspseYU5H1HoSW8432mgBSVPm3wTx4n0+3gfBgFCWNQB43iuJm5lJD6PWjff06x6MY0Tt7N8WcoANKW67xbiHAhdJSklZUWyocMHcuEgcqqv0hvtlPOoYeQVTlW8JCj5jzA9SfQQOYXhXiYw2VIDAuWKm5PYFyGuW7841xqVZshNRRtBqxPKN8JJPwkglkkOw1F3p+Z+jhrwNNn5auN0G1BWgZu5gIqojduRhMQ5JzWFKNfgBaNZUvdD6luJ5HygfLutxIB5/fvBKxUM1PBiD+kdjVpAZuGLlSx8VGUahtHZz7QYHIPF2FKDX0EYYJH8cE1oS3M/vBUkMS1WWWpWg56V8oTKOnQ1eVl1Ta0a1BfVgRytTrGpW2Ys7DQAAPQDhA+JP8RNhQtfSuvGKzA0sqWqqy7aX07A+Ud0UjHsDwkt5yer+UdLhplg4To/l4Qi2E3xCeAbxv6QwVNIqdOHGOxx8IvK9oV4VbzQg1DuW1AqW7AmLY2QTPCFHNvJSCA5UlgEkNc5GibKURPChcJPnTSLYdClYoJSMpcgO26wI8A1BC6bSKXLxHU7NxeUAAFIQKJGhFXURcXLWrV9FHxVTl5t45i6qsSxzEJb1HbjG80FSjKRYllKoVFvmSDrzPbWNZEvKQQLWJox4HRrDyjY43H3ESknsEXJaUbMhrN+Yt+sXM5gGQ6iBWrO2g1DcfaB9qTXmFg2ZQOUh2LVHRz6QUvC5Vpzqd0s9hlYtfQZSOxjk96C8tgpkqv7j7+msSbhwwckvqLOToDfhfSG0uWFJJyhlNlcufYcXbg0CIwu8Azkmo0cm47ePeGV6AdVcgSJCszB+MNR+HZuTOzktRJuKBnAZ60r4kwyXslQTn+I6qF6Mw4ageuseStnKWErT8yRQlVNXG84T1Iamkb3aBeXRzOJwuV8xKSH3SH/ALuhHC5YwRsnaOVBlqScqSd4F2STV06puXFn7wWs/DUROAIJLlKWKTwVLaofh4QmRMSiYFIUwFDcOHpYUJDO+ojnBJryNjOTi/P8/ORghAOMQzEAEhrEZSb94x/EhBxLBTsgA/fQiM8Ct8SfhZQCCxDsAQASAeb34wNthhPXlP8AKCTUuwBcj+qOUUl9zHNt0/QyyBQrybuSn2hthWTh00DhCj3o3/vyMKpRcAH7OZvQw0nrAlgJDPQc0i/iVP8A2pHCKMcPP6GJ7YqxCikEJFCadhlV2gn8NJBEwEai78/aA8St0hta+f0gzYck/DWqpdV+gHuoxPmm7Kemo7GahllKIICnoRoHAJHQP48qiYpP8RCQBlQHLWdVfT1gvDyqc94ANq3DixPbpCvGGicqiTMGYgUYMkMDd2pXyaLMesaJ3yYYmcFKmEUb2TveYI8IEmbzHRQHpBEwZCyQGUlmezU0dzp2gbDuyf6aV1YH2ERdplbKMUSbPXvqFq34NS4htNngHed70djzHKFmz/8AdfVwbA1J4G8dCraEt6oBJuSASTZ626CkBGFq+AM+VQq039ADZaUkAEcGOl6uNRFpKM05YPFnGlhHmzkMhyzfuY02NMATMWzlSqNpU3/5Ad49BCpMx20o51VqTQcA1B4AQpkhRLVqe7mntBuLn5pihz06nyr5CMZdFElqA+IBI82ifOr0vMzBVtnTImIQgJzO4sxbt1hRjkJM4BNASPmpoL0tevOsdFsfZxEkZgxNXYPQPq9uTe8L/gCbiSHp8NRJYOGBNjR7DvBzChkVtCaTVbaB40nKDDyGvOv3YRXZw3iWJazXowDdz5RfF4aqkkuzEkUFqAeMKwPw2bnWqBsCk/EJFgPUg+0bypjLUa6+cZ7Kl/OXNCK34n77xphxVZ560F4zysOj2etyFciO5SYpj0gZU6s9eYc+ppyi89FDWhYj7HKMNrLHxTejDytGZXo5Gmw5FFqH83p+5g7aqDlKhw9fcPAWzQUozPQkU0qf1gvHz3lrDEOU63PLwPhHLUGDJXMW7GUfiKNQw9Wi+BAVPJUVAbxo4JrZxWr8YpsqmdT208f0EX2cGzl7C/jHQjbig5a6mdRgFpJG4UtbKHHSlGaNJiCVMwrQuHd+tz0rCDDbUWhJCaOb1ezsG5Qfh8ZMUGJpxNC3Nju94rcSNpg+MQr/AFCErqUsCRqNDzOVq9Y22pOOZObR/CvC/wBiBEqKp6y4YA1HIN4RMYCWrp66U0iWlckhq/SzoNkz8zgB1PpwcWavYfuTiUbqGQ1RXrZ/8m8BHNYBSkkzEqKUpcE2zUqn37cWgyTtYLYFZf8AK47369NIZPHW0LZ2WDnJCSpRZLFgG6EOK8Rr0jm5m0Fy8xy3/NoXDeR+xF0qCkmpcVoQ3X945jGTpmYpmKLg2aDx7F9FhM/FrWt1Kc0cl+DB+zUgPHzHQ40N9CPpGRWxHPjWIUkpU9SXLg+1oZNXFofCKi0WwSyZgLmqen5RSkZzlhSpirMr0cD0jzZlVyxW+XQmtKA0PSPZg/3KH5jfiHe0SLa+7HZNfsjTBSc5loBYsa15/UdxGmInOnkEqy0008AdecVwOHX8SUbMH7JAJ8gYLxgHyasAAbCgUrzYdhFMdR0Kxq5CPFqUGpoPIffhD3Y+LIwqQw3lKrVw5NmIhFjLu48a9SOg84OROyykpawHfjCoxuW0OzLwUh/sxTZVEuylHqyFu/CwLwkmSznSqwUaJ4Bn8s0GBREhXEoLcXUcjeQgfG2e5QUANqWB+p8Ipa0KWgWal1qNSxAHgPqqFyFEFLXIJPUt9TB8+YwmMbqyjjUB/CsBzgztoGHU39vCPLyQqRbB6L7Ll7zvdV+QcwxMvMSX1bQ+sCYMMUMeJ7BJPpDXCymQl0XD11fWvtD4RThfuKm/EConASRxCfs9oL2dJBk5nIYGtqkgV6h/IwJsaWhSjnUkDKWSQSXYM7jKL3J/QqRJWUqSlWZKVMCjeB8GoHrTThFXUrojlNIWGSHcU4caUr5xJSAVpRdyB9fJ4oVEOFPwHQEwRgZgTNC1WBPZwR7xN0fEQ3G/hnbLx2ZFaHQcvRoQ7Jn1xU6lJSkh2uqiTW1ngbHbTBLA3FKUbhAEnFqTKXLBooh+bFxDsoGPHUX9gjYiRnJNAEv3cAHx9IE2itblR1Jfxp2pBuysSz0fdyg/1ZnHmYXYt0umzUa9gHfvC4x6YbCn4pJBOyUOhTgsSeFmZ37xWQoZFcW/eNdmLAlpBpX1UQDFEqGRRoxdvAtC03VDnVliP4bG5Ca+De8D4+hUBbTidI1M7cCKMGr4OCOnfwgYIJUAdT6VMDlT4Zq29DJCGlUJopgKVDjTn5MI1/EGHAlyFMBmSbcRXTkoQvQsOlJD6guzPcN7wy/E2IlrTKCQ2RABHAsl+7gwzKqWvYVB+NL6inDBIlKGUEk0JuLCn3ryjyUtkkH8zdmP0jDDrI3fu8ahXv7QWNfEX0GS4f1LJmAAG7KqOLEfWGS9oH4ZCEAVG9QmguGDVJHiYUykbq+obrV4vhZh+FXiQPBPuYqYiSDsHiMqVrNyKNcuQKWY146RMPPzA5rgE9bt3ePXSmQskVZknV2JB8WtFZDMkpIpLBL/AJVMxLa70T9n3Fv3ByaX7GWOxCvlGl2oHL0A4DzMDKmklxcMz8mHrpBTODQfMeQFC1OpgdCQnM1hlFbu7k9yCekUhcIYYPbCgWowILF79qiJtLbomBkoHGoFDycU6QokpJLsSHA75VEf+T4GL7IklawONRA9KRlJbN5EkqDgaReUWfhYx0+D2LMQh6amp0bR9YWYuXmD82Pnr2jTFJMTYNWVYbRVDz0PR49mly3FRJ4XYesVkD+IADTMB5tGwk1GpKh5qZvKI46te7H5FaQThZ6s0xJDZEKNnoyXDdAB3MZ7Qmb133lEvbQ+4gmUhzNPFYR2dKleSTC/alcvFWY9nYeQEUSbUAMK2LJyaEj9dG8hDCeoiWgXevRvOBB8vd/I+7QZtNNJYFyn1akBgt22NzapDtaP4UpgCVLT13UFSj/yI7wsngBU3+UEluYAe/TzhvOl/DWlLk7iwOSsyA/i3ZMJJgdC1aKWW6FbehiiXApGExQ/hpDXJPm58TaA5i6tbeKvAU9QYLxVFhPBPq49oBmgOo9uTuQfSPLm7kVxVKhlgEuZeagSlzYOLNWnjG22ZiFTN7QMKGwJaB1Sy4TYlKR3LfWNtrnKtkME5Qz1fie5rDGl3SEv/L9gzZc0JStLpBUremOVqb+UCzkNrpVoPnqlkEZpiuALODckgAAUB3etYpg8LLQTmcA3MsWd6VNOpr6R7tMS5ZT8M0I+VQLpKaFyaG58Ieubs8PvlKScd/yc8hOYnNQE/wD1W/S0HYXBoIUZoIBIAqEpd6AnQEhqc+sWlqSHPwwK3UHJa7A8xf3jNE+aoEBSv4h+c0cAKcA9wO8Zzksrjmbi0tfyCT8KUzMhbdQFFjSozBuI3g3KL4aSak0Arz8gS3aG+KyzDMWgVCEprSgyuSbMEpSl+r8wEylEEITQghSnAfMfmrYUNmFI2c+rQxdoUo3dGUlYSpCBXUlmJZ1V4ilIrtCWSTlBJFSQCeZPRyzxqvDlM4K0fd10a9tR9vF8AblUxKEagsolnUGR+YuRwEbka6NDcUlqQJgFErKC7Cgo1qU8S3SNAD8MuG7uKj78YMwch1/EIV8LMpWYpKXG6S35baPEw6MsvMA9GL2FBWtLPTnGTktI7vPP0oWylfKriTTSgH1HjF5aWU/AEnwZvONBJCUIU5IL3AFRldg5paurcorhxRR/tHnWFZ38RDsLTTZ6JTqBajtV9EpfzMDT3qLcG1vDaZLILEUKkEHi6K+YHcQpxKSSw/MfUweZ+X0/sHA+rZ7LltW5b2B94pM17QQZZClPx9N31ECTT82rRuL/ACy9kkG34DeWjcUeCvRJiYdO6kcz/wDMHp2etQWhIJU5ysGdkgPXQkEQPjMOuSv4agykkuxBvbyaG5JpRYhyT0i+0ltKCeJL9in78YtILSnb8oHcsGgydslc5IyMSzM4tckPz9IImYFcxakHKVAJ1DDKzDdFdOtYTil044oRmzRWv3+wjwuIFQrQOdYii4UQGGYdKAmIcOpIUr5R8OpteYE/fIRnLXuN/UT/ANW9T6xVdjupNWi2ExJlkqsQSR1+HMSP/fnGv4bm/DmpUE5mSS3XdvoecbbKwgmA59S9bNepNLD0hnN2elFQh9K8DwKVD7MY2kIydoUdJWNpPx5iPiUAuBmzOKBgkOQW4tCmThyXqXH3SHchc4yyZeZKDcCWMpbVgTW9Ryi2D2GqZODz0jMTukFK2qzO1frCllS5/gUsk/0R/c4jAlpssuwC0+oi8qikl6oAPJwXr98Y8xknLNWAaBRAe9zfnSNcNL3kjif194TB3OR6cm+lB0pW6kmhUsk8jkU/ahhRPm7pIP5Upfg4+p8oYTwQlKW08CsgA9WzeMLcSKnmv0S7dnirJqJmFbVmRa1/v9YY4iWr/USZZFUZBqNczl+RhZJTVTaC/gYbYYFWKKhVgWN7IYM56QGD5Tc3zhuOnFKio1IlqYf5qA8co8oXTENLQh3tT70t5QVi0BSyB8qfhg88odgfAnnGE3ECYsqG6kDdDdHP3whsgULSrfWr7oIFIOVKeLP1jUzaAAfMT5gmvGpiSZf8WWgm5A5CoDjnHmPkrDFSCqbkJANAbtwMX2jmCgKUSPusaLBOJLAVNbWJrekU21mE0vQsHFG8oY2+7RMref7f6GmD2gEJLuTcVDu7O9WDcNdeJqZyFIbIElncqAYm5oy3OtRe8BYaYJegUlQIUQxIJtW3Xy4xSZLROICnQACCQlR0IA3QEh+pguuV1R890Vx/4FyUSgkqyACzkpykgOyUKuW/mUq45MXLZYVlWlOb8pTlpw4QrThNUq3UFyVMUpOgAHXV4ImlFcq89nNbnStvOCUrYqcqp8hOEwgKxkZLXUmpLtRgLCtS14Hx2AQmhVnVmYHMwDDUJsa2PpFRnLb1yAkOXsauAGt92g7BuF74CwcwYFiO5DfsY2TjfOw4SklaEc7BKzA5Skl7hmGjJ9+WkTBYZIujMutCwQG1FyVUd6eVegnYZJA3ghQPyJCaaVAAd2LKrZ3hdOwjuQCQX3iAA7EsSKA614wtZoySXoWLNOMemjxKZoSiWtDipUDmKRpqTvMCakGvOmpwKCoFJUZYTZKSso1yksjxDtQVhlMwqVS0qlnKjVClEU4uCQXpQhxoNSnxa1ZU5cw1LkpYWzNoSwboIzqXkZ3jiq/PsWXKScudAJBPOjuASSxpq3k8LlychIISBmCgE3IJseFOgrSHeF3y4UQrdCVKT8RQNLflS/EB6mJtHBpUj50hQcrZRWpn+Y5UsC78uXHH6jsWfpileiv4nwskIl/CWrOsgsbBIRlSKWfxjmE4cmclBcb4BfStXHSO428pCsMlacuYAAgAvlys5qBdKRSOb/C+FE3GpSoEhlk30QSFacj4cYCWTh+hXh/xySqwTaWE+GoB3YO7M9SbGPMBLHxUWJE1RYa5ctqciYe/jXBpGJSiSl05APmdzUm5jL8O7EJn74IG8QQN5IynKa/LUp1s+pYnhy7lP1BmpdwotrqospK1LJzFwmutCX+l4R4svOVehat+FY6k4KUTNC5qwlt1aQcyiL5ga9hwvHNYfCJz1UoknWmtO7amN6pTi0/qRRlHFJSfol6vSGsuVZkuWDMxNHs1QfCLYCSFTpoAU4AJ/wCru1GcmGD/AA0/7gYi1SAAWDn8p1eBZyUJzFKi6nJIBZiQAxe1hUXgHPSiTVucnq/L6nP47EbpF81BWwBBOnL1jLZUkKZRKQEqsone+UtSrMG7xvNwSjMSANws5IoEkgOWuz1EPJeyR/s5wkJfeSksvV7PwqYqUkoFsfDhSie4OVLIGVYTpl4ufkBI3qsXr5tF5eyFLoype8XNcqSNCOLtSl7GDMGcO6JCip2GZYzgEuVbySGIAF7QxkomBSlZnUQSMzasCrhUJatbxFPJNfKLhij5sQbWwxly6k5lHKyQACwCju1bStHheiZMFXVVjSpqRqLdTHdKRmczE5lJSnK6SGy6vahF3Yv1hWcOMxVmKgaqIS5SSXO8zcdLdYd2fM/llyHLArtM4GckhTG7t3eC8OTvFx+ZvbtQRXGoHxpjfzqI8SRGkiqX0UUAdaH6ecMw25SfuejkrpX0CcQchQm5JQ5/tEwt/wBQYSTrlXEqPmz+UNtoqdSNCZiieQSkoUPLzhEFug8MpPiVGKMyuNB4nTGWw8F8QTHzPT5Q4uQXodAOHeGYwiZaswKnU6d5hchSiAHaiSPDjGH4Sm5VzHRnoN3MQPmW7hi+kMcVm+LLStBT86mIZqBFqaqvqwgML0kgMzfXoXLVuzFf3H/iMvqKQuA3HuyFH9oMx81kFCQ2clNbsFBz0+sATpjImG4BKfLKf+1YPJtNGx00YFB3AA5yv3pEwZeek2Dorwq59PKJLxGQqJruC3e8b7FXknylHKWFlDdLJeoHeIK3Q+b8LfsOsHObGG7KSfNlffWF34iJGIWFVINS8MNnTicYopyjdVcFhawDdoT7YW85bl63pWNcSfEvi37IZ4daVJmKUSVswSHGoOcsd5QqwbxtBeDngKSgJJQzud4OxYqSSEmmpfvAJCZSVqTKJUoggFiH4M3AvBkhUyaEJ3go/l4GmlAQ2XeNm5PDclrhngtqTvyNMTjgoEASxmUwQlCUipod1gT18YVqQ11MToHPSpNe0MZslcoqz5SyTUZSlFQxo9XZgBFJKUOJijRgAXcqfM9dKU7QhunQD2rA040JIzlg4odHYaXDF+NYaomJJDtlYZmqp/6uLENbQwrkbLeaTnIVLKSmrGrkKcWYh+4g6bhzMCClGVQBzspw5qCFKNQwF1GogHO/P8Y1QionuK2uQRKJKdXTUGhG6xZm5Rts7HpIJUnI9AU1JqxJyllAVLEOWvCrHISh0qQ6yNNMwJD0pQiof677OlTlkUDBiUgAMHZ2ZieYg9VyEk7utjWVKWiWkuhyQEhif8jQMQ9iRGmNkpMtlpVmzPmIUQrmTlcVp5WjDZuHSElRACwq7BjvORxsMw08AIIlhCVqWFlbgKoKOKEsLB61LluYYU/QPqXTspszEplBxvZrtboBrqKjhBM+WpyxUMxqlSilA/qag5NUu/OBpsvL8Nk5EklikFSq3ZykAZiG9rxZconeWpW4wDuxf8ritLsnXnDo8WKk6VclmTNUUGYAQmgSng3FXuekX2bhJMpUzIslag1RVhVXIWer2jdBlEKUUkLS5BRlDpZ3JAcDwNDrGWFwZK5iZ+ZIp8oQpQq9VEbrBqXqBZ4Kk9UjvGlUXoXbXwE1awtG+Gulze7jTx4Wh1hlzghTBxQkg21LnXpy7x7O2qnM0r5EpITYVFS78SKQFOxilIIUWl5n+GFHqaO5Ju9t4wpuONbYbk5P6aJhsVMmEpU7OWVuAjXMAr5vy14awsxWMHxEhBQlAGUEAK49avWltGvBuKSFLTkRmCpZylQYFWUgi5SCC5fpA2JkiXNVLSpSUim6N5VK1ezuL6xkZxlyufzZjjKK0zadI3UhKip1Vc0zEhmGh404coyM1T5GYm4P/K9XVakGKxGVQS75EhywKc2VyQ+hLl73jPFrJTuywV0OYaXNOLuCffTHk9zFijyjLDpOQlIKkksyTWlibsC7WJqRSMUYhSQd4Joc2YBQFWIykEWNzwaPcDMyOFhQs7Us/vB2BxKHyJAAUzmlGcO6qWgY5FoNY16lcBjFAKzgqYBnaxeoows4PCINslDlITLLHfqVMbAVy2Ooj3E4hILZmANg9TzIv5W7leqYhSnZ3JBD6a9Ixtt2FpUkw7ZWOUSQ4AVqSc5arPRya0tHS4TakqqUo3QA7ODetACp+/jHGmWS6kocC2Ygkk8gA1PXwrPlTMxKgAt3UHqXFdW+naHxh1JIbji07TOtmSEtMeRIylROZQOepJzMAM19OEchjZbLoEhLuEpASB+UEAWub8uEMMJMWUkJIHF1ceWvaFszDETMhIcGpDlvrFeO62UpQaT/ALFGPnZpiQ35FE/5K165fOFEtByAirg8db+sdhtHZKUkrBz0boNAdP3gJKENlCQGpYUNhxgpNPzCeeMXsH/Ds1UpSl0DhnrRi+hD3hsMVSbNewCAeZGbt8yfCMcbhgFFKS7AHhQgceZ0jXKEpl4Y3U8yYf5RfL3IboDHYqS0NWRZOAfFyWxQR8zSw3JyfpCDEKdC06fEJJ0SM1TD/a+IyYhahQIljNqbk+LHzEIlBpK3Zz7mvrGZJaoYlsriw8uYp62HQe0HbG+F/qZfxXyZD8ocuRSnVoBmzgpKwGAaLbMLzJXh4GsQJW0Nkri17HTfg5CBiJnxgcipZAVlKqhSVMANWSYR7TwSzMUUDdJLUNnpZ9GjoU5xTJKHMjKfEkAxjPwcx6pT2KSPJUVrCo7ZFLI4V/SKzGUQ+9ru3PACnLibxqMVldISAWZqCjgaOAKjhDGZslISlblQIfMEksA17VrQ9ItL2WklIJyvRWU1awyjjSr+TCPPXbH5M8J9nfDMJeAKkFSlh0lmcg11AbtQ+0YhLqRQgkMkkcHIUdD1grFS1JYAF3G+SQeGVrVvqaaVfKRNKV5lFyCXtXUEfSlIT1PJu7GV0aoKlurLlLtcgB6OS4obVHUXgjGSpYUhISxJZTBnIBPGsLcGutf5qkU56PV2+7aGfVAAUwU7/MvgaFzQF3/pgFHWmNUvI2mYGWSpaXBQwL3OUpBBJsyQRBcqWAoAbpyMlhU6APqp3Pa0DY3aBqJaUg1DiocMLuSLAMeEC/64s1QvLQg7wJAOltRXnwg31OmcppOj2cjKChPFx1uQHP8AMT56RkiQsBuCd19Q4oWrWtODwRInNRmPzUrV7EvS2uvWDsBKURmKlIKSNDa+YF7v5G8C20gUrejdUoJkMoFWYigABa4UzkAglRDM9SK1hVKlqCyFAqGYkJe4LgkakFzDubigsqc5rZSHuNavx4wtkzt4MKpajjia8dB5wELpj5raNFYfMggKBJFBUkvbnlZ63v1jzaex87qStTFhlJcfKVF21omnMwVOmBKyoOKM1zQlzU0NB5wumbcExakWGZw9TQUduTjqR1guqa4N8K0aYbB5VgpzEhzmBf5eBoSogmgvw4C4vCqSVJKSxcpepYOE9Ho/2ziZiTLonK4DXtUEUBoCH6Zg+sMJeKkzJTrmBILu7PvOWIF669+Ed1M1Y4y1exdKUjJKUkkqQxq4JCgoA1fjrwTpCnGyxNKVOMwyqOirnd8APLkzlExCVfKCkhqhg2lSasTakLfiJExRy5HoQXU45HhqxdrVvHJSauJ03qmCzZOVTlNCKFzUgV5tYN1ge+Usdw6kkMGALC3CHO0JqBLAAzWsTf5nHHpzgMS0KAUoFtQBvE8A5vo9dIfjjJ7YE8b8gbEvMBVqGBAAysKAlVKt9aQFhcPxetuD/ShhyyRRXC3Dn6DXg1IzmT5GV3ALszqUQORbiNXveDjjbVJGdxOTbAZuHOUKKgcxainL6uNLs55c3xEoEi+Y8eR8/vhDOXipBllGZlEtYmnUC7vcCB/9LLei1LBsAgpPWsOh2efoE+yya0E4eVm3EgE9QAK1BJtfTtzGnoZeUgFRAJIL/KQD1FD1gvAbMSFBQ+KGucwZv7QB/wCmhzhNn4dJK1IVmP8AMlRDGpYkN5tGR7NJOmx0eyTZyKEJcq3h2BDczpEVhys7qVVOgcnt92jucbj5cpO4uWnlug2/lBJeOcl7Vnz15Za70fdTe1WEUQ7O6qw32NebMpGyphFZMzjvDK+lAesDT9jKlliGq/zJzdgHsDaG83BJSl580zCfyvutpa/6wqkbTKF7oSlINSkh2GlaiD7mFnf8XGufz/oJl7PW6SJM1Zy5Q6FZSA5dV6OAHPKkJpWy8SgrXMkzMxVvEoIe+vBnAh9I/EXzZpq3NgSVAcGIJ4m/CM5215KSChlUd1UryzUvwjsUGndUh+OKitHKbSTMWlW6xWsO5AoKMxLm0CTMBNXQJYUJqDQWtWOln41c9gmUg891LaXPpzhfisMtCgFIbpvD1rDnji+Rqk0KhsyZUMDRtfpHmF2euWUqdyC7C3MODyhqiYXNq8h2pEM3Lccup/aBWCCO7xvQ42RipKqLXMlKo7LU3X5SB4+EHK2ZLXvIxClA6/NXVy0cyvVgR1b1EXk4+YkMlZA4VLeAjMsMlfD59xU11D6eFOUhJUCwdil6adjp+5OB2pVVNwMDVuQrYMBa1IkSPm5R017nmw5sF2xiUKYpdzU0IopsoqOHR4xw8orLh1B3KnBAFKM+6acqWdokSGxqOOxco3MsiUpChmIq5LKBFKF2NKHwjREpVShi44NU1u3IWiRIXLJpaGQxqwHEpZZIqKEd2d78zGikgICiak0BBq1z2cDvEiQ/GrUV6/6FydSf56A+ZYdTig52PqGgobVmVckg3q/2L05xIkemscEnpflFEJdMbS/NGitpgAsihu7eOnrGSccp8yUpD3cEjhxiRIOEIP8AShkZJpNo3/8A6U01/h15M51Nb9oE+EokLJzEVoRzIFhS8SJD+5x1winojV0bysYX305yRqryZIgiTMQs1krL2yPfhVveJEgXixr9JyhDqqkGfAWSwlLysbqr9t6PGRwMxyE7r/8A6KLDhZgWjyJCIxgnKorQbhGnoHxOzJifzp5soeAv7QRhNkqmXBfgWHEWduNIkSDjktJ1+aAhK/IbSNgSUUUEg0Z2rxoSdKe8Wm4SWkbstTpNS0scNSlrxIkdlyOK0Ob6UIMTOQk7wJ7ODelKecUw34iSmgkAB7kBz4i3KJEh0VaVsC3fIxP4hQr5JExxq7ADjSjcrQIoYmeXWShD0CA5/wCRoCBHsSNpJjVbNp2ysOkEfDWToSVOTqKsDU9bcIVzMOS5lypgo1HqOiaHwjyJGOVKzJaTYvmrUPmVejXLe0VUFEUSbUNCez3iRIZwwOlMwOHWVAVB4ZW9NfrzhphNjBTZljUt0a7GukSJGm0HTNky5YITMIOuUG7W8TfhGP8AqESwQQsi2+HbqHpT26x5EjGDN60JcTlUpTDKHoHcAdb+kVSoizE/feJEgjjQlhr3iqJTj5FHpaJEjjj/2Q==\\n\", \"height\": 168, \"channels\": 3, \"width\": 300, \"type\": \"image\", \"id\": 4947634448}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUUExQWFhUXGR8bGBgYGRwbGxwfHx8aHh4cIBwgICggGxwlHR4cIjIiJSkrLi4yGB8zODMsNygtLiwBCgoKDg0OGxAQGiwkHyQsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIALcBEwMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAEBQADBgIBB//EADsQAAIBAgQDBgQFBAMAAQUAAAECEQMhAAQSMQVBURMiYXGBkQYyobEjQsHR8BRS4fEzYnIVB0OSwtL/xAAZAQADAQEBAAAAAAAAAAAAAAAAAQIDBAX/xAAqEQACAgICAgEDAwUBAAAAAAAAAQIREiEDMUFRIhNhcRQy8FKBobHhBP/aAAwDAQACEQMRAD8Ay75N2pExIBBn+08x1g/ti8V9eWdGntKfIkzyP+I8Rg3L5kPScVUXukCRa1geYkDfAGVpioCfzCVI21AbR/2B2xhZDA6WTdqQZSCZMDy5et48sXcNftKdm7y3i9wv6/ti5GZSFRTpK6o5gg8h54oUhKy1FEKWMiNj+n+8Xk3YrGedSpURGpEq69w8oG6mOV7YDyddrqTYwTbYzF/thtlauqNtDjQZJF5sfC32wFnU7KqSZhv4fA9QcKMvAIzcnUY/K2GopI5AJgTMj3j12xXRy09qTuSWXx6iMDpV03A538picb3YzZD+nNNhUJK0UHZSBrOpSwSQogSOl+uMzTMibExBjy/fA7amZAOW7cgLxPhBx6o0ty8eg52OJSoAjLvqVm/t3F7xje/AnZgVW1Qypt/13n6fXHz2iQDPMmNrf5t9sMRxAp3VIQspQ+Knl7YnkWSoQPl6atULOZCgsT+nrvjhMqzd7TIBAEeI2PvgpabEHSBKRM8/PmY547ymUzOl1XT00kwTsbePTDyEVZejBvZdUGev+f1xQmWeAdlJg8wCAZGDMxSZRMGHVSAd9S/Yi3vjpmC5UGobbPp6kSDPUT9MGQWUV0dGlW3HseYj2HrixszAAYBlXlgCtUNRdVMEhQBP0k/T6YEepoVSbkCfDpf3AxSQ0HUqYQmW7pmwuLj9xHrjmtTNQowFoJPla2LuD0EZAahEv3QPCd/OcQUdK6VPeViL9P8AZ++HkBYahlXQnUB3vTbw/wBYqzKaT+HMTJPQi8euKOFVmFRgf7evUftg2tliCEDqRBgLubHfxGFdOgJlIqVURiANQLTccwfpg74u4oNaAGSFEjkDAxl9LMQVtzP2/ScNq1GxdwGI7/WO9byGK8iOs1nyJVRGlYPLkN5/l8L/AOosP/MH3N/bHObzGsFuZABPX+DAec1I2k2IABtHKcUkMJq1ywIHKPt98cZ11UKEkgbk9bG3htjjJXXrDCx57/pjjiNSSFAt/Ptt6YYHKNfUeQA9cG5jMkhQTYXj6DAjZQgooIOs87bdfDFtfLtAZdrD74ToCrOVQxCiwB398RHLB42At5XH2wTR4eFQ6iCzewG4Pnv9MV6pTSPGP5vhWMuya8ye6AOfqf0xOGR2uo3uVX7T7Y6yeUhQxJ0jkRuZ3PrgGvXipbYHb7/fB2BTmlGs976HExa6KSSSZ9MTBaGO3pNpVh3WJup2f/Y+owCM7pjSbKQRB64lGs7rT0X5+M8/9Yoz2XIbXEU6vL+1uhEW6jHLH0xGhXiqlW5aSrjy/MPabYr4upVlZB+G/LaGj7ET9cAcDpKBU7Req3sQRIJ+v0w1y9qGioTYHvIpaRcgxO4PlvjN0paEV8BqFlamTuCRPIjb744YmsOzJhg3MTsLj6TGBMhrptTJ2ewEXM29OXji/MB6dSb3bVEXM2Inff8Al8X50BSUamdLNYxDDp5bz4eGBGUFTzEkauRj9/1wVna4elI3Uk7wYm31n6474RRatRqIFJGmbi8ySD573xonStjAFq3gHz+v+MTLK1QwLmNvKf8AGPEyzQjRAcmG5GDfyuOeCaZFEtMbWN7+s9cXfoTDU4cyqvMMgYE+zDzH7YorcM1VWJkUwgZSLwec9QDOGPCcyKtJlbYzpc7gxEj1j2xxRqslWmsFkUC9rhpgnoQdU4zyabJsryWcPZhqclywBG4IJIv0Avfxwbk3qM+pSNVNTqExZTv7T9MD5PIinVqIF7wuikAC1wfC5v6YrzGdNDNyBaoQfCI+l5t4YO+g7HGYUMdGoNIDJJueUE/T2xnc3l2ShUUjukkgnexufYx6YPy1TW20BHlWA2F5Unpt7YKUrVNXUYUSSCLTBkeUnEp4gLeBZJQKiK2oOttVrwZHlYGfDC2nwKt2hVgQveGrceA8yYwb/Wyjqm4GgHoTuPKJ9cE0eKkTrnv/AKgfqMaZSTtDoGyfDGqUwZK1CNQB2MyQANwbT64JzGSYzUpgkxpYE7kcweZ2nC1eJFqgYiABy8OWLcvxspTK6rusDwFwT9SMV8h0zuplxR0MWDCwJHMQCLcumGVXiFGpdlAZYi0c9p85OFdBO1BDju6VPSDBOryGLMnw9mcCIiHIPQQN/P74TryI6FRSKlG1xKsfAxc+X3xdxCsr0CikKygAncXPeHjFsU1iukVBaWbUOY8APT6DAVCtpJRTc8xvMSfpIwR9jQRlsnTBP4iwgm83O8b3IP2OFvFsq+ouYOo6pG0G/wDBhytcalYQZcHyIvMbXBH1xK9Ttqp7WwYzAHQGY9bemLUxibhrALfdjbHlWNJHTveMSP3wXxDJnWdJAUTHSdreB3wqZWSZEzC2w07AYZAr2kvvuB06Y74owU928k388JK1QycGUCW0TcavtH64deQPcxVKgzubfpGOck4BI5/z/OOeKVZqW/hxS1Mo0bmJPtfB4ALzGfHygmNzfp/DhUXvPPHikloUEk2AG+I6EGCIMwQeWGgGQBNwcTArZwiw2FsTCoB7lco1Isy6SBfr3D5iLeY54aJllqVGQgBXUPTaOc3kb2/XfCvLVG/D1FYkrBEyPO4FjtffB2oaqQWzJU0SRyuYm1pj0GOCVjZc+WUuHN7aWXYahbkZ+W9zyGOqBKsultIMspMkQNwRIneI8sc57Od6xmNJvPuN+uPc0AyBtcLN97FvzG0Rbbe+Gk2xUFZULTPZVSoZW1KwMgmZEHoRiZoOQ7/l1Blg+UyPrhfXy+ulTMxUQANJ3Vv1UmffA1apVouQWuwifykNYGOdsJR39yQ+nw+nVrVabnSGEqRFjAJF/GbeODODcLGXdhrnVdDfpFwN729RjM1M09Kqqt8wsf0P7Ya8UzVVqS1YOlX0mJtIBDX5HbzOLaelemAz4jUV6TaRD/8AJGwJEg+RMH1wnHB1qsjhh2cBlBNybEobc4N/EYmXzDVKiMAWBX8QRtEAz1tf1OGdZ47MqZNNgCB439hcYFcdIZ5kOFikHi6FtSie8qkAg38ZBxWMyS3dMkyApkzbz6YbvoJEagyqdPNSsiQ3r7ThfxLgs9+iSQSQyztPMHpOJXIm9kgn/wAyZRmU6gNNxe5P2gfXF/FcquYpyrBHQapiZmR9zGENcs9RTvDEGd/XxmcFZpGSx2Jho9wbcp++NKSaodFeUzPZqKcm51dbSB++D6OcXv64GuQNt2kDzgXjCzs7DqN/LzxwMnCFSe+tSZ6jp6i+KdMdHnCMiRUG5GqF53iZ9xGGZoq5Iie+duR3j/Hni3hDhQWiWAMDoOZ898HnhzrUNRGUa/xAN4kQxt0J28cTKbvYWC0+HMJWAbiNNy20m/jI9PDCjMcF7QxTkEXOoRAJMiOovbGsp7awSxIAFraTEif7owZSyoBLgSLMbXawEnlIHLfc4hcriLJiTI8NZKZ1FTpFiLkW3vvYbeJwu4I7vJmNUeu7RPQzEeIxpKQKMe43euJvsIPhMR74C4QKRpxoAvLRvINr+W/ph/U0xWKM9l2ZgrCNVwoHMwI85xaOHImpbdoQSpmxsYPmQfthxmMgxIMwL6Z5kx7f4xWnBUcoajEMogaT4yDtJwfVXsMjO5BWV1UgkEgiR80+Hv7Y0uappXRSQVG/QmCQV8Jtgp8vTcgaIcDTPJTFo+n1wLnqNWL3GoN0gRBHnscH1FJhYuq8M1qApAvOo7xeB56ftywHXyCOXUN+YBR1MA8+n64tq8TKrUO14X1EbYWcQ4jodGiQRqgzcxGNY5DTYRmeGotJRHeBhj4kX/XC5F0qI9P57YbZCoKtE6jBLM5PQTsPQ+OF3EKGp1p07ahYT8oN2v4QcVF+GVYNRQEAtYj+R9cEVnVlCKsljE7kTYgecT7YsznDHFIJTUsyklyv8uYi2KqGWdNRIAaYFxIJi0TZo++ByXYFS5NabEkGRYA9difbHmbympyYkkgCPKPv9sWcYrnttJEAAMbR5nDPgrgAMY1PI8QL7ev2w8nVgKl+GWI+cY8w3TNIoClNRAiSd8TCzkIUZAB6TAreNQIlrjpF9uWGlLOOHUOD/wAYOs9JOx62sf8AOFPwvUqI4IloPyi/MEEeuPq+doUc5lSoYUm7y/JzF7KSDNtv1jGUo7oujC8XSCrMv5isx4MQY5HYe+GXAuOtSj8PtC40Cme8GO4+/wBMHVOHaKJy+YE6oWnVmRJuLxsSLBhOEmUyDqzgiXUArpIJgWJ6RHMdDiE/8BQZnGq9tqq0tOo6zKwVBFhExAgdDMk4TcQMVApMlbC8WFx0PP64M+IuOktTDATuzGdRgFSCSdsX8T4etaklVT+KogHrFwD1t98NvafgkX53Kq4pVm3WA6mLiDcgDcW85w3oVEDNT0jS4POBJFj52++M1UoOabDQZJ1SReCLiTb/AFhvwNaYNLtLswiJECI+u5nbCnD42FM9+EG0ByWAcMAwI2vBBPTHtT8PNMAIDrrQGGBPtYg484mih2VZViSzERpgRDRzBgWwJxtz2yVJkBZ523mI9D6YO5fkbC0z2ovSaAwEqT12MEbyD64aPmlogQYkFQp6gAHfxA98KuFCiayVGJJCQF3AINm9B98M89lzWpldREDUjsCQCCRfncSNunTCaVk0Z3huVqNVLIpZheZHjfx/XDTMcSFMWJsABMCxFweZgz7jFvBE7JO9IqybnaRYW5yNmxx8Q8PFVqbGdJbVUiNyP/2MX88VKm9hQpyuWZjUqBTo+Xe+5vG5AmCdr4ty7tqHPUYPkVIgfQ+mL6bHLsZOwIAjum4F4F7ST5Yp4PmASSDBDWJExy35HkPPA2MY5bhwR9NQQhksbkERcTsL7xffDXN50CvSRbLDatMzcbWwNmq5fulyaYUSpMTAt47+W+E2Uyru5dZ0jVEgQW39T9sRVr5Co1uVzMN2akFLWgDmdRjx39MErWIlt9PdAje/dj7YzWXRlcSR3X1uvQEELM+PLDmnmmC6oAUBhyieRvysROMpKhUX5/h7VKWjUNW4OwkEHSTva9xgZVFDQlMd2Czs0mR+kn7YXV+LfjoikWub2kz0P3x6yFUrCoxXtIZNR2sJi5kWAw1fkKKM5xMCnUC20uWQz4gRHniw5qKiqoJGkvAPUiR4nCrhGSNQUea3ci5nSTC7W/xhxm11OHUfLIIj1vinXRVIIbOMaqiO4QdXIg2FwN9x74KrVNZW6jSdD9NUfXA1VD3XHzN3SRsLEietuWO8jUSmhSNRCioW6sTeT4YjS6FSFnF+BUyZJIUHvAWJO+mepmR4Yz2f4WC+lpYq4Qf+dhPvPtjXZRdYL6o0uzG0mYIm56cseZ2miEVLr3SSth6kzNsarla0NIVcM4K1JWkylgJkM0wNuQBx3kaYPySWVtBmbKDffbB9VxdwSZUAIbzaZkbDz6Y9y1YFe0Okc42DSI2/m2FLlYUWVbgGdKL35PK3Lqf2xjK5UVzoPdYayTyJ2Hnv741HGs+oy5VmuSYjZbjpa04x1NmLPANyBt4TMzzn64rjt7BIfPlEbRWYBgUC6dR9Z57mIwwr8OAoGjSAtB1N53k+AOEKV1imhIu0SLRF9z+mNNxSoxpEAjcLYxPQefM4Tco0AhHBQJDVhIJ+/niYccMpotJQ9m3aQZkkk/fExL55hRj/AIbqaKikzAJiDBBII1ehg42WS+IQaIq1aC1HUkSFAiI/NzEzYmRI88Yng+X7zo7aWEBQ8gEm4E7LPja+Hfw5T/HanVsRqkHYEBibgxsSeYPjjvcUyrNzU+IMvUTV2RhbvSJkrpZR7yQwIPLCbiWZVHqPoABmBElVIgqBNiCOvPCOrl209rl7sx7N5hQAx6mwB28Me6tFQ0KrAO3eMHUt7RykEDV1xlyRjVoWxRxzIMEpVrsGPfj8pNxfofuDhpk+IOqOlSQHp92b8rHE4cAwqZdwIgiPEXHtbHVbLF8s5WDpBKKBJAtJBPLwxlfhjo4pKc0EVn0C3eJttDdZNhgfNgrURaYLBQAIAmL2EffAXBczoCFxEkRI3B5+I8cPMvkatNmdx3nPdK3uTYSNvLFXjoRfXyHbqQh01lX0cEXXwjliv4Xy3bNLSNAKgkd3UZ7vjthrnKDIe3o3/uYeB7xjkbEbc8WtxBcvWRVC6KoLsFi7HTB6+PrjHPVIYBwjgxo1yr6T2fyjcjVJHgIi9sPM1lKa02KkQoudt7iPAzEeAwjydR2zNZmeDESYsORj13xfly/y1AupNlJHegkFhJiFBBwSb7YgHj76qNOoNjIsbf7/AHxfUbXlCxEmAJBkAgge959cU8aykwlP5HUaUD2UqfqCSb4N4VSYFqL0y43YGI81vMeU4HKkAqbJPmKgVBHcMlgYkACPXbCHg+Zek7qB3gSAOeqwG3jAxvMhnjrZCug1DMDqLCJ2sAMVZ7I0lrf1ISGZYIItJgTe0zgXJWmgEVKjWQVO0PyKCTae9eI8INz0wy4DmQwmfwlIFhEOYg2P+8GDNqzokgxKNcCzciefvgim9KiBRVTo/MJk7zOBysQNVybJWcl/+TTyjkecQRiytXCCotoCQJvquYwRnO4PlDI3dMSSSYAJI2t6YWZrJMKjoVLAqugf3AEk+QHOMRHa2Ap/pGQq7kSwjTeVkz6WjHfH82WDNEwNpI/nP3wemXLLUpuCG5mJ5byJgeOB87kValqbTCN+Y3YA31HqdpxpasBj8Jr2WXVj8xMXWPGBI+s/bFvFnVGmCS9iFaPXoJ+sYEzmesmid12kwNpJ6YbVsmrookKxGwsSfGb4yl7YzN5jOfjUwWgCTAteCJ335YZZiuQDUsNYtJ3P7354z9UOM0q1WAYg73FyImIjbGozENQZ1USk84AIH28sOSqgKfh/M/hkkWPeAg3JPUwDE8sL/idiU0ywLG5NjeRG0EHwPLDTIyaaAkDSq2Pem0TJtGM1xDOM+YUXKgi2mNpi5wR3IYYcwDlwGDSo0+ZAA9OWHQ+SWmABECfcbn0xnjMJqUkaxN2vpk6YttpOHDVxojVynTMmPQfb1wpIliH4hz2rSIAUWt4CY+nlhRwwxLzsSYJFwbD15+mD85wwmvpMhAuqedz8o8f3ww4R8OqGqqWttBlTBAIIPPmN+R642zjGIIUcNytVqykAkbg+GwN+VyMbBaOmmNVwJOluZPPwxSh7NTSy41gLdge8x2F+Ym/qcE8ZZjQ3U1FuZOlBY79cYck3JoBJTzbONUIJJi42kxy6Y8wBQzCqqiFsAO8gnbxWcTDf4GbX4xo5TNVaFWlVRGqA95UkH5YDiZUzaD0MYyea4W1CudZ0woZWEEMNiYPygiRJi+GtTKvk9VOsoekYDhTdSwEOpPMekxirPZuoGDO+umZFMtuVFiOo/uC8px3uTV+hlXBaqO1WmrEK2xmdr+Ek4qzXw2alPt8uxYo81EJFrWZTPQbdbYVmh2NY3Ohu8jRaDe58Dhrk6rPTqU1Pe0nTEkR/qD4RjDJp2ugEvCs9+NMaud+g3PlzxrOE5nWS2kLLG9jpFoBvsR98Zr4czISu8BJMwdQBixgA3/3jTZIdlWQLJXSWKwJjck8jeB7YOX7DQfX+HEZR2qhQpDIF2Ucx0IPTxwVUoqqO0akALAdD08B44so5tm1oTcRBvJB6R7YzfF8yVdqZJUFQI8eRIBtcnGOwF2VzZFOodYUsCN23JvYC98Lclnm/DDzppys7i/TwERbDbh+WLBA4CovzMFuZMCBMk3sb7HFT/DFSiWIOumOYEQOjA9QTjTKO0yRjwmkGptpJFRtvGBaesgb4dUMyD2ZJiFnTpFoH5uY8MZfhlclrd4hoEWJEzaeUzthvn6Zpue9arM3I9uXh6YzfoZdnSNOqbX0AkWJN7TcjcRtfFLZ9uy0qQjgaWdwdhcDaZPLHORzKNSGok6GEGLyCfYYA45xAtTfSJK2Y7SL3PM8sJK3RIyydbWAyMjMGMSIMciJM4ccTziUgCw1ayBB2AO588Zz4NQNQa+lpIBEGAB9cMeMB6gNIyVIlGAvbe3L/ADhSrKhsVZTJvSr1GgmmO/3ohhcD/e+GNctVei0KsqSx5Wgj6GJ64vzFQGilMAnSASRyH/YC59euA2LHKnSQYWVN5HUR08DzE4Mr/wBCHZpOrBWkqEm0xqmx3thfxXNMKRJ+cmYO6i49L/fFtHP6+xBMqUve9hzOE3E6pGsatRKlfpN7xt0wknewY4yNYGnIMkDTMEteN+owtyuY7TtUQwl9zPladicWcGrsFZFMQCJYHcX/AHicD5OoqlQqRJOuDMyD1F+vhOH1Y0BZXMtSaRSqyLBpOk+4MjB1ZqgdXa0333iLg7c+uBZ780w7Fj+Y/LG4nrzMYofNOXKswMKQBJgiRIHSwxa3sQy4hWUK7imS8EF0EqwE2Jm0Ti74fdtLF/lC72i3+vPC6rK0HioChIAIF78iu23PBORqqaYUtAuZAsfC/XEv9tAMuI5hAgYEDUAL7Dygg+k4xVC7ljq7xIU7SPCbAThhxTNKe6rwoGx/UA/bCW7MkyBBMg8+UDpYjbF8UaQ0NalUKVJMaQzyIg7C8C25540fDY0rUfTqZRo25i4NvqZxkuL1yKJVVABhZtInl1xoOHV2WgGIggQvh1MYmfVgwrMUXYIsNNtWm4mxAv6jF2ZzLmoFc6RGor+Y8p6D7W3wFwnipciQLgmd/CDY9fDFqZynUcr2Lu177beJsPI28sYtO9okLfMBAoXvCYBPvYiPDFHB6pYM5AaTcfmiYkDntOF2ZzYUGEJVQZLTveNJ52Bx7laYpSXgAaRe1435z/uMPHRQ4dFBIgD/ANIZ+s4mLEqoRPaD2J+s4mM6Yy7i+dVqdNnAOuUdxIN9jHrbkNsZurllCtR1atyhgSpExaZmMMEbtFNJxJuIgje2/L2ws4dwrUlV6kjsiwNrgAXI21CPptjqU3LsAM19DU6j017wKEnTcACRY+PgbnDjhXw1EOKjIo1bHf8AtaDcf4vgmtwinmKNMgBIIMERvuRB5j9MNjlmDiI7PTaBt1t4g/TEz5K6BIxOXyVX+prUWEUwTOocmMyoO5va8Y1q1FVRTqEkBQocC97T4E/rgf4o42tA09GhgXXXzOm4g9BgPOgIAwBYG6nYwQCFPWBPsL4Tk5VYx526I47xghQJFj83LyIGKON5Jc1SkaVZSIZe8YE90gXE8j44Cy7rUakVHe0t3YOm0G/oDbB7GkjBgWDstwNjvtFt8Em0rABpVqdR1Tvd0ixsR5k/MBfpg/hWYEAdRsTO/vhHUdVcszA8wDMKB13M+HljvgjSd4OokqT/ANiYjp+2Br4knmd4dUoVnrwppqWgf+huIuINuWFeU4o9VCjEnSTBi3WNp6DfnjaMVq09LSJkHqDe0xtjF08p2QqJs3eI3sV+U+w98EZ632AZwpHqdxRB1HULxFjp2gG43vvbDwZVaLSYcVDG3KY0x0n74XcMRSBUQjU/Ik2kANE8+frGCauYekdD/iU90k3878wehxMpW6EVf0n9NVamBCMSV0zaesc/XYYsyc1azgse7pYWiDcGP9464ZxLUStQqSXPP28uV8C16iUkZqY1VFntAvMA+sASIwU7p9gdcRz4eoQp5QSdhJNwBdjEiD0wBwdAyiH7NtNujQBeDsOuF9CrUJ7WAUgEahqMmee0DlJ5bYv4NmKQQCp+W4ZJkWuD1xeNRpDGeTbstCuChM3n2IPPy2wm4lmtVWpqJJ0mJsbyBt4Xw04pn00h2KEiYKm4B5RFzYf5xmsiprVCVhmLAlTCkid4tPljWCtWxGq+HsoXRmPdWYBUCT0IsP2xTxFVpTqLEgkgkyYgjla53GKeKcWNNlpILAb3gXFh4dMB8bzBKqWkkAi4vB5gztviMW3+QCqVYDL02nS7G978/wAswBtgdahapUR9REKrEWYQCbbiL9MVZfOKTTBAFpkgkjlt0xfRqS1VQ6mXAG+owqiRO49MVVWBM/l0p0G7MudW+okmZ8IHvbFWVrhKLo40zbvEzJi0EQMaLJ03pp2jqhqCJAGoLe3L3wr+IcorhqgmodIJFtII3P8A6gRfGcZp6AQU6SOHJWGWIAIhtze0DAeVrFn06rtEGwAubdLmMd5nPIoCqgANyq2naxYycLHrliWIANuW0fY/vjpSY0P62Wao6UmgOGN52+tz9cMuLV/kprsLcgCdj9ThVlMyKlUM4lQtiBYHxxOHuHzOi8bT0kzNsZSXvwBo/hcEpp7OFXd5gNEHc3gTyw6zuahSCBAaFFgAL8jYjFT1QlPSnd0zZAL8uv26+GEma7eTKysE3NgNhzkbHnjmrOViK+L0nlUFSQ7GFANgIJkgX22x7lgzbkHkGjf9RGA2rFK0kyQpukkAtYRYTAnB1CsDcpFQCDrLAmIO3jjVppDLBkyb9pv/ANY/XHuCqNWVE9mPA1SD4bqeWJiMn/KGecWNSjWDGYOxLdbDpzJ6bYN4b8SMAoK/9D5zAPlyx2lQ1kNN11KRPobef+sIaOVKVqlMGGHyhpgg3n0v7YJJee0Ux18TZkHSAQjG5E7ex2nF+XzlVsv2iiWUagJAkbYX0Ki02WoxLAwDax5bySJF5xxSqGi4WTewv+S8creGElaoOmIvifMBqdMKe87HcHcm4B2G2/8ArBPDeLTTiqs6bXMREjVa5OK/iHhYBBpau4NQBMk+BB8OmFdSvNye6V52BPpynHTSkkSarNVyy02QESbsBpWY03I8+eDuM5wrRVCS62J3mfv7YymV4qTQCsZIkAg7AHVv+gw2ztYFdT1CSRAYN9PPEyjQFdWsNIKJpBEG8mNW59tzj3J5sLq1Kslud91Anz8+uF2UzPODC3BJBk33HP1xdRqfjHUNYIUkHoZsT+WPPAoiH3CeJpJLEzaYJ364p+JqDNVRkVWBkOygbRbVHhHvjnslWn3AASRtBk+M3/nsFxPWukd7Sq6SIUiJMzt5e2Mmt2gAP6oo9MqIQowHST9j0jBGeql8kCXCmlDEnd/+oM/vgDL1NaFVmQZtaLnmSD4c8PuDUkqFqbERJBB2IgGJ33OG3j/YDP5XPkEPeOVvKI6Xg4dfD2YBribB1ab2YErbe58sB5/h6pqRLCdgNgZsCbxI+mKuDELVVmRlUKQCFJE2ggt4ffFyalF0IdfFdJewXQsANBCiLDrGwxT8HZZXAJUEqLwTJkdNh0NvXDrhjU3VlqRo1XG4JgbjpBx321PQTTAkWEWJA6Dyxg5tRxQWLeKfDPa6qi6VG0AQJFhb7jCDg3DqaVGVgSwBZfmuNiI8/LG+4dX1021QPr/DjM8LqqXqK+ltTkAnY35HeN8VHkkrQWZlldn7WJRWgzcDwsbwcXZioashVZm2EkkecTH+8NajKtc01jTN94iNoJMjq3PGio0adGqWkHtIX/zE8z1AAj/ri5ctboLowuTps1TSNRYWIG9gBAH0nGiy/DamXHauFkszaN9IIEct+tueD6tSnlyxphZqd4km4ItysLTAHU4T8Q4n2p0FoB3IM9T/ADpic5T6WhWMuD58NUKsZ1bnbflgbigFHWKjgTaVsw8v7vPAuTlWBgFS0Aze0Dl4jDTjnC2zHZsw7qEFjMArNxfA6jP7AfNs4dLmVOnlNibzOOKFA1nsQsmACZk9PEnH0Ti3w5Rr0tSXcfKZ8h8oIF8Lfhjh39M51aBUJMMGZgRNhpsBEb+MY6FzLG/JSLeF/DypSDMY21UzuLQT/wDkR54rTgZpv2x7qMfmNoPQA32nww5q50hiTqbkB1Ezti7J1NRFXsmLR/cAD5q1vWMcznLv2An7PSYhip2JW1vH6zAwJn6T6Ce1U6gd5OojkALj1wz4xmmYwXFt1JMjqIAn2xma9a7TK87bW5R0xpBN7AryyPqPZkAWBm2313keuGuZ4u4qLSqKKZvDEGT7Xg+EYz+VMA94aiLC9r7/AKY1OQdMwGSuJEkqRO0X72wNvXGk15YyPk6znVKmees3x7gRsnVXu0q0oLCaqA+s33xMZ190BqspUisuhSRedJDFTudUEkyCCNrT0w6zpXSDUEQRBMAyf8E4zNDhR7btC4IUm0RpkG/XVO7GZA5bYcVKaV0AsbCRcAjeZIsLjyxx8lN3ZTYm45w5dOvW5UKAAFkADa3MX8MefD/CGqNrrAhQsSYgny8+W+OuK8SVFu8qSBCxKTK77ARzBOPKtN6VNUQtdgd5vtytyB8caQclGiWw08KcVW1MsflO8+Y6WxleKfD1XU5VW0g3CmDbkLXN8OfiLijg0gNQeNuoG598W8M40fzbmLkyCeZjyjGsJT7FZ8+ytWpTOkf3bHfyOH2Rmrp76Qs90Ry37uyj64I+OuHjUKiKF1bmwna0frhfwSsKdKo5WSWsZkwNx4CTPtjpbyjYWFplWqFtIjTvePLlviikp7ZbBRoMCTsCJ33mcXZtqqURVRjpNm6X6H9sIMvWIqKzkxJgmJA/XBFOhm64NSNa5MaCWIMyQIIERfl5TifE+fWsysAQ6iLDcXsb3FueO8lVSnQdkcNqiIHWIO9rdOgtjMtUHaEObG5g3+uOZRuV+iWc8HqxrkiOcWvyHl/m+Nb8NZDQWruAF3WTBnYkiOcmPLCHKZKzJtrI7yxAja07HD3iGYFKilIGb3JufE7WPhhc3ydLyDY04lwpasMinfWGMab/ADCOYPSMLuGZJdLokrTudBs0bTEwBubdMNvhvMh6YWZIUSOV+uPeJZlKRWAL3MecfWccyyTwCzN5Wo1PM6DdQsGYNr/W32xZwurqq94wFvYe1thb74O+IeH6m7VTewk2tuYG84WcIprUbTMQdLQYJAj6HbG2SqxPYbweoSwB1KrXtY/764q4zlaVHTp1fNINoMnYnqMO6OVpjoEjuEbzz9vrOJmsmrjSw1+J5cx7Wxn9ZZWugozfCaBWpUzFURp7um3TmCBaIuOpxR/86nasXXuwALWn745427q4pkxb+7cb/wAGELEFyqtqn5SZ9Ji+OqMFLbEGcQz1J2aJAHyg79Z/k4Gy6EuiA3gi38vOFVFzqIMkgkeJODsrmJqTqggTtAsCb8sb40qQ0jQZNppBT80ypJjmTtsfph7lq7tQKKYA3uduZHvtjO0mHYKp3ChjJBbzt64cfDnZvSUu3embWMHraPfrjn5fYNBXwzK027rWmSdJG8/tYTgYu7NFRVAOzRpHkN/acNa2aC/IQBzIURMfUxhLnuJkwrGwG0RN/wBrYxjcnYFXEM03aBFOqJI0xM2F/fBPDGcd2ovdmNQBifAnmPbCOk7K5IUmYBnkPm6+W2HmWqVFYBiTIuJ5Y2mqVFC34gK6gaTqGBgrJVp8OUeWMvxFjq0kgxzmQfGcaf4gVWQEFSTYdpEkjcBxBnfunrjGVKhJNwQN/LG3D+0AvLOAoV1EGYcDvDyODslrow5YkGIIsw8xzG22E/8AVgxfbY4cNSVqZhWBUAo0zfciQbjz2jyxo0NAOayVZnYmpRBJmA/XEx4ONEWCJA/usfUAxiYfzCz7A1ACpqEhmBIblMCwG2Kcmo7lUGxkMIjvDaxiAIgDn0x1Wd2iCkhZAMQdrxyi844OYYsFc6NI7k2DR+YW58seOt+RsT8T4ClWqKkFxqhwWgiBuP7bwZnYbDDOpkBrUjWAm3elRbcgiJ8ZGKeIUHUQHsdxvABv3dzbnb0x1XytRl0q6qrQWmAxUet+VgeeKcm62I6qPSrgg950gFlne8Cxk7z74xWdzgDtpBAEiDJO+8HYTyBONNk8qyto1KvdMCe+0G0e4EzaRgHjmSIQwfxS2hFCklZkkybyQCZMmNoxvxSSkAjzGa7XSCZgcxzxWC3ZMp0wskkm5Y7jT5R9MX5vIFAXggE2DLpAHkYJvzgDzwqYyh2F9up+2OtNSWiQ3+vDU6aEHTTEi9ifp+uAMkitVGlCe9J70G/PnAHSDgItBZSTzJAIjw/1ipSS4HPUIjw59caYlG5zbBKSAoiMBE31sBzJFjtueuMxXfUxJG5neB/rFmZzrlix1MBYGP5GAmrXnSeVut/D9MZwhRKRrQyDsIC6r6oM8jyB9fXFXxBxHUQCsd0XmfUdMB5moQqBqbJ/bNxHg2Fz5vV1n+dMQobsKNj8PZjTSLiwjebmDHLbDCtk6lSHtpMEA38d7WMb4zXDq0UNIkFtu7vBB6+mNRwSs7KtTkLEfLFrEDmMZ80cXkgkjzP06vYqum83i9vMfKT49MZzJs3fMHUxO3haOlvDG1p56TtueVwep8Tb64TZ2iqVKhOoFiDLACeoUSJ/TGMdaYvAZkYfK3NwCQeYn9cAZPPE1LX0i5tFiL+MicJafFAKKwIYi8GRAt6T548p1x3QARI5dTH7DFLh7sVM0XxTwha9E1KV6ouDfYbjwnGW+DchTZ2NQMXpnUguAYkEhrTztfGu+HM0CrJIgbg89/cY84gF1krMEWUbL5eJ+uFCbinAaZm+N8BbLMX1BhUMQBPIkGLkQB19cZOqCDtukecyMfTfiajVrU1FJ9JNiCQARMxe8kdOm2PnTUmDkECQQLmNjsOXLnjq4J2tlBq5wGqUDGLjlcWty8cang7ooDU6BBMKSHMaTEyrGNxvynHz7I1yHm8+Xnyxqvh3Ps4cAaXFu7Pek9NpH6YXNDQGq4rmtMKiqdr2gH2uZxnyyLUBYE2km+4G1txjrNV+zYICbm7ECRAt64qzNGQ9QNBWm3zWZrTAE3+98Y8cBIryVdfmAJLFjG0KDAE9T4XE4a1c1TRdMLTI3jcxfeOvTFOS7L+np9mG1qFYahI8X2+UyTi/NqaiA7tEBQN/AGII5xuJxU1bGKuO55HTk2ojcddiCOfjjHpUUK0/NqgC23WPf2GGPGss6vcgLupgyRyn/tvhPQybN59MdXHCoge0suCbXvO3nyxrMtwZlBcMAG+ZTMmN/LbcYT5Dgrk/K4BsDyPUnwx9L4FoZVy5rh5DAKhGnxvEtH6jGXNyuL0NM+TZsKHbSoAmwxMfTsx/9NXLEq1MryJAn7YmH+oiFHVTPuVAZQrE6XmYjmesCYPmcMOG1ixYVdJIIKEagPlINjG4naRB23wPl6mXrASCX1EhTNx3jcgkE368uYGCEpoO4Wa9QOq6NpIE3FlH9viNsef49AUJll1EwGKsYIB/uGx+m1/AHF2bqaYMGQoJYyLTcDZha/QRtgPiWWcvVZy0EamfSq9mVOna5uI3F4mQNulzKUiU5sQGGlo7wESYMGIuBa3TA1b1sTC8xQK6pK6mM7Bd9oINlC3vBmTF8UFkbuI6mSx083iRJPPoQCL7xzgpiq7HXrMQupbiCNQH9xify2tfACVWAdVQimrN3yUDkkgEIBtpE7gTA3N8OvQGN47xAtVZe01gGF5AcioBiIiNuWAy4IBJiLTG/TwnGk4lwAFCtBUUiO2ks7ibxqawvuVj2GMzXydREVqqQjkgT1G4649DjnBqkAqqOQxJ/N/NsXuNiDB3EYozhJYb7W8sQk898bjL6WemQ3Pn44JyLBXGqd/y7+GAKa328jg3JPTWS4Zr7K2nzvE4lpC0NOJZ9oVWEx4g/bbCdXJuJmbRvi3O10YDQuleQJ1G/Vt/TFNFeYtHthRVIZqeFVWqQjFSBsWiZ3N9gT+mNNq7Km0CGIixN/vfbY4y3DTTdQJ1GPlkBZ6yCPtODM5WOymALzzPjawxz8iylRLDaWdKuNyY62H1npg7idevUogoqtbvHTcehF/TCXheTLBqlWoUEGGEmTIuAOQETcfNzwz/AK80S9NmJiCCQJI5EfWxnESSvXaAyleosqpmQNunhGGvDqYZ0QzJWBzkyMZ/NOXcmQRqJFo/nLDbh1YoyuCJi17j5R5g+ONmtDo0XBAtMSZkE23BN7WxOIZssQeQi+0jV05b/XFHCcydAqrJK2Egx7bTPPFPGYBBEMasGQCu28TsDe+MEvlZPk0SVqbp2bgAsIAJix8ReCfvjA/E6LSrFEpFACILfmI/MACZETt1xpcpn10qVEkKU8upBIn39Md/EWXq5jLdzdOUGWIMW2EGd9hiYSwnvoa9GB4Jl2qVQVamCD8rNpkc46iMa8oETtI0uTpLLF4FgOZ87b4yfw1ki2YhlUhJLSbW+3njV57QjKJ0rEqJJ52mTMb+eOjmTckNo84TRc1C7aSeR1CQYJ5zPSPHBvxFSdqTMVKoqhVDHcsIDAbiTHIemFvw7nHFQqAdJIhtrnc2Bt9Bi7i/xE7oKKMGUVFcgqtyJqXIB1XAmTjNxeQI0WVyrV8uqU4Vkp9mxJ+YqByiRpjlbCZcpW0jX+GsxJMfwcjhl8KZs62D0m7R2Lr39MAxAA2ILSTab9MW8byoNRjUAECYLmJPiRc3NrYyi3niPTMlxPK6VBIMSRJM329sAZU9mjNEyYBF/HfyONHm1eD8pVWhwWHMe/PpzwDkKelCIUK1Se9AAAUbLF7n6Y9PjutjqjQ8ByhqBTDFXHItOrnf5bDf1w7y/BgjA0qcg8lHeN/7uY5mIB8cKvh3MFai0kVysE6kAuBB0gGQJ6j6Y+gcIpQpMBGbfmeQve5+2JnCM1TAXUc0YGoLqFjIIPsRiYcOHkwB7j/+cTHH+kX9TKPjPCs87VAAASJJ/KIHIDl5+Aw1fPallyysG+UGY5RqidUNY2AHQ4mJjGX7qMy/jTI6rWm9OC4vLalEKTzExe57uKchWdTUY3BvJ9e8FuJjr/qYmJivjj9/+jl2AcH4v2xzDERTDSIkaIE2E3JPXqZw9zIQsdVO4Fyb2EG25kx05YmJhcvxnS/mkSwPJ1mFeB8lOmWMADX5+J/bHXE+E9sr93Q0j88gAoNrSLlhAjmb7GYmM5ycZJr7DXZ824jUL5hu6kg6RokfKImTcm259sVf0sp2jmEMhbSWPTwA5k/XExMewtUHk0NH4XWtTXsGmon/ADMxIUWM6REwCLc73xljl2FQpALBtMeMxiYmMOLkk3JPwNdFmeCq2lRIW0xBOPMnUvBAINyOX6Y9xMdHgBvwjJM76Z0pctp5QJsOZONCnCqalgarvSCkm0MTcaQIgXBM4mJjk5ZOyWCpnjUomof/ALdRQASbpYAG14ibxvir4pzqBVVTqVg26wR3pAnmIPvOJiYqMVkinFaM5TZVkrMibchgulV0qomSVO022PPyi2JiY2YGj+GnDTIkLsvLYi/3jwx1mWLlVQAQ58tgARPieY549xMY0tskZVuHuQp7QlgwVVAAAlogk9L7dcM+H5h6bgCDBIj7fQfTExMcE5OS2SzrjFKnQV6xChz0XkTGox5RHW+Pn3GM2ajMQFhVF+sAeAjExMdv/misbKO+EZl1ZVKqQ47xa50iRbpz9sBZitorA8gSYixuRMeWPMTG9baA1GTz4D0SD+JEmRIAMwdt7fzk+zwIplifxnJ0zceu4jbbHuJjllFLkSKqmYClWqvmVnvyb30yAZ35AifG+NhmeEVRULOqAN/x01Mgr0k7Cxub48xMdPLJp0ins13DuHiAD3WA5XgDpIw/NWYVPCJtYeMH+AYmJjzY8klLT7YIupF45YmJiY9LYWf/2Q==\\n\", \"height\": 183, \"channels\": 3, \"width\": 275, \"type\": \"image\", \"id\": 4947634576}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxITEhUUExQVFhUXGRwbGBgYGBwcGRwfIBoaGhwaHxggHCggIB4lHBwYIzEhJikrLi4uGR8zODMsNygtLisBCgoKDg0OGxAQGywkICQsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIAK4BIgMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAEBQIDBgEAB//EAD8QAAEDAgQDBgUDAgUEAQUAAAECESEAAwQSMUEFUWETInGBkaEGMrHB8ELR4SNSFGJykvEVM1PSBxY0Q1SC/8QAGQEAAwEBAQAAAAAAAAAAAAAAAAECAwQF/8QAKhEAAgICAgEDAwMFAAAAAAAAAAECERIhAzFBEyJRBGFxMlKRgaHB4fD/2gAMAwEAAhEDEQA/APlY4dBJIYPOng6qX3MODCSVKGrCPWm/E8Yu4lKICRrlgeBqHDrELyqAKElWuwaOqiSzVywnJK5EWLsPg2btXQC5DwS21EW2toVyOkmX2I/emVi9aWgm7bcuwWB3tHIfNHpM1Sq5aKMqgUKZgQSytTIkdIbQU/UvsLFN633ndgrTNBkP5+O9TtpkuYnflO32oZSSILuNvvRYUezAaDu0+FbDOItpKgArXR3bzNaLC27gUnvBYB2UdN+keNIcPhS4SCS+7MBvqaacMSkQFGIPLcatM+VZzAb2A5KiY+9C9q4U08/o1F4O2Q8CRuROtD2lJBUMzfbm35rWdgMuCBlAuxZQBbpvVOKthRY/m31qBvZQjLDBhzOlGK0JP7ehqRiy5d74Yser9WozA8LWp3eRmGUvs4gz/FV4DhhuFaiO6AWOzu4EjYE+1ataXUGSQCkBWnIH9xHWm54qkIR28BcKBBByuJ58/JL0MSDlUCXdyAXmNOU/StGtTJ0hjADauG/OnKkWIwJ+ZAJQ86N5b604TyYDi5fWd2BykQ+7tEtFZ7iiiSsgCW5vz0phZvAd1TnMCMv0EGhcUQ8M56x4dK0GwWzfUIktp06etcu2wppLjWNfz71ai0QokDQeO9V2bXeHJz+eoo6ZIZZWoaPAYkBp18K0wUolOUkaMXDTqI2jeZakeCVdRlLE2yXAMpJBBfKdYFPL9y2lBUXeAQUj0BJIJDgs/lpXNyy3QC3GKKHa25zEpUS6C8l0l9KCweKDiAV65kpYBzoB4wBTbA3QUsUqyqMFWjRALMN9eVLrWBQhSiQCB+pzAJcJDwdCN996t0ojf2Gp4wgoCdwJfuqDakQx86Sqx+YKGUKXASrcdQHgcyYavLVKl2ykqL6hzB0nTbpQeLxq0qcgEnUsM4BYExtpOtY5NjNHhsX2rIcAJSxU8kifm0ZvbxpNiLNxKk3QQpBOrnKw9JYaeMUPggoJKkM0MAC5G7hyB4jWarx1+8UMVAII7oJYM+qQdm3rOTTbTAL4rirSllOHSnNDrPNnUcqoAfc8tqGFpV24m1bQlKzCsjlPPVy9LDYVlLCDD8vWj8JiV2EMi4xVq2obZ9Q/SsmqWh2eXdUkKTdTmWFQ4ygdTOn81VbsLXcUlCWLDOQHyg+MJ9frUVrzliQtSoS/ygM7/XWBNUYe5cQoiQggEkD5g+jcp25V0ccLVsDV4XGWLT5Aoq6jUgufUvJ57VTjrRvF8pKgmAzJ5FTnQk7l9OtVWAm6i2tQSGByh2A31OpppetOAU5QkARlZweQjWZ3+qSkv8sevIrThUrCic2ZJDJ/UotJAbQvryfnVuI4faSlJTnuqI+VSgQlTO8JkaV3HYZQs3V2lAWlAAA/M76wdw/SNKGRhbtsgBQtukSdG3AefFmqp59lJo4OH2N0l9+6T716pIxaQAMhjkD+9ero9SP7RUYO1eY94a6/n3qq4T+kNrRQAzaR1FRuKAWl9Gc6N+9EXswKbq28gJOhJbbyrisWtsySkjcBnHkZoi4UqJTDbERNV28NbStOcOknb851ScV2NMHsYW5c7xadz0ar8TaASEoUVHU8tNnqfHcDctLSCsKSp8ipHKCGghxpS1zIf61pF5K/Aw/CLUACxJ0mQB0HlRSb5CiFMS0F4GgHt0pVaSsgsXG86bAUfw27cGiXGjb+GlEkA6w61dmokExBbU9RQdi2vMWYl3aNeRJP70XYsKKVKUFAH5YgeFC3+SQrZ2Mt6c+VZp/AxsoAkJSHgkRALblmPKiUWSbYLSEklzDDXrVPDUgJJSCeQlnfUjnpNHYJAIJJU+hCidArvFhz8NBUAH4HFTkSRlSkGN4IiIEU4yHKljJBH/D0vw1iylwAeigG5MDzM+dFXMxILglweg3YxyP0rCXYgm1kABU8Awxkx5uH83qtForQXEyenP0j1qgKdIcuSdej79dn2qa+JMkBOhBAAmBzc86WwM7xXBhHZFYZTlQEwHh2LHUUPiVMfEedNeM4Jd7IQklWmQMQ3M7Q3WlXE8KtK23SnSWDt+9dEZZDRDtHSQE6MNZLa1WpPXvNsY9K5ZsEEplyxHi2nU615KG2lgAWY+hkVowGWEsqyqNtRUsP/TZwAR82ractGq7ihFxQDC2lIGZiSkqAH6dpHv40PwXiOULb5horlA/maouquLAKiQpS+8P7pDQ/KsnBuVokeIUpOUgXSFJAZBLJfvNIOgq25fShKXSQAUkurunr1LiRQNnHpSgpdecCcp7rEADMDyHjq1WYzFkIQlKkLS4DyT8skvrMxWFOxlnEcAhKUXMoQc0KkAzuNZceM67L+LWWBBYJcBIMg9X9R57UYvALVZa5dzKUQySYaDr6v5UlvYu6LotIWCAWkBo2b2cVV7GgzB4RIcrzJl3BJTpoB0AEedJ8el7qkpYMY6zPTyo//qS0pPad2e7Dcu971T2gVmEgguCJB1fqIH/FRdvYwDE5wpYfKwgHQnoR96jg7SlgquqcuXJDszS+nOrOJ37ISSkkKPytIfkAQ/m/Oh7F8qsfqdywAE6DyS+86Vai60gLMRiR2icmXKhtWkmNGopGIKgAlRJJIMiNmD6CdudVYVBUhKOzQXJzFmUA+55RHpXcPgUIUoqUTJSEsoHnB3qpOKjQGitYcFm7yUic3eBLAbaOzQ21EY7EtkGYJS472qRr3S/6eTx1pV8PryXgAVlLgHWS3SHejOJKCislIlobvO8OORiPWpyS0NhmAxKFYtFpYGU21SWbNlVyhgCdPtSLGsooQGdJILFmnK5O+lXIxfY5Ll581t8iFNuf7R7uaBtIL9pdGQEwAZJf1Ou1Cm6QB3+ETupXof2rlKr1rFZj3Nz+sfQqeu1pmv3IoSlYIzKOmgqCwlwZHXcc6GvrYOelSQsEa71atK0Y0zmNw7B0Et13qeFuhQcs9C4u+fk0G/WqTeOVjl8WnrIrRQco7Ko0fxBxlOJshOVJUgpGZJ8RpyYVmkql3c1K1hlFyIAl3DDzerreBKpBDDUuwHrThGMFSF0QRZLgBzmamVlSrShBdOpd400+1UYReV0gqS+hGh67HWrFLYkO5G7a+tKbvQGp4bxZJQygFAAEA9JZxvU+KYcXQksEEaBmKgd/Ss9hr5ABUAZ2itPgUoUpKiwAkJykkl/1EmK8/kh6UsoldnbeAVassoGHAD6k6AN41G1fZBII7R4juvyffUUf/ihcWWBUOTDut9vGpYuzbWABmSwgJ36bdNKUPqfE0FFuBuJKkquFPaMWGgHPugtDczRRzFlIHd3mOXgXmKHukBKQiDqWIAmZerISnIVgZ3iGBUIEfmtbLbEgbFZt/wC4DuAMHJYM7aDyLVbaQgM4UAxb9R89C/R/WqlKtF8i3IkCeuvLvM3jSnFcRzPlIj5iB0YwNX161dNgx1bxJdSgYA5Hl/b66c6W4i8oKKmlUkHcaAeFWYXIkAKLAsxA3IdulC45875nPPWNfpRCrDoLwwT2k/jpI11cGKHx9sAhzvD1OzfCUk5SVscrM+ZixEfWo3Rm1dJ6H+P23rZ0xi7BAhVwmBt9Z9qMsYrYmDOuraihlMAQ5G50330/JqODcyQW/SWhn50P5JDOFHOu5k7qsvdkQoEMXJGz0FbS6ZhjlZgAfCixaBKlAKdw+zwY9qDwdgkZWkqgbnf+apRVWFD3DWCE2+6spEOykgHmZnvGrlcMRbWSoAlJdREEOQlJI5DmNSek1YTCXEW8yluoh0pLjLsxc6kw1W8KxKiglSSkpgkCRuHMy1cU7vTGkU8SsC2qFlZYkumNOsaFP+6WpDjkC4juWyFBj3dW5deZOtPV4e5dHaZ0rALgFn2dh4/kVn7V8ouqJBTuNoBMk6s4pxXlDK+HcEuqSbxSRlUABozgyQQ2WPfSl93tbSyllF/6aT4HQRvmB861Ni528JGXPKxGg/WCevh81W47BC2pVlQRlttDmQxOYBpBZ3jflWvqv4AU2sKLaSpa3JZ4LgEyHEHxjQ1fichAe4IGZIEqytu8S496Fsla1FnIUHYAEgFxvyY+FSwnDU2zmUolTsAAFBuXi1Z4332AZwUgJNwZmchR2kPJ6cqIPEEAMFd4Bwh2ykc41GmtCYPhpRmWBcQ7/qTDDMzNBchhvIoy1Zskk5nUof2lzJLt1LnfTpQ0mwsptWULUsq7yB3itQchm7qQ51J9PWr+J8YIzCwMndggAkBm5QJLDal2KKjbWElxmAUASIILJbl169a5ibpUBoCUMoJMvuGqZQTW3/QpMMRwvFkBkqZokaetepBmuCMv1/evVnjP7fx/sLECruYjMIHI127fywW6Ea1X2ndaPSfWrbdgFiuebHpzr1KSIA7iyS9SsoJLD0JailYAqClpaNUgGB41LBXGBHy8xBfZn+anlrQyJQlOVwW3kT9xts9U4hZdwFJG0kjxBNF4YpkBCc8hJUCRPTR236121h8xIKfASwP+oGPCldCB7QLc2q9C3ctJ0NDhKkqYiRyIP3ailg6s77gmhiDeH4ZSiBBfQCm/D8RkCgksJcGRy0GtKMKcshtHYvGkwdWej7ZVkSpj3nkAF5ju9a5ORWykaLg9ggEkTqA8s8baM3pRdy/bBAUS/NxHgB9qScMu3lTpDMB7jXfamljDpSCD3nPzEAct/H7+FcHLGpW/7DYzu5FIzIDBW0MGA6asAW50qvWRlSnvAguX5tI/OlF3wAj5dAXggQHbx60FgkOdFBBBVB0B2Eg/N+RXXxP22SLhhrjqV8wIdhs777ab8qqZaSSXdpfYFuk+PhWrQbaWASwUwJOkFgCCd38mqvFYKyu0vKoJaQr02eW2Tz8KvIQoQhSckZUhLqUQ7nQazow8OVU8SsfLlWCXc8hHTTYURiVZClDZh8pWokB2P6Zh9OVA8VWoJFv5VP1ZjuG+1Tx/qLqzuGXmzakCHaX8g7a1fiVhIBdRfSPahsOvIhiSpTgloGnVoqtd1JBCkkpd0yIGp0J3rZNZFLin8HlAhmzHxkNuw5fTrTLD4BSJUQlmJYuJOheRS/D4spzEN3uh0/28oomzjrirasneQT3lBOYOwABmGiOdXNpxpFLgl/zCcWooc5WS4IPzA9OVNb+GItwIDkEaGPl5+9ZgYhahJVB6SQ45H06UTgcTfxFwWSpQKZAISA2rgpA2rCalXfQek120GXEhSEublsg7HMHiACnYtGulFYbtUmQWIJmOhUWOje4NVca/7iELUOzUwBBcOD0gEmlPF+JXrdwWwXSzMyfMMz6/mtZRjkZ6C8LiVBQJDpZn0aWd2YbTVSzbUs5kJugkAudACczNpJZzE9aBtXb15YeZhH6RqWgwG9g1D38Iu1mPfCM2V0FgSz+G1aqCX5CjQ2GZKuzTb7pBYggnNrtsaq4xjiEldwBTDKFOMw1YPOkx1pfwawpaVJN4IILpQQ6mEu+jae/nTdxKUlMKCJJIIJMEOKjD3AV4jFi2t7asqSEk+kgGY+9V2sVmXmToC+5DtLiC0bVLCY+3lKVIKyDlCU/2u5U/ODy12qfDMRbQSDZzLJASCYAbVvlMy5etaq9AFWMTcXczhXcTIABCcwBdUjxgkmu/4pFwOD3iXJ0eRr+c6hjcapTdokgOwQyQAdNNpf1pjh8L2dtLptqMg7dBEe9Z3S2UwTiGGWhy5CXdTBvuXJjTrV68GDaSOzyDKXUfmMKZQh4h+cdanfxi0IKU20uDqqTPLZ9/MVHhtu5exCQq2bpMZcxAAaX6ND+PSlGTb0BK1gLOUOq87B/6qR7NHhXqX3knMfn1P6/5rlXh92FGPTh3YEhIMufrVZypO5I32qaL5T8oDg7yPQ1C5cUR9Y+tduyDilKYOddgarUqXqSW21PpXlhiRTA8i4Xf2NTWsq1Ceen1OtVii8OskZTcUgNoND70mJsosQfw02tW0qS6VMeTx1pZbSnNDgO0+j/emN/CG2shCwoAkZkmC27Aw4qZqxBJRbBRMFwoMwbdjz1HnTq4u2SEMUqDlIAMOfr16VmheMDUZhDR+RV6SpisH5WDfTxrCcE0tlJj/h14u6SAnxyg7Mw606KAoFy7DcOBPj41kOFcVKSlkJGY6tPQknrt41s1PkdpMAyU+I6+TaVx8sMWIqsYnOkJBLudjHTw/muDE5WzpBYtlbfmCRHh1qnCrOfvONIiW6+HjVt8FZe2AwDgAjvPq+8PVxbugBeI4lSiS5bYZtNCHDba+1K04/8AqALWsFyQqTI2brv41BWJZ3B8ucCJ5MPSqMbdtZk5rmRQMgJkE7k6tPSuiK8CNAUdol+5kYEqUEgiJLs4VA/mk3EFqUShJcWku/zdBLc58hzpxjMaMmZJBSwDgDvkaa8+dTwHDracP32C1sLhcHfM3Rgw8hSTrbNIulYo4og9mhKdD3ZEabtsznyIqvhhCbCgDBQYiC0j0n1r1vEAXFlRZBLSTAGihEzvyD71G0oJFy1lYgFzq5lvV9araVG9dMeYCyjtHWlhy2UNH+tS4Vlt2+5CVlSVjScyglUdGHkKCwfEe4SCWJSwCNTzfr47URh79sWSwWoLzEltHUTl8txWPJkS06uvsxci6HUkiMyniPmLHyprwVCc90KOUgJUF8mBh+R+9Z9N0yEg/MZO4f18ad8CUpZVlSgsAFZ1AAglTQeX3q+RPEbT39ui7jFsLWj5mBYKBJA6aAPI9apxdkOFMCyksSzSoBm6B/wUVcskMClNpKm7pUQwb5tXIOXSYNLF3iEFgFp59SWCm0lvaojdGMFbDU8KULqiFIDuWkRqWDbxPhRF6xcG47x+UcgPm8T+9DX7ayXWQVFkAKLOOhGggnnFU8NuqX/UVcSkOO6Xju83A0AqHdWy8XVlarCLa5CgQIGpzPHTp50EntVKYo7RCQ+SAkDYHT+6jeIWbq1nMoBLjKSXfcFgXbKHqrjHZpm26lw5DFKho2xB8q26WyZCbE4cJdWT9R0UygFd0Bn2PjrMVzChSE925G3d8tSJ3io8OPaLKTDuHVpzZ6jhAFoUhTEh2ILEEmCecbePlq7rYkHYHN2gJWFBzKmZLGS7wzsG501TfuJuZhm7MFipUBgJ9mrNHhi7qwm2nQPJbRpeNZYUfaxPZJCVklsoUliwSxd5kz9KynFMQ0/xN64odmMqRqTKhsWBLJ9KN4Rif8Je7QK7U94FM8g/MDUVRZx1ns5WCkMyg4WgEt6BudE4TidrC3BcdJ0dJS6zBYguwD+G9TDUhoXYlS1LURbSAVEgAlhOldp6r4jwqjmV2TmTG5k7V6tMZG3t+T5SsAh9NK5b0Ya868tCkulUEbVBFdZgWpZ9S9VXy6iRUgqdNK4veihESn8FTCehqNttz6VwAjSgQxwSQAzOTu2nR3piu3bC1JYJCpBaBoeWmsdaA4dbdJKixcBI9Semw9aIsoclRYp6O+n4KzlYWV45aAQUEnTUR/x+PU8PhlrBLa6OW+sV3G2bZt5kF1aEHXb13mr8KU5E945ixIOnUaVnJ1GwGnDMEpKQHZjsAXlzOre1MLmMWl2zHdm9YZx6UDw+2CIUx/S5A8p60dZwd1jALCS4n1/Irhm1bbCitGJWuDDag/QiicBfAzIBIJIaD66eFDJSXIMFiCfLl967wq4UEolSSopCjyBk/Srg1TAI4natNky5X1YHM+7mSC+nhWTxuCQVllFtHUIfqr7034pfUlRCRlS4YmXh9z+PSrEnNDanR+7rsf3rogmhMb8OsJK0oAGS2JCVEhSykyH5Cf8AbWmvL/pkIGbLsGedg3Ssjwe+hGzEHU6vpH4KOtcRDrzOQepnk3X2qJJ2U5JlOLtpGfOqZCUlQJBIMa6bUPhb4XbyxnSmZlSNBL7GjMJwqxdBIDFJLgpGZzuWP3ajeHfDdsLzIASwPeBc9QxNXKSS2dEOSKWxVbxiEoS6knKAkpLOIZwOke9XcN4jZCLdlRlRUFMY+bMkeentTG38IJd+zD67Pro+j1y9wCwhTlAB10Tz/wBPOhuLH6sbEa7ltCl5lhKipRZWhAMBtZLh+T1xXEbQJWhWUkd150VudzT7F8Mtq7xAUotKgkk+1C3MPbKQi2kKuEsAAgt0bK3jSUk/DB8kLtHcTxq2bVlaC6Uvm0ZJgmeenoKoTaCkpIBKVd7MkPlDOzA76AsNqb3/AIeUi0CqFMSpKcpnYMEtt1qfB8BdIV3ClIBzKLBtI8Y2FKSrSWwzh4RxAUwWSoIKcoJDJynbmSXPePhQuIw1u2gqZMHMXUow0NzcMf8AirL6rtovbUVBpOo6gjXy6irCVL7qUvcI7x2EAnpH3rBp3tmbnqizC3DdyZcrIJIgknQ5hDu4jbm9IMRaSpa05sm+ZYYvykgPPm1PDwm9bUjKtyQymSXaIfQOSfRqvxltVwZbiMtsaAyXII1iXHXSrjXgRhMTeshRAcyXdvCCx6+tWYe3bJCgSDLhnA5DNzYUZjcCntciQ0BiWbWTGrtqKljsAlCnBJCWdJAn+2IiA+grou9Ehl9kJCfkJJUDvOmh9PrVScGASLpUZAP9zEFp3kiKo4vjkYi2pYDKSWuMRJYDMN8rwKCtJdKTcWpQLFgS+kS2U/zWa43VgwviAWHQU/K+rkqJ/DSvA4AXC/apSUlmOp6APTe1ZtFQ/qFBUSSlZ32Yt0o6/wAMwyk7FY1yqkPuW+/OhSx0TRfaGECQFWLZIABL6nc16k5wfJFxvFNcp+75KsScYydqQErA/wA2vKlyAwnn9qPtYdS1uJnLmOgjnQuJRykbHpXXFpe0myu4qW9KilYdjpR3C8GbtwJLAbk/nlVeIwLLUAFOCzNP59KbkuhWVdmAl3HgNf8AiuAx096OVw5SQMzjOnVn/wA3owoUWiDlKWOsn3qU0+hMJwpYAxJ302im1zKE8nDkyACYhvP1pNZToIYUVfxCe0AIB5z96bVAiV/DZpSFGWJlju4nluacCwhKPmAUZIZztFEcNti2lz3gA4yn6ig+LYwKDlGVxqxf02Arn3OVDoJ4XjGBtKATm+aHfWJ0A6U8t4dKUE5gTJYGTyDPtWHs31HKD3mgTP8AxpWw4SpfZMRtKt21g++tYc3FjLQ0CYpHc1KYdeYhiH0DzG4pZhsUQkDXUuNJrUYPguGUpQFu3cSls6rqlJWkqLnR8zB4DdaM4X8C2HPa3TczOUJQShKQDzBffY+tdK4FTGzJYu32hTlciN/t0qriGFKQCQnLsRLHk8ESK+gYj4PwTAIQUEQ4uKJ9yRUbnwwhCGQVKH6s8gnyG/8ANVHh1tiPmV2/3kvJ3+1EYVRMuQIoz4m+HzZujI+VQfvbF2Z9/rQlnhaxGYFUQATryp+i6JCMK1q4VJcJLS+YE7gkzWr4PxAKSzh3ZuXXlS74c4ei6tFtUlJKizFMDeGIdhW8xXDrOQC4lDAwQGPkQx/eplwZKpFxoAs3EhsrTrLh+nhUcXgk3CknK4kFiXHJmbn6UvxmFulCuzFwZiQlUAwW1Bei+H3MfkzZUqbTYwJLb+VRD6WXyJyigLiPCcvfUpRB7o7rD960nCOAYRSE3ELRbLM5Cp+woLC8Yxav/wAaC+5ePNn+4p5wvC3L1otcsi4//bDEQXdzvG4raHC4snNPplivhsGMztyBn3pFiFqtr7NlJIS6gJDdCN+dV3sbj8+RriC7NmAM/wCYNUeJ3cQm4EruBRUnVCszs8FhsSfWtOT2kx5LFGNwq7gKkXAkP8pg7hjDTVSDdJLoCFEZUyATJdKlA9121blUzcxKmBAOYlUiSzjlJB+1C4m3xA3XBuqCSGOULAUUz4xudK5krZbY6wdq65C0WkhO6VEnnIDkkdeetU4rGoW1sKIJMMzKgFpd450t4bwnEququXFFBLuSkIUQWc5WYlw8yWo7h9paVnsbSk3A4VcyFSkgiA+gO+kvVR4M3sHyJB2M7FKricgtJQkf9ubkiApZdgD13pRasKu4e4hZJSr9RDjQsEsCSpm0FextyU2UBQYup0CVEj5zmJ6uXJNeSU2rqULvJVeUWBzAW0gjuuBALZtXMCZFEuLGWSHGTZgU4NWHxD3EHKhUpbVOhjmzEb1q/iAWiq2pKVLCwFEdoolLBgAHYk9Rs1X/ABXe7BGYZri1MVKlQYbpKgCwDaBpM6Ui+F+LJIUheQLJKsxHeU/6X0DHc84p3J+CqFvEcq4QkgOp8wJIA2zalgHkDWrbPDCoQc4yuW1kdQ/L1p3iMEVqK0hKsrsEszAAnYgDXXnVBVcSQocpBHyxLsIMctKzk2wFAUv/AMVz/fXqLUi2S/aXZ/y/zXqWX2HQPw1GS0+R3dxr59Helxw5USTlSncsfTr/ADX0dfBbYSECxcWCTGbXZ3YVPhnCcOtQAw/cTIKiYVuH/Ux8q1bSeltkuJjOG8FvlWZCGAMEuHHh4itJhuDG2kqu5AVkFTKJOjdGHR9qc4/hqgqLgCSYRliNnzO5mkXG+L2UKyJUgqd9e4eTsebe9c3IuR9r+AUQjFWLbEJILbHYaUgufDOKxSwEZAn9I0b/AFMI+nKrUjvsVu+o5nVq1vw/xY3WtpZKvmUE/MQCAzMwBO5JNVwWugOo/wDjzB27Ce1KipKTnuBWV+cTGwpDi/gKwsgYa8UbntO95AMD59K3/H7ttNlWfKe7CVSHaHbq0VhVcT7rCFEZXQlW/IEmW6V1q2DF2O+D8XatllIUBqLS3JiO6w+9Z5GFu9kLipS5cO5TzJGwjWtvw60LRfNiFkDLlyEAHqCHryeHqWtabd42mkBaiIJKiMzMwJ351WNEszfAEWu4Li+zBCu+ROrCWYecU0s8YYFNkG8gu6kyRGYSOWm32q+3wZCSQVIOr5GKZ1+WJ5UUjAYXLlKVHps3JmqJccX2heogLDgLSLqFXUXUJD51ApYkD/2JkHWi+F37tu7aWbqU2wM6knKbiswYjKl9dZMb0wwmFtOAmyGH9xLejjmfWnvDEkKGWzajQhOnKSWFWifURbw7H4fEpBObcsUORPhr+9G3kXFJUm2kwP1JKX5MSQnzc0ysYa8e8+UdG8tKMtWLiQ5uP5sfpVUPNibD8Kw9y2pGLKcxV3U5wptGiQ4L86s4b8HIQruqRlP+XvDw29qfYW8rUFJHQv70aWGpnkBNV0S99meu/CSc2btRDNmTp0hQpjw7gyUO1xDnUpQEn1eaZFTt3D5muC0nfx6UWOkU38JbPdWvNuASAX5vQV7gqIypW/NS1FvKmyFW82z+T1cu62iXosKQDhrISnIpJUBMiBvArl3D2iT3PmZ1JDe4mi7WKzFg4bpU13BL0goWjhGFCT3QQp5kmY1L0De4BhCBlQUqEJLEnxYn38Ka3sWEy4Hi1IuIYoqLm6waGH80OKfYm6Lk4EJSAlAzgSoqAcxLOWkO1ZvjGMVmyqDga5SFEEB3LSP5onGWsSm32iUZ5gOxPWQRWSvJvX7qbinQpiNIgw4YRt/FYctr2wQJ3tleN47fJ7Kwsi2DKss6b6Mnrzr1/ieLUnICLaSod0EgNG4U53LmTRw4XfcFxr3tw2rpLs/SqMfjUWjzbZiACI8a5r5o7a0aLFifGW8QQlSlqGV2ACo5hgwD6NSn/H3kZ8o7xOYgswLNuHzM0R9a1eIxSCCGJJgSR5jYN+a0mt8Ksus3sRcQhIcBO5OugMTO5gb1vxOTVyL/AAIU8ZvXlBChcUWKVkqeNOWjMJcDlSi3hAFkAEZQ4l2DjVmdhuNelawcNwycpsBaioKGZSkpzEkCESQ37Un4jhhbWWeDKgCWB208Ku9j/IVwy9aQtiUJSCxzFlF2Zo5ATy5PTHFjOpSra03JlKfm3y992PjvWeN1F0JzsCmJJBUdEzIgMKt4be7NRJUUF2cudIykco06ms5RfaBjg30//pH/AHW//SvVFOEUrvf46wHlswDPLM8V6jFAX2+PsD2aFFTEArWs9QQ/UmB0ojhfGsQlChcRmckpWA0Enu5QG6PTrgnw8i4WXdZtClKSl/EypvKmeE4NdSrJcuJRYfVCUuW8QSD4V0KJk+Ux5vYtZCgCClw5SwbcO/05UFiuC3LxzGxGbNmSgpeGJc/p3bTWvq3EeDYRYBQFA/8AkCumrb+YFZ278OWiFBWJu3FN3QgQOhJBBjlFDiJ8jMFg+BCUAOxd+05Qzuxeiv8AphsKJAShzIF0Ejxk19Ew3wvY7JVsWVFRYhay6hzDsAPKn3D8GhKAm5h0HKIKghR81E0KIs2fKLWKXliUg8nAJh3Iai8DwvFX1f00XCTu2VP+6BX1Q3LRVCABHdYH3D1JS1d0ICUgxGb01qqJtmKHwbdT/wDc3sv+nvHzJIPtQeN+GbQHzqzbZ06+/KvoNyypAY5ZOgSS/maVZLy1Ky20lnhX7saKQmZ3DfCaiE5VSRPdDAeL064d8DlQOZQDOzfXSnvB8CbacyzlO6UyAPGjr3F7YHdV7GKNAoryY3E/DyrRlKyOYLvTjhOFASy0sDPWnB4kFDmOoLerUIvEo1Sz+H0oCkhphwgcvrXbiUjQAis+eJHvQWG4H3of/q6P1KV5pNA8kaZGKQmI8B/AqFziCXiPzlWfGPtrDIUSSf7T6VYLCgCopgblJoFkOxjwd/b9jVqrpb9I8YrOG9cjKEjwqy/iViGfzphkOO0aVKBG7bferLHFLGygD/mNZS/cWdQlv9Sf3oa5ZuEv3QPEUCzNqMfaSDmuJJ8dPKlGL+ILL5cxfYgF/pNZhdpQd1f7WoDiF4KICQQwnck+kU8RPkZpL/G8N+oXF+Ib+aWpx1tSotOD8veMe9ILvdI1Vz/iaquXhsFA+P2aqozcmzS8S4ktQCSFBI0c/cbUuVxVSd26Bz7GlSbytdR5t9aovYtQBKQPzqXND0h7ZLGfEK1OEEluYjw9WpdxDFBaSlCTsC4ktrv9KoOJvKeWl4Hu+tF2ryygd8kgQx3/ABq45O3tnVBUgOxc1K80eDvyY760x4piQm0ybZUZVMvMqccizDSKXqZKwCrKSxKW/fzpikgi5bBUzJS+aJYQGhyAKhz2aRaMgjiJeHcENHebcRyP2okXVAuxL/MfamGDwQzjIO91lue9QWkZ1McxBPdmOp2IaqlLaSFYpVhncLGUMyVEw8kgjkXBfpUMZw1ZzZj3kxzcgAN+3jTXE3EKTlJDzHI89fx6W47FLC0kjKoCZf3B9atIq1QnNrx9K7WnPFAZNoOZgFq9T93wTaPsHBLQLqUgqYOSwJ6B21/emybhugFQZI0Co9hrRw4Wgl7hc15SbSCMqQ43rYxoot4eGSkzL6j3ig72DacyX8vTR/OmF3iJ5hI60BfxSBLpKvDSpbBl+AtqMskgdCffWhcZxAglOVAliCmaHu8XGjk/6XNUf4bELkIyJ/uuH3YzRfwSGoxVxLKCROjF/bap/wDW1yGSC+jF6S3cfbtuCo3FdEsl6pHF0sxBH/8AbUrQrHqeJXFRMbFP2muYi+p4JVz1bzFCYXGW7gEEEiZBB8KuxFpKZ56Bm9qfgZTeXc3Qw2ZNWW8PfIcpUB4N51G5xTKycx9YFG4L4ktuwzEDchhS7FoDXjVSkbddK5hM/wA7QPP20orjl9KkhYIcs4Gn/NI7uPTo5Hg1VQmxtf4udEgg7z9Ksw/EyXffmNqzZx6CZSfVquVxhIgOByZ/emLI0tjFs2UE86uu41pBIrKq4ytu6/mGP560Ecatb5ysdJb0FOh5DvF8QmFPSrE8SUXYRz/BS1V1y7Ny1PsTUlYlYEufQDpDM9OiLLb15TSROkufahDd6nw/DTLh3BV4lIU5CXY5llvFmEedN8F8K20k99K4bUx1aigxbMmrENsfVvoKqVi1Szjzra2vhbDf3P4kp+1cvfC2G/8AIUjZmU3vTTQYMwxvK5+5rnaqG9aC9wJiyFIWNyTkDeEl6DxPBr5LIRbIiUqcDq5mnaFixUbhh1BtnNUXcvMHwNF8Q4JeQpgkKiZbXro1RHwpi2B7IMeSv3FOl5YvdekCoYkaHpzq5CbQCikZShyU6MHidZ50bhvg6/qWQORLn2irMT8ILSlS7l8aEyDyMGfxq4vqY3+k6uJT8oxvEsR2iysPyPKNPGhhiCQUgfzXb2GlR1lokn+KjgrN4qOW2spGsHbyfxrBJ1oumEcNxdxKsoMk8hDxvRNhduzf7VVxVwBLJGQoBVsr5pbnDsKhfwK1KBIAdM9mVaHfM53pxhfgrE4gg5mQ0LXBV1CWcjrD1cLSsdV0ZnEKOIvXLqikJAeGBMNyonD4OwlJUogqaJjxL/hNfQuF/wDx1hbbnEXTdLaJ7ifqVH1o298N8NykC0A+6bin9c1aXIpJnywYxewPoK9W/wD/AKBw5kG+x07w/wDSvVGMhUzaHjF3KVEAAakqDUuvcft5v+4kdUz96y2I4mSwUAUtCdhUCpBTnyQC2v2/mt7Oex9f4sjVKio8z9m0pRi+Lnb6k0ItSdGaNgB0o/h+EsqMpUqdy30o7EdwXxLdtBkH2hzQuP43funvrV9vSjcVw227ArTyAYj96pRwtLQo+n3p0xC/tVnQt9aO4fhHLnzP/JrwwhSddDyrX8G4XaWkEA5uZLz4MzUYWCALqlWmKdDopoboQWoTFX3EKnlt+9avFWu7kLC2nVKRqfE0gvYWylfdKwTzAO/iKppg0DcO4QbhUu4rKgaAb1LF3k2xkSH5aa86jiSUw58QW9mNKUXSt3fxeaKFYYrFXHZRA8RDeG9UWGUXKCobsC9RsAkkJCQQHcuTQV+65OYqUfHKPQUxBV67achSfQ/tQqsVbSe6l/8AUY9A1ewGGNxRACYf5n+1MrmA7FQSrJP9qApp/wAxpiFqeI3TCT5AD7CiMLgbyyxOX/VDfeo4/jNy1bWUKchmGRKQZ3KTUFcQvKBuXFAlmZIYBgT4k+NJyo0hx5DmzwNBJBUonmNPpv8AajLuAtW7eRIK1kucokeKjXz/AOLuMXbVtKUqKTcMlPJO2vMj0p3wLELxFvPnIO770lIuXFXQ2WkJLZCTu6gR9PvVP+OUkRbAPP8AipnAKXqs+/70wweCQO6HdtTOsx60OdEriYmxXFr2WXCeYT9wKDGPuwXVOnXwqrj/AMRrt3uwthmJClHUtMcg5qF74htrWnDdmQrLmWvYAJ0Sl9z1FF/JT4/g1HB7ZWCu8sCykOSSz9CfzWjj8SWFk28PaXcKBmhOVPqf2rADGXLqU2c2W1mJYak6z9qKX8Ym0GtW0pdg7SfEvTasqOka3h1vEX1FdwKspSYtMMp6q3PtTcEhYBVHM6eAFfNuHfHF5JdSQSfT0oP4l+LL10BKSUB9v3qHFtmikkj6LxL4js2yUZgVbtoPE1k+N/Ffaf0rTF9TrWKsZ1wVa60ZwjALJcLCQ7E6mnikLNsFxV1YVmcgglmU3tX034HuoxWHSpQCriSUrAGWdiW5hjWa/wCiIzl3JAknc+lEfBmLOHxRCfluuFJGjhyCOo+9S5JopRaZuUcHsW1AlIJGgYkD99N4ruJxrCGHWiV4sEOB61Vbsi6W0DEnn6VJYi7K7dJyZlEagVdw60vMXQtQBnu+odq2GHsoQnKkMDMdd/GqMXjhbIBBPh6VHRXZl14LFOcpxAGwyIgbD5q7WqViF9PSvUWgpn//2Q==\\n\", \"height\": 174, \"channels\": 3, \"width\": 290, \"type\": \"image\", \"id\": 4947634704}], \"selected_variable\": {\"name\": [\"\"], \"dtype\": \"Image\", \"view_component\": \"Images\", \"view_file\": \"sarray\", \"descriptives\": {\"rows\": 5}, \"type\": \"SArray\", \"view_components\": [\"Images\"]}}, e);\n", + " });\n", + " })();\n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", + "}));\n", + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"https://static.turi.com/products/graphlab-create/2.1/canvas/css/canvas.css\"\n", + "}));\n", + "\n", + " (function(){\n", + "\n", + " var e = null;\n", + " if (typeof element == 'undefined') {\n", + " var scripts = document.getElementsByTagName('script');\n", + " var thisScriptTag = scripts[scripts.length-1];\n", + " var parentDiv = thisScriptTag.parentNode;\n", + " e = document.createElement('div');\n", + " parentDiv.appendChild(e);\n", + " } else {\n", + " e = element[0];\n", + " }\n", + "\n", + " if (typeof requirejs !== 'undefined') {\n", + " // disable load timeout; ipython_app.js is large and can take a while to load.\n", + " requirejs.config({waitSeconds: 0});\n", + " }\n", + "\n", + " require(['https://static.turi.com/products/graphlab-create/2.1/canvas/js/ipython_app.js'], function(IPythonApp){\n", + " var app = new IPythonApp();\n", + " app.attachView('sarray','Images', {\"ipython\": true, \"rows\": [{\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUQEhMVFhUXFRUVFRUVFxcYFhUVFxUXFhUYFxcYHSggGBolGxUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGy0lHx0tLS0tLS0tLS0tLS0tLS0tKy0tLS0tKy0tLS0tLS0tLS0tLSstLS0tLS0tLS0tLS0tLf/AABEIALEBHAMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAADBAECBQAGB//EAEQQAAEDAQQHBAgEBAYABwAAAAEAAhEDBBIhMQVBUWFxgZETIqGxBhQyQlJiwdGCkuHwI3KTohUzU8LS8UNUc4OjsvL/xAAaAQADAQEBAQAAAAAAAAAAAAABAgMABAUG/8QALxEAAgEDAwEGBgEFAAAAAAAAAAECAxESEyFRQQQiMVKh8GFxgZGx4TIUM0PB0f/aAAwDAQACEQMRAD8A8gArAKQ1XDV6tzgsQGq4CkNVgFrhsQArgLgFYBa4bHAKwCkBXDVrhsQArgKQ1Ea1C41irWq7WqwCsAsGxLQrhqgK4CASQFcKApCBiZUypDSiNoo3DYoJV2sKZp0EcUtyVyQ6ixNtEojbOU62mitpnYkc0OoCTaBRBZin2WUnaj0rGUjqjqmZYs6IyzLap2Dij+pRnA4lI6oypmD6qp9UdsW8KLRmRyCteYNqR1RsEYAsbtisLA7Ytp1doQX22NnVDVYcEZn+HlR6gnnW1CdbCUuozYoUNiOxQbMUZ9oQzW3nzRzYuKAvpbpQ+y3eKKam6eK6/wDL4oZgsfPQ1WDVYBWAXfkcOJAarAKQ1EaxbI2JQNVw1EFNWDFsg4lA1XAVw1XDEMg2KAKwCI1m5XDVshsQYYdiM2zlWaEVjRvKV1EMoFW2Yq3q5/ZCYY3ZT6kpilSdsASOqh1TEmWcnUeiKLMVossxOZRm2cDMeKR1hlSMttApilZXbFptgah0Um1Aa/JK6o6ppC1OxOTVOwnaq+vDVK7107PP6JHUYyihtllAzJRmtYNZWa60EqWknUpuY6iagtDBtXG27AkGsPDmUUUTtSOoMoDBtROxVFbmup2XeU1TsIUnVHxFu23BQT+wtSnYhsRPVgkdU1kYhpzqUdju81supBBewDUUNUOJlGmf2PuqOp7vJaFR25Lvc7YFtUOAp2W5UfTGzwR3hxQH0SmVQVwAuaNqHdG1GNBU7BNqCYHggxFZSVQFcFei6hxKAZlIKxAQmozWpXUGUTrqsGojKaK1oQ1Q4AQxEawoocFYVUNU2BDaRRW2ca1TtSpDidaV1BlEO2k0akZrgNiWbTJRmUBuSOoh1FhfWGq/rJ1NPRQxjRrRQ9v7hTdVDqDKCu/YuAedaMKo2eKu2p8qR1hlTAdgdqs2gmRWOwdFbtHfuEjrMZU0CbZ9yM2ynZ++akE7URtMnWkdYdUzm2U7QOiu2zfN4K7KXzIzKI+IqTr/ABHUAbLKU1Ss52Dqr0qA3p2jSCk6twvYHSs7toTlGyH4kxQpjYnGNTw7zOadV9BRti3q/qY3pwBTC612chqMzX2QJapZdy2XBAqhctWOBSFVmHUs52JapQO7qtevgkqtQbAuV1LHXBtmY+kUF1LetB7xsS76m5bWZXESdR3qvYph79yEXJtVi4HzgOVw9KCorh69Z1DhwGw8qwclWvRG1ErqB0xppRBKUFVXFVK6gypjjWb0RrN6SFVXFVI6jG00PNaNqI26kG1ERtRI6jGUDQa4K4eEg2siiukdRjqA40ogSQrq4tCm6jHUB5pVw5IisrCqkdRjqA+HK4eEiHojXqbqDqmOioFdr0o16K1ylKqOqQ4x6Zp1dyRYUxSKhKqPpGhTqJ2hUWZSKeoEJdUhUga1Com2OSFCE5TK7Oy1u94nm1EMLlAKmV76asc5V6XqORqjktVcF5HbqqvsysEI2grOq8U5aaoWbWeF5WoelRgwdRvzJWozer1ao2JSpVGxZVGdqpnPaNvigkDaqPqjYhGsNiqpsV00fJhpV3wDqfsrDS7vgHU/ZLSNvh9FcFozOHAr6p0ocHz2rLkYGl3fCOp+yuNLv+EdSki8anA8iVUVRtHSfqhow4Dqz5NEaXf8A6lW/wAYf8I8VnirO7ku7XYD0/VDRhwbVnyaI0y/4W/3K/8AjFT4W9HLM7XbeHgoFbH343AFDRhwHWnyav8Ajjxqb0epGnn7G/lesv1sa73QT5q1K2g4XX9AfqhoQ4DrT5NZunKmxv5Xog01V2M6O+6y22ynl3p4AHoiU7RTPx8LoSOjDgbWnyajdM1tjOjvurt0xW+T8rv+SxxXp5d4cWg+Su210x7rt3dn6whoQ4DrT5NgaXrfJ0d/yVxpit8nR3/JZVK3MjFxz+E4Dl900LQDk/8AtcPGUroQ8oyrT5Hhpmt8n5XfdXbpmvsZ+V33WdSrzPeaRGoGfPgjlxw19P8AkldCn5UOq1Tkfbpmt8v5H/dXGnK3y/06n3WebSQPYceAaP8Acqf4gQZ7B/INJ263JX2en5UNr1PMah9I6w1A8KVRXHpVVHu//DVWOzSrTk14PzAD6oo0iRBLXn8GM8kr7LS8qG/qanmNmn6X1fhP9Csm6PphW+HrQq/deapacBJFx+OvvDDgSjjTBEFvaEg5Fjo3yb2Km+yU/KHWk/FnrqHpfXkCG/0av3WlR9La5whn9Kr915Cz+kGE3H8A3LfMz/0tGzaep6+0HImdWqeq559mivCJSLi/E9nYvSV5ID4A+WlVP3TWlPSNrGzTvk65oVo8gvNaJ9IqF4E2hzMwbwqxtnUNyc0r6RUHNgWsjMY0nydkSYSJSUWrv39f9DadNzTx29PwwVT01qTEDnRrYeOaSr+mtXK6P6Nb7oFfSlLIV5MHEUnZHDHNZds0ldMX3EDZTOfAHzCEaCk90dM9FLuxNB/pRWOpn9Op90Cpp20fCz8j/usutp2l71Rzd7qThjHBDOk6LsqgOuS1w810R7LT8pyOpKPgx+ppq0fCz8r0s7TVb4R+R/1QBaaLgSHsO7Xr1FVNentHAlUXZ6XlFfaKnJWtp6qM2O5Unn6pQ+ktT/Sqf0nf8k26oDqP5WkdZwSznsmeyd+Uf8lRUKXlEdefJ4x2lH/6Lf7vurN0v8VDoSPMJs2QZwev2XNsjNc9T9V6GcTz8WCGmGZGk4cIP2V26TpfC8fvijig3YeQVxRb8PglziHFgRb6PzKwt1L5uiIyi06ugRRQb/3+qDlE1mV9ZpxOJ5fqh/4nRBxvDkT5I/ZMHuz0VrrTq/RDJBswJ0lQGv8AtP1VG6TofMN8fqmTRYfdHgoGj2HGB0Qyj8Q2ZSnpWznW6d7SinSdAe8D+E/QYLqVgp7jwxUu0VTcZujmEMo8sa0g7LXZyJvN5gjzVy+z/G3970GnommB7I6BHbotmwcgEjlHljJPgh1rs7cC/oHHxAhW9es3+o0cZafEINTQdMnLrKq7QLI9k9Y8yteHLDaXA+NI2bLtW8/vClukbOBDXs5vu/8ASyH+jbNnKZXD0XB1Acz5BDuch73BrjSdDW+lPy1rx5iEzZrbTJi+0ax3mnniV593ot8w3Xc/HJLVvRQzh3uJg+JWtDkPe4PYNc04CownHG8PEgghFp0czey2kc8yfJeIo+iTj7sfiH0nBVqeiT2+647mi94BK4x8wyb4PoIpGJa0EE6zgMN2pM0rLUOJY38MHrIGHNfMx6N1B7N8bcm/XFDboyvSJLXVWD4m3hPEtPmkdPiS9/UZS5R9dFjeO92UicLox6QcFqWPR04upmCRmGQDnkMfFfJbLabc0hotdYbA41QOpz4Lcsmk9LAy2vVga7l4eLCuWpSmuqOim1LZH1XRtgpHuvpHOJNMkEajenCceC0bVoOkcqNONczlwj6r57ofT+lGul7nVBrBpiPBoha9o9K9IaqLObXY9CpKpTisZJ3+n5uNLs1Zu8ZL7sZtWiWNJuUmySO8LoAGWABnUUpatF4e6BuvHqScMl57SPpnbm4mlSifeLyJ3S/BZLfT+3Yh1Og7cJb/ALihGFR7ovpSS71j0VXRz9baThuz5kkpF+ju8ZoNj+ZuPAEfVZ1H02tBMOsZcfkcfAXT5qtT0trf+Rfn8Z8ri6IwrLp6/s5p4dWO1dGM/wBET0Qamih/pj8xP7CVZ6WOnGyVW+P0EdFW0elYGdnqgbcMOuaolW49f2SenyWfodmfZjk670gKw0cwZNd/clqnpdTjClU6D6EpV3pa2cKb+n6hUSqvoTagYDap2Tvgooedn3SzrSTkOc4Lg1zsy7xA64LtxOO7GwTnH0VTXj4BxMpT1dusjm1zvGUzSY3b0a0JWkG7LC1/MJ3fsq7S47eJEfZWEbT1+y4uAyaTvOPml+SGKuDtRnhPmJRad7f4n7KGVTsI4T9cFYPIM+bsfAoNsyCCdh54DzXMpmRePKR+/FR2o1n+5VAYTMTvxS3GGXPbqd0E/RGY4HEGd8/ZJl7YyHJWo20fMPLpCGOw1zQDxtPirh5OX/2xKVZawThf/KY8kT1jYCeAUrPge4y6qRqI5/orgk6vFAZXO/n+iKKmuepSsdBWN5HifurCmD+mKBTqZ4jcRP8A0iNrEYSCErTGTQdtNoGRPMq1OmCcM+BPmUBtQjM4cD4QmWVd/wBOqVxYyaGG2c7Md5+mSKLKDn5keAhLB/zR4+SJ2wzvY8T5KTjIdNGnZrK3IR0HkU3TsrC6boJ2iPKMVi0axPdljdhLhn4p+nUrCB3DvHenmCoTpy5KxlHg9BZqAm9dbO0jELYsVmDs8doOXKT9F5ahpGq0xUNLde7p6OwK1rPpqmSIjDMNeWY7g8AHkoYSvuCd2u6evs1MNEDLUNSvWYCMQFm2PTNJ2F4jAGXa+eUpqrbW5Ajm5o8JlevGrS0bHmSpzUt0ZttoUhMgY6oJ3ZNGXNeat+jaJcf4DHfNdIwjYQvQ2zSLIxdGfdILOEEiDrWDa7W5xN9oDTsIcOsfReO077M9Ps6l1MpujmNx7IDfM8MzKHaKDXaidzgCPFNXdhB3mCegACWdWOIPhAVIylyWkkK9m1upo1YBBq0Guxw8foUapAM3cN5H3+iXqVBqH0+qsnLoyLx6oFUoA5hvTFKusLN/RFe47Cd37BXB5+FWTkupJqJ857YjJvEnBS997dwH2UUnu1Cf5mgecK7nEfDGswAJ/CCvaszzEQymRj9/Iohk4YHjK59o7ox4kEDy/RCbWG1/L/8AUpbGDUqLyYmOACI8Ee9PRLCqIJ7w/mcZ5Rmqh7Tk0Xs8RjyvOQxZrh2l23qSfBTePx+H3QnVSMwZMQ2QMMcYDssFXtqgEm6OIH1WsG40Hna88GgfREDWnEtceP2SbazzqLuAgdSqG9OMt/FmOQS4huactbiABxAHiYUutLoza3f3nfokXtEe3cPEGeEyuosIxFR52y4A+eCDiG49decb7zwutHVWa+MC8jd2k/RJdrJi6X8XfaVcWkNwljBsBl39uKVoNx11JuZa4nU5z8PEjyRWmB3LnEz5jzlZ4tFIZvk7g7xkphtfWCDvd9JMBBpjXGqdUn3mE6mgO82ko9E1M8uRnh3jKXo1HH/xGcJ/YRxTGsg9fCT5JG0Orhm2rUXx08BimKT9d8kcG/okw+nracNZkj7rv8Qpj2ZHBhPilfwQy+ZotqgZjqE7QbOIa3ynqFhU9JE5An+Yx0AJxR216biL5IcNUtH+5TlBjqSNmo4g967G5jXeKZY9kiGjHZIj8N5ZJrmP4RaTsc4fSQopdsRN2mDtvHz7M+MKTiUTPQ0q4ECcfhexxaRw708gtKjSeT7DLp91zHXcdjnNbCwLHpeo3uu7hjBzXNeObQ4GeSdr6RtDQCLS0jDuhl09H5rnlCXT36FVJHt9CNcf4ZaWNGOEOHK+MOgTemntuhoqPDjkWUw/80NK8pYfSxt1rKlXsz3g7sxTeHSc7hBjCQYPJOH1drRVs7ixxBh7Q4vObSbvsg55t4BC7jCzJYXnf39fbItlia0TVe/HW4Npz+G6sWt2Im484TmBhvN049Csy2WWu5xeXV3knB1TWBuEQN6z3MccLxEH45HLFGFK/U6HPFcms5wODKrD1HTBZ9azgGXPaPxEz0KAbK/MuJ2EmemtArOcPay3wZ5F0rojC3gyEpX6Dd9s+0eRI+qE2o0yQ553OnwvFIutG4x+Fo6Ocgm1T7jujT5FUVMRyNI1ARiHDqfEFLGudTvL7pW/I97qqdoBkB++SdQEcjxxMw41Q7DHIkbjgrdn8pA1YxPhBUPDHYirj8wx6hQyznK826c4eceRC9NxZwXCtpn3X4e9F0cJMR5KGHHBjnHqI146ku4Cm7CoeAGpM0O+ZlzRBJkRO4HE+CWzNcsbTODgSNQcQ67wgYK9ocWhpMub8kCOIwKRqVMSACZ1OJMc5hMmobvdNPVIAaHTMYHX1WCNdrGLQBtEgE8SQYVqlpIZeujAgTJLtZ39UlexhzHggYXSAJ2kFEa1oBcA4AZuBa7peEjqELBuMMrPPtPIHzYeGC7sC/I3jrJGB2RKWp2sXZNQTlBpjll9CiULS1zT3zP8pGG7E/dCxgjaNNpxMDHBoJk8YUteCCBlOGz7zxS/rLYdJDvleTB3xCoy00nYFhBy7hN2N4JCWwR9zcAHsBG1xaB4qb4EhrG/pxAgrOaxk4XxwDTyMymWWYn3qgbh7RAHIEYoNBuEbVddkEAD4QBA6ShevHG890ZYj/uEVlkdjceCBry8f1QTaA3AX3HbfddB4NIQsG4alUESAAMiXtPgR+iJTrNBghrt7XNkcsD4FK1KocZcTO2I5TB+qo/U4QcSCDDtmBOBBxQxGTH6xn2QwHY9r54ycPBDpvqtxuMM7sxuIiENtouR3nNOxk5fi+iKbS+CWPqc7nkDKFg3GAxzwcAORPjPmFPYPiC1vMj6O8wkKbHu/wAys8avaAPQBS5l0XXPqROEzPI3Sg0wqw6KcfCMPjj7yoNpqU8RI+YHD80lBFHAdx5EwHPqADkSyRwTNkoUySBdY4Y43Xf7s+SVvkK+AWjpMOcBVc4A+80PI5ljm3tWMOOKbFlZDbjqzg4YBtSkYMxBh0t1HGM80mKzGuLKlE1NUhzWB0bmiDxWpQtFkgPr2GqWTDS5tNrGvwvRUD2F226TrUZO26X4LR32G9E+iFSs6XFlBoJBNoc8OkagCRPGY3raHogXPNSaFJrboMVu0e4CAXt7KYnEwQMVn1m91vY202Wi/DsnU7RSZN3vAuAeHTvcc0ra7ObJUizWm867DnU6VWRkXAVKdNwIyxB1hRylLrv78SlrHodIWqlSp3abK1eO8XG0AkScJZfECIwjFeStWmQCSWtGJ9urB/tEz1WhoK1OrVQyrUbVBDgL0tcI70hzgMMDhBJnJMW/SYaboLXOiHEEQOBaZz1kb1OCcJWaux3aS2exjN0nUON0XQM3EXB+JzseiA3S7hm8XdwEAbLwwI5IFWrTqOyDjjN3E9S8SN8IVa0NBgPe3KWljiB+LFdiin4o53JrqPC2NcJaRO6MeUpY25gwL28BP0BCEHl4hpJ3dm7DnEeCHUe5vtB4HxMMDm3JOoiXGjaWxIdO8FhjqAo7Y/F4H6JF1495pcRvieoPkq3n8eLj90cQXMKtSYcQwzxVOwnaNwWr/A11D4lUJo/F1/7XccYiGubk480Wlpctlr8QRB2H9UciznOPzHyRB6vEd2NwIR3AJ1LbSOMcBmB4LqOkmz7LRxa36hGNKzD30KLLtJ5o/Ywd0TfZVAcc8xHCNSD6pUJvNuOjO7IMcDCE42YZXuRVH2mn7t+Ov0Q7ptzRfZCQTg2fjugjpK6zWIAkOrC6cCBe4iMBrWabW35lQ23cUJYsKZ6F+jaDh/m1AduHjggVdEV2d6i/tmxLg3Mau8wnEbwsUaRIylM0tLkayD0UcX0ZXKPA07tacPuPYSMSQBHUABR24Il3eJ2XRPQEFXpadcMnjoE1T0w4+0GO/maCmxYLrkTs9pa3GGxsc+egABCLVtDXkQIb8xe5oPyxMeCbq0LJUEmabtdwujoZCGNCV2y6l32RmHAOj+Rwg8pU3JddhsX03+QE2hsy5jTGHdaLm4kmfNE9ZbEkOAOpgDW9Dj0SDnOpujHHMHAjbIGfRWfWc7vG5A2gjwBAK1jXGS8xABIzh04DfAw/eKMw9mAQGNOYJe6OhEpR9eQCwtaRmLxAj+UHwXdrJAIDv5cCDuaYM8kGgphqlMPdIqsBjKGkciYKOyz3RsyOfdcDrzM+CUFtD+4XhwBJALRe1e1A3bVam4A4CmMJ9l17fEmDySMdDApucZa0DVLW59QYTlhtVRjg9tVoLSO65wY6J1hwA2YwRuWVVtrQQWtdM94jAEasABCs+s8iWMDWYYtzH4XO44wUsk2twppM9PpDSveirTl7gCKlO5dumcJAAJnGQnbHbbXZWBratR1N+L6deyl9JwAaXEOvQ8AGZkZb15h1B3cPbU3OwllbtKcHukBzp7MhwOBBjbC0NFVKtQAUqBYwF1+LRdaWlsnvdn3YDXd8zF4CcQDzuCSsvf3L5Xe49bKlW1tudqLoEijRs804D/dLnuuul0wMIKaqVOxo9lVrNqUxIYKENuCQSyuaZYATex9qYWLatJvoVWlz7TSqN9qLQyuXU3i8A0kBkQ7eO8MoRdOaSNohwrVKdGbrS6pZWHKSajaMQIcMgZ3mUmL2W1h0+o1obSVmpOqVKV41XC6BRbeLGu9sk1KcE4AZnMpexkudep0q7u/i59JlQAgXpdUGG0wQmtD6GsdYtp0/43tdrVNSqWUruAIPZ02vGboiTtxhbui6tmpFprNYKVI4OlrWanC7TcC9zjeLi6DvySznGLdrtmUW9nY8paaV9xvOcDrMtLer5x4LMtD3DAOIZrH8GTwgAnxTOmNOmvaH1KLYYXm5EukDLDPLHHBZ4q1He84DcC0DkMui66cZWVznqNXdhutaAGBkNa0D4jecdpu4jokzaT7Te6NoL3NPGRhzCXfZvjMD4rkn810HxTFGuaYwLXje8Ax/K4CFW1hLk0nknANI15gDr9k0KjtQPgqeth4xc5o2Bwj6+aXLafxjm4/VyBjz4ot/ZVhQbqCsFHHFdJzHert2dFPq7dnipULGLCiz4VcUm/CFQK7VgF20W/CFcjchyunFa5i5YMyFXsQcwAulSCgEH6oCrCwtVw5TeWsYWdo3YVX1SoMjKdDlYPWMIUbUWnvBalDSztTz1VHtDh3gEkbDOLT1wQbv4jJteB6Gz6eeIvOkAziA7dr8k9a9N2apBLLp13BE8l4x1lqjIyhHtMo8Ejpwbva3yHVWVrHpqr7M3FjQ6cTeGM8BAUM0mxvsUaTTtFNk9YXnIq/Ceigtq7D0TYw6gzfQ9hZ9PtJDatGg5kiQadMZHP2dhOUasU1pixWCuGmjV9XcB3myX0yd0kELw4ZVVBWeMIUpUY3vFtFFW2tJJnr7Xos0WM7O02evifZIDmYDE9qMAd0qtJoyq12Rra1naEAEHBzmgDXkPOV5b1l+xR607WFtPbd+hlNdEezdouhUjsLReePcrscGnc1zHeF3Yj6NdaaDi1lGHDu1HUO0p3mxI7R3aRdEzDbrtUjELxDbdG0LesHpY4AMrMp12DJtYOlo+V7SHNz2qU6MrbO/z9orGor38Pf3PaWz0lttGmztTaxTGBqU7OwNaCMHdtUc9tUE+7IkAY6llv8AT4T33l8XJIpUQ57bxJvupwGwHex3xemVjUdL2ZhJp2Kj3hEVHVKsDdfcRO+JXDSFlfAqWWkADnTHZnmW5qSobbxfp/0q5p9V6mdX0t2j2v7FjiCSTULzfJjF0OABmThGJS1tfVe6886yYOQynOdg1nUvQO0JTq/xLNWaM+5WutcB/M0Q7LMgDeqD0arO7na2c6+9Ui7gMGideAmMSqqdOPwtyTcZvp9jDpl7ml3YseBhecHXQSDGEx02KbO97XD+GGk5Rfxx1XpbGB1LTdoa0UjIY1sAgvY++AMjPZNLwNXNRZKgJJbdJvGS6q280QSAXOLQMiZI+ybO+6Ew92Bm2t1hxd/6jMDwbP0Q61oqe0CSP/cjyPgrVWySBUEyRAqUwM9Ra4AhEosqNAIqtOqYfUI53iB1RugWYGg0HvHnHaEHi2BPNQ1rPiP4abmjoFa1VA/F76btWDQ5x4QYBS7rTBgPIGwiPBrICYUziqs9rkuXK5zl1LMj+9YXLljFgrKFyxiVAXLkDElSuXImICsVy5YxYKwXLkDE6wiNXLlglilq/wDmM5qVyxhkqApXLBO1IJXLljFaeQ5+aWr5rlyVhQrUQSpXIDoPQTVNQuTILHbKj1s+S5cs/wCRSH8T0XopmeI8isz0jz/N5Lly4/8AMx639tHlm60vRzULl2nLDxC0vaTTVy5Ixuh//9k=\\n\", \"height\": 177, \"channels\": 3, \"width\": 284, \"type\": \"image\", \"id\": 4947633040}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxITEhUSExIVFRIVFRUVFxUXFRUXFRUVFRUWFhUVFRUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGyslHx0tLS0tLS0rLSstLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAMIBAwMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAACAwABBAUGB//EAEYQAAIBAgIGBgYFCgQHAAAAAAABAgMRBCESMUFRYXEFE4GRobFSksHR4fAGFCIyQhUzQ1NygoOy0vEWYpOiIyQ0Y8Li8v/EABoBAAMBAQEBAAAAAAAAAAAAAAABAwIEBQb/xAAqEQACAgEEAgECBgMAAAAAAAAAAQIREgMhMUETUWEEsRQiUnHh8DJigf/aAAwDAQACEQMRAD8A8molqJaQaOk5qB0SaIxIlgELSGJFNFxA2XYODJYlgChlgXEOIVgBCUgkgtEJIDVBQQaiDEYFioqxVhlgUgsEitEZCJEg4Iy2UiimgLDpIHRJtlEhTiWoDlAJQMuRtREaAUYD+rDhTMuRuMBcKYyNI0QpGilQISmdEdMRCiMVI1qkLmSTsq0kjNKILgOSKqFUSZmkrCpDJA6JREGKbINcSDEeaSCsVEYjqs4XEpIuwSReiMVAWKaGWI0MCoF2KSGREMqI5IXojYAMFoobKItoQ0FEOIMEHFBY2gkSwaQMgsVESGxQtBpmWURbCUQUhsUTkUjuFTgNVIOjE0qBzynudkYbGXqh1OiaIUTVSoEZahWOmIp0DSqVjRGFhc2QycmXpRRmqszzRonEpUy8VRzyZnUBFY11Baol4qjnk72MegRQNMoEiragbEomZxZBziyzRg8hAbolaAUTos5nFoqwSDSLUR2KrBKcRmgTRNWZoUWg3AGwWFBBwATCiwsKHpASiFGRbEzSAihkUCkMiYspQSQM0GkXNDTMtCUhiQNhqQmzSWxEOhEXCJrpRJTkW042MpI2UoC6VI6WHonDqTo9DTgShQNKp2G0oAVTlytnTjSE1GLULjZjqMFa7LxRCTMzoCpwOhONyuoKp1ySe5zlRBqxN8lYzThfUh5mMDDoXZcomyFO2fxJWqL3WsvIM9wcNjn9WQc3z7yGszOCPJxpXKlRNMZxe0bGN+RvNoz40zn6Bdjc6XcKnC2wotUlLRFQLdMLRQaVii1CT0mI0SpUzTKJVil2ScaMjiUaHEVKArNVZEw4sWgkGQYjEMixZUUZdM2k0aooqRKbCZlsaQtRHKICY6MjLbKxigqNM2UYA0IGunA5pzOrThQ6hE6FIx04jesscsouR0xkom7SshM5oySqtlJNjho1uzM9W+ApVMzVSlcxWzNtKHE64pHFOUjRGSLqVUKSF1Ktr5LwMyjTs1GTaot1UZK+IW0RUxDbshFYVJGrb4Kq4jMum7iFG2bGQb2DbXQlF3ubk4kMqpvcyEih5j6mthcaMlqZ0ZUlHLUVOHFHTbOb8t8GJTkinX3mmcRUqV9gJrtGmm+GJUkxsYbmCqO5jI0GackZUZC3pIuFQ0RpS5lSpb0C1AlpWBZMXUpDlQewbBbzfkJPSaOa4lM6UsPcz1MKPNDwYiLGRKVIOMRWCiOpxNCppi6SHxRNtl0kJqUCUaRsgjVQw92YcmkaUE2DRyNNKDeoqVLMfQIOPZdS6GQolzglrBq19iMNXrJOwkmDaNHXps1RkhFHCKMc9Y6EopGJST4NxT7GLD3d2FNxQynVk9SAq4faEdRrkzKCYl1WkYsVilqNtek7ZGeHRz1vWV88eyXgl0ZINFyaNiwD7TXhui/SIy1VyVjBpUciOGcjqYPo3Vc11KkI5RQupXdsgWTVsy2k9jWqcVkoohii5+iyBUQuR88eKc3dse6j2M4yug4VWtp6WFcHn+S+TrqpvyG04S2NNHNpYp7zTQxSWzPgTlFlIzidWkm/vRT+d4cqEb5NrxEUMavSsbKWPg/vK/FHO4yXR0x1IPsqGFlsaZpjhW1mu8fTdCSyln3BxhJZxldcyEps6YxiYXh4p5prxRJYbbFpm94ectq+eRzMTgakXfyzHDUvsJwroqcd6aYiUTVRUtdr8s/DWbFh01e3cW8lckfFfBwqlIBU7nclRW1AywqtdLPgWU7ISjicmFCRqhQltDbknksuRpeNuvu2sauyb26M+ilrN9KyVzmSnd3Z0KE4uNnkwcl2JRlewCk7jb5awrxjr7w3VpbFcnKXpFYxp7szaDbus+8Zh6Mm1m9Zsw9aG2OXA2yx9NK0VnyOSWpJbJHVghDwDebYudNRewy1K05Syky25bRKEu2PNdDni2tSY11LpXdgMLh3l35mmriqcVq0pbrZCbrZIPlgrEN5Rj2vUNpzSX2mjPGpUqJ2jZLsCo9FTlm8lxEtK+RS1kuAp47ZCOe8TUqVHk75nYwvRyjsbHSwrexJfO03GFf4olLVVbs4+Gg461n3s2JJZ7TUsPFa34gVKkI6reBTxe2Rf1H6UZuv4MgLm9xDOGmHk1T5EsVF649qYdovU+8xR5ho9KzkxNCpNbQo3FwqGiEkxNmkglcbGoxNy+sENGyniJb/ABNUMZLkcxTQyNTiYcUysZtHfwmNnr0rrc8mdyjOM1t8/eeKpzey5toYuS2s5dXQvg69PXpbnrIQhfWr8VbxNKjbPRXfY8zDpVvJtmin0m8s5W+d1jmloSLrXizp4zD31J+DERpaOTu/ngaMH0lnk78Gg8fjFLPJdjS8imnqOOzIaunk7RzJR1tPs/uZq0nuQyvNrVq5mTM6FIni0XGrwQ+E78BcaF9Ws6WG6IqPLRd+5eIpTiuRpMwue9XQ3DRu9SXNJ+Z6DC9DpWU0r820bFgKW3wJS1ojWxzaeGcktCKfNWGroeS+1J34R1ncoQSX2Y2XIbLERjuILWVmXOT2OZR6ITX2c7rbsBj0M9LNpdh0Xjt2SOfjukPRld72yimmZqY6XRENbnfwQyn0ZQ1nEnjntl2FfXZvKKb7B5JDcJvs9JTp0Y5JXHSrRS2LgeUUq3Lm7GmjTntkuzN94nrxRn8NJ9ndqYlLgYauIT1NsyaCWebfHPzBlipei/BeRN/VejcfpfYdSm3vAdBpXbiuYvrG9bS5sCUKb1zu+ZF60nyXWjGPBoVSPprwIZ1Spbn3/AhPJfJSj5AoLei7IxwroKWMjFXbsj6CmeTszdCCfDtG9RJZ2yOXhekYyba3LLvuzbDGr5uL8xpY9miHMamt5mVeD4eRFXiG4UjZdDI23GdYinbLSvzXkV9YQtzWxvp8F3DoT33OasWvm4ccUt5lpm00diOg/SXcacPCHpNdi95xFjOIdPpFXtdX12JuDKKUT12Ew0Hqqq/J3NUujaj/ABRlHnn4nmcL0yo64pnSpfSGn6LT53RyThqJ7HRHB9nZodFw2tvl70xlXoulHUtJ7r2aONH6RxV9HaHH6Trcr7yWGsNuN8ncwuFUbWUuyNvE29ZfUu13PLr6TtrJ9oP5cb+9PuZh6Wo+Q2fZ6bE4qEV9qefAwfW5X+zd7jjwx1O93PS5r3mun01FK0cuLafcg8cl1ZtRSXJsVTEt67Le7IOeJnqdRX4Rv4szx6WpytpSi3ucn5WQ59LUlktFcs33sw8v0hj8Cp4STzvJ8Xl5lU8GvSXi/IlXp6LyvftXkLj03Bbe5f2NLy1wG3dG6jgmuC32S/mzNFWnFbW+9+WRyX09T49yAl09D0W+bM4aj6M2vZ0nVS2Lwv4A9dN5RT52Ob/iFbrFP6RczXin6ByR1I4Wo/vN9/xLlhN7l61jjS+kHMVLp3g+8Xh1GLNHehh47o9ruN0VHd2WR5p9Orc/AB9OrcD0JsWa9nputXy2Q8t+XVxLD8PL0PNez5CkW43IpfORFM+hPHJTpJalYYosHS+bFxd9j7gANRCjH5uRS3IJS3pis0kWo8S9DiB1j2L57glUlu8fgLc1sGoF9WCpT3fPcMtLh3huPYrRL0OYSv6UfEn78fHLwFuFoihzKtz7mSWX4ovkpF2d9b9WXuHuJtFxXMNLiLjGXH1UVaV9U2v3Ev5goVj0uI2MXv8AMXSp/tL1fePUGtT8veZaNJlxi94+FN7xH2t67h0ZNbV6nxJyTKJmiFHiNVHj4/ECOId8ppW2dVJ58tIZPpGOS6zPd1Vr/wC8i7K7FKjxt88y3B733ip4x2/ONfwo9yuzNUxb/XWt/wBuBpRYnJG7Re997DjTe1+LMFOtJ6qjlypR9hpg55X6x8owQ6aM2h+g9772WqUt772DFTeejW5aUF5XBm6r1U63r0woLG9RLY5d7K+ry/zeIqFGu/0dV86kL95c6dVLOm7f5qnuFQWXLCviRYZ8Sk5tZdXF8ZyfjYONKqs3OmlwTl4ZB/0Cnh3vIGlU/Xw/02WKxngVb5uUnH5/uVbh3yZFyXrP3HccQd4k04rUm+1AxVvwx+ewtQk81o91wGEqi2xfeimqbecE3yv5FNvU5L2+ZcaVvxeK94AElG/5vw+Aemr/AJvNcF7BcaUH+KL8faWsHBZq1/2RAOVZWzjbuJGtN6oruXvFp2/+Y+0uOJ3Ttwah7A3NWhyr1PRz5/AqVWsnmklzQUKz9O/L+wSdR6pS9VipjtfJVGVST12XNe4e3bJzu+fs1ipuovSfal4ZEpKbzbS46fuYgG9VpapNeshiwu9vmm2KnpenBfvNiYKT/TLsX/sG3sN/Ro6lar1AamD26c1/Ea9pI0U9dWXq/EaqVHb1mu21eBlyXyPFgU9FPXVfHrFb+Y6FCtTWb6y/NP3iYQoLWpPnJ+RpofV75RXak/MxKUX0ykU16Dhj431SS42fmkVW6SjqTfO1P2tnQoRo7JQT/Yh7R9SvBa5x5pR9hDKN8FsZVycWGNq3y0pLhBeaGLG4h3tCSe9xt/MzVW6Qpr9Knu+1byfsMlbpinFOUZaWim3FSd3ZZJXTzZtP/Um18k6zFu1nbkoavEfGGLavfvkv6Sp14Ttm7v0Z1FqzySSuaY19qp1PVkvGVhOXwh4/LKovFpa6T53b71YbKnipLN0Uuc15Axqybv1cvWp/1Fy6299KnBb5VIp9tshZfsGP7gLA19bq01xTk/BlwwNST/6hL+HLwzsLqV6cXeWNprhGcX4KLEz6Zwsb/wDNTk+EJP8A8UFt8fb+Apd/c3vCSX6eW7KnJ9uWRSwM0sqzz30femcCp9Jaeik5VpStG8koRvJNXtduyaJX+l1P8OHbe+dT2RXtDGfr7BlD39zv/UJ/r3/p0/6Sjy/+LJ/qaffU/qIPCf8AaDOH9s4cYS3O/Ne0twnu/wB3uQ1Te5FO+/z9527HFuZ1Tnw75DKcZf5fH3jLcfIl4bWu1isdAaO/R+eAWjJ6k+xZeIaxNNbV2fAv8oQX9mLJ9GlGPbJGlU4dvwD+rvbLs+Iv8qR3PwKfS26Pj8BXI0lA0dQvRv2y9wdOnFbJX5y9xj/K8tkV23ZT6arbJJckvaZakaygjpadmo2ld3tm22lrsu01QpX/AA1O1SR5r8oV3JTlUbkk0nqaTtdZckHLHVXrqT9eXvE4Ma1EemjhX+qb5qROss3HQjFxte7irXvbXyPKSqSeuTfNtgxp2DD2Zcz1M8ZFa5w9ZewzSx8E76cb/vPyRwCWQ8EGbO3V6Thsz5aXtSFrphrUlyt8TksmkPFCyZ0Z9Jt7APr++F+cn5IwuRTmgoMmdCHSKS/NQy1fe8c8yUuk0s+pou+xxlZd0l4nMdRFdYGKDNnbXTk1qp0FypL2tlPp6tZpOCvup079jtkcTrQXLgLBeg8j9nen9IcU7f8AGeWqyirXy2Iz1Ola7116r/iS8rnK6wpzHgvQvI/ZqqVW9bvzz8xekvmwjTI5GqM2OdVFdehFyMKFY7ruALrsS2VcdBYx1CCywCx/XS3smm977wLk0gAIiRWkTSAArF2B0ynMQBpF5CXWK6wANGRNIzOZNIAs0daV1vERcq46Cx/WguqKsQKCx3WFOYslwoLDUnvK0gblXAVhEuDclwAK5VyrkbGBaJcHSJcACJcG5AALSBbJYi5ABLkRC7CAosliwAGxZCABSLiQgAEWQgABJ5gyIQAIiEIMRZEWQQyEIQYEKkQgAVEtEIAimEiEACEkQgDYJRCAIoKJCAATIQgDLKZCCAsjIQALRRCAAJZCAB//2Q==\\n\", \"height\": 194, \"channels\": 3, \"width\": 259, \"type\": \"image\", \"id\": 4947634448}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUUEhIWFBQUFBQUFRcXFxQUFBQUFBQWFhQVFBQYHCggGBolHBQUITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OGhAQGzAlHyQsLCwsLCwtLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIALcBEwMBIgACEQEDEQH/xAAaAAACAwEBAAAAAAAAAAAAAAACAwABBAUG/8QANxAAAQMBBgMGBAYCAwEAAAAAAQACEQMEEiExQVEFE2EUcYGRobEiQlLwBhUywdHhYvFTgpIj/8QAGwEAAwEBAQEBAAAAAAAAAAAAAAECAwQGBQf/xAAuEQACAQMDBAECBQUBAAAAAAAAAQIDERITIVEEFDFBYQWhFTJxkbFSU2LR8CL/2gAMAwEAAhEDEQA/AOlTdCcHrlU652TTaT3LqzOZ0jp3wqvhYGVSUbSnmTpm7mIed1WdpO+CsEbozQtJjub1RiuO9Z4G6qW9E80LSZq7U1QWgaLLHRC9mGfglmh6TN4tA3VdpC5gYUbaiMkGHwdAV0XP6rnX1BWRkPD4OmLSVYtPVc8VCoTKWQaZ0e2jdGLa3dcwU2qyxqnJD0jp9sGigtS5rSN0wFqWaHonSbXTBVXNa7ZMAUuog0WdAVOqK+N1gjqralqoNBm/mDdWKpWMQjDgodVDVFmsVFfNKy8wKxVUOqi1RZrFQq+csnM71YJUuqi1Rkauer552WW8d0JeodSJapSNZq9El9pKTJ3QFg1KzcolqDHdoUWYvCtTkisGeXulW1i7D7AN1bOHdV1LqUZui+Tl3ULguueHhAeHqlXiQ6UjmXSrxyC6J4ad1G8NI1VqtEhwkYWscmhh2Wo0SEJou3T1ULBiRTch5ZOi1toHVU6ilqIeJj7NumUqQT+SiFPuS1UPArkhRtIK+TshdRcpdRFKATqbUuGqcuMz5Ibs6qcy1EtzmINcoV9n6qzZuqMkXYOAmU2jol8gD5iqPQqGUjUB3Jb6oCyFjzrCoUj8zgoxRaka+aDqi8fVZWU+pKddd9MqXFcjyNDYR3wsgc/6QO/H0VCk6Zc49wgKHD5KU0bea1QVQspfo1pPijY930HzCzcWUpI08wqFx3SCSfljxUNI6lZtMpNDHO6ob/VALO3UkogxoyBUu5V0VfJ1Vxu5DyycsFYs56qP/RV4khqis2bvUU7heI4ORhyzgq7wXfkj51maZVgpAervhLJDxZovKSk31A9S6g1Bjg0bK7oSRURhynUKwYXKCgoBUHK7ypVBOBRs4QGyhND0QejUYsDObKhdZJWwORAoVQbjY5hsKA2ArryFC8KtQlXOI6yOGkrHaXPaMZC9DVqDRZH2QHEkrOVdm8I8nDZWJ3lHzD0XVNjBwCdS4eBmhVpei2oI4zLO939rUyxRniuo4gZJIY52kBT3DDBMyl8YAIbzjkCV0qdiGqa2kEu4t5J0+DlNs7j0Tm2crommq5PVPuYck6cuDAbMdSg5B3K3uMdVWJ0UutHkpQlwYuU7qrAK2co6qNp9FDrItRZkFMlEKJ6rfHRXdCwl1UF5LVORka07Kxe2Wlo6Kz4BLuIciwlwZ4com3huop7qnyPTnwcJ9YoBWdslO4i0ITbgei6cmSoDKtrLcypStJOh8VVOrTmYkplS1j5RCWZWHwNNphK7YfsoG0pxcZT2sZ0TzRONvQHaXdys2t28pr6je9L7awfLKMkCT4Cba3Jgtp2WOrxN3ytHlKyur1T8oPgobjyWoy4OyOIJzLYCuCx9X/j9FqYX6tAWcov1ItW9o7AtCMWnouO+0XdT4CUNbicBOMJEOx2uf0UBnMeq8+3ixOQ8yn07ZOZA7jKqSkhKKO0C1FeauP2umM3FUeK0hr7qc5j0kdttQI8DqvPHjdLdLd+IGaeytar9fYl00emAaNFfMb3Ly4/EAOh9EY4u07epTk5ryhKlc9IKrDkVd0aFefHGB0RjjQ7u/H91mpS9jdLhHd5Z3VBh2lcVnGG61h5Qk1uOj5Xhw7z/AApck3a32KVKa9nobh2UBI0Xl3fiF3+jKEfid4/sKJUJy8RNEmvLPVGqdlBV3BXmB+LTq0Hz/lNZ+LQc6Z91D6aaW8GF23sz0wqBC4hcWl+ImHOR4Jz+N0xnPkuOXTQls0y7zR1G1BqVZDTkuM38Q0ULvxLRnASsn0XqKkNSfs7fLCi5Q4/R3AUWHZS4kVkzz35Yz6ilmwDcqjbIyHmibxHeF9mMq6W7uJxgw22Zo0PqiFL/AChCbeNDCW60zqPJVGpVf5kJ016NQo9SUD2DY+aQKo0IHcYVtqu3lXkTgw2tZkSQmtpM0chvAjEeiTUpt6hTlcaizbTwyITe1Efcrlho+pFh9SzlCL8/wWsjqfmsaITxFpzXNcOqkt1Cy0F5i2Xfk6ZtLDqkvZTOaxGm05OQGidHJ6Uv6gujcLNSKc2jR+5XJAeNUclZzpVF4f3LTTOmbNROoS3cOp6H1WK8iaCVg1VXtlWRpbwhmpHmhqcHboR5pEO0cVbGvOqeVZb5CtEZ+TjcHxUPCW7qnUKmhVcup19U1UqPzP7isuCxwxo+ZW6xNGqAWesf9JzeHvOcJSk1vKoCfwIbw1nzOlaG8Ppboxwx31Kxwl/1KX1P+YYvgW+yUR1Sm2KmcSU93Bqh+YKN4VU2CpdXFL84sGAOHUj8yhsFMZOHoiPDX6qjwpyl9Sn5kNQkEyytGTgi5E6g98JX5S45fuo/g79z6qFVhf8AMPGRVSwB2ZEdMEDOCsP3KJvCKg1PmmfltQanzT7mS2jUFp8og4Izf2URdgqfU7zCtR3NX+4GmuDznNVXylX1d5exXTJejh1b+w+Z0VXwhRNZKHGnBXZSU5bInMO6HmJoss5FH+Xu+4Kw7vpV5Zp29YS2s4ZEpgtbt0Js3X0QmkVtF9NU4MXGtEabQShL0vlqXFrGnRXgzbrew7xV3yl3VcLVRp/Bm9QK+UXNO5QKJ4Qfom80Hzjur5yCFIUuhTfopVKiGi0ndELY7dIuqXFlLpaL9GirVDSLe7dMbxIrDdVQuaf06hP0bR6ia8nUbxM7po4md1xoUhck/o9L0bLqnwdn8zdup+bO3XHhEFi/pVNeS1XbOt+av3U/M37lcxrOqvln6lzy6Kitv9milJnSHEXfUUxvED9R81yS07oSHLJ9FF+GisnwegZbz9S0stp1K8sC4aojUfuVjLoPlFqSPXMtvUJnbeq8c17vqKdTe76yFzS6NL2aKz9Hq+29PQqduGxXnWVXf8h9VqZP1rJ9PFDwR2ha27+qi4//AG9lFGjENNHlLql1c1ttdqAVfbX9F+oaMjyWpE6cKx3riPJOZJVXU309/I1Xa8HdDjoUwWpwXn2gjIwnOtDz8x8MPZc8/p1Kb3SZ0R6+olZM7gtR2UNq6Lz4Ls5PmU5tqfvPeFn+FUVul92C+oVDs8/oPVTnD6fVcR1oeTMx3ZIm2l+/oFf4fD/mw76R22vYc5Hqo67oVwRWf9RTxbXageyh/T2ndSZS67beKOoHBQkbrB20fSfRU23f4+q0XTSXJL6lP0dAFWuWba/SB4IH2h7szhsMFqqDM3XR1G1ATAIJCKVxW4ZYLQLY+NO+MUOhwCrHSlUucLU/f0CtlrcM8fT2S0WPWR0JUlZRbR9J81RtmzVGnLgtVImtVK57q7ic47skxtrOoB9EOgxxrI2SpKxvtLjkI9VGWo6ifRZvp3waKuuTZeKu8d1kNqOg/dA6q46x3YKe1v5SL7hI3OqwJJhJdbhoCfQLIROeKsNVR6On7IfUy9DKdtfOIkdMIThbBGo6LNCl1OfSUpehR6movZsbaho79kYrk5OnxWC6pcXLP6bSfj+DaPWzXk6HNduosOO58yosfwyPx+xp336nOhXCtVK9Bc+EWohq1LomEVkN9rnZXS0RnN697QPNDkkrscYuWyLUURQncQKtXCiVwKhXCsBY+I13NIDTGE4ROZ37k07ga4UhSjVBa2SA4gYeiY8hokmApUrlyji7AXVd1Jbb2TGMbxh/KttvYTGOsHfZF2IddUhZjxD/AB9f6W66htoFZi4UhMuqXVORVgIUupoYsZ4g0Pu3TndnDOY8kXGaLqu6g4i8sZLcDIHug4bULmS4zjHolfa4x11S6mQlutDAbpcJ8fU5BK4y7ql1MhRLIYAarhGAkWy1CnEgmZ9EJ3Hew2FFns/EGuMEXepIjzRV7dTaYmT0x9ck7MFJDlaXQrteCW6Z6JillXIrVKKQuEoqVJAcnnhWK4XMvImOGMnTDv8A9SunY5Ubq9QFsDon2SoG03zqW+krk8xR1YlROKkrfp9tzWnPC7+Gv3Vjc+1kZAR4oatoJiDGGMbrFfKo1FpsYnToWnD4jJlF2pq5QepzEtg3OsLW1ZbbUDnAjaPUrIaigqHvTVg3G80yP8YjwMp9aq5zcTJkYf8Aqf281iFWE3m90x55o2HuUrZmO8Km1CcDgeqov6+6d0G5oeMSmG11DgXYdICyNqHIKw844d6NmJbGhlocCPiMSNVsrW34TGBhcpr50UNVS7DQyi9wcCCZBE/2mvJvE7ucfPFJFp6KG07hN2BXH80lhBJPxA4mYgFMpW0sBAE4z6BYnWiflVioNipsik2dZnEJEwudUxLjuSfMrPzemPei5oRZDudenbsBO3skVuJunACPdc8VB1RcwaJWQ7s6tLiQgTAK5jqhcZJJ70AqBWaiFZA3cZCAjFVzUIqp3Eh9nMOB2IK6LrauPzkXOUuzKTsdbtvRX21cbmgboubO6VkPI6/buitcgVRsfNRLFBkzEjEem6QSl308jGxqBGRAnvKF4Sw7r3Kp75zRncdhpPcFGA5hKDkZITzEkGahnEDyRGpe0HlHsUguUbUjRDkA0VIOnkpzJ+z/ACllwI2QgYIyYDHOCIHbPvSWkojKLjGVaplWSPTcJRPirqVdNEZAMABQOHWUNNSQlkAcx1UnqqMbqoH9J3BBuf191bMRnCT1UvEJXAeHkYydkAPX+UsOJBQXeqMmA0vVmp5oApKVxh3lBU9UJKumwuwaPvqmrvZA2krsJr8f7UvbK6ljc0TEgZwZjvSQ4okpRdmhRkpK6HSVZfuhagc5K5Q0FXeQsf0UeUXQy5RSdkNOsQCENSsSZJ7kbCuMAO3uohFqduVEbBdmaCraOg81nHVMe46LNMkeKZnIeY/lO7KY/Wwf9gfaVi5p3RPquOZ6fsqTQnc2MsY1qMnbE/sqfZwMnT4Efusja5jE+Oqp1Qk44qnNcCxfI6M/dRt0n9RHeMu+CkudGStr1ORQxzAMnT4QhLSEp3SUbnzh0Hsi4gpQFQO6K8U9wLCtpxHghunQKmuOHf0Qr8A2GrbCTdOo/hE14nBTcEhoGI2lVKFxOe6FhhF2MaTgPHTqgnFC0zl+6Y6mRBLcDhOx6ovcEUmu5cakzjos1WIRjIHVOMrMTVzQBSIABIOuvuqDGXovOjfBKpCTgR3yhLiJww/dVqrgWD5DrvAPwzHWFVGoZwMEwEDSDicYTKT/AIm4Y3hHfPsoc97lpbWZ0adRwIaHAk3hMmDGDmkEfcrI2lMOj4SCRjsYIJ0Wm46Tda0YHIExMVCSHanAY7Jb2n4viYGkPBwfH6y52mYveRQ5uXkSil4KbQbecHGLoxIvANxiILZMnYJdWgQHS4C6QNTeJbeF2BqE4uORDbgFxwmoYIcCBOZMkRGGalam5wF4ht94OREXQW66ADwwlLLYYttgeCB/kGn9QguyxIg+EohZiYhwIIc6ReODTBwiTmNEYc4lr4F68XfPi5t4kQcJ+A5dMkqmC24IBumBi4EPfDtMiBj4pX3GXTsTnYjWYi9jdzxAgeMKdnAbN4Tda6Mf0viNI13VNeXDNpkvLT/9G5/E+BhgJJE+qquHXXYtPwNaYvZU3tbIkZy0IuAlzhOZUWaCoqyCwTDvko6oBooooi9hSI2rJ6dwTOaMomYx2UURdgOoV2hj23GuvR8RBvtjH4DMDrgVnbVgiBMaGCPEK1EL2DLdWB0A7hCjbs5T7KKI8AtwXgaTPeuiOKMJHOoNcACJaS0iRmMYnAK1FTipeQUmvBlo227+gCRjJAkbQV06vELPUYDVpv5omXMLWh+UXvLZRRZ6ak9/Q1Va2EVLexzi5zHNxwDCA2NWmZwgrrN/FnwwQ4HQgMPdIOG3kook+mpy8rwaKvNePZ5uu689ztyc4mSZOAwGqC0WtznEuMnKYGmAUUWtrGLdxLqkDPNJvKlEgH2dxEgHMQfdNa6c/wDfioohuyAkNg4QfE+6jq5OGnh/CiiJMZVOBiMfZdWz8crXbvwQA6AKdMATE4RGiiijGMmk0Vk0rpnLvsjERJJw+8lRAMFhIgjPHZRRaJeib7mprmiADkHafUIKlS0Bwkk7YQM88h65qKKmrAB2vXTEQQ0zMZiMchidkNW2OORI10nGZg6fqPmooo9AZ31zMzJgicPmmfO8fNEy0OGv2AAI8goopKRTbU4HPA7ADPOIGExjujc8nWQfYm9turUTQMCWqKKJXJP/2Q==\\n\", \"height\": 183, \"channels\": 3, \"width\": 275, \"type\": \"image\", \"id\": 4947634832}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxISEBMSEhIVFhUWEhUWFRUVFRUWFRYVFRUWFhUVFRUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGxAQGislHyUtLS0tLy8tLS0tLy0tLS0tLS0tLS0tLS8tLS0tLy0tLS0tLS0vLS0tLS0tLS0tLS0tLf/AABEIALcBEwMBEQACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAABAMFBgECB//EAD4QAAEEAAUCBQIEBAMGBwAAAAEAAgMRBAUSITFBUQYTImFxMpGBobHBFEJS8AcjchUzgsLR4VNig5Kis/H/xAAaAQACAwEBAAAAAAAAAAAAAAAAAQIDBAUG/8QAMREAAgIBAwIEBQQBBQEAAAAAAAECEQMEEiExQRNRYXEFIoGh8JHB0eGxFDJCUvEj/9oADAMBAAIRAxEAPwDIMaplAwxqBkzWpDJ2NSGMRsQOiV4oJDETNupET0EhjOHw9pWSSLCLLwVHcWKJKMtCNxLYcOWeyNwbDy/BUjcJxo9CAVaLFQuzM4g/RqFopiUlZf4dthQs0JDHkpWSo4+AEUQixNCb8vaNwN1LcQeNCLcKWu9lKyG0sBEo2WUcMKLChaRt7JkGiizfwsJbcOVJTK3jZ5yDITCd0OQRgy8lhSsm4iro07IURkJkTpQBCUxEUiZFkDimIGuQI9pDPBanZEqWNSAYYEDoma1IdE8QSskkMtFJWMUxk/ZNCZFDhyd07EkNwwJNkki5wmG2CrbLYxH2RKNlqiTsjRZKiQRpWOjG+M838nZvKsgjNklyd8M4p2IhIPKJcMUOeCqb4WmGIEhNt1fZS3oWxm7GJbEwaj0VXU0WorkZy/Hsl+kgpO0TjJMfMaROiN0aLFRBPh+qaYminzfMPIbumlZXKW0zWG8aBztPG9bqe0q8Q2GXjW0O7qDZdHkdMSVk6IzEnYqPD4UWKhKaBSTK3ETdEpWQ2nNCLFRG6NOxULytTItCr2p2QojTEStQAFAyiE26CI3C9JjGCdtuUhnjKi8uOpKQ4l1JD6VCydCH8OSapTsjRaxYOgPhV7i1RGYMHuhyJKJaRwUoWWqJIGosdErGpWSSPZiNIsdGF8SeE5p5dQ4VkciSMs8Umy58PeHzhm7qMsiZZjxOPJdahW6jZaYzxmHEaWE07hWwZlyh/h/gZoydYNWjI0Swp2fR2iwqTURTu0pgeWDUEAZ7xTlJlZtyFKMqKcsLMLlHhGR03qHpBVjmqM8cbbPqeCwehgb2Cps2RjSPcgQMXemI9MCBHmaFFg0IyQKVkHEiMKdkXEjkhRZFxE5YlNMg0KSRp2QoXLE7FR7a1Fio7pQFGJbOVMiPYTEWkxou8NwoMkiHFzOY4ae6FyD4LyHGAsB69VXXJYnweWY1upOhplvh5wVW0Wx5LLCgFJliRNM4AJEmVz8e0GiUckLQ/g5wVW2y6NFtEAoNstSRKKS5HweZKKA4Mt4igfpOg1eyshJdyjJF1wVeW4Wo2h5LqPXspSyclUcTrk1ODhGnYUkpFuyhuF1KVhQtO0ufXS0XwKhuNlIJEWNZ6bQJkGXwDshsSVD5YgYtKxFhQs5idio9RsRYUSFiAoXkjTsi0QmJFio8OhTsVCk2HTsg4iEsCkmVuIs6BSshtPJjRYqOaU7CjAscKVpWO4JotRY0aHCURyqmWJDUmD1NsUVHcScLGMJgLak5ckowPAyndPePwyzweCI6qDkWRiW+GhIChZYkecZdJiZkMwa8ybAqxNUUSTs0eSwuAFqpsugmaKIGki09oACoskmV2YstpVTssVMoIZ3gubp70VGSXmCb54LzLs0bpaCKJ/VQ+ZMs+WRcAAiwpLIxPGhaJ4111VkchB4h2Vm1qxSK9pWYrE2K96TsTiO4RlBOxUeXYgaqTHRK5lpCIXQIABEmAaEARSxoFQs5idio4GosR4kiRYNCksClZW4icsKaZBxFnxqSZFoh0J2Ro+bQtV9lNDrWEcJWOibz3hpq0nQcl14XlfpIcT+KqyFuM0uBf6VS+pfEmJ3SGM4U7pNkkXUTdkrLKPMmHtFg0KOywXwixbBzD4akiSVDgamAaUAeXBAxTEQ2CkJmdwOmRxdG8OAcRbTdOHII6H2RKK7orjJt8MmgB+tzKp7gW2CdnFt2Pi/xUHjXQsjN9WWmV5k6SEPMbojbvQ8guGlxG+k1vShLFTLYZbVsscK5pdZG6ioE3MsnEEKZWVUkDS78UckmkNX0CsRBows3iFrs2bhmzPYGzaXAxsLXv0gGIOBsNJ6kWHX0Iq7b8tmV5LybbN9SgaApAjyWoA8FiAI3sRYCz2IsKISEWKgRYqI5Gp2KhWWNOyLQnJEnZBxFzGpWQo+Tt1FwpaDKaGAANBPbdVNliLPAwMfwoyk0WRSZbZRhmgkKqci2EUWMDACQoNk0hnyrRY9o1god0mySRbsagmTAIAKQB0BAHUDOFFgCLCit8QYIz4WeFrg1z4nNDjdAkda3rv7JxlTTIzjui0Zfwb4XbhGeY7EMc+YM0Fh/y6olukmvMvV24qu6nlybnVdCrDh2K2zUGDUx5qvVuOx0t1D72qrL6Fcqdetp5DnD77hDIxHodnIJlhI+mn4QBUYXFvM0jHRFrWBumTU0h+oWaANiuN0NISbbaHTiRoc4HZrXOcaI0ht3sevpNfftckhNmb8OZLG7HyzvwJiMVeXOZHETPeCHPEf0k0T6t+bO5NWyl8tWVRgt7e02tKqy45SLA5SLA5SLA8uCLAhkjQIUkYiwogcixUUfiXxEzCNaXNLi47AKcIuXQqyZFAjyrxLh8RTWP9ZF6TsfhDjKPUUckZFjKErJ0LEJ2Ro+Uvh0rRusxVQs/HO3Fqe0jZd+FMWdW5VOVFuJ8mq8t3mhw4Ko3KqNG17huZ5L6Ciqom07LLD3W6jZNItcCxKydFiwJ2BIE7A8yOpKx0LDGevTSLChsosDySix0UPi7xOzAxMeWF5e/SACBVAkkk/H5qcIObpFWXIsatmVzDxTPi2mLAMk1ODdUhaAIw6rAvk7/ayFOONR5mVSzOarGiXxj4YxOJfhRhiPLiiDBbtPlObVGj6roN/9qeLJGN7u4ZsUpNbTdYBtFzHUSQ15I21HSGONdPpB/wCJUdjTQthcOBI5w4Lz+W37JNgkMSNp32RZKhmc+lFioqWzf5sux9LWbbbn1VVd9kxd2OTxelsPOtzTKdvULBc0+zmscPhtdlJPuKi2tKx0cSsdHEWFAiwo8kosdHglKwo8Ep2KjCf4k4jFsa0wWIx9Rb9Vq3Eot/MZ9RvS+Uj8BYyV2HPnuJOr06uaRlSUuBYG3Hkb8U5fHiIvLP1XbT27pQm4uyWXGpKijyjwtFhnCVzy5zdx0AVkszlwVQwKPLZo4sUHDYqovuwMje6Qj5TjnEWOi0wSZhm6K3qtHYqNL4ca2J4cac081yFhzyclXQ16dRi7Z9Mwccb2tIIohcxzknTOuowatHHQNEn4bKam6IuCGYoxasUitxLOGOgppkaGAFKxHsBFgBCAIZIxd0gZJaLAhnBIoJWOiqeMPNI7CzMEj2NbIWujtoDr0uBIq+eFJOUfmRF7ZPayUQMH0NA07tDRXHQD34ULJbaLIRB4B3BrYjY1+49jsnYUZ/FZ8xmOiwrw/WbBk0ER+W9hcQXdHamx7jbforFBuDkVPIlNRHMole5jtUIiAlkaxoIILA86XChsCOirk12dlkLa5VFrMzr7JWSRXZzmnkvw7PKe/wA6TRba9GxOpw5qgft8XJK03fQhKW1pV1IwB57XE7GNxd/6bm6f/sJ+QEk+CTXJF4jzk4OF2JMest0WzWG7yuDG70d2tbWwP1fJVkI73tK8s9kd1HnwDmzcRh3OEz5H+Y50jJDboTJ6hG00NTBvR+R0oPKnGVULDJTjd/0agKuy2hXHZhFCGmV4aHODQTxZSsTpdSdkgcAWkEHgjcFFjo6U7CiKSQBKyW0TlxzR1TCjN+Ic+a1jtNE1tfFqyMG2VZJqKMPhc/k1WD0Wh41RhWV2SM8Ruc7fnp8I8IfjNstZ8xBi53UFHktlNbSmbnmi6Ks2WULLRXSeIn2dyp+GVvKyHFYYuUIySE0yv/g3K3eQ2j2Q4V5mG5A6+6rzSW0sxJ7jctldA2ul/quftU2bt7gqG8LmocC4njZReKmTjmtF5l2IbJVFQqi6Mky+aFJAenEAWnYUZPFePcO2YRNJcdWk0NgflTWPI47qKXmxqW2zWRSW0HuFBS4LqPLwnYUeWnZFhR7jb1RYBLC0gmqPcc38osCtxeNiw0bpJnBjR/N0J7V39kJNukKUlFXJk+CxrTh/NaHOaGFwDQS4tA1ABvUkVsi+R3atGby3xBJjYpy/CyQOiLXxa9Qa57DrDS5zRTraAR2crZwUGvmTspxzeRP5WqLTEQl+Cexkuk+W9rZRtpBFsdtxTS1UqdSTaL3BuLSZ8q/21jsPLIWSSahEA5zmyURsBOYpRzQA1EcnfldBQxySvz9P0tHLeTLCTav7/rTN54T8WNxocHs0yxxg92kVT3tP8u5O3avdZM+J4/Y3afMstquUXUdvfC9uny9VBzgTq1NNHTY9OprKJO5INbAmpOuGXNW0yn8W5FNj8O/ypLLcQS1hDQH+XcTy3jfbaz0O9OtX4sqhLnyKM+J5I8EP+GWQ4nCvxPnxhjXaA122p+ku3FGw2jwQDZ9innyRlVMjpsU4N7kafO81fAARE54LmglpAqzVkHpus12anwrqzHeJ/EWGmBimaXNB2o0bHUFThDJdxKc08TW2RZ+Fs3jELI4ydLRTQTZA7KublF8mjAoSilE0Zx2yFKy14yjzHNjdK6MbItJGVzbNncaitMIoy5slcGax8znC7KuVGGfPJSiYtPKtqzNdHTObtFBZ04x/9RRtQtzPOolAHghMVGrzSA6rb23WHHLjk2ZIckuCwOptnm/1UJZKCOO0XGDyvTTgqZZb4L4Ya5H8wg1xEDmvzUITqRZkhceDLRMfpdH1BWxtXZiSfQ1Hg2F8biH3vws2eabTRr08WupvGHZVJmigkI0mzshsdGQk8CwGfz2kj1aqvYnlWePPbtKHp4btw3nfiBuHDburr4VcIOXCLcmRQVshi8XRvAAdudgEOE0RjmgzSYKbW0H2UVItoeaFLcKjkg2RuBITzDKoZ4wyZge27o8WOCmpNcoUoRlxJWRZXCYnujv0GjGbN0AGlvtQDeOb+VHcT20h/EvOkhmkuBaSHE/TqGrYb3puvek00yHJ8+xOcvw2IGEETnQjS7zI9T3C9UbfTRAFxO/XorXBShvb58vv+5XLK4TUNro0WLY2eAx16XNMfYkvFO9/SCT8+4WdZNrv6mmWNSTTKXwr4Vjw7pQ1zng0H6q3A3bGQNjzqPe29CQrc2peRKynDpY4m0uSz8UZkYoXllW1uoX0LPW0119TRt78hUY3umo+ZdluMGyfw7mjZY2eX9IAAvnbY37pycoyqQ8e2UbiLZPFmYxsnnSRnDAmvSLIo6Q0DcHcXd8K1zx7VV338jPFZlke5raWuPiL2FriNW/A77NVG/zNSjwfHs2whfiMQwNcDE7ex043I78j2XUxz2wi76nHyw3ZJLyE8nx0kMjdPF8d1PNjjOPJDBkljkqPq2CzVjm0S0ODQ4tvcA8Ej8CuTTid2OSMvcyHiPMfXTFtwdLZj1OWnSM/OHuGqjS0qaToxyUpKypE7tdHi6paKVGVSe4cdlZc3U3oqfGp0y54LVoVGFv5Vm8p2CldlbZUP4DBk7kfCpyZKLscL6ls3KGkWqPHZpWBMRmzgmQ9rpWrD8pneX5hvA5pRrooTxE4ZDR4POKFLNLAa4ZRDH585jthseVZHTpopnnaYvBmoc+6+fwOylLFSogsnNmnhzoUHDosvgO6NqyqrLzDZ20jlQ8OSLlJMkmzJr2kEo2Mdogw+dMazSDen33T8ORHdE+bZTjZZZZjIHGKRz3lryaDi62hpPB3qvZb8mOMYrb1Ry8cpSk76Mt8HgoWNfKxrnSMaSGOIG9bb9vdUTc5NRfQ0QxxSckuV2NfFngw8LS8AODbe1p1AGtwD1FrJ4Tcqib96jH5i5y/OmSsD2nYqqUXF0ycVGatEmPzUsZbGa3W0BuoNvU4D6jdc3+CceXyJwaXAyzMWF5jv1BocRR4N1vx0KfJHbzR8/zbxVjYswMEnkxQh+sSFjnVC03rvVu4tBbQHLqrha4YMcsW9Nt+Xr+cmWefJDLslSj5+n5wazI8twrsScwhJc+eLSXB5c2rbYA/4W/ZZnOcY+G+iZb4cG3kj3MtNnsD8bJEzEGF4BhEg0hriyfzG7uBB3kkbXsa5U5Ysixqbja6/qvT2QeNjlkcVKn+fn6jLPEb43zCWNrWxFxhLHeYZGuc6MSuazrbX7bEl1UKtVvCmouLtvr2rvXP0/OCzxmt29Ul072jWYAt8lmm9xdnkk7kn3JN/iszZfVMy2fYfzxK0MkDfIMnmEEM2JGjffVsT8KeKW1qSffp39yGZKacafTqO5TPhcHI2Ayxi3EfULD/AE03T72evbuleTI91MPkgtkWv17ljnfiSPCw+Y/g7gN3Js+n8qUMSyZZbIdRTUccXOb4FMh8VwYu9BpwA9LtnXfbqnmxZcL+dDxZceVfIzLeN/EbY53QCPlot183tXwKWvR6eWSO++/Qz6vUrG/DrsYaXFhriWtqza6kcbkuWcqU0nwgix7nSB5cQa0kg8t7JyxJRpII5G5XYSYh7i4PsjgVQ36UeyShFJOI3KTbUjT+F8GwRU59vcDYu2gWT6ffuuZrc0t/CpI6mixR2U3bYhnWR04vYFfptXa2yKNTpNr3RDAyuGGlayjJqFau21ge/KnOnkTl0I45NYpKPUqcIyQudbSBZux+Q91pm4pLkywUm3wQsiAfRFb/APdScm42QUVuoanx7W2AoRxt9SyWRLhCv+1H9CrPBRV4zLPEeFJ9ZoCr5VEddjovlosliMDWA7OOqyAD1r9FbJtroVRSTLHBY0Fwb7qmcWlZdjyJuh3MMCH7iuFHHmrhluTFfKM6AWPWu00YqcWW2Ae42Pt8KqTSL8dvgs8LiHAfCg6s0QboZgxDnA2k6RbG2iIWHEd07FtplZjsU7WG9LVkVxZnySe6izew6GuH9TQ7/SXC/wBvzVW7mjTs+VNEOagk7nbrfCcGiGaHPI5lc72tAYfT7cKvJGL6luG646D/APHvJFn+Zv5EO/QKrZFGi2xx+PMjCWSEUQdTav0kEt3HBqj8qG1J8ot4nG4szXi2V2JdI0nU6IRmINbuGvH+ZqdfqBpvx91fgrHT87v9jn6uLyOUe6qq9epYeHs4iy/DsoP1SNc+RriL1nQAR0AoAVzsOeVRmjkzzfpwvuTwvHgxLcnzyYXMixz5JBsXSuOkVQDtyBXYkj4pdLFuSUX2Rysu1tyXdltgc6psQ00Y2bEekGtIDSByDos+5J5WbJp+Zc9WasWoVR46f1/Bo8f47dCyLymNeHNNhxILTY22/FZMWh3uW51Rtz69QUXFXYvjfGcz4zojaYnxEOvZweQ5r23e44ogdOqcNFGMqlLlP6V2f8kMmtlKO6Mfla+/dGVkbJi53yksY57ruyG6qAAHJ6Lfuhpsahy6OftnqcjlwrPo+Y5Q3EwxRveCGgDrTiBR44pefw6h4puSR6LLpllgoy7B4a8Ltw8vmAi6Iuzs3Ynn3DVPPrZZltZVh0cMDcl16FRmEUc+NkD3sAia0Na4U5z5AXNAJ5vfYKUMs8WnTin8zfPZJcPp+5DJCGXO1Jr5UuPVlcMoZLE8va1srXU4NNgEdLHsrXrZ48sVF3F9Cn/SRyY25KpLr6GbbgiH1XVdd5k42ctYalRLjsJQJvhQw5bdE82KlYz4bcDIG6qNqrXfLBuizRVKaVn0PDSxSRvFguYdDx2cAD+68/LfBp+fK9j0EXCaa8uGfO80n0SyBh21n/r+69Hp478ab8jzueShkaj5kjMS5oafTpN67u+BWlR2ptrv2GpNJPt3KqbECyRzZWuMHVGWU1diRKuKDiYH1STMQAvOrC2ekllSRgM1ha2R5adnGx3BO537crsYZNxSfY4maKUm13OYCmgu5KMlydCx0lYQ5l5YLWcE3v3Kbw7uWEcuxUhabGOcbNKyONJFcsjbstMsx+w2Ft/MKjLjNOHIWAxgLqrY7qlRaRfvTZZslFDZRNUXweJ5WgtsgEmh7nsmrFNxTVlZj8dCJS1xNjk1sNrpWwjNxtGbJlxqdMuoqMZBOxbz+HKzuVM3xScaZXB7MU1zA8XVEji+4HYqxt4+WjOtuoTimRYXw9MDE6OYBrTZBLhY1XYA5sd05amNNNckcegyJxcZcL8+4w3OIzP5X0lryNRrSSA5tA/JUXikobixaqDy7OnP0Lz+JDQ4Ftadhx6vf2H97rL16HR3pJprp9ynzLJdOHc7VT3EanX0NANHsKB/Aq7HqLml2MWbR7cLd8vqZXH2KaQQd7vq7gn8gt2OnycfNa4f4xR7CDRG6tTTXBS00+T055+KSSRJtnpspdtyk4pcjUm+C/w2WSSMGgHSWivj27LmT1WOEvmfJ08elyZI/KuDmDyqRgY+q9bSD8G/2Ty6vHJyjfZhi0mSKjL1RbZtiLiGh5IcaGn+obEWO9f/ABKx6ZfPUl08/L8/ybdTL/5/I+vl5k2GzwtDYA4+Z5bLsG+7vx4Ucmm3Xkf+22ShqUqxX81L+zNZwyeWUygONFgsbU5gDW17hdLTSw4oLG67/o+TlanHmyTc0n2/VcFn5kzoaAIkLRQJ31Xu6+5/dZNuGOW3/tT+3kbf/tLFSVSf5ZUYlk0TGl4p2o8kHb3rrz+S3Y5YssmoPijBkhlwwTmubE3zOksd+ey0KCxlG55BYPcw7Gj7K2lNclVuD4Josyka5zg8guFO32PuR3VctNjlFRa6dCUdROMnJPl9RWSQk2TZVyikqRU5Nu2enTOIAvhJQS5G5tkamQBAHEAbCPECRtg2CuZt2umddS3q0VOPj9X5LTB8GXJHkTOwpWdSl8cC1UrCqjwpCPcUlG1GUbQ4ypliyTgrO0aUzRYJwICyTbR0sVNHc2gd5RLeen4gj90Y8i3cj1GN7Pl6mLYC53U7i+/3XSdJHDVtmjhxxjppHpoCiQdq7rBKG7lHThm2cPoecNNGwnQNJ1Btd9ZrY8db/wCFOSnJc8/0EJY4t7eHf+RzNssxJk8wPGhg2DSQRQ3AAG6rxZ8W3a1yy/UabO5774RnsvwRc63tOkc6ttRJ2FnuevTcrblyqKqL5OZhwuUrkuC+zLBTz/UWsYNLy8uoEOFbDoBxXwsWLLjx9Lb6UdLPgzZuHSXW78/4LbO3edHHCwjUHA/IaK2+/Ky4H4cnOXQ26qPiwWOD5KqfLg2VsTjYbX+YXG/W4XGW9wOl7jdXRzXBzXft7Lr+dzHLTbZqD6Lvfm+n0EmZS92Ij8xw0yOeGH/S1xBrsCArnqYRxS2LlJX9WihaScs0d74bdfRMexWFZICGMoiw8dnjYi+wIPys2PLODuT9vY05MMcnEV7+5WYTLHNAc4EHzA2x062R+BWrLqVJ7Y+Rkx6WUVul50bbIJ2mNzGkWLAroeoHtuCPYrzusg1PdJfn5w/U9BpJRePbF9BLCRvxGCfE2T1s1RudV7hxsfat/dX5ZRwapZHHh00voUY4Sz6Z41L5lab9b/juZHHyuhf5P/hgNP8Aq5v813cEY5o+L/25+hw805YZeF/1/wAmqydkbozM1o1bAk/V9IoEn3H6LiauWSM/Ck+Pt1O7pI4pQ8WKV/foVGJz0RP0xt9LdfNU95BGoj+m91ux6B5Ybpvl19F5e/Y5+T4gsU9uNcK/q/P2vktMgzF0rNT2gUSLAoH4WLXaaOKe2LN2g1MssN00KZqySRr/ADGt2eS0s3qOiQXB3JNVt1V+lljxyjsb6c35+lflFOqhkyKW9LrxXl63+WZzFRCItAvcB1g9De399l2MU/FTflwcbLBYml50xbEDdXQ6FWRckLmqxMqcWjymIECBAAgDiANTFC2AFuu97okWPt/e65byPK7o68cccK22IYzEt1H++y0Y4OjNkmrKuSUkrSo0ZZSsjJUiAUiwo4mIsMI621W/RZsnDs1Y3ao0GTwvNENsXRXP1GWEeGzp6bHN8pF7isKSNIBsg79tr3WKGoV3Z0cmJtbfMzmMyt1GRu1mhXtz+d/ZdCGpi3tZysumdOcSixGoAWOtb9wt0Nrbo509ySsZixQbpEsepn1V1JrYDsFW8blex89C2ORRpZI2updM8VXC5oic542B5BaOHOPeue6yPQ1NPckv3Ogvid42lFtr/Hmyz8KBmKic+VjbBLGirAFWXC+CdVfgsutbwTUYP1NXw+tTjc5peSDMS1uEla9waY9gfqvVVbd7P3FqGGUpZ47Vd/t+foT1G2OnmpOq+vXp9zNYGZ+Fmb5h1W0G7ugeOfhdLLGOpxPw+KZyMM56XKvE5tFnicQZH6Yg4hrGSPNWS4vLjzVdRfSljxx8ON5GuW0vaqNuSbyS2474Sb97tk2aCZuLiibGG015jsig0tomweihgeJ6aU5Svpf68fqWZ5ZFqYQiq617VX2CBgY9mh+qOW6cKovbte461+XuoZJOcZbo1KPb0f8ABPHFQnHZK4yvn1X8lzNhB/lnUfrF/TvdgdPdc+GV/Mq7ep0ZYV8vPcoMzyWduLZKytGppDiQA0srZwA610G66mm1mGWmeOXWnx535e32OTqdFmjqVkh0telV5+5d4DGysh9ETSDG5+oPBudzzUWkDc8b2ufmw45Zfmk+qVV/xSXzf0bcWXIsfEV0b6/8m+n92TYTAw4lomkgaJNy+xvq7HvX/RVZc+XTt4oTe3t7E8WHFmSyzgtx7w+Uj/c8AjXY66HaS39Coz1TvxOvb9SfhQivD7ehQY7wS4ML2P8ApsljtiQOjXe66uH40nJRmuvdfwcrN8ISVwlfp+1i2CyjERyigGF2rS0kuaG9dxtfTdWZtXgyY+bdVb4XIsGkz48nFJu6XLSHcww79NOMZLRqc0kiqILXF3TbpX8yzYJw3XFOn0f+VXv/AINeeE3GpbW11X14d+3p3M1mOsPJkq/5W9ACb2/NdnT7JQXh9O5xdRvjNvJ17ITDgTZWinVIz7k3bOWHX+XsnTVBalZAVYihnExAgDiAOoAk1USbsnr3tQq1RO6d2RkqRFsExAgAtAHuOr34UZX2JRq+SV0hHHQ3f9/3uoKKfUscmuhpcizkiNwFa9JLb4JHsuPrdGnNP/jdM6+j1jUGl/urgew2NkxTWFwdGGygkiwXgNLtuwsLNkxY9LKW17rX6c0aMebJqoxck40/a6Vl7l0kU0QIINN3aCCQTubXOzrLhyU/1N+CePLBNf8AhkJsfBHJKHNcKNAVdg8EHp/+Luxw58kIOLXqcWWow45zUk/T2G4MjilmDnEuYYztZab2otr5691nnr8uLFUVUr9/1L46HFly3J3Gvb9BbOHR4YtEVV9Lh3HQ/Pv7lXaPxNTbye6K9W8elpYvZr87lVhM6kjeC11Nuy0DY9wt+TRwnFprkw49ZkhJOLpeRJg8ew4lsr3O+sk3RFVTQB3G6rzYJLA8cEuhLFqIvOsk2+vuQZrIZJnO6Wdu2/Hzf5lWaaKx4lHuV6qTyZXLsaLwxKGy6S76mtD7FeqnWCb53r8FyfiEW4bkujde3B1tBJKe1vqlfvTE/G+IDjA7UNRhGqjxuRpPauo72tPwjG4qca43cGX4tNNwa8hXJMM9sumbUxhZepxoNOoaXNva77fsrdZlhLHuxU5X27+af0IaLHOGXbltRrv28q+pqMJiJHkj0lsRGsg8uBBBA/pLd/y6Li5McIK+bl09v5T/AJO5iyznKuKj19/T0a/gb8RwTSgthka0agHg7EimnZ29HcqnQ5MWJ7skW3XH37D1WPPlhthJLnn29yxyTDAQRUNRjLo3NaALma9zCQOAWgX8P9gs+ryN5Zdt1NX/ANWk/v8AsQ0/EFF9r+3H8llBgHOL2lzSDXAIO+7nX2PTtRWSWaKSlTv8r+y15dvL6Fd4lLoI3uiY972PYGta0kUQ1xuu9n7LVoFHNkUcjSTT6v6FeTPOOPfBW/L6jHhHzMZgpJZwdeuRtFukadtIaD81aXxDFHT6hRw8pJPrfPqZcWpnS3qm79O5cYXLtI0uG7drI5ut/va52TNbtGiWfhNMw+c4djMY+SSFvleXpDnEaXaXD+U7E317ALv6ac56aMMcnuu6Xa15/nNlT2+K8mSKrb1defl5/sVDsm/iQZDpMhi1MDP93W4ZqPU/SK6bX3W9az/TNQV7U+b6+tenV3+hnlpVqFvdbmuK6el/nuZfEhjSGgl1fXtTdQv6epHyAuzjc5JtqvLzr1OPkUINRTuuvlfp+IgJbZ03RHXlW065K7jdLoQkKZU+ATECAOIA6gAQBxAAgAQAIA6Eho9Ncf2SaQ02TYeXy3Bw5UJw3qmWQl4btGmy7NmmQOLiRoc5zOgdxt9wFxs+jkoNJd0k/Q7On1cZTtu1TbXqQjHMwkzntZdsokOO7j0/dT8CerxKMpVT8uxX40NJlcoxu159xeXEtxEbooR5dvEj9ZJ1kCvq6DYbfCujilp5rJl+bilS6fQplkjqIPHiW3m3b6/URGPfFs124JBN8gj/ALLS8EMvMlwZvHni4T5QjPO55txtaYY4wVIzTnKbtkamQBAEwxDtIbewdqHsf7/QKvw47t30LPElt2/UlwuLLTuTRI1d9uv33UMmFSXHXsWYszi+encejx8bZxLpBDS00RybJdY/ErNLT5Hh8O+t/wBGpajGs3iV0r+yx8R58zEAACtJsUdqPIr7LHoNBPTttvqatbrceZJLsVgzpzWlrNr2sf00NvwIsdrPdbHooyknLn+fz9jKtdKMXGPH8BPnsrywlxtrtXazd7/akQ0GKKkkuqoU/iGWe1t9HZpPD3jTQXCQbW94/wBTjqIrtZNLla34NuScOvC+i4N+m+Iwlccirq/3o23h7PI3sMoP/me3q3qa/v37357WaOcJbH9PX8/o3vbmhcf/AD3ND4cxX8Q2RwYRvYPN6g0ij7AAfdZ8uncXs68fpyZNWlj28lv5REbfSR6xqrq1p1/8v6q7BCcYKWx8dfVdf2Mm5Sm+e3Hu+P3KhmKdK6SRoIuQeWXn0FpY0bGqIvqL5VWocJ5OnL/k2vHHElB80ua63dmP/wAQcrGMlhiZJoc0OpmjUP5RuQfT0+o9TxtfU+E6v/SxnklG06715/r9P5qnJp3mgot+b87/AD0FhkzsLh4Y5ZAXR6hrb9Ia877HmiWjfp0UpaxanNOcI0n2fW1/ju/fubtJi244py6cHzrNmDzXkkH1GqAAoGgPfgi16rSt+GkuODg6qK8Rt88lba10Yr7o8lSIsECOIAEACABAAgAQAIAEAdQAWgAtAHWPI4KTSfUcZNO0de8nlJRS6DcmzyCmRAlAAmAIAEACABAAgAQMEAdSA60pMkmXOTY14Pl6yGu+rerHa1z9XhjW+ra6HT0eaTlsvh9T7J4WzAxn/LbphNEnu80A5vsRRPufcrxGo3we5S+f9l2f7eh19Zp4zXr29upu8Lig4tFHeyHAemxtR96J+xXZ+Da955KGWPN8NdLp8enBwMmJxTf27nqXLo3AAsb6fpbQ0jqCR1r9vxXSyfCsGVNONSXSuKT55rr5eXFepGOpnF2m+erMr4siEMbnhzAG/W54Jof1UP0H7Lx8MW3VSw8unSrv6HX0WVSvdx/j6mKz3PYpcM50NSUHAjgtABBJJ7/yjkmuaK6mk0OTHnSyfL0+v53Nfix8OTh83Hbp/T8vPsfLMU+wLfZArTVaRZNA9rP5r2eNU3S6nmsztK5crivIVV5nBAgQBxAAgAQAIAEACABAAgAQAIAEACABAHUACAOIA6gDiABAHUACABAAgDqQwCGNE0bq3UGrLoOlZtvCvi10TBEaIOw1cAHoe/x+i878R+FRyS8RfY7Wl1UZxUJ9ez8j6Z4a8YYeOMmSTg1ZrVVOOwvuAK+D1KwaHLl0eWtlxfl16efvTJ63RPK08bX98fn2LTF+OcKGBzZAXObdf8p+5WnN8Rzzi/Cg4zfDfDr+e9f2zJj+F5N1TaS9z5V/iJnH8Q7XHI4ANAcLNGzQFXud+qXwXTPFxkjbb4ff3Nepg8eDbGXTrXezEDM5BF5N+nUTsN7Pc9eF6L/SweTxa5OT/q5xx+FfAhI8k2VpiklSMUpOTtnlSInEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQB1AHEACABAAgAQAIA6gAQM6gDoKiSTPbH0otWTjKiduNcDyq3hi10LlqZp3ZK7MXEg3wft+CgtNFKki2Wrk2nYvNinOuzzz7q2GKMehRkzymLkq0zNnExAgDiABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACAOoAEACBnbSCwtAWcQAWmAIEcQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAHUACAOIA6gDiABAAgAQAIAEACABAAgD//2Q==\\n\", \"height\": 183, \"channels\": 3, \"width\": 275, \"type\": \"image\", \"id\": 4947633808}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMSEhUTExMVFhUXFRUVFxcYFRgVFxcXFRUXFxUVFRYYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGy0mICUvLy0tLS0tLS0rLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIALYBFAMBIgACEQEDEQH/xAAbAAABBQEBAAAAAAAAAAAAAAAEAAECAwUGB//EADwQAAEDAgQDBQcDBAIBBQEAAAEAAhEDIQQSMUEFUWETcYGRoQYiMlKxwfAUQtEVYuHxFoIzI0NjkqIH/8QAGgEAAwEBAQEAAAAAAAAAAAAAAAECAwQFBv/EACwRAAICAgEDAgUEAwEAAAAAAAABAhEDEiEEMVETQSIyYYGhBRRS8EJx4RX/2gAMAwEAAhEDEQA/AONo4cgQVcKBWpSpWUjSC9mzTQzBQTihzWll5BLKgegA2krBQ5okjuUCEgpFeQJCkFaB0Uw1KgKcnRRNJFCmnNBFCASxRLEeaCgaSlioCyInD4UE+8YCkWKJsoYUTx9FhPuQOiA7FEFNlUJUDKDSSyK/KllQIo7NLs0RlSypAD9mm7NE5UsikAbIlkRORLIkOgfIlkRGRPlUgDZE/ZojKllUsKB+zS7NEZU+VSxg3ZpxTRGRSDFLAHFNP2SIDFIMSsdGXUwl0lrdkkjYKK2VSpmq47pMplWiivdUCNmQfXJEfZVyr+xTGik4pBbKVIBTyBOCOShjExqJpUVU1yvbiGtuTAmOWqkdoIZQUzh0JxTiwogWF4PeOhWLS9qJqZ3AhgZ8I3On1hY5M8IOmx7I3qlOEO9ir4VxI1WlzwBc5R038OqKJB0IPckpqStDAnNUHop7FDs1LYqBMibKiXtUMimxUU5U+VWkKMJWFEIT5VKE8KbCiGVLKpwnypWFFeVLKrMqWVTYFeVLKrIShTY6K8qWVWZUoSsKIQlCnCUKbCiICcBSATgKWx0MGqbWpBWNUtjEGpKwJKbHRRhKTsozaxdGDD22XN1ONtOHLs3vFuXxNkPwbjz6YLXDM3aTEDmV7L6/FCUYvs13Oc6p1JUPCz2+0rXOgtgczotcMzCQF0QzY8l6sYG4qEo79ITsnGD5qZNIpRkwNrU2KqMa2HuaAbX3WgKAUauGBEGCFjKXHBaxs5Xi/wD48s5miTTcDMc2E92i5l9SYXXcR4G1l6bsoOrSYa7+D1WGeEzUylwAjMSeW68vPFt2yXBjYOrUqnIyY/cRJtsOgXd8PwjabA1v+VzeH4c7JDASP7TlHi7UozB4Wqwg9ibf/IVWL4OS4wZ0HZqDyNlKhUztktLTuD9lF7Vs5WXVFLiqnFWuao5BzU2KmUkJZFfbmlIS2FqD5U+VXZk0pbBRVlShWplOwUQhKFNJS5BRCE0KyE8JbBRVCUK2ElLkFFeVLKppSp2HRDKlkU5ThLYKRENVjWpgFY1qlyHRINSUgElOxVHAcUwXZhoa7M10EGNOYVOCZmjeSNdPVE4z4ADrII8gP8qmi7IxpOsfX8ClyU2nHg5UdtwfgdNre0ecw2E+MELRHFaLfda2ALbW8F59h8fVFphptqjaWAq1LsOYnTn6r0YdXSqMeTVP+KO+pOFQS10hO3CzsqPY/glemP8A1WhoI2P1XUDBNGrgt459o2+51wwtq2YAwR6KxuAG910LcMzv8CsX2jc5xZhqUtdUu9wEFrBrHUrOWVmnpRSs5LizaTXVKrodlIDd2i2jebpXK/r3CsXgAEjLEWgRb6XWz7ZGHikwEU6UDvdEknrouTq1HAx3HzhcOSTk+DmlJRbR0WBx8ulriwE3Goa/qPlK3cNxFzHBlcC/w1B8J7+RXD4WoSSPmA85sfNdpwGv2tPs3tzZYg9RseSrFJvgmLNl4KHeCrqj3BCVXuXVyOTQzmqshQc4qJcUjO0WZU4plU5j1T3UsLReGqQaFQGlWCmoY/sWhoUsncqhTU8izbKX+iWUcwllHNRlIKRj2TZgpFp7k2TqFNoOSBf0Uc/RWFoUSAlaJ5I5k2ZIhRKBWSzJdooSpBIVskKym2uoBifs0uA2ZaK6ShkTI4Hszjqbw6WuMkwAJ+HoOSjUpM/bBIt07+pVNGg0Os7TedJ3jxRVPEBpkZb75fBcsZU+Gc8GV4LhFV1wCesaLsfZJj6E9plHiJXN02vqT70W/dOXw2C0HcIqdmH+66x0GwJm7dwfQrsxZYJ3V/c3hvF3E9ApcRYef1RlLiDV5pwXOyo1zWuguhw8M0Ed0wei9C4iadEMMTmAdBtLYk5Tz6Lvw9ThmntwdEcmZq0alHiFM807GUTUNSDmLQ2egXPM41Qk5TlNN7CQdH0nEAuHcHT4Iaj7TNbSrtcZc12RkakZnkk+AATn1PSx8ieXKu9GF7UcKdne7KYNUOceQc8gegC5LiHDXA6aMk/9CWk//leocM9oKdVgpVhZ2UGY+FpJzE9+VPxHDUH42iBlNN1F+bQNEtJueZESuB5sc3cXwTpurPL8Fw+ajWkWcC3znL6wux4PhCCH7ObDm/3AxPp6rtv+L0YZpLCwyDezpZPeLeKVfhYBkEQDoOauDUC1ha7HO1qECS1CVGj5V0lfCE7H7LOr4YtHwyms3kp4mYxp9D5KBo9FrtwhOohOcJCTzoXosxuy6FTFI8lqfpx+FLsYUPMHomaKR5KQpFHZQlHRJ5A0QH2PVN2YRpYeqgaZ5FTuDigWDyCYk9EQWn8Kg7wS2JaBy0puzKvnuUS2eSW5OqK+z6qQpBTFApfpnbSpc15Fr9BhQUTS6KwYZ/XyUxQeFPqLyGr8AxpdFDIVoCi/cJ/03RT6qE4MzoKkCtFuDVjcAh54h6cjODuiS1Rw/uSUfuID9KR5jgGiSCLyQfPfn4r03AeyFOphmCWgk5g5rdQO/XcLiq3Aa9JgrVG5LxpLjexc0bX9F7nwXD9jgqTRdzWCZa1pBcJPuiwKqKanbRHT/C3a70cj7Pez5pl7KgBbJggC4Jt4rQqeylMuLmSw82nLfqND4rXpVpuR9EuI4xlOkXkw3TN8pPwnumFs0kqPSc2qSOepcLFCsHVQCB++MpFh8Ue64AETYEKftfi8O6n2ZIY8QaVQiWyOTh3RC4jjvtU99sxvUqOJGhzNZbusVj4njb6lIUnSWNJLRrE3IB77+KyTlyq4McvURfHv+APEY2al7QC0xpuB4BD06xk+qjXpAgGb923VISwuaYM2/ghEkmefK27YY3EzHoFq4DFFj2GoRAO92+W4nVY+GpjLM+9aBoFYXQYd70eS5pRV8FRtcnUYn2tqdqHCYDMpnctdnaSP+oCP9m+MmrVotuSS4kd8kE84JeVwOJrRF4vYaztrKswWOex7XU3FkWzCxg7Tutfiq0bRzyUuT24gOnLeDE7TuBzhC1sK5YHs17X0W0A2vUOYOcAYn3dpPmjP+b4Z7oY4kAnMct40BaBrsb7SsXml4O2OeD9wh+DdyVLsM7ktfDVxUaHtMg6JzPI+Sj94baJ+5iGg7l6KDqB5en+FtlvQ+SEqYxnwkkOOxsVUep27Il4/LMiucgl1vRBV+IMbvm6AyfHkheO8Kqve4y7uOngufrUH0rF19xuF34lGaXJxZZTi+x1FPiTHOAiBuSdEW4MiczPNctgcOCMxPj/KlWeRaCAd+fiqlj5pMzWR1bR0zaQcJEEdEzsOFn4RgABbUjznrARwxwjVzuoafsuPJkcXwdEIqSImgOaj2I5lMeIN3DvI/wAKv+pM5HxCzeWQ/TRd2beZTho5nzQ7eItO0+YUv1w+T1lZyysaxsJa0dfNWADqhG8QbuyO8FXtxQN8ojvWMszNFiZe1reRVzGjmfJZ9HijC4tANuoRH6z+1/ksp5JLhjUA6mI39EQwSsf+ogOiH33yz9NFVWxhFT3jUDLRlFj0MCVntJsmSOkFIfhSWbTxjXCR/HoksHkkY0zhfaX2p7UBrA4CQXF1iSNo5fwmpe3OMzA9sTDSBIECSNoidIJWdlD3e+y4ne55xCYYeLgNaDu0T3zz2X0qybv4u5z44SnfJrN9tsXJJquFyTAA6G0W0V2L9o6uJp9m7KRc6Fhk84N97RusEYRzrAEmzoDdvNWNwpblb8B62ifr/lVKPiTB4Z+RPwUwMw3m+vorsThKYY0AvLzzgN9CTzVlLBFzrPaItN42tomr4KtmMEO7j4aFKEJ+UT6U0ZlSmC6B6zCc4NxEyCBKuyODvf1kwNCbbhWYPFAPyskCLg8+Q6rHJKa7exg5STBqOFj3zMA3A1A3JRNXDl3wmZ0t9URWrCZgWBuRBvrbooDFWJAuNbWMcutlg8k3zRO7Mh7XtJDm+ikxlrGIE9/nutOvXzNsLidtjclA1KUidOR2P8LeORtcqh7Mm1rS2IO/238VaA0xsbCQIPKFQWO+JtwL215EdNvJTY4bzMyBprtHohxk+wVI7L2Z9q/0sU3e9SvaJIPMH7Loqv8A/QKIkaRIuCSeRgaBeYZ/isZIv4Rf0QWJdntMO27uSxj0ycrkjdZMkVR6rR9qhnzZmEPtHaN10sJslUxL2kOLKb2iTPukkagSbyvI+zdHXb0ldNR9onNptaWBxY0audJ66rolhp8RX9+5tDI383B0nGuMEiwLHb7iy5d9V5OaZnp9Qra3tMXa0QeUuMx5LM/5E2b0mxPzH7hbYY6RpRDI1J/Ma1LEBsbcxf6KTsYDuI8is/8A5QD/AO0IGku/wpYbjdN5AyhrjoDcdwMKvifeP5RNR8h3bBoABOuaUdR440atadZMX6EwhHYx8fCPMoSpi/7WBYzxPJxOH5LjLT5ZBVXi18227ZJH1tsgzxMzoNZmNehum/WE/Iotrnkz0TWFL/D8ieRv/I2cPxZn7mDvvEc9UX21F2kD86rnXYlxEe5CY4kxHux3Lkn0Nu4qvubLqWu7Oi7Zgu10R3IerjGanJ3kfxKwn4k82+SgKx/t8pUx/T2u4S6q/c6JlYC4yc7R/CvbxAmwe2e/7LlBWPMeRCdrnbQP+qT/AE5vuwXVHUOx5aYc+Z096PIQr242R8UdZ+65PM/5vRRBd8x8iof6ZfuUurXg6g46nu93m5JcuGnmfIpK/wDzV/J/37EfuvoX0KkzmIZyhs879dlCo2ASZcDoWmLjYjQ9yIo8MfaapJA1sZV39KBgS4gai3hoPqtnlj5OmOKXgxMHjDeBDrFrgYt3FGVcY/L75a/vYCdOaOHA6Rvl5DXn4wN0R/QabhFxro6DYa2JCcupx3YR6bLVHPjiWW9pHeB5KVDjV4n9tswBv91fjfY9xu2o6Dpmus3/AItX1bBHR34FtGeGS+YwlDqIP5TYrF9nMeRFjI0O48zsqP10NJdfXa1vwH7LNq8JxjLw+Lcj3fVC1eF4iLsf5Jxgv5ImWR+0WaTscCS4taQI1iZ1kEXOyApcYAg+6eYPign4CsJ91yDqYVzf2kd4W8ccDmlkkndG6zjQi8T3myd3FQWgCJ5wuZdTcVY3DuHNX6SJ9aRtniV9baRqNERQ4iIgkT3DTvOywmtfyP0UjRe7ZJwQKcjRqVw7wkIWpixO5tzuPFL9E8i0DxhR/p7uYTWvkT28Fzcc7Qie/wCo5KBxz7xp3x5clOnw87ovD+z1Q6Mdz0SWr7DqRm1cZoTEx+FDnEkmwtyW3V9nahM9m6/5zUT7P1B+xw/O9Wl9CWmA4DDmobvazv18P9rqODcCa1wdnDiNBIA77SfVY9Pgj2mRm8YP1XTez+GcHtL2jwACUm0VBGq3h06tb5uUv6YPlHmVpAjkFbnHILmlkkdCgjDfwsch5uUDwtu4/PFa9RwGwVLndPRR6kgcEZzuFt6Ks8NatbMq3VfyVHqTDSJm/wBPA5eihUwTRyWn2w/CndVCn1JhpEyv0reXokcIz5R5fytQPb0805LTyQ8sg0RkjBUz8vkFM4Jg0APgFqBw6KdtwPJS80g0RlHBM+UeiS2fd5fT+ElHrSHojnP1ExEctINtz08EXSOhPLvE7aDe6Ha7bcG/KOV/unp4j34aWzfKLcr72WD5PWiF03anMbek+Ft/JG4a4cRobnQA9xH1WWXE+9mDYA93mDyGxROCeBMX5Ai4O3f3LKa4NYPkMbiAWzltEWAOnK9lOjioG3iM0wIvpbxCEOIESZJ2vY2iJExebJUcWD8TXbWiR3gz6WU0/BVo2cHRbUEiINtyP/rdaVBrCSCBIjMLE6ajoucwlck+60ifhLZ22dpH0Wpga8EF4gxuJMn5YTtkSj4NZ3Cqbh8IXM+0vs84+9TALQPhGvf1XUNxjcwaHCTtN1f2kqoZZQZzyTfDPGsRw4t2A/6x6wgzQPNew8R4XSqgy0B2x/lcPj+HNpuLXtA66j/C9DFm3OXJgrlHN0sESYhXu4ZFyNORW5S4cDduUjonfhi3SB0iJ8V0KLZg40Y+GwAJ0JHT/KNHAN4tqLx5rSweHO4juIhdBREDyW8IKuSas51vAGgAwdp/3C6TB8IAbadOZCJBBEW8Vp0nw0CJ/O9VJ12LjBe5zeLwrgfhEC3NBvomdF0OMJ+X1Cx8Q87j1v6BTchSSAX028grMNTaNlB9U8j5yqzXjkk0yOA7INlPKOvqs79Sf9JDFnmsZRY1JBVSOf1VB7x5FQdip3lQ7dTqwbCWu6hNm6hV9t+QkCOnkFm4hZYH93nCZ1QcvUqkgdPJMKQ6eSnVDtlrT+fgVhE7fT+EGaJ2j1SyOHNJw+otg5pHy+gSzDcen+0Gx7+fmFIuqd6n02PYPBHIpIMGp8o8x/CSj035/IbIyGteX5m6xcXkCdr6qNdpAJBLTzy5tdZBVjqlV1xLBluSACfzmlhw4tu+CDIv9djqs7rk9P6EMI9rhlDjykgjMd7G3WByRjHOj3XANt7zQZsO6fFUNxRALCyTOovbpEQeqGxjDYvs2AARMnq6NeamrZSlSNbEEhoDSTOsiTcTcOAnoqqTxADRmJkQQQRa9z9igGkugB5FhH7m2NhB0I1RDMS6kXENB3LhJg2vEmFOlcF73yaDGlp90ZbCYzWjX781oM4hkAgFwOkuaPeO19/ELDw/EC+4Lh+4wJHXXTRXgOeC9pLrTHPuClwafxFKSa4NhvEGzcPYZm8ZZjQkExK18Pimm25E/wClw2LxYE5wBJnKZBA0tA8NUXg+JAQxjS2wu2XN0MEnXyVPE6sjdXR2pqIDH4VlUXAJ57rPwfEqhnOGmDY3B8ZV36udRHXbzSjFxdoG0cxiuHVaDpZJb0ReExoeIdr6rWfUnVZ+JoNOwPXQ+a78XUV3OOeLwWfpDqx3gnOJqMF2T4/YqqjWDNyjqWKa+3pb+ZXdHMmc7gDs4yJvIPd/AWrh+LtI/wDIha3DWuEwFk4vh0aW/OabakL4om7WxoP93kEHWqtdzHj/AAueqio3n9VAY54Tozczbe1vP7/VVhoOxQFPGn5gr2408gk0TaLjSPMdyrLOnol+qBurRXB/0pdgDFgCr938v9UY9w5Kiqf7SkIqOXZREcz5qzKflj1TOI1I9P5KVCIBo+b6K0NPzfb7KsAFRdSHPyv9VLQBLXEfuU8/96B7Mjn6BIA/M3yJUuKHZotM7/nkpimfm/PNZhJHL6KQruHPwKlwDY0hTPM+f+UkCMYf7klOjHaB6gLtXQ2IBiCbcttkPWwlQQM0xyA/mFjNqVKnhHUnvj7rWY99MSXgtIvAANxzNj4rmcHDhNHprIp90wdtKo6oIIPKwPmfzVG4mu+PfFg4A3gtkHTpqqsNiYB7MAFxMAx5zyuiqVJ0S907nM2CROymb55/6VFccAGRt7RG8A69WqzCYguIJa0uAhuUkT3zvY26qWMY2pAY6DzAibxY/ZUVXPaLHSZBE3bGgjuVL4l9SbpmxRDXMdroZpuAMbyJ2sgG13U2gkgO2GgjbeJVP6sVD7rofAF22PTorsRShnvNAcNToCSfzVQo06ZblfKKqmKqvI90ERczJM9c3PZEU8Y59qlIQIBIGV0dRF1kF7ZMX05nfotLC1M1EgjMZsCHA9wcZWs40uxnCVvubPaNLZBJgamxjvt6JsPViGzvo51h3GbrGpDK4gOdcSBNh06IY16+cZgDeJA0ju2us44/DLlk8o6ftcpi4Max7uvPRQqVgNbddQsZ3FHtMEm2ht5dfRW0cS55Og57CLzI+8bLRLyZN+A6s+NUOXHUJqrxHTnqPNVtcPwyrXBm2aWC426nYzHI3HkUYeL0qmvunyXPOMoaoFtGRm2dJVoh2hBHgs+thnDke/8AlZFPEvZ8JIR1DjpFntBW6mYtIjVY3cFpVTqbho6VsUsbRqdPzkpP4Ux12x3tKrde5Lj4MdmKcNR5K9uO/IUq+Ae3YO9Cs6oIPwx6J2mS7RrM4iVYziAKwX1+YI/OimzEDn5paoWx0IxIOw8lXUc1ZNPEdPWVc2u0paoLDPd/Lpi8fKVQHhPbmikKywvA2SFcnu8lS6n19P4Uf052ulqgthLnU+adpadz6ILsSN1BzY0S0XkNjQyDn6JkCA78KSWn1DYEo4MM+GzufmqKdfL7ziXDQgiQZ6SkkuKD2fJ6XZcFmGrMe8ZWubNtZvKK4jiZApiQNNJjQc+aSSJwW6KjJ6AWTI7KNCL7eQ8lOtWzfEAQCBvN43nuskkmuaZF+xfi8M2GlpLQY0873QVLEOLiAXQIsXSDbdJJLFzF2XPhqiTnsHxMFrS22nTdHU8QQ22+hiDbSRoU6Sc0qRKk0YzsWXk5p12gELQdiDktrHxGJTpLWcVwRCT5A6OKcAbydtANOSpwXEXAzA15n0SSWsIRadkSk00b2DcHNOtzpZCudlkjnGl/8pJLCPzNDkSFXe9/uk4ykktCGUvKrc1MkqRDIQdQisPj6jND6/dJJaxVkmrhOMOfbXo4CPMK79Sx8gsg+YTJJSik+Ab4B62BYdLd38LNxGDI5H0TpJRk7MWBtk6EhMXPG8pJLcQwxLlczGFJJOhBFPGFENxJSSUNDJirKkKgSSUgSDupTpJKRn//2Q==\\n\", \"height\": 182, \"channels\": 3, \"width\": 276, \"type\": \"image\", \"id\": 4947634960}], \"selected_variable\": {\"name\": [\"\"], \"dtype\": \"Image\", \"view_component\": \"Images\", \"view_file\": \"sarray\", \"descriptives\": {\"rows\": 5}, \"type\": \"SArray\", \"view_components\": [\"Images\"]}}, e);\n", + " });\n", + " })();\n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "gl.canvas.set_target('ipynb')\n", + "for component_id in range(4):\n", + " get_top_images(assignments, component_id).show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These look pretty good! Our algorithm seems to have done a good job overall at 'discovering' the four categories that from which our image data was drawn. It seems to have had the most difficulty in distinguishing between rivers and cloudy skies, probably due to the similar color profiles of images in these categories; if we wanted to achieve better performance on distinguishing between these categories, we might need a richer representation of our data than simply the average [R G B] values for each image." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "__Quiz Question:__ Which of the following images are *not* in the list of top 5 images in the first cluster?" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "![Images](chosen_images.png)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "toc": { + "toc_cell": false, + "toc_number_sections": false, + "toc_threshold": "8", + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/machine_learning/4_clustering_and_retrieval/assigment/week4/.ipynb_checkpoints/quiz-week4-assignment1-checkpoint.ipynb b/machine_learning/4_clustering_and_retrieval/assigment/week4/.ipynb_checkpoints/quiz-week4-assignment1-checkpoint.ipynb index 98b2f64..f6afcdc 100644 --- a/machine_learning/4_clustering_and_retrieval/assigment/week4/.ipynb_checkpoints/quiz-week4-assignment1-checkpoint.ipynb +++ b/machine_learning/4_clustering_and_retrieval/assigment/week4/.ipynb_checkpoints/quiz-week4-assignment1-checkpoint.ipynb @@ -4,137 +4,18 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Decision Trees in Practice" + "# Implementing EM for Gaussian mixtures" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "# Question 1" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Question 2" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Question 3" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Question 4\n", - "\n", - "\n", - "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Question 5\n", - "\n", - "\n", - "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Question 6\n", - "\n", - "\n", - "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Question 7\n", - "\n", - "\n", - "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Question 8\n", - "\n", - "\n", - "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Question 9\n", + "# Question 1\n", "\n", - "\n", + "\n", "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", + "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-clustering-and-retrieval/exam/UnnXU/implementing-em-for-gaussian-mixtures)*\n", "\n", "" ] @@ -143,11 +24,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Question 10\n", + "# Question 2\n", "\n", - "\n", + "\n", "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", + "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-clustering-and-retrieval/exam/UnnXU/implementing-em-for-gaussian-mixtures)*\n", "\n", "" ] @@ -156,11 +37,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Question 11\n", + "# Question 3\n", "\n", - "\n", + "\n", "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", + "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-clustering-and-retrieval/exam/UnnXU/implementing-em-for-gaussian-mixtures)*\n", "\n", "" ] @@ -169,24 +50,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Question 12\n", - "\n", - "\n", - "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", - "\n", - "" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Question 13\n", + "# Question 4\n", "\n", - "\n", + "\n", "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", + "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-clustering-and-retrieval/exam/UnnXU/implementing-em-for-gaussian-mixtures)*\n", "\n", "" ] @@ -195,11 +63,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Question 14\n", + "# Question 5\n", "\n", - "\n", + "\n", "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", + "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-clustering-and-retrieval/exam/UnnXU/implementing-em-for-gaussian-mixtures)*\n", "\n", "" ] @@ -208,11 +76,11 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Question 15\n", + "# Question 6\n", "\n", - "\n", + "\n", "\n", - "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-classification/exam/xRbhG/decision-trees-in-practice)*\n", + "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-clustering-and-retrieval/exam/UnnXU/implementing-em-for-gaussian-mixtures)*\n", "\n", "" ] @@ -234,7 +102,13 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", - "version": "2.7.10" + "version": "2.7.12" + }, + "toc": { + "toc_cell": false, + "toc_number_sections": false, + "toc_threshold": "8", + "toc_window_display": false } }, "nbformat": 4, diff --git a/machine_learning/4_clustering_and_retrieval/assigment/week4/3_em-for-gmm_graphlab.ipynb b/machine_learning/4_clustering_and_retrieval/assigment/week4/3_em-for-gmm_graphlab.ipynb index a2fe5b1..e58bf6a 100644 --- a/machine_learning/4_clustering_and_retrieval/assigment/week4/3_em-for-gmm_graphlab.ipynb +++ b/machine_learning/4_clustering_and_retrieval/assigment/week4/3_em-for-gmm_graphlab.ipynb @@ -35,7 +35,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": { "collapsed": false, "scrolled": true @@ -88,7 +88,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "collapsed": false }, @@ -118,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { "collapsed": false }, @@ -151,11 +151,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEKCAYAAADEovgeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X2UZHV95/H3V4bMsGkYxLOMzjhjt02iC4YFccOseqBK\nGMw6x5mzBk1MNcbAHnxgTdDVgHFbGirhmKgZ18dIEtbIjEoSNLCKypCxGldtgjIuER9nuhCccVXk\neQFxnO/+UVVtP9yqureqfveh6vM6p8703Lq37re7qu73/p7N3REREQnpSVkHICIiw0/JRkREglOy\nERGR4JRsREQkOCUbEREJTslGRESCC5ZszOwLZna4zePGUOcVEZH8WRXwtV8HHLNs2/OBdwPXBzyv\niIjkjKU5qNPM/hb4PeBp7v5AaicWEZFMpdZmY2ZHAecCNyjRiIiMljQ7CLwMGAP+LsVziohIDqRW\njWZmnwdOBja4++FUTioiIrmQSsnGzJ4GnAXsVKIRERk9aVWjnQcY8NGUziciIjmSSjWamX0DeMLd\nn9tlP613ICJSIO5ucfYLXrIxs9OAE4GPxNnf3XP7uOyyyzKPoegx5j2+IsSY9/iKEGPe4ytKjEmk\nUY32+8DPgY+lcC4REcmhoMnGzFYBvwt81t3vDXkuERHJr5DT1eDuh4DjQ54jTaVSKesQusp7jHmP\nD/IfY97jg/zHmPf4oBgxJpHqdDXdmJnnKR4REWnPzPC8dBAQERFRshERkeCUbEREJDglGxERCU7J\nRkREglOyGVL1ep2pqSnK5TJTU1PU6/WsQxKREaauz0OoXq+zZcsW9u/fv7BtcnKS3bt3MzExkWFk\nIjJM1PV5xE1PTy9JNAD79+9neno6o4hEZNQp2QyhAwcORG4/ePBgypGIiDQo2QyhDRs2RG5fv359\nypGIiDSozWYIqc1GRNKQpM0meLIxs5cAlwDPBQ4D3wH+2N1rEfsq2QxIvV5nenqagwcPsn79eqrV\nqhKNiAxUbpKNmb0GeB/wXuCzNKrtTgHudPcbI/ZXshERKYhcJBszewbwLeASd39fzGOUbERECiIv\nXZ8vAH4BfDjgOUREpABCJpsXAN8GXmlm+8zs52b2PTN7fcBziohIDoVcqXN98/EXwFuBeeDlwPvN\n7Ii4VWsiIlJ8IdtsvgOcALzM3a9ftP1G4BR3XzHoQ202IiLFkZc2m582/7152fabgHVmti7guUVE\nJEdCVqPdCZye9KCZmZmFn0ulEqVSaXARFVhr3MyBAwfYsGGDxs2ISOpqtRq1Wq2nY0NWo70E+F/A\ny939k4u2fx54trs/I+KYwlWjpZEENCOAiORRLsbZNAP5Z+Bk4L/T6CDwCuB84NXufk3E/oVKNmkl\ngampKXbt2rVie6VSYefOnQM7j4hIEnlpswHYDnwCmKFRyvkPwO9FJZoiSmsq/0HM4qzF1EQkSyHb\nbHD3R4A3NB9DJ62p/PudxTmqBDY3N9e2BKb2IREZtKDJZtilNZV/tVplbm5uRXVdtVqNdXynEtjy\narikiUlEJA6tZ9OHarXK5OTkkm1JkkBcExMT7N69m0qlQrlcplKpJLr4JymBaZVPEQlBJZs+tJJA\nGlP5T0xMdOwM0KnqK0kJTKt8ikgISjZ96pYE0tCt6uvCCy/k2muv5dChQwvPr1q1igsvvHDFa2mV\nTxEJQdVoQ6Bb1ddVV121JNEAHDp0iKuuumrFa6VVNSgio0UlmyHQreorSdVYmlWDIjI6lGyGQLeq\nr6RVY3moGhSR4RJ0BoGkijaDQF50m8mg15kONN5GRDrJzXQ1SSnZ9K6VGNpVfXV7Pur1NB+biHSi\nZCN903xsItJNnuZGk4LSeBsRGSQlG4mk8TYiMkgh17M5E/hCxFMPuPtxbY5RNVpOqM1GRLrJRZtN\nM9nsoTHj81cXPXXI3W9vc4ySTQxp9RJL2qlAREZL3pLNFnffE/MYJZsuVOIQkbzIUweBWEFIfJqV\nWUSKKI0OArvM7JCZ3Wtmu8xsYwrnzNygV8Zsvd6nP/3pyOd76SUWN0at8iki/Qo5Xc2DwLuAWeAh\n4FTgbcCXzexUd7834LkzNegFyKJeb7mkvcTixqjF1ERkEFId1GlmpwL/Alzp7pdFPD8UbTaDHhDZ\n7vVaemmzafea27dvZ2xsbKHzwcMPP8wNN9ywYj8N7hSRJG02qU7E6e57zey7wG+med60DXpAZLvX\nO/bYY9m6dWtPvcTaveZNN93EY489tvD/NWvWRO6nwZ0ikkTuZn2emZlZ+LlUKlEqlTKLpVeDHhDZ\n7vW2bt26onQRt1t0u9dcnGgAHn/88cj9jj766Dihi8gQqdVq1Gq13g5299QewPOAQ8BlbZ73YTA/\nP++Tk5MOLDwmJyd9fn4+6OslOW/UvmvWrFny/9Zj9erVK7Zt3Lix599nEObn571SqXipVPJKpZJp\nLCKjqnnNjnX9DznO5hpgP7CXRgeB5wKXAo8Ap7n7fRHHeKh40jboAZFxXi9pW9Hy12zXPrNhw4bI\nares2m001kgkH5K02YQsxVwKfB24H/gZ8H3gQ8C6DseESb8jYvPmzZElk3K5HOv4diWjfl938esP\nojRSqVQi46lUKj29noj0hgQlm2BtNu7+DuAdoV4/b7JeaKxer/ONb3wj8rm4bUXtloSenp5mbm6u\n59dtxTeoLtSakVqkgOJmpTQeFLRkM+g2ml60u9sfGxvrO45B/H6DLI2oZCOSDyQo2WiJgQEIMYVM\n0lH77e72n/Oc5/RdwmqVeCqVCuVymUqlkrhEMsjSSLVaZXJycsm2yclJqtVq4tcSkXTkrutzEbUb\n2d9pxH879Xqdiy++mJtuumlJt+NuVU7tujIvvyj3amJioq/OAIPsDt6uuk+dA0RyLG4RKI0HBa1G\nGx8fj6zWGR8fT/Q6UdVVxKwmStrtOe1uw3moahSRwSIPHQRGybp167jrrrtWbH/qU5+a6HWiquMW\n61TlFPduP6u5zlQaERltSjYDcMIJJ3Drrbeu2J60Cqtdu0ZLtyqnOFVdndqXQo+Z6bcqTkSKSx0E\nBmBQDdbt2jV6fb2WxZ0Ndu/eHbmPug2LSEgq2QzAoKqIqtUqc3NzS0oeRx11FOeccw47duyI/XqL\nx/wcc8wx7N27l3vuuafjMb3O2yYiEkeqSwx0M0zT1fSq32lu4qx9s5ymehGRXiSZrkbJZsh0W/um\nZd26dZx44olqqBeRnuV2PRsJr1sng5azzz5bjfUikhp1EBgynToZtGi0vYikLbVkY2afM7PDZnZF\nWucMLemUMmmI6hm3adMmtm/f3vNUMyIi/UqlGs3MXgmcTGPk+FDIanBkNxo8KSJ5FLyDgJk9Gfgm\ncDHwceBP3f3tbfYtTAeBpAuV9SLrZQtERDrJWweBPwfucPdrzezjKZwvFaHXVMlryUlEpBdB22zM\n7IXAFHBRyPNkYZCzGEdpN63M5s2bc9M+JCISV7BkY2ZHAn8FvNPd94U6T1ZCr6nSruT04x//mF27\ndrFlyxYlHBEpjJAlm0uANcCVAc+RmUEsKNZJty7M/S7OJiKSpiAdBMxsI/Ad4ALgxtZm4D7gnTQS\n0MPufnjZcYXpINCvbo3/caadKZfL7NmzJ41wRURWyEMHgWcCq4GdNJJMiwNvAd4MnArcsfzAmZmZ\nhZ9LpRKlUilQiNmJ0/i/uAvzzTffzI9+9KMVr6PJM0UkTbVajVqt1tOxoUo2xwCnRDxVA64B/gb4\nmrs/uuy4kSjZJO02HZWcNHmmiGQt85KNuz8E3LJ8u5kBfN/dvxjivEWRtNu0BmqKSNGlPRFna/35\nkdZLt2mtcikiRaYlBjKgajERGQZaz6YA+l0kTUQka0o2IiISXJJko/VsREQkOCUbEREJTslGRESC\nU7IREZHglGxERCQ4JRsREQlOyUZERIJTshERkeCUbEREJDglG0lNvV5namqKcrnM1NSUlrUWGSHB\npqsxs3NoLA19IvBk4CfAl4EZd/9Wm2M0Xc2Q0uSjIsMnL9PVHAd8FbgI2AJcCpwEfKW5bLSMkOnp\n6RVLXO/fv5/p6emMIhKRNAVbz8bdPwF8YvE2M7sN+DZwLrAj1Lklf5IuGCciwyXtNpv7mv8eSvm8\nkrFeFowTkeERfIkBM3sScAQwDrwDOB04xd3vjdhXbTZDSm02IsMnV+vZNKvOTmv+93vANnf/Tpt9\nlWyGmBaMExkueUs2zwKOAZ4JvBl4KvACd787Yl8lGxGRgshVsllyMrO1wF3Ax9399RHPK9mIiBRE\nkmQTrDdaFHd/0Mz2ASe022dmZmbh51KpRKlUCh+YiIh0VavVqNVqPR2bdslmHbAPuEYlGxGRYstF\nycbMPgncDtwBPAQ8C7gYeAL4y1DnFRGR/AlZjfYV4BXAm4BfAe4BvgC8I6pzgIiIDK9Uq9G6UTWa\niEhx5GVuNBEREUDJRkREUqBkIyIiwSnZiIhIcEo2IiISnJKNiIgEp2QjIiLBKdnIyKjX60xNTVEu\nl5mamqJer2cdksjI0KBOGQlavE1k8DSoU2SZ6enpJYkGYP/+/UxPT2cUkchoUbKRkXDgwIHI7QcP\nHkw5EpHRpGQjI2HDhg2R29evX59yJCKjKViyMbNzzexTZna3mT1qZt82syvNbCzUOUXaqVarTE5O\nLtk2OTlJtVrNKKLBUKcHKYpgHQTM7CvAD4BPNf89Bbgc+Ja7P7/NMeogIF3V63Wmp6c5cOAAGzZs\noFqtxmrkbx138OBB1q9fH/u4vFKnB8lakg4CIZPNU9z9p8u2nQd8BDjL3WsRxyjZSEdFvsD2miTb\nmZqaYteuXSu2VyoVdu7c2U+oIrHkYqXO5Ymm6TbAgOgKdJEuOvUqy/MFNipJzs3N9ZUk1elBiiTt\nDgIlwIFvpXxeGRJFvcCG6HqtTg9SJKklGzPbQKPNZre7357WeWW4FPUCGyJJDmunBxlOqSQbM/tV\n4HrgCeD8NM4p2QrVS6qoF9gQSXJiYoLdu3dTqVQol8tUKpVCtF3JaAo+XY2ZrQE+C/wGcIa7f7PD\nvuogMARCN+IXsVdZkTs2iLSTi95ozUBW0SjRvBA4291v67K/X3bZZQv/L5VKlEqlYPFJGOolFa2I\nSVKyMeiei4NSq9Wo1WoL/7/88suzTzZmZsC1wFZga1RX54hjVLIZAuVyeckHcvH2PXv2pB+QSIEU\nqRScl4k4PwicC7wbeMzMTl/0UNfnIVbURnyRPBjWSWNDJpvfotHN+W3Al5c9Lgh4XslYURvxRfKg\nqN37uwk5qDNf5T1JTauXlNonRJIb1poBLZ4mQH4bJKMUKVaRpIa1zUbJRgb24U4jCRTpiyjSq6L0\nXFSykUQG0VU5rSSgbtUi+ZGX3mhSEINokEyrB02cWLXGi0j+BOsgIMUxiAbJtHrQdIs1xOzKItI/\nlWwksqvy2NgY+/bti10ySKsHTbdu1cM6RkGypdLyALh7bh6NcCQL8/PzXqlUfPPmzT42NuY0xkg5\n4JOTkz4/P9/1+MnJycTHxY2rVCp5pVLx+fn5hW3lcnlhW0upVFoSQ+tRLpf7ikNGV6jP9jBoXrPj\nXd/j7pjGQ8kme5VKJfJiXalUluw3Pz/v27dv9+OPP96PP/5437Ztm8/OzrZNAr3o5UseN36RuPSZ\nak/JRnoWp2QwPz/vGzduXLHPpk2bBnq318uXXHehxRJVcs0blZbbS5Js1GYjS8Rpe5menuaee+5Z\nsc/dd9+9om2kn7ruXjodtGYv2LZtG095ylNYvXo1999/PxdffLHq2XOm1Zlj165d1Go1du3axZYt\nW3L3Pg3riP7Uxc1KaTxQySZzcUoG7e70iCgB9VPK6LX6Iq2Sl/SnKNVTKi23h6rRpB+dGuDd218k\nll8o+r2Y9PoljxufZKtI1VPdvhOjKkmyCTbOprmMwKXAacC/B44Cxt397lDnlMGYmJjoOBq/Wq1y\nyy23rKhK27Rp05KZnfsde9PrhJ7tzpvk3BJekaqnun0npLuQgzpPoLGezdeAW4BzAp5LUjQxMcHs\n7CxvfOMbmZubA+D000/nPe95z5JEMIiLSS9f8nbnTXpuCatarTI3N7diiiMtRTGcUpkbzcwuAK4C\nJjqVbDQ32nDJatLMer3OmWeeGVnyqtVqfZ9bs04PTlEmnJRouZuIU8lmdGV1ManX611LXr2+rmad\nFmlQspGgRvnOXrNOi/xSkmSjiTglkVGf6HJYl+wVCU2DOiWRrCa6zMtEiEXqQSWSJyrZSCJZ3Nnn\nqTSlHlRLjXKVqiSTu2QzMzOz8HOpVKJUKmUWi6yUxZ19u9LU5s2b2bJlS+oXuJNOOomHH34YM2Pz\n5s3s2LFjJC+weboJkHTUajVqtVpvB8cd/dnPA7gA+AWwqct+AxrXKqH0M3VHr5MudpoeJ8n5+6Vp\nS5YqynQzEg55ma4G+O3m40PAYeC1zf+f0Wb/gH8WGZRepu7o50LdafqZpBe42dlZHx8f97Vr1/r4\n+LjPzs7GOq5THKN6cc3rdDNFmEl6WOQp2RxulmiWP/a02T/gn0Wy1OlC3e3iEJWoernAzc7O+qpV\nq5Yct2rVqtgJJ68X16zkMfmq9Jmu3CSbpA8lm+HV7kK9efPmWBeHVkJat25dzxe48fHxyGPHx8dj\n/Q55vLhmKY8Xdr1H6VKykb4Nsipifn6+44U+ycWh0wWuW8xr166NPNexxx4b+/fI28U1a3mbDVml\nz3Qp2UhfBnlR7VQFNjk56Zs3b058cYi6wMWJuV1iW716daK2p23btvm6dev8+OOP9+3bt2d+gR11\ni28ykt68SH+UbCSxUF/YdtUa4+PjC+ccxLnivE5Um03ShKrSTb5EvR/L32O9P+Eo2UgicRrge62K\n6FatEXXusbExn52dTVSVF7f6pNUb7cgjj+wpyalNIF863cy0Sr6zs7PqnRZIkmSTu0GdkswgRnBH\nDZqM0svAzW6DQCcmJrj66qvZunUrjzzyCACPPPII5513Hu6+ZJmATgMG4w42PeOMM6jX65TL5cjB\nad1mQtDcaPnS7v2YmJhgz549GniaJ3GzUhoPVLJJZFBVOt0GTfb6unFjjDOOhi4liKR/i15LKCrZ\n5Eu39yOt92tUx/agarTRELq9o/VoVWv1qluPpTjJrvVI2nGg0769JGq12eRLt/cjjd5po/yZULIZ\nEYP6IsVpsxnUnWDUHeAgSjb9xJK0227euvvmRVZ3953ejzRKNqNc2lWyGRGD/JC3vrDHHntssDvB\ndneAs7OzK7Zv2rTJN27cOJJ3i0WU17v7NOIa5bE9SjYjIsQXKeRdWpwpa5aPnVEJohjyfHcf+nOU\n5989NCWbAuq1CmLQX6SQd4JZ3AGOasNt2kb57j6vpbo0JEk26vqcA/10z5yYmGDnzp0Di2ViYoLd\nu3czPT3NwYMHOfroozEzzj///L4Xx0p7LRx1e01PnPd2WBdaW/6dWb9+/dD8bgMVNyv18gCeDvwj\n8ADwIHAdsLHD/uFScI4Nohge4g5+0Hdsad8BjnL1Rtq6vbejfPc/zMhDNRpwFPA94A7gpc3HHc1t\nR7U5JuTfJbf6rYII9UUOcbFOsx1mlKt2spB1rzBJX5JkE7Ia7UJgHPh1d68DmNm/NpPNa4D3BDx3\nofRbvdRu2eTp6emOVWzdqjVCjJYfdLVfJ1ksYT3KOr23mnlBQiablwJzrUQD4O53mdmXgO0o2Syo\nVqvMzc0tSRiTk5NUq9VYx/fyRY7TnlH0i3W/f1cZnKJ/lmQA4haBkj6AHwIfitj+AeBHbY4JUtQr\ngn6ql3qpoohzzDDUs6v7dD4Mw2dpOfV0zE+bzc+AKyO2V4En2hwT6m8y1Hr5Isdtz9DFWgZlmD5L\ncTpEjEIiUrIZQUm/yGqwlWGT5gW+2wDlYSvFtZMk2Vhj/8Ezs/8LfMrdX7ds+weAc919XcQxHioe\nWSqqzWZycrIwY1CGdcyGxLf4M7B27Vr27t3L3XffvfB8yM9zuyUqyuUy69evZ9euXSueq1QqqXWO\nSYuZ4e4WZ9+QHQTuBE6K2H4i8M12B83MzCz8XCqVKJVKg45LKPZAtKhEed111/HiF7+YHTt2FOJ3\nkP5EfQaWi9Mjs1edOjy067Czf/9+pqamCn2DVKvVIpNsLHGLQEkfwB8BTwDji7aNN7dd3OaYECU9\nGTKdZoke1uoKWSruTOGhxlR1qiprF9vY2NjQfVZJUI32pN5SVCx/DdwFXG9m28xsG/BPwPeBqwKe\nt6N6vc7U1BTlcpmpqSnq9Xr3gyRX2t05wi/vZmW4dfoMLBaqa3WrZqBSqVAul6lUKgtVdtVqlcnJ\nySX7j42NLaxE2zJqn9Vg1Wju/qiZvQjYAXwUMOBm4I3u/mio83aiubKGQ7sqjBYNFBx+3T4DEH5M\nVbtBrFFV1Pv27ePWW29dse9IfVbjFoHSeBC4Gk09sIZDt8Xe9H4Ov6jPwMaNG33btm257Fo9rNce\nclKNljujNmXGsFYZtu4ct23bxpo1a5Y8pxkCRkNUNdbOnTs5+uijWzeuuRJVtTZyn9W4WSmNByrZ\nDMyo9PUfpoGC0rsifN6H8bNKHsbZ9CL0OJuijy1JYmpqamT6+ovo856NvIyzyZ0ijy1JatSqDGW0\n6fOefyOVbCDdKe6zpFl2ZZTo855/I1WNNkpGqcpQRJ/3bCSpRlOyGWKtuaOKWmWo+c8kiaJ/3otI\nyUYKT3eqIvmXJNmM1DgbKY5OS12LSPEo2UguqXeRyHBRspFcUu8ikeGiNhvJJbXZiORfLtpszOxN\nZnaDmR00s8Nm9vZQ55Lh02kKd5HQhnVewSyFXBb6m8CDwO3Aa4HL3f2KLseoZCMimVKpOr5clGzc\n/UR3/4/AH9JYy0YkFborlX6oJ2QYIzddzagalQGSWiBP+qWekGEo2YyAUboAd7orHYU58aR/6gkZ\nhro+j4Ak1QJFr4LSXan0SwudhRGrZGNmZwG7Y+xac/cX9ReSDFrcC/AwlIB0Vyr9GqWlSNIUtxrt\nS8CzY+z3aB+xSCBxL8DDUAVVrVaZm5tb0ZNId6WSxKgsRZKmWMnG3R8Hvhs4FgBmZmYWfi6VSpRK\npTROO9TiXoAHWQWVVYcE3ZWKhFOr1ajVaj0dG3wGATM7Avg5MKNxNtmJM/36oJbW1TgFkdGQiyUG\nzOw0YBw4AvgE8PfAPzSf/kyztLT8GCWbDA0qSWg9eJHRkCTZhOz6/F+BVzV/duDlzQfABHB3wHNL\nDwZVBaUeYSKyXLBk4+5/APxBqNeXMAbRMKoeYSKynGZ9loFTm43IaMhFm00vlGyGh9aDFxl+SjYi\nIhJcLmZ9FhERaVGyERGR4JRsREQkOCUbEREJTslGRESCU7JJSdHXiREZJvo+pk9dn1OgQY4i+aHv\n4+Co63POJFkpU0TC0vcxG0o2KdDElCL5oe9jNoIkGzP7NTN7n5ndaWYPm9lBM7vezE4Ocb6808SU\nIvmh72M2grTZmNlFwGuBjwBfA9YClwCnAC9w971tjlObjYgEpe/j4GQ+N5qZHefu9y3bdgxwF3CD\nu7+6zXFDmWxAE1OK5Im+j4ORebJpezKzOeBhd9/S5vmhTTYiIsMml73RzOzJwHOAb6Z1zkGr1WpZ\nh9BV3mPMe3yQ/xjzHh/kP8a8xwfFiDGJNHujvb/57/9I8ZwDVYQ3P+8x5j0+yH+MeY8P8h9j3uOD\nYsSYRKxkY2ZnmdnhGI89bY5/K/C7wEXuPj/IX0BERPJvVcz9vgQ8O8Z+jy7fYGavBf4M+BN3/7sE\nsYmIyJAI2kHAzM6j0f35Xe5+SYz91TtARKRAMu+NZmb/Gfh74G/c/XVBTiIiIoUQapzNGcDngW8A\nfwgcXvT0z9z96wM/qYiI5FbcNpukysCvAM8F/vey574PPDPQeUVEJIeCdH1298vd/Yg2j66Jpghz\nq5nZm8zshmZsh83s7RnG8nQz+0cze8DMHjSz68xsY1bxLGdmG5rv55fN7P81/16bso6rxczONbNP\nmdndZvaomX3bzK40s7GsY2sxs3PM7J/N7Idm9riZ3WNm15rZv8s6tnbM7HPN9/qKrGMBMLMz2/Si\nva/70ekxs5eY2Wzz2vegmf2LmZWyjgvAzL7QoTfyjZ2ODVWy6dc5QAm4mqVzq82ZWdu51VL2X4AH\ngU/RmAcuE2Z2FPAF4DHgvObmPwP2mNnJ7v5YVrEtcgJwLo338hYa72+e/DfgB8ClzX9PAS6n8Rl8\nfnZhLXEc8FXgA8BPgE3AW4GvmNlvuPs9WQa3nJm9EjgZyFunHwfeQONv2XIoo1hWMLPXAO8D3gtc\nQaNAcArwb7KMa5HXAccs2/Z84N3A9R2PdPfcPYDjIrYdA9wHfCTr+JbFdQSNNqm3Z3T+PwJ+Dkws\n2jbe3HZx1n+fiHgvAH4BbMo6lkUxPSVi23nNOEtZx9ch7l9vfvbemHUsy+J6MvBD4Hea8V2RdUzN\nuM5svqcvyjqWNvE9g8bwkTdkHUvCuP+Wxs3usZ32y+V6Nr5sEs/mtoeA7wLR84OPrpcCc+6+sK6t\nu99FY2zU9qyCKhJ3/2nE5tsAI9+ft9b3JDd35k1/Dtzh7tdmHUiEWN10M9K6Eftw1oHE1axZOZfG\nBMsPdNo3l8kmyjDMrRbISTR6/S13J3BiyrEMkxKNKpdvZRzHEmb2JDM70sx+jcZF6SDw8YzDWmBm\nLwSmgIuyjqWDXWZ2yMzuNbNdOWrffAHwbeCVZrbPzH5uZt8zs9dnHVgHLwPGgK4D9vPaZhOl8HOr\nBXIccH/E9vtoVGdIQma2gUabzW53vz3reJa5FTit+fP3gLPc/d4M41lgZkcCfwW80933ZR1PhAeB\ndwGzwEPAqcDbgC+b2ak5+Duubz7+gkZ73DzwcuD9ZnaEu78vy+DaeBXwY+Bz3XZMpWST97nV+o1P\nhoeZ/SqNhs4ngPMzDifKFHA68EoaF8ybc9Sz7xJgDXBl1oFEcfevu/sfu/tn3P2L7v5e4LeAp9Lo\nNJC1J9EoJVzo7le7e83dL6JxIX9rtqGtZGZPA84Cdrr74W77p1Wyyfvcaj3HlwP3E12CaVfikTbM\nbA3waRo4A5VsAAACqElEQVQdLM5w99wtSu/u32n+eJuZfY7GgoSXAplWtTSrov6ERrvDmubfstU+\nstrM1tJYy6rrRSlN7r7XzL4L/GbWsQA/pdFz8+Zl228CXmxm69z9R+mH1dZ5NN7jj8bZOZVk4+6P\n02jcT6Q5t9oHaBTL3zHwwJp6jS8n7qTRbrPciah9KzYzWwVcR2Mg8tnunvu/nbs/aGb7aFygsvZM\nYDWwk6WN8A68BXgzjWqrO9IPrTDupFFqLYpXAf/H3f81zs657SDQnFvtauAqjzGJ5wi7AdhsZuOt\nDc2fX0C3fu8CgJkZ8DEanQK2u/tt2UYUj5mto1Eiz0P7yF4aM4eUafwdWw8Drmn+nIc4lzCz5wHP\nAuayjoXGmD2AFy/b/p+AH+SpVGNmp9G4of1I3GNy2UHAGnOrfQz4OvBRM1uc7XMxt1rzjz1OY5wN\nwIlm9tvNnz/TLC2l4a9p9Py53symm9uuoDEt0FUpxdDVor/N82hcgF5iZj8BfuLut2QXGQAfpNF9\n80+Bx5Z93n7g7geyCeuXzOyTwO00SgYP0bhAXkyjbekvMwwNWBiasOJ9bORxvu/uX0w9qJWxXAPs\np5EYH6JRir0UuIfGQMpMufuNZlYDPmxm/5ZGB4FXAGcDr84wtCi/T2Ms38diH5H1gKA2g4Quo9Hf\nPOoxn3V8zRj/Z4cYUx2wCDwd+AfgARo9bq5LO4YYMR5u87fak4PY6h3ey0wG60bE+BYaY3/uAx6h\n0SX7g3l7nyPi/gVwedZxNGO5lMYN7P3Az2jckH0IWJd1bItiHKOR+H4IPN6M93eyjmtZjKto9ED7\npyTHBV3PRkREBHLcZiMiIsNDyUZERIJTshERkeCUbEREJDglGxERCU7JRkREglOyERGR4JRsREQk\nOCUbEREJ7v8DMMJK6Xi/bUQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.figure()\n", "d = np.vstack(data)\n", @@ -174,7 +185,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { "collapsed": true }, @@ -227,7 +238,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "collapsed": false }, @@ -260,7 +271,7 @@ " for j in range(num_data):\n", " for k in range(num_clusters):\n", " # YOUR CODE HERE\n", - " resp[j, k] = ...\n", + " resp[j, k] = weights[k] * multivariate_normal.pdf(data[j], means[k], covariances[k])\n", " row_sums = resp.sum(axis=1)[:, np.newaxis]\n", " resp = resp / row_sums # normalize over all possible cluster assignments\n", "\n", @@ -273,30 +284,30 @@ " \n", " # Update the weight for cluster k using the M-step update rule for the cluster weight, \\hat{\\pi}_k.\n", " # YOUR CODE HERE\n", - " weights[k] = ...\n", + " weights[k] = counts[k]/num_data\n", " \n", " # Update means for cluster k using the M-step update rule for the mean variables.\n", " # This will assign the variable means[k] to be our estimate for \\hat{\\mu}_k.\n", " weighted_sum = 0\n", " for j in range(num_data):\n", " # YOUR CODE HERE\n", - " weighted_sum += ...\n", + " weighted_sum += resp[j,k]*data[j]\n", " # YOUR CODE HERE\n", - " means[k] = ...\n", + " means[k] = weighted_sum/counts[k]\n", " \n", " # Update covariances for cluster k using the M-step update rule for covariance variables.\n", " # This will assign the variable covariances[k] to be the estimate for \\hat{\\Sigma}_k.\n", " weighted_sum = np.zeros((num_dim, num_dim))\n", " for j in range(num_data):\n", " # YOUR CODE HERE (Hint: Use np.outer on the data[j] and this cluster's mean)\n", - " weighted_sum += ...\n", + " weighted_sum += resp[j,k] * np.outer(data[j] - means[k], data[j] - means[k])\n", " # YOUR CODE HERE\n", - " covariances[k] = ...\n", + " covariances[k] = weighted_sum/counts[k]\n", " \n", " \n", " # Compute the loglikelihood at this iteration\n", " # YOUR CODE HERE\n", - " ll_latest = ...\n", + " ll_latest = loglikelihood(data, weights, means, covariances)\n", " ll_trace.append(ll_latest)\n", " \n", " # Check for convergence in log-likelihood and store\n", @@ -328,11 +339,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n", + "Iteration 5\n", + "Iteration 10\n", + "Iteration 15\n", + "Iteration 20\n", + "Iteration 22\n" + ] + } + ], "source": [ "np.random.seed(4)\n", "\n", @@ -376,13 +400,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 54, "metadata": { - "collapsed": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.3007102300609823" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Your code here" + "# Your code here\n", + "results['weights'][0]" ] }, { @@ -394,13 +430,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": { - "collapsed": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 4.94239235, 0.31365311])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Your code here" + "# Your code here\n", + "results['means'][1]" ] }, { @@ -412,13 +460,26 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": { - "collapsed": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0.67114992, 0.33058965],\n", + " [ 0.33058965, 0.90429724]])" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Your code here" + "# Your code here\n", + "results['covs'][2]" ] }, { @@ -443,7 +504,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": { "collapsed": false }, @@ -475,11 +536,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAELCAYAAAAP/iu7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXVYlckXx78DIg1KiyKlqIjtqpgYmGuuje1au+pa6666\nxsraWNiBKHZ3rCgidoMFBq10d9x7z++PF1zivQlYv/t5nnngvjPvmXlfLnNmzpw5w4gISpQoUaJE\nSUWi8qUboESJEiVKvn+UykaJEiVKlFQ4SmWjRIkSJUoqHKWyUaJEiRIlFY5S2ShRokSJkgpHqWyU\nKFGiREmFo1Q2Sr4ZGGMdGGMixtiiiryHR4ZlgYw9isr4nHKVKPkaUSobJRVOkU71XDmIo4JUVL6I\nMeYjzz3/jzDGlhS8q/Zfui1K/v+o9KUboESJHDwAUA9AQgXf872iVLpKvhhKZaPkm4GIcgC8reh7\nvmPYl26Akv9flGY0JV8MxtjeArOOJWNsOmMskDGWwxgLY4wtYoyxEuWLrb8UfgY3WncqyCtMo/ju\nKSKrP2PsCGMsmDGWxRhLYox5M8Y6l9OzmTHGNjLG3jHGshljcYwxX8bYaBnuFWsWLHg3ISWu6TPG\nlhW8vwzGWApj7A1jbBdjrGpBmRsACt+Bb5H3VFKWDWPMkzEWyRjLLfi5hTFmVKLcp/Umxpg9Y+ws\nYyyRMSZkjOkVlOnCGLvKGIsq+LtGM8Z8GGNDZH+TSr4XlDMbJV+SQrOOG4D2AC4AuAKgH4AlANQA\nLJRwf1hBuSUFv+8tkucvpe5lAHIA+AKIAVCtoN5/GWMDieiMzE9RAsZYPQA3ABgX/DwOQA9AUwDT\nAexTVDb4zWDeBbKvAjgL7r1ZAxgCYD2AZACeBWXbg3tPYQWfU4q02xHc+68M4ByAUAB1AUwG0JUx\n9gMRfSpfQG0A9wA8A+ABwASAkDH2Y0Fbogt+JgIwA9AcwE8Ajirw7Eq+ZYhImZSpQhMASwAiAOdK\nXPcsuP4egEmR64YAksB1hJWKXO9QUH5RCTkiAD5i6hZ3jyVPWWMAkQDeimn/Hhmf9wkAIYDhPHnV\npMmV8jyhAEKKfG5QUN6Np6wmAPUinxcXtKs9T1k1AOHg1rbsSuT9VFCHO0/bhQAW8Mg7CSAbgCFP\nXtUv/Z1Ups+flGY0JV8aArCUiOI+XSBKBDca1gVQp0IqJQrnuRYP4BQAW8ZYTUXkMsZaAGgC4BoR\nHeKpI1oRuTKQw1NXNhHlynh/bwAWAFYSUbE1LiI6CU6B8pm/ogGsFCMzH5wyKtmuZBnbpOQ7QmlG\nU/I18JTn2oeCn1UqokLGmCmA+QC6g+tkNYpkEzizWoQCon8o+OldpgbKzmsALwH8yRhrAs4U6UdE\nr+SU0wLcczswxhbz5GsCMGKMGRBRUpHrz4molEIBZybrB+AlY+wwAB8Ad4goTc52KflOUCobJV8D\nfB2QoOCnanlXVrBo/giAOYDbAC4BSAVnFuoIbl1DXUHx+uA67aiyt1Q6RCRkjDkB+Bucuas7AMYY\n+whgDRG5yyjKAJy32khJ1QHQBmfiLCRWTLuOMcbyAMwCMKPgp5AxdgXATCIKlrFdSr4TlMpGyf8j\nPwOoDmA+Ea0qmsEYMwOnbBQlBVynbV4GGQTx/5v6KLKoDwAFM41pAKYxxuwBdAHniLCeMZZKRLI4\nJKQV1NudiOSZlYndt0Ock8UZxpgugLYABgMYDaAOY6w+EQnE3avk+0O5ZqPke0AE+WZANgU/z/Pk\ntS5jWx4V/OxaBhnJ4JRhMRhjVpBiViSi1wWzmZ/AKb0+RbILzV187+phQXlH+ZsrGSJKJ6LLRDQW\n3FpcLXAbbZX8H6FUNkq+B5IA1JCjfAS4jrVN0YuMsZkAGpalIUT0CNwaVGfGmEvJfMaYLDOeRwCs\nGGPtitynBmAdjzxLMc4MZgU/izoOJIF7bgue8mfAeeL9zhhryVOPRoHzg0wwxtoyxlRKXGPgPP5K\ntkvJ/wFKM5qS7wEfAIMYY6fB7fcQAjhLRC/FlN8P4A8AWxhjHQF8BLf/oyW4BfZeZWzPCHD7a/Yz\nxsaCmzXoAmgMQAtAMyn3rwM3M7pcsLieBcAZ3IynpDdbYwAnGWMPAASCW0OpCW5xPhfApiJlb4Az\ne61gjDmAW6dKIaItRJTHGBsEbv3qLmPsKjjng0oArMC5kN8F0FPGd7AJgBlj7A64PT0M3HpYIwDn\nieidjHKUfCcolY2Sz4W4uFzyxurik/NbwbVOAH4EN2OPBOelVeoeIvrAGOsAYDWAbgXl7wFoV3A/\nn7KROa4YEQUxxpqC83brBW69IgVc511ydlJKLhF5F3T8i8ApriQAxwAsAPCqRPnHBc/hVNB2PXAK\n6TSA1UUVLhEFMsbGAJgNYCo4J4hwAFsK8h8yxhoDmAugR4HMLHCegXvBKWlZ38lycKa8ZuCcFnIA\nhIBbW9op5h4l3zGMSBmXT4kSJUqUVCzKNRslSpQoUVLhKJWNEiVKlCipcJTKRokSJUqUVDhKZaNE\niRIlSiqcr8objTGm9FZQokSJkm8cIip1UN9XN7MpaxjrU2vvYVrjHQiMfAvj1ca4H3m/XMNkz/hl\nDibU3oxlYw+i7np7jDszDhm5GZ8tTHdKXAb+9XgG175HMEhvFX5rtgsec7xx/9wbpMRngoiwePHi\nLxZGPC9XgHdPonBx6yO4jTiNMTU3wsV0LVYPP4Vre/2RFJMOIsKiRYuw5+kemLmZYdL5SUjKSir/\nd5Wdgk77OqH/PyMxrckO/Om0Dx/eJMglg+9dxqTHwGajDfY83fPp2sOLbzHc2A03j7wsc7tPvj4J\nm402SM1JLXY9NSETvzhsw9Hlt6S2UdEkFAnRcldLeDz14M2PDUuGi8lavL4TUeb3+LUlZRvLJ1VY\n517OjaSy8Nw3jFxM11JUSCK18WhDbnfcyiSvJE+vBpODljOtX3mAjFcb0+4nu8tVvjiyM3Lp2j5/\n+qvrARqkt4qWDzxO170CKCU+k7f84sWLP0u7ZCU6JIku73xCy346RoOrrKZZLT1oYOex9PFdIiVn\nJ9OUC1PIfK05nXp9qtzrzsnPoYHHBpLzXmc65uZHwwzX0LEVt0mQL5TpfnHvMjA+kEzWmJBvqO+n\nayEBMTTGYgOddLtb5nZPPDeRRp8eXep6wsc0GmflTv96PJPaRkV5/PExmbmZUXJ2Mm/+/XNvaEzN\njZSelCWzzK/tO8mHso3lQ0E/Xqp//+pmNoqSGp8JN5fTmLm3Dw5Fe0JNVQ0zHWeWm/wbB55j7Ygz\nqO6sgRWqs3Bi8AmMbzq+3OTzEfYyDlumXMIYi424fSwQzuMawyt6JuYdH4hOIxtC30irQusvL8ys\nq6L7hKaYf2IQDsTOwghXJ2Sm5GJu271Y0vYEur4dhT0d9mPutbkYdXoUUnNSy61u9UrqOPzTYVTT\nr4atRouw7O5wPPMOwdy2e/HxXaLCcusa1cWB/gcw9ORQhKdwR+NYNzTF6jtjcG2PP/bMvSZ5lCeF\ntd3W4nbEbZwNOlvsuqG5Lpb+Oxxe833w+PJ7heVLopl5M/Sq3Qv/+P3Dm9+ytx1a9bXD5kkXy/SM\nSv7P4NNAXypBwZmNSCQi175HyON3bwpLDiPDVYb0PvG9QrL4uLj1EY2usYE2nNhBRlOM6GXsy3KT\nXRKRSET+10PoL+cDNLLaOjq4xJfiP6TKJePGjRsV07hy5MaNGyTIF9Iz72BaO+oMDdZfRUv6HKTR\nS34j63XW9ODDg3KtTyAU0OjTo6nzvs6UmZtF5zY9pGFGbvTv7qckEokktlMSa++upaY7mlJ2fvan\na2mJWTSrpQe5TzhPQqF42dLwC/Mj87XmlJSVVCrv9Z0IGmbkRiEBMRXy945OjyaDVQYUkhTCm5+T\nlUdT6m+j614BMsn7Vr6TXzvfQhshZmbzVUUQYIyRIu3x2f8cp9bcw/pH4zH83DA0MGmARR0WlUub\nLm17jBOr7qL1tqpYHPgnboy+ATtDu3KRXZKXfuHwWnADqXGZ+OmPNujo4gA1dfE+HKk5qXge+xyv\n4l/hfdJ7hKeGIzo9GvFZ8UjNSUW2IBv5wnwQCGoqatCurA19dX0YahnCTMcMNfVqwqaqDeoa1UV9\nk/qoplMNXKzEz09WWi78jrzCpW2PkZCcjBeNvfHzjH6Y3uHXcmuTUCTE8FPDkSvIxYnBJ/AxMAlr\nhp2GpYMxft3RC1q68h9hQ0QYcmIIjLSMsLXX1v+eJz0XS3sfhamVPqZ79IaqqmJGhKmXpiJHkIPd\nfXaXyrt5+CX2zfPBuofjUcVEWyH5kvjb92+8S3qHAwMO8OaH+MdgYdeD2PDkZxhb6Jd7/Uq+TRhj\nIB4HgW9e2aTGZ+JXhx1YcnkYEkzCMej4ILyZ+gZaamU3Md048Bz75t1A/4N1MPHhaFwbeQ0NTBuU\nWW5JPr5LhMdsb4S/iIfL0g7oMNyBt3NKzk7G1eCruB56HbcibiEyNRIOJg5wMHFAbYPasKpiBXNd\ncxhpGUFfQx/aatpQU1UDAOQJ85CVn4XUnFQkZCUgOiMaEakRCE4KRlBiEF7EvoCqiipaVG+BNhZt\n0NGqI5qbN4eqSrmfXSYRIkLg3Q84uOo6nt54D72e2di6eREMjcunM8sT5qH34d6w1LfEjh93IC9H\ngB3T/8Xr2xFYcGoQLOoZSxdSgtScVDTd2RRrnNdgQL0Bn67nZOVj6Y9HYGLJKRwVFfmVZlpuGuy3\n2OPIwCNoW7NtqXyvBT54fTsS/1wbgUpq5fu3Ss9NR+1NteE90lvs9/6wqx+C7n7AkkvDvthARcnX\nhThl88VNZ0UTFDCjrR97lnbO/JeIiJy9nGnn451yy+DjmXcwuZispXv3/Ml0jSl5B3uXi9yi5OXk\n04FFN2iY4Ro6vuoO5eXklyqTlpNGe57uoS5eXUh3uS71OtiLNtzbQM+in1G+sHR5RRGJRBSREkHH\nXh6j6Zemk8NWBzJYZUDDTw6nYy+PUWYevzNCRfL2ZQT92HE69dReSDv/uETpydnSb5KBtJw0arK9\nCa28tfLTtX93P6Xhxm704PwbhWTej7xPJmtM6GPax2LXszNyaW67vbRlykWJ5jpJHH15lBpua8j7\n9xYIhLS45yHaOeNfhWRLw+2OGw04OkBsfn6egKY13iGzOU3J9w/EmNG+uIIp1hg5lc27x1E0sto6\nykzNoccfH5PFOgvKFeTK92Z4iAyKp+HGbvTM5z212NWi3L3aiIjeP42iKfW3kWvfIxQfWXpN5n3i\ne/r14q9UdWVV6nO4zxfp8D+kfqDtj7aTs5cz6a/Qp1GnR5FfmJ/CnaYiCIQCmuz5G3VwHEtDjVbT\nqbX3KC9XUGa5kamRZL7WnM6/Of/pWuC9SBppvp5Or7un0DMu8llEvQ72KnVvZmoOzWi+i/bNv65Q\nW0UiEXXw7EBbH27lzU9LzKJx1u50+8RrheRLIjMvk0zXmNLzmOdiy7x7HEUuJmvFekcq+f/iu1M2\nIpGI5nX0oss7nhARkctJF1pzZ42cr6U0Wem5NLneVrq88wkt8llEPQ70KNfOVSQS0el192i4sRv5\nHHheSnZ4SjiNPj2ajFYb0fxr8+lD6odyq7ssxKTH0Nq7a6nu5rrksNWBdj/ZTTn5OZ+lbpFIRK43\nXcl+XjP6o+semlB7Mz28+LbMcu9G3CXj1cbFnEliw1NoSv1ttH36FbkX93MFudRwW0M6EHCgVF5K\nfCZNtNtM5zc/VKitz6KfkekaU0rN4XcWefPwIw03dqPokNLOBGVl5a2VNPzkcIlldvx2hTaMO1fu\ndSv59vjulI3/9RCaUHszCfKFlJCZQPor9CkxK1H+N1OCdaPP0PqxZ+ll7EsyWm1Urp19dkYurRh0\nnGY031WqU8gV5NJS36VkuMqQ/rr+F6Vkp5RLnSEhIeTi4kJOTk7k4uJCISH83kWyIhKJyDvYm7rt\n70bV11anzQ82fzals+bOGqrlXouunLhPP9faTMsGHKOEj2llkul+352abG9S7BnSk7Ppjw77aNXQ\nk3LPoh5+eEhmbma838XokCQaWW2dwqa6kadG0iKfRWLzT7rdpdmOe2TeQyQrqTmpZLDKgEKTQ8WW\nyUzNoZHm6+n13chyrVvJt8d3p2zmdfSia/v8iYho68OtNPTEUDlfSWluHX9FE+02U1Z6DnXx6kLu\n993LLLOQpOh0mt50J60ddYZys4vb3l/GvqQGWxvQj4d+pPCU8HKrMyQkhGxtbQsPuCIAZGtrW2aF\nU8ijj4+ox4EeZLPRho6/Ov5ZzGvL/JZR/S31KSYpjvYvvEHDjNzo6p5nCtctEomo35F+NPvf2cWu\n52bn09+9D9PfvQ/zrqVJ4pcLv9CUC1N48wLvRdIwIzcKfRErd1tDkkLIYJUBxWfG8+YLhSJa0GU/\nHXb1k1u2NOb8O4dmXJ4hscx1rwCa0XxXmdy9lXz7fFfK5t3jKBpTcyPl53GjTqe9TnQm8IwCr+U/\nUhMyaYTZOgq8F0newd5kt8mO8gR5ZZJZSHRIEo232USH/r5ZqlM8/OIwGa02Io+nHuXeWbu4uBRT\nNIXJxcWlXOu5HnKdHLY6kLOXMwUnBZer7JKIRCKaeWUmtfdsTzn5ORTsH01TG+0g175HFF4zSMhM\nIPO15sWiARBxi9/LBx6nxT0PyaVwErMSyWSNidh1Dp/9ATTeZhOlJcq+A7+Qiecm0rxr88Tmx0em\n0nBjNwr2j5ZbtiTCU8Kp6sqqlJ6bLraMUCiiWS09Pg0Clfx/8l0pm7WjztDxVXeIiPvH1l2uS1l5\n8v/jFsV9wnnaNvUyERG129OO1+6uCDGhyTSm5kZeW/3q26vJcr0l+UdXzD+nk5MTr7Lp2LFjsXKC\nfCElxaRT+Ks4Crr/gQJuhNKzayEU4BNKr+9EUEhADMWGp1BOlnjlmyfIo1W3V5HhKkPa/mh7hc5y\nhCIh9T/Sn8adGUcikYjycvLJY443ja6xgV74KTYzPBt0lmq51yr1PcrPE9CyAcfItd9RucxTG+9v\npO4HuovN3znjX1rS67Dcs4DQ5FAyXGUoNpQMEdHVPc9oetOd5W5O63ekH21/tF1imdd3ImiMxQaJ\n3xUl3zfilM03t88mIzkb4603Yef7qdA30sLJ1yfh8cwDl1wuKVxviH8MFnU/hO1Bv+Bt9mv0O9IP\nIb+FoJJK2YJiJ8dmYG6bvegzoyV6T/2hWN7K2yuxL2Afro28hup61ctUjzhGjBiBgwcPlrreoXl3\nDGw2FR8CExATkoLkmAzoVNWAroEmNPXUoa5ZCSqqKhCJCPm5AuRk5CEjOQep8VlQ11KDqZU+zGyr\nwqKeEawbmqJWs2owta4CxhgC4wMx/NRw1DKoBY8+HtBT16uQZ8vIy4CjhyOm/jAVk5pPAgA8vvwe\nG8aew6A/26DPby3k3vcx+Phg1DWqi6Udlxa7np8nxD99j6KKqTZmePaRSW6eMA91N9fF3n570d6y\nfal8Qb4Q85y80LJvHQyc21qudo44NQINTBrgj7Z/8OYTEf5yPohmPWwxYLajXLIlcTX4Kv689iee\nTnoqsdw//Y7Cvm1NDJhTfnUr+Xb4bvbZXNr+mFYMOv7p8/RL04vtl1CERd0P0rlN3Mxj8vnJ5HrT\ntUzyiLhwHjNb7KYDi26Uytvnv4+sN1iX2pNR3oSEhJBlTatisxq9yka0cPBOOuf+gJ5dC6GY0ORP\n5khpiEQiSonPpLePPpLv4Re0f+ENWtrnCI2qvp6GG7vRsgHH6PzmhxQaFEUTz02kepvrVahZ7U3C\nGzJabVTMXBUTmkxTG+2g9WPPyr24H5kaSQarDHjbnJ2RS7NaepDXAh+Z5Xk+8ySnvU5i82PDU8jF\nZC29eSjf9+Bp1FOqvra6RDPvx3eJNMxwDcVFlI+jCRE3o7Rcb0lPo55KLBf2MpaGG7tRZtrncRxR\n8nWBL2VGA9ATwE0A6QBSATwE4CSmrNQH+aPDPrp3JujTZ8fdjnQj9Iai74WC7n+gMTU3Ul6ugPKF\n+WS4ypDCksMUllfI+rFnaeWQE6XMSf7R/mS02ohexb0qcx3iSE/OpnPuD+i3Zruor+F8ambbgZo6\ntKDBA4eWm3NASWLDU8jnwHNaP+YsjTBbR5PrbaXpY1eT9Rx7ehb9TLoABfF85kkNtjYotr8qOyOX\nXPseoXmdvCgjRb6NoEt9l9Lg44N581LiMmi8zSaZ1yTyhflktcGK7kTcEVvG7+hLmmi3mbIz5TM7\ntd3Tlo6/Oi6xzP6FN2jlkBNyyZXGIp9FNP3SdKnlVg8/RUeX3SrXupV8G3wRZQNgEoA8AG4AOgNw\nBvA7gJ5iykt8iOTYDBqsv+qTN5dIJCKd5Tq8gQplZdmAY59mNb6hvtR0R1OFZRXisz+AJtXdQlnp\nxTeY5gnyqMHWBrTPf1+Z6+AjNiyZtv56iQZXWU2rhp6kp1eDSSAoX7u9LAiFIgq6/4F2zbpKg0yW\nk1ONX2n7qlOUnVH2DbclEYlE1PtQb1pyY0mx6wKBkLb+commN9lJKXEZMsvLyM2gam7V6EnUE978\n8FdxNNzYTebZyOYHm6n/kf4Sy6waevJTFAxZOfT8EHXx6iKxTHZmHo2x2EAvb5Wfh+PbhLdkusZU\navSKiNfce6qIv7mSr5vPrmwAWALIAjBNjnskPsS1ff60bMCxT58/pn0kkzUmCr+U2LBkGmqw5pNS\nWOizkP70/lNheURE8R9SaZiRGwU/K+0NtP7eeuq2v1u5L56nJmTS9mmXaajBGvL84xolRpVt70l5\nIhAIyX2HF7W2H0uDDFbS3nnXKTlW9s5fFiJTI8lwlSG9S3xX7LpIJKJ986/TFPutctW58f5G6nu4\nr9j8u6cDaUzNjZSaIN37LSM3gwxXGYqNnkzEbfgcYbaOgh7IvqcrJz9Hplm4z/4AmtWyfD0dm+1o\nJlP4puUDj9OZ9ffLrV4l3wbilE1FnmczHoAQwI7yEujvHYomXW0+fQ5PCYelvqXC8rw9A9BhuAM0\ndSoDAO59uMcb7FAeds24ih6Tm8KmsVmx61n5WVhxewXcurqVW8BCIsJ1rwD8Yr8dIhFhe9AUjFnZ\nGQbVdMtFfnmgqqqCaRNH4ucD7fD818NITEjB5Lpb4fnHNWQkZ5dLHTX0amC242z8ca34gjljDKOW\ndUKbgfWwoPN+pCfJVt+EphNw/8N9vI5/zZvv2K8u2g22x/ox5woHSWLRrqyNUY1GYeeTnWLL6Btp\nYdyaztg6+RKEApFMbVSvpI7B9QfjwHP+iMyFdBjeAHk5Atw780YmubIwyH4QTrw+IbXcwD9a48z6\nBzI/k5LvmwrzRmOMXQegB2AzgIXgZjphANYT0VYx95Ck9oy1dIfr1eGoUccIAHAm6Az2PNuDc8PO\nyd0+IsLE2lsw98gA1G5uDgAwdTPF04lPFfYOe+kXjnWjzmJb4BSoa6oVy9v9dDfOvTmnUFv5yEjJ\ngfv484h6n4QZnn1Qq2m1cpFbkcy5Ogev4l9hX/vDOOp6G/fPvMGwxe3RY3IzhUPwF5Kdnw27zXY4\nOfgkWlRvUSyPiLDn92t4fScSy66PhIaWmhgp/7HEdwmi06Oxozf/WCk/T4i5bTzhPK4xek5pLlHW\n6/jX6OLVBREzI8R6OBIR5nXcj3aD7dHrF8nyCrkTcQeTLkzCy19eSiz38MJb7Jvng00BkxSKPF2S\nd4nv0GFvB3yY9QEqTPLf7c8O+9Dzl+ZoP6R+mev94mRlAUlJXEpJAVJTgfR0ICMDyMzk8rOzgdxc\nIC8PyM8HBAJAJAKK9msqKoCqKqCmBlSuzCUNDUBTE9DWBnR0uKSnB+jrA1WqAFWrcqlS2TxkPwfi\nvNEqsuXmBWk1gHkAQgAMArCZMaZKRJvkEZYUnY6cjDxUtzP8dC0lJwVVNKoo1LjQgFgQAbWacZ10\nWm4aMvMyYa5rrpA8IoLXghsY4epUStEAwP7n+zHbcbZCskvy4U0ClvY+iqbdbPH7of4Sz7z5mljZ\nZSXaebbDkSgvTN85Hb2nt8D2qVdwfW8AftvTG1YNTBWWrammiXlt58HVzxXnh50vlscYw7g1XbBu\n1FmsHXEa804MktrpTm4+GfW21MOarmt43bfVKqti1v5++KPtXjTtZgszm6piZdkb26OGXg1cD7mO\nbrW68ZZhjGGSezcsdD6IDsMdoFNFQ+ozO1o4IiUnBYHxgahnXE9suR961cbhv/1w/0wQWg8QX05W\nahvWhp66Hp5GP0Vzc8mKsff0Fji7/sHXrWwyMoDwcC59+AB8/AhERQExMVyKjQXi4zmFYWgIGBhw\nSkBfn1MIOjqcktDU5JKeHqdA1NQ45aCiwiWAk0HEKSGBgFNKOTlciovjFFZmJqfE0tI4hZaSwim4\n1FRAVxcwNuaSmRmXzM25VKMGl2rW5NrzlVGRvZQKAB0Ao4io8GxbX8aYNTjlI5eyCX4aA9umZsVM\nUDmCHGhW0lSocY8uvkOL3rU/yYtKj4K5rrnCJq5XtyORHJ2BDsMdSuWl5KTgafRTdLXtqpDsorx/\nGo2/ex3ByH+c0HV8kzLL+5xUUqmEff32obVHa/Sv2x9WDhZYcWMkrnr4Y36nAxj4R2v0m9VK4dH3\n2MZjsfTmUgQlBKGuUd1ieYwxTN/9IxZ0OYBDS25ixFInibLMdMzQ0aojjr06hp+b/sxbxqKuEQbM\nbY0tky9h6b/DJX53hjcYjqOvjopVNgB3rPQPP9bGiVV3MGZFZ4ntAwAVpoK+dfri7JuzEpUNYwyD\nF7TF0X9uw7F/3XIx4/as3ROX312Wqmxa9a2DXTOuIvR5LKwbKj6YKDPp6cCbN0BQEPD2LfD+PRAc\nDISEcJ27pSXXSRd22M2bA9WqAaamXDI2/vIduEjEKZ64OE75FSrDqCjgxg1OUUZGcj91dAArK8DG\nhku1agF2dlwyMQG+wNlDFalsEgHUAnCtxPWrALoxxkyJKLbkTUuWLPn0u5OTE5ycnAAA4a/iYdnA\npFhZIlL4Hyfgehj6z2716XNydjIMNA0UkgUAFzY9RJ/fWvCagx5+fIim1ZpCo5L00aokwl/FYUnP\nw/hla4+mm7ZjAAAgAElEQVRyGaF+CewM7TCl+RQs8FkAr/5eYIyh289N0LiLNVYPO4WXfuGYvb8f\ntPXlf1eaapr4uenP2P54OzZ031AqX029EuadGIiZzT1Qp1V1/NCztkR5IxuOhPtDd7HKBgD6zWwJ\n34MvcOvYa4mj9wH1BuAfv38gEAkkbhYevqQ9pjXaib4zWqKqqY7E9gFA7zq9sezWMvzZ9k+J5Vr2\nqYN9f/rgxc1wNHSykipXGs42zlhxewUWdlgosZxqJRU4j2uEf3c9w+RN3ctcr1QEAk6p+PsDz58D\nL14AL18CCQlcR1u3Lveze3euA7ax4ZTJt3Dwm4oKN6syMOCeQxxE3GwsLIxTpsHBgJ8f4OHBKVqB\nAKhXj0v16wMODkDDhtwsSYH34OvrC19fX+kF+bwGyiMB2AXOQUC7xPUZBddNee4R6+Gw8efzdHHb\n42LXdj/ZTWPPjJXPVYK48Cw/aa8odhjXjdAb1N6zvdyyiLjzRAbprRJ7uNfG+xvplwu/KCS7kJT4\nTBpUfRF1duxZbhGcvxRpOWlkvNqY3iQUj36clyugrb9eosn1tiocKj84KZiMVhtJ3PD4wi+cXEzX\nUlK0+DhfRERZeVmkv0Kf4jLiJJZ7eSucxlhskLpXpvH2xnQrXPrek+3TLtPu2Vellitso85yHbFH\nDxTl4rbH5Nr3iExypZGem07ay7RlOmMpNiyZhhmuKRWAtsyIRERBQUT79hFNnUrUsiWRlhZR7dpE\nAwcSuboSnTlD9P49kaDsZyB9N8THE/n5EW3fTjRtGlHHjkSGhkRGRkSdOxP9/jvR4cNEb98SCeXf\nOoEv4I12uuBnSbtBDwAfiGdWI4m4sBSYWhU/GlhXXRfpeelyNywyMB6G1XWL2cVVmSqEIqHcsgDg\n9G4fvNU/j979e2DEiBEIDQ0tlh+dHq3wWhDADQgWDdoF38xduH7vEnx9fXHw4EE4OzuXqutbQFdd\nF5OaTYL7A/di19Uqq2LK5h7oOaUZ/mi3D+Gv4uSWbVPVBrUMauFG2A2xZRza1US3n5tg08QLEr3J\nNNU00cm6Ey6/vyyxzvpta8KuZXWc2/BAYrlutt3gHewt+QEA/DS3Nbz3+MvkraeppokfzH/A7Yjb\nUst2GtkAr25FIi4iVWpZaehU1oGDiQMefXwktayJZRVYNTLFwwtvy1ZpXh5w9y6wahXQuzdn2urW\nDbh4kTMZrV4NREdzo/fjx4G//gL69gVsbbkFeSUcRkZAu3bApEmAuzvg48OZ5QICgFmzuDWnY8eA\nzp25NSpnZ+5dXrwIJCYqXG2FKRsiugTAF8AOxtgkxpgzY2wXgC4A/pJXXlJ0BgzMi7v0GmkZIS5T\n/g4p/FU8rErYjxVVXKGhoZi5dDwCIm+LVQLZgmxoqWnJLbsQH6/n+DfgEOJTootdDw4OxsKFks0Y\nJds6YsQIdOzYkVcpfk4mNpuIwy8PI1eQWyqv97QWGLu6M/7qchCRgfFyy+5bpy/OvzkvsczQRe0R\nE5KC28f53ZsL6V6rO7xDpCuIUcs64sz6B8hIyRFbpqNVR4lKsBCjGnpo0dsOV3ZKjkFWSHvL9rgV\nfktqOQ3tyugw3AHee/xlkiuNNhZtcDfyrkxlnVwa4OYhyV5zpRAKgUePgBUruA7P0BCYOpVboxg9\nmjOThYUBR48Cs2cD7dtzHaUS+WGMczLo2ZNTLKdOARER3BrXb79x+evXA9bWnPltwgTAy4tzqpAV\nvulOeSVwDgKbAEQDyAHgD2CIhPJip2YupmtLHZT1JuEN2Wy0kXuad9jVjzz/vFbs2ofUD2TmZia3\nrOHDh0sN4z/36lxa7rdcbtlEXOiVkdXWUYumjjJFcBaHImfblPfBayVx3O1IV95dEZt/3SuAxlhs\n4D02WxKPPz6mupvrSi336nYEjaq+vlSkh6IExQdRzfU1Zap37agzEs+SSctJI61lWjIdXf7uSRSN\nsdggU+TmK++uUAfPDjK18f3TKBprubFczpw58uKIxM2vRUlPyqKBuiulx0uLjiby9CQaPJjIwIDI\n3p5o+nSis2eJksVHulbymRAIiJ4+JXJ3Jxo0iMjEhMjSkmjMGCIvL6KoqC9iRgMRZRDRNCKqRkQa\nRNSYiI4qIis7PQ9aeurFrlnqW+Jj2kfkC/PlkpUQmQZji+ImOTMdMyRnJyM7X76NhmHBEbzXo6Ki\nPv1uom2C2Ey5rIaf+Hf3M9RtXQO169nw5puby2aeW7hwIYKDg4tdkzQzCg0NhbOzMw4ePFhhZruu\ntl0ljvQ7jWyIXr82h2vfo8jNlv1v3NisMT6kfUBSdpLEcvZtLFC/XU2cXntPbBk7Qztk5GUgJiNG\nar2D/myNC5sfIS9HwJuvq64LqypWeBX3SqqsWk2rwcBcF0+uvJdatrl5czyNfgoRSd88adPYDJq6\nlfH6Nv/3Vh6amTfD02jZZl86VTVh38YCjy+VeB4i4NUrYNkyoGVLbtR88SJnHgsI4PI2bgT69OH2\nmyj5sqiqAk2aANOmcaa2mBjg8mXOe+/MGWDNGrG3VqiyKU/ycwSorFHci0e9kjpq6tfEm0T5dken\nJWRB36S4WUtVRRW1DWsjMCFQLlm66vz/AEWVgJ2hHYISguSSC3CzzktbH6P/rFZwdXWFra1tsXxb\nW1u4urrKJOvjx4+814sqxaLIq5wUoUX1FngS/URimZ/mtoZ5bQPsniXdlFWIqooqGpk2QkBMgNSy\no5Z1xIVNj8RGF2CMobFZY/jHSDc9WdQzhm0TM/gdEa9Mmpg1kUkWADiPb4xrntKfwVDLEPoa+ghL\nCZNaljGGDsMccOuoZPOhLNhUtUFyTjKSs5NlKt+qXx08OPuGUzBPnwLz5gF16nCmm9hYYPly7ufx\n48C4cZwLspKvG8a4AcKvvwInTwLr1okt+s0oG5GIwHj2XzSp1kTm0VUhWWm5vK61Tcya4HHUY7lk\n9W8/FkZ6xXfvl1QCzc2b4+HHh3I7IIT4x0AkJNR1rAFra2t4e3vDxcUFHTt2hIuLC7y9vWFtbV3s\nHnHrMtWr80dF0BNj45ZXOSmCnaEdgpOCJZZhjGHazh/x9EqwTKP8QuoZ1ZNpEGJmUxUt+tjhwmbx\nC931jOrJPFjo+UtzXN4uXoHaG9vLPKBpO8ge/tdCJa4DFVLfuL7Y8DolaTOoHu6eCoJIVLboISpM\nBfbG9jLX+4O9Kp6eeQmhXV1g4EBO6Rw6xK27uLtzC9KVK5epTUq+Xr4ZZaNaSQXC/NKddavqrXAv\nUrwZhI/8XCEqVS7tndK2ZlvcipC+0FoUDWEVLPx5vUQlUE23Gsx1zfHw40O5ZD+7GoLmPWt92ktk\nbW2NAwcOwMfHBwcOHOBVNOJMX66urrCwsChdx7NnvKYxccpJVrOdLBhrGSMhK0FqOS09dfyyvSe2\n/XpFrImqJJZVLBGRKpupaMAcR1zc+hj5efyDAduqtghNls182LxHLcRHpOLDG/7nqm1QG++TZFOa\nOlU00LCjJR6ck6407Qzt8C7xnUxyq9c2hK6BBt49KvvAoY5hHclKPSkJ2LIFaNkSRoN7wFBbiLd/\nbuL2fqxcyZlfvoU9LkrKzDejbNS11JCbXbqj6WDVQSYPn6IwBhDPqM7Zxhnewd4y2b4LyUrLhbWV\nZCUAAAPtB+LIyyNytfPd42jUdZTdlCDJ9GVtbY0mTUpHHIiIiOA1jZXVbCcLaqpqyBfJthbTrJst\nLB2McXGrbDNPWRUZANS0N0ZNe2POxMNDdb3q+JjOP9MriWolFbQbUl+sKU0eJQgAjgPq4r4MQTRt\nqtogJDlEZrnNe9bG48uyzxTFwas8ibgd7cOHc5smb90C/v4biIxE41Ft4R+loVQw/4d8M8pGu4oG\n776DxmaNkZSdJJO9upDKmmq8I2TrqtYw1jaWa6YkFIigWkn6axzTeAwOvjiIjLwMmWVHvUsqFgtO\nGtJMX2lpaRLziyKr2a4sZORlQKey9F3yhbgs7YDTbveQnyt9dqNdWRuZ+Zkyy+48piGuez3nzTPS\nMkJituz7CxwH1MXdU/xmt2o61RCdEc2bx0fzHrUQcD1M7KyrEAs9C0SmRcost0lXG/h7y66cxGFV\nxeq//72UFGDDBm53+7RpQKtW3A72I0e4HfuVKqFhR0u88JXDXVbJd8M3o2z0jbWQGp9V6roKU0Ev\nu144G3SW5y5+tPXVkSnGDj60/lCpYduLolZZFYJ86TMhqypW6GTdCdsebZNZdlpCFvSMZd+fI830\nJa9pTJrZrqxEpkaiuq7sEbZtGpnB0sEEt09IX/NQYSpyzVAd+9XFy5vhyEovve9Hp7IO0nNl34NV\nr3UNJH5IR8KH0srdUMtQqpdcUfSNtVGtVlW8eSB5ZmWmYyaXx2O9NhYI8Y9FTmaezPfwUUOvBtib\nt8CUKdwejAcPuLAoL14A06dzoVWKYN/GAu8eRkHAYxJX8n3zzSgbw+q6SOT55wW48zWOvpLdo1rf\nRBspsfyj3lGNRuHY62PIzJNtVKylJ15xlWRxh8VYc3cNErNkGyWLhCTTrKkQaaYvRU1jFbUZNCA2\nAPVN5IsG3GVsI/gelL45MDs/W64grVp66qjbqgYCrpd+tsqqlWU29wHcGT4NOloiwKe0LM1KmsgT\n5snlrt/AyQqv/CTPBgy1DGX+XgGAhpYarBqa4O1DBddtiAA/P/ww6W9sXOnP7Up//Ro4fBho21as\nmUynqiaMa+oh7IX8m7GVfNt8M8rG1LoKYkJSePOcbZwRnBws8wKpcU09sSE7LPQt0N6yPfb675VJ\nVtVqOkiMkm3UW9+kPoY6DMXv3r/LVF5DWw05GbKPPKWZvhQxjVXkfhvfMF+0q9lOrnt+6FUbr29F\nSB2RJ2Ynyh1YtWEnK14Tj4hEUGXyhTtxaG+J17dLm7UYY9CopIFcYekZlDjqta6BoHuSZzb66vpI\ny+UfjImjbqsaePtQtrWoTxAB588DrVsD48cDvXujwVwdwNWVi5IsA7V/MMf7x7KbEpV8H3wzyqa6\nnSE+vOEfuampqmFUw1HY9XSXTLKq1TJA1FvxpozfW/8Ot3tuMo0+zWyqIiZYtn0GALCs0zLcCLuB\nc2+kH6JmYK6LxI/yhdCRZvqS1zRWUfttcgW5uPjuInrV7iXXfVp66rBsIH1EHpkaiRp68u3TqOtY\nA2/ul+58M/Myoakm31EWdi3MxXp7MTCpJ3wWpfYP5nj/RHLnrKWmhaz80mZmSdg2NUPwU+mbVQFw\nSub0aaBpU2DhQmDmTCAoCJq/zkCcKF0uk6Vt02oIfiZjvUq+G74ZZWPpYIxwCVPvSc0nwdPfU6Z/\nOEsHY4nT+NYWrVHLoBb2PNsjVVbN+pwsWTsPXXVdHBpwCBPOT5DqAlso+0tSUfttjr8+jiZmTWCh\nX9odWxq2TcykvpegxCDYGdrJJdemsSnCX5b+WybnJKOqhvjD0fiwamCCD0GJvEciC0QCqKlKPy20\nEGMLPeTlCJAaL960K49nXyHWjUwR+lzKOg8RcOkS56Ls6gosWQI8ewYMHgyoqkJVRRUalTTkUnRW\nDU0QJq1eJd8d34yysWlshvCXcWIXFmsZ1EIbizYyKYhqtgbISs1BSpz4f96VnVdiyc0lUk0TxhZ6\nAAHxckTSdbRwxJIOS9D7cG+Jdva6jtXxUoqtvqKpiP02QpEQK26vwJzWcxS638RKH3Hh4t83EeFZ\n9DM0Nmssl1xtfQ1oaFdGckxxj8Ho9GiY6ZjJJUtDuzL0TbQRF17c9CsUCZEvyoe6qrqYO0vDGEON\nuoaIDFI84i4fNeoYIjY0Rfxi/b17QIcOwJw5wIIFwJMnXBTlEusx8s6qLOsbI+J1glyzOyXfPhWm\nbBhjHRhjIp4kuytOEbT01GFiqY/QAPEjonlt52H1ndW8kYSLoqLCUKdVDby+I95VtJl5M/Ss1ROL\nbyyWKIsxhvrta8rtzjnlhynoY9cHPQ72QGoOf8fZtKstAq6HybyRsSKoiP02O5/shJGWEbrZij+1\nUhLaVTSQlSreKSMwIRC66roKHetgWL206TI0JRRWVazklmXKoxRTclKgp64n96F/1WyrIjZEvLlW\nIBJATUX22RLAHSZnUE23tOIOCQEGDeJmL2PHcp5lAwaIXfRXU1GTy+FBz0gLjHHelt8tRNwRzwkJ\n3OmZ799zDhTPn3Mzw8Lk78+936Ag7r1HRQHJydxxCt8ZFX14PQGYBqDoTjyFe8767S3x0i8CtZvz\ndyIta7REA9MG2PlkJ6a1nCZRVsOOlgi4HorW/cWfeLeyy0o02NYAwxoMQ4vqLcSWa9rNFo8vvUfn\n0Y1ke5Ai8qdfno4u+7vgsstlGGkZFcuvaqYD2yZmeHDuDdoNLu61FRoaioULF+Ljx4+oXr06XF1d\ny901GfjPqWDhwoWIioqCubl5meoKSwnDIt9F8B3tWy7HE/Nx5f0VONs4K3SvrqFmqThpQQlBcGng\nIrcsA3PdUrOk2MxYmGrLfzyycU19xEeKn2Vn5WfJva4E/DdLNK9lAGRkcPHJdu4EZswA9u0DtKS7\n3svrZs4Y49Y6Q1Kgb/yFj1qWFSJOcUREAB8/ckohJoaL5RYfz+UlJXF7jVJTuXdZuTL3/jQ0uFS5\nMlCpEhfMsvC7LxJxRynk5XEpNxfIzuaOqmaMOzJBTw+oWpVLRkZcMjHhTtY0N+dSjRrc+T5f8WbZ\nilY2ABBERPLFaRFDo85W8PbwR/9ZrcSWWd5pObod6IZRjUZBX0NfbLlmPWrhn37HJB4tbaxtDPce\n7hh1ehSeTHwC7cr8/xgt+9hhzxxv5GTlQ0NL9tElYwzuPdwx//p8tNnTBheGXUBtw+JHFfec0gxn\nNzxA20H2n9pZ6CFWdOH+/v375b7pspBCp4Kykp2fjYHHBmJ+2/lyuzwXJSM5B9pVxB8bfTLwJBa0\nW6CQbDWNSsgvMZP0j/HHGmfx0WzFoVNVA+lJxWdgH9I+yO24AABVTLQRLcERJS03DXrq8p/lYlhd\nF4mRqVwE39mzAScnLtqyGPMpHyISyT1w4JRcCuq0lL2eCoeIUyKBgdzR0m/fcjOSkBDu3BZNTcDC\ngns31atznb2DA9fxGxpye4qqVAH09QFdXU6xlIXcXCA9nVNgKSmcMktM5JRbbCy3pyk6mmtzZCQ3\nk6pZkztIzsaGOzSuVi0u2Kmt7RePO1fRyqZc1WzjLjbYOO68xE69kVkj/Gj3I5beXIq13daKlWXV\nwAQgIDQgFjaNxdvjB9cfjAtvL2D65enw6OvBW6aKiTbqOtbAvdNB6OjSAIDsMw/GGFZ0WQGrKlZo\n69kWe/rsQS+7/zy0HAfUhdeCGwi4Hgp9W4aFCxfC29sbcXHFF8gLPcTkVQqfa4aUL8zHsJPDUM+4\nHma0mlEmWbGhKahpb8Sb9y7xHd4nvVd4ZkMlAr5Gp0cjLTcNtga2Eu7iR11LDXkljkYITgqGTVX+\n4yIkoWOggcwn4k2HCVkJMNSUPdpEIVU0BEhZsQmo/JALitlOPld0AMgX5aOyqnwdmaECnpblSm4u\nZ74qNGc9fw68fMl1yPb2XAdtZwd06sR11FZWgI7s0S7KBXV1Lhnxf9dLkZXFBTUNC+MUZHAwFzbo\n7VtOGVlZAfXrcwqyQQOgcWNOKal8nqX7zzGzOcgYMwaQAuBfAH8SkexxNYqgU0UDtX8wx7OrwXDs\nJ978tbzzcjhsdcCoRqPQyIzftMUYQ7sh9vA78kqisgGArb22osWuFtj9dDd+bvozbxnn8Y1xbuND\ndHRpoNDMY1LzSXAwccCwk8MwMHQglndeDo1KGlBVVcGoZR2xbuoh3Mn3REiI+BAj8nqIydPOsiil\nXEEuhp0chnxRPjz6eJTZfPb+cRQ6DHfgzdv6aCvGNBojl7dXUXIy8qCh/V/HeSPsBtpbtocKk/8f\nUkWVQSQsvgj+Ov416hqJ/+6KQ1OnMrIl7LmS24lBKAQ2bIDuoWvIaNkWuLodUFPsnWXlZ8l9Em1V\nMx2xG6srhIgI4M4d7ljpBw+4c3JsbTlX7saNuTWqBg1k79i/RrS0OEVpb186LzcXePeOe+4XL7hT\nNmfP5mZMjRpx3oYtWnDJ2rpCzHEVqWxSAbgBuAkgDUATAAsA3GWMNSEi3iiJ2fnZEm3PbQfWw62j\nryUqGxNtEyzvvBw/n/8Z98bfQyUV/sfsNKoh/nI+iJH/dJS4U1+nsg5ODzmN9nvbw87QDu0t25cq\n49ivLjxmX8PbR1FYulH83hRJM482NdvAf7I/Jl+YjMbbG2Nn751ob9kebQbWw+TplxASIzmWlbwe\nYuL20MycORM6OjqfFMvEiRMxbtw4hcx2cZlxGHhsIMx0zHD4p8Nyj4BLkpqQhY9vk1CnRelnTchK\ngNdzL/hPUvzY49T44iGCLr+/rLAjg1BQOgJEQGwA+tbtK7esSpVVIZAQHy0yLRIWejK6kQcFAWPG\nAJqa0JzzO5KTVRRWNAKRADmCHLmVjZ6RFmJC+TdplwuRkcD164CPD3DzJpCTA7Rpw21GHTKEUzIy\nrEd9N6irczMaBwfu+QtJTOTOFnry5D9Tan4+967atOFmuk2bKvz9KAbf8Z0VlcApnHwAf4vJp39u\n/iPxVNKUuAwarL9K6vGyIpGInL2cyfWmq8Ryc1rvoTunAiWWKcQ72JtM1pjQy9iXvPnn3B/Q0j5H\nyMnJqUxHOBMRnXx9kmqsq0EuJ10oIiWCWrdqyyuzMEk74pkPce3U1NQs9llHR0fq0dd8XA+5TjXW\n1aAF1xeQUCT9eGNZuLDlEa0ccoI3b86/c2jS+UkKyxaJRPST9grKTOW+W7mCXDJYZUCRqZEKyds0\n8QJd3Pb40+d8YT7pLtelpKwkuWU9OP+GlvQ6LDZ/2qVptO7uOslChEKiDRuIDA2JtmwhEgrp8o4n\ntPHn83K3p5D4zHgyWGUg931+R1/S8oHHFa63FNnZRFeucEdI16lDZGRENGQI0fbtRIGBRKKyH4P9\nf0N4ONHhw0S//krUoAGRri5Rt25Eq1YRPX7MfY8kADHHQn8OM9oniOgZY+wtALGuXctclyGhWQL0\nNfTh5OQEJyenYvn6xtpo0NEKt46+RrefS4fML4Qxhj1996DZzmZwtnFGyxotecv9OPUHnNvwQKJX\nWiFdbLpgXdd16H6wO26OuVnK9t5tQlOcXH0P2vbST++UxoB6A9DVtitW3l6Jxjsaw0TThLecqakp\nunTpUsysJavJS9wemuzs4t5YGRn8kaqvXbuG0NDQUrKTspMw//p8XHh7AR59PNCtlmIzg5KIRISL\nWx5honv3Unnvk97D098TL6a8UFh+bFgKtKtofDp+/PK7y7A3tldoQR8oCKRq+N8s3T/GHxb6Fqiq\nKd8GUaDwDCbxs++ghCB0r1X6vXwiJgYYPRpISwPu3+cWjgGoVFKBiGfjqazEZcaV8qKUBQ2dynKF\nYuIlORm4cIE7jvjaNW7U3rMncPAgd3TxZ1qL+O6oWZNLQ4dynxMTAT8/bpY4ciQQFwd06cJF8u7R\nA76BgfD19ZUul08DVWQC8ArAZTF5tNR3KfU+1JtEEkYijy69o9+a7ZJYppBTr0+R1QYrSsxK5M3P\nzxPQWMuNFHhP9tHrtkfbyHK9JQUnBZfKu7bXn8Y3Wkk2NrZlnnkUEpUWRaP3jCYVAxWpMkNCQsjW\nVra6+cpqaGhInEGVTEVlZ+Zl0po7a8h4tTH9cuEXSs5OVuh5xeF76AXN+GF3qb97cHAwmTqakm1T\nW3JxcVH4PfsdfUlL+xz59LnP4T60+8luhds7q6UHvbod8enzylsraerFqQrJ8vb0J7eRp8XmV3Or\nRmHJYfyZV64QmZkRLVxIlJ9fPGvXU9ow7pxCbSIiuhZ8jZz2Osl9n//1EPrTaZ/8FaamEu3bR9Sz\nJzfi7tOHyNOTKD5efllKFCMigmj3bqKffiLS1yf64QciV1ei58+JuONfifj6d76LFZUANAe3z2ax\nmHzKyc8h+y32dOTFf//0JREKRfSz7SZ6fSdCbJmizLwyk3oc6EECoYA3/+LWR7SoxyGZZBWy9eFW\nqrGuBr2Oe12qbbMd95DnP+fIxcWFOnbsWKYOsCgPXz4kh84NSFfXhKrp1aEVJ1ZRWk5asTIuLi5y\nmbxCQkKKtbNPnz6894szpQGg/oP709++f5PpGlPqf6S/WDNjWchMzaExFhvoxc3iHWpISAgZVTcq\nF8W+ZcpFOul2l5ObFEKGqwwpIzdD4TYPM3KjxKj//j4dPDvQ+TeKmaxOrb1HO367wpsXnR5NBqsM\nSg++BAKiBQuIqlcnunGD994LWx7R5skXFWoTEZHnM08aeWqk3Pe98Aun39t4ylY4P5/o4kXOLKan\nR9S7N9HBg0RpadLvVVKx5OYSXbtG9NtvRFZWRBMmfH5lA2A/gCUA+gLoCGA2gHgAoQAMxNxDRET3\nI++T6RpTik6PFvuM59wf0D/9j8r0PvIEeeS014nmXp3Ln5+TT+Os3OmFX7hM8grx8vci0zWmdCfi\nTrHroc9jaJiRG8VFpMglT1Zy8nJpxgB36lV7LhksNKF+R/rR3md7KTo9mlq1alWm9SJxM6ObN2+S\niYkJr2xVG1WaeG4ivYp7JXMdLi4u5OTkJJMiFolEtHbUGXKfULqj7t6/u0LrSXx1jKm5kUJfxBIR\n0dSLU8V+X2QhOTaDBldZ/UkBxGXEkd4KPcrKy1JInsfv3nR0+S3evDOBZ6jr/q7FLyYkEDk7E3Xq\nRBQTI1buyTV3adesqwq1iYhooc9CWuizUO77ZFI2ISFE8+cTmZsTtWxJtHUrUSK/hULJV4BIRJSa\n+kWUzZ8A/AEkA8gFEA5gGwBTCfd8aveC6wuo58GeYk1l2Rm55GKylsJfxcn0HhIyE6iWey3a+Xgn\nb77Pgec044fdJBTKt5B4+d1lMlptRAefHyzWibZp2IWmtHIjgaB8FsZLIhSKyON3bxpf2502ndlN\nP7YropgAACAASURBVB39iXR/1yWmzsrc+Zac7YSEhFBaThp17tOZV/bgoYPlki2rma+Qc+4PaEr9\nbZSdkVvsenR6NKnXUi+zMwYRUeC9SJpUZwuJRCL6kPqBqq6sKnGwI41Hl97RvI5enz5ve7SNhhwf\norC8lUNOkM+B57x5c/6dQ3/7/v3fhYAAImtrot9/L2U2K4nXAh86tPSmwu0acnwIefl7SS9Ygue+\nYTS33d7SGUIhN4vp0YNb5J8xg+hl+c+UlVQc4pRNhTkIENFKACsVvX9xh8Vos6cN3B+447dWv5XK\n19CujH6zWuLwUj/8ceQnqfIMtQxxafgltPNsBzMdM/Su07tYfodhDriw6RGuefqj63jxjgcl6V6r\nO3xG+aDn5p5I90hHavR/caZeaTyH3SxzzNg4TGZ5sqKiwjBudRdUtzOE1wQfzNzmisofK+Nw7uHS\nZdVVkOyYjD+v/YlqOtVgqmOKqhpVoVNZBxqVNKDCVCAkIXIEOUjLTUNSdhIa/9IYRmlGeJ/0Hl3O\nd0FMRgzsHO2g/0i/2DPa2tpi5XLZ/8ySjizgcwv3O/oKx1fexepbo4vtf0nLTcOPh36EnZUdXrwv\n7RQgrxv4VQ9/dBrVEIwxLPFdgglNJ8gdfLMogXciUdfxPwcMrwAvzG83X2F5Ue+SuJAyPPiE+WBD\ntw3ch3PnuHNm3N2BYdK/d6nxWbBpLH/4nEICEwIVCqianyuAmnqRM4KysoC9e7ljpXV0uFM+T57k\ndu0r+T7g00BfKqHIzIaIKDgpmIxXG9ODDw94NWh2Ri6NMFtH759Gyax1H3x4QMarjcknxKdU3rsn\nUeRispZS4uS30/805CfeEba1ZlN6cP6N3PKIZDc3vXn4kcbbbKJaZg1421C/aX06EHCAlvkto18v\n/kqDjg0iZy9nctztSE22N6FG2xpR0x1NqbVHa+q2vxsNOzGMZlyeQWvvrqXTgacpMD6Q8oX5xdqk\n6FqUPG7h/3o8oxFm6yj0eXEzUHpuOrX3bE+Tz0+m4OBguWdKJUmJz6TBVVZTUkw6PY16SiZrTMrs\n3DCrlQc98+YcSF7EviDzteaf3qG8CATCYi7ZRYnNiCW9FXqUK8glWr+eMzk94P9/4WPJj4fp3pkg\nhdqVJ8gjzX80KTMvU+5775wKJNe+R4iSkoiWLiUyMSHq25fo5k2lm/I3Dr4GBwFpqaSyISI6HXia\nLNZZUGxGLO+DXdjyiOZ33i+TZ1ohPiE+ZLzamPzC/ErleczxppWD+fdxSELcWkkjh6Y03NiNQgLE\n281LEhISQn369CnlGSapE81My6Fmth0Ucg6Qde2kPJDFgUGQLySPOd403mYTfXiTUOz+5OxkauPR\nhsadGfdp705ZFeC++dfJfcJ5EggF1GJXizJ5oBH9txcsL4dTLhPPTaTFNxYrLC/idRyNt9nEm+f5\nzJN+OtyfaOZMInt7orAwuWT/2nC7XIO1ojyLfkb1NtdT6F7vTbdpbYPFRAYGRGPGcHthlHwXfLPK\nhohbv2m3px03eitBfp6AJtfbSndPy/dl9Q725p3h5GTl0aQ6W8j38Au55FlZWfF2ohY1Lcjv6Esa\nVX09xYRKHy3zrWnIojgK761hXlMmBaXI2kl5IK3eD28TaLbjHlrY7SClJhQfMYclh5HDVgf67fJv\n5bZJNDEqjYYarKGY0GRac2cNdfDsUGbZl7Y//jRgic2Ipaorq1JMuuyDjZJc3fOMVg87yZvXz6sX\nhfRwJGrblpslyEHhJtaMlGyF2rXj8Q4adXqUfDelpRH9/Ted1OpCOx3mcE4A3ytCIVFyMjcAeP6c\n6O5dznPrwgWiU6eIjh7lNk8eOsSlY8e46xcuEF2/TnTvHndfWBgnR8pmyq8Fccrms27qVJSlHZdi\nwNEBmHxhcqnYWpXUVDHJvRs2TbiIJl1tZY663MWmC44NOobBxwfDo4/HpzUcdU01zDnYH4t7HEKd\nltVhZi3bBjxTU1OEhYWVuh5FUQit8wQ/zW2Nv7ocwIqbo2BUXXx0Xr41jWLyJMQ/s7a2ht9tXyxY\n8BdePXmD9AhCv1pjIUzWAErs6ZR37aS8EHdkQTXTGjjs6ofzGx9iyMJ26D2tBVSKBMT0C/fD0BND\n8Xvr3zGj1YxyO57Ac+51dJvQBNEaYVh1ZxUe/vxQoThoRbmx/wUG/O4IAFh3bx2G1B8CUx3F10Ve\n+UXAvm3NUtdTUmIwcfm/qGHTGbh6Wu71jfiIVGjpqUNbX3wEbUncjbwLxxqOshUWCIBdu4ClS4FO\nnZDqMgn61mZcHK5vkawsLthlYeDLyMjiRw/Ex3ObTrW0uEjQenrcWpS2Nhc6pnJlLgRM4XEDRNw7\nEgi4OGY5OVwdGRn/RX7OyvrvmAETE6Da/9g766got++NPwPSnYKApKKiIoqdiN3d7bW7rt2NhVio\n2IiFgomgomIriqIS0t3dU/v3x7mgXkFqBvX+vp+1Zrmcmfecd94Z3n3O2fs8j+5Xe4FitWcjI6ZA\n/RtaDfwRwUaCIwHnIc7ofLozNvtsxrrO6757vVk3EzRoq4cLGx9j8s5uFW63i1EX3BpzCwMuDMDW\nvK2Y2nwqAMCshS6Gr2yPnSOuYueTSZCWLf8ymZmZ4dWrVz883926OxxeOUBOSQ7DRs3Hyi7nsM17\nHLQMSrc/KMuGuZjyEt/GxsZwcTkPACjM5+Hu0bfYPOAS9Mw10GK4Lq76nEJCQjwCAgJKPb66ds8V\n4VvLAm4hH/dOvsfG7Tdg3kYP9m//grbhVwUGgVAAu2d22P9qP84MOiMyNQIAeHs3FJ+fRGPH2zHo\n4NIO9j3tYaxWvZtfdEAKEsIyYN3HDIm5iTj29hjez6y6VhsRwe9eOIavbP/9C/n5yO3VFcrqOpBy\nv1kl7aoI/2QYNa16EPSJ8sGydsvKf6OXF/PH0dVlFtNWVkgf7466dZSq3HeNkZ/PhCuLVaEDA5m2\nXHLyVyl/Q0N2s2/cmH1GHR3mLaOuLhpNsWL4fGYzUGwxkJjIglt0NPDkCQt6EREscNWrx1SrGzZk\nwpxNmjDhUUnJcrsRG6VNd37VA2UsoxWTkJNAxvbGpZYvpyfm0FjtPRT8Oq5ycz4iCkoJIpP9JrTq\n/qqSJRShUEjbhl0h+yk3KpQP+tnyEF/Ap2O+x0hntw4NmzSPxhvs+SEXUUxZOQ1UY5mLW8Sn83vv\nkIqMVpltowLLdKIkMSKDzq7xprG199CGvhco6FXsD+8JSQuhTqc6UadTnSg6s2IbeCtKZnIuTdDb\nR+/uhdKACwNo5s2ZImn3wIxb5LzuIRERzbw5kxZ6LKxWe2F+CTTV5MD3v8H8fCJbW7rdWoPuBFR9\n97/z+kd0euWDKh0bnh5O2ru0f/63ERVFNHgwkYkJkbv7d4n/vzuepg/eEVXqW2zw+axs/MgRlkey\nsCCSkyOysiKaOJFo1y5Wlh0Wxt77u5KaypbgTp8mWrGCbYI1MiJSUCBq1Ypo5kymAPDhg1g+B/7k\nnM23fEn9QnX21KFLn37c0PnI5SPNbHiYCvO5lbg0jKTcJGp/oj0NvjiYcopyiIgoP6eI5jRxJPd9\nLyvURnmJ6qzCLFrzYA2ZD+tAA9TW0yMv31Lb+HfQkpOTo4EDB1Y60HxbAFBWTkkUwayixIem0fX9\nr+jvjqdptMYucpznQdEBP+6TKuQV0vYn20ljpwbteb6nTOWHqsLnCWh1t3N0asV9Wuq5lDqd6lRq\nPrCypMVn00g1O8pIyiX/RH/SstMqUyapopxb+5Cclnyz6bKwkKhXL0ob3IuM9hhU69qs7Xm+ypVo\njm8caezVMgYmfD7R3r1M8HPDBiaS+S/G19lHSVHi2fRcYQQCIj8/ot27ifr2JVJVJapfnwWaI0eY\n6GRR9X8Xvw1ZWUQ+PkyMddw49lmVlIhsbIjWrCHy9CTKyal2N/+ZYENE9CHxA2nv0ia3wO+1ooRC\nIe0Y6UpH5npU4tJ8pZBXSFOvT6VGhxpRUAr7I0yKzKDxdfZVWBm6IiTlJtHMLSuoh8IKGrNwPgWm\nfN92dauritv4WaFB8UNFQY3qqjQkA0lLmtxkOx2Z60FeJ/3oy5s4ys+p+h9aXnYhBb6IoduH39De\nie40xdiBxunspX2Tr9PLG8HELfrxJikUCskt0I3qOdSjfi79KDxd9IFPKBSS4zwPWtPdmXb77KEG\nBxtUOyAU4zjPg44t9CSBUEDtT7SnI2+OVPtc/zI7+HXWx+czParBg2nilbG0/cn2KrfN5wlouPJO\nykypfNkyEVE/l3503v/8jy98/sxGz126EH35Uuqx+TlFNERuW6U3UIuEzEyiixeJxo9n5db16hHN\nmsWS8z9RWvjPkpbGZmsrVxJ17MhmP23bsuDz+HGVgm1ZwYbDXvs94HA4VNHzeRv/Fn1c+uBov6MY\n1GBQyfO5mYWY3+wYptn3+KnnTVkQEZzeOWGV9yoc6H0AoxqPQujbBKzv7YKVrsPQuJNhpdssiw++\nX7Bp4EVEGX+AznQu5rabgx6mPaqdoAaAcePG4fz58+W+b+zYsXB2dkZRAQ8hvgn48joO4X6JiPyY\njISQdMgpy0CrrgrUdRWhrCkPeRUZyCpIoZY0W/sV8ITgFvCRl1WIrJR8pMfnIDkqCwU5XOiba8C4\nWW3Ub6UHi44GqNtIq9TEPhHBK8wLGx5vQD4vH3bd7ESam/kW153P4H3uIxodIOz+sBM+k31QV+XH\n5HtliQ9Nx9I2J3E4YBZcos7A2d8ZT6c8rdZ3+flpNA5Mu4UjAbOY5e3MmUB4OGJdHNH0ZEuEzg+F\nulzpGz3LI/B5DA7NuoODH2ZU+thcbi7q7KmDqIVRXxWsBQJg3z5g505gyxZg+vQyk9TBr+NwaMZt\nOPhNr9K5V5rUVMDNDXB1BV68ADp0APr1A3r3/nMLFMRFfj67Rg8esFxbSAhga8vUtPv2ZTmpcuBw\nOCCiH778PzbYACzg9HXpC/te9hjVeFTJ88Gv4rCp/0XsfjEZuqZV+2P0S/DDSNeR6FC3Axx6OyD0\nSQp2jb6GdbdGwbyV6HzTczMKsGu8G8IjoxE46iYylBMx1WoqJlhOqLK0PQDY2NiUK/ttamr6UwM0\noZCQnpCDlOhsZCTmIjs1H/lZRSjK55UYeUlKSUBGXgryyjJQ1pSHuq4itAxVoK6r9F01WWlwBVy4\nBrhiz4s9KOQXYm2ntRhhMUIkwbY0rtu/ws0Db9BwP2F/yC48nPiwSnbP/4aIsKn/JVh0NECzabXR\n9kRbPJn8pEqOnN+yZ7w7jJvVxpAlbYHNm5mU/qNHWPB0DWpJ1Pqp7Xl5OK97BG4hH1PsKl5QU8yV\nz1dw/N1xeI33Yk/ExTHpeR6POUCWcwO/e/wdAp/FYNHpypvIVZj8fHa9nJ2ZO2fPnsCwYSzA1LS9\n859MSgpw9y5w+zbg6cnssgcPBoYOLbGp+DdlBZtfvnT27QMVXEb7Fv9Ef6qzpw45vnH87vmbB1/T\nnKaO1VoKyinKoSnuU8hkvwk9iXpCr24GV7kI4WcIhUJy3/eSRmvupqN7rtG069NJfac62Z6xJae3\nTlVa5imr0MDIyEikStRVISw9jFY/WE26u3Wpy+kudCPohsj2zZSGUCgkl42P6S+zA7T60iYy2W8i\n0iW6J1c+08yGhyk3P59aHW9F+1/ur3abafHZNELVjrLT8pnCsaEhUUKCSHTbiIjmWh79QUG7ogy+\nOPjrxtfbt9ly1ObNFU42H5hxi9ztK5YHrTS+vkTTpxOpqTHDL2dnkeQh/gexJTUvL1ZgULs2K5zY\nuZMVgnwDfnXOBsBdAEIAm37ynipdg9C0UDLZb0LrH64vqY4RCoW0b9J12jr0crXXht0D3Ul3ty4t\n8FhAj1w/0Bit3SX2BqLchR/hn0jzmh2ldb1dKDosia58vkJDLw0l5e3KZHvGlva/3E+haaEVautX\nbdosi9isWDrw6gC1O9GOtOy0aIHHArFYEfwbbhGf9k+9QXOtjtKk09PIytGq2jfqb0lPzKFxOnsp\n4Fk0Lbq7iPq59KuUmkVZnFp+nw7PuUP08iUTpPRnIpzTbkyjZV7LqtV2XEgajdXeUyWR2LT8NFLZ\nrkKZuWnMvkBfn+hJ6WrUZTGv2dFK+UeVS2Eh87hp2ZIF5S1biGJ/rG78HyKEzyfy9iaaNo0VgnTq\nxCrcsrN/bbABMBpAPACBOIINEVFiTiK1ONqCJrlPKqks4hbyaFmHU3Rqxf0qt1tMal4qjb82ngz3\nGdJhJxcao7Wbrp/yFvkNncfl08UtPjRaYxdd3fWceFw+fQr6RB37diSdxjokayVLBmsNaMbNGXTx\n40WKyy57liWKQoOqUsQvoqdRT2md9zqyPmZNajvUaNy1cXQz+CZx+ZWvFqwKKbFZtLTdSVrd9wx1\nPNyFBlwYUFJpKAoEAiGt6+1Cp1c+oAsfL5CxvbFIig0yU/JolPouSnodzLxorl8nIqaxpmWnVSVb\n6W9x2fSYBbIqcODVAZpyZghRr16sCCCpdBmpssjLKqShCttLpHyqRXo60datzBiue3eimzd/75Lk\n/ypFRUz5YOBAosmTf12wAaAGIAHASHHNbIrJLcqlgRcGUudTnSkljzn3Zabk0bR6B+n24TfVarsY\nr1AvMnMwowEbx5ChTDOx7VWJ/ZJKa3uep9EmG0lf53sJGn0jfVrluooGXBhA6jvVycjeiEZeGUm7\nnu2i+2H3y9SRExdCoZCiM6PpetB1Wv1gNdmesSXFbYpk5WhFy7yWkXe4d40FmGJe3gimcTp7acfS\ns6S/W5/Wea8T+VLdpa1PaEnbk/Qi4iVp2mnS+4T3ImnXaYkXHZx+k1UHbdhAROwadz3TlRxeOlSr\n7ZIKt5eVH/kLhULqs6E+5ZoYEM2fX659QWm8vv2FlneugkPntyQlEf39N1sqmziR6GPlpKX+hxj5\niVNnTSgI7ATgT0SXOBzOj/r3IkRBWgFXR1zFau/VaHW8FdxGusFSxxIbPUZjeaezUNaSR4dhjarV\nR3fT7vg46yP2PN+Du07XgJgf3yOKXfh69TSw0WM0etsMROzj6O9ei42MhctSF3h7e8NwpCG+pH3B\n67jXeBv/FjeCb+Bj8kdIciTRUKshzNTNYKxqDEMVQ+gr60NHUQfaCtpQk1NDLYmKff1CEiKrMAvJ\neclIyE1AbHYsojKjEJYRhuC0YASkBEBGUgZWulaw1rXGojaL0M6g3ddKpRokN6MATovvwf9RJLRW\nZsKeZ4eTA06id73eIu3n1c0vuHXIFwu9uqHf1R5w6u8ESx3LarebGJGBB6c/4ODIVCZtsnYtAODS\n50tIzU/FrJazqtX+x0dRkJKRRP1WlbNgAIAPbkdwek8Y5O0Ossq4KvD+fgQsbY2qdCwyMoBduwBH\nR2DUKMDPj+3e/x+/Dz+RyRFrsOFwOB0AjAPQtKLHfPKJqlZ5saSEJHZ024FmOs3Q7Vw37O2xF+Mt\nx2PDnVFY18MFsgrSsO5dehVFRZGtJYvVnVbDt60v3GPcf3i9sl4qZcHhcFDEySn1tcjISHTv3h33\n7t1DA+MGaKDZABMsJwBgs9XE3EQEpwUjND0UERkRuBd+D3E5cUjMTURKXgoyCjMgV0sOSjJKkKsl\nB5laMiXBRyAUgCfkoYBXgFxuLnK5uVCUVoSWghZ0FXWhr6wPQxVDtNVvi4mWE9FIqxG0FLRE8pmr\nilBIeHjOH6dXeMO8txb8F52HtoYG3g14B12l8ss1K0Po2wTsn3ITcy93x0jvwVjTaQ0GNhBNZZXT\n4nsY2E8D6jf2A+/eARISSMtPwyLPRXAb6VbhAUJZ3D7si94zmldeW+7GDRhPWoTHm6djQBUDDQD4\neYZhwakBlTuoqAg4eJCVVQ8YALx/z+Rh/jT4fBYwMzOZ3lleHlBQAHC57DX6pxJXUpLJ3MjIMG01\nRUWmraaqCigp/Za6ZxVBbMGGw+FIAXAEsIuIQit6nN2oa9jzakqZ2mEVZVTjUbDQssDQy0PxNPop\n7HvZY831EdjU/xKWuQyGVXeTarUPAHt37MXHtx+/E7TUqK2JtRvWVrvtYvT0yi6zDgsLw5o1a37Y\nT8PhcKCrpAtdJV10MepS6rFCEiKXm4ucohwU8AvAFXDBF/IBAJIcSUhJSkGulhwUpRWhJKNU7Zuc\nOPngHYHTyx+AOAT11alwKNiOHR13YHKzySIT7CwmNjgVm/pfxASHjpgRNBYTmk7A7JazRdL2qxvB\niPZPxPKCXcD5s0xfC8D8u/Mx0mIk2ui3qVb7yVGZ8PeOxIIT/ct/87c4O4O/ZBGGTZKD2yy7Kvef\nGJ6B7NQC1LOuxGDs1i1g0SJWcvv4MdP6+h0hAhISgC9fgLAwJtIZHf1VnDMpiQUYVdWvQUNBgYmn\nSksDtWoBEhKsHYGAlZEXFX0V48zOZoGqqIgJcdauzfa86Ol9FeE0MWGaaNrav2VAEts+Gw6HswbA\nJAAWRFT0z3NCAFuIaF0Zx5Cr3TP4XPyMnT7fOzNWleyibMy4NQOfkj/hwtAL4HxRxrYhV7D47EC0\n6FW9GQ4ARERElCgY52bxoRBkiYz+wZi6qD+mNp8KeSn5co+Ni4uDnp4eNm/e/MOel4iICHTv3r1M\nJWhduXo4sv0cbCdaQlG1auq9fyJEBP+Hkbi05SlSorNgMl0GRyQ3o6NxR+zpsadaLptlEReShtVd\nndF/tRU20lwMMB+AzTabRRLQcjMLMaexI5aYvkfTlprA7t0AgEufLmHdo3Xwm+H3099SRTg6/y6k\nZGtVbm/NiRPA+vVYv7IthA0bYHPXzVXu323vS8QEpGC+UwWCXVQUMG8eEBzMXEd7imeTb5Xgcpkw\np68vm2X5+wOfP7OZiLk5E7wsFujU12dBoXZtptgsUc09ZEVFbJNqYiILbnFxLKhFRLAAFxrKAlXD\nhkwYtEkTwNISsLICVKo3gK8oNbrPBoABgHywKjSVfx6qYAUCO//5v0Qpx9G6deuoh+VIsmkwjB48\n+NFNs2o5KyGdeHeCNO00af/L/fTpaRSN0dotUgmaYqI+J9PkBnupX+uFpLvRgNY/XF9qwr4ypcnh\n4eFlapv16TaQdo66SiNUdtKusdfI715YlUpa/xSKCnj04OwHWtDiOM0wP0QOdheo1ZHW1OJoi1LN\n8ERFxMckmqC3j1wc7lP9A/W/K7MXBXZjrtHhng5EDRuWaIlFZESQlp0WvYmrfnFLekIOjVSzo7T4\n7IofdPIkkb4+xfo+JPWd6iVFN1VlcZsT5Hu3nNJ9gYDIwYGV027ezMqafzU5OUQeHkTLlxO1b08k\nL0/UpAnTUHNwYLIuqaUL6/4SUlOZBtqRI0yKp107JkNTvz6T6Tl8mIlwisgf5+HDh7R+/fqSB2qy\nGg1AZ7AyZ8E/Aab4Ifjm36alHEdErGR5eeczdGyRp0guRjEhaSHUxqkNdT3TlXwe+dI4nb3kecJP\npH0QsRvi0QV3aYzuLpqwdj6p7lClCW4T6GXMy5IbVEUcK7+lvOCUmZJH7vYvaX7zYzRedy85zr9L\nH32i/hOBRygUUphfAh1b5EljtHbTmh7O5OTkSl1OdiEzBzM6739erJtCPz2JorHae+js4dtksNeA\n9j7fK9L27595TzPqHaCC2vpMrZeYTl+r461o97PdIumjWLetwly8yCymg4Np6vWptPL+ymr1nxCW\nTmO0dhOP+5PS5IgIos6d2c0xqGoCoSJBKCT69Iloxw52PoqKbB/JunVE9+4xA7g/DR6PBZhjx4gm\nT2aacGpqrFzZwYE5pYpo8FTTwUYZQKdSHkIAZwB0BCBfynGUW5RLRETZafk0q9Fhurr7uUguQDE8\nAY92PNlBGjs1aOeV/TTZaD+5bHos0lFqMR+8I2iKkQNtHX2RttzaQcb2xtTMsRkden2IOnTqUGqw\nsbGxKbO9iu6biQlKIZeNj2lOU0cao7Wb9k26Tj6XPrHd6H8IQqGQQt/Fk/O6hzSz4WGabLifTq+6\nTyc9XKiNUxuq51CPTvmdEntJtbezP1N2OHmRtOy0yMXfRaTtR3xMotGauyliyCyiOXNKnp9xcwYN\nvjhYJL/LhLB0Gq2xizKScit2wN27TBXA358CUwJJ006z2nt7nNc/+rlA7oULRFpaRHZ2v2avjFBI\n9O4dm72YmRHVrcu+j1u3iHIreN3+NOLjmUPolClEBgZsQ+ysWUR37pSq1F1RajTYlPVABfbZtDja\ngmKz2B6A5OhMmlR3P907JZr9C98SkBxA7U+0p3Z7OtO0pvtp36TrpSoRV5f8nCI6ttCTxmrvIc8T\n78jziyeNuDKCpCylasRPJiE8nW4ceE3r+7jQMKUdtKDFcTq+2IueuwVSesLvJeORHJ1J3uc+0L7J\n12mC3j76y/QAHV/sRU/vf6BtPtvIcJ8htXVqS66fXUVuO/BveFw+HV/sRVNNHGj9uZ2ks1uHnkY9\nFWkf2Wn59JfZQXqw3o1IV5cpEhPRkTdHqOHBhpRVmCWSfrYNu0IXt1RwifHdO3bTf8o+64ALA8ju\nqV21+hcIhDTZcD+FvI3/8cX8fLYLvV49ordvq9VPlYiLI9q2jahBAyJjY6Z+7OsrslH+H0PxbG7n\nTrZUqKJCNHIkkasr+44qwe8SbAQANv7kddrms4309+rT69jXREQUHZhC43T20pMrnyv1gSuCQCgg\nxzeOpL1Fh0a2XUtL2jtVfPRXSUJ842lhSyda0vYkfXkTR34BfqSpr/ldoNEx0KHAL6LPIxXDLeLT\nR58ourDZh9b1Ok8j1exokoE9bR50ic5veETPrgZQdECyWILutwgEQkqKzKDXt7/QpW1PaNuwKzTJ\nwJ5Ga+6mLYMv0Y0Dryn8czy5BbrRoIuDSHWHKk1xnyKS3EVFSIrKpGXtT9GqHmdo2MlR1OJoC4rK\njCr/wErALeLTSpuzdHyRJ1Hr1kSnThERkWeoJ9XeVZtC0kJE0o/f/XCaYuRQMY+n2FgmP+PqnYpf\nHgAAIABJREFUSkRE98LukbG9MRXwqj7KJWIbORe0OP7jC1FRRM2bE40YUbNLUwIBm70NGMCWkqZN\nI3r27P9fgPkZiYlEjo5EtrbM52fCBLaEWIFZZ1nB5rdUfXYPcsf0m9Oxq/suTGw2EeHvE7Gupwvm\nHuuLNgPNRd5vcl4ylnutwMdDGTAJaIktNyaivrXolJ2LEQoJ90+9x7k1j2DVwwSdphvD/ogdwqPD\nwZXjgmPLwRfhF3Qz6Ya+9fqil1kv1FESzZ6d0iAixIemI+xdIiI+JCHqUzJiAtOQGpMFdV0l1DZW\nhaaBMjT0lKBaWwEqWvJQVJODgooMZBSkICPHrAY4EsxDXSgg8Ir4KMrnIz+nCLkZhchJK0BmUi7S\n43OREpOFpIhMJIZnQkFFBnUttGBsWRumzXVQr2UdaBgp4EHEA1wNvIrrwdfRWLsxxjcdjxEWI6As\noyy26/Dt9fC5+BnHFnii5TR9HNJeA1tTW9j3sodsLdFV+gmFhD3j3VGUz8PK4QJI7t0DvH4Nv6QP\n6OncE1dHXEVHw47V7odbyMc8y6OYsqsbWg8o5++msBDo1AkYNAhYtQpcAReWjpbYbrv9OwuPqrC+\nzwW0H9YQPaY0+/rkixdMOXjxYmDJkpop1S0sZCrQe/awcuO5c4ExY1gJ8v8om8RE4NIl4MwZVgk3\neTIwZUqZG2r/OIuBgJQADL40GLbGttjXcx9iPqRjQ58LmHO0T5V8airCq9hXWLZ1OxSdG6PX6saY\nt3ykyPdpAEB+dhFcdz6Dh+M7dJtsiWEr2kNFk5W1puSl4E7IHdwOuY374fehr6wPW2Nb2BjboGPd\njjWyK5/PEyA5KgvJkZlIjs5GenwOMpPykJ2aj9yMQuRlFaIoj4eiAj74XAFISOBwAAlJCUjJSkJG\nTgpyStJQUJWFkoYcVLUVoF5HCZoGyqhtpAJdU3XIK8sAAKIyo+AV5gWPUA94R3ijSe0mGNJgCIY1\nGgYDFQOxf9Zi0uJz4DjXAzFBqVBblI4TmQ441OcQhlsMF2k/RIRjCzwR5peIzbeGQ6Z5U8DJCSFN\n9dHlTBcc6H0AQxoOEUlfZ1d7IzYoDauuVuAzTJsGZGWxmwqHg21PtuF5zHPcHH2zWn8DMUGpWNn5\nLE5GzYe07D97ta5cAebMAU6fZj4p4qagADh6lKkPNG0KLFsG2Nj8lntRfns+fACcnAAXF6BdOxaw\ne/T47lr+kRYDmQWZNOTSELI+Zk3h6eEU4htPY2vvIZ9L4lMLFgqF5Hj9DNnqLKI+7efRyxDxLd2k\nxmXToVm3aZT6Ljqz6gFlpX7vmsgX8OllzEva6rOVup3tRorbFKnJ4SY04+YMOuV3ij4lfRJ77kKU\nCIVCCk4NplN+p2jq9alkut+UtOy0aLTraDrz/gwl5/5oES1u+DwB3XB4RaM1d9PuhZeo5aHW1O1s\nN4rOjBZ5X0KhkE4su0fzmx+jnIwCVpravTtFZERQ3X11v8r2i4Dg13E0VntPxfJyZ84QmZuXLGUF\npwaTxk4NisiIqPZ52E+5Qec3PPr6xMGDTFzUT/RVoD/A5bKloDp1WNXVu3fi7/P/C7m5RMePEzVt\nyvJdR4+WFBXgd8jZlPf4d7Ah+scq4MU+0rLTosufLlP4h0Qar7uXPJ3E+8PJzs6l6f13kK3mYhqy\nfQJ9ThZ9zqiYpMgMOjD9Fo1S30XHFnlScnTp3uxcPpdexb4i+xf2NMp1FJk5mJHCVgVq49SGpt+Y\nTg4vHeh+2H2KyYoRS3VdZcgpyiHfOF868/4MLfFcQrZnbEl1hyoZ7jOkUa6j6MCrA+Sf6C/WkuXy\neOsZSrMbH6G/u5yiJSfWkKadJh31PSqWaycUCunYIk+ab3WMVQUWFREZGFDcvWtkZG9EB18dFFlf\n+TlFNK3ewYoNyr58+c7CgC/gU/sT7UXiyZMcnUkj1ey+DqJ27CAyNSWqCfVxDw+2Z8nGhuj1a/H3\n9/8VoZBZDfTpw9S3HR3/rJxNafjG+2L01dHobNgZf5usx45+bugzqwWG/t1OLEtdxdx3eYdDc24j\novVL1JukgDVdVotEcLE0UmOz4b7vFe6feg/rPmYYuLB1udIeWYVZ+JD0Af5J/vic/BkBqQEITg1G\nDjcHxqrGMFYzRl3lutBX1mcSNoq60FLQgoacBlRlVaEko1QpZ0yBUIDsomykF6QjNT8VSXlJSMhJ\nQFxOHKKyohCZGYmw9DCkF6TDTN0MFtoWaKrdFM10mqFFnRbQVtCu7mWqNsGv4nBuzUMkR2Wh4TxF\nOAg2oJV+K+zruU8sOTIBX4iDM24j+nMKNnqMhqKaHHDiBPLOn0ajAdFY1m4Z5raaK7L+7CffAAAs\nLE+DjM8H2rcHxo1ju/UB7Hq2C7dCbuHhxIfVdkw9NOsO5JWlMXlnN2D7drbm7+0NiEg7sFRiYoD5\n84GPH5lNdb9+/1suqyk+fgSiosDp3//PytmURk5RDhbcXQCfKB8cbHMMN6d+QdOuxvhrb3dISorH\nShhgQWDPJDdExsXgVb8LaNDMEMvbL0cnw05iCXS5mYXwPP4Otw76Qr2OIvrMaoEOwxtBRk6qwm3k\nFOUgPCMckZmRiMqKQlx2HOJz45GUm4SU/BSk5achozAD+bx8yEvJQ15KHjKSMpCWlC7RQSMQBEIB\nuAIuCvgFKOAVoIBfACVpJajJqUFTXhO1FWpDR1EH+sr6MFA2gLGaMUzVTKGvrA9JCUmRX5vq8Plp\nNC5ve4aoj8loM7cuLmkeQCo3BfY97WFrYiuWPgtyubAbfQ18rgCrrg6HnKI0IBSisL4pxnXPRp/p\nuzDFaorI+vM6+R5uu19g7+uprK+fsWMHcP8+85qXkMD7xPfofq473kx7AyNVo2qdR2J4Bha1PAHH\n4NlQcT4GHD7MtM0q4GFfJYRClpdZt47lEZYvB2R/Y/kmgQBIT2ePzEymf1ZQwORoBMxyHZKSrJBB\nVpaJcaqoAOrqgIYGE+r8TfnjCgR+xrXAa5hzZw7GmkxALYdGUFSVw1LnQSLRUisLIoLncT+cXe0N\n3aESuNXgOJQVFLGw9UIMtxgOaUnR9y3gC/Hmdgg8HN8i5E08Oo6yQPfJzWDaXEdkQU4gFCCPl4d8\nXj4K+YXgCrgQCNmPncPhQJIjCWlJacjWkoWCtALkpeSrPeKtSQR8IZ5fC8R1+9fITMpD+9nG8Khz\nDs8SnmBdp3WY2nyq2ERGU2KysHnAJZg218Ucxz6oJcWCr5/TFkhs2IhQzwsYajFMZP19eROPDX0u\nYKfPBBg0LEeFOyQEaNuW6XsZGSGXmwvrY9ZY13kdxjQZU+1z2TXmGvTMNTDGJBpYswZ48kR8Ss1x\nccCkSUzo8tSp30esMy8PCAhgumnFAp2RkUBsLJCczJSc1dWZZpqS0ldRTsl/BmkCAdNhKyxkny07\n+2uAUlFhM8S6dQFjY8DMDKhfn332unWrr8FWDf5TwQZg5cqzb8/G54RADHq6CPnhhLXXR0JTX7wl\nsikxWTgyxwMJoRlotlIVl8kJgSmBmNZ8Gqa1mAZ9ZX2x9JsclYn7pz/gwRl/SMvWQpexjdFplAV0\nTdXF0t+fTnJ0Fu6dfA8vJz/UNlZF88l1cEPpDO5H3sPitosxr9U8KEiLr+T14+Mo2I26hkGLW2PI\n0rYlgwOnd04wGT0HetOXwHzJNpH1lxqXjaVtTmHGgZ7lV2sSMWHLXr2AxYtBRBjnNg6ykrI4MfBE\ntc8l+HUctg66jKNOTSA3eSzw8CHQqHo+UmVy+zYwdSowezawahVTT/4VEAGBgSyoPn8OvHnDAou5\nOWBhwf41M2PlwgYGgI5O1WcnQiErQY6LY4KlkZFMgDM4mAW3nBwmvtm8OdCyJasaMzauseXE/1yw\nKcY1wBXz78xH10/jwPHSweprI9CgjXhu+MUQEV64BeHYAi807lwX7ZcbwDn6FC58uoCOhh3xl9Vf\n6F2vt1hGzESEwOexeOzyCc+uBkKjjhLaDmmANoPMYWihJdb81e9OXlYhXrgF46HzR4T7JaLTKAvU\nHgCcyXDEy9iXWNh6Iea0miPWPTtCIeHa7hdw3/sSi88ORPMepgAAvpCPpV5L8fHldXgezEKt2HiR\nLfPk5xRhRacz6DjSAsNXtC//gGvX2HKTnx8gJYWDrw/i+LvjeDH1RbWVpYVCwrJ2p9BrkD667xsP\nXLgAdO1arTbL6AjYsIHNZC5cADp0EH0f5ZGRAdy5A3h4APfusf06HTuyPFirVizI/IrlrvR0pkbt\n68uC3vPn7PlOnQBbW1aqLEY/oP9ssAGAjIIM/H3vbzy7HoCG7n0xbXtP9JreQgxn+D0FuVxc2vIE\nXk5+GLSkDbrNaQz3sGtweueEiMwIjG0yFhMsJ6Bp7Qp7x1UKgUCIz0+i8eJaEF5e/wIJSQ6s+5ih\nRS9TNOliVP6a/X+AzOQ8vL4VgpfuQfj0OBpNbQzRbqQ5Ikz8cOTDIWQVZWFRm0WY1GxStW+k5ZGe\nkAP7yTdRkFOEZReGQLsuk3RPzkvGSNeRkJGUgdvHxpDjCljyWgTwuAJs6ncRtY1VMcexT/mDDS6X\nLbUcPQp064bHkY8xwnUEnk95DlN102qfj9cJP3ge9cWufAdIzJ7FZhyiJi+PFTWkpgKurky+v6bI\nymJ9XroEvHwJdOkC9O3LbuD/sgf5bSBiFgQPHwIPHrA8nZYWK54YPJgFRhEuu/2ng00xz6KfYd7J\nZdA53gmtOjfCCqfRkJUX/8giPjQdp/6+j9C3iZiwtQs6j2mCL+nBOPvhLM5/PA9lGWWMbjwaIyxG\nwEy9+h46pUFEiPyYjLceoXh7Nwwhb+JhYqWDJl0M0biTIczb6EFeSUYsfdckvCI+gl7G4f39cPh5\nhSMuOA2W3YzRdpA5lNoIcD70LM75n0NLvZaY03IO+tTrUyM5pqeuAXCcexe9pjfHqLUdS/IzPlE+\nGHN1DCY1m4SNndZD0sSUGYI1rf4ARMAXwm70NQgFQqy4PAyStSrwOQ8eZEtPHh4ISw9D+5PtcW7w\nOXQ37V7t88lKycOcxkexsVUQTNUKWfWZqGfaycns5t64MQuY0jUwoCJiy2NHj7LvrmtXYPRodh5/\novqAUMhmPDdvAm5uLICOGAGMHcuW3qr5ndV4sOFwOD0ALAfQCIAagBQAzwFsIKLAMo6pVrAB2HKF\nw+NDuLz4DepkmmKz+wRYWFZ/xFYRPj2Jxqm/74NbwMeErTaw7mMGAuFZ9DNc/HQRVwOvQkdRB0Ma\nDsGgBoPQRLuJ2Ja9CvO4CHgWg4+PovD5STTC/RKha6YO89Z6MLPWhVkLXRhaaEFK5tescVfEOA5g\nO/tDfeMR9DIOgc9jEeobD4OGmrC0NUbznqZQbSqJayFXcc7/HJLzkjHRciKmWk2FsVrNjDIzEnPh\nOO8uoj4mY+HpASVLuHwhH1t9tuKI7xGcGngKvev1Bnx8WKWUv3+1+xUIhLCffAMZCblYd3PU1935\nP6OggBl73b6N9AaGaHeiHea3ni8yp1G70degkROHqaGHgLdvRX8jjokBunVjN8ZNm8Sfg+Dx2E75\nvXtZldjMmcD48awa7L9EQABbijx/ntlQT5kCTJjAHEGrwK8INqMAWAF4BRZo6gJYCUAfQBMiiinl\nmGoHm2KSc5OxZMVOJJ+WQdOFqtiyYQFkaol/ZE9EeHk9GOfWPIKcojTGbOiE5j1NweFwIBAK8DT6\nKdyC3HA9+DoAoF+9fuhdrze6GHUR6zIPjytAuF8ivryOw5c38Qj3S0RCaAZ0TFRR10ILBg01Uae+\nBurUU4eOiRqUNeTEFghLcx81NjLG4R1nwclRQExgKqI+JSPSPxkCngBm1nVQv1UdNGxvgIZt9ZFG\nyXAPcodroCv8k/wx0HwgxjUdBxsjmxortxYIhPA89g7n1z9G96nNMHpdp5LS9ND0UIx3Gw9FaUWc\nGXTm696duXNZ6e/q1dXu237yDaTF5mDdrVEVn707OADe3ii4cgE9nHugtV5r7O6xu1rnUszza4E4\nvdQLDjk7IXv3JtBCxMvY0dFMYmb2bKalJk54PODkSWDbNmazvHQpK6j4r+dDidiA6MQJ4MYNYOBA\nYMECNtupBL/FMhqHw6kPIAjAEiL6YdFalMGmmAePn2PvuJvI1kzClAM2mNh+bI0sqwiFhKdXAnBx\nkw9kFKQxYlV7tB5gDgkJ9h0QET4lf8LtkNvwCPXAu4R3aKXXCt2Mu8HG2AbWdazFVpJbDLeQj9ig\nVEQHpCAmMBXxX9IRH5qOxPBMCHiCf0Q4laGuq/hViFNdDoqqspBTloGsghRk5KUgLVsLkrUkwJHg\ngMNhn13AE4JXxAe3gI/CPB4KioU50wuw69RavAr0/uF8Gmi0xvR+K2HQULNEpFNTXxkCEuB13Gt4\nhHjgdshtRGdFo2/9vhjacCh6mPYQqUhmRfj0JBrHF3hCVlEasw73hlFjtlFVSEIcfH0Qmx5vwtpO\nazGv9byvvzWhkFUhPXgANKi6th+PK8CecW7IyyzCavcRFQ80fD5gagr+pQsYGrkTClIKcB7iLJK/\nhYzEXMxrdgyrzd+hYWcTNusQJUlJrABg1iwm3CkuiFjxxPLlzNZ50yagTRvx9fc7k5bGNNAOHWKz\n4eXLKxxwf5dgowkgGcACIjpQyusiDzYAUFTAw9bZZ/HmehjSx/li9Zy56F+/f41UbgmFrHLt8ran\n4BbwMXhJG3QZ2+SHZY/somw8inyEB+EP8DDyISIzI9FGvw061u2ItgZt0UqvVY0oHxeTn12ElJgs\npMbmICMhF5nJechOyUdOegHyMguRn12EwjweuAU8cAv5EPAJJGSyFBISHEhKSaCWNBPllFWUhrwy\nE+ZUVJODvftyfA73+6FPGxsbeHt7gy/kwz/JHz5RPngY+RCPIx/DSNUIvcx6oU+9Pmhn0E7sgbg0\nYoJScXaVN0LfJmLSjq7oNMqi5Df0Ofkzpt2cBkkJSZwYcAL1Nep/f/Dbt0xhODi4yv0X5HKxbegV\nyMhL4e8LQyq2dFbM5cuggwcxcZERUvJTcH3UdZHsDRMKCRv7XoCZUg7G++9jQo0yIlxByMkBOndm\no+z160XX7r8JDmazppQUtmzWrZv4+vqT4PGAy5eZAoScHKsA7NPnp0HnlwlxApAAIAWgHoCrAGIB\naJbx3goK8lSNd16hNFJ3O3XuMIms7VvTzeCbNaYhJhQKye9+OK3teZ7G1t5Dzusf/VQkMTUvla4H\nXadlXsuo/Yn2JL9VnhodakQT3CaQ/Qt7ehTxiDIKMmrk3EVNWZbYFl0tyPaMLSltU6KGBxvS9BvT\n6cLHC5SYk/hLzzchPJ32Tb5OozV305Wdz77zhskpyqHl95aTpp0mHX59uGytt82biRYtqvI5pMVn\n0/zmx2j/XzeJz6u8npywY0c6/LctdT7VmfK4eeUfUEFc7Z7R4tZOxDM2JfLyElm7RMS8U/r1I/rr\nL/F5zfB4RNu3E2loEO3bx/7/P35EIGA+RxYWzLb7adlGgvhVQpwA3oA5dAoBBAMw/8l7RXRlyiY3\ns4D2T71BI3S2UavZPcjK0YqufL5So+rJUZ+T6cCMWzRC1Y52jrpKHx5GlBv0uHwuvYt/R8d8j9HM\nmzOpjVMbUtymSPp79annuZ600GMhOb5xpAfhDygyI/K3U4MWCAUUnRlND8If0Ca3TaSso/xdoJHT\nlqO55+fSreBblJqX+qtPl4iYcd++SddplPouOrvGmyk1/4NQKKTz/udJf68+jb06lhJyEn7eWMeO\nTByyCoS9T6BJdffThc0+VRocCT5/ogw1Oep0tC3lFInOnfXTkygaq72HktbsIurfX2TtlrB6NVHn\nzky9WRxERTFXyq5diSIjxdPHfw0+n6mEGxgQDR9e6nUrK9iIfRmNw+GYA1AGYAJgKQAdAO2JKLqU\n95K4z6eY9w8icHDGbcibE97YXEG6bBKWtl2K8ZbjaywHkJtZCO+z/rh79C0EfCG6T2kGm/FNoVFH\nqULHC0mIyMxIBKQEIDAlEMFpwQhJD0FoeihS81NhoGwAAxUDGCgboI5SHegq6kJHUadEiFNNTg2q\nsqpQlFas8tp9Eb8IWUVZSC9IR1p+GlLyU5CUm4SE3ATEZcchOjsaUZlRiMqKgqqsKuqp10MDzQbQ\n4mrhxdkXKMosgrGBcZnVaDUNEeHzk2i4732JwOex6DevJfrPbcnEM//hafRTLPVaCr6QD/te9uhQ\nt5wNhQUFbF9DUlKlK7SeXgnA4dkemHWoFzqOsKj05+EL+bg7rBlyCrPQzy0ASjIV+22VR1p8Dha1\nPIH5Dl1hPbs7E9i0qPz5lcndu8BffwHv3gHaYhBv9fQEJk5kOaClS3+pvMsfSX4+sHs3KzpZsoQ9\n/ilD/11yNioAIgFcIKIf6i1rMtgAQGE+Dxc3+8DL6T2s5+jgvsl5+KX4YZb1LMy0nlljCsVEhKAX\nsfA68R7PrwWhQRs92IxvgjYDzaus91bIL0R0VjSis6IRmx2LuOw4JOYmIinvqxBnWkEasgqzUMAv\ngFwtOShIK0CulhykJaUhJSkFSY4kJDgSILCRCU/IA1fARRG/CPm8fORyc0EgqMmyoKUprwktBa0S\ncU49JT0YqBjAUMUQRqpGYpWHqS4FuVw8vvAJtw/5glvAw4AFrWE7yfK7BLx/kj9We6+Gf5I/tths\nwdimFSw2efwY+Ptv4NWrCp8PnyfA2VUP8fRKAFZdGw6z5pUXsCzkF2Ls1TE4PMcDyp6PINeidaXb\nKA1uIR8ru5xFq/71MLLWc5ancXERSdsAWN7E0pK12aWL6NotxsGBiZBeusR2/P+PqhMRwYzwYmNZ\nBZ+19e8RbACAw+G8AZBBRD1KeY3Wf5ME7NKlC7qI48f2L6IDUuA49y5y0gvQY6M5bnCc4RroioHm\nAzG31VxY17EW+zkUU5jHxQv3YDw6/wlBz2PQvJcpOgxvhBa9zcS2QbVYjDOPm1cixskVcCEgAZv+\ncjjggINaErUgU0sGsrVkS4KTjKTMHyuRQ0QIehmH+6fe45lrIBp3qoves6xh1d2kpGoQAD4mfcRm\nn83wifLBig4rMNN6ZuVmvzt3AgkJgL19hd6eHJ2F3WPcIKckjSXOg6CsUfmS+KzCLAy6NAht4ySw\n5VwcJAICRVK6S0TYPc4dQoEQf5/uC46JCZslNGlS7bZLGDUK0NdnI2dRQsSqqm7dYjIzRkaibf//\nKY8ePsSjAwfY76BtW2x88ODXBxsOh1MbQCiAc7/DzOZbiFip8sllD2Deug4GbmiOG+lXcMT3CLQV\ntDHTeiZGWoys0dF5Vkoenl8LwtMrgQh5E49m3YzRemB9tOxbr0o3oP/BiA5IwZNLn/HI5TMkJADb\nSZawnWj5w/Llq9hX2PFsB17EvMCStkswu+Xsqn3/w4YBQ4awarRyeHY1EEdmezABz2Xtvgt6FSUm\nKwZ9Xfqis2Fn7H+iwGZf20Qj+nlu7UO8vxeBbQ/HQ+ayC5t9eHqKpG0ATGds3jzmjSInV/77KwoR\na/f1a9bHf21j5u9AfDzw9i04AwbU+KbOawDeAfAHkA3AHMBCANoAWhNRaCnH/LJgU0xhPg9uu1/g\nxv7X6D6lGYauaIMnaY9w9O1RPIt+hhEWIzDFagpa1mlZoyP6rNR8vLkVgpfXg+HvHQnDxlpo0dsM\nzXuawrS5jlj9fP50hEJC2LsEvHQPxgu3IORlFaHDiEboPLox6lnrfvc9CoQC3PxyE3tf7EV0VjSW\ntF2Cqc2nVm/DrZkZkwb5ifR9bmYhji3wRODzWCx1HgTz1npV6so33heDLg7CwjYLsaTtEnCaNQOO\nHGHKv9XkjuNbuO1+gV3PJ0NVW4FZFKxcCQwox6StonC5TIZm/36gd2/RtFnM338Djx4xwUwVFdG2\nXVUSE5lgZlAQU22OjmbPpaUxO4GCgq/eNtLSLN+nqsryf7q6TEHa1JQpSjdpwuwKfgN+hYLAMgAj\nAJgCkAYQA+AhgB2lFQf8c8wvDzbFpCfk4Pz6x3jhFowhS9ug37xWSOUn4cz7Mzj1/hSkJaUxwXIC\nxjYZCwMVgxo9N24hH598ovD2bhje3Q1DZlIemnQxRBMbIzTpXBd1LbSrNCL+L5GVkof3DyLg5xmO\nt3fDoKAig1YD6qPt4AYwb633w/VJy0/D6fencejNIWgpaGFRm0UY1mhY9ffz5OezUXROTpny969v\nfcHhWR5oPaA+JtvZVjlPd/HTRczzmIfj/Y9jUINBTEesfn0mWFlN6f0nlz/j+KJ72OkzgdlaBAay\nvShRUaKT9f9Gt02kODgAjo7A06e/9oYcHc0+m7c38OwZCybNmjH7BTMzpsSsq8tkYpSV2cyu2NuG\ny2UCpBkZLKcVH8+ufVjYV88cDQ2gdWu2AbZrVza4+QVL3L9NzuZn/E7BppiYoFQ4r32EwGcxGL6q\nA3r+ZQUpGUk8i3mGcx/OwTXQFY21G2N049EY2nAotBTKMa0SA2nxOfD3jsDHR1H4+DgaOWn5aNBW\nHw3b6f+jhVYHiqq/sWuhCEiNy0bgsxh8fhKDT4+jkByVhcad68Kqhymse5uW6vtDRPCJ8oGTnxNu\nBt9Ef/P+mNtyLlrriyaRDoCNXMeNAz59+uGl9IQcHF/ohdC3CZh3vB+a2hhVqQu+kI9VD1bhSsAV\nuI90/2pb7uoKnD7NchTV4M3tEOyfchObvMbAxFKHPbl2LQuke/ZUq+0SinXbbt2qtDzKT7l/n+mZ\nvXjxa3I0CQmAszNw8SILDr16sSDdoQP7vKIKBkIhM8R78YKJhj54wGZF/foBQ4eyQosa8vr5X7Cp\nJqHvEnB+3WNEfEjC0OXt0PMvK0jL1kIRvwh3Q+/i4ueL8AjxgHUdawxtOBSDGgyCrpKYLHDLISMx\nF4HPYxD4PBZfXjMdNFUdRZha1YZJMx0YW9ZGXQstaNVV+eNmQESEtPgcRPonI9wvESH1a/54AAAg\nAElEQVS+8Qh5kwBuIR8N2uqhUYe6aNLZEGYtdMtUQQ5LD4OzvzPO+Z+DbC1ZTLWaigmWE6AhL4Z1\n/CtXWF7Dza3kKQFfiFuH3uDSlqfoOc0Ko9Z2rJTl97ck5SZh9NXRqCVRCy5DXaAp/4144qJFTH5/\nxYoqn/5bzzDsHe+OdTdHfb+017AhU3Vu1arKbX/HkSNs1H/jhmjaA9iNvnlzdv1tbETXbkV48YIF\n4gcPWL5u7FjmJ1NT5m5EbHnuxg026IiJYecwdar4jOz+4Y8JNssmH8CWIzMh/YvUiMsjxDceFzb5\nINQ3AQMXtUbvGS0gr8zkOfJ5+bgbehdXA6/iTsgdmGuYY6D5QPSr3w+NtRv/sqotgUCI2KBUhPsl\nIuJDMiL8kxD1MRkFOVzUqa8OffN/BDhN1VDbWA3ahirQqKNUMcl6MZGXVYikyEwkhmciITQdcV/S\nERuUipiAVHAkODC2rA1TKx2YttBB/ZZ1oGOi9tPrG5MVA9cAV1z6fAnhGeEYaTESEywnwLqOtXi/\nl9272ZLH3r0AgHdeYXBa5AU1XSXMPNCzfPvmn+Ad4Y3xbuMx1Woq1nde/6MIaYcOTN+riuZlb+6E\nwH7SDaxxH4GG7b5ZKg4JYRIysbGi2Z9CxILXsWPshiwKiNiovkUL0Wu1/Yw3b1geKyyM7eGZNIlZ\nPv9qvnxhs9xi2+zFi5nsjBj2F/0xwaZrk1mQypbHonP90bNj5199SmUS/iERrjue4/29cPSYZoX+\n81p9V83EFXDxKPIRbgbfxO2Q2+AL+eht1hs9zXqiq3FXqMqq/sKzZ+RlFSI2KA2xwalICM1AQlgG\nkiIykRyVheyUPKhoK0BdVxFquopQ1VaAspY8lNTloKQuB3kVGcgpyUBOURoy8rUgJVMLUjKSkKwl\nAQlJCYADgAChQAg+Twg+V/CPKCcXBblc5GcXIS+zCLnpBchKzUdWch4yk/KQHp+D1NgcCAVCaBup\noraxKuqYqUOvvjr0G2jCoJEm1GorlvvZiAgBKQG4EXwD7sHuCE0PxUDzgRhhMQK2xraQkqwhB8UF\nCwAjI4R3HY0zK7wRH5qBKbts0WageZWDHE/Aw/pH63H6/WmcGXSmdC8aoZAlk6OimMd9JSmuiltz\nvRTn24MH2WbLkyerdP4/8OgRU8T++FF0y0ouLqzk3Ne3ZtwyU1OBZcsALy+mHzZp0q9x6SwPLpfN\ndHbtYstsGzcCgwaJNLfzxwQbHp+HdasP4e3BJKiOy8HunX/XeAK+MiSGZ8B93ys8Ov8RLfvVw8AF\nrWHW4vvlMyJCUGoQ7obehWeYJ57FPIOFlgW6GneFjZEN2hm0++02PPJ5AqQn5CI9PgcZibnISs5H\nVkoestMKkJdRiLysQhTksMDBLeCDV8QHr0gAIV8IgYDYyJLDgaQkB5JSkpCSkYS0bC3IyDNhTgUV\nGciryEBJXQ7KmvJQ0ZaHmo4i1HUVoaGnDEU12UrfjHOKcvA46jE8QjzgEeoBvpCPAeYDMKjBIHQ2\n7FxzAeYb4vqMh0tWc3wII4xc3QG9ZrSAlHTVbRCCUoMw3m08tBW0cXLASdRWLMOlMiqKVaDFxVW6\nD6+T73Fu9UNsuDMKplalLAUPG8ZuUOPGVbrtUpk8mVVTiUrROS+PFUa4urKKOXFz5w5TOxg5ks2i\nfoeZTHkQsWKMNWtYIcK+fSJTuP5lQpyVeeAbbbSADxE0rP4Gal9vKi0+v/K3F53MTssnV7tnNKnu\nflrS9iR5O/sTt7B0Ub8CXgF5h3vTmgdrSkQ2Wx9vTUs8l9DVgKsUnx1fw2f/Z5JblEv3w+6XXEeF\nrQpkc9qGdj7dSf6J/jUmsloaMUEptHu8G42WWkMXJ52i/JyiarXHF/Bp34t9pLFTgw69PlT+Z7t3\nj6hLl0r1IRQK6eIWH5pi5ECxwT/Rp6tThyg8vFJtl0lREZGaGlFMjGjaIyLaupVo5EjRtVcWAgHR\nmjVE+vpEjx+Lvz9xIBAQnT5NpKtLNG0aUUb177P4VdpoleHfBQJ8ngAnN3ngpoMvwno8wqQFfTC3\n9Vyxe8lXBwFfiFc3v+D2IV9E+ifBdpIlek6zgl69spPP+bx8vI57jafRT/E85jlexb2CorQiWum1\ngrWuNVrUaQErHSvxJLD/EIgIYRlheBP3Bi9iX+BF7AsEpASgmU4zdKrbCTbGNuhQt8Mv/218eRMP\n153P8NknGv3nt0L/K0ugcPJItczEglKDMPXGVEhwJHBywEnU06hX/kHHjwMvXzIjrArA5wlwZI4H\nQt7EY8Od0VDXLWN0npDAZiEpKaJZevH2ZjmOSkj5/JS8PMDYmJmAVcM3qFx4PKatFh3NPHDEod9W\nk2RlsUKSW7dYXqcaFgt/zDJaaecT4Z+EnROuIE4QjU8DbmDJwLmY1nxajThvVoe4L2nwdPKD9xl/\n6JlroNtkS3QY3ghyij/fR0FECE0Pxeu41/CN98XbhLf4kPQByjLKsKxticbajWGhZYFGWo1grmkO\nRenycxh/EnncPASmBuJT8id8SPyAD0kf4JfoByVpJbTUa4nWeq3RVr8trOtYQ05KhLvMq0jxAOP6\nvldIjsrCoEWt0eMvK/Y9m5mxZZb69ctv6F8U8Yuw4+kOHHh9ABu6bMDslrMrLphaLPu0cWO5b83N\nKMD24VchJSOJvy8OgbzST/6uvLyYrpj3j+Z3VWLFCrZhUVRJ/KNHWVWbu7to2isNgYBJ6hQUsGpD\nUSod/Gru3WPLmhMnsu9EsvJLvn90sAHYH/R1+1e4uO0x8nqG4mOLe1jReTmmWk397YMOjyvAm9sh\nuH/qPT77RKNV//roMrYxmnUzqXDFV7HCs3+SPz4lf8Kn5E8ITA1ESFoI1OXUUU+jHkzVTGGqZgpj\nNWMYqhiirkpd6Cjq1JhVcmXIKsxCVFYUIjMjEZ4RjpC0EISkhyA4LRjJecmor1EfjbUbo6l2UzTT\naQYrXSuRCqNGRERg7dq1iIuLg56eXpVUpzOScnHvxHt4HH0HDT0lDFzYCu2GNPz+O9XTY6N2ff2y\nGyoFrzAvzL0zF420GuFA7wOVz1vOnMnELGfN+unbogNSsGXQZbTsVw9TdnUrX4nCwYGV1B4+XLnz\nKYv27YHNm6tcMfcD1tbA1q3MVVJczJvHNrXevi1ao7jfheRkFkxlZdn+IOXKmTb+8cGmmMTwDBya\ndQdx0clIHvEK71WeYmm7pZjWfNpvl2QvjczkPPhc/IxH5z8iKSIT7Yc1RMeRFmjUwaBKkjNCEiI6\nKxohaSEIywhDeEY4IjIjEJUZheisaKQXpKO2Yu0Se4HaCrWhpaAFTXlNqMuplyg2K8koQUlaqUT5\nWbaWLKQlpcsMVEQEAQlQxC9CAb8A+bx85HHzkMPNQVZhFjILM5FRmIHU/FSk5KUgOT8ZibmJiM+J\nR1x2HIQkhKEqU4M2UTWBqbop6mvUR32N+jBWNRZrgIyIiED37t0RFhZW8pypqSnu3btXbsAR8IV4\n5xWGeyfe44N3JNoPbYA+s6x/KAopQVubVVnVLiOR/+9zy4jAEq8leJ/4Hg69HdCvfr8Kf67vGD6c\nJfJHjizzLc+vBeLgjDuYbGeL7pObVazdRYtYAF26tGrn9S18PpOOSUwUTVI9JISVTsfGVmlEXiGc\nnVlwfP3695G9EQc8Hguqr14x7btKLBP+Z4INwG50Ty4HwGnxPRh2VMFn27t4lvUI81rNw+yWs6Eu\n93toBJVHQlg6nlwOwJNLAchIzEWbgeZoO6QBmnYxhJSI9hlxBVwk5CQgPiceSXlJSMr93mIgozAD\nWYVZyC7KRi43F/m8fOTz8kvUnwH8X3tnHhdV+f3xzyMgO8qOoAjivu+aS4Kmln4TS00NKm0zs7JF\nyzQqs9T2NC2tfraplabmbm6I+5L7igoogsgqyA7DnN8fBxBhBma5M3fA+3697ku8zDz3cOfOc57l\nnM+BdT3r8uUbAkFNaqjUKtQT9WBrZQt7G3vYW9vDqb4TnG2d4WLrgoZ2DeFm5wZ3B3d4OHiUlx3w\ndfaFn4sfGtg2kC3vKDw8HCtWrKhyPiwsDMuXL69ynogQc+IW9qw8h6iV5+DVtAEemtgJA8a3L8+x\n0oqnJ8uJeFafT5NVkIV5++fhxxM/4o3eb2Ban2nG1VV6+GEOu9agMaYqLsGv7+7Ggb8v4t2/R6NF\nd1/d233iCU5SHDfOcNvKuHgRePRR1gWTgi++4LaWLJGmvcokJABdurAqQadOprmGJUHEYdyrVgGR\nkYCPj05v0+ZsLDNzsgaEEHhwbDt0f6Q5Vs7ei5iZPTFnahgOpq5D84XN8VTHp/B679cR6Cp/Ma7q\naBTkhife7Ycn3u2HpJgMHFx7CX/M3ovPxqai8+Bm6Pm/Fuj2SHMWPTSQ+lb10bRhUzRt2NSg95eo\nS6BSq6AmNQC+9/VEvXscUG0jUUs48M2bN8t/JiLEnrqFA39fxP7VF6EuIQwY3w5zI59Ck9YeGt+v\nkXr17oopaqBQVYilx5di7r65GNZiGM5OPgtfZz06f23k52vcS0i+lonPxq+Fi7sDFpx4Ac5ueu43\npKbW6Dh15vJlaTfxd+0CXnhBuvYq8847wKRJ94ejATgAZPZs/nfoUA66MGI2ZzJnI4QYDSAMQDcA\nHgDiAawFMJeIcqS4hoOLLZ7/cjCGPt8ZP7y+HXbLe2DlnEnYbbUO3X/sjpCAELze+3X0bdLX4muu\nNApyw6jpfTBqeh/cTs7Bf1uu4sjGy/hh6r9o1NwNXYc2Q+fBzdDmgcaSzXp0waqelUXu+RiDn59m\nRWUfbx+c2hmLIxuv4OiGyxD1BPqMao1pKx6rog6tM7a2QGFhldMqtQrLzyzH7KjZaOvZFtuf2o6O\n3h31b78C9+xDXbiAOSkpqDjcivrjHH6Y+i9GvdMHI9/obZhUUWYmJ4tKwfXrrFwsBUQcfffLL9K0\nV5nz59mZSTULq0188AEnrY4Zw8EuBkrumFL1+RCABADrSv/tDGA2gItEpFHv3BhtNCLCsc1XsGza\nTrg3dsH4eX0Qqd6MhUcXwrm+M17t+SrGtR9nEdFL+qAqLsGlQwk48W8MTu2Mw40LaWjV2w8dgpui\n/YCmaNnD16zOx5IwdJNf056Nm4M3eoln0KZ9K/T4Xwv0GtESAR28jB+ktGoFrF9fPoJXqVVYeXYl\nPt77MXydffHxwI9rLiutAxr3oXx9sWP/fng08MGSV7Yi5uQtTFvxmEFVP8tp0wZYs0Yafa1Zs3gT\nOiLC+Lbi4zkpscLsVFImTeIgDylsrY2oVLw026sXB2BUg9mTOgG4azj3FIASAMFa3mNMLhERERUX\nqWjjoqMU5v0lfRG+jhJj0mnz5c00bMUw8vjMg97c9iZFp0UbfR25yL6dT4fXX6If3viXXuv6A41y\nnEfT+/1My97eQQfWXqS0xDtym2gWYmNjKSgoiACUH0FBQRRbTbJhSYmarp9Poa1Lj9OM0O8p0L4r\n+dRvTl2bPUgrv95Cmam50hvavTvR4cOUX5xPS/9bSs0WNKMBPw+g5VHL6cknn6Tg4GAKCwur1m5d\nCAsLu+delB1DBzxKT/t9TUte20YFeUXG/z3NmxNFS/T9efllooULpWlr506iBx+Upq3KlCWeJiSY\npv3aQnIyJ3/u21fty6AlqdNkQ2IiStdw+hhYNcuwylA6YG1jhf9N6YGBT3fEui8O4a0eyxAc1h7L\nZ/6F27Yp+OH4D+j/c3+09WyLF7q+gMdaP1arZjtODe3Qa0Qr9BrRCgCQl12I6MOJuHQoAdt/OolF\nL2yCjZ01mndrhObdGqFZZ28EdvKGp798G/KmICIi4p5RPADExMQgIiICy5cvL1eHjjmehCv/JSH6\nSCIuH70JZzd7tOnbGMH/64VXPh8D3+ZuJr0vxQ2csHb/Eryx/1909umMX0f+Cr8SvyqzkMOHD+sU\nDacNbftQZ45cwratC9ExOMCgdqtgZcW6a1JQUCBdjsrNm3qHl+vMgQNAixYchXc/4+UFLF7M0jxn\nznB+lB6Ye/0lGDziumjqCzk42yJsdjCGT+mB1fMOYHLb7zHk+S54d3oEPgr5COsvrcdPJ3/Cq1tf\nxdh2YzGh8wSzV9+UAgdnW3QZ3AxdBjcDwDPV5LhMXD2ehKsnkrD5u+OIO52MwrxiNG3vCf92nmjS\nxgONW3ugcSt3ePo3kFXd2VC0da7/RZ3De4OXI+50MgAgqGsjNO/mg+Evd8ebv/npJOIpBdFp0Vh4\nZCEGpB9E5vUibJu1rXxPJjw8vFpHaQja9qEGhHaTztEAvOyVny9NW6X6eZKQmWmQ4KhOHDoE9O9v\nmrZrG489xurcS5YAr72m11vN5myEEH7gPZsdRHTCXNdt6OWIF74egsfe6o1Vc/fjpdbfY8jznfHY\nW8MwJnwM4rPi8dvp3/DkmidhY2WD8A7hCOsYhoCGAeYyUVKEEPBp5gqfZq7oN+buunpWWh6un0tB\n/PlUJFxKx7HNV3HzSgYyk3Pg6d8A3oEN4R3QEF5NG8DT3wXujV3g7usMN1/nGhUPTAkRIed2AdJv\nZiM9MRup8VlIvZ6FzDjNEV6eHl4Y+WZvBHT0gruvs1kHDyq1Cpsvb8biY4txOvk0Xuj6AoY9+Cyc\nfAOACpv/ukTD6cucOXOwL+oA4hOulZ8LcnfH3HlzDW5TIy4uXLJYCurXZxViKSgoMF2C5cWL0iWd\n1gXmz+f9mxdf5MGHjpjF2QghHAGsB1AE4FlzXLMyHo1d8PJ3wzDm3b74e/5BvNT6Owx8uiMee6s3\n3nvwPczqPwuHEg7h99O/o8ePPdDSvSXGtRuHMe3GwMdJt/hyS6aBhwM6BgdUGeUWFahK68ZweYHU\n+Cxc35KCtATu3G8nZQNClJcYcHG3h5ObPZwa2pWWGahfWmbABvXtrVHfzhrW9e+WGriZnIDFP3+J\n1PRkeLh64cWwqfB280VxYQkK81UorFByIP9OEXJu5yM7o4AVplPzkJmSCxtba7j7OcPdzxkeTVzg\nHdAQ016dgXe/jseNxOvlf0tQUBB+W7vU4KUoQ7mWeQ3LTi7DspPL4N/AH5O7T8aGdhs4T+bcQiA6\n+p7Xa5uF+PoaFvKclZqLzZ9eQJe8J9Gs5wnAoQB+t29jTs+e0t8Ld3eOTJICKR2XlMt7lUlKAgz8\nbOoknTpxOes//+RSCjpicmcjhLADsAlAAIAHiaja4duHH35Y/nNwcDCCg4MltcezSQNMXvwIxr7X\nD+u+PIxXO/2AXiNaYtTbfdCnbR/0adIHCx9ZiO0x2/Hn+T/x/p730cm7E8a0HYPH2jwmTQ6EBVHf\nzhpNWntozR0hIuTnFCErJRdZqXnITs9Hzu185NwuKK1JU4D0xGwU5hWjKF+FogIVVEUlKFGpkZGd\njJWnPkVmfkp5e0eOHMWEfrPg7eYLW3sb2DrawM7RBg4utuWlBZzd7OHsbo+GXo5o6O2otYpln8cj\nERERgZs3b8LX19cgyRlDySnKwdqLa/Hr6V9x+tZpPNnhSWwN24oO3h3ufWHTppyBXYE5c+bg8OHD\nVRQM5syZo5cNRQUqbFh4FGs/P4QBT7bH8qvvwcm1dA9k+XKWU5GaRo2ki/jy8GBpFClwdgays6Vp\nqzIFBYCD/OK/UkgsScakSVyWYMIE7NmzB3v27Kn5PZqiBqQ6wM5sM4AsAD10eL0RoRKGcSc9j/6Y\ns5fCvL+kD4f/Qad2xd4j355fnE//XPyHwteGk+t8V+r9U2+av28+XUy9aHZbaxvaIqTCwsLkNs0g\nClWFtDF6Iz255klqMK8BDV8xnFafX00FxQXa33TuHFHLllVOx8bGUlhYGIWEhOgdjaYqLqEdP5+i\nCf4LaM7Iv+jGpdSqLzpwgKhHD53b1Jn584nefFOatpYvl64UwLp1RP/7nzRtVWbgQC7ZICOGRF+a\nlIICogYNiFJSqvwKWqLRTOloBIBVAHKhJdRZw3ukvSF6UJBXRFuXHqdJrRfTK52W0vZlJ6kw/956\nNIWqQvr36r80edNk8vvSj1osbEGvb32ddsTsqL7DuU8JDg7W6GxCQkLkNk1n8ovzaWP0Rnpm3TPk\n9qkb9f2/vrToyCJKyan6JdNIQQGRrS3/ayQlJWra+9c5mtR6Mb3d/xc6vz9e+4tTU7kzkLqmz5o1\nRI8+Kk1bhw4RdesmTVsnTxK1by9NW5UZN47o999N07aOWOTAbfhwotWrq5zW5mxMuYz2HYDRAD4G\nkC+E6FXhdwlEpH8JQRNia2+Dh1/siiHPd8HJHbHYsOAofnlnFwY/2xmPvNQN3gENUd+qPoYEDcGQ\noCFYPGwxTt06hU2XNyEiMgIXUi9gQNMBGBI0BIObDUZL95a1LrJNaqTemzAX6Xnp2Hp1KzZEb8D2\nGM7sH9VmFD4e+DEau+gZXmtry/VVoqOBjoYpBJSUqHHg74v46+N9qG9vgxe+HoKuQ4Oqf748PPja\niYnShgS3awecOydNW23asIJ0SYnxwpktWgAxMSwgKXU55pYt2U4ZMUVQidH06MHlwUeP1u31mjyQ\nFAeAOHACp6bjfS3vkdz5GkPC5TT64fV/abz75/Th8D/o8IZoUhWXaHxtWm4a/XH2D5r4z0Rq/FVj\navJVE3pm3TP066lfKT6zmhFoHcbipv5aUJWo6GjCUZoTNYf6/F8fcp7rTKF/hNJPx3+i5Jxk4y8w\ndizRb7/p/baigmL696cT9GLLRfTWA8vo6ObL+lUfHTyYaMMGva9bLSoVkZMTUUaGNO01a0Z04YI0\nbbVpQ3TihDRtVWTDBqJBg6RvVw8scmazciXRE09UOY3aWKnTUijIK8a+v85j29ITSEu4g4cmdMLg\nZzvDp5nmuH4iwuX0y9gVtwuR1yIRdS0KjvUd8WDTB9Hfvz/6NumLVh6tLFLIUupNyLL2TLWJb4i9\nRITo9GhExkWWf0bejt4YGjQUDzd/GAMCBhinuFyZzz8HbtzgWjA6kHM7H1uXnsDGb4+haXtPjJnR\nFx2Cm+o/U541i2cMUhUmK2PAAG57yBDj2woLAwYNAp6VIEj1xRd55jV1qvFtVSQrC2jShAMjnOQp\nVGhMWQyTsWMHh0Hv2nXP6TpVYkBOrp1Nxvb/O4WolefQpK0nBj3TEX1Ht6m2uiER4WLaRey7vg/7\nb+zH/vj9yCrIQu/GvdHLrxd6+vVED78e8HDQQ03YBEj1QJsrakZXe4tKinAy6SQO3jhYfv/tre0R\nHBCMgYEDMShwEPxcTJgdHhUFvP12jaWPr59PwaZF/2Hvn+fRa0RLjHyjF5p1NiLsftMmYMEC7hSk\nZOZMFmOUwoktXQrs3w/8/rvxba1axUKcW7YY31Zlhg/nsgpPPSV92zpi6oGb3uzZwyKdUVH3nFac\njcQUF6pwbPMV7Pr1DM5FXUe3R5ojOKw9ugwJgk39mtefk7KTcCTxCI4kHMGRxCM4nnQcrnau6Obb\nDV18uqCzT2d08u6Exi6Nzbb3o2+dF02YcwSmzd7ho4ZjbMRY/HfzPxy9eRRnk88iyC0IfRr3QV//\nvujv39/gkgsGkZfHUh8pKVVCaIuLSnBo3SVsXXIcCZfS8fCkrnhkUle4NZKgmNjt2xx6nZamt7RI\ntezYwXVODhwwvq1r11jcMSmJyzEYw507vD9144b0hc3WreMZ6sGD0rZbm9m0iSu2VnLudaqejSVg\nY2uNPo+3QZ/H2yArLQ/7V13A6nkH8M2EDej9WGs8OLYtOgQHaJWCaeTcCCNbj8TI1iMBcMXNqxlX\ncfzmcZy8dRLfHv0Wp2+dRlFJEdp7tUc7z3Zo69kWbTzboLVHa/g5+0nuhKTYhKxJs0wqiAhx8XEa\nf7frzC44XnFE90bd0dupN/7Z+Q9SbqUg2y8bfef0Na+jAdjBdOzIsieDBgHgWczOn08j8vez8G/n\niWGTu6H3yNY6DVR0xtWVN7cPH+YKllLRrx9XH83IANyMLFQYEMCO+NAhLhFtDC4unOm/Zo00y3IV\nGTECmD6di4iFhEjbdm0lIUEvvTjF2UhAAw8HDH+5O4a/3B0p1zOxb9UF/DJjN1Ljs9B7ZCv0ebw1\nOg4MrLYjqSfqlZdFHt9hfPn5lNwUnEs5h/Mp53Eh9QLWXFyDS2mXkFOUg+ZuzdHcrTmCXIPQzLUZ\nAl0D0bRBU/g38DdIXFSK6DEpo2bUpEZyTjKuZV5D7O1YxNyOwZWMK7icfhnRadEoyC7Q+L5RPUdh\n+ejlGmdZxgpeGszAgcjauBt7L7pg929nkJ6YjYFPd8Cn+5+BXwt301136FBg2zZpnY29PXe4W7YA\n4eHGtzdmDPDXX8Y7G4CdzLx50jsbKysuJPbOO+y8jZ2F1QVOn+Y9Mh1RltFMyK242zi45hIOrr2E\nGxfT0O3hIPQa0RLdHg66m+ltIFkFWbiacRVXM64i5nYM4m7HITYzFtczr+PGnRtwsXVBY5fG8HP2\ng6+zL3ycfODt6A1vJ294OnjCw8ED7g7ucLVzha017zdp6pydnJzQrl07NG/eXKc14pqW4ogI+ap8\nZORnIC0vDam5qUjNS0VyTjKScrh8dcKdhPLDxdYFga6BCGwYiCDXIDR3a46W7i3RyqMVspOzq12y\nk2JZ0FhyswpweH009n63D5f+S0H3sV0w8KkO6Dy4GayszNBhHTzI2d5nz0rb7m+/AWvXAv/8Y3xb\nV68CffrwSNnY5T6VCmjenJ1Xr141v14f1GoW5AwLA15+2bIy+uWgTRvea+ve/Z7Typ6NzNy+lYMj\nGy7jyMbLOBd1HUFdfNB9eAt0fyQITdtLUKSrAmpSIzU3FQl3EpCYnYik7CQk5SQhOScZybnJSMtL\nQ1peGtLz05GRnwGbejZoYNcALrYusMmyQeqmVBSmFSInIQclBXcFL10auWDU3FFw83WDgACBQxrV\npEYJlaC4pBjpienY+sFW5CTfLcZa37M+fCb7oMC5AFkFWQAAN3s3eDh4wNPRE6AiJOsAACAASURB\nVJ4OnvB29EYj50bwdfaFn7MfmjRogsYujeFgw3sc2r7Y1W2ahoSEaJTRCAkJwe7duyW735XJSsvD\nkQ2XcWjtJZzbex0dQwLQf1Qr9HptCOwvndG5lrsklJTwPsbevZyLIhVZWYC/PxAXZ/xSGgAEBwNT\npvAsx1gWLgR275bGEVbm4kWgf3/E/fUXBk+aZFnRYebkwgVg8GDeH6s0y1OcjQVRkFeMs5HX8N+W\nq/hv61UUF5ag65Bm6PRQIDo/FGg2GXyA9z7yivOQVZiFrIIs5BTlIKcoB7OnzkbUxqgqr+86pCvG\nvT8OBIKAQEZSBjYu2Ijr51kQM6hjEIY9NQz71u3DnbQ78PTxxKszXkXr5q3hYuuChnYN9V7iMzTo\nwFwzGyLCjYtpOLb5Co5uvIK408noPDgQDzzWGj3/1wKODUrDqMeO5S/o889Ldm2dmDKFhSRnzZK2\n3XHjeKQ/ZYrxba1aBXz7LbBvn/Ft5efz7OaffzjxUGqWLEH4jBlYkZVV5VfmnDXLytSpgKMjMLeq\nqrjZK3UacsDCkjrNgVqtpoToNNq46CjNCf2Tnmj4GU1u9z19N2UL7f/7At1OzpHFLl2kZmJjY6lJ\nkyZVXuPv7y9p4qahCW2mTCrNzsij/X9foG9f3EQTmy6gCf4LaNFLm+nopsvaK2L+8QfRI48YfW29\nOXCAEx6llq7ZsYOoY0dp2i0uJmralGLXrKGwsDDjK5j+8ANR//7S/81ERGo1Bfv41HopJoNJSqq2\ncinMrY1myHE/OpvKqFQlFH00kf7+7AB9MGwlPdHgU5rUajEteH4jbV92km5cStUvi9xAdOngtb1G\nkyMoE540pBMxRmMtKiqKGjduTDY2NmRra0uDBg0yqAPLycyno5sv0/9N30Gvd/+RRjvNp4ihK2jt\nl4fo2rlk3T6TO3eIXFyI0tP1vr5RqNVEQUFEhw9L225JCYuM7t0rSXOxs2dTkIODNIMDlYqoc2cW\n+zQBYePGWV5Gv7mYMIHorbe0/lpxNrUUlaqErp64SRu+PUqfjltDE5suoLGun1HE0BX0e0QkHd4Q\nTWmJdyS/ri6zAm1OQNMMyJgZhjEzG0NmXmq1mhIup9Gu307T4smbaUrHJTTaaT69O/A3Wjk7is5G\nXaOigmKt76+WUaN41G1u5s4leu456dtdtIho5EhJmpK8Az9yhMjbW6MysbHExsZSUGCgxUsxSc6W\nLUT+/jxw0oLibOoQ6Tfv0KF/LtFvs3bTe0OW03j3zynM+0t6/+EV9PM7O2nPyrMUdzaZiotURl2n\nJhl8XWc2xuo6GeqsdLGvpIQdy75V5+nnGTvpvcHLaazrZzShyTc0b8xqWvfVIbp46AYVFRp3L8tZ\nt46Xd8zNrVtEDRtKp2lWRm4ukZcX0fnzRjdlEpXw6dPZGZpgNSA2NpbCxo6lEHd3CvPxodhTpyS/\nhkURF8fOe8+eal+mzdmYLECgtAz0DADdAHQCYA8ggIjiq3kPmcqeugwRIfXGHcSduoXYU8mIO5OM\na2dSkHbjDnyCXOHf1gONW3vAr5U7Grdyh28Lt7ub1kYQFxeHAQMG4MaNG/ec9/f3x549eySNCjNE\nqkPbdQGguU8HPOo/FfHnU+Hi4YBmnb3RrIsPmndrhBY9fE0XpFFUxDpbBw7wJrY5CQ/nCovTpknb\n7rx5HFq9cqVRzZgkoKOwEOjdm3XTJk82yj6tqFTAm29yPtOaNUCHDjW/p7aRlsa5Wi+9BLz2WrUv\nNXs0mhBiAIA/ARwHYAVgCIBAxdmYj8L8YiRGpyP+QioSLqUjMTodiZfTcfNKBurb28CnWUP4NHOF\nV0ADeDVtCK+mDeDR2Lm8YqYu4dhxcXF44403cPjwYQBAr1698M0339zjCMwRFUZEuJOej7QbWUi5\nnoWUa1n4ZMm7OBYdqfH1wT0exqKvlqJpey84NZRQdFMXpk3jJMFPPzXvdU+cAEJDWYpfSvma7Gx2\nnDt2GFxGATCh1NGVK5wwumEDOx5T8fvv7HQ+/BB4+WWgrpQYuXWLRVcffRT45JMaXy5r6LMQ4jkA\nP0BxNhYBESEzORe3Ym/jVuxtJF/jDjo1PgtpN+4gPTEbqqISuDZyglsjJzT0dkQDT0c08HSAi4cD\nnNzs4ORqD8eGdnBsYAsHF1vYO9eHnWN92NhaVXFS+nYiquISFOQUIS+7CPnZhcjLKkROZgFyMvKR\nnVGAO2l5yErNQ2ZyDjKTc5FxMwcZSdmwdbCBRxMXePo3gHdAQ5BzLj784RWkpN+6p/3KMy9jMCix\n7/JlDhmOj+eaM+bkoYc4KXHiRGnbXbCAy18bKYJZPoONjISvvT3mSJW3snEjj8oPHeL8IFMRHQ08\n/TSHBS9dKm1ukxycOcMDlOee49B5HRyo4mwU9CI/pwgZSdm4fSsXmck5uJPKHfyd9Hxkp+fhRmI8\ndpz7E1l5GbCDM9pYPwTrAheoVWrUt7eGja01rOtbwbq+Fays6yFXnY7/0jchT3UHDjYu6OH+KByt\n3KFWqaEqLkFxYQmKC1QozC8GANg51oe9Mx+ODezg5MqHs7sDXDzs2fl5OcDVhx2iayNn2DlULZql\ny8zLUIwaiQ8dyp3+008bbYde7NkDvPACJydaS6hWVVTE0iXffgs8/LDx7d25w8tRS5YAjzxifHsA\n8NVXwLJlnMvjqrk8iCSoVJxYOncu3+t332XdttoEEfDjj+xgFi4Exo+v+T2lyJpnA+A5cNE0/xpe\np/NelYJ8VLdhryouobzsQspMzaXUhCy6FXebEi6nUfzFVIq/kELXz/MRfzGVEqLTKCkmg1LiM+l2\ncg7lZhUYHdRgTowKfNi8mUNzzRDGfg9qNVFwMNH//Z/0bW/cyKHQEpTAJiKiyEiiRo04uEEK1Gqi\nN94geuABouxsadqsjoQEomee4QCKzz8nypEnZ05vLl/mwntduxpU2A5yRqMpzqZuYZFVA2XAqOip\nkhJOtNyxw/SGVubAAQ5fzc+Xvu0RI4hmz5auvZkzueNTSTQIUauJXniBIwKrCd+VlLNniUaPJvL0\nJIqIIEpMNM919eXWLaKpU4nc3dk5FmlJTq4Bbc5GkS5V0Bs566HHxcUhPDwcISEhCA8PR1xcnMmv\nqQ2jVLLr1eOCavPnS2yVDvTpA3TtyvssEhP39tsInzsXIT17SvP5zJ4NFBcD778vjYFC8NJcmzYs\nHZSRIU271dG+PbB6NReJS0vj5cbHH+d9pKIi01+/Ji5c4Ei9Nm1YbPT8eQ5isam6LG0UmjyQ1Af0\nmNl88MEH5UdkZKRBnlXBtMg1szGl/IwhREVFkZOTk+H2FBURNW1KdPCgSe3USHQ0j2CTkiRr0mSf\nT3Iy36e//pLETiLiGc60aURt2xJduyZdu7qQlcWJvX37Erm5cUb+2rXmm2kR8exq0SKi3r15qTIi\nwuBnITIy8p5+G8oymoJUGNupGCpdo83JeXl5GaejZQCa7oGTkxNFRUXp19DSpbxMJAfTpxM9/bRk\nzZl0EHLqFC9DSe2Yv/qKyNdXeikfXYmPJ1qwgJ8BJyfeT3rnHU7+jY+Xbk/v1i2iDRv4M+/ShbXN\nwsOJNm1iXToJUZyNgqTUpC5Q3fsMdVTVyeMY4vBCQ0PJy8uLvLy8aMSIEXo5K8k61sJCosBAIn2d\nlBTcuUPUuLFk1zaJAkBFtmzhDHY9N61rHNxs2MCOzBRBE/qQm0u0cyfRBx+wYKu3N6s+PPAAO4ZZ\ns4gWLyZatYpo+3Z2vMeOER0/ztI8e/YQrV/Pf8cnnxBNmkQ0aBCRjw87lyFDeD9t3z6D92N0QRZn\nA2BU6fE9ADWAl0r//6CW15vsBihYBsZ00tXJz+jTjhRq1ZJ2rL//zssZ5o5MI+IRdMuWkgQLaP1s\nH39cAkNL+fVXoiZNWDpFB3Qe3Fy4QNS6NS9pWVLUWEoKDwaWLSP68EN2II8/TjRwIFGvXhwx1rkz\nUbduHPQwfDjPVt95h5fJtm4lun7drM+WXM5GXTqjqXzs1vJ6U98HBZmpqZOubhSqqeMwpLPXR61a\n3zYMWjIqKSHq1Ilo9Wr93ysFo0Zx52QkGjt2V1eK7dlT2pH0t9/ybFCHvRa9PqfsbA5VbtWKZwwK\nBiHrMpquh+JsLA9jSgNoorovvy6j0DJ7vL29q+1EqrNbV7Xqmu6LpJvhO3dyB2qKcOSauHWLl2wk\n2A+psrx65QrRsGFEU6ZIYGgFvvmGKCCAKCam2pcZNAP9809eVnvvPelyhu4jFGejoDdSd6ixsbE0\nYsQIsrOz09imPqPQ6myrye7qZjb6BBuU/T3e3t7k5eVFoaGhxjnj0FBea5eDNWu45o0pIqIyMzmn\naNEiadv97jveczp3rsqvyp4nLy8vw2agN2/y59G6dY0qxwr3ojgbBb2RcqlIkwOwt7e/p4PWdxSq\nLUihJru17dno61Qln93ExnIorLlDcct49lleRjIFMTEcYrthg7TtrljBGfoVCrjVtNyq82ekVrMT\nbtKEaPx4jg5TqBHF2SjUSOWlp969exu11FQRYyp/ljkSXZfzdC1pHRoaSt7e3mRra2uQUzVJqO9H\nHxE9+qg8wQI5OTyS/+UX07R/5AgvT+3fL22727dzuytWEJH2z8Xb25vCwsIoKipKv6XhnBxeUnNz\nI3r3XaLbt6W1v46hOJs6jBT7KtryRqTqTHVxAFFRUWRtbX3P762tremPP/7QawahrxMwNLLMJKG+\nBQW85PT334a3YQxnzxJ5eBCdPm2a9rdtY8dw8qS07Z45w3s4M2dW+7kYNRu9cYNo4kS+Px9/zMmZ\nClVQnE0dRaqlHG0ddOXO39BlImNmNgEBAXo5D33viaEzFJMlMe7fz0tO6enGtWMoy5fz/o2prr96\nNed+nD0rbbspKUQDBlBYo0ZaPxdJPrNLl4jCwliBYdYsrUKhUgfXWDyFhURXrijOpq4iVYdXU8Jk\n2UxH7wz5UnRxANpsaNiwod4zCH2STg112CaVz3ntNe7Q5OKNNzirXeLs8nJWrmSHeuaMtO0WFVHs\nc89RkJZBkqSz0atXiV56iRMvJ07k5MpSLE1ayaQUFXEiaUAA0SuvKM6mriLVl0eXhEljR+0VHUBo\naCiNGDHinlGfVDMbY23TVxHBkPfVSG4uUYsW8uXeFBcTDR1K9MorBjdR48j+jz845Pq//4w0VsO1\nv/+ewmxtKSQwkMLGj9c5eMQgUlOJ5s5lJe3u3YmWLKGwMWNM/szKTmYmy/34+xM99FB5kIbibOoo\nUn15dEmYNHgEqMO1goKCKCoqSq/zdXKUWJHDhznSKiFBnutnZhK1a0f09dd6v1Xnkf26dbyHYwrR\n3fh4rt3Trx/PQvSxyxBUKq5TNGoUBVtZmez7IytqNQd6vPACz+jGjSM6evSelyjOpo4i5Zen4ijd\nlLMJXaLOKs8UjJ1B1Nr189mzWZpEqnou+nLtGpGfn96Ky3oNgnbtYodjillcSQnRl1/y/so33xCp\nVKabjVYgbPRozX+/lNI95kKtJjp/nuVyWrXi/byPP+ZcJA0ozqYWYGiHaIovjylHgCYXbKxErV4/\nV6mIHnyQaM4c+WwoU1zWo9Cbrp9x+TPfvTuF2dtT7LvvmibsOzqa72PPntJHwmlA4zPn6EixTk6s\nujxtGisuW2oY9Z07PEt77TWi5s0512jqVKJDh2r8fBRnY+FI0SFKPXqv6MRGjBhBoaGhkrRt7no4\n5r6e5CQkcPTW7t3y2bB3LzucAwd0erku91zjM1+/PsU+8QRHNklNSQnRjz/y0uSrrxJlZEh/jQpo\nHAQWFbHqctmM1cmJa+pMnMgKC/v38/KlOVGpiC5e5DylqVOJevQgcnQkGjCAFS1OnNBrACCLswHQ\nGMDfADIBZAFYA6BJNa838G7VfoztEE05ejeFbI05ZxrmnkmZhO3bOXpLrv0bIlYQ9vTUSaRSl89Y\n6zPv58f7LFpCio0mNZXoxRfZ6SxebFK5/RopKuIotu+/J3r++bsdvZ8fO6MXXySaN48dwZ497BTS\n0/VbVi0u5gJ0Z84Q/fsv0U8/cZLq2LGsGO3gwLp8o0YRzZ/PKtN5eQb/SWZ3NgDsAVwBcAbAo6XH\nmdJz9lreY/AfWNsxtkM05ejdFG2bY928jFo/synjk09YVl5Occj167mT1iGCrKbPWOszHxzMNV0a\nN5ZebaAip05xvZeWLTmJVg7VBk2UlHAJhW3b2BlOm0b0xBPsgFu04I35evWInJ15ANKsGSs/tGvH\nR+vWfM7Hhx1XvXq8Z9W2Lf+9Eybw/f3tN97slzg5VQ5nMxVAMYDACucCSs+9ruU9kv7RtQljO0Rj\nnFVNy2+1fWZQq/dsKqJWcy2TZ5+Vt2P85x92OIcOGdVMjc/8pk18nS++MN3fq1Zzp96lC9eG2bjR\ncpxOdahUvN+TkEB05Qpv4J85w8f58xx9l5jIjqSkxKymyeFsdgLYp+H8HgCRWt5jyntg0RjbIRrq\nrIxa7qhFMwNzzqRMSnY2UceOHGElJ5s385KaEftIOj3zcXE8mxs2jJeCTEVJCYtudujATmf1avki\nAGs5cjibJADfazi/GECylveY9CZYOsZ0iIY6K4M3cmvjzKCucO0aka8vL2nJSWQkO5x16wxuQqdn\nvqiIBTAbNeLZjikpKeH72qsXR2F9951elTurWyWoteH3eiKHsykEMFfD+TkAirS8x6Q3oa5jiLPS\nN0S11s8M6gpHj7IgZKWEOrPz33/sBJYuNf21oqJYEuW550wfsaVW8/VCQ/k+v/UWL1dVQ3WDsvtp\nwKY4GwWN1PYlsvtltKiR9et5E7iGTtDkXLnCs4CZM02/P5CVxRFaTZpUmeVoehYkeT5iYoimT+dZ\n3EMPcSVPDRVVq/su1fbvmT7I4WxuGbKM9sEHH5QfkaaQsFC4h9o84tJku5OTE/Xq1ev+cTxLl3Lk\nkZZsbrORkkLUpw/RmDGs62Zqdu7kv3vsWKKbNzU+C02aNCF/f3/pnu38fBYQHTSIa9tMmsT5R6UO\ntrpVgprKHtTmAVNkZOQ9/bYczmYXgL0azkcqAQKWRW1dIqtJPLS2OE2jmTOHN7blKklQRn4+K1V3\n68a1X0xNbi7RjBlEHh4U1q1btc+C5LOJ69c5/6V9ew7Rfv11Chs8WO+ZzYgRI2rtYE8bcjibqQCK\nAARUOBdQek620OfaPopQuIsuZRHq4jJFFdRq3lPo0UP+gl5qNXfCjRpxprw5OH+egrWUodA2m5CU\nc+eIPvyQYlu1oqB69fTaswkNDa07z21GBtGlS7I4GwcAlwGcBjCi9DgFTup00PIek96L2rxkpFAV\nXcoi1JZcIKNRq4kmTybq25fDo+VmyxbOkVmwwCx5K2FPPmnemY0WYqOiKKxbNwpxdaUwa2uK7dqV\nKCKCaPduir1wocoKQq3OYSsp4Yqun3/O6trOzkQREeZ3NsTOozGA1bhXrsa/mteb9N7cT5t09wO6\nlEW4rz7bkhKWfu/fn4UU5SYmhpMlR482efSYxj0bR0fy9/OTb3CZl8cyQzNmcCi1gwPRAw8Qvfkm\nq2jHxmp1khb53BYVsVTRggX8mXp6sgL05MlEGzaU79VpczaCf2cZCCHIlPaEhIRgz549Gs/v3r3b\nZNeVk7i4OERERCAxMRF+fn6YM2cOAgMD5TZLMsr+vpiYGJw7dw45OTnlvwsKCsKOHTvq1N9bI2o1\n8NJLwIULwJYtgIuLvPYUFABvvAFs3w78+SfQo4fJLlX2LNy8eRO+7u540cYGX65ejcM2NhCOjujd\nty++/vpr+Z6H3Fzg6FHg0CH+99gxxOXkYHBREWIKCspfFhQQgB27diGwWTN57ASA9HR+hs6fB86c\nAU6cAM6dAwICgAceAPr3BwYMAJo2rfJWIQSISFQ5fz85m/DwcKxYsaLK+bCwMCxfvtxk15WLuLg4\nDB48GDExMeXn6nIHfE9n4+tb5xyrzqjVwKuvAseOAdu2AW5uclsE/P038PLLwJtvAtOnA1ZWJr2c\nxmffxQU7tm5FYJ8+Jr22XiQnI27rVkQsXIibSUnwLS7GnKIiBAoBBAVx5+7vDzRuDDRqBHh7A56e\n/Jm6ugKOjoCo0q9rp6gIyMwEMjKAtDQgORm4eRO4cQOIjwfi4oCrVwGVCmjTBmjXDujUCejcGejS\nBXB2rvESirPB/df53m/OVaECRMA77wBbtwL//gv4+sptEXdmTz/Ntv3yC2DC75zWZ79+fSwPC2OH\n16aNya5vFETsDGJjgWvX+L4lJgJJSewc0tJ45pGZyTNHR0fAwQGwtQVsbO46ciKguJgdTEEBz6xU\nKqBhQ8DdHfDwALy8+Nlo3JidWmAgOzkvL/2cWAW0ORtrY+5JbSMwMBA7duy4b0a/iYmJGs/fvHnT\nzJYomB0hgE8/5Y6lXz92OC1ayGuTvz+waxfw9de8nPbJJ8CLLxrcqVWH1me/Z0/uUENCgK5deYnv\noYdMYoPBCMHOwN295mVHlYqdSF4eUFjIzqWk5G471tbshOzs2CnZ2cn2t95XzgZgh3O/jOr9/Pw0\nnve1hFGugukRApg5k5ddBgwA1q836Z6JTlhZAdOmAY88AkycCKxaBfz4IyDx/oTWZ79pUyAigmc2\nK1bwsl5JCS/xPfUU0KCBpHaYHGtrtrk22K0pakCuA0pSp6Qood4K5fzzD2t8bdwotyV3KS4m+uwz\nrrXy2Wf8f4nQ+dlXq1lQdMwYrhMzcSJXI60NZQYsFCjRaPcndWHTvK5H1JmNI0eAkSOBWbOAV16R\n25q7XL0KTJ4MpKQA338PSLSBr/ezn5zMe0n/939AvXrAM88AYWG8/KegM0qAgEKt5H4L6jA5cXHA\n//7HexbffMPLMJYAEYdGT5sGDB0KzJvHkVdy2XLwIPDbbxxF164dMH488Pjj8tlUi9DmbOrJYYyC\ngq6U5dBUJCYmBhERETJZVMsJDOSONCYGePhhjmqyBITgDv3iRQ7rbdcO+OIL3vSWw5a+fYGlSzks\neNo0YN8+oFUrdtILFwLXr5vfrlqO4mwULBolos4ENGgAbNrEeRM9e3LSnqXg4sJO5sABYM8edjp/\n/82zDTmwtQVGjABWrgRu3eLotRMngO7dOf9k1ixg/36OClOoFsXZKFg0SkSdibCyAj7/HJgzBxg0\niCOzLIlWrdghLlnCIdIPPMDOR07s7Njx/PILO57vvmMn+OqrHPH32GPAokWcda9sB1RB2bNRsGiU\nPRszcOYMMGoU75V8+SWP5i0JtZpnFu+/z7lCH38sSwh3tYEqycnAzp3A7t1AZCSQk8P5Tf36saPs\n0oWd1X2A2QMEhBBvAggG0B2AD4APieijGt6jOBuFKtSFiDqLJyuL817i4zn3RU5dLm0UFXGk2Cef\ncELm++/zcpYZ0HvQEx/Py2sHDrAWWnQ0KxZ07862d+nCS4QODmax32SUlACXLwPHj7M8kr8/xLRp\nZnc2F8BKzycAvARgtuJsFMyJEjKtJ0TAt9/y0tq33wLjxsltkWYKCoCffmKFhA4deN+kb1+TXtJo\n6ae8PODkSe6UT57kIzqaZWLatQNat+alwxYtWC7Gx8eyVA2Ki1k65/Jl4NIlFuk8e5b/9fZmB9qz\nJzBoEES3bvKEPgshrAAUQ5nZyM791Pkqy29GcOIEO5q+fTnySgfxRVkoLOT9k88+Y32vt98Ghg/n\nHBmJMYlifHEx5xidP88deHQ0cOUKRwrm5rKicpkIp68vO6AyIU53dxbibNiQZ0eGOCYidoIVhTlT\nU++KcyYksEDntWusy+bnx86wdWugbVt2kh06VFEvkC3PRnE2lsH91vkqIqRGkpMDvP467z/8/rtk\niZYmQaXiiLXPP+fO8/XXWXpGwiUqsz9POTkcXh0fz53+zZsclFBRiDMjg5c/i4r4b3VwAOztgfr1\nqwpyqtV8nwoLeWaYl8fXsLVlh+Xqyg7My4sdmq8vOxd/f3Z6TZpwuzqgzdmYQ4LGCoAawPs6vNYY\nlQSFatC3cFxtL59dqysgWhLr1hH5+HABsIICua2pnjLpmREjWJpn+nQiiZ5bi5Z+Ki7m4nSJiVyw\n7uJFojNniE6e5OPUKf7/hQv8+8REotu3uRiaCYAWuRoLSR9WMDX65KtomgUdPny4Vs2ClJBpiRg5\nkmc1kyYB3brxspWZNuX1RgggOJiP2FgOTe7RA+jVi+0fNsxgxQSLVoyvLWKcmjxQ5QPAIPDspKZj\nt4b3KjMbC0CfmU1dKJ9t0SPR2ohaTbRiBZGXF9Hbb3PJ49pAbi7Rzz8T9e5N5OtLNHMm0ZUrcltV\np4GRM5sDAFrr8Lo8HdvTyocfflj+c3BwMIKDg41tUgHAnDlzcPjw4Sp7NnPmzKnyWimz9uUKSrDo\nkWhtRAjgySc5AfS114COHVnOZeBAuS2rHgcHYMIEPs6d49DpPn2Ali25kNuYMbxfoWAwe/bs0Rg8\nUQVNHkjKA8rMxmIo24cJCQmpdh9GqpmNMruow2zYQOTvT/TUU0TJyXJbox+FhUTr1xONGkXk4kIU\nGkr0559EOTlyW1YngJaZjeJsFKoglZOoC8txCtWQnU301ltEnp5E331HpFLJbZH+ZGYSLVtGNHQo\nO55Ro3i5MDNTbstqLdqcjSmTOrsBCCh1Nn8CWAVgdemvNxNRgYb3kKnsUdAPKbL2TZKboGB5nD3L\n9XGyszkZ1MQJliYjPZ2rma5dC+zdy8ttjz7KJRmaNpXbulqDHHI1PwN4WsuvA4koXsN7FGdTh1By\nXe4jqLQezdtvA/37A/Pn1+6iY9nZwL//Ahs3Alu3cv7Jww+zfly/fpzPoqARpXiagtm53xJJFcCZ\n759+CixezNU3336bywbUZkpKgP/+A7ZtYwd09izQuzfXtgkJ4VBwGxu5rbQYFGejIAuKiOZ9yo0b\nwHvvceccEQG88ILOGegWT1YWEBXF6gqRkSwv07Mnz3j69OG8noYN5bZSv0bqywAACoJJREFUNhRn\no6CgYH5OnQJmzGANsNmzuRqnCbTLZOX2ba5+un8/KzwfP856Zj173lV57tQJcHKS21KzoDgbBQUF\n+YiMBGbOZD2u2bO50JglqRpLiUrFOT3HjrHjOX6c1ZH9/Dg/qX17FrFs04aFLS2tfpCRKM5GQUFB\nXoiALVu4Do1azf+Ghta9mY4mVCpWdT57lh3R+fPAxYusqFymphwUxHWEAgPvKj57eFieUyYCUlJY\nKPTaNZYGunqVyw/06AHx1VeKs1FQULAAiIANG4CPPmKZ/VmzgNGj76oU308UFwNxcVxa4OpV7riv\nX7+r+JybywrMjRqxGnPFEgNubqx+4OLCh5MT4OjIkXK2tnxoc+REfO3CQiA/n6+TmwvcucN7Urdv\n81Gx7MCtW0BiIitQOzmxQwwIYAfZvDk7zHbtIHx8FGejoKBgQZTNdD75hDu0t9/m0gD3SflkncjL\n41oySUnc2aek8L1KS7vrELKyOFQ7O5tfX1DAR1ERz4qsrNjpcBY/R9ep1SzgaWvLzsnBgR2IiwsL\nepaVHfDwYOfm7c31dPz82PlVU75BWUZTUFCwTIg4iXL+fA4oePVV4KWXeOSuYDhljqXMuQhx1/lY\nWZlseU6bs7kPFksth7i4OISHhyMkJATh4eGIi4uT2yQFBfkRAhgwgJMnt2/ntf+gIGDKFN7nMBN1\n7vspxL2zFzs7/tnaWpZ9IGVmYyaUBEcFBT1ISgK+/56Vpbt0YTmcRx4x2b6O8v2UDmVmIzMRERH3\nPMgAEBMTg4iICJksUlCwYBo14gCC69c5N+ejj3gTet483qyWGOX7aXoUZ2MmpKwRo6Bw32BnBzzz\nDHD0KLBqFUdstWrFdWj+/Zf3IyRA+X6aHpM4GyFECyHEt0KI80KIbCHETSHEeiFER1NcrzaglClW\nUDCSHj24+Nn161y0beZMzkmJiODQYSNQvp+mxyR7NkKIKQBeAvALgOMAGgB4B0BnAH2J6KSW9yl7\nNgoKCrpz+jTwyy/AypUcVPDUU8ATT3Aeih4o30/pMGvosxDCjYgyKp1zAXANwAYimqDlfXXW2QCK\nKKWCgskoLuZlteXLWZ25Xz/e6xkxAnB21qkJ5fspDdqcjckrdVY8ABwGsKOa39dcBk5mIiMj5Tah\nRhQbpaM22KnYWIk7d4h+/51o+HCuvjlyJNHy5TVW31TuozRAS6VOswUICCFcAbQHcMFc1zQFmipP\nWhqKjdJRG+xUbKyEszMQHg5s2sTaXaGhXNitSRMOn16yhCVX5LTRQGqDjdowZzTaotJ/F5jxmgoK\nCvczrq7AhAlccTMxEZg4kdUK2rdn+f8PP+RIN7VabkvrPDo5GyHEICGEWodDY2F5IcS7AMYBmEJE\nsVL+AQoKCgo64ezMwQMrV3KuzhdfsPjkxIms+5WUJLeFdRqdAgSEEHYAdCkonkdECZXe+xKA7wDM\nJKL5NVyn7kYHKCgoKNwnkLmFOIUQT4HDn78gondMdiEFBQUFBYvGZM5GCPEYgFUAfiKiySa5iIKC\ngoJCrcBUeTYPAvgXwDkArwGouPtWSESnJL+ogoKCgoLFYqpotBAA9QF0BbAfwMEKx9qa3lxb5G6E\nEG8KITaU2qcWQrwvoy2NhRB/CyEyhRBZQog1QogmctmjCSGEX+nnelAIkVt6z3TZCzQbQojRQoh1\nQoh4IUSeEOKSEGKuEMJJbtvKEEIMEULsEkIkCSEKhBA3hBB/CSHayG1bdQghtpV+5h/JbQsACCEG\naAl0yqj53eZHCDFMCBFV2idmCSGOCiGC5bZLV0zibIhoNhFZaTma6dDEEADBAJYBeBTAZACeAA4L\nIbqYwmYDeR5s1zoAsgU3CCHsAUQCaAngKQDhAFoA2F36O0uhOYDRADIA7IWM96wa3gKgAjADwMPg\n4JbJALbLaVQl3AD8B2AKgMFgW9sBOGRpA4wyhBDjAXSE5X3mBOAVAL0rHA/JapEGhBCTAPwD4BiA\nkeDv0WoA2ktmWhqaMj3lPgC4aTjnAu6kfpHbPg22WYGXCt+X6fpTARQDCKxwLqD03Oty3x8tNj8H\noASAv9y2VLLLXcO5p0ptDZbbvmrsbln6DL4hty0abHMFkARgbKmNH8ltU6ldA0o/14Fy21KDnU0B\n5AF4VW5bjDksssQAVdJVKz13B8BlAJrlWe9vHgVwmIjKSwsS0TUABwCEymVUbYSI0jWcPgZAwLKf\nvbLvjEpWKzTzKYAzRPSX3IZowPwlK/WnbGC2VG5DjMEinY0m6orcjYloBw7GqMx5AG3NbEtdJBi8\n3HJRZjvuQQhRTwhhI4RoAe6IbgL4Q2az7kEI0Q+8rDtFbluqYYUQQiWESBNCrLDApci+AC4BGC+E\nuCqEKBZCXBFCvCy3YfpgLbcBeqDI3WjHDcBtDeczwEsYCgYihPADMBssIHtCbnsqcQRAt9KfrwAY\nRERpMtpzD0IIGwBLAHxORFfltkcDWQC+ABAF4A6ALgBmATgohOhiQffSt/T4DMC7AGIBjAGwSAhh\nRUTfymmcrphlZlMb5G6MtVGh7iGEcASwHkARgGdlNkcT4QB6ARgP7ix3Wlh03zsA7ADMldsQTRDR\nKSJ6m4g2E9E+IloIDgrxAfCqzOZVpB4AJwAvEtEyItpDRFMAbAM7n1qBuWY2BwC01uF1eZVPlMrd\nfAKWu/lVasMqYLCNFsBtaJ7BaJvxKNRAqUTTJnCgxYNEZHH1gYkouvTHY0KIbeB6UTMAyL68UroU\nNRO832BXej/L9kdshRANAGQTkUUpYBLRSSHEZQA95balAungSM6dlc5vBzBUCOFNRMnmN0s/zOJs\niKgAvLmvF6VyN4vB0/BqddWMxVAbLYTz4H2byrSFsselN0IIawBrwHliDxGRxd9DIsoSQlwFd0qW\nQDMAtgCW495NeAIwHcA08LLVGfObVus4D57B1mosNkCgVO5mGYAfSNFVq4kNAHoLIQLKTpT+3Be8\nDKSgI0IIAWAlOCgglIiOyWuRbgghvMEzc0vZGzkJTu4OAd/LskMA+L30Z0uxtRwhRHcArcCFHi2F\ndaX/Dq10/hEACbVhVgNYaIBAqdzNSgCnAPwmhKjo1S1G7kYI0Q28zGJVeqqtEGJU6c+bS2dL5uBH\ncLTPeiFEROm5jwBcB/CDmWzQiQr3pzu44xkmhEgFkEpEe+WzrJzvwAlzHwPIr/TsJRBRojxm3UUI\nsRbACfCs4A64c3wdvLf0lYymlVOaqlDl82RfjutEtM/sRlW15XcAMWDHeAc8k50B4AYAi9l0J6It\nQog9AJYKITzBAQJPgJNPJ8homn7IneijJYnpA3BcuaYjVm77Ktj5czV2mjVZEUBjcEZxJjjKZo25\nbdDRTrWW+7VbbttK7Yur5jOVJWlXg43Twbk/GQBywCHZ31ni563B9hIAs+W2o9SWGeAB7W0AheDB\n2fcAvOW2TYOtTmAHmASgoNTusXLbpc9h0hIDCgoKCgoKgAXv2SgoKCgo1B0UZ6OgoKCgYHIUZ6Og\noKCgYHIUZ6OgoKCgYHIUZ6OgoKCgYHIUZ6OgoKCgYHIUZ6OgoKCgYHIUZ6OgoKCgYHIUZ6OgoKCg\nYHL+H4UD4ecD4+zOAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Parameters after initialization\n", "plot_contours(data, initial_means, initial_covs, 'Initial clusters')" @@ -487,11 +559,34 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n", + "Iteration 5\n", + "Iteration 10\n", + "Iteration 15\n", + "Iteration 20\n", + "Iteration 22\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAELCAYAAAAP/iu7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4Tdf6wPHvSswiSCIhiciAmCtKDS0SY1subSklbqut\nzr2tVsefGlqdlFLVq4qqFnVVqRpqJlrzPI8ZSCQyEJnnnPf3x4lw5JxMZGJ9nuc8kb3XXnudjfOe\ntda711YigqZpmqaVJKuyboCmaZp299PBRtM0TStxOthomqZpJU4HG03TNK3E6WCjaZqmlTgdbDRN\n07QSp4ONVq4ppbyUUgal1JxSPu8OpVRmRalX08o7HWy0UqeUapQTQCy9Ym85RHJepamkzllq76Ws\nArWmmVOprBug3dPOAb+a2Z56058vAM2BuNJokKZpJUMHG60snRORT/IrICLZGIOSVnSqrBugadfp\nYTStXLM0FKSUuqSUOqeUslFKzVRKhSulUpVSR5RSj5upx1sp9XXO/lilVIpS6oRS6kOl1G1/6VJK\nWSmlXlJK7VJKxSulkpRSJ5VSU5VStQo4dlHOe3Q2s+/TnH1dbtn+lFLqH6VUTM77vqSUWqOU8svZ\n/zzGIC3AqJuGKLNvrkspVVUp9b5S6qhSKlkpFaeU2qCUeshMW3YopTKUUtWUUl8qpYJzfn81Z7+L\nUmqWUup8TptilVLHlFLfKKV04LvH6Z6NVlEJUBXYDNgAvwM1gaeAZUqp3iKy7abyg4ERwDZgY86x\nvsBngA8wpLgNUUpZASuB/kAI8DPGocAmwMvAfOBUAe/F0jxOnn1KqTeB6cB5jMOQSYAL8BDQG+N7\nPAR8C7yR8+dVN1URmlNPNWAL0AnYC8zGeC0fA7YqpQaJyOpb2gLwJ9AU2JBz7nClVE1gN+AIrAGW\nYfz7aAK8BLwHZORzDbS7nA42WllqqpSaYGb7EhEpzNCZK8YPyeEikgWglPoNWA+8hfFD97r5wJc5\nw3K5lFLzgWeUUg+IyL7ivAlgNMZA8yfw5PW25NRvC9zp7LPnMAaM1iJi8gGulKoLICKHlVIJ5AQb\nC8OVkzAGmndEZPpNdYwFDgI/KKXWi8jN7a8E1M45d9JNxzyO8e/jVRGZfUub6tzaTu3eo4ONVpaa\nAOPNbD9M4edpRt/84S4iG5VS4UCHmwuJyGULx88GRgK9gOIGm1eAdOD1m9uSc96EYtZZkAzAcOtG\nEblWmIOVUtbAC8DxmwNNTh1XlFLTgGmAH8aeYO5uYNzNgeYWaWbapJM7NB1stDK1VkQG3MbxMSIS\nYWb7JaDtzRty5gxewjiU1hKw5cYEugANitMApVRtwAs4JiLhxamjGJZi7JWcUEotBQKA3SKS54M+\nH80xXoNsC71Lb4zXpxmmwQaMvZ5bbQOiMfaG+mIcYvtbRIKL0CbtLqaDjVaRWeo1ZAHWt2ybjfGb\nfAjG+Z0ojL0DO4xDTVWL2YbaOT/NBb0SISKfK6ViMM4HfQSMA9KUUsuAMSJypRDV2OX8bMstgfnm\nU2Gcd7lZtojceh8UIhKnlOqIMQj2xzgHppRSZ4EJIvJbIdqk3cV0sNHuekqpBsAo4ADw0M3zBzmZ\nWW/cRvXxOT/zZJIVwfXhMHP/H2ub2YaIzAXmKqUcgO7AM8C/c9rRuxDnvB6oF4vI00VrrnkichF4\nOqcX6QM8DLwJ/KqUihCRHXfiPFrFpFOftXuBJ8Yhoc1mJqrzpPgWhYjEY8wK81ZKuRazmuvzLC5m\n9rUr4PxXRGR5znDkCcBPKVUjZ/f1ZIhbe3kAJ4FkoMOdTksWo0Mi8jnwKsbPmX/dyXNoFY8ONtq9\nIDTn5633qjTDmJJ7u8vHfI9xGO47pVTlW85he9OHvyX7MQbDkbcc+9Stbc7Z3t3MthoY52CyuBFk\nrg93Nby1fE6G2RyMczOf5aRv31pnR6VUlQLafr1si5xe1q3q5/wsynySdhfSw2jaXU9EwpRSq4H+\nSqm9GCfUG2L8tr0O4z04t+NbjFlb/wLOKqXWYLzPxgvoC3Qk//tsVmCc6xillHIHjgItMA6P/QU8\nckv5NTlzNnuBi0B14NGc9zRdRNLBmAmnlDqEsbezAAjCOGS3ICeZYSzGntP7wGNKqR0YA1RD4H6M\n2YL1uBG08vMI8HlOHecw9ta8c67JVeDHQtSh3cV0sNHKSlEWpLRUNr/jb93nD3wKDARex/jB+x6w\nCRhUjPpvFBIxKKUewzhh/2zOy4CxRzULCMuvXhFJVUr1wJhq3APjvS+7ga45bbs12LyHcT6kU877\nSQDOYkxJ/t8tZYdjvAF0ADcy8LYB4SKSppTqldNuf2Aoxs+EyxgD3ifcGOIz2/abrMN4n003jMG7\nBsaswB+AKSISauE47R6hREp7MV1N0zTtXqPnbDRN07QSp4ONpmmaVuJ0sNE0TdNKnA42mqZpWokr\nV9loSimdraBpmlbBiUieG4XLXc9GRMr1a8KECWXeBt1G3U7dRt3G8vqypNwFG03TNO3uo4ONpmma\nVuJ0sCkiX1/fsm5CgXQb75yK0E7dxjtDt7FklasVBJRSUp7ao2maphWNUgqpCAkCmqZp2t1HBxtN\n0zStxOlgo2mappU4HWw0TdO0EqeDzV0uJCSEESNG4Ofnx4gRIwgJCSnrJmmadg/S2Wh3sZCQEHr3\n7k1QUFDuNi8vLzZt2oSHh0cZtkzTtLuVzka7B40bN84k0AAEBQUxbty4MmqRpmn3Kh1s7mLh4eFm\nt0dERJRySzRNu9fpYHMXc3FxMbvd2dm5lFuiadq9Ts/Z3MX0nI2maaXN0pxNiQcbpdSjwPtAO8AA\nnAXeE5EAM2V1sLnDQkJCGDduHBERETg7OzNp0iQdaDRNKzFlEmyUUi8BM4FvgXUYh+3aAidF5C8z\n5XWw0TRNq8BKPdgopRoBp4H3RWRmIY/RwUbTNK0CsxRsSvKx0M8D2cAPJXgOrYSkZ6VzJeUK8enx\nJGckk56dTrYhGytlRdVKVbGpYoNddTscajhQyapcPV1c07RyqCQ/JR4EzgDDlFLjgEbABWC6iMwq\nwfNqhRSXFsexqGOcijnF2StnCboWxIW4C4QlhJGUkYR9dXvqVKuDTRUbqlaqirWyxiAG0rPTSUxP\nJDY1lmtp12hg04DGdo1p5diKdg3a8ZDbQ3jV9UKpPF9uNE27R5XkMNppwBlIAz4EgoEngVeAN80N\nrelhtJKTZcji0OVD7Azdye5Lu9kfsZ+Y5BhaO7WmZb2WeNt709iuMR51PXC1dcWuuh1WquDM+Mzs\nTMITwzl39RzHo46zP2I//4T+QxXrKgxoOoDhrYfzgMsDOvBo2j2iLOZszgKNgSdE5M+btv8FtBWR\nPDd76GBz54gI566eY13gOjYFb2JH6A4a1W7Egw0fpHPDznR06UgT+yaFCijFOffJmJOsOL2ChccW\nUrNyTd7p8g7DWg3D2sr6jp9P07TyoyyCzS6gI2ArIsk3bR8NfA04i0jULcfIhAkTcn/39fWt0I9B\nLW0GMbA7bDcrTq9g1blVpGWl8bDXw/Rt3Bdfd18cajiUSZs2Bm3k078/JS4tjv8++l+6u3cv9XZo\nmlYyAgICCAgIyP39448/LvVgMxd4jiIGG92zsez6PTPh4eG4uLgwadIk3N3dORx5mMXHFrP05FLq\nVq/LoOaDGOg9kLb125ab4SsR4Y8zf/DGujfwb+3PZz0/04kFmnYXKouezaPAauBJEVlx0/YNQDMR\naWTmmAoZbMwFgTt946S51QDsXeyxe8mOLNss/Fv7M6z1MFrUa1Go+kSESwmXOB97npBrIVxKuERk\nUiSxabEkpieSlpWGQQxUsqpEjco1sKtuR32b+njU8aCZQzPa1m9L7Wq1i/w+rqRcYfjy4VSxrsLv\nQ36nWqVqRa5D07Tyq6xu6twCtAE+wpggMARjb2ekiCw0U77CBZvSWhJmxIgRLF68OM/2ngN7svGP\njfnOvYgIF+IusGLXCn6Y+gNRl6NIqZZCnUfr0KJpCzzqeNDQtiH1bepjX8OeWlVqUa1SNayUFVmG\nLJIzk4lNjeVy4mVC4kI4FXOKY1HH8LLz4mGvhxncYjDtndsXuheVmZ3JiD9GkJ6VzvIhy/U8jqbd\nRSwFG0SkxF6ADcYVBC5jzEo7AgzNp7xUNP7+/gLkefn7+9+xc2RlZ0nLDi3NnsfPz8/sMVeSr8ji\nY4vlmT+eEddprlLvw3pS06mmybFeXl4SHBxs8bzBwcHi7+8vvr6+4u/vb1I2IytDdoXukrFbxorX\nDC+57/v7ZNHRRZKVnVWo95SelS7dfuomk7ZPKtrF0DStXMv5HM/7+W5uY1m9KmKw8fX1LVIQKIr0\nrHSZd3CeNPm2iTh0dCgwqIUnhMuMPTOk+0/dxfYLWxmwZID8d99/5dyVczJ8+PAiBcXg4GDx8vIq\nVHDKNmTLuvPrpMuPXcRnto8cijhUqPcXFh8m9pPt5dyVc8W7QJqmlTuWgo2eob1NJbGMf2Z2JguO\nLOCzfz6jqX1T5g2Yh2s/V/r06ZNnuO7/xv8fvxz9hV+O/sLBywcZ4D2AMZ3H0MuzF9UrV88ta+kZ\nNluPbWXg/wYSnxZPalYqBjFQxboKIfNCuBx02aTs9QevLVq0yGS7lbLi4cYP09erLwuPLaTPoj5M\n7jWZ53yey/d9utq6MrrTaD775zMWPLagiFdJ07SKRD9i4DbdyTkbEWHZqWWM3TqWRrUbMclvEp0b\ndjY51/UVnGvUrYFdPzvWxKyhc8POjLxvJP/y/heXwy7nJis4Ozsz8q2RBEogk8dM5uI/F/Ocs3W3\n1kycPZE61epQo3INrJQVGdkZvDbkNY7tPZanvHMbZ1atW8X9zvdbfB9nr5zl4cUP8+FDH/Li/S/m\n+56vplzF81tPwt4Kw7aqbRGulqZp5VGZzNkU9UUFHEYTuTG34efnl2duo7B2h+2WjnM7Srsf2smm\noE1myxgMBll/fr30/qW31J9aX8ZvHS+hcaEm7fD09DQZ+qpkX0kGzR4kX6z6QpxcnPIMo7m5uZlt\nr6W5qDa92ojbdDfp8XMPOXz5sMX3E3g1UJymOMnO0J0Fvve+C/vK8lPLC3GVNE0r79BzNuVTZGKk\nPP3H0+L8tbP8fORnyTZk5ymTbciW5aeWi89sH2k1q5UsOLxA0jLTTPZvCtokHt088p2XGTBggNn9\nnR7pJAuPLpSVp1fK7rDdEpUUle+cTUZWhszeP1vqfVVPvtrxlRgMBrPvbdnJZdLyvy0LTBr4OOBj\n+WDTB7dxFTVNKy8sBRs9Z1NGDGJg7sG5jNs2jmfue4Yzr52hVtVaJmVEhL/O/8XYrWOpbF2Zib4T\n6d+0f26ac3RyNHMPzmXuobnUrV4X6yTzKcQHzhxg1KpRbD2z1ez+kLAQ1gWuIyE9gcikSAJjA6le\nqTr3v30/Df5qgHWyNa4urib3D73U/iUebfIoA/43gCspV5jce3Keegc1H8SUXVNYc24NA5sNtHgt\nPOp4sD5ofaGum6ZpFZMONmUgMDaQ51c9T0Z2Blue3kJrp9Z5yhyMOMiYjWOISYnhsx6fMdB7YO59\nLKdjTjN111RWnFnBoOaDWD5kOfc738+If0YQeCgwT10ZNTJo16AdYS3C2HhuY579ve7rxaInbkz6\niwghcSFsCd7CUpulnIg+waCug3Br5GZyXMPaDdny9BY6zeuETwMfnmr1lMl+pRTPtX2O3079lm+w\nsaliQ3JGssX9mqbdBcx1d8rqxV0+jGYwGGTWvlliP9lepu2aZnZ4KSY5Rkb9OUrqT60vcw7Mkczs\nzNx9x6OOy+DfBovjFEf5JOATuZJ8RUSMw2hbg7fK498/LspOWUxXNjc05unpWeAc09p9a8Wxk6PU\nblZbBg0dlKf8nrA94vy1s6RmpuY59kzMGfH4xiPf+pccXyJDlg3Jt4ymaRUDehitbMUkx/Dsn88S\nmRTJjud20Myhmcl+EeGXo7/w3ub3GNZqGGdeO5O7HExofCgfbf2IDUEbeKfzOywYuICaVWqSmJ7I\nt3u/5bt931G1UlWea/scH2z/gG+//JaIiAic6jsx8NWB/B7xO0cPH+XMlTPEDo6Fv0AlKaxsrQjx\nDaHj7x3xdvCms2tnHmv2GJ1dO+f2okJCQnhj2BtEB0UDsPzMcg7vP8zmzZtzh9Q6unakZb2WrDyz\nMk/vxrOuJ6HxoYiIxRUGIhIjqF+z/h293pqmlS862JSCfy7+w7DlwxjRZgQrhq6ginUVk/2XEi7x\nwuoXiEqKYp3/Oto1aAdASmYKk3dM5rv93/Fah9cI/E8gtarWIjY1lsnbJjNr/yz8PPyYP3A+DzZ8\nEKUUUUlRdHmzC6vOrmJN2BqCTgfRybUTvTx78foDr9OodiMcP3fMXSIm25BNVHIUp2JO8c/Ff3h+\n1fNUta7KNw9/g6+7L+PGjTNJ6wYIDg7Oc7/NQO+BbA7enCfYVLKqhCBkSzaVlPl/biejT9LBpcNt\nX2dN08oxc92dsnpxlw2jGQwGmb57ujhNcZJ159eZLbPs5DKp91U9+TjgY8nIysjdvjFwo3jO8JQn\nf3syN705OSNZPt3+qdhPtpfnVj4n56+eFxGRzOxMWXFqhTyy6BGp/UVtGb58uCw7uUziUuOK1ebl\np5aL89fO8u2eby2ukNDdt7vJcZuDNkv3n7rnqS8+LV5qfFYj33M2+bZJvmnUmqZVHOhhtNKVnpXO\ni2te5FjUMfaM2oN7HXeT/WlZaYxeP5rNwZtZO3xt7jf7xPRE3t7wNhuDNzK732weafIIIsKyk8t4\nZ9M7PODyALuf300T+yakZKbwzZ5vmL5nOq62rrx8/8v8PuR3alSuYdKO87HnuRB3gaspV8kyZGFT\nxQb3Ou60cWpjssoAGCf1n2j+BPc3uJ+uP3WliW0Ts++vcu3KJr9XrVSVjOyMPOXOXDlDEzvzdQCc\nu3qOpIwk2ji1yfd6appWsZVYsFFKdQe2mdkVJyJ2JXXe8iA2NZbHlz6OQw0Hdjy7g5pVaprsD4sP\n44nfnsC9jjuHXjqUe+f8/vD9DFs+jO6NunP8lePYVrUlLD6Ml9e+zMW4iyx8fCHdGnUjMzuT7/Z9\nx2f/fEaXhl34/cnfc4OVQQzsubSHVWdXsTVkK8eijtGoTiM86njgUMOBSlaVSMxIJCg2iMDYQAZ4\nD+Bj34/xsvMyaWOjOo2Y3nc6n6Z/itdJL5OhNBsnG/q+0NekfHRyNPVq1stzLXaE7qCTayeL12rJ\n8SUMaj6oRJ4Yqmla+VHSPRsB/gMcuGlbVgmfs0xdSrhEn4V9eLTJo3zV+6s8H6L7wvfx+NLHebPj\nm7zb5d3rSzvww8EfGL9tPLP6zWJwi8EA/Hr8V0avH81/HvgPfwz9gyrWVdgaspXX/noN+zR7fHb5\nEBsby4xVM3jzwzfZcHUD8w/Pp2qlqjze7HG+6PkFHV07mvR0bnYl5QpzD86l04+d+G3wb/h5+Jns\nH9hsICP/HMnONTv56tOviIiIwNnZmbjOcTRo2MCk7KHLh2jtmDeF+8+zfzKm8xiz58/IzmDuobms\nHb620NdX07QKytzY2p14Ad2BbKBHEY4psXHE0hB4NVDcv3GXKTunmN2/6swqcfjKQVadWZW7LSMr\nQ15a/ZK0/G/L3NWPUzNT5fk/nxfvmd5yMOKgiIgkpCXIC6tekIbTGsr3m77Pk8JsZWclQ34YIgfC\nD1i8o9+SzUGbpcHUBpKckZxnn+cMzzyrMvvM9pHdYbtNtrX7oZ1sC9lmsu3clXNS76t6Jqsd3GzB\n4QXS4+ceRWqrpmnlG2U0Z1M+nklcCoJig/D72Y+xXcfyUvuX8jy9s71/e748+SVrh6/lAZcHAEjO\nSGbwssEoFLuf302tqrWITIpk4P8G0qh2I/a/sJ9aVWtxJPIITy57krZV2tJ5X2cmfDmB6Ohok/Mb\nYg1U/rsy979oeYFMc0JCQvhp/E+kHkyl3/Z+zJ8xPzel2SAGYpJjcKjhkFs+KimK4GvB+NT3yd12\nLOoYkUmRPOT2kEnd0/dM54V2L1C1UtU8503PSufj7R8zf+D8IrVX07QKylwEuhMvjD0bA8YHp2UB\nV4DFQMN8jinpoFsiQuNCpdH0RjJ7/2wRMX/zpLW9tazftz73mLjUOOnyYxcZuXJk7o2b56+eF49v\nPGTitom5vZNlJ5eJw1cO8s1f3+Sp89ZXUZ+hU9Aza/Zd2idNZzbNLevv7y+ePp7i0c3D5MZO/+X+\n8tnfn5nUHRQbJHaT7SQ6KdrsuSfvmCz9f+1fpPZqmlb+UdoLcQJtga+AfkBX4A0gCggDHCwcU+IX\n4k6LTYmV5t81l6k7p+ZuK+jpnUnpSdLlxy7yyppXchfePBNzRly+dpEfDvyQW8+sfbPE5WsXORRx\nyGKdlurfGLhR5h2cJ6vPrpb0rHSzbbdU58CBA8Xf318atG4grXu1lu3bt1sMSociDonTFCeJT4vP\nrddgMMiAJQPyBKDrgmODxX6yfW7qtqZpd49SDzZmTwY+QCbwsYX9JXkN7rj0rHTxXeArb61/y2R7\nfk/vzMzOlEcWPSIjV47MDTRh8WHiNt1N5h+an1vH7P2zxf0bdwmODc63zps//I+dOSbvbXxP6n5Z\nV7rO7yojV46UzvM6S9+Ffc2231Kd1atXN/ndxsbGbLlhw4fJA3MfkLkH55rU+7/j/5Nm3zUzO1eT\nlZ0lvgt8ZfKOybd17TVNK58sBZtSvc9GRA4rpc4BD1gqM3HixNw/+/r64uvrW/INK6a31r9FrSq1\nmNJ7isn2/J7e+c7Gd8iWbOb0n4OVsiIlM4V/LfkXr3V4jWd9ngXgr/N/8fH2j/nn2X/wqGucP7G2\nNb+is5OTE7169eLV915l6OahdHDpwOpHVvP9V99zIfwCde3qsr/ZfrPHWmpnamqqye9JSUlmy636\naxX3tbuP532ez912Me4ib6x/gzXD1pidq5m8czIGMVjMUNM0rWIJCAggICCg4ILmIlBJvoCTwDoL\n+0ou3N5hi48tlqYzm5oMH113LvCcVKtXLU/PY+b6meI1w0uupV7LLfvcyudkxIoRuXM0oXGh4jjF\n0eShY1FJUeLwoYM4uzlbnF957H+Pyfit483Ow9i72JtdbDMoKEhq1a9lUrZatWpmezGWXo08GuXW\nnZKRIh3mdLCYjbcpaJPUn1pfwuLDin/hzbg+n+Tr61vsh9dpmnZnUE6G0dpjTBaYYGF/CV6COyc4\nNlgcvnKwuMTKpO2TpMvULjJ8+PDcp3fuPb5XHKc4yv7w/bnl1pxdI54zPCUxPTF3279+/Zd8EvCJ\nSX0vrnpR3lr/Vr5PBPWe6S1zDsyRJ4Y8ke98znXZhmwZvW60tPy0pQx5akhunS0eamH2+CrVq+Q7\nV5RtyJanfn9Khi4bajb1+tyVc+I0xUm2Bm8t1jW3pKAkB03TSlepBxtgITARGAj4AWOAGCAEsLNw\nTIlfiNtlMBikx889LM45nI45LfaT7fN8ex++fLjJ0yjTs9LFa4aXbAjckLttx8Ud4v6Nu8lcR1xq\nnNT+orbEJMfk267NQZvl/h/uF2s36wIz1ZLSk2TosqHSeV5niU2JzX1fn//9uTQc11AaeTQyOda2\nvq0EBASIo6Oj2bp9fX3l7fVvS5cfu0hKRkqetkUlRUnjbxvLnANzROTO9kQKSsbQNK10lUWw+QA4\nAlwD0oGLwPeAUz7HlPR1uG0Ljy6Udj+0M3nOzHXBwcHSoHMDadyuscmH6KGIQ9JgagNJSk/KLfvT\n4Z+k5889TY4fvny4zNgzw2TbhsAN4rvAt1BtCw4OtjiZf/3Dd++lvdLsu2YycuXI3OfPpGely4ur\nXpTWs1pLeEK4BAcHyxNDn5Ba3rWkcffGEhgUKCIi/Qf1N1t3q56tpPWs1rmB62bXUq+Jz2wfGb91\nfG4b72RPJL9kDE3TSl+5GEYr6FXeg01SepK4fO2S5+55EeOHqKU5lSHLhsi0XdNMynee11lWn12d\n+7vBYJC6X9aViIQIk3K/n/xdBi4ZWKj2WfqWb2NjIwdOHpDX1r4mTlOcZMnxJTfaHRssHed2lAFL\nBuTOP52IOiGeMzzloy0f5Q6J7b20Vxw+dJB6rvVM6q7ToI40+aSJRCVF5WlPXGqcdJrXSd74643c\neu50T0T3bDStfNHB5g6YsnOKDFo6yOw+Sx96g4cOltpf1DZZ7j8mOUZsv7A1eaRAZGKk2E+2N6kz\nODhYBgweIJW9KsvQYUML/PZv6Vt+g+YNxH6yvby+9nWTp3vOOTBHHL5ykKk7p+YGg1+P/SoOXznI\nL0d+ya136YmlucvsXB8C6+7bXby6eUnrz1rn1nmzK8lXpMOcDvLa2tdM5nDudE9Ez9loWvliKdjo\nRwwUUnpWOtN2T2Od/zqz+0+fPW12+5HTR/B73C/3qZsARyKP4FPfh8rWpsv03/x0zNGjR7Nx40bS\n0tIAWBq0lH1797Fl85bc5WRuZSmVuaZjTXa+sDM3jfrQ5UO8se4NEqMSeeDAA6z5aw176+8lu3s2\nxzOPs+nfm2hbvy1ZhizGbhnL0pNL2ThiIz4NjEvUfDfvO4YsG0JTq6b89uRv2FSxMTnfpYRL9F3U\nl/5N+vNlry9NntCZX1p4cXh4eLBp0ybGjRuXu1DopEmTLF4jTdPKiLkIVFYvynHPZsnxJfkuGmnX\nwM7sN/ZajrXyDKEtOb5EhiwbYrLNYDBIva/qScDhgHyXpWnm10zWnF0jZ6+clcuJlyUsPkwOXz4s\nK06tkDd/fVOqO5rekOnheWNpmTMxZ2T48uHiNMVJPv3zU/H09MyTCHD8zHEREQm5FiIP/vig9FnY\nxyQ54UTUCWnybRN54683zM5bHbl8RFynucpXO74ye510T0TT7m7ons3tWXRsEc+2fdbifkNNg9nt\nylbRxN704WE2VWyIT4s3LacUz/k8x7NvPEtIUIjF86TFpTFj7wyCrwWTmJFIZavK2FW3o1GdRrSs\n15Jpi6ax5cctXI2+irOzM5988gkR1hG8t+w9Ai4E8GbHN5ndbzavPP8KwcHBJnUnRCbwxSdf4DfG\njw+3fMgm2f0UAAAgAElEQVR7Xd5jTJcxuY9J+OXoL4zZOIapvafyTNtn8rRt1dlVjFo1iu8e/Y4h\nLYeYbb/uiWjaPcpcBCqrF+W0Z5OYnig2n9uYvYHzOpv7zWeBOXVykk1Bm0zKXoq/JPaT7U3mbK6f\np0aTGhZ7NRRh4js0LlSm7JwirWa1kibfNpEZe2bI8TPHxd/fXzp37SzVa1c3W3+d5nXk/h/ul2OR\nx3LrupZ6TYYvHy7NvmsmRyOP5jlXtiFbxm8dL67TXGXvpb2Fap+maXcndM+m+HaH7canvk/uEzXN\nyeyeicc1D0KCb/RKvLy8aOrflOhk08cBuNi60MapjbG35HOjt2RTxYaH2z3MivMrzJ7Dy8uLSZMm\nmd2XmJ7IvvB9BFwIYF3gOkLiQnjM+zFmPjKT7o26c+HCBXx7+BJ6ITTf9+rZ0JM9o/ZQycr4T2N9\n4HpeXP0i/Zv25+CLB/M8iC06OZp///Fv0rLS2P/Cfurb1M+3fk3T7k3KGIjKB6WUlKf2XDdl5xQi\nEiOY/vB0i2UqT6rMiWEnmDRxksnw0NLwpVxKuMR3j35nUv5AxAH6/dqP7SO308yhWe72kJAQevfu\nbfIYZlVZ4ebjxqC3BtHQvSEASRlJRCdHczH+ImeunOFSwiXa1m9LN7du9PHqw0NuD3Ep9BJjPxrL\nyaCTnA86T+oV0zXPbtXIoxHbtmzDw8OD6ORoxmwcw47QHcz911x6efbKU35j0Eae/fNZnm7zNJN6\nTMoNUJqm3btynj6c51lmOtgUwqtrX6W5Q3P+0/E/Fss4TnHk6MtHaVDL9HHJ56+e58H5DxL8ZnCe\nrK1fjv7CB5s/YOHjC+np2TN3+/UHr0VERGDvaE//l/sTXz2eyKRIkjKSUChsqthQr2Y93Gq74W3v\nTVP7prnZbSLCyj0reXbQs8RfNp0bulUV2yq0adUGbw9vJk2ahKubK7MPzOaTvz9h5H0jmeg7kZpV\napock5KZwvub3mfl2ZUsGLjApO2apt3bLAUb/VW0EOLS4qhbvW6+ZVo6tuRI5JE8waaJfRP6ePVh\nwrYJfN33a5N9T9/3NA1sGjDyz5F0dOnI253fprNrZzw8PFi0aFGR2hiRGMHfF/9mc/Bm1gWuI3FJ\nIomXEws87sl/PcmiRYsQEdacW8Ojsx/F1daVgGcCaOnYMk/5gAsBjFo1ik6unTj28rECr4umaRro\nYFMoVsqKgnpcfb36svLMSh5p8kiefdP7TqfD3A40r9ecUe1Gmezr7dWbs6+fZfaB2Tz757OkZaXR\n06Mn7Rq0o6l9U+rb1Me2qi3WyppMQyYJ6QlEJ0cTFh9G0LUgTsac5NDlQ6RkpvCQ20P09OjJew++\nx0urXyKAgHzb7OXlxSeffMKW4C2MDxhPfFo8U3pPoV+Tfib3xgBcTbnK+5vfZ0PQBv776H8Z4D2g\ncBdP0zQNPYxWKKPXj6ahbUPGdLH8DJbLiZdpOaslJ189mad3A8bhtD6L+jC4+WAm9ZhEtUrV8pQR\nEU5fOc32C9s5EnmEwGuBRCVFkZiRSLYhm8rWlalVpRb1atajoW1DvOp60aJeC9rWb4tnXc/cAGEQ\nA4888QgbV27Mcw53d3c8PDxo0KABPZ7rwU8XfyI6OZrx3cczrNUwrK1Mn5uTbchm3qF5jA8Yz1Mt\nn2JSj0n5JkpomnZvK/M5G6XUeqAP8KmIjLdQplwGm9kHZrM3fC8/Dfwpz77r8yvh4eFEW0XjOtCV\n9f9Zn6dnABCTHMMra1/h0OVDfNTtI4a1Gkb1ytXvSBujkqLYdmEbG4M2si5wHTbJNlz94SrXIq7l\nlvHy8mLVX6vYlbSL6XumU9mqMu8/+D5DWg7JE2QANgdvZszGMdSpVodvH/6W++rfd0faqmna3atM\ng41SahjwNeAEfFbRgs3pmNP0WdSHi6Mv5t7gCOYzx6rWq8qo6aOYOXym2YADxnmPr3Z+xZ5Le3i0\nyaP09erLAy4P0NiusdkP/ZsDmrOzM6+8/wopNVM4EX2Cw5GH2XNpD1dSrtDVrSu9PXvzaJNH8bLz\nMkk0qF63Oo7/cmR19Go6N+zMmx3fpKdHT7NtPBhxkP/b+n8ExQbxZa8vGdR8kMX3ommadrMyCzZK\nqbrAKWA0sIQK2LMREdr+0JapvafS26t37vYRI0awePHiPOXrdKjD0PFD+ebhb8wOl10XnhDOqrOr\n2HphKwciDhCZFImrrSuONR2xrWpLFesqJEUlsfvz3aRG30hbtra3psP7HWjfsj0+DXx4wOUBWtRr\nYRIIwZg08NvJ31h0bBGRSZGMbDuSUe1G4V7H3Wx7Dl8+zCd/f8K+8H181PUjRrUblWf9Nk3TtPyU\nZbCZAzQSkb5KKQMVMNiAMU15zsE5/PPsP7nf8v38/Mw+e7tr9644vebEyeiTzHxkZqFTg1MyUwiL\nDyM6OZqE9AQyDZlMf3c6f6/5O09Zd3d3tm7darLMi4hw5soZ1pxbw8qzKzkdc5oB3gMY3no4PT16\nmu01iQg7Qnfw5c4vOXz5sDG54P6X7tjwnqZp95YySX1WSj0EjADalOR5SoN/a39m7pvJDwd/4OX2\nLwOWVzB2c3Vj4eCF/HHmD15e+zJONZ14tcOrDPQemOeelZvVqFwDbwdvvB28c7fNSJphtuyFCxfo\n3bs385bN46K6yPaL29kcvBmAR5s8ykddP6KHRw+qVqpq9vjM7EyWn17ON3u+4UrKFd7t8i7LhyzP\ntyemaZpWXCXWs1FKVQYOA8tFZELOtgrbswE4e+UsXX/qyvIhy+naqKvZORsvLy82bdqU2+PIMmSx\n8sxK5h2ax66wXXRt1JXujbpzf4P7aeXYCseajvnOh1gaqruuervq9P+gP90bdaenZ0+87b3zrS8s\nPowfD//I3ENzaWzXmNEdRzPAe4DZXo+maVpRlfowmlLqI2Ak0FJE0nO2VehgA8YMrWHLh7Fk0BJ6\nefYymYQvaAXj2NRYtoZsZUfoDg5ePsjxM8dJ2pBE5eTK1LCrgdcgL2zr22IQA+nZ6SSmJxJ1KYro\n2dEQa749fn5+bN26Nd82p2amsursKhYcXcDeS3sZ1moYr3R4hVaOrW73cmiappko1WCjlGoInAWe\nB/66vhnjR+YU4HMgUUQMtxwnEyZMyP3d19cXX1/fO96+2/X3xb8ZsmwIb3Z8k3cffLdYa4KZ6xU5\nuznzxc9f4OLmQtVKValVpRZ21e1IiU7h4T4Pc+HChTz1+Pv7m11tID0rnc3Bm/nt1G+sOruK9s7t\neea+Z3ii+RN5FtPUNE0rroCAAJO5648//rhUg0134PrX7ZtPKjm/C+AjIsduOa7c92yuC40P5dk/\nnyU2NZZpfabh5+FXpOMtDY9ZCh6FGbKLSY5hQ9AG1pxbw4agDbSs15IhLYcwuMVgnGsV70mYmqZp\nRVHaPRtboK2ZXQHAQmAecFBEUm45rsIEGzBmci09uZRx28bhWNOR1zu8zmPNHitUJpelTLb8hsVu\nHbJ7Z+w7hFuHs/3idraEbCEwNpAeHj3o16Qf/Zv218v9a5pW6ko1G01EEoA8+bo5E9cXReSfkjhv\naVNK8VSrpxjcYjArz6xkzsE5vLL2Ffo27ktfr750a9QNr7peZifsLWWyOTub74HEJMdwUV2kw+sd\nOBR5iP3h++m6sisdnDvQvVF3vun7DR1dO1LFusodfY+apml3QqmujaaUysaYIDDBwv4K1bMxJyop\nijXn1rA5ZDP/XPyHlMwUWjm2oql9U9xqu9HApgF21e1IjEpk7MixRIRG5B7r1NCJt2e9jaqriEyK\nJCwhjAtxFwiMDUQQWtRrQRvHNrRr0I72zu1p7dRaP0NG07RypczXRiuMuyHY3CoqKYqTMSc5f/U8\nofGhRCVHEZsaS2JGItcuX+PiiotkxmdSvW51Wg1thUsjF+yr21Pfpj6utq6413GnsV1jHGo46CVj\nNE0r93Sw0TRN00qcpWBjZa6wpmmapt1JOthomqZpJU4HG03TNK3E6WCjaZqmlTgdbDRN07QSp4ON\npmmaVuJ0sNE0TdNKnA42mqZpWonTwUbTNE0rcSUWbJRSfZRSW5RSl5VSaUqpMKXUUqVU85I6p1Zx\nhISEMGLECPz8/BgxYgQhISFl3SRN00pQST6p8ynAB9gLxABuwIeAK9BaRMLMHKOXq7kHFObZPJqm\nVUzlYm00pVRT4AwwRkSmm9mvg809oKgPjtM0reIoL2ujxeb8zCrl82rlSHh4uNntERERZrdrmlbx\nlXiwUUpZKaUqK6WaAD8AEcCSkj6vVn4V9cFxmqZVfCU+jKaU2g/cn/PreWCAiJy1UFYPo90D9JyN\npt29ymzORinlDdgCnsA7QH3gQREJNVNWB5t7REhICOPGjSMiIgJnZ2cmTZqkA42m3QXKS4JAbeAC\nsEREXjWzXwcbTdO0CsxSsCnVB9iLSLxSKhBobKnMxIkTc//s6+uLr69vyTdM0zRNK5aAgAACAgIK\nLFfaPRsnIBBYqHs2mqZpd59S79kopVYAh4BjQALgDYwGMoBpJXVeTdM0rfwpyWG03cAQ4G2gChAG\nbAO+NJccoGmapt29SnUYrSB6GE3TNK1iKy8rCGiapmn3IB1sNE3TtBKng42maZpW4nSw0TRN00pc\nqd7UqWnllYiQlWlADIJSYF3ZGiurPHOcmqYVkw422l0t6Voq4edjiQy+RszFeGLCEoiNSCQuKpnE\nq6kkXUsjNTGd9NQsrKwVVtZWIEJ2loFKVaypXqsqNnWrUcepJvYutXDyqINzE3sataxHo9aOVKtR\nuazfoqZVCDr1WbsrZGcZCD0VQ/DhSIIOR3LheDRhp66QlpSBcxM76nvVxcm9DvautbB3qUUdJxtq\nO1SnZp1qVK9VlSrVK2FtfWNUWUTITM8mJSGdxNhU4qKSuXIpgaiQOMLPXSX0RAyXzlzBtZkDrbo3\nwqePJ2383KlSTX9/0+5t5WIhzoLoYKMVVnJ8Gqd2hHFyRyhndl0i8OBl7F1q0fj+Bnj61Me9tSNu\nLevh4GqLUnmHw66vOh0eHo6Li0uxVp3OTM8i8OBljm27wMH1QVw8Hk37fk3oNfI+7uvpoYfhtHuS\nDjZahZaZkc3pnWEc2hjE0S0XCDsVQ9MHXGjZzY1mnV3x7uiCTZ1qhaqrpJ6nExedzD9LT7LxxyNk\npGbyxLtd6PlMGypVti52nZpW0ehgo1U48THJ7Ftznn2rz3Fs6wWcm9rTrq8nbXt50qyTC5WrFm/I\nasSIESxevDjPdn9/fxYtWnS7zUZEOL79Ir99toOokDhGTetNxwHet12vplUE5eIRA5pWkKsRiez8\n/TS7Vpwh5EgkbXt70vnxZrz+Qz9q16t5R84RHh5udntERMQdqV8pRRtfd9r4unNoYxCzX19PwOIT\nvPr9o9Syq35HzqFpFU1Jrvo8GPDH+EhoByAUWAF8LiJJJXVereJJupbKjt9PE7D4BBeORfHAv5ry\n+JhO+PT2LJEJdxcXF7PbnZ2d7/i52vXx4rtjL7Hggy2Mvn8eH/05BI82Tnf8PHBn5qE0raSU2DCa\nUmo3cAn4I+dnW+Bj4LSIdLFwjB5Gu0dkZxs4simYTfOPcGhDMG17e+Dr35r2jzQudIAp7odrSc3Z\nFGT7/04w540N/N+KJ2n5kNsdrbus3pOm3arU52yUUvYicvWWbf8GFgA9RSTAzDE62NzlrlxKYMO8\nw2yef4Q6TjXp/Vxbuj3VEpu6RRteut0P1+uBKiIiAmdn51LrBRzeFMxU/z8Y9eND/Lh05h3rhZT0\nPJSmFVapz9ncGmhy7AcUYH4cQ7sriQjHtl1gzXf7OR5wke7DWjFu9VA876tf7DrHjRtnEmgAgoKC\nePvNd/notcnEhMYTG5FIfHQKCVdTSEnIID0lk+zMbETAupIVHtUfoZVDVWrXrsm+Xy9x0SMJV28H\nGrZwoGr1krlZ06e3J49NbMPAx/uRmH3jv8iePXtuqxdS0vNQmna7SjtBwBcQ4HQpn1crAxlpWQT8\neoI/p+9BDEL/1zvw9i+PUd2mym3XffFCmNntezYeY0XKbuq52WLvUgvXZvbUsnelhm1VqtWsgnVl\nK5RSZGcZSE/JJDk+jYQrqVwNT2Dvn+f4/fQuLgfG4trcgda+7rR/xItW3Rvd0fTlP3f9bBJowBgo\nx40bV+xeSGnOQ2lacZRasFFKuWCcs9kkIodK67xa6UuKS+OvWQdYPXM/nm2dGDWtD217eZi9ubKw\nrlxK4OjWEE5sD+XUjlBCgxPMlus5+AE+WzSi2OcBY5AMPHiZo1tC+Pn/thF9IY7uw1vR77X2uDSx\nv626oWR6IZMmTWLPnj15hhUnTZpU7Do17U4qlftslFI1ge2AE9BRRMz+r9JzNhVbXHQyK6ftYcPc\nw7Tv15hB73ZGbFKKNYmfmZHNyb8vsn9tIAfXB5IQk0JrP3da+zaiZVc3smsk8fDDfUtlQjwy+Bob\n5h1mw9zD+PTx5OnP/HByr1Ps+kpqfqWs5qE07WZldlOnUqoasA5oDXQTkVP5lJUJEybk/u7r64uv\nr2+Jtk+7fXHRySz/aheb5h+h21MtGfReF5zc6xR5Ej89NZOD64PY+ftpDq4LxLmJHR36N6H9I43x\natcgz/Ivpf3hmpKYzsppe1gzcz9Dxj7EgDc7FmtJGp05phVHeU1tDwgIICAgIPf3jz/+uPSDjVKq\nEvAn8BDQS0T2F1Be92wqkKRrqfz+1S42zDlMt2EtefLDB3Fwsc3dX5hv8NnZBo5tvcC2RcfZu+oc\nXu3q89Dg5nR6zBu7BrVK7b0UxeWgWKaOWEnd+ja8s+gxqtUs+hzU9Q+OI7tOUaNybZaun18uPji0\n8qkifUEpi9RnBSwF+gH9zKU6mzlGB5sKID01k9Xf7mPF1D10esybp8Z1xdGtdp5yfn5+Jt94bt7+\n64/L2fTjEbb8fIzajjXo8e82dB3aotwGmFtlZmQz84U1RAZf45P1w4sVcABCjkXx+RPLmBv4+h1u\n4T1MBCIjITQULl+GmBiIi4PEREhLg+xsY7nKlaF6dbC1hbp1wdERnJ2hUSPj7+VIRUptL4vlamYB\ng4FPgVSlVMeb9l0SEfOzpFq5ZTAI2xYdY9FHATTp4MxXO57B1dvBYnlLGVIxZ9J5u8OP+I5ozcS/\nnsK9ddHvqI+/kkLoyRjCz10lMvgaV8ISiL2cRMKVFFLi08lIy8KQZUBZKapUr0zNOlWp62RDPTdb\nXLzt8WxbH++OLtSwrVrkcwNUrmLN6J8GMOO5VUwdsZKxK54sVgJEo1aOJFxNJS46mTqOd2Y5nntK\ncjIcOAD798Phw3DyJJw/DzVrgpubMXjUqwd2dsZtdnZQKedjLyMDUlPh4kXjsdHREB5u/N3aGpo2\nhVat4L77oH17aNcOqhVusdc77W5IbS/JYPMwxjTnsTmvm30MfFKC59busFM7w5jz5gasK1nx3v+e\noHmXhgUeYy5DqnbVerz/1v/x5Ot9Cn0vS3pqJmf3hnN6Zxhn94YTdCiStKQM3FrWw8XbnvqedfHp\n44ldg1rYOlSnZu1qxufTVLLCYBBjinNcGnFRyURfjCfs9BX2rT5P8OFIPO5zosugZvj6ty7yh72V\nleL1Of15v+sC1s46QP/XOhTp+Ot1uLVwIOz0FR1sCsNggH374K+/YPNmOHYMWreGDh2gd2946y1j\nkLC1LbguS0Tg6lU4exaOH4cjR+Dnn+HMGfDxAT8/6NsXOnW6EbhK2N2Q2q5XfdZM3DoJOeY/77P1\nuyCOB1zkmS974Du8VaG/wcdFJzN34kr+++PXWNfOoLlPE2bOnlbgGLOIcOF4NAf+CuTwxmDO7QvH\nrWU9WnZ1w7ujC43bN8DJvQ5KqduaNM1Iy+LYtgv8s/Qke/48x4ODmzN8QjccXIv2QRV2Oob3u/7M\n7LOvYmtfo0jHAkx+ajkdBzTFd3jrIh97TxCB3bvh119h+XKwt4d+/aBPH+jSxTgUVhqSkozt2LoV\n1q83DtP16wdPPmkMPlVu//4xS+6GORtEpNy8jM3RykpwcLB4eXkJxh6pAGJjZSeTX14oKYnpha7n\n4O5j8oC3n9Sz9pL2TXxlb8DhAo/JzjbIyR2hMmf0Bnm20Qx5zuNb+f71dbJ39VlJTkgrdHu9vLwk\nODi40G29Lv5Ksvz8f1tkmP0UWfnNHjEYDEU6/tsXVsuiCQFFPu/1Y9d+f6BYx97VYmNFvv5apGlT\nEW9vkUmTRM6dK+tW3RAWJjJzpshDD4nY24u89prIkSMldrrg4GDx9/cXPz8/8ff3L9a/89KQ8zme\n9/Pd3MayeulgU7b8/f1NPrivv/z9/Qt1fFx0knz23AKpaWVX6AAQdiZGFny4RUa6zZBXWsySxRMD\nJORYZKE+7G+3veaEn78qb3f8Ub54cplkpGUW+rjgo5Ey0m1GkYOUiMjMl9boYHOzsDCRN94QqVtX\nZPhwkR07RIpxXUtVSIjIhAkiDRuKdOkisnSpSGbh//3cTSwFmxsPXdfueWFhl8xuL2gSMjUpg8UT\nt/Nys+9Z+c8Ckg2xJvuvL8VyXUZaFlsXHuO9rgv4oPsvZGVkM27VEP574mWGT+iOe2unQg3VFWbS\nNCQkhBEjRuDn58eIESMICQnJt07nxnZ8uf1pDNnC5KdWkJ1tKLAdAO6tHalU2YqLJ6ILVf5maUkZ\nVK2hHy1FdDS88YZxQr5yZeN8yeLF8OCDcBurT5QKd3eYOBGCg2HMGJgxA5o1g3nzIDOzrFtXLuh/\n4RoAp3eFEXE42ew+S5OQ2dkGNv90lMXjA2jTw53pB55n2HNr4XzeshEREVyNSGTtf/ezYe5hPH3q\n89jbnXigf5NCrzuWcDWF0FNXiDgfS8zFOJIumZ/fSwwz8NsXO6hkl8aYL17kwsUbAaYwC15WrlqJ\nd5c8wbg+i1n2xU6e+qhrgW1TStH8wYac3RtR5Oy6uKhk6jjZFOmYu0pmJnz7LXzxBQwfDqdPG9OQ\nK6JKleCJJ4yvf/6Bjz+GL7+ESZNg6FCwune/3+tgc4/LTM9i8YTtbF5wlM+//JwPp71iMglpY2ND\nYGAgI0aMMJl8P7kjlB/+s55qNlX46M+hNO1gDEiWsmYSLhp4rdVsug9vxVc7RuLSNP81xrKzDQQd\niuTE3xc5s+sS5/ZFkByfZsxAa2qPY6PavPL024z7bzARUTcW5XRxasjL/36LpGtpTJ85gQuXTXsy\nhV3wsnIVa8YsHMibPnPx9W9FfY+C77twaWrH5cDYAsvd6nLQNep7FH/5mwpt/354/nlo0AB27TJm\nkt0uEePk/enTEBgIYWHG+22uXjXea5Oebsxqs7IypjLb2hpTouvXN6ZLe3kZeyVubvkGhwKTU7p2\nNWbMbdsG771n7O3MnGnMnLsH6Wy0e1joqRim+v9BPbfa/Gduf+o41sz9DxQUFMSJEydISrrxUFUv\nLy+WL/mTLd8FcmzrBZ6d0pNuQ1uaDHmZy5qxsbLn0/98x3PjB+b7WOTk+DT2rz3PvtXnObwxmLr1\na9La150WDzWkWoNMvp07lYiICJP/2PktWWPpptJuXbuz/e+82835ZexWUhIyeHnmwwWWXffDQQIP\nXuY/c/oXqm6AlIR0nnaeztK497CudA99683Kgk8/he+/h2nTjD2a4g6VZWbeyBLbudN430316tCi\nBTRpcuN+Gzs7qFXLGGCsrY03d6alQUKCMRBdvmwMUkFBxkCVkGC8t6ZzZ+jWzfiqaUxPL3J2mMEA\nv/wCH3xgzF77/HNjW+5COhtNy2UwGOSv2QdkmMNUWTfnoNlJbUuT742q+si8MRtzM8SCg4Nl4MCB\n4ujoKI6OjjJgwABZsWSN+Hh0E6fKjeWhtr3l1PEzFtuSnpop//x2Uj4Z8D8ZXOtLmdh/iaybc1Bi\nLsXnlilu1pml9+Bl015CjkcV6lpFhlyTYQ5TJSsru8Cy6+YclBnPrypUvdcd3hQk7z70U5GOqfAu\nXxbp3l2kVy+R8PDi1ZGeLrJypTGBoE4dER8fkXffFVm1SiSqcH+3BYqJEVm/XmT8eJFu3URsbER6\n9xaZNUv8n3iieMkpV6+KjBwp4u4uElC87MXyDp2NpomIJMWlyhdPLpPX7/tBws7EWCzn6+tr9j9T\np/ZdcssEBwdLw4YN85SpoerItDd+leR48ynLIiKhp2Nk9hvrZZj9FPm/ngtl84IjkhSXarZscbPO\nLAWpxV+vFX+nr/N9/zd7sel3EnIsssByy6fukjmjNxSqzut++mCz/DJ2a5GOqdAOHBBxdTVmbmVl\n5dl9Pb3X19fXfHpvSIgxqNSrZ0w5njVLJCKiVJouCQkiv/8uMny4+Fpbm/036efnV7i61qwRadBA\nZOzYuy5rzVKw0XM295Dgo5F8MXg5Pr09ePuXx6hSzfJfv6W5Fy/vG0ME48aNIyws70PMUiSOg1fX\nUsN2WO62kJAQPvroI86eCCI92hqvTF8GvdyL6QdGFbhcf3GX6vDw8GD+/Pn4+/sTFRWFlZUV7u7u\ndH68OXY29fnyyeV8c3BUgQkKbi3rcenM1QIn/q+EJeDQsGg3hB5YG8ir3z9apGMqrPXr4d//htmz\nYdCgPLvNDU3lJnSkpRmH3TZsgJEjjfM7jRuXYuMxDnsNGgSDBuGSnQ1Ll+YpUug7+vv1My6RM2KE\n8ebUpUuNy+rczcxFoLJ6oXs2JWbrwqMyzGGqbFt8rFDlj+w7IXVrOOU7dGWp98Mt3/ACA4PExcm0\nB+Tp6Vnom9Is9WyGDB6a730tlnpebm5uEhQUJB/2+EU2zDtU4PlnjFot6344WGC5sb0Wyr61hb/p\nMPRUtPzbebpkZ5fze0juhBUrRBwdRXbutFjEYg/Wy8vYk/niC5H4eIvHFyg7W+TaNZHQUJHAQOMr\nLMxYZxHv4zHba7aykuAxY0SSkgpfUVaWyAcfGIfVjh8v4hsqn9A9m3tTdpaB+e9tZt+qc3y+dUSh\n0nrHtkkAACAASURBVHIPbwpm+jMb+eDpqRyJ+4vIqMg8k+9pKZmkRlqe0HZ2dkZEOLg+CH9/f8Kv\nmfaAgoODLWaFXY1I5MTfFzm7J5zgI1EkHW9EDexI4UamV61KDiT85YZ/va/x7uRKh36N6TasFTZ1\nbiyUaKnnFRoayvjx4xn9zkSWfPI3fZ73yfd6GLINWFnnP3mdnWXg/P4ImrQv/FpVWxcep/uwlsV6\nJk6Fsno1vPKKsWfjY/laW+zBZmTAuXNQp5AZe1lZcPQo7N1rXNfszBkICYGoKGPiQK1aN5aWuZ4g\nkJlpTCLw8DBmot13nzFrrE0bs+ufeXh4sGnTJtPklJEj8Zg7F7y9jWncI0YUnPRgbW0s26oV9OgB\ny5ZB9+6Fe58VTIkFm5zHQH8A3A/cB1QH3EUktKTOqZlKiktj8tDlIDBt3/P5ZoKBMd3414nb2TT/\nKGMWPcZ9PTyAvI9YPrUzjOkjV+HbfDDhiee4FG56M6ibmxsvDHuDsT0XEXs5ERsX4Fre810fBhMR\ngg5HsvP30+xddY7YiERadXOjWWdXOvRrQsMWjxGf9jwTJow3yTpzd3fnWmQSp3aEsXP5aRZ+FMCT\nHz7IwLc6Ym1tZfHD6/q57+vhzheDlpGWkkm1GpYXBY2LSqZ2vfzXPDu3PwKHhraFXkwzMz2LTfOP\n8MW2fxeqfIW1c6cxtXnt2nwDDeSz2GS3bgUHmrg4+PNP42vrVnB1NS6U6eMDw4YZg4izs+X1y1JT\njSs+BwcbM9H27DHe+3PpkvHDv18/GDjQmB6dw8PDI++XpV69jMe+/jr8+CPMnWvMiCuIv7+x7ief\nhJ9+Mp7vbmOuu3MnXkB34DKwBuOTOrMBtwKOKcne3T0lMuSavNx8lnz/+jrJyiw4kyouJlnG9loo\nH/b4RWIjE82WyczIkp//b4v4O30tO1ecFpEb2WhOTk7i5OQkjz7STz4ZMV/8nb6WtbP2S1ZmtsXh\nkcFPDJVlk3fKS83+K897zpSf3t8sp3eHFSrzy5zw81fl3Yd+ks8HL5OsLMvn5abkglGNvyswUeB5\nz5kSejr/Mj++s0l++ajwE/2bfz4iY3stLHT5Cink/9s77/Aoqq+Pfy+91xRIKAkBpIlUAQEJKCBI\nUWlCABH8UQQVBQWRqEh5BUKv0kF6D9JDCT0QeodUAgk9hCSk737fP24SU2Z2NyHJbnA+z7MPYebO\nzNnd2XvmnHtKAFmuHLlvn0nD/f396WRnZ3rUoV4vS9n06UOWLEl27UquXk0+Mh7MYTJPnpDr15O9\ne8uotw8/JDdskNFwhkhIIGfNkjXTFiww3U3n5SXdjXv2vL7sZgLmjEYDMEhTNjmHz/kQ9rObRfc5\nZ00a73f5IQc6zOWKnzxUFdOjgBf8ocly/tphvaIy0uv1PLH5BvuVn8n5Q/cw/HlU8j4l/3bZ4uXY\nsfgYzvrSnTdPBWWqppgScTHx/LnNGq6fcMzgmk3SBDas9iKDkWahDyPYs9Q0VQXo7+/P3r370LZA\nVXb9uJtJ61A6nZ7Dai3khQO+mXuTuYHoaLJBA3LmTNOPWbOG/qVL06V1a+PFJj08ZA0yJyc5qT9/\nnjVyGyIqity4kWzTRkaSTZlifA3p9m0Zlt2tm+nrTWfOyDWqY8deX2YzoCmb/wgXD/qxt5UbT++4\nZdL4Mztvs7eVGz03qC9Ontt9ly42M7jN7XTyYnbKENUe3Xpx1EfzOKTGAt48fV/xHP7+/uz68Wd0\ntK5Nh0INOHfUJr589irjb9AEHge+YK/S0/gqPCad5dWlS5dUE5iL7YxUOT1pObjiEid326y4L7P5\nP54brvGHJsuzTMFaJCNHkp99ZvoT/dy5ZKVK5I0bhsf5+JAdOpBVq5Lr1imGTxskNlbm+fj5yQrS\nAQFSUekyaE1fvUq6uEilMH06GaMe5s+YGHLwYLJmTXldU/DwkBbOzZsZk8sC0JTNf4ATm2/QxWYG\nr5+4Z9L4nbO92M9uFu+cU06s0+n0XP/HMfa3n8UbJ4OStytNstYly/P2LeVIrNCHEZw9cBf7WLtx\n2/TTjH4Vl/E3l0F+brOG53YbjgwLexLJHiWmGpz0x7ddy2Mbryvuy0z+T1xsAr+qOp+XDllmefgs\n4dgx0t7edGtj4ULS0ZEMDFQfo9PJdgNly8rJ3Zgbi5TnW7WKHDZM5uTY2JD58kkF4eAgraJKlaQL\nrkABskoV8qOPyDFjyB07yGfPjF/j5k2yc2ep/A4eNDx23jxpEV0wHtlIkly5UsqYE1ZbFqIpmzcc\nj5WX2a/8TPpdemh0rE6n5/LRHhxacyEfBbxQHBMTFcc/e27lD02X83lIeKp9pk6yCQk67pp3jr2t\n3Lh8tIdq0mZ2MG/Ibu5e4G1wzPFN1/lrh/Wq+4N9nrO3lRtjo5WT7tRCvw0l9m2fccbgNXM9sbFk\njRoy1NkUduwg7ewMP/GHhkpr5r33jFsGAQHkhAlk7dpSqfTqJd1sR4+SDx6oWzDR0eSdO6S7O/n7\n72T79mSJEmSzZlK5PXhg+Lp79kjFNXiw4dDnpBDwM2cMny+JkSPJjz/OuOVlRjRl8wazf+lFflFh\nttFFbFIqgFlfuvOHpstTraukJOzpK45qtoJTP9+mONG2bPG+0Uk22Oc5R7+3gj+1XMWgm08y/+bS\nYDTDPJFZA9y5f6nhHJrJ3TZz3xL1p8x5Q3Zz9bjDqvv79OmTIcvmWXA4e5edbtL3lFvx/+UXupQv\nb/T7IUlev05aWZHeBh4KAgJk47TvviPjDFjE3t7kp5+SZcqQI0bIfJ7XnaBjYsgDB8iBA2Vvna5d\nyePH1ce/fEn27y/dZYbcX3v3SkVoioUTF0c2bZqxtS8zk2uUzW+//Zb8Onr0aDZ+JG8GB5Zf4hcV\nZvPBXeMmf3xcAv/stZW/fPg3oyOV3RBPgsI45K0FXDnmkGKyYbDPc1Yt3sjgJHto9WX2tnLjztle\nWZqwmJE1ku8aLk3l+kvL0wcv2av0NFVr66F/KD8vM51hT9SfUt1+Wsb8eQqavGYzpfsWg8ort+N/\n9Sqd8uQx7fOIiiJr1SJXrFA/4d27srTNvHnqY+7fJ3v2lG67OXMyllCZESIipLvPyYl0dibPnVMf\nu3y5VCYHDJQu2rZNutRMSWz285NK2dh6lpk4evRoqnk71ygbDdPxXH+N/exm8cEd44omIV7H/+ux\nhb92WK/qFgrxfc6BDnO5ze204v673sHsW24ml//hrjjp37ntw3lDdnPIWwsMRniZap2kRc19Z2Nj\nk+o8Tx+8ZM9S0wx22vzru/0G65j9X48tXPe7p+r+KxdusFjesqnkKFasGI+pRBCd2HKDQ95awJio\n7F+vMhcu9eqZbun9+CPZo4d6AMGDB2TlyuTSpeoXXLVKTsKuruSrDASbxMXJkOagIFkINCLC9ECG\n+HgpU/ny5P/+JysSKHHihHSXbdyofq45c8g6dUxTkAsXSjdiLnCnacrmDePc7rt0sZ1hUvVinU7P\n6S7b6dp+naqieegXygEVZ6u2J752LJB9rN3o5S4rOKfth37t0k2OabWaf3TZmFwRWgkl66RSBQfO\n+nY9x7ddyyE1FnD424u5+Jt9fPE49Y/QUHmclE/Ra389ynlDdqvKEOL7nJ1KjOVH7TumqladpKwu\nHPDlQIe5BhVDvcotTZ5Yn4eE08V2Bm+dUY7UeyOIj6dzgQKmrWFdvy6f/NWqM0dHkw0bkpMnK++P\ni5MTfc2a5JUrRuXy37CBLnXq0Ll0aboULkz/PHlkoIG9vcwDKlxYVnSuV09WZF66lLxnJMgmLEwG\nHlSsqO5au3pVnn+zcjQj9Xp5vX79DF+LlEqmSRMZNGDhmEXZAOiW+FoEQA9gaOL/31cZn92fwxvB\nrTP32dvKjbe9jCxaUua/LBy+l2PeX6UaBfb0/ksOdJjLPQuVfefXjt9jH2s31Qiq0EcRHP72Yv71\n3X6jCZlq1kmTGm149p87DLz+mD7nQ7hg2B7+2HylScemfPXo1ou9rdxU3Yp6vZ4jWs5i2RI26Y6t\nVKkSb1y5zS8rz+H5/eo5MCc232D5wtVMmlh1Oj3Ht13Ltb8eNfi55Hrc3eliZWWaAv74Y3L2bPVz\njRihbvVER5MdO8pzhIen35/E/fvkTz/Rv2xZOqVRgk5KdflevJCusUWLZAJn2bJycl+82LDlsWcP\naWtLzp+vvP/yZalY1ZYEIiNlQMWGDerXSMLLSwZTZMSKMwPmUjb6RIsm7euIyvjs/hxyPcE+z9m3\n3EyjYb1JbJpygiPe+Ut1bSIiNIrDai/ilqnKBRJ9LoRIReOhHAUU9iSSQ2su5NrfPE3KGzEWwZVk\nMbVq1Yr2qEufu/9O+kpWUdpX1XJv86/v9qtef99fF/hW6XdVj6/v0JLzBqtbRQ/9Q9nH2o2d239q\n0sS6cdJx/thipUlVHHI1PXrQf9Ik42tq3t7SGlDLSzl6VK7TKLmn4uNlmHHPnupl+cPCZARXmTLk\nyJF06dTJdNde2mvt3SuDAqytyT//lIpOCT8/qTDGjVNWkIcOSYUUEKB8/Llz0uX21ITAke7dyWnT\njI8zI2Z1o5n60pSNYSJeRHNIjQWqFkhaTmy+wQEVZ/NZsPITYHxcAn9uvUZ1cn4c+IKfWP/Cti0/\nVlxfiY6M5chGSzO06N2zey/VH78pAQBJysjW1lbxPE7FGjEqIlZxXSjg6iP2tnJjs3ebqyobuyLV\nVS3A2Oh4fttgCXfMPGOSrBcP+rFf+ZkGk0bfCF69kmHCz56lc6+msyD69CHd3JTPk5Ag1zC2bVPe\nP2qULBejFpXm6SkV2VdfJbvoMhOeno6bN8lPPpF5OEdUShI9fSrdcL/8orx/xgxpKanJ/u235JAh\nxmVJcs2pKT4LQFM2uZyEBB1/7bCei0aYVmfK79JD9rZyM5h3s2DYHv7eaYOi6yv6VRz71ZhE27L2\nihOqXq/nnz23ckb/nSZnwvv6+rG6dQPmy5tf8ZwZSZJUmuyL5SnLwzuVFYGjgyN7VvyNR/6+YtAd\nZ1XWSnGS1Ov1dOu3g3/22pr8fv39/dmlSxfa2trSxsaGXbt2TT4uxPc5XWxm8MrRAJM+m1zNvn1k\ny5bGx4WGygTK0FDl/WvXyuRLpfvpwAGpSNQSHJctk9ZDYh22pPvJxia9u9Qky0aJ3bulG8vVVXmh\n/skTsnp1csmS9Pt0Otnlc8oU5XOHhkoLypSKAR06yIg3C0VTNrmcv12Pckyr1YyPM16eIyI0igMd\n56pmvpPk4TVXOLj6fFX32uyBu1jfQX0RfM9Cb35bf4lqwEFa/P390/W0KVy4cKoJOqNPoUkTSvNm\nLVmlSEOum7mXpIF1oZptko9TqplmyErZNOUEv22wJFXIuJp1c+3yLQ6tudBoUukbw5gxsvOmMVas\nkCVslNDryXfeUS7aGR0tKwzsV3GPLl8uEyrv3CFp3N1qSkkhVR49Ips3Jz//XNlKuXNHKo3zCoE2\nAQHSvadWKWHKFFkCxxh79pCNG2dI7JxEUza5mPP7fdnffpZqNeaU6PV6Tv5sMxd/o24BJWXG+19J\nHZ6cNHk3qPMunYo14ruNldc2mjdrmeHkRGNWy/OQcDaqpqxskiwNpXDpJ0Fh/MppHnfO8kq+lprS\ncnZ2TvVeu3btSmsrG+ZBPoOyHVl7lQMqzUnnjlR7T7Vtmxn8/N84Wrc2rbLzZ5/JqsxKnD8v3VRK\nFsOcOWSnTsrHnTwp1zsSFQ2p/r3YWlnRpVEjHmvZki7Fi9M5b1665M1L/6QW06NGkYcPGw8vjoqS\nQQq9eyuP3bBBRsoprUu5usrETyXCwqQyClLPDyMp3Y12dhabd6Mpm1xK6MMI9i0306A7JuVE3LpJ\nB/arMUk1x0Sn03P0eyu4c7ZXunOkc0sVK6b4o63v8D7/dj2aofehpgDq12rMqZ9vY89S0ziq+zTm\ny5d64s+XLx83bNigaEGcPOjNLyvP4fYZqUt/mOqOC38exRHv/MWaDsr5Ia1bt+a5PbIIaeD19GG6\nau/J0ap2ptsk5Dr0ejlBPjRSJkmvlxFeamVffvpJeb1Dp5N1zM4qVDCPjpYKyt091WZVCzlvXvp3\n7UqnNK41p8qV6f/33+Qff8h1F0dH6ZYzVOQzKkrmvUyYoPxeO3eWQQVpCQuTn4OaZTV8uGlW4vff\nmzbODGjKJhei1+v5e6cNBhfg1fJW1NwEuxd488fmK9Nl9qtN0Gknf4dKjuxccixfvTRQ5VYBtfPX\nrdCCexZ6M/x5lOoYBwcH5e0FG/DQqsuKn0kVxyoGXSfhz6P4bYMlXDbqoGrZmQ4fdGEfazfV/Bg1\neT/v1TtDn02u5vlzGRxgbN3O31/mtahRr55yy+ijR6V7TQk3NxktlgbVh41u3Ux7EDl1Slo6zZoZ\nzrcJCZGL9V5e6ffduUP/kiXp0qNH+uCa0aPlSwlvb1mlwNjn6ekpWzhYIJqyyYUcXHGJ39T7i3Gx\n6k9YGVlUD38exT7WboqJoMYSJpMsnfEDZmfKRWRK9JaaDKVKlVLc3rh+M8VrhT19xa/qT2V9h/fp\n3Cp9FF3oQ5kXtPxHD+r1ekXZKthVYudSPxu1KNMFIjgq5HC8yVy+LCPIjLF3r1wgV+LVK5lYqeR2\nGjVK2XpISJAh0hfT178zdK+ZvC6o08kQYzs7w4v2a9eSjRqlUw7+/v50SuMZSL7fb9+WSkrJctLr\npSV39ar6NUlZ8LR4cYusCK0pm1xG6KMI9rE2HE1GZmxRffloD84fqtwB0JSESQCsadU00+XxU4bF\ndu3alV26dEn11JdRy0ZJoQZef8xBVeZx1c+HVWu7feU0j+v/OJYqii6lbB85dzaqaJLw8/Njszof\n0K5Idfbo1uu/pWhImUOSYi0sJanW2Ro3pn/PnsrnuHRJVmlWolkz5YTIkyfJunVVxfK/fZsuxYuz\nda1aqR42MtwWYtUqWTZHbVLX6aRVtjt1bpbR67zzjixpo8SwYerh4Slp25bctcv4uBxGUza5DLd+\nO7jiJw+j40z98YQ9fcVepaep5nz43PVNV+tL6WWT14lhT18vg1ntyfPYsWOK248e9WR56woGrSJS\n1h/rbeXGw2uUS5jcPH2ffcvN5N7FyiV5SNl2wMVmBm+eMrJIS+nmXD3uMIfVXpSutM5/Bnd3mc2f\nBsXvuFQpZWW8e7cM51WiVCnlZMfJk6XVo8by5WS7dqbJZSw6bcQIctAg9f0rVpBduqTaZPQh8Kef\n1Ndc1q9Xj9pLybhx5K+/Gh+Xw2jKJhdx8/R99refxagI4w2i/P39Wd7G+ES8afIJzh6o/hR07fg9\n9q85KfnpXs2aqJDnnddufmZIQaZNCvTYdpo/NFnOr+pPZdeOnykmC8ZGx3PRiH0c6DiXPudDFK+5\n1m0PKxeszwZ1m6gW/3Sfc5b97Weli9JTQqfTc8nIA/ym3l8GK0O/8ezYkW6iJTNoQaxdKyO70hIT\nQ+bPr7x+0a+f4YrR7durJocaTTxNS1iYbDGgFtwQFiZrq6VItDT6/nfuVFewt2/LIAVjrF8vKwpY\nGJqyyQX4+/uzT58+rFiiBts07WByP/vejhPY4YMuqj8evV7PQVXmqXbkJGVZlWWj/u00qPYE2LPC\nb7x34/X605ji+gu69ZR/9tzKfnazeHDFJdVWBX6XH/LrOos4pfsWRrxInzMUH5fASQNWsng+q3Tv\nJelzSkjQ8a/v9htsJpeShHgdZ36xk6OarWBEqHJPoP8Me/bI7pZpMNW96+/vT5dmzeicpnI3STmJ\nFy+ufN1OndJFoaWiQgXDnT8zSr9+svKyGg0apGqIZtSC8vWV7jkl4uNl51Bj3UjPnrXIIAE1ZZMH\nGhZBQEAA2rZti/Xr1+N++G0c8dqHtm3bIiAgwOBxF/b7wrp0eezx2Inly5cDAAYOHIi+ffsmH+t3\n8RFEHoFqjcqrnifoxlM41LVJ/r+joyM8PDzg4uKC1q1bo0uXLqhTpw4u6Xfg8169jcplCHt7e8Xt\ndnZ28Dkfgqm9tmFMy9VwrGeLJXe/Rtsv6yFPHpFqbHycDusnHMP4D9fhs9HNMHZzNxQrVSjVmKf3\nX+Jn5zXYdHAZIhKepdrn5+cHV1dXvHoZg4ldNiHw2hNMPzUAtg6lDMoe8yoOkz7djLDHrzDJwwXF\nShfOxCfwBlGiBPDyZbrNhr7jJJLu+XVnzsDzyROsW7cu9T1fuDAQHQ3IB9HU5M8PxMeryxUXBxQs\nmKG3YpCGDYEbN9T3V6sGpPhNJP9+WrZE67Jl4eLiAg8PDzg6OsoBFSsCwcGAXp/+XPnyATY2QEiI\nYZns7ICHDzPxZsyEkgbKqheACgC2AggD8BLANgAVDYzPZp1ruWSmnz1JTuy6kfuXXjT4JLVp8gmD\nxSlJcny7tTy/z0dxX0bDq42hdD47mwr8X4OpHFBxNre5nTbYpuDasUAOq7WQv3fawKf3ldegTm2/\nRRebGdz8fydVn7KbvducQ95awIVf7zWpMkPoowiObLyMM7/YadL4/wR37yq6fBTvx2LFUt0zJt3z\nZcrIrP20DB8u2z2r0aiR+gJ8ZvjrL1lzTY2vvpJj0nLkCNmqlfIxRYuqV65++20ZOGGIyEiyUCHD\nY8wAVCybfNmlxIQQhQEcBRANoF/i5skAjggh6pKMzq5r50aCg4MVt4cYeLqJfBGNq0fv4Yc1n2Dw\n14Pg5+eXan/S0/tbEZ3Rut/bBq+fJ28e6BIUnrIAuLq6pjt30INADB3wLQ4c+8fgeZVwdHTEbvc9\n+O7r0fC7E4j40HzoWuMLfP5dezTp8hby5lM2uJ8EvcTqsYdx8+R9DJrZFs271YQQqS2eqPBYLBl5\nANePBeGXnT1Rs1kFuF9XfsoOuRKF3xc0Q7tB9Y3KHHjtMSZ22Yw2X9RFn9/eT3fd/ywVK8on8IQE\n+USeSNKTvaurK0JCQmCXLx8mPnr075M9TLzna9YErl8HbG1TD6pfHzh8WF2uDz8EduwAWrTI1NtK\nh48PULmy+v6oKGmJpUWvB/KoOJDy5gV0OuV9BQtK68wQhQsDMTHS8ssF92O2KRsAgwE4AKhOMgAA\nhBDXAPgAGAJgdjZeO9dhitshLRf2+6FOq0ooUqKgwR9u0eBnqFTLWvU8AQEB2OuzBNu/D8c7G2ti\n4sSJJk0K173vYvR7K9FuUD3Ua1sF1hVLKE7Cej3x7EE4Aq8+ho93CK4fD4Lv+Ydo2LgnRoyvgRbd\na6J0uWKq8kWERmPbtNM4sPQSOo1ohG+WdkKhogUUPg9fzB+yFw0/csLcy/9DkeLSjTJx4kR4eXml\nUpjF85XFys2L0LqLcUVzdtcdzBm0G4PntINzH8NK+z9HoUKAvT3g6wvUqJFql6OjI9auXSv/ExYG\nVKiQSimZdM+/9x5w4gTwwQepB7VtC4wZIyfkAunvBQwZAjRqBIweDZRXdx+bhF4P7NwJrFunPsbf\nX1kZPXsGlC2bfjspFVTRosrni4+XrkJD5AIFk5LsVDadAXglKRoAIBkohDgFoCs0ZZOK0d+Nxc71\n+/CKocnbnJycMHHiRNVjLh8KQP12TgAM/3DDLr5SncyT/OZJE/F134vw8vJK5V9WO3erTxrhs+5N\ncWLTTawZdxQJ8TpYVSyBYqUKQeQRiItOQPjzaIQGh6NIyUJweNsGVRuVx2c/NkPtlpWSlYEaEaHR\n2DX3HPbM90bTT2tg3tXBsLIvkW5c2JNXWPbDQdw69QDfLuuE+m2rpNqf9JT9/Tc/4rznNViVscHa\nf5aizjs10p0rJXo9sWnyCez/6yJ+2/053mqi/Dn856lfH7h4MZ2ySUWpUtIKunZNjofyQ0C6e/7j\nj4HvvgN+/z31+SpVAurUAbZtA3r3Tn89Bwfg66+Bvn2B/fuNT9yGWLJErqE0bqy8PzIy1ftKhY8P\nUKVK+u3PngHFi6vLFRYGlCxpWK6YGGkB5Ralo+Rby4oXgIcAFilsXwDgscox2eZHtHTc55zlz58s\nylBI5rDai+hzQYb6Glqz6Vb0/1TLy5jiNzclN0Gv1/PF40j6XgzhlaMBvHzYnzdPBTHo1lOTQrhT\n8vheGJeNOshepadx1gB3BvsoJ9QlxOv4z/xz7G3lxuWjPVJVZE6JTqfnztle7G3lxv1LL5rUEiHi\nRTQndN7A0e+tUO0HpJHItGlyDcUYw4enqxeWHIZcuzZdypVLf88nJMjWAgqVArh3ryx4qdZILSFB\nhmV36WK426YhPD1JKyvjVQTat0/1fpKTlVu3Tm4LnWpf27b0VyvDk5BAFiwo668ZIjhYtlWwMJDT\noc8AYgFMUdg+EUCcyjHZ+iFYMmPeX8Wz/9wxPjCRhHgduxaYnKrEv1r+QH/7WXwcqBzSm6EQ1Yzk\nJmQQnU7PS4f8OaX7FvYqPY1Lvj/Ax/fCVMdf8vDj8LcXc6zzasXyO0k89AvlWOfVHP3eClWllRaf\n8yEcVGUeF3+zz2CpII1EvL1lp0pj7N9PNm2qvO/VK5nLcl+hDt3Uqcp5OHq9zKJXKniZRGwsOWAA\n+dZb5LFjxmVMIiFBtnq2spKVoNXQ6ciGDckdO5QfyoSg/4ULyvtKlFD+Hfn6SgVrDG9vWb3AwtCU\njQUT8SKa3Yv/yZgo05Mlnz54yb7lZpo09ufWa3h+v6/iPtVikp/nTDHJYJ/nXD/hGAdVmcfhby/m\nP/PPGYxE870YQtf26/hV1fk8te0m/fz8FFsPJMTruGPmGfYuO53b3E6bVIVZr5cWUB9rN57YbJnl\n2y0SnU7W+rprpFV5XJzs9eKjHPXIESPIsWPTbw8Pl0/wFy6k3xcYKM958qRiG4rkbbVr06VoUfo3\nbUquW6defubRIxlVVqeO7Ftz+7bh97RihYx80+kMegkyFG26ebNiomw6Nm0iP/3U+LgcRk3ZZOea\nzQsApRW2l0ncp8jvKXyzzs7OcHZ2zmq5LI6bJ4NQ/V17FCxsul85OjwWRUualkdQu2VFXPbw4Lj2\n2QAAHyFJREFUR8P2Tun2KfnNyxSzRf7LtXHXOwTVG6sHKGQGkgi4+hjeu31wevttPH8QgRY9a+Gn\njZ+hWqPyqlFegdefYOMfx3Hz5H30GNcCHw1ugAfBQanWmwDA3d0dTpWrISYkP9q81RPTz3wJ+2oK\nC7RpCHvyCnMG/oOwJ68ww2sgylVRunU1FMmTB/j0U2DLFmDcOPVx+fMDX3wBLF4MuLml3//DD/8u\n6qdcVC9eHJg8GRg6FDh9OlXUGypXBtasQUDXrmhbpAj87t9P3nX8+HEIIRAUFJS8zSsgAB7LlsFx\n6FC5DlOpklykj4qSeTKhoTL4wM0NaNfO8HrInTsySOHgQSBPHoNBOnIOVt4XEBAAV1dXBAcHw97e\nHhPz5IHje++pXzeJa9eA2rWNj8tmPD094enpaXygkgbKiheAwwCOK2w/CuCoyjHZp24tmDXjj3DN\neJXe5ioE3XrKwdXnmzT23o0n7FtupmpXzbQuMj8/Px5adZn9ys/k7x9voNeuO6r9cYyREK9jwNVH\n3PfXBU532c5+5WdKF9W3+3nlSAAT4g1bHHfOBXPyZ5vpYjODW6edSrUuY6x4qKkdGb123WG/8jO5\ncuwhLX8ms5w8KV1VxtbDAgJkP5cwFRfpsGHkN9+k367Xy1pnSj1vSLq8957BewFprYn4ePLWLVlI\n1N2dPHhQWjGGetikJChI9tJJ0Z45M5ZNly5d0rvX8uWjf5rCnoq0a2e4ioKZgBncaN8BiAPgkGKb\nQ+K2kSrHZPPHoLCAZwFVeid23cgTWzLmtgl9GMHeViZUhk1kQucN3DJVoV+IAWKi4rh/6UX+2GIl\ne5SYyl8+/JsrfvLgviUXeG7PXd48FUSfCyG86x3M6yfu8dzuuzyw/BLX/e5Jt347OLLRUnYr+n/8\nX7X5dOu3g/uWXGCIr/F1k4QEHb3cb3Os82oOqDibO2d7KdZjM6UtgqGk2IgX0Zz1pTsHOs7lteMG\n+pZoGEevJ2vVMry+kUT//uoFJJ8+lZ03z51Lv+/RI1mGZsuWdLtMuReSXmptxk3m0iXZhnpmaje2\noUAatX1du3ZVvm/79DEsQ1KLgWfPXu+9ZANqyiY73WhLAQwH4C6EcE3c9geAewCWZON1VUkb5gsg\nXZivOXjkH4byThlz25S0KYr4mAREhsWkK9OixP9mtcOopitR70NHVG1gWt5BwcL50f6r+mj/VX2E\nP4/C7TMPEHDlMW6feYDQkEi8CotBfGwCRB6B/AXzoWipQihpXQTWFUvgbWcHdBzaEJXr2KBICdPc\nfWFPXuHQqivYt/gCSpQtjC4jm6Blz1rIlz+v4nhDOUhJqCXFeu/xwYKhe9Ho46qYd2Ww0TBsDSMI\nAXz7LTBrFtCmjeGxEybI8i+DB8scnZRYWQFz5gD9+wPnz6fOQ7G1BXbtAtq3l2HBbdsm71ILz1fC\nlPtGkfh4YO5c4M8/gfnzgV69Uu12dHSEx969cG3ZEiGFC8OuRYtUOWseHh5w7dkTIX5+sOvYERMn\nTsTAgQMVLxVirAzNqVNA9erKOTyWipIGyqoXZLmaLUhdrqaSgfHZqnEzWxImu3GxmcHnIRkPrx3T\najW996ostipwcutN9rObpdji2FzExSbQa9cdTv5sM3uWnMpZA9x5+6xKdd1E9Ho9L3n4cWDd/2OJ\nAtYZsmzCnkRyWp/tHOg4l5cPm9+qfaOIiiLLl1cOU07LL7+QPXqo7x8wQEagKbnljh+XQQE7dyZv\nUrIcKgKsVKRIplyrqYiLkxWWa9QgP/xQRospodPJgp2dOim74x4+lHKnaIyW6TlpxAhy4sSMvY8c\nAjntRsvMK7uVTUYajeUk3Yr+n8EILDW2TD3Fuf/7x+CYtG7D9bP2ymirDLrtspK42AReOODLOV/9\nw95lp/PH5iu5b8kFRoalr9qcEr1ehkePeX8V/1dtPj3XX6Ovr4xGa9q0KYupdUakDK3ev/Qi+1i7\ncdmog6o5ORqvydy56qXzUxIVRVavnpyDori/USP1ni/e3rKL5p9/JiuktGuPx/buZZdatWiTJw9t\n8+Zl1+rV6b9tm/FqyqQMxT58mBw5UirQVq3IffvU16RiY8m+feU4pZwenU5+LmnWnDLVXyc2Viot\nNaVnZjRlQ8u1bDKrbJ4+eMlepaeplrlXu5E9tp3m4Orz+UeXjTlm5TwLDueh1Zf5Z6+t7FlqGn9o\nspzbpp9Wzf9JiU6n59l/7nBUsxUcXH0+D6+5ohhYoJYL5HMhhKOareAPTZYb7Xyq8ZrExpJVq8qc\nGmOcPSvXZwIClPc/ekQ6OakX3AwKIps0kZN4ml4zivd+yZL0r1FDtqCuV4/85BNy6FDZhG3UKHLI\nELmtTh2ySBF57t9/l4EEhggJIVu2JLt2lUpKiT/+kF1H49KvPfr7+9Olc2e2zpePLp9+atzy2rCB\nNPMDsiE0ZcNMPkXkAC62MzKdpT5n0C4uH63c0dOQco2NjufWaafoYjuD49uu5dF1V41aFqaSkKDj\nvRtP6LHyMucN3s0hby3g52Wmc3K3zdy/9KLJLsOkAIVhtRby2/pLeHzTdZPyZZIIexLJeUN208V2\nBvcvvajaE0cji9m9WyocYxnwJDljhuzJojZJ37sno74mT1a2KuLipPVjZUXOnp08mRt8sIyMlJbR\n1q3kggWyAsK0afLvrVulGzDahN+CXi/da7a2UimpRbKtXi0DCoJV+knp9dI9N326adds3Jjcvt34\nWDOhpmyE3GcZCCGY3fIkxbSHhITAzs4uXdFJc/Bt/SUYsaRTpnJaXjyKxDfvLMF4956o0bRCqn2t\nW7dWjH9v3bo1jhw5AgCIi0nA6e23cGz9DVw/dg+ValujehN7VK5jDbuqZVDWvjiKly2MwsUKIG/+\nvCCJhDgdoiPiEPkiGmGPX+HZg3A8DghD8N1Q3L/1DPdvPkUp22Ko/q4dajSrgNotK8Khri3y5jWt\nfdKToJfYt/gCDi67hKqN7PDpD03wzgeOJldajo9NwD/zvLF16mm06lMHLr+/r/WdyWl69pT1yaZN\nMzyOlLk3kZEyTyevQjBISAjQoQPQpIlcmFcqvHnzJvD994CfHzBuHFqvWQPPY8fSDUt5778Wp0/L\nnKIXL2TttCZNlMf9/Tfw00/AkSOygrUS8+bJcWlziJTYv1/mI12/rl5N2swIIUAy3Y/1P6dsLJHp\nfbajfjsnfDjgnUwd7+V+B4tH7Me0k1/ApvK/zb/69u2LdQqVal1cXP6txpuC2Oh43D0XAh/vEATd\neIqHfi8QGhKBiNBoxETGISFeDyGA/AXzoVCxAihWuhBK2RRFWfvisHEoCbtqZVGxphUq17FG0ZLG\nI+RSkhCvg/ceHxxcdhm3zzyAc9+30Wl4I9hXNz3aRq8njm+8jr9/8UTlt63x5bQPUbGGVYbk0Mgi\nnjwB6tUDNmwAWrUyPDY2VhbcdHCQE7fSJBoRAfTrBzx+DGzcqF7u39MTmDIFfU+cwLqYmHS71e59\nk4iOBtzdgYULgaAgYPx44MsvlRUkKRXtggVSQdSqpXzOs2eBzp2loqla1fD1dToZxTd+PNC9e+be\nQw6gpmzM7jpL+UIO5NlYIjtne3HOV4YX+o3hPucsBzrO5YO7/8bdW6rbMAm9Xk+f8yFcMvIAXWxn\n8MfmK+mx8rJiTo2x85zbfZcj3vmL37+7jFc9A7NJYo0MsW+fzItRan6WlogIWR5m0CB1d5ROJ11N\n1tYymdJAAqn/gQN0Klky9b1frhz9lfJ31NDpZKLnsmUycq5kSenu2rxZvfgnSYaGkt27y5ppSrXe\nkggIkEEOu3aZJs/ixWSLFsYTZ80MNDea5fLgzjOMa7MWK4O+NdnVpMSBZZewZtwRfL2oI5p3kya7\npbkNSSLgymOc2noLJ7fchC6BcHapg9Z931a1YtKV80h8DyRxycMf6347huiIOPSd6Ixmn7ylNTaz\nJH79VVobhw4pu79SEhEBfPIJUKYMsGaNcjMyALhyBRg0SObgzJkjLSgFAgIC4Dp+PEJu34ZdfDwm\nFisGx1u3ZFn+6tVlfx0rK6BYMWmdxMcD4eHSKrt3T5ajKVMGaN5c9tP5+OP0TdzSsnevLKvTpYss\neVNIxcJ/+FBafN98I1/GCA6WLQwOHQLq1jU+3oxobjQL57uGS9F/ShvF+mUZ4bbXA8zs747KdaQb\nya5qmSySMPPERsfj+rF7OL/XF+f+8YHII/DeZzXQvEdNVG9sZ1A5KCXiOjk5wW3cEpxYGoiol7H4\n3LUlWvSs9VqKWiOb0OuBzz6TSZirVhnvvRIbK11Tfn6y06ZaAqZOJ11uEybIrpzjxxvup5MEKSdu\nX1/577Nncr1Ip5O124oXlzXTKleWCqm0icnWN28CY8cCt27J2m9pm72l5N49mZA6cKA8xhh6vVyz\natYsfV8fC0Rzo1k4B1dc4rgP/s6Sc8VExXHjpOPsXXY6p/XZzpun75vUwyWriIuJ542TQdw0+QTH\nffA3uxf7kz+2WMlNk08w4OqjDMmiFlVUrWRjHtuYseg0DTMRGUm++y7500+muYD0enLSJJnf4qEc\naZnMy5cyudHaWoYeHzwo3V85gV5PenlJF5u1NenmRsYYSWE4f560tyfnzDH9OlOmkO+9Z9h1Z0FA\nc6NZNgnxOnxdezEGz2mPRh2MLBSaSGRYDA4uu4T9Sy6CeqLZpzXQoH0V1GhWQbGtcmaIjY7H/VvP\nEHDlMfwuPoKPdwgCrz1BxZpWqN2yEuq2row6rSpnOGAgCbWIOmdnZxw9evQ1pdfIMZ4/l26j7t1N\nfzo/fFhGqvXoIas+FymiPjYqSkZ0LVoku1z27i0tqoYNsz5qKygI2LpVXi88XLrBvvpKuuPUIIGV\nK2WV6CVLZJVsU9i7V5773Dnp9ssFaG60XMCF/b5YMHQv5l4ebFK9M1MhCb+Lj3B21x1cPhQA/0uP\nUM6pNBzetkH5qmVgXakkStkWRbHShVC4WAHkL5gXIo+ALkGP+BgdoiPjEBEajfBnUXjxMBJP74fj\nSWAYHvq+wItHkShftTQc6trCqUE5VGtkh2qNymeJMgu++xyfdemBc3fSK5XXiirSMA+PH0v3UufO\nwJQpprUzfv4cGDEC8PaWkV3t2xs/5vJlYNMmYOdO2TKgTRugRQvZvqBOndT11oxBSrfX+fOyHtmR\nI9L91qUL4OICtG5tXJk9eyZbVN+8CWzerB6ZlpaLF+X7dXcHTGk5YCFoyiaXsGjEPjwNeolfdvTM\ntjWI+NgE3LvxVIY3+4bi6f1whD1+hcgXMTLEOU4HvZ7Imy8PChSSYc5FSxVESeuiKF2uKKwqloSt\nQ0mUr1oGtg6lkDdf1smZEK/D2V13sW/xBQRceYx63cth4V5XBN4LSB7j5ORk9uKpGpnk2TO5/lC3\nrlzbyG9iD6e9e6UFUbu2LIRp6oQdEAAcPSpDiy9cAG7f/ndNpnx5WciyWDEpBynDm1++lEECDx7I\ntaMSJYD69RFQowZcr11DcGws7CtUMB5so9fLQIexY6VimjRJPeghLTduyLWohQtNt4IshBxXNkKI\nHwA4A2gEoByA30n+YeSY/7yyiY/T4bcO61HeqTSGL/4YefL8NyKrgm4+xaGVV3Dk76uwr14WHw1p\ngBbdayJ/wXwWF1Gn8ZpERsqKyXFx0gIpY2IQS2ysTOqcOlU2Nvv554w3D0tIAO7fBwIDgUePpOUT\nGSkj0YSQ0WMlSwLW1kDFikCVKkCpUqqBKooPPaRsqDZunFRi8+dLq8pUrlyRCnn6dKmkchk5HiAA\n4CaAMwAWANAB+NWEY7JynSrX8io8hj+2WMlpfbarNjx7Ewh9GMGds704stFS9rObxZVjDvH+7adZ\ndn5L7F2kkUh8PPnDD7IUjVK7Z0O8fCnL19jayrpou3eb3vQsk5hUVzEuTvbaefddsmZN2bY5o8EK\nR4/KYAO1AqW5AJirNhqAvAD0mrLJGDFRcfyz51aObLSUwT7GG46ZgiVMvqGPIrh38Xn+3GYNe5aa\nxhn9d/LCAd8sjyqz9IRWjUQ2bpR1zebMyXiyYnQ0uWKFnNzt7WW024UL2ZL0aLBi/I0b5M8/ywTN\nFi3Ibdsyp/yWLJGFSU1pQGfBaMomF6LX6+k+5yx7l53OrdNOMS42809v5pp89Xo9g2495dZpp/hj\ni5XsWXIqp36+jae23WRMVMYqBWQES63wraGAj49UGG3bkoGBmTvHtWvk2LGyAGilSrKC85Yt5OOs\nqWquej+VKCGrJIweLWXIDJGR5JdfSmvozp0skdecaMomFxPs85y/dVzPgY5zeXDFpUwpnYxOvq9j\nBUWERvHU9ltcMGwPBzrOZX/7WZw3ZDfP7bnLuJiccQtaau8iDRXi42U+SdmyshK0Qil+k9DrpaUx\nYwbZsaMsMePoKMvHTJggLalz52RbAEN5K3q9dNfdvEnu3Uv/8ePpVLx46oe10qXpv3376+X1nDkj\n+/r07y9L9rwBqCmbbI9GE0LkBRAPLUDgtbl27B42TTqBe9efot2gemjTv67JhSpNqQCdRIYWQwGE\nPozA7TMPcOPkfVw/dg8hd0NR470KqN+2Chq0r4LKdWxyvIRMRouQalgId+/KUOfgYFnu5aOPTAuR\nVkOvl2VnLl2SlZLv3pXBAffvy7DqYsXkq0ABGcKckCBzdl6+lIv7dnbJ1QQCbG3heuoUQmJjYWdK\nNJohwsNlKZ+NG2XV5x49Mv8eLYzXikYTQnwAwMOE63iSTNWAXFM2Wc+9G09wcPllHN9wAyWti6Bx\np2qo96Ej3mpir5rfkpHJV21snz59MHPyAgRee5KYxPkQvucfIuZVPN5qao9azSui9vuVUP1de+Qv\noFAJNwfJqMLUsCBIYNcuWZrf3h744w+ZJ5PV6HRy0o+MlJFxpCzxX7iwjEhTq2v2OiQkAKtXA66u\nMuJs6lRZn+0N4nWVTSEAlUy4ThTJB2mOzZCy+e2335L/7+zsDGdnZxMu+99Ep9Pjjlcwzu/1wZUj\ngQi8+gR21crA8R1bVKhRFuWdSsO6UkmUsSuO0MjH6NSlo+rkSxLRETJ5s0u3jjh38Uy661nlqYIO\n5b6Bw9s2cHzHBk4NyqNqw/Io71Ra1XJRK6KZE2gh07mcpIl50iTZfmDMGJnkmBsLrep0sl/PhAky\nz8fNDWjc2NxSZQmenp6pvCYTJkzIvLJ5HTTLJueIi0lA4LUnCLz6GA9uP8cj/xd4GvQSoQ8jEfE8\nGhHxz3A3zxHEIhJF8pXAO8U+QmGWQXxMAmKj4lGgcD4UL1MYZ15twJ3Qs+nO36vn59i4aYPJ8mjW\nhUaWEB8v3U1ubtICGTZM9rYxtUimOQkPlwpzzhxZMfrXX2WOUG5UmCZitgoCmrKxHOJjExDzKh7x\nsQnQ6wgIIF/+vChQKB8KFs2fXLEgq5SEtm6ikaWQwPHjsvLAvn1y0nZxkdZOdri8MoteD5w8KasH\nbNsmKwGMHClbFfwHUFM2RnqQvtYFGwJwgIxGA4BaQohuiX/vIZm+jZ5GtpK/YD7kL2j8K3d0dISH\nh8dru6CCg4MVt4eEhGToPBoaAKQ10KqVfIWGyjpjs2bJYp3t2gEdO8p/1doSZCcxMVIR/vOPbI1Q\nujTQt6+sh1a+fM7LY4FkZ7malQD6q+x2JBmkcIxm2bxBaJaNRo7w5Amwe7esn3bkiCw18/77QJMm\nsupz7drGG7dl5poXLsi2zidOyKrMb78NdOoka5nVrJm118tFaIU4NXIcbc1GI8fR6YBr16Qb6+xZ\nWTnZ3x9wdASqVZO1zipWlNaPtTVQqpQMfS5USEaikXKNKCZGrrc8f/5vUc7AQFmY89YtWaetQQPg\n3Xele6xlSxnBpqEpGw3zoEWEaZidmBiZX+PjI6tA378v2zI/ewa8eCFDn2NipKISQubXFC4su3aW\nKSOjx+ztZb5N1aqyI6i9/Ru9yP86aMpGQ0NDQyPbUVM2WtN2DQ0NDY1sR1M2GhoaGhrZjqZsNDQ0\nNDSyHU3ZaGhoaGhkO5qy0dDQ0NDIdjRlk4MEBASgb9++aN26Nfr27YuAgABzi6ShoZGI9vvMXrTQ\n5xxCS3DU0LBctN9n1qGFPpsZV1fXVDcyAPj5+cHV1dVMEmloaCSh/T6zH03Z5BBaUUoNDctF+31m\nP9mibIQQ1YQQ84QQN4QQEUKIECGEuxCibnZcLzdgb2+vuN3OHBVqNTQ0UqH9PrOfbFmzEUIMBzAU\nwCoAFwCUBDAGQD0AzUleUjlOW7PR0NDIcbTfZ9aRo7XRhBBlSIam2VYCQCCAXSQHqBz3xiobQCtK\nqaFhyWi/z6zBIgpxCiG8AESQbKuy3+KVjaenJ5ydnc0thkE0GbOO3CCnJmPWoMmYNZg9Gk0IURpA\nHQA3c+qa2YGnp6e5RTCKJmPWkRvk1GTMGjQZs5ecjEabn/jvnBy8poaGhoaGBWCSshFCfCCE0Jvw\nOqJy/M8APgcwnKR/Vr4BDQ0NDQ3Lx6Q1GyFEIQCVTDhfFMkHaY4dCmAhgHEk/zRyHctesNHQ0NDQ\nMEqOBwgIIfpBhj+7kRyTbRfS0NDQ0LBosk3ZCCE+BbAZwDKSw7LlIhoaGhoauYLsyrN5H8ABANcB\nfAtAn2J3LMnLWX5RDQ0NDQ2LJbui0VoDKACgAYCTAE6neG03dnBuKXcjhPhBCLErUT69EOJXM8pS\nQQixVQgRJoR4KYTYJoSoaC55lBBC2Cd+r6eFEK8SPzNT1gJzDCFEdyHEDiFEkBAiSghxWwgxRQhR\nzNyyJSGEaCeEOCyEeCiEiBFC3BdCbBJC1DS3bIYQQuxP/M7/MLcsACCEaKUS6BRq/OicRwjRUQhx\nLHFOfCmEOCeEcDa3XKaSLcqG5ASSeVVeVUw4RTsAzgBWAOgMYBgAawBeQoj62SFzJvkKUq4dAMwW\n3CCEKAzgKIDqAPoB6AugGoAjifsshaoAugMIBXAcZvzMDDAKQAKAsQA+ggxuGQbgoDmFSkMZAOcB\nDAfQFlLW2gDOWNoDRhJCiN4A6sLyvnMCGAGgaYrXh2aVSAEhxBAAOwF4A/gE8ne0BUARc8qVIUha\n3AtAGYVtJSAnqVXmlk9BtryQrsJfzXT97wDEA3BMsc0hcdtIc38+KjIPAqADUMncsqSRq6zCtn6J\nsjqbWz4DcldPvAe/N7csCrKVBvAQQK9EGf8wt0yJcrVK/F7bmFsWI3JWBhAF4Btzy/I6L4tsMcA0\nddUSt4UDuAtAuTzrf5vOALxIJrcWJBkI4BSAruYSKjdC8rnCZm8AApZ97yX9ZhLMKoUyUwFcJbnJ\n3IIokC5E1wJJejD7y9yCvA4WqWyUeFPK3WQTtSGDMdJyA0CtHJblTcQZ0t1yy8xypEIIkUcIkV8I\nUQ1yIgoBsMHMYqVCCNEC0q073NyyGGCdECJBCPFMCLHOAl2RzQHcBtBbCOErhIgXQvgIIb42t2AZ\nIZ+5BcgAWrkbdcoAeKGwPRTShaGRSYQQ9gAmAPAgedHc8qThLICGiX/7APiA5DMzypMKIUR+AIsB\nTCfpa255FHgJwA3AMQDhAOoD+AXAaSFEfQv6LO0SX9MA/AzAH0APAPOFEHlJzjOncKaSI5ZNbih3\n87oyarx5CCGKAnAHEAdgoJnFUaIvgCYAekNOlocsLLpvDIBCAKaYWxAlSF4m+RPJPSRPkJwLGRRS\nDsA3ZhYvJXkAFAMwmOQKkp4khwPYD6l8cgU5ZdmcAlDDhHFRaTcklruZDFnuZnVWC5aCTMtoAbyA\nsgWjZvFoGCGxRNNuyECL90laXH9gkncS//QWQuyH7Bc1FoDZ3SuJrqhxkOsNhRI/z6T1kYJCiJKQ\n7Ub0aucwByQvCSHuAnjX3LKk4DlkJOehNNsPAmgvhLAl+TjnxcoYOaJsSMZALu5niMRyNwsgzXCD\nddVel8zKaCHcgFy3SUstaGtcGUYIkQ/ANsg8sQ9JWvxnSPKlEMIXclKyBKoAKAhgLVIvwhPAjwBG\nQ7qtrua8aLmOG5AWbK7GYgMEEsvdrACwhFpdNWPsAtBUCOGQtCHx7+aQbiANExFCCADrIYMCupL0\nNq9EpiGEsIW0zC1lbeQSZHJ3a8jPMuklAPyd+LelyJqMEKIRgLcAeJlblhTsSPy3fZrtHQA8yA1W\nDWChAQKJ5W7WA7gMYI0QIqVWt5hyN0KIhpBulryJm2oJIbol/r0n0VrKCZZCRvu4CyFcE7f9AeAe\ngCU5JINJpPh8GkFOPB2FEE8BPCV53HySJbMQMmFuEoDoNPfeA5LB5hHrX4QQ2wFchLQKwiEnx5GQ\na0szzShaMompCum+T6nLcY/kiRwXKr0sfwPwg1SM4ZCW7FgA9wFYzKI7yb1CCE8AfwkhrCEDBHpC\nJp8OMKNoGcPciT4qSUy/QcaVK738zS1fCjlXGpAzR5MVAVSAzCgOg4yy2ZbTMpgop17l8zpibtkS\n5Qsw8J2aJWlXQcYfIXN/QgFEQoZkL7TE71tBdh2ACeaWI1GWsZAPtC8AxEI+nC0CYGtu2RRkLQap\nAB8CiEmUu5e55crIK1tbDGhoaGhoaAAWvGajoaGhofHmoCkbDQ0NDY1sR1M2GhoaGhrZjqZsNDQ0\nNDSyHU3ZaGhoaGhkO5qy0dDQ0NDIdjRlo6GhoaGR7WjKRkNDQ0Mj29GUjYaGhoZGtvP/Lk7Alowk\nA9EAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Parameters after running EM to convergence\n", "results = EM(data, initial_means, initial_covs, initial_weights)\n", @@ -507,14 +602,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n", + "Iteration 4\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAELCAYAAAAP/iu7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4VMXXgN9JaKGTAGm0EHoXEEEpiRTrB4oUJYi9Yu+K\nEZSfjaqigmIXxAJIB6mh995LEkgjJIRU0rPn++NuQpLdTYFsCsz7PPdJduq5s3fvuefMmblKRNBo\nNBqNxp44lLUAGo1Go7n+0cpGo9FoNHZHKxuNRqPR2B2tbDQajUZjd7Sy0Wg0Go3d0cpGo9FoNHZH\nK5sKgFLqF6WUSSnVpKxluR5QSrVRSi1TSl0wj+u+spapPKCUmmAej75lLUtJoJR61Hw+Y8paFo1W\nNmWGUqqHWYmcUUpdNh8nlFLfKaVuyVdczEdpyWZSSq0vrf5KE6WUA7AIuB34F5gAzDTnBSilTGUn\nnYFSys98HexRSqWav4+hNspWV0qNVkr9pZQ6qZRKVkrFms/lwWJ2bXGdKaX6mfv/4GrPx14opZqa\nZfvJRpFS/d1oCqZSWQtwo2G+2U0HXgTSgHXAQiALaAGMAJ5USo0RkbllJuj1S3OgFTBTRMbmyysv\nN6f/AU2AaCASaFxA2T7Ab8BFjGtpPtAQGAr8oZS6VUReKmK/M4B5QMhVyl3eWAhsB86XtSAarWzK\ngk8xFM1uYJiIhObOVErVAN4G6paBbDcCHua/F8pUioJ5AjglImFKqfFAQVZFJDAa+FtEMrMTlVLv\nAbuAsUqp30RkT2Gdisgl4FK+ZFVs6UuPAmUTkUQgsZRk0RSGiOijlA4MyyUT40bnXEjZyrn+/xnD\n8mmSK20CYAL6Wqn7iDlvTL70AcBqIAJIxXjiWw+MNOf3M9fLMv/NfYzJ1Y4CngJ2YPyYE4GtwP1W\nZPnFXN8LeBM4Zu57mjm/DvAxcBxIAuKAk8BsoF4RxrQ28A6wyXw+acA5YBbgmq9ssJXzy8o1XtaO\nn/K14QuswLAkUoCjGA8Hjra+A2CIeXwSgX3FvGbGm2UcehXX2zvmuq8VsXyea8rct7XrIf+1WAvD\nGjtuHpOLGC7KTlb6OAsEYTxMfQuEYvwmBuca35/M10ASkGAeuxE2xteabH3zlRljRY6nMB74svvY\nBNxX0JgAo4B9QDLGb+gLoJqVOsPN7UWZxyMMWA4MKIv7Tnk5tGVTujyGcaOeJcZTpE1EJKOQtgpz\n+eT3vd8LLMa4IS8GYgA3oDvwAPAXxo1ggvk4i6EosjmQ6/8/MX5QR3OVuQdYoJR6WURmWJHzG3Nf\ny4ElGDccgDVAVwwluBiojKGYRmK4G2MLOEeAthhP/uuBfzB+3J2Bp4GBSqmuIhJvLjsd6AI8CgSY\nD4D95nN+DMN9NYErT805562UegH4EsO9tcgsW28Ma/VmYFg+2QR4EOhvPudNlK43IQPjPDILK2gm\n/zW1AWiK5XgJxkMBSikXYDPQ2lx+GeCCcU0NVEr1F5Gd+fqoivF9OWEoJbhiUb2F8f3vAMIBZ2Aw\n8KdSyk1EvjKX249xs38F4ztalKuPs/n6y4NS6lvgWXO5WUAVDPf1QqXUmyIy1cqYvAjcgXGNrgfu\nBF4yn+vDudoei+GOPIPxO0nEsKZvAwYBa/PLc8NQ1truRjowLtIswKeY9axZNtlPvLYsmyzyWiML\nMG7ELlbK18v32QSstyHLM+b8rwCVK90J4waRArjlk92EYVW452urozlvipV+nICqRRibWkBdK+mj\nzG2/ly8923r7wEqdDUCWjX7aAekYT9k18+XNIJ/1wZWn6gygzzVcM1dl2WAE/xzCUDTtitlX31xp\nNsfLnD/PXCe/5dEcQyEdzJcebC6/FKhipb0mVtKcMBRKLLksCQxFaGF9FvI7yD6ffYBTrnQ3DGsl\nDfDKNyYmDGXYIld6VeCE+fvNfb3vxbDWLK7d/L+zG+3Q0Wili5v5b3gZ9Z+B8ePLg4gUZj3kZizG\nTeQ1Mf+CzG2kABMxfoT5I6cEmCQitiZqU63IlCIiaYUJIyKJIhJnJWsehntkQGFtFJFnAUfgZRFJ\nypf3nvmvteivhSKyuYRkKA7/Azpg3IiP2aMDs1UzHFgpIn/nzhORIAxXaAelVDsr1d8SkfT8iSJi\nEZxgvrZ+xXCZ9rhGsR/FuB4nmNvN7iMSmIphefpZqfeFiJzJVT4N4xpzALrlK5uOFYuqmL+z6w7t\nRrtx+Au4DziilJqHYWVtFZGEojaglHIC2mNEK41TymJ+tqH5bxsr1fdaSTsGHAHeUUrdhOGC2SQi\nR4sqk1mu/hjulJsx3BqOubLdi9NWAfTAuIH8n1LqnvwiYFh0RT1vu6KUehZjvmYPxrjYi5sxbrY1\nzIEM+Wlr/tsG47vOJlVEjltrUClVC2MObDCGdVQ9V7Zw7d9nJ/PfTVbyAjC+y8750gXDEspPmPlv\n7mCevzDcqkeUUn+a29yeW7HdqGhlU7pEYvi2PYHTpdmxiPytlEoHXsO4Ab0GZCmlVgGvikhgEZqp\nh/FjbILtCCkBalhJt4j+EpEspZQP8CGGj/9OQCmlwoHJcsU/bxOl1EjgDwwrZhWGHz77h/0qhqVV\nEjhjnPv7BZSpbiWtVKPelFJPYsyP7QcGiUiyHbtzNv/taz5skf96iLJWSClVGUMJdMJQ0j9juK+y\nMObahnDt32dtINOGNRyZq0x+rD2UZc+F5TzciMgkpVQMhiU8DuN6SVNKzQdeFxGr534joJVN6bIN\n8MFYUBhwjW1lLz609h3WsVZBRBYBi8xPj70xJkUfAVorpdpLrtBZG2T/4HaKyK3FlNdqMIMYgRIv\nAi+a3S0DMCZepyul4kXk10La/QBDuXQVkeDcGUqpt4spY0EkYFakRXHvmSntxbhPYUx4HwIG2rih\nliTZ18PnIvJegSXzYmtMhmBYFd+JyHO5M5RSb5nzr5UEoJJSqq6V8XHNVeaqEZEfgR/NbsZ+GBGJ\nfkAjjGi7GxI9Z1O6/IKhJJ5WSjkXVFApVaWQtrL9v55W8roWVNE8z7FSRB7DiK5pwRWXB2YZHa3U\nS8KYFG1nXg9UoojIMbM18wCGFTG4CNWaA8esKJquGBPLxSHLXNfa+o1dZpny7+5QLsilaI4A/aWQ\naMdikD3HZ3E9YIQOC9CzhPryNre31EpebytpBclmi+zoQmuWmE++MteEiMSIyEIRuc/cZl/zg94N\niVY2pYh5gnEKxtzGCmt7nSmlaiqlPsZYB1AQuzFufmNy3xyVUr0wIrHyt9vbvHtB7jQFNDB/zD1J\nfwnjKcwaMzDcDN8ppSxcGkqpdkqpBpbVLDFvN2Jtv7fsQIqi+LlDgJZKqfq52q2NEaJcXLJv0NZW\n7H+LoYRnKKUs5g2UUg2VUtbmbOyO2XU2C2NeZEAJKhooYExE5ALGjgX9zGHh1mQrzj5rIRjX9G35\n2hgK3GulfCyGcipoh4X8/GbuY7xSKsftqZRyA97ACKL5oxjt5cHa+ZrnOutguN0sAnRuFLQbrfR5\nD6iG4To6pZRai3GTMGE82Q3ECOd92GYLgIjsVEptxXDJbVdKbcIIBR2MsaYjf0TYDMDNXOcsxg/O\nF8NtsVREcs8hrQeGK6X+xfD9ZwFLROSwiMw0KzQ/oI95D7VIjInbjhi+9V4Ya1EKowvG2pydGAsC\nL2DMB92HEYI6o4C62XyNsd5iv1JqAYZP/y6MiL+IItTPzXqMtTILlVIrMRTwQRFZJiJHlFIvmmU6\npZRajjGO9TAswz4Y/vkTudq7qtX3SqknuPIk38XczgtKqf8zpy0SkcXmsr7Ad+b0zcDzVgyzABHZ\neDWyYJxPBPCgec4vDOMG/5UYK/Sfw5iH/FIp9RiwE2OhZBMMi6ch1ueyrLEUQ+G8rZTqYO67Pcb6\nloXku6ZF5LJSajeGxfAbxjyoCfhNruzMofLV2aiUmokxp3LYfI1nr7NpALyZ30ouhPyDvVgpFYcx\nDucwfut3Ac2AGXaeQyvflHXs9Y16YEQ3/YTxA0nCWJV8Evge6Jav7M8YT0VN8qXXM+dFm9vYirGA\n0Nr6guEYi8yy+7uI4Rp6HqiUr11XjLDOC1wJl86/G8FDGHtxxWBYIGeBlRiLKZ0Kk92c5wl8gjGX\nFWkeg0CMp88OxRjL5zDcR5cxfuBTMSalg4HAfGX7mc/H30o7jhiRRMEYyi4Lyx0EbsGIOArHUEYR\nZvnHAY1ylbP4DopxPtnrqmwdH1jpp0jlC+nX6totjKiz9Rgh79lt5l7z5YQR/bYXYxFjgvlangsM\nydeWxXeSL98LY03YBSAe2Igxj2d1PDEU/VLzdZhtOfTNNzbWdhB4grw7CATkl7WgMbHVPsY6tEUY\ni5aTzeexCRhVlveb8nAo8wBpNBqNRmM39JyNRqPRaOyOVjYajUajsTta2Wg0Go3G7mhlo9FoNBq7\nU65Cn5VSOlpBo9FoKjgiYhF/X+4sm7IOzyvsGD9+fJnLoGXUcmoZtYzl9bBFuVM2Go1Go7n+0MpG\no9FoNHZHK5ti4uPjU9YiFIqWseSoCHJqGUsGLaN9KVc7CCilpDzJo9FoNJrioZRCKkKAgEaj0Wiu\nP7Sy0Wg0Go3d0cpGo9FoNHZHKxuNRqPR2B2tbK5zgoODGT16NL6+vowePZrg4OK8F0qj0WhKBh2N\ndh0THBzMwIEDCQwMzEnz9vZmzZo1eHl5laFkGo3mekVHo92A+Pv751E0AIGBgfj7+5eRRBqN5kZF\nK5vrmPDwcKvpERERpSyJRqO50dHK5jrG09PTarqHh0cpS6LRaG509JzNdYyes9FoNKWNrTkbuysb\npdTdwNtAV8AEnATeEpEAK2W1silhgoOD8ff3JyIiAg8PDyZOnKgVjUajsRtlomyUUs8AM4CvgJUY\nbrsuwFERWWGlvFY2Go1GU4EpdWWjlGoKHAfeFpEZRayjlY1Go9FUYGwpG3u+FvoJIAv4zo59aOxE\nRlom8ReTSY5PI/VyBhlpmYhJUA6KylUr4VSzMjWdnahdvzqOjjrORKPRFIw9lc1twAngIaWUP9AU\nOAtMF5Fv7divpogkxaVy9tAFQo5GE3YyhsigWKLOxhMdmkDa5XRquVSnRp2qVKtZhcpVHXFwdEBM\nQnpqJqlJ6SReSuFyXCr13Gvh3qIeTTs0pEVXN9r1boxb83ooZfFwo9FoblDs6UY7DngAqcC7QBAw\nHHgOeNmaa0270exHZkYWgfsiOb4tlBPbwzi9+zwJF5Np2rEhTdo3oFFrF9y86+HmVReXRrWp7eJU\nJGWRmZHFxbAEwk9d4tzhKE7vjuDo5hAqV6tEzyGt6TeqAy27u2vFo9HcIJTFnM1JoAUwVEQW50pf\nAXQREYvFHlrZlBwiQtjJGPauPMP+NcEc3xpKw2Z1aHdbY9r0akSrHh54tHTBwaHklYCIcPZwFNsW\nnmDD74epUacq97/Rkz4j22uXm0ZznVMWymYbcAtQW0Qu50p/BZgKeIjIhXx1ZPz48TmffXx8KvRr\nUEsbk0k4vi2UbQtPsHPxKTLTs+h2lzdd7/Cmo09TartULxOZ9q46w98fbyElMZ1nv7mLDn2alLoc\nGo3GPgQEBBAQEJDz+cMPPyx1ZTMbeJxiKhtt2dgme81MeHg4np6eTJw4kWbNmhG4L5INcw6z+e9j\n1HZx4tYH2tBzSGu8OruWG/eViLB1wXG+f3k1t4/pyMP/89VWjkZzHVIWls3dwFJguIgszJX+H9BG\nRJpaqVMhlY01JVDSCyet7Qbg6uLJgHrPUM1UD9/RHej7UAcat6lfpPZEhIthCUScvsSF4DguhiUQ\nG3mZpEspJCem50SfOVZyoGr1ytSsV4167jVx86pHo7b1ad7Zleq1qxb7POKjLzPpoX+pWr0S7/w9\njCrV7BmjotFoSpuyWtS5DugEvI8RIDACw9p5VER+t1K+wimb0toSZvTo0cydO9ci/e4BQ1i2+t8C\nLRgR4UJwHOv+3c6X300m8kIkJFeja927adOuFa5edanfuDb13GpSy9kJp1pVqFKtEspBkZVpIvVy\nBkmxqVyKSORCcBwhx6I5dzgKj5bOdL3Tm97D2uHd1a3IVlRmRhaTR/2LmIR3/hlml3kjjUZTNpSV\nsqkJfAoMA+phhEJ/KiJ/2Shf4ZSNLSXg5+fHnDlzSqSPrEwTN3fuyf5juy3yfH19Wb9+vUV6Qkwy\ne1cFsn91EAfXBZOQHs2m5B+5dPmK57IwpViQxZaZkcXp3RHsWnaazX8do3rtKjzw1q30Gdm+SMoj\nIz2Lcf1/p/vdLRjxbu+iDoVGoynn2FI2iEi5OQxxKhY+Pj4CWBy+vr7X3HZ6aoas/H6vPOk9Q9rW\n72m1Hz8/v5zy0WHxsuiLHfJ2319keO3P5aPBf8ryb3dL2KmLMmrUqELr5yYoKEi8vb3zlPX29pag\noCCLsllZJtm1/JS8dsuP8nK32RK4/3yRzi8qJE4ecpks4adjrm6ANBpNucN8H7e4v+tdn68Re1g2\nmRlZrPnpAH9/vIXG7RowYlxvajTKsuquW7Z4OeF7Uln32yEC90XSc0grbn2gLV0GeFHVqXJOWV9f\n3zwRI9m0dO/ImB7juByfRnpKJiaTULmKIyuDZnPk/LZinZeIsPaXg/z81joenzyAAY92LvRc503c\nxIWgOF75eXARRkaj0ZR3ymK7mhuCiRMnsmPHDgslMHHixGK3ZTIJm/8+yu/jAnBrXpd3/hlG61uu\nvJNmzZo1OTs413aqRzfne5nQZwltb23M3c91o8e9rQg/H2q4vqaF4+HhwfOPvkr8GYgLzrLap3P9\netw+phPV61SjavXKODgoMtKzWPfCLDhvWX53wGEC95/H+yZ3izylFAMf60KbXo0Yf+cfZGWauOPJ\nmwo857uf687TLb7m6S/vuKqAA41GU0GwZu6U1UEFdKOJGC4nPz8/8fX1FT8/P6uupsI4tjVEXu3x\ng7zcbbYcWGe9vslkkj0rT8u4Ab/Lw+7TZM74AIkOjc8jR/PmzfO4vmpVcpFxD3wnv3y6VNxdPS3c\naE2aNLEqr5+fn1W3262dBsijjb+QcQN+l6CDkTbPJ+zURfFrOFWObw8t9NzfHzRHti48XoRR0mg0\n5R1suNHKXMHkEaaCKptr4dL5RJky+l8Z4zld1v12ULKyTBZlsrJMsvmfo/JC5+9kbMdZsvbXA5Ke\nlpknf/+aQOnq1bfAeZnBgwdbzb+9112yYe4h2bHkpJzYESZx0ZcLnLPJSM+U5d/ullENpsjCqdvF\nZLKUWURk019HZGzHWVbPKTdzJwTIL++uu4ZR1Gg05QVbyka70coIk0lY9d1e5nywkYGPd2bWiedx\nqlklTxkRYdey0/z+/gYqV3Fk9EQfetzbMifEOPZCEqt/2M9/s/dTs1410h2TrPZ1eM9JvnpyKfvW\nn7Safy4olF1LT5OSmE5sZBLnz1yiWs0qDOv2Bvvcl5HueJlGjfJGo939XHe6392Cjwb/RcLFZB75\n5HaLdnsPb8fCydvZvfw0t/xfK5tj4epVl/2rg4o0bhqNpmKilU0ZEH46hi8fX4opS/g04GGatm9o\nUeb0ngh+fH0NCTEpjPnYl1sGt8pRMiHHolk4ZTvb/z3JbcPa8t7C4bTo6s7o0Zs4cmafRVuO6dXx\n7upO59C2hK22VDg9B3TmrTlDcz6LCJFBsRxcdxaHP2sQduIiI4b3pkmTvOtwGzatyyfrH+b1W36i\neRdX+oxonydfKcXAx7uw5e9jBSobp1pVSU1KL3jQNBpNxcaauVNWB9e5G81kMsnSr3fJQy6TZdEX\nO6y6l+KikuTLJ5bIw+7TZNXsfZKZmZWTF3woUj5+4G/xazhV5k3cJPEXL4uI4UY7uD5Y3rt/ltRQ\nzjbDla25xpo3b17oHFPAsp3StkFPaVK3rYwYNtKi/LFtoTLGc7qkp2ZY1A05Hi1PNJ9RcPvzDstn\nI+YXWEaj0VQM0G60siX2QhJfPLaUhIvJTN72GJ6tXPLkizls+Nd31tNvVAdmnXg+Jzor6lwcv78f\nwP7VQQx9sxev/TqEajWqkJyYxpKvdrHs691UrupoWBHvbGTKV58RERGBm6sbY+57nv0LIll48CBh\nJy7SIXYkqSwjTSXh5FCLZsG349/rXxq1dqFNr0b0vK81rW/xzLGigoODeeLlUQRGG9F2IfOPs2ff\nbtauXZvjUmvbqxGN2tRnx+KTFtaNW/N6RIfEIyI2dxi4FJFEXbeaJTreGo2mfKGVTSlweOM5pvj9\ny+1jOuH3YT8qVXbMkx8dGs9XTy4j4WIyH656KCesODU5g/mfbWX5N3u4Z2x3vj8zluq1qpJ4KYX5\nnwew4ts9dLq9GS//9H+0u60xSiliLyQx6rZX2LnkFMeWhfLfmRO06dWITrc34+7nu9OwaR3qNPgo\nR4asTBOxkUmEHIvm6OYQpj+ymGo1q/DUF3fQoU8T/P3984R1AwQFBeHv759nvU3P+1qzf02whbKp\nVNkBU5YJk0lwdLSubEKORtOyu2UotUajuX7QysaOiAiLpu9kwaRtvPrrELrd4W1RZvPfR5n1wiru\nffFmRrzbG8dKxk7I+1YH8s2zK2jZ3Z2vDjxFg8Z1SE3O4K+PN7N4+k563teaqTsfx93bmaxME9sX\nneS/2fs5sS2U7ve0ZODjXXhz3lBq1q1WoIyOlRyo36g29RvVpusgb/w+9GHbguNMGrmAke/3ITw8\n3Gq9sLC86Y3buLBtwXGLcskJaVStXrnAHZ6Pbg7h/168uUA5NRpNxUYrGzuRnprJjKeWEXI0mmk7\nH6dh07oW+d+//B8H159lwoqHaNndeJdccmIaP7y2hgNrghg762663dkCEWHLP8f48Y21tOrhweTt\nj+HZ0oXU5AwWf7mTRdN2Ur9RLe56thvvzh9GtepXdg7ISM8i4nQMUefiSYxJISvThFOtKrg2q0uz\njg2pXDXvJeDgoOg9vB0turvzdp9fcWpT2+r51ahcJ8/nSlUrkZluuXA07GQM7i2cbY5T+OkYUpPS\nadbJteAB1Wg0FRq7KRulVD9gg5WsOBGxffe5Dki8lMLEIX9Rz60mn295NM/NHyAqJJ5Phv6Du3c9\nvtz7ZM7czKndEUx6cCGdfJvy9eFnqF6rKtGh8Xz9zAqiQ+J5/fchdOjblMyMLJZ9s5u/P95C656e\nvDt/GK1uNpSViHByVzi7lpziwLpgzh68QP3GtXH1qkft+k44VnIgOSGN84GxRJ2Np+d9rRk1oS9u\nXvXyyOjmVY8npw3k98/T8fY+mseV5lzTFb+7ns5TPj7qMnUaWL6c7diWUFr39LRIz2bTvKP0GtpG\n7/ys0Vzn2NuyEeBFYE+utEw791mmRIfG4z9oLj3+rxWPftbf4iZ6cmc4Hw/9hyGv9GDoG72y9xFi\n5ay9zB2/kee+vYvew9oBEPDHYWa/spp7X7yZ9xeNoHIVRw5tOMvMsStxrJdCfJctrI2N5fiXS3jr\nlXc5sTqW1T8ewLGSotfQNoz52JfWt3hSrUYVa6ISF3WZld/t5bUeP/HewuEWb9DsdX8bvnx8KUu2\nL+eTzycSERGBh4cHHrG34uHWOE/ZoP2RNO1gGcK9c/FJ7n+9p9X+MzOy+G/2fj5YOrLI46vRaCoo\n1kLUSuIA+gFZwO3FqGOXULzSIvx0jDzW9EtZOHW71fwdi0/IQ/WnyM6lJ3PSMtIzZcbTy+S59jNz\ndj9OS8mQL59YIs+0/kZO740QEZHLCany1VNL5dHGX8j8mWssQphrKGfxH/G9nNwVbnNFvy32/ndG\nxnhOl9TkdIu8x5t9JRFn8u7K/GKX7+TEjrA8aS91/V4Obgi2GI9RDaZYDYkWEVn76wF51/e3Ysmq\n0WjKN5RR6PMN4xuJOHOJ93x/50H/Ptz5dFeLd8Hc3XUUKyadYMKKh3JcXilJ6Xw6bD4Ojoop2x+j\neq2qxEYmMXHIXzRsWodpu5+geq2qBB2M5LPhC2jYuTIpvXbw/PhPiIqKytP/ZblEUOWNtLr5qWLJ\nHRwczLTfxrM5aS/33bOBb3/8Iiek2WQSEi4mU8vlinss9kISF4LjaH6T25U2Dl0gNvIy7XvntYwW\nTdvBoCdvspgXAshIy2Teh5t56cd7iyWvRqOpoFjTQCVxYFg2Joy9gzOBi8BcoHEBdeytdO3ChXNx\n8miTL2Xld3tFxPriyZqOLrL5v905dZLiUuSNW3+S6Y8tlswMY+Fm+OkYedzrK5k7ISDHOtky/5g8\nVH+K/DF9hUWb+Y/ivkOnsHfWnNgZJs+0+SanrJ+fn7RvfpN09eqbZ2HnZL+F8tfHm/O0fT7wkjzo\nPFliLyRZ7Xv+pK0y4Z55xZJXo9GUfyjtjTiBLsAk4B6gD/AScAEIBerbqGP3gShpEmKS5Zk238i/\n0664zmztmJy9IWZKUpq8cetP8u3zK3J2EQg9ES1jPKfnKCwRkeXf7pYxntPlzL4Im21aaz8tJUMO\nbzwr6+cckgPrgvLsQpAbW20OGTJE/Pz8pIV7R7m10wDZuHGjTaUUuP+8+DWcKpfjU/O0PXHIn/Ln\n/zZZ7TcyOFYecpksYacuXv3AazSacoktZWM3N5qIHAAO5ErarJTaDOzCCBoYb6++S4uM9Cw+vv9v\nbr6nJfe9emUS3NbalIiICLIyTXw6fAGerVx4ZsadODgoLoYl4D/oD0ZP9GHgY10AWPX9PuZ/vo3P\nNz2CW/N6NtvMxtvbm/ff+4C54wNY/s0e3Lzr4da8HqHHL9KojQtv//mARR1bba5evZqUlBQAzpw/\nzD337CApKe8mn4GBgYwb9z5ugbfz8Me+ed5Fs+WfY4SdjOHtvyz7NJmEL59YytA3e+HZ0sUiX6PR\nXJ+U6jobEdmvlDoF9LBVZsKECTn/+/j44OPjY3/BrpLvX/6PGnWr8dikAXnSPT2th/p6eHjw4xtr\nMGWZeHH2vTg4KFKTM/jo//7knrHdcxTNnpVn+GPCRj7fbCgagOqOday26erqyoABA3jj5Xf4ZlQA\nnq2ceWXBAL6aPYX94eHUdKtL1PYugOWN35ac2Yomm/yKJpvlS1YyulM3Bj7eJSctKiSeWS+swn/p\nSKtzNQtdHEB4AAAgAElEQVQmbSMzPYv73+hltU2NRlOxCAgIsPoWYAusmTv2PICjwEobeXYz7Uqa\n9XMOydOtvrZwH4mInD51RupUbWDhdvprxn/yRPMZkhibklP2i8eXyGS/hTlzNNGh8eLXcKoc3RKS\nUyYu+rLc1+A9aeTexOb8ymS/hfLD66slMDDQwuXl3qCR1c02AwMDxaWWW56y1apVK9Rdl/to1tQr\np+20lAx5tccPMn/SVqtjdnB9sPi5TpWokLirHndrZM8n+fj4XPXL6zQaTclAeXh5GtAdI1hgvI18\nOw5ByXE+6JI8VH+KBO4/bzX/j482ygu3TZNRo0blvL1z/87D4tdwqpzaHZ5TbteyU/JE8xmSnJiW\nkzZxyJ8yd0JAnva+eW65zHppVYFvBH2l+2z55/OtMnTIsALnc7LJyjLJdy+vksc6fCIjRzyY02b3\ndr2t1q9axanAuaKsLJNMGrVQPh3+j9XQ6/DTMeLnOlX2ry1ZRVBYkINGoyldSl3ZAL8DE4AhgC/w\nOhANBAPONurYfSCuFZPJJO/6/mbz6T3kWJQ8VH9Kntc1i4hMGrVQfn5nbc7njPRMebLF17L3vzM5\nace2hcpjTb/Msy7lckKqjKjzucRFWY/qyub49lB5u+8vUr9y00Ij1ZIT0+TT4f/IG7f+JImXknPO\n669PNsuIRuOlWVOvPHXr13aTgIAAadiwodW2fXx85Mc31sjrvX6yulYnLipJnmr5tayYtUdEStYS\nKSwYQ6PRlC5loWzewQgQiAXSgHPATMC1gDr2HodrZt1vB+XlbrOtRngFBQVJB/dbpUOLrnluomf2\nRcjD7tMkJemKBbP2lwPy7u15FzROGf2vLPpiR560/WuD5K0+vxRJtqCgIKlZs2aBN98TO8Pkmdbf\nyPTHFktaiqHU0tOMhaVjO86Si+EJEhQUJMMfGCmNarWW7i36yZkzgSIict+9D1ht+9YO/eX5DjMl\nISbZQqakuBR5udts+W3c+hwZS9IS8fHxKZEwcI1GUzKUCzdaYUd5VzYpSWnysMd0Ob491CIvKChI\nGnk0tXoT/WzE/Dyh0SIib9z6k+xYcmUnAZPJJA86T5bosLwW0fZFJ4q8HsXWU37NmjXl4O4j8u3z\nK8TPdaps/PNITp3zQZfktZ4/ykeD/8yZfzp3NEqe9J4hv41bn+MSO7EzTIbUf0/cGzTK03aDuu7i\n1+Ijq+tpLsenyuu9fpJvx67IaaekLRFt2Wg05QutbEqA+ZO2yifD/rGaZ+umN2LYSBle+3NJirsS\nFBB/8bIMr/25pKdl5qTFRSXJyHqT8rQZFBQkQ4cMk4aVvGXkiAcLffq39ZTf3L2tPOQyWWa+sDLH\n+sjKMsnK7/fKQ/WnyIIp23KUQcC8w/JQ/Smy9tcDOe1u/ueoPFR/iuxYfCKPC6ybdz95rMMnEhd9\n2UKWhJhkee2WH+XrZ5fneSNpSVsies5Goylf2FI2+hUDRSQjLZPF03fy4apRVvNPHD9pNf3IgeM8\n5Hs/Nepcea9M0IELeHV2pXIVR6t1goODeeWVV1i9ejWpqakA/PV3ILt272LduitvyMyPrVBm55qu\nTPvviZydnc/sO8/3L/1HTGIkyT12M2PZMv7e5UaLLF+iDmUwcfUovG9yJyvTxO/+G9j4x1E++m8U\nLboaLzj77psf+HzkQlRLeOefYTjVzLvR58XwBMbf+Qdd7/Dm8ckD8ryhs6Cw8KvBy8uLNWvW4O/v\nn7NR6MSJE22OkUajKSOsaaCyOijHlk3AvMPyXv/fbeY3dHa3+sTuXKuhxcacm/46YmEhmUwm8XOd\nKtvW7S1wW5oerX1lx5KTEnI8Wi6GJ8iFc3FyZl+EbF1wTKa99IfUc8o7ie/l1TznKT/0RLRMGrVQ\n/Fynys//WyLNmze3CAQ4dviEiBir/N/s/bO8P3BOnuCEkGNR8nSrr2XmCytzttnJTfChSHm0yZfy\n96dbrEalaUtEo7m+QVs210bAnCMMeLSTzfwqphpW051UbTxa5n19T7WaVUiOT8uTppRi0BNdeP7x\nVwg8l/c1zLlJSo9j+Td7iAyKJSUxHcdKDtR0rkbDpnVo0r4hP0yfy19rfyA6JgoPDw8++ugjUiIq\n8elb8zkccI7BL/dg7Ky7efq5JwgKCsrT9sWESP736Uc8cvsb/PLOeoa+2Yuhb/TKeU3ChjmHmP3q\nGh6b1D9nAWpudi07xZePL+XpL++g30MdrMqvLRGN5gbFmgYqq4NyatkkJ6bJsJqfWV3AmY13ze5W\nLZF2rr1k3+rAPGUvhifIyHqT8szZiBgBCJ41Wtm0aijGxHdUSJwsmLxNnu8wU55q+bUs/nKnHDt8\nQvz8/OS2Xn2kllMdq+03rdtWXur6vQQdjMxpKykuRaY8/K880/obCTxgubYoK8skf3y4UcZ4Wg+e\n0Gg0Nw5oy+bqObE9DK8urnn2/8pPiwwfTF6XCA6+Yi14e3tzT+vRxEVdzlPWxaMW3l3dWf/bIe54\n8qac9Go1qnDrnTfxz4JTVvvw9vZm4sSJVvOSE9M4tSuCwxvOsndVIBeC4+h5X2uemXEnHfs15ezZ\ns/j63M65kLMFnmsTr8ZM2/kEjpUcANi3OpAZTy2n213efLH3SYsXscVfTGbamMWkJKQxffcTOLvX\nKrB9jUZzY6KVTREIOhBJi27uBZapZqrLqpWr+Gjih3ncQ3v/Oc+JbWH4+nXMU/6xSf0Zf+cftL21\nEU3aNchJ/3zyp+w7sCfPa5grqcq0adyVJwe/ysFFFzjIBVKS0omPSibqXBxhJ2KICU+keRdX2vdt\nwuNTBtDutsaEhoUwbtw4Tr0cyJnTgcSnXCzwHJo19eLXBbNwrORAfPRlfnxjLUc2nuPF2ffQdZC3\nRfkD64L54tEl9H2oPWM+9qVSZesBDxqNRqOVTRGIOhuPZ+uCdyiu6eyEc01X5syZkye92gN1eL3n\nzzzy2e1Ur3XFMmrR1Z0npw9iXP85vPbbEG4a2BywnNNoWN+V0fc+i8Q7ERuZxIWz8SgF1WpUxr1F\nPTr5NsWztQuerVxybvYiwrpFOxj12ANEx58vUO4aVWrTsVMHvFt7MXHiRJo0bsqyb3Yz78NN+D7c\niW+OPGsRbZaWksGv765n6/zjvPLz4BzZNRqNxhZa2RSBpLhUatarVmCZJu0bEHzgAvU9a+dJd/d2\npttd3sz9YCNPTR+UJ8/XryP13Gry5WNLaNHdnfte60m72xrj5eVlobQKIyYikSObznFwbTB7Vgay\nPXEu0YkFKxqA+4b/H3PmzEFE2LPiDJPv/Y66bjX5eN1omnV0tSh/ZNM5vnpyGS26uTPj4NPUzvUW\nT41Go7GFVjZFwMFBISYpsEzXO7zZvugkN9/T0iLvyWmDeK3HjzRq48Jdz3TLk9elvxezTj7Pqu/2\nMePJZaQlZ9C5vxfeXd3waOVCPbcaVK9dFcdKDmSmZ5GSmE5c1GUuhiZwPjCWkKPRBO6LJC05g3a9\nG9Pp9mYMfbMXDz+7mDMBBZ+Xt7c3H330EYc2nGXOBwEkXUrhkc/60+PelnnWxgAkxCTz67vr2bPi\nDM/MuJNb729TpLHTaDQaAGUED5QPlFJSnuTJZvarq3H2qMkDb95qs0xsZBLPtZvJN0eexcXDcpI8\n4swl/AfNpdf9bRjzsS9VqlnqeREh7MRFDm8MIehAJOfPxBJ3IYmUxHSyMk1UquKIU60q1K5fnQaN\na+PmXY8m7Rrg1dkVd+96OQrCZBKG3DWUZasXWfTRrFkzvLy8cHd3Z8SAJ9n2cwiXzifxoH9vfPw6\n4ujokKd8VpaJNT8dYI5/ALcNa8uYj33zLFDVaDSa3CilEBFlkV5aN3el1CpgEPA/EfnARplyqWxW\nfreX49vCeO3XIRZ5wcHB+Pv7Ex4eTlq0Iz3dBzN19YsWlgEYkVszn1/B6d3nGTGuN/1GdaBa9col\nImPshSQObTjLgTXB7FlxBlONJNZemkVUbEROGW9vb5YtWUHI9sss/mInykEx7O1b6TOifU70WW4O\nrg/mx9fXUK1GFZ6ZcQfeNxUcJKHRaDRlqmyUUg8BUwFX4OOKpmzCTl5kXP85/Bzycs4CRzAUzcCB\nA/NEjtWp2oD3HpvGm9/6WVU4YMx7zP98Gye2h9HtrhZ0vaM5rXp44tHS2cKyyO4nW6F5eHjwynNv\nUymlJmcPRxG0P5ITO8JJuJhM+z6NuWlgc7rd1QKPFs459SIiIqhdvR49Gg7myNKLtOrhwZBXbqHL\nAC+rMgbuP89v4wIIPxnDI5/60nt4O5vnotFoNLkpM2WjlKoHHANeAeZRAS0bgJdu+p5HPutPtzuu\nhACPHj2auXPnWpRtVbcHY4f58+yMO626y7K5dD6RHYtPcXjDWU7tjiD2fBIunrWo62rM01Sq4sjF\nxEh+2/EJcSlROfVqOrowuvs7dOreHu+u7rS62Z3G7RpYKKpL5xPZ/PcxAuYcJiYiiQGPdmLQEzfl\nvGo6P0EHI/nzo82c2B7G8Pd6c+fTXW3u36bRaDTWKEtl8z3QVETuUEqZqKDKZsOcQyz/di+Ttjya\nY934+vpaffd23z79uNv9RYIPXeDpL+/gpoHNi2QZpKVkEB0ST3x0MsnxaWRmZPHh9Df5b9Myi7LN\nmjVj/fr1ebZ5ERHCTsawe9lpdiw6ybmj0dwyuBX9RnWgywAvq1YTwLGtofzz2VbO7DnP0Dd7cdez\n3UrMvafRaG4sbCkbu0ajKaV6A6MB25uKVRD6PtSBpTN2s2LmHu4dezNgewfjxk0a8dbvQ9mx+CSz\nXlhF7frVuef5bvS8r43FmpXcVHWqTKPW9WnU+kpa2pdJVsuePXuWgQMH8seP80k8pziyMYQDa4MR\nk9D97hYMf+82uvT3onJV619xZkYWOxadZNH0ncRduMzQN3ry7j/DCrTENBqN5mqxm2WjlKoM7AcW\niMh4c1qFtWwAwk/F8FbvX3j77wfo5NPM6pyNt7c3a9asybE4srJM7Fx8kv9+OMCxLSG0692Ejv2a\n0KKbO007NKSua40CrR5brrpsvJy68vS979K+b1M6396Mxm3rF9jexfAE1vx4gFXf78PVqy5DXrmF\nnve1tmn1aDQaTXEodTeaUup94FGgvYikmdMqtLIBI0Lr85ELeWPufXQd5J1nEr6wHYyTYlM4uP4s\nx7aEcmbveY4fPsmBxBVkVE6mTnVnfLwfwKW2O2ISMtIySUlMJ+JCKP9FzSSZS1bb9PX1Zf369QXK\nnJ6aya6lp1j7y0FObA+jz8j23P1cN7w6WS7a1Gg0mmuhVJWNUqoxcBJ4AliRnQxcAiYDnwCJImLK\nV0/Gjx+f89nHxwcfH58Sl+9aObI5hM9HLODeF7oz7O3brIYNF4Y1q6iRRxNmfvobjTybULmqI041\nq1DT2Ym4lCjuuHMQZ8+etWjHz8/P6m4DGelZHFwXzJa/j7Fj8Uma3+RG/0c6cdsDbS0209RoNJqr\nJSAgIM/c9YcffliqyqYfkP24nbtTMX8W4CYROZSvXrm3bLK5GJbAF48tIT46mSemDqTz7c2KFR5s\nyz1mS3kUxWUXfzGZ/asD2bX0NHtXBdK4bX36jGjHbcPbWmyjo9FoNPagtC2b2oDl27UgAPgd+AHY\nKyLJ+epVGGUDRvTXln+O8fv7AdRyceLeF26m1/1tihTJZSuSrSC3WH6X3Ttvvk9qRCUOB5zl0Pqz\nhJ+6REefptx8T0t6/F9Lvd2/RqMpdUo1Gk1EEoBN1oQAzonIZnv0W9oopegzoj23PtCWnYtPsur7\n/cwau5IuA5vT7U5v2vdtgkcLZ6sWj61INg8PD6vp8ReTSQpxYESPlwjcd57Te87zYe/FtOjuTod+\nTXli6kBa92yk18VoNJpySanujaaUysIIEBhvI79CWTbWiIu6zK5lpzm4Noijm0NJSUqnWceGeLZy\npkGTOtRzr0ktZydiEi8wdtwjhEWE5NT1dG3MJ6/NpIaqR2zkZWLCErhwNo7zZ2IxZZlobN4Hzfsm\nN1p0d6dZx4b6HTIajaZcUeZ7oxWF60HZ5Ccu6jLnjkQRcfoSF0MTiI1MIvFSCimJ6UTFRrDl3L9c\nzoijllM9BnV4kMaeTanlUp26rjWo36gWrs3q4t7CmToNqustYzQaTblHKxuNRqPR2B1bykav5NNo\nNBqN3dHKRqPRaDR2RysbjUaj0dgdrWw0Go1GY3e0stFoNBqN3dHKRqPRaDR2RysbjUaj0dgdrWw0\nGo1GY3e0stFoNBqN3bGbslFKDVJKrVNKnVdKpSqlQpVSfyml2tqrT03FITg4mNGjR+Pr68vo0aMJ\nDg4ua5E0Go0dseebOh8EbgJ2AtFAE+BdoBHQUURCrdTR29XcABTl3TwajaZiUi72RlNKtQJOAK+L\nyHQr+VrZ3AAU98VxGo2m4lBe9ka7ZP6bWcr9asoR4eHhVtMjIiJKWRKNRlNa2F3ZKKUclFKVlVIt\nge+ACGCevfvVlF+K++I4jUZT8bG7G00ptRvoZv54GhgsIidtlNVutBsAPWej0Vy/lNmcjVKqNVAb\naA68AbgBt4lIiJWyWtncIAQHB+Pv709ERAQeHh5MnDhRKxqN5jqgvAQI1AHOAvNE5Hkr+VrZaDQa\nTQXGlrKpVJpCiEi8UuoM0MJWmQkTJuT87+Pjg4+Pj/0F02g0Gs1VERAQQEBAQKHlStuycQXOAL9r\ny0aj0WiuP0rdslFKLQT2AYeABKA18AqQDkyzV78ajUajKX/Y0422HRgBvAZUAUKBDcBn1oIDNBqN\nRnP9UqputMLQbjSNRqOp2JSXHQQ0Go1GcwOilY1Go9Fo7I5WNhqNRqOxO1rZaDQajcbulOqiTo2m\n3CICGRnGX6WgUiVw0M9iGk1JoZWN5vomLg5On4bAQDh3DkJD4fx5iIyEmBiIjYXEREhJAUdH4zCZ\nIDMTqlaFWrWgXj1wdQVPT/DygpYtoX176NgRqlcv6zPUaCoEOvRZc32QmQnHj8O+fbB/Pxw+DMeO\nQVKSoRyaN4dmzaBxY0NpuLpC/fpQt66hUJycDEWTjQikpkJCgqGQLlyAsDAIDoZTp4z2T56ENm2g\nXz8YNAh8faFatTIbAo2mPFAuNuIsDK1sNEUmIQG2bDGObdtg715wd4fu3eGmmwyro317aNTIcIvl\nI3vX6fDwcDw9Pa9u1+m0NKPfDRtg1SpDAd1zDzz6KPTvr91wmhsSrWw0FZv0dEOprF4Na9caVkz3\n7tC3L/TqBbfcYri7ioDd3qcTFQV//QU//mi45d58Ex55BCpXvvo2NZoKhlY2mopHdDQsXw5LlsD6\n9dCqFdxxBwwYAD17GnMqV8Ho0aOZO3euRbqfnx9z5sy5VqkNF9zGjfDxx4bbbdo0GDz42tvVaCoA\n5eIVAxpNoZw/D/Pnw4IFcOCAoVjuuw9mzYKGDUuki/DwcKvpERERJdI+SoGPj3GsXg0vvABz5hjn\n4OxcMn1oNBUMuzmVlVLDlFL/KqVClFLJSqkTSqlPlFI17dWnpoISGwuzZxsT7O3awe7d8NprRsTY\n/PkwZkyJKRoAT09Pq+keHh4l1kcOgwbBoUPg4QHduhn/24ng4GBGjx6Nr68vo0ePJjg42G59aTTF\nRkTscmDs+vwPMAroC7wExALbCqgjmhuEzEyRlStFRowQqVNH5IEHRBYuFElJKXITQUFB4ufnJz4+\nPuLn5ydBQUFFruft7S1AzuHt7V3k+lfNvHkiDRqIbN5c4k2X2TlpNPkw38ct7+/WEkviAFyspD0M\nZAE+NurYdRA05YDQUJHx40UaNxbp3l3km29EYmKK3cy13lyzFZWvr2+xFNU1s3q1SIMGErRkyVUp\nSlv4+fnlGYvsw8/Pr4QE12iKhi1lY7c5GxGJsZK8G1CAdT+G5vpEBAIC4OuvjTDhBx80Jv27dLnq\nJv39/fNEkwEEBgbi//LLzHnhBQgJgYgII0IsJgbi4yE5OWeXAK9KlZjj5GSstalTB/74w1iw2bq1\n4cpzcrrGk7bBwIEET5jAwPvvJzArKyd5x44d1xQNZ/d5KI3mGintAAEfjCeu46Xcr6YsSEszbuLT\npxuLLl94AX75xVhEeY2Enz1rNT1i9Wq4fBmaNjXmSVq3BhcXqF0batQwwpCVMpROSoqhhKKjDcW0\neLERUn3mDLRta0zw33WXsWizBMOX/bdty6NowKwo/f2vOhquVOehNJqroNSUjVLKE/gQWCMi+0qr\nX00ZEBcHM2fCjBnQqRNMmQIDB1pdXFlkwsKM8OeNG2HLFjyDgqwW8xg2zIj8uhZSU43FmuvWwXvv\nwdmzMGoUjB1r7EZwjdjDCpk4cSI7duywWDs0ceLEq25ToylJSmWJs1KqBrAYSAceL40+NWVAVBS8\n+y54exsWwn//ETxzJqN/+w3f228vXoRUerqxePO11wwro0sXWLoUunaFf/5h4vHjeHt756lSYjfX\natXgttvggw9g1y7YscPYA+3WW8HPz1A+14A9rBAvLy/WrFmDn58fvr6++Pn5XfsiVY2mBLH7ok6l\nVDVgJdAR6CsixwooK+PHj8/57OPjg4+Pj13l05QAUVEwebKxcv7BB+Gtt6BZs+Kv1E9JMbZ9mT8f\nVqwwFnHee6/hyura1WL7l+wtZyIiIvDw8Li6LWeKQ2KisUDzq6/g/ffh5Zevaksau+1goLmuKZEt\nluxAQEAAAQEBOZ8//PBDq4s67RaNZlZilYDlQDxwcxHK2ytAQmMPLl0SefddEWdnkbFjjUizXBQp\nQiozU2TNGpExY0Tq1hXx9RX59luRiIhSPplicOaMSM+eIvfdJ5KUdFVN5ETDeXmJX8uWOkRZUyAV\nKbQdG9FodrNslFIK+Au4B7hHRAIKrqG3q6kwpKQY8zGTJ8OQIYa7qUkTi2K+vr55nnhyp6//8Uf4\n6ScjYKBBA2Ph5siRxmaaFYH0dHjqKQgKMqyxGjWurp3Dh40dEvJF1mmuHhEhMimSkPgQziedJ/py\nNHGpcSSmJ5KamUqWyQjOqOxYGadKTtSuWpt6TvVoWKMhHrU8aFqnKfWcirbPXmlh9y2WSpCy2K7m\nW2AY8D8gRSl1S668MBGxPkuqKb+YTDB3LowbBzffDJs3G1vs28Dm3MSJE0b90aONvc86dSq+LBcv\nwtGjxnb/QUFX3lNz8aIRYZaaCllZhpurWjXjVQKuroZSbN3amAO65RYjSu1qqFIFfv4ZHn/cOI+F\nC68uAKJ9e7h0yXBFluAuCTcKl9MvsydiD7sjdrM/cj9Ho45y+tJpalSuQZM6TfCo5UGD6g1wdnKm\nRpUaODs5U8nBuO2lZ6WTkpHCufhz7I/cT9TlKMITwzkXdw5HB0daubSiQ4MOdHbrTHeP7nR170q1\nSmXzConrIbTdnsrmTgxzb5z5yM2HwEd27FtT0mzbZsxRODrCvHnGBHohWI2QqlqVia++aoRBF3Ut\nS0oK7NxpyLBzpxEplpho3KjbtDHeVTNokGEVZa+bcXIy3raZlWXUj4sz3klz7pwRvLB0qfHem86d\n4YEHjIn/4t7sHRzg+++hTx/49lsjWq24ODgY53H8uFY2RcAkJnaF72LF6RWsDVrLoQuH6OjakZs9\nbmZg84G82vNVWrm0onbVq3yIwLCMYlJiOHnxJIejDnMg8gC/HvyVExdPcJPbTfg28+WOFnfQs1HP\nHMVlb66L0HZrvrWyOtBzNmWOxRYwO3aIjB4t4ukpMmeOSFZW0Ru7cEGCnn9e/KpUEd8GDcRv0CAJ\nCgwsvJ7JJHLwoMinnxpzODVqiPToIfLaayJ//y0SGGiUsSZvcXzYKSkiK1aIPPKIMV/05JMW805F\n4tgxERcXkejo4tcVERk50hhbjVVMJpNsDdkqY5ePFbcpbtL+m/by1uq3ZG3gWklOTy41ORLTEmX1\nmdXyzpp3pMusLuL8ubM8vPBhWXJiiaRlptm17+thzqbMFUweYbSyKVOsXtAODhL0zDMiiYlFb2fH\nDvFr3Vp8HB3Fr0ULCdqwofBKWVkiW7eKvPKKSNOmIl5eIi+8ILJ0qUhCQtHlvdof4MWLIu+9ZyiN\n6dNzlFmReeopYxueq+Hpp0Vmzry6utcxl5IvydRtU6XVjFbSekZrmbhxopy6eKqsxcohND5UZuyc\nIb1/6i0un7vI2OVj5cD5A3brr8y2WComWtloCuWa99eKipKgJ54QbweHoiuAEyeMiLamTUXatTNu\n2IcOFelmb5f9wE6fFrnlFpHhw4u1KagcPCjSpEnxlZSIyDPPGBF4GhExbuIvrXhJ6n1WT0YtGCVb\nzm0R09WMaykSHBss4zeMl8bTGsutP94qfx35SzKyMsparDLBlrLR763V5BAeGmo1vdBJyKQk+PBD\naNMG/02bCDSZ8mRnb8WSQ2oq/P67MdfRr58R2bV4MRw5AhMmGK90LsJke1EmTYu97X6LFsYuBVlZ\nxpqhfNvK2KRjR2NLm8OHi1Y+N5cvX30023VE1OUoXlr5Ep1ndaayY2UOP3eYuUPncluT21DXsvtE\nKdCsbjMm+Ewg6OUgXu/1Ol/u/JI2X7fhh30/kJGVUdbilQu0stEYbN+O5/79VrNsTkJmZcEPPxiL\nL0+dgj17CLcxkRkREWHsP/b++8a+ZXPmGLsDhIYa29l07ly4gomJMSLgfvoJxo/HMyzMuryhofDp\npwR/9x0DfX2ZO3cuAQEBzJ07l4EDBxaucKpWNYIg4uLg008LLpuNUkbQxK5dRSufm8jIGzo4ICMr\ng6nbptLum3YAHB97nCmDpuBZu+Lt11vJoRJD2w5l6+Nb+XnIz/x55E/aftOWeYfnYRJT4Q1cx+jX\nQt/opKXB+PHwyy8E+/szcPr0PNFjNWvWpH379rRo0SLviuUtW+Cll4wn8mnTjFBmClgP0Lw5c2Jj\njT3GXnrJUFAFkZVlRItt3GhEoe3aZYQ0t29v1G3alODKlRn4zTcEXriQU83b1ZU1zz+PV1ISo+fM\nYcrwT8IAACAASURBVO7585ayFHVtQliYESK9e7exI3RhfPyxESX32WeFl81N8+awcqURkn2DsTt8\nN08seQL3Wu7MuGsGrVwKuS6KgIgQEh/C8YvHOXPpDKHxoZxPOk9MSgyJaYmkZaVhEhMOyoFqlapR\nu2ptnJ2ccavhRpM6TfB29qZN/TY0qdMEB2X7ebyoK/o3BG/grbVv4agcmXHXDG72vPmaz7E8Y2ud\njVY2NzLHjxs3/yZNjBBeV9ecH1BgYCBHjhwhKSkpp7i3tzdr5s3D6+uvjU0xJ00yXE25LBKrW7E4\nOLDmxRfx8vc3dmC2RXy8se5m6VLjdcpubsbOy717E+zujv/s2YRHROT5YRe0ZY3NRaV9+rB+06ai\njdG4cYZcX39deNnvvzcU0+zZRWsbICHBCNmOjzdCtW8QMk2Z/G/T/5i5ZybTBk1jVMdRV+0qy8jK\nYHvYdtYHr2dr6Fb2ROzBqZIT7Rq0o6Vzy5z1Ns5OztSqWotqlarhqBzJkixSM1NJSEsgJjmG80nn\nCYkPITA2kOPRx0lIS6Cre1d6NepF36Z96du0LzWqGO7O4m45ZBITvx38jXfWvsPwdsP5pP8n1Kp6\n7bufl0dsKZsyDwrIfaADBEoHk0lk1iyR+vVFvv/e6qS2zcn3qlWNEGRzhFhQUJAMGTJEGjZsKA0b\nNpTBgwfLxnnzxM/LS3wrVxa/Ll0k6PBh27KkpBjhzIMHi9SqJXLPPYZMYWE5Ra426szmOdSoIVKQ\nTLkJDjbGKTOz8LKzZ4s8/njR2s1mzRqR3r2LV6eCcz7xvPT7uZ8M+G2AhCeEX1UbaZlpsuj4Ihm1\nYJTU/ayu3DTrJnlz9Zuy5MQSuZB0oUTkjL4cLatOr5IP1n8gfX/uKzU/qSkDfxso3+76VoaOGHpV\nwSkxyTHy6KJHpdkXzSQgOKBE5CxvoKPRNCIiEhdnRFp17mxEgtnAx8fH6o/Jt3v3nDJBQUHSuHFj\nizJNlJKgl14SiY+3Lcfx4yIvvWSEGt9+u8jPPxuyWeFqo85sKqlp00RcXQs8/zy0amVEmxXGlClG\n6HZxePddkXHjilenArMnfI80mtZIxm8YL5lZlgq8sHVTwbHB8ubqN6XBpAbS+6fe8u2ubyUioXT2\n0UtITZD5R+fLqAWjxLG5o/Xfh69vkdpadnKZuE9xl3Hrxl13UWta2WhEDhwQadFC5NlnCw3rLcoN\n3lYZa4ogKChI/EaNEp9OncTPzU2CXFyMdS3BwYWKbVPxFeGHvXHjRmnUqJFUrlxZqlatKv379zdu\nYN99J9Kxo0h6eqFtyP33G9ZXYbz8ssjkyYWXy03HjiJbthSvTgVl5emVUn9SfZl/dL7V/IIs2GNR\nx2TUglHi8rmLvP7f63I65nQpS5+XkQ+OvOaw+8jESBnw2wDx/cVXopKi7Cht6aKVzY3O778b7qAi\nrlQP2rVLvKtXL9B1ZUsJ5FcEQWfOiLera962mjcv8qI0m4pv2LAC17XYtLyaNDF2Mujf33B9FcaT\nTxrKqTAGDBBZvrxI5yQihnXn4VE0F10FZ+GxhdJwckPZGrLVZhlb37N3X29pMKmBfLr5U4lPLcBa\nLoQsU5bEpsRKSFyInIk5I2dizkhofKjEp8YXex2PNcXo4Owgr//5uiSlFX0n8MysTHlnzTvS7Itm\ncvhCEV275RxbyubGmZG8UcnMhLffNtaxrF9vrAcpjLVr8XrkEdaMGYN/XBwRFy5Yvi8mORnPyEib\nTXh4/H975x0Wxbn98e9gRVFUmoCogBossUSNPUIUjRolRk1i0MSY6o25SX4a402uicZoFLElttg1\n9q6xaxR7752ya0MsCIpI3/3+/niBC+zMFgR20fk8zz4xM+/MnBl23zPnvKd4ACSwfTtGBAcjKj4+\n1/4ojUa5DfKdOyIK7dgx4MwZjL54EUcB5KyL7FuyJEZv2yYqRrdoAXTrJoIdKlXKHjNixAjckskd\nunnzJkb89BOWDB0q8oM++cT489DpRE04U2NOnACaNTM+LieLFwN9+5o+dzHn72t/Y9CWQdgevB1N\n3JsojlPKm0p7nIbwr8JRqWwl2f15ydBn4NzdczgWfQxn757F1dir0D7S4l7iPdiXskeF0hVQukRp\nAMgOEEjXp8Ojgge8K3nDz9kPjdwaoblnczR0ayhb/yyrWV3O4JQB3w7AHO0cvDTtJfzW4Tf0a9jP\nZNBDCbsS+K3jb2jg2gCvL3odq/usRvua7c26z2KHnAYqiA8ATwB/ADgM4CkAPYDqJo4pZJ37gvHo\nEdm5MxkYSD58aHp8RgY5YoR42/7nH+Vxhw6RtWtT0707vTw95S2HzZtFXTM/P/o3aGDc+tHryVOn\nxPpF/fqiP05QEDl+PLlzJ3n7NjWRkYalOvR6MiaGXL1a1BdzchJurExLwaTllZpK2tuTT58afy7d\nupEbNxofc/gw2aCB6WecRUoKWbWqqKv2HHPwxkG6hLjw+O3jJsc+S0WI+OR4LjyzkD1X9KTjb46s\nP70+P974Macdm8Y9mj3UxmuN1i9LSktixMMI7ojcwSlHpnDAhgGsN70eK/5Wkd2XdeesE7MY8yTG\nrHs+cusIm/7ZlO0XtLeovM7uqN10CXHh5mubzT7GFkFRu9EAtAcQA2AzRKdOnapsihCtVpR/GTyY\nTDdjAfLBA+EGCggg796VH5OWJtZZ3NzIdetI/i8azc3NjW5ubuzRpQs1/fqRrq6iBEt6uvIk8vbb\nQqH4+ZE+PuT335NHjuTfrRQRQbZrR/bqRWZkmLemVKuW6UABHx/h8jLG0KGWLfQvWiSe93OMNl7L\nqqFVuS1im1njNRoNPap7GHXd5kSv1/PgjYN8f+37dPzNkUHLg7jo7CLefaLw/c0H9xPvc9n5Zey7\npi8rjavEjos7cvmF5SYLb2boMjj5yGQ6jXfi9OPTzXbTHb11lK4TXLkl3AJ3rI1R5MqGuZXIx6qy\nKUJOnhTWydSp5o0/e5asWZMcNkxZMWm1ombYG28IayIver1YRHd3FwEIOSwp2YXfChWoqVCB/Ogj\nYSkVVO2rlBSxFjNypPE1m6wJrH59UYtNiZgYURFaQQFqNBoG9+1L/9KlGdytm3nrUDqduO727fm4\nweJBcnoyX/nzFU46PMnsYxafXczK31dmQPcAk8Umd0XtYut5rek71ZeTj0zmwyQzLPdnJCktiSsu\nrODri16ne6g7x+4fa3IN6eqDq2wyqwl7rexl9nrTkVtH6BLiwn3X9xWE2EWOqmxeFHbuJF1csi0P\nk2zcKAIHli1THrNli7BUQkOzWwzkClHt1YuaN94QFsrhw7Kn0Gg0DO7WjQHOzgwuW5aaIUNEpeXC\n4MYNsnJlMiHB0PLq0SP3BObmliunx4D584WlJEO+q04vXy5aJth4ccln4Ztt3/DtlW+b/Ub/+9Hf\nWX1ydV66f8nouIiHEeyypAtr/V6LS88vlQ2fNkZqRipjnsQwKi6K4bHh1MZr+TDpIXV6C1pnkDx/\n9zyD1wbTJcSFEw5NYEp6iuLYlPQUfrbpM9adVpdRcWa02KBQpq4TXHn5fvFzs6rK5kVg9WqhFPbv\nN2/8lCnCAjp2TH6/Tkf+8ovoZZMjPFd2knV0pEbJ1RQTI5IdXVzEmoqpNZKCoEMH0Z7AGA8ekBUr\nGu/RExgolIMM+VpjSE0Vrrtdu8y4ieLJvuv76DnR02xrY8bxGfSe4s3r8dcVx+j0Ok48PJFO4504\n4dAEs/rHXI+/zoVnFnLQ5kFsO78tXSe4suQvJekS4sKaU2rSd6ovq0+uTsffHFl6dGn6TPXhG0ve\n4Pe7vuf6K+sZ+9T0y9Dl+5fZfVl31vq9FndG7jQ69o9jf9A91J2n7pwyeV6SXHBmAX2n+haJ1VaQ\nqMrmeWfhQuHCOnPG9FidTqwx1K2rnOeSlES+8w7ZsiV5J3fSnNmTbEYG+ccfYuF+6FDFpM1C4Ysv\nyOnTjY9ZuZLs0kV5f0SEsPqS5Bt05Sv/Z+JE49cs5qRmpNJvmh/XXTbPsl5/ZT09JnoYfeOPS4pj\nlyVd2Hpea5OWgTZey1Fho1h/en26hLjw3dXvcvKRydyr3cvbj28rWjDJ6cm8FnuNG69u5Mi9I9n5\nr86s+FtFtprbihMOTeDtx0asX5Jbwrew+uTq/HTTp0ZDn7NCwI/cOmL0fFl8s+0bdlvazWLLy5qo\nyuZ5Zu5cYX2YWsQmhQL46COhRJQi1B48IFu1It97Tzb5079tW9OTbHg42bq1WLAvwIgrsztzDhhg\nOoemVy/j+TNffCECIhQIfv99yyyb6GihvMz5OxVTflz7I91bu5vVOfXivYt0DnHmiegTimO08Vq+\n9MdL/Hrb10zLUE7APRF9gj1X9GSV8VU4eMtgHrp56Jkn6JT0FO6I3MGBGway8rjKDFoexP3Xlb0G\nj1Me84P1H7DutLpG3V9bw7fSJcTFLAsnLSONLee2tGjty9oUG2Xz888/Z3/2mtPh8UVn3jyyWjUx\nuZsiLU2ECHfsSCYqvH3dvCnWXr7/Xt69FBHB4AoVjE+yixaJSXXKFMvaSJvAojWSpk3JAweUT3b7\ntlj4V7K2NBoRgn1fObN737BhdLCkUVzv3kaVV3Hn/NXztKti3vNISktiven1OP/0fMXzhceGs9qk\navz96O+KY249vsV3Vr9Dz4menHp0qkUJlZbwJPUJZxyfQd+pvvRf6G80lHve6Xl0CXHhjsgdimPW\nXl5L91B3auJMB5RExUXROcTZ5HqWtdi7d2+uebvYKBsVC1i2TKy5mFPjKz1d1ETr0kW5VE1kpOiY\nGRoqv//4cbJqVWp++UV+0r96VXSdfOkloxFeZlsneVBy37m6uuY+T3S0UCQpyou2/Ppr43XM+vQh\nR45UvodTp+hbInd9LAcHB+7bpxBBtHq1eC4KLrnngcaBjc229L7b+R37rOqjGEBw+/Ft1phcg3NO\nKVunC88spHOIM0fsGcGnaeavA6ZlpPF+4n3efHST0QnRfJL6xOxAhnRdOuecmkP3UHd+uulTxifH\ny447cOMAXSe4csWFFYrnmnp0KhvMaGCWgpxxfAZbz2tdLNxpqrJ53ti8WURSmVO9WKcj+/UTCZ5K\niiYqivTyImfOlN+/b59Y4M9MbjToh37mDNm+vajenFkRWg5Z66RaNVG4s2NHUfSyQQPyyy8N8n2M\nJWnmeov+6Sfys8+Un0dkJDUVKzKoc+dc1aqzldWOHSIU3EggQ3CNGua70O7cEX+rI+b56Ysj6bp0\nlq5V2qw1rIv3LtIlxEWxOnNyejKb/tmUY/aPkd2flpHGTzd9yrrT6vLcXeMFUtN16Vx+YDkbdGjA\nynUr0/4Ve9p9Y0en8U70nOjJqqFVaf+rPR3GOrDxrMYcsGEA55yawxuPbhg976PkRxy0eRC9Jnkp\nutbO3z3PqqFVueqifF09vV7PARsGsP+6/kavRYoAiRZzWnDBmQUmx1obqygbAL0yPzMhKgh8kfn/\nrymML+zn8Hxw5IhwUx09anqsXi8m7tdeU548b90Sk+uMGfL79+8X11OKoLp7VxSU/PprkwmZisEF\nfn5CgV6+LKoJfPmlWFcy49hc5+nVSwQkKLkV9Xpq2rWjV8WKBsdWr16dmnPnhHVnLAdm1Sr629ub\nFxyg04mItp9+Mvpcijsbr26kcwtnsxRwt6XdOOXIFMVzDd4ymL1X9Za1NpLTk9l1aVd2W9qNCSnK\nLzW3Ht/isJ3D6DTciaWdcytBH5m6fPHJ8Tx++zhnnpjJvmv60mm8E1vMacFZJ2YZtTy2hG+h2wQ3\nTjs2TXb/2ZizdAlx4V7tXtn9iamJ9Jvmx+UX5CMec3L01lF6TPSwyIqzBtZSNvpMiybvZ4/C+MJ+\nDsWfyEhR5mSzmSUtxo4lGzZUXpuIixMJhuPHy+8/dUpYNEqK5v59EdU2cqRZeSOmIriyXWzt2zNY\nkoRrLhM5q8jgPFWritYFSsyezeDKlZWVVc2axq0ijYZ0cWFw587mWTa//ir61ZhTxaEY02dVH/66\n8VeTa2onok/Qa5KXYl7KXu1eVptUTdY9la5LZ/dl3fnO6ncUy/I/Sn7Eb7Z9wyrjq/Cbbd/wzV5v\nmm+B5rnW1vCtDFoeRJcQF447MI7J6fJegai4KPpN8+MPu3+QVZC7o3bTbYIbtfFa2eOP3z5O1wmu\nfPD0gVGZSLL3qt4MORhicpw1saobzdyPqmxMEB8vFu+VLJC8rFolXGPRCg2q0tJEeZqvv5bff/06\nNS4uDG7XTn59JTGRbNbMokXv4N69FX/85gQAZCkjtzxVpLPP4+CQncxpsC50/jzp7Ez/V19VVlbl\nyilbgMnJ5CuvkJMmmRessHOnCEc3ljT6HPA07Skr/laRsU9jDd2reSyI99e+z9BD8muCGboMNpjR\ngGsvr5XdP2THEHZc3FExKi1MG0avSV78ZOMn2S66Z2lPkcXl+5fZc0VP+kz14R7NHtkxD54+YONZ\njfnjP/IliyYensgWc1ooyv7vrf/m539/blKWLNeckuKzBVRlU9zJyBCL+4MHmzf+zBnh+jKWdzNo\nEPnmm/Kur6dPqfHzo6+Tk/yEqteLPJwPPjA7E14TGckezs4sm2dhPeucliRJyk72dnbUrF8vv69m\nTWq8vMi//jLqjnN1cpIPWtDryf79RTRf5v1qNBr26NGDbm5udHV1ZVBQ0P+Oi4wUCbYvQETltoht\nbDe/nclxcUlxdPzNkXFJcbL7l5xbwrbz28paBzsid9BrkpdiguPcU3PpNsEtuw5b1vfJ1dU1X5aN\nHJuvbabHRA+O2DNCdqH+fuJ91vmjDmefnG2wT6fXMXBxIMfuHyt77rikOLqEuJhVMaDLki6cd3qe\nxfIXFaqyKe6MGCEW4M1p9hUXR3p7kyuUI2G4eLFYjFdyrw0cyOCaNZV/qDNmkE2amGzCloVGozHo\naWNvb59rgrb0LTT7LbpVKwaXKyc6cNLIulDdutnHydVMM2qljB0rrJocIeOK1s3Zs8K1aCqp9Dnh\n+13f8+e9P5scN//0fL698m3ZfXq9no1mNpIt2pmcnkzvKd7cHiG/jjbv9DxWn1yd12KvkTTtbjWr\npJACd5/cZZt5bfjemvdkrZRrsdfoEuLCk9EnDfZp47WsMr6KYqWEsfvHMnitaSW4JXwLm89ubrnw\nRYSqbIoz27eLpE2lasw50evJt98mv/pKeUxWZnyeVsfZrqcGDRjs4MCWzZvLT/6tWolFeAuSE01a\nLXfvMrh2baMuNtlw6Zs3RfmXSf9LelNUWv7+ue41KCiIbs7OLKMwKWXLtmQJWb26gTtM8Z7c3Iw/\n/+eMgIUBZlV2fnvl21x0dpHsvpPRJ+kz1UfWYph6dCrfXPam7HEHbxyk6wTXbEVDKv9dnF2c2axz\nM7b7qR0rNKvAEj4lWKJRCbr8IFpMD9kxhP9o/jEZXpyUlsSuS7uy75q+smOXX1jOutPqyq5Ljdgz\ngh+s/0D2vI+SH7HK+Cq8+eim0etn6DLoMdHDZvNuVGVTXImJEQEBRtwxuSbiFi2o8fNTzjHR6URm\n/5QpBufI+zbo4OAgP5nWrCksLQtQVAD165Pvv09WqsR9b7/NkiVL5tpfsmRJLl++XN6C2LVLRI5N\nnJjrWma74x4+JBs1or9CGHNAQMD/ipBevGj+PTk7vxDdN0lhkVQZX8Vkrxe9Xk+n8U6KZV+G7Rwm\nu96h0+tYc0pNHrttWL8vOT2ZPlN9uPFq7l5DSn+XEj4lGDQziK7VcrvWanjX4F9hf/GXsF/YeFZj\nek/x5txTc40W+UxKS2Lrea05KmyU7L12X9ad4w6MM9j3KPkRncY7KSZzfrnlS7OsxG+3f2vWOGug\nKpviiF4v1lSMLMAr5q0ouQmmTyfbtDHI7FeaoPNO/r7Vq1Pj6Eg+tqw9r6IC8PQUMj18qDimppI7\nr0wZURNO7pl4ext3nTx8KNxiQ4Yol53p0EFE4inkxyje07vvWvRsijMPkx6y4m8VTSZFauI09Jzo\nqbi/8azGsi2j92r3stHMRrLHhB4KZdDyIIPtSn+XXu/2MutF5NDNQ2w7vy1bzW1lNN/mTsIdVg2t\nyqO3DFMQrsVeo+MwR/Z5r4+BNT50x1AO3TFU9pwnok/Qd6qvyecZpg3jK3++YnSMtVCVTXFk/nyy\ncWNRKVgBiyoPP3woJk+ZRFBTCZNZls6+Dz/Ml4vInOgtJRkqVaokb0E0aSJ/sQcPqGnShME1azKg\nfXvDBf+YGJEX9N13Iu9GTjYPD2oqVTJpURoc5+2d7/WA4sjZmLNsMMN0h9Kt4VsZuDhQdt/TtKe0\n/9Ve1u00ZMcQWeshQ5fBapOq8fSd0wb7jH3XzF0X1Ol1DDkYQo+JHkYX7ZecW8Jms5sZKAeNRkMH\nNwdZGa4+uMqqoVVlLSe9Xs+aU2ry/F0jPZYoCp5WGFvBJitCq8qmuHH3rlAMJqo4W7SoPnSoKC4p\ngzkJkwAY7OxM7t6dr1vKGRYbFBTEHj165Hrrs9iykVOoFy+Svr6ixbRCbTf6+orWCTkmiFwhu/7+\nJhVN9nFRUQxu0IAB5cqJvj4vkKIhRQ6J/0J/2X053bvN32jOd/58R3bcmZgzrD+9vuy+VnNbySZE\nHrxxkA1nNlSU62rEVVZoVoH1mtfL9bJhaVuIhWcWssbkGoqTuk6vY+NZjQ1aOZu6TqOZjXjghnzt\nvkGbBymGh+ckcHEgN13dZHJcUaMqm+JG//7izdsEZv94HjwQDcUUcj404eEGtb5klViJEuJcz4DS\nm+e+ffvkt+/dS18XF+NuMVLUH3N2FoVA5Th8WKx/zZqlLNzKlWKN5pChS8cAvV64OOvXJ+/Jl155\n3tl4dSO7Le1msF3ub1zJvZKsMt58bTO7LJFvu1BpXCXZZMcx+8dwyI4hinLNOz2Pnf7qZJZcpqLT\nBm8ZzI83fqy4f/7p+eyxvEeubaZeAoftHKa45rLs/DLFqL2c/LD7B/60x/YqU6jKpjhx+LCIPnvy\nxORQjUZD3zy5BLI/njFjRAMzJfbvp6Zu3ey3e0Vrws7umYtJGlOQBkmB69aRLVoIt1jXrvLJgsnJ\nIv/I21u0xJZ7TqGhDC5Thv4NGyoX/5w6VTz3c8brbZEUVtM33wg3p5HK0M8766+sN5hoScssiCXn\nlrDvmr4G21PSU1jql1Ky6xf91/U3WjG681+dFZNDTSWe5uVR8iNWHldZMbjhUfIjOox1yJVoaer+\nN1zZoKhgrz64Su8p3kZlIoVS6r2qt8lxRY2qbIoBGo2Gwe+/T/+KFRncsqXZ/ew13t4M7tBB+cej\n15M+PqJqsxKjRws3Ww5ZZN8Aq1V75v40Zrn+rlwRSaMeHmLtSqlVwdmzYv2ld29RYSEvaWnUDBhA\n37yBDjkVckaGqKJgrJlcTtLTyQ8/FD1/4uQTFF8UtoRv4RtL3jDYbq57V6PRsFWXVnRt4Grw3X2U\n/IgVxlaQve6by940iELLSbVJ1Yx2/rSU/uv6c8Zx5codr/z5Sq6GaKYsqMiHkawxuYbsudJ16Sw9\nurTJbqTHbh+zySABJWVjBxWbQKvVIjAwEEuXLUNYQgKWHj2KwMBAaLVa4wdu3w7vypWxZNcuzJs3\nDwAwcOBA9OvX73/Hnj4NlCgBNGumfJ7Ll4GGDbP/19vbG7t27UJwcDACAgLQo0cPNGjQAAP1evR7\n5x3TchnB09NTdruHhwdw6hTw7rtAu3ZA48ZAeDjw0UeAXZ6valoaMGoU0LEjMGQIsGoVUKlS7jG3\nbgH+/hixcyeiMjJy7YqKisKIESOAx4+BHj2ACxeAQ4eAmjWNC//0KdCzJ3D/PrBrF1C5soV3/3xR\nsUxFPE55bLDd6N84k6zv/JFtR3D/4n0sXbo013fevpQ9kjOSs15Ec1HKrhTSdemKcqXp0lCmZBlL\nb0eRpu5NcenBJcX9tavUhiZek/3/Wb+fdt3awameE4KDg7Fr1y54e3sDALwcvRD9JBp66g3OVdKu\nJFzLu+LOkztGZfKo4IGYJzH5vCMrIKeBCuoDoBqANQAeAXgMYC0ALyPjC1fl2jD56mdPkkFB5Jw5\nxt+kxowx3ruFFJWJFSodWxxebQLZ87m6UvPKK6KWW2io0TYF3LePrFdPhIXfuiU/Zt06sfby22/K\nb9mvvip6zPzrX+ZVZrh7V9SC+/BD88a/AITHhsu6fGTzttwccn1nzPnOVxlfhXefGCYzf7nlS04+\nMllRrmazmykuwOeHP0/+yU82fqK4/5ONn/DPk4ZdX/do9rD9gvayx5QfU16xcvXLM17mmRjjwUGJ\nqYks+2tZo2OsAYraspEkyR7AXgB1APQH0A9AbQB7Mvep5CA6Olp2+507Rt5u4uOBvXuBd97BiBEj\nEBUVlWt39tv70aNAmzbGBShZEkiXf1OUPfft2xgxYIDxcyrg7e2NXRs3Ivi11xDg5obgUqWwy88P\n3j/+CGg0wlKpUMHwwFu3gPffB/r1E1bNpk1AtWq5xyQkAAMHAkOHAhs2AMOHK79lnzsHfPcdMH06\nUKqUcaEvXABatgS6dQMWLDA9/gXBy9ELd57cQYY+t+WY1zIODAqE97+9s9/sAfO+83Wd6+Li/YsG\nY5pUbYLj0ccV5ero3RHrr6y39HYUiXgYgRqVaijuT8pIgn1Jw2lNTz3sJPlptoRdCeiok91XpmQZ\npOnSjMpkX8oeKRkpspafLVKYbrTPANQEEETyb5J/A+iRue3zQrxuscQct4MB27YB7dsDFSsa/+Fe\nuwbUq6d4Gq1Wi34REQj49tvc7rdMFM994oRQYvPnC0Wg9KUnxf7Nm4GffwYCAuDdsiWWlCiBPT/+\niCU3b8J73z7g7beF0stLfDwwfLhwq9WuDVy5AvTuDUhS7nHbtwMvvywUwdmzQKtWAIDRo0fD19c3\n11DfkiUxetUq4OOPFZ9LNps2AR06AGPGACNHGl73BaZsybLwrOiJyLhIg33e3t5YsmQJ9uzZvkG5\nagAAIABJREFUg1UrVkEDTS6lZM53vrVXaxy4ecBgTKBvIHZG7VSckD9v9jkWnVtUIG4mPfXYcG0D\nOvl2UhyjidfIKqPYpFg4lXMy2E4SSelJKF+qvOz50nXpKGVn/IVGQjH7HsqZOwXxAbAbwAGZ7WEA\n9iocU1iWnc2jOX6cvpJkUUgmBw4k//iDpAmXhKOj4kK2OaGgiufu25dcs0a0UHZ1JatUEb1z2rcX\nrQtatiRr1ybt7UXIcWCgyH/ZssW4myyLuDjy559FHbZPPlEu1X/vHhkcLBrA7dypeJ/B3boxoHx5\nBnt5iWKZptDpRD6Op6d5jepeUHqt7MWl55eaHOc3zS9XEqY5370wbZhiBYH2C9pz2fllitcbsWcE\nX1/0umJZf3OZeWImW89rrZjV/yT1iaJLbPS+0Ry2c5jB9vuJ91l5XGXFa9aYXINRcVFG5UpKS2KZ\n0WVMSF/0oKij0QDEAJgps306gHsKxxTqQ7Bppkyh5q23LArJZP365Gnx4zX6wy1XTnFyN8dvblZu\ngl4v1jROnyb37BGJnwcPiqgycxRLTm7cIIcMEcprwACRiClHejo5bZrIrRk6NFdF5lzodKIWnLMz\nOWeOeS0R4uPJ7t1FHbk7dyyT/wUj5GAIv9zypclxX2750qBeWFYYcv3m9Vm1VVWD73yGLoNek7xk\nKwVsDd/KutPqKjZSy9BlsMfyHuyxvIfRbpvGCNOG0TnE2WQVgc5/dc51P1nJygGTA7LbQufcFxgU\nyEZj5ZVohi6DZUaXYVKa8RSD6IRouk1wy9d9FSbWUDapAMbKbB8NIE3hmEJ9CDbNa6+Rf/9t/vj0\ndLJMmVwl/hXzBzw9xQQugyUhqhYpQkvR6YSC6t1bJJ9++62izCRF59CXXyb9/WXL72QTFSXGtG6t\nrLTycvKkCBX/6iujpYJUBCeiT9Bvmp/JcdsjtrPl3Jay+56mPWXlcZV567FhwMf4g+Nl83D0ej0D\nFwfKFrzMIjUjlQM2DOBLf7zEfdf3mZQxiwxdBqcdm0aXEBf+o/lHcZxOr2PTP5ty/RX5PkpSFYmn\nLp2S3VexakXZ31Hkw0h6TfIyKeOJ6BNsPKux2fdUVKjKxpaJjycdHCxLlrx9W3SBNAd/f8VIM0XL\n5r33zJflWYiIIEeNEpP7yy8LS8WYJXT6NNm5s2grsHatKBcj13ogPV20HXByEtFt5lRh1uvJyZOF\nBbRqVcHc3wuATq9j1dCqDI8NNzouLSONLiEujHgor/QHbxnM4buGG2xPSEmg2wQ3nrpzymDf9fjr\ndAlx4cEbB2XbUOS0nMo3Lc+WIS259PxSxfIzd5/c5Z8n/2SDGQ3YZl4bXn1wVXZcFvNPz2ez2c2o\n0+uMegksiTZddXGVbKJsXlZeXMmeK3qaHFfUKCkbmdXYAiMegFwSQpXMfbKMHDky+9/+/v7w9/cv\naLlsjwMHgBYtAHsLgvQSEoCKFc0b264dsHs30Lmzwa7Ro0fj6NGjuaLNfB0cMPrcOeDkSeO5OfmB\nBM6fF8EC69YBt28D77wDrFghrqW0+H7xIvDLL8DBg8APPwCffQZtdDQCAwNzyb5x40bUr1EDte7c\nweiXXoL3kSMiqMAU9++LfJ4HD4BjxwAfnwK64ecfO8kOPf16YvXl1fih3Q+K40qVKIUPG32IWSdn\nIbRTqMH+/2v1f2g2pxmGth6aa1G9QpkKGPP6GHyx+Qsc/vgwStr9b9qqUakGFvdcjKCZQSi3ohxu\nXb+VvW///v2QJAk3b97M3qa9p8XcUnPxxeYv4FreFdUdq6N86fJISk+CNl6LuOQ4BPoGIjQwFJ18\nO0EyEgxyLfYavt/9PXb23wk7yc5okI6Yg+X3abVajBgxAtHR0fD09ITd63ZoXae14nWzuHDvAuq7\n1Dc5rrAJCwtDWFiY6YFyGqggPgD+AbBfZvteqAECufnvfy3uD8MrV0SnTXO4dEks0Cv0uDFwkUVF\nkQsWCMvpzTfJTZuU++OYIj2dPH+enD1bLOK7uwsr5t//Fms76fL+9myOHxfN4FxdyZCQXOsypoqH\nmt2RcdMmIdfw4Wr+TD45eOMgX/rjJZOl8bXxWjqNd+KjZPkOsYM2D+JXWw2riuv1enb6q5NszxuS\nbN21tdHvAvJYE+m6dF55cIW7o3Zz49WN3Bm5k1cfXDXawyYnNx/dpM9Un1ztmfNj2fTo0cPAvVbS\nqSQ3H9ts5OqCTn91MlpFwVrACm60rwGkAaiZY1vNzG3fKBxTyI/BcAHPJqr0BgWJIpKWEBMj3D3m\n0r07OX68ZddIShJKok0bsmJFsmNHctgwsci+dauo4XbqlFjjOHCA3LyZnDePHDmS/OADsnlzsnx5\nEZHWv784V2Sk6etmZJAbNwr3n5eXWNx/+tRgmDltEYwmxcbHkx99JGqq7d9v2bNRyYVer2e96fWM\nrm9k8cH6DxQLSD54+oCuE1x5/LZhaaW7T+6y2qRqXH3J8Ldiznch66PUZtxczsScYfXJ1Tnp8KRc\n240F0ijtCwoKkpXx/fffNypDVouB2Kexz3QvhYE1lE05AOEAzkHk1/QAcBZABIByCscU6kPIT8XX\nIuHll7OjysxGpxPrPHL1wOSIjBTKydLrZBEbKwIYfv1VTNCdO5MtWohClE2aiDphXboIJfPjj0Lp\nHDpkWZO1e/eEQvT2Fpn6S5YYtTSUmp6ZNbFs3kxWqyZaLlgaLaciy6wTsxTbN+dEG69llfFVFAtb\nLr+wnH7T/GQjyE7fOU2XEBfujMwd4m5uiwyTLyBGSMtIY+ihUDqHOHPFhRWyY65FXKNrS1fWaFzD\n4GVWo9GwWedmrFy3cvY+i1qE5GCPZg+b/tk0X/dR2BS5shHXRDUAq5G7XE11I+ML9SHkuyRMYePq\nmr/w2vbthYVhLqtXi8i0SzbUuzw1Vbix3n5b5AMNGEAeM2wBnAu9nty5k5qGDelburRlE8u9e6IN\ntY8P+Y/pt3AV80lKS6J7qLtsmHJefvznR/ZZ1Udx/4ANA9h3TV9Zt9z+6/vpEuLCDVc2ZG+Te5FE\nRbCcc7lnfrlMy0jjsvPL6DfNjx0Xd2TkQ3nrXKfXsf+6/nxz2Zuy7riYJzF0CXHJ1Rgtv3PS4C2D\nOXrfaIvuo6iwirKx9FPYyia/bxGFTrlyZrUTMGD8ePKzz4wOMXAbTpokmrKtWZNPYQuA1FRyxw7y\n009FtFibNsLF9kjej5+NXi/Co197TaxXLVtGTWQkg4OD2bJlSzo4yHdGJCkswTlzxL0PHSrrllN5\ndn4/+rti6fycJKUlsc4fdbJzUOT2N5vdTLHny4noE/SY6MFxB8ZlK6S8a49bd21lvbb1aOdgxxIV\nSrBOqzpce2ityWrKpAjF/kfzD7/Z9g3dQ93ZfkF7bovYprgmlZqRyn7r+rH9gvayFplOr2OXJV0M\n1pzy421JzUilS4iLotKzNqqyoQ1bNvlVNrdvi5wUS6sDrF0r1lF69BCdLYuC6GjR1Ozdd8lKlYQL\nbsIE8vp108fqdML6adVKKJnFi2UDCxRzgU6dEse2aGGy86nKs5Gakcpav9fi9gj5UPucHLt9jK4T\nXKmN18ruv/vkLn2n+ioW3Lz56CZbzGnBLku6GLjk5L77ju6O9PvFj/a/2rPxrMZ8a8Vb/OLvLzhk\nxxAO2TGEn//9Od9a8RYbzGjAcmPKscWcFhy5dySvPLhi9D7uJNxhu/ntGLQ8iE/T5F9ifgn7ha3m\ntpKtZqDRaNi9d3eW9C3Jnu/0NGl5Lb+wnAELrfyCbARV2dCG12zc3MRknB8+/lixo6dR5ZqcLKK7\nXF3JTp3IpUtNWxbmkpEhet4sXCgsLz8/UQ2gVy9hXZjrMkxKEuPr1RPrQitXmpcvk8X9++L6bm7i\nPEo9cVQKlM3XNrPW77VMZsCT5MTDE/nKn68oTtI3Ht2gz1Qfjtk/RtaqSMtI4897f6ZziDOnHJmS\nPZkb++4npibyRPQJrrm0htOPT2fIwRCGHAzh9OPTuebSGp6+czpXIzQl9Ho9l51fRrcJbhy5d6Ri\nJNuis4tYfXJ1RifI/8b1ej07Lu7ICYcmmHXN5rObc93ldSbHWgtV2WRS6Jnw+aFxY+ONzYwREyMU\nhkztLrPchsnJYiG+WzcRcNCihQhLnj1bhCZfuyaCA1JShBtLpxNK4N498upVUe5/6VIROPDhh+Sr\nr4oINB8fYcVMmSKCEixREjduiBpqLi4i6GDXLvNKzGSRkiKsJicn0RTtBW9wZg36rOrD73aabmuu\n1+vZf11/9lzRU3Gyjk6IZsOZDfnppk8VXWCX7l9ip7860XeqL+ednsf27dsXqsv80M1DbL+gPRvO\nbMijt5Tr5i0+u5hVQ6saLXfz+9Hf2Xx2c8WyOznZFrGNdafVpU5vuy9OqrKxZfr2FXkt+WXDBhFZ\nlae8i8Vuw6Qkcu9eYfEMGEC2a0f6+gq3V6lS4usCiDI5zs7CFdemjeiomRUSffBg/iyktDRy/Xqh\n9KpUEQrv2jXLzqHTCcVZs6YI9b5i3P2hUnjcS7xH91B3hmnDTI5NSU9hh0Ud+PHGjxUn0YSUBAYt\nD2LLuS2NduDcq93LwMWBLNukbIG7zJPSkrj8wnK2m9+ONSbX4JxTcxQVpF6v57gD4+g1yYuX7isH\n5By9ddRoVYWcZOgy2GhmI9nQb1tCVTa2zOTJYrH8WZgyRYQMh/+vZEiBuw0tsS7MPd/Jk6Kxm5ub\nUFwLFli+eK/Xi7DsRo2EZRVmeoJTKXy2RWxjtUnVZJuf5eVJ6hO2mdeGH2/8WHEC1+l1nHBoAl1C\nXDjv9DyjCaQ7Tuygo7tjru9+Va+qPH7RfA+CTq/j1QdXOffUXPZZ1YeOvzmy4+KOXHVxlVErJC4p\njr1X9WbTP5vK1nrLQhuvpcdED266uskseWadmMW289uaTJy1NkrKRhL7bANJkmhL8hQZ164Br78O\n3Lwp2jfnlzlzgB9/BGbNEr1hgOxSGHfu3IGHhwdGjx6dq4FVkUMC584Ba9YAq1cDGRlAcLBoiFan\njuwhect5ZN8DKVoz//QTkJgIjB4NvPWW2m/Ghvhp708Iux6G3R/sRukSpY2OfZL6BG+tfAtV7Ktg\n8VuLYV9KvnzTubvn8PGmj1G+dHlMfWMqGldtLDtOq9Xiv//9L65qryK9fDocOjvgiu4KypQogzpO\ndVCtYjU4l3OGQ2kHlJBKIF2fjoTUBNx/eh83Ht/AtdhrqGJfBW2qt0EH7w7oVrsb3BzcjN7D1oit\n+GLzF+jxUg+EdgpF2ZJlZcfFPIlB+4Xt8dWrX+GrFl8ZPScARCdEo8mfTbD7g91o6NbQ5HhrIkkS\nSBr8CFVlYyu88gowbhzQSblBk1kcPQp88AHQoAEQEgLUqlUw8j0LycnAvn3A1q3A338DdnZCGfbp\nAzRvblQ5ZPWpz1W7zdcXu/7zH3jPnQs8fgyMGCHqqz2LolYpFPTU4+2Vb8OxrCMWBi00WmsMAFIz\nUvHRxo8QFR+F9e+uh0cF+eaBOr0Os0/Nxqh9o9DRpyP++9p/4efsZ1Iekoh+Eo3IuEhEJ0QjNikW\niWmJ0FGHUnalUKFMBbiWd0UNxxqo41QHle3lyjsacvnBZQzfPRxXYq9gVrdZ6ODTQXHsjUc3EPhX\nIAY2GYjhbYebPLeeenRZ2gWtqrXCSP+RZsljTZSUjdVdZzk/eFHdaKTIuO/QoWDOlZQkFuydnEQC\n4+HDBe8CM0ZKili7GTNG3JODA9m2rfj/8+ctkkVx3cnRkVyxwrLAAxWrkJiayFfnvMphO4eZ5QLS\n6/X8dd+vdA91566oXUbHPk55zNH7RtMlxIVBy4O4M3JnkS2e6/V6Hr11lH1W9aFLiAtDD4UyJd14\nDcGT0SfpOdGTU49ONfs6Y/ePZet5rc0KILAFoK7Z2DhpaaJsviUVAUwRHy+ismrXFuf+7jsR2aXU\nZCw/JCWJPJb588nBg0U0W7lyZNOmYi1m48ZnCqlWjKjz9y+4e1ApdGKfxrL+9PqKSZpy7I7aTc+J\nnvx2+7eKodFZPE17ylknZrHRzEasMbkGh+8azuO3jxeK4rnx6AYnHp7IxrMa02eqDycfmcwnqcbz\n5PR6PeednkfnEGeLwpa3hG+he6i70bUfW0NJ2ahuNFti+3bgiy/EmoajY8GdlwROnwY2bRKtBs6c\nAXx9gZdfFm626tUBNzegShXAwQEoXVq4unQ64QJLTATi4oDYWCAmBrh1C7h+HYiMBO7eFedo2FC4\nAps1E5/y8r3VLSI8HP169MDSa9cMdgUHB2PJkiXPfg2VIuNe4j10WNwB3et0x9gOY0261ADgYdJD\nDN42GCeiT2B61+noXMuwTUZezt49i5UXV2LDtQ2IS47D696vo61XWzTzaIYGrg1QvrT5302SuPH4\nBk7eOYlDNw9hz/U9iE6IRo+XeiD45WAEeAfATrIzeo7YpFj8a8u/cPnBZazqswr1XOqZde3TMafR\neUlnbHxvI1p7mW45YCuoazbFhcGDxWS+bl3hrUGkpor+MJcuAVFRIjDh3j3g0SOhWNLSAL0eKFkS\nKFtWKKBKlQAXF6BqVcDLC6hZUyiZmjXFuIIiPV0oxZkzgQsXoO3VC4FbtyLqxo3sIb6+vti1a5d1\nAx1U8kVsUiy6LO2Chq4NMevNWShVopRZx22N2Iqvtn2F+i71Ma7jOLMnbG28Fnuv78XhW4dxKuYU\nrsZezV6Tca/gDid7JziUdkApu1IgiOT0ZDxOfYz7T+/jdsJtRMVHoWKZimhStQn8SvjhwooLSH2U\nimqe1UwG2+ipx+JzizF893AEvxyMX1//VTHoIS+X7l9Cx786YkbXGehZt6dZx9gKRa5sJEn6PwD+\nAJoBqApgJMlfTByjKpu0NKBLF2F5zJolLIwXgcuXgQULgL/+Al56Cfj8c6BXL6BMGduLqFN5JhLT\nEvHumneRpkvDyt4rUcW+ilnHpWakYtrxaRh/aDw6+XbCf9r+B/VdLWselqHPwK3Ht3D90XXcTbyL\nuOQ4JKYlIl2fDgkSypYsC8eyjnAp5wIvRy/4VPZBpbKVlANVZF56SGJn1E78sOcHlLIrhWldp6GZ\nh/lNCM/dPYcuS7tgQuAEBDcMtuj+bIEiDxAAcBnAEQDTAegA/GTGMQXsPSymJCSInJP33xcZ/s8r\nMTEiP6hZM9LDg/z+e8sTOY1gk72LVEiS6bp0/t/2/6PPVB/Zds/GeJzymGP2j6HbBDd2WdKFm69t\nNrvpWX4xJ0E6LSONqy+t5qtzXmXdaXW58uJKi9eM9mr30iXERbFAaXEA1goQAFACgF5VNhby9CnZ\np4+YiCNMZxebg01MvnfvkjNnkgEBojLBBx+ICtAFHFVms3XwVHKx4sIKOoc4c+rRqRYnKyanJ3P+\n6fl8dc6r9JzoyWE7h/HUnVOFkvRorPTTpfuX+J/d/6HHRA+2nd+Way+vzZfym31yNl0nuJrVgM6W\nUZVNcUSvJ6dOFSHMISGiNH8+sdrkq9eLsjEhIcJac3Qk33uPXLdORLIVEjZb4VvFgIiHEXx1zqsM\nXBxotBSNMS7cu8Dhu4az1u+1WH1ydX7+9+dcfWk17yXeKxAZlb5PFZtVZLVJ1Th0x1BeuHchX+dO\nTE3kRxs+Yt1pdXkttuAse2uhKpviTHg42bWrKG45f36+lI6lk+8zWUFxcUKZDBokSuhkdcTcskXk\n4BQBNtu7SEWWdF06x+4fS6fxTpx4eKJsKX5z0Ov1vHT/EicensiuS7vS8TdHek/xZu9VvTkqbBRX\nXFjB47eP807CHaN5K3q9no9THvPy/cvcGr6V/137X1aoWiHXd6myR2WuO7zumcKrj9w6wjp/1OEH\n6z8wGT5dXFBSNoUejSZJUgkA6VADBJ6dffuAX38VUWQDB4pKAQolXvISEBCAsLAw2e179uzJtc2S\nxVAAIhz6yBHg4EEhY3g40Lo1EBgIdO4sqhkUcQmZfv36YenSpQbb1ZBp2yb8YTgGbx2M6CfRCA0M\nxRu13jArRFoJPfW4FnsNZ+6ewcX7FxH+MBzXH13HrYRbeJj0EA6lHeBQ2gGlS5SGnWSHDH0GktKT\n8Dj1MUrZlYJHBQ/UqFQDdarUgVu6Gw4tOmR2NJoxElIT8NPen7Di4gr80eUP9KnfJ9/3aGs8U4AA\ngA4Q1ompzx6ZY1XLpqC5eJH89luyalWyYUPyhx9Ei2MjBSwtsWwUx77/PqnVikZmv/xC9uxJenmJ\nKs1du4oKAQcPPpO7r6BQ12yKL3q9nhuubGCdP+owYGEAD9w4UCjXydBlMC4pjjcf3WTkw0hGPIyg\nNl7Lu0/umtXPJj+k69I599Rcuoe6c+CGgXzw9EGhXMea4FksG0mSygKoboZSSyJ5O8+xFlk2P//8\nc/b/+/v7w9/f34zLvqDodKIW2tatwJ49wPnzQO3aQKNGgJ+fCJ+uXh3w8IA2MRGBPXooWysk8OQJ\nEBeHgF69EHb6tMHlAuzssMfdXVgqjRqJJM6mTcV1FN4+FYtoFgFqyHTxJkOfgUVnF+HXA7+iZqWa\n+L7N9+js2/mZLB1rodPrsPryaozaNwqu5V0RGhiK5p7NrS1WgRAWFpbLazJq1ChZy0Z1oz1PpKQA\nFy4IpXP1KqDRiITNmBggNhbajAyMsLPDHQAeJUtitIMDvElxXFISYG8PODmhX2IilsbFGZw++J13\nsGTlSrPFsdgdp6IiQ7ouHSsurkDokVCk6dIwqNkg9G/Y3+wimdYkITUBi84uwtRjU+Hm4IafXvsJ\nnXw7FUuFaS5WqyCgKhsbIjUVePpU/FenE9ZIqVKiSkD58tkVCwpKSajrJioFCUnsv7Efs07NwraI\nbejk2wnBLwejc63OiqX8rYGeehy8eRCLzy3G2itr0dGnI75p8Q3aVG9jbdGKBCVlU4B1Rgwu2BRA\nTYg1GwCoJ0lSr8x/byGZUljXVlGgTBnxMYG3tzd27dr1zC6o6Oho2e137tyx6DwqKoCYxNrXbI/2\nNdsjLjkOqy6twuSjk/Hhhg/RybcTutbuik6+nRTbEhQmKRkp2H9jP/6+9jfWX12PyvaV0e/lfrj8\nr8twr+Be5PLYIoVZrmYBgA8UdnuTvClzjGrZPEeolo1KUXD/6X1sDt+MrRFbsUe7By7lXfBa9dfQ\noloLNHVvivqu9U02bsvPNU/dOYVj0cdw4OYBHI8+jpddX8abdd5ET7+eqOtSt0CvV5xQC3GqFDnq\nmo1KUaPT63Dh/gUcvHkQx6KP4XTMaWjiNfCu5I3aTrXhU8kHXo5e8KjgAZdyLqhUthIcSjugbMmy\nKGlXEgSRrktHSkYKElIT8DD5YXZRzuuPriMqPgpXHlxBqi4Vr7i/glc9XkWb6m3Qrno7OJYtwErt\nxRhV2ahYBTUiTMXapGSkIPxhOCIeRkD7SItbj28hJjEGsUmxiE+JR2JaIlIyUqDT6yBJEkrZlYJ9\nKXtUKF0BVeyrwLW8KzwreKJGpRqoVaUW/Jz94FnB87le5H8WVGWjoqKiolLoKCmbF6R+vYqKioqK\nNVGVjYqKiopKoaMqGxUVFRWVQkdVNioqKioqhY6qbFRUVFRUCh1V2RQhWq0W/fr1Q0BAAPr16wet\nVmttkVRUVDJRf5+Fixr6XESoCY4qKraL+vssONTQZyszYsSIXF9kAIiKisKIESOsJJGKikoW6u+z\n8FGVTRGhFqVUUbFd1N9n4VMoykaSpNqSJP0hSdIlSZKeSJJ0R5KkjZIkNSyM6xUHPD09Zbd7eBR9\nhVoVFZXcqL/PwqdQ1mwkSfoSwBcAFgI4BcARwPcAGgNoQ/KMwnHqmo2KikqRo/4+C44irY0mSVIV\nknF5tlUEcB3AJpIDFI57bpUNoBalVFGxZdTfZ8FgE4U4JUk6CuAJyUCF/TavbMLCwuDv729tMYyi\nylhwFAc5VRkLBlXGgsHq0WiSJFUG0ADA5aK6ZmEQFhZmbRFMospYcBQHOVUZCwZVxsKlKKPRpmX+\nd2oRXlNFRUVFxQYwS9lIktRBkiS9GZ89Csf/B8B7AL4kqSnIG1BRUVFRsX3MWrORJKksgOpmnC+J\n5O08x34BYAaAH0iOM3Ed216wUVFRUVExSZEHCEiS1B8i/DmU5PeFdiEVFRUVFZum0JSNJEk9AawC\nMJfkoEK5iIqKiopKsaCw8mxeA7ADwEUA/wagz7E7leTZAr+oioqKiorNUljRaAEASgN4BcBBAIdz\nfNaZOri4lLuRJOn/JEnalCmfXpKkn6woSzVJktZIkvRIkqTHkiStlSTJy1ryyCFJkmfm3/WwJElP\nM5+ZOWuBRYYkSb0lSVovSdJNSZKSJEm6KknSWEmSHKwtWxaSJHWSJOkfSZJiJElKkSTpliRJKyVJ\nqmtt2YwhSdL2zL/5L9aWBQAkSWqvEOgUZ/rookeSpK6SJO3LnBMfS5J0XJIkf2vLZS6FomxIjiJZ\nQuHjY8YpOgHwBzAfQHcAgwC4ADgqSVKTwpA5n3wCIdd6AFYLbpAkyR7AXgB1APQH0A9AbQB7MvfZ\nCrUA9AYQB2A/rPjMjDAEQAaA4QDegAhuGQRgpzWFykMVACcBfAkgEELW+gCO2NoLRhaSJPUF0BC2\n9zcngMEAWub4dLSqRDJIkvQ5gA0ATgB4C+J3tBpAOWvKZREkbe4DoIrMtooQk9RCa8snI1sJCFfh\nT1a6/tcA0gF459hWM3PbN9Z+PgoyfwxAB6C6tWXJI5eTzLb+mbL6W1s+I3LXyfwOfmttWWRkqwwg\nBsC7mTL+Ym2ZMuVqn/l3fd3aspiQswaAJABfWVuWZ/nYZIsB5qmrlrktAUA4APnyrC823QEcJZnd\nWpDkdQCHAARZS6jiCMmHMptPAJBg29+9rN9MhlWlkGc8gPMkV1pbEBkMQnRtkKwXsz+tLcizYJPK\nRo7npdxNIVEfIhgjL5cA1CtiWZ5H/CHcLVesLEcuJEmykySplCRJtSEmojsAlltZrFwkhZ1yAAAD\nx0lEQVRIktQWwq37pbVlMcJSSZIyJEmKlSRpqQ26ItsAuAqgryRJkZIkpUuSFCFJ0r+sLZgllLS2\nABaglrtRpgqAeJntcRAuDJV8IkmSJ4BRAHaRPG1tefJwDEDTzH9HAOhAMtaK8uRCkqRSAGYBmEAy\n0tryyPAYQCiAfQASADQB8COAw5IkNbGhZ+mR+QkB8B8AGgB9AEyTJKkEyT+sKZy5FIllUxzK3Tyr\njCrPH5IklQewEUAagIFWFkeOfgBaAOgLMVnutrHovu8BlAUw1tqCyEHyLMlhJLeQPEDyd4igkKoA\nvrKyeDmxA+AA4DOS80mGkfwSwHYI5VMsKCrL5hAAPzPGJeXdkFnuZgxEuZtFBS1YDvItow0QD3kL\nRsniUTFBZommzRCBFq+RtLn+wCSvZf7zhCRJ2yH6RQ0HYHX3SqYr6geI9Yaymc8za32kjCRJjhDt\nRvRK57AGJM9IkhQO4FVry5KDhxCRnLvzbN8JoLMkSW4k7xW9WJZRJMqGZArE4r5FZJa7mQ5hhhut\nq/as5FdGG+ESxLpNXupBXeOyGEmSSgJYC5En1pGkzT9Dko8lSYqEmJRsAR8AZQAsQe5FeAL4DsBQ\nCLfV+aIXrdhxCcKCLdbYbIBAZrmb+QBmU62rZopNAFpKklQza0Pmv9tAuIFUzESSJAnAMoiggCCS\nJ6wrkXlIkuQGYZnbytrIGYjk7gCIZ5n1kQD8lflvW5E1G0mSmgF4CcBRa8uSg/WZ/+2cZ3sXALeL\ng1UD2GiAQGa5m2UAzgJYLElSTq1uM+VuJElqCuFmKZG5qZ4kSb0y/70l01oqCuZARPtslCRpROa2\nXwDcADC7iGQwixzPpxnExNNVkqQHAB6Q3G89ybKZAZEw9yuA5Dzfvdsko60j1v+QJGkdgNMQVkEC\nxOT4DcTa0iQripZNZqqCwd9T6HLcIHmgyIUylOUvAFEQijEBwpIdDuAWAJtZdCe5VZKkMAB/SpLk\nAhEg8A5E8ukAK4pmGdZO9FFIYvoZIq5c7qOxtnw55FxgRM4iTVYEUA0io/gRRJTN2qKWwUw59QrP\na4+1ZcuUT2vkb2qVpF0ZGb+DyP2JA5AIEZI9wxb/3jKy6wCMsrYcmbIMh3ihjQeQCvFyNhOAm7Vl\nk5HVAUIBxgBIyZT7XWvLZcmnUFsMqKioqKioADa8ZqOioqKi8vygKhsVFRUVlUJHVTYqKioqKoWO\nqmxUVFRUVAodVdmoqKioqBQ6qrJRUVFRUSl0VGWjoqKiolLoqMpGRUVFRaXQUZWNioqKikqh8/81\nfVUrtGdP1gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# YOUR CODE HERE\n", - "results = ...\n", + "results = EM(data, init_means, init_covariances, init_weights, maxiter=12)\n", "\n", "plot_contours(data, results['means'], results['covs'], 'Clusters after 12 iterations')" ] @@ -528,25 +642,49 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": { - "collapsed": true + "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n", + "Iteration 5\n", + "Iteration 10\n", + "Iteration 15\n", + "Iteration 20\n", + "Iteration 22\n" + ] + } + ], "source": [ "results = EM(data, initial_means, initial_covs, initial_weights)\n", "\n", "# YOUR CODE HERE\n", - "loglikelihoods = ..." + "loglikelihoods = results['loglik']" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEICAYAAABmqDIrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYXGWZ/vHvTSCEsCaEJAgEUASGCLKpAQL0kFFkFAEH\nfqKyO4IjKio6SDIMwcHgwigiKAjiwo6ICrLI2oCggTGI7LgQAgQC2ZDsJP38/nhPpasrVV1VXVVd\nXV3357rOVVXnvHXqOV2dPP2uRxGBmZlZo6zV7ADMzGxwc6IxM7OGcqIxM7OGcqIxM7OGcqIxM7OG\ncqIxM7OGaolEI2kDSddK+oukRZIWSJou6eMlyn9S0lOSlkl6WtJJJcodKmmGpKWSZkqaIqklfiZm\nZq1i7WYHUKGhwJvANGAmsC7wEeBySaMi4ru5gpI+CVwEfA24C5gEfF8SEXFxXrkDgeuBS4AvALsB\n5wAbAKf3wzWZmbUFtfKETUkPAutHxDuz10OA2cDNEXFCXrkfAQcDm0fEqmzfDGBhRByQV+4MYAow\nLiJe7b8rMTMbvFq9mWgesDLv9V7AKODKgnKXA5sCEwEkbQnsClxRpNxQ4KBGBGtm1o5aLtFIGiJp\npKQTgfcB3847PD57fLzgbU8AAnbKKxfZ/tUiYiawJK+cmZnVqFX6aACQdDLwvezlCuCUiMivvYzM\nHhcUvHV+wfFS5XL7RhbZb2ZmfdCUGo2kSZK6KtjuLnjrNcCewPuBS4ELss5/MzMboJpVo3kA2LGC\nckvyX0TEPFK/DMDtktYHzpV0WdbJn6uhjADm5L01V0PJ1WzyyxUakVeuB0mtO3LCzKyPIkK1vL8p\nNZqIWBYRz1awvVjmVP9HGo48Jnud64sZX1Au1+fyZG/lJG0NDM8rVyz2tt3OPPPMpsfga/f1+/r7\nd6uHlhsMUKADWATkhiL/HpgLFE7kPJpUE3oAICJeAB4tUW4FcGtjwjUzaz8tMRggG2E2AbgTeJE0\nVPkjwIeB0yJiJUBErMzmwlwoaXZWfhJwHPCZXLnMZOAmSRcBVwO7k+bQnBeeQ2NmVjctkWiAx4AP\nAd8i9bfMBZ4CPhARt+UXjIiLJXUBpwJfAmYBJ0feqgBZuVslHQ6cCRxL6tM5m7T6gBXR0dHR7BCa\npp2vHXz97X79tWrplQH6m6Twz8vM2km2fFfrDQYwM7P24URjZmYN5URjZmYN5URjZmYN5URjZmYN\n5URjZmYN5URjZmYN1SoTNs2sRSxfDk8+CW+8AStWpNe5rbfXK1bAypWwalX3lv+62LGuLojofiy3\ndXWVjrtVp8htsw1cfXWzo+idE42Z1WTBAnjwQfjd79L28MMpcVj/eP31ZkdQnhONmVUsAmbOTAnl\ngQfS4xNPlH2btTknGjMrKQL+/Ge4997u5DJ7drOjslbjRGNma1i6FK65Br73PXjkkerfv9VWsPXW\nsO66MHRoeix8Xvh6nXXSNmRI97b22r0/X2uttEnlt/xypfR2bKBab71mR1CeE42Zrfb88/CDH8Cl\nl8K8eeXLQ/rPeZddYJ99YOLE9DhuXGPjtNbiRGPW5iLgnnvgggvg17/ufWQWpL+g3/OelFQmToQJ\nE2DjjfsnVmtNTjRmbWrRIrjiipRgeuvQl+DAA+G9702JZbfdUhOXWaWcaMzazF//ChdeCD/+ce9D\nY0eMgE98Aj79adh22/6LzwYfJxqzQW7VqtShf/fdcPvt6bG3yYm77AKf/Sx87GMwfHj/xWmDlxON\n2SATkZrC7r47bZ2d5Sf1DRkChx2WEsy++7bm6CsbuJxozFpcBPztb92J5e674bXXKnvvZpvBiSfC\npz4FW27Z2DitfTnRmLWQVatg1ix45pm0zZiRRoy98EJ153nXu1Lt5YgjYNiwxsRqluNEYzYALVzY\nnUzyt7/8pW/riG26KfzzP8MBB6Rthx3qH7NZKU40Zk00bx489lha5uXxx+Hpp1NCefXV2s674Yaw\n//7diWXnndPMeLNmcKIx6wfLlsFTT3UnlcceS9vLL9fn/MOGpTkuucSyxx5pmRazgcC/imZ11tUF\nd90F06d3J5a//CX1r9TDppumpq/cNmFC2tZdtz7nN6s3JxqzOomA226D00+HRx+t7VzrrANve1vP\nhJLbRo2qT7xm/cWJxqwOpk+Hr3wlzVmpxjrrwE47pT6UnXdOz3fYIc3Ed9OXDRb+VTarwTPPwJQp\n8ItflC+79dZp1n0uqey8M2y/vdcNs8HPicasD2bPhrPOgh/9qHTfyxFHwKRJKaG84x2w0Ub9G6PZ\nQNESAx4lbSDpWkl/kbRI0gJJ0yV9vEjZTkldBdsqSZ8rUvZQSTMkLZU0U9IUSS3xM7HmWLgQJk+G\n7baDH/6weJI58MA0kfK66+Ckk2DvvZ1krL21So1mKPAmMA2YCawLfAS4XNKoiPhuXtkAHgVOBPJX\nbJqZf0JJBwLXA5cAXwB2A84BNgBOb8RFWOtatiyteDxtGsyfX7zMnnvCN76RhhebWTdFb8u4DnCS\nHgTWj4h35u27BxgSEfuVee8MYGFEHJC37wxgCjAuItaYMicpWvnnZdVbsQKuvBLOPLP0Mi/bbZcS\n0OGHezFKG3wkERE1/Wa3ejPRPGBltW+StCWwK3BFwaHLSbWng2oPzVrZ66/DuefCW98KJ5xQPMmM\nGZNue/zkk6k/xknGrLhWaTpbTdIQYGPgcOB9wAlFiu0maSEwHHgK+G5EXJZ3fDypia3HfQUjYqak\nJcBOjYjdBr4XXoDzz4eLL4Y33iheZsMN4bTT4POfh/XX79/4zFpRSyUaSScD38tergBOiYgrC4rd\nS6qpPAtsAhwDXCppbERMy8qMzB4XFPmYBXnHrU08+miqwVxzDawsUUceOjTdbXLKFE+aNKtGUxKN\npEnAHRUU7czvQwGuAX4PjAI+BFwgaVVEXJIrEBFTC85xk6QbgMmSzouIJbVFb4NFBNx5Z0owt99e\nutx666Xmsy99CbbZpt/CMxs0mlWjeQDYsYJyPZJCRMwj9csA3C5pfeBcSZdFRG8rSV0NHALsDEyn\nuyYzokjZEUCJcUUwderU1c87Ojro6Ojo/QpswHnzTbj22pRgelsqZrPN0j1bPv3ptL6YWTvo7Oyk\ns9olLspo9VFnJwPnA1tFxOxeyh1Bqg3tHRHTJW0FPA/8e37fjaStgeeA4yPip0XO41FnLSgCXnwR\n/vCHtFTMtdem16Vsvz2ceiocfXSqzZi1s3qMOmupPpoiOoBFQLm7dxwFLAUeA4iIFyQ9CnwcyB8k\ncDSp7+fWukdq/WbxYvjjH1NiySWX2SX/DOm2zz7w5S/DwQf73i1m9dQSiUbSicAE4E7gRWBT0oTN\nDwOnRcTKrNxE4MvADcAs0mCA44APZuXym+Imk/pvLiI1re1OmkNzXrE5NDYwdXXBs8/2TCqPPVb5\nkvwSHHZY6n/Za6/GxmrWrlqi6UzSXqQksBtpRNhc0rDlb0fEbXnl3kZqStuFNGDgTeDPwPkRcV2R\n8x4KnEnqL5pDWiVgWqn2MTed9b+ItOzLzJnw/PPpMX/7+99LD0PuzbBhcPzx8MUvpgmXZlZcPZrO\nWiLRDBRONPW3YkW6y+Ts2WmbNWvNZPKPf9T+OcOGpbtOTpgA73lPWuxypAexm5XlPhobsFauTPe9\nzyWQYttLL8HcuY35/O23Twkll1h22cXL8Zs1ixONVWXJklQDeeWV9Fjq+Wuvpf6T/rDJJj2Tyrvf\n7eHIZgOJE42xcmVKDK+80nObM6fn65dfrk8zVrWGDUs3Ddtmm+LbmDFeZ8xsIHOiGaSWLElNV6++\nmpJI4fP8JPLaa6nTvRmklCje8pa0bbGFE4nZYFM20Ug6ppoTRsTP+h6OlbJiRerPyCWMYlt+Qlky\nABba2XTT7gSSSyL5r9/ylpRE1vafO2aDWtlRZ5IKW9pzb1CRfUTEkPqENvA0ctTZ8uVp3a2HH061\njcIksnBhQz62auusA2PHpm3zzbsfC5+PGZMWoTSz1tZfo862zXu+JXAVcDNpSZc5wBjgo6R7uHy0\nlmDazbJl8NvfwvXXw403Nqf/I2fUqO4Ekr+NGdP9uPnmaUiwZ82bWTWqmkcj6VfAMxFxWpFj3wTe\nHhGH1TG+AaUeNZolS+C221JyuekmWLSoTsEVGDoURo9OC0OOHt295b/O1UI228xDf82suGbMo5kE\nXFDi2O3Ap2oJZrBavBhuuSUll5tvTq+rtdZaqdaRnzRyiWOzzVKNI3/fRhu5A93MBoZqE81yYE/S\nmmOF3kVakNJIS9H/4hcpudxyCyxdWv49o0endbfGj18zoYwcCUMGbe+XmQ1m1Saa64CpklYBP6e7\nj+b/kdYM+1F9w2tNK1fCfvulRR7LGTsW/u3f0j3nJ050MjGzwafaPpr1gB+SOv0LR51dBZwYEcvq\nGuEAUmkfzZ13wnvfW/r4FlvA4Yenbe+93bluZgNXv/fRRMRS4GhJ/0Natn8s8DIwPSKerSWQweRv\nf1tz37hx3cnlPe9xcjGz9tGnqXJZUnFiKWHOnJ6vTz4Zvvc9d86bWXuqOtFIGg6cAOxPujfMfOAe\n4MdZjaftvfJKz9dvf7uTjJm1r6oacCSNBWaQbi62JzA8e7wAmCFpTN0jbEGFiWbs2ObEYWY2EFTb\nU/BNYASwb0RsGxF7RcS2wETSbZO/Ue8AW1Fh09kYp18za2PVJpqDgNMj4oH8nRHxIPBfwAfqFVgr\nc43GzKxbtYlmA2B2iWMvZsfbXmGNxonGzNpZtYnmGeDoEseOAp6uLZzWt2hRzyVmhg6FjTduXjxm\nZs1W7aizc4GfZZ3+V5Hm0IwFjgT+hdJJqG0UazbziDMza2fVTti8Ihve/FXg0rxDc4BPRcRV9Qyu\nFXkggJlZT1XPo4mIH0q6FNiB7nk0z0RE4Q3S2pIHApiZ9dTXlQG6gKfqHMug4ERjZtZT1StuSdpZ\n0vWSXpO0Mnu8TtLOjQiw1bjpzMysp6pqNJLeBdwLLAVuBF4hDQY4GPiApP0i4o91j7KFuEZjZtZT\ntU1n5wCPA5Mi4o3cTkkbkm6Gdg7wvvqF13o8h8bMrKdqm84mAOfkJxmA7PU3gL3qFVirKqzRuOnM\nzNpdtYmm3F2/Kr+LWg0kHSmpS9KsEsc/KekpScskPS3ppBLlDpU0Q9JSSTMlTZFU051i3HRmZtZT\ntf+pTgcmZ01lq0laHzgNqODmxbWRtDHwHdJk0WLHPwlcRLrV9IGk209/vzDZSDoQuJ50Te8HziOt\n1/a1vsYW4cEAZmaFqr2V87uBTmAZ8Bu6Vwb4V9ItAzoi4uH6h9kjhh8CW5EGIkyKiHF5x4aQ1mK7\nOSJOyNv/I9KAhc0jYlW2bwawMCIOyCt3BjAFGBcRrxb57F5v5bxwIYwY0f16+PC0JI1XBjCzVlWP\nWzlXVaOJiIdI/TR3k2oLXyTVBu4BJvRDktkH+BhwcokiewGjgCsL9l8ObEq6nQGStgR2Ba4oUm4o\naZXqqnn5GTOzNfVlZYA/A4c3IJZeSVobuBj4ZkT8XcX/Bx+fPT5esP8JQMBOpOHZ40n9SU/kF4qI\nmZKWZOWq5mYzM7M11dTx3c++QqptfL2XMiOzxwUF++cXHC9VLrdvZJH9ZXkggJnZmqqu0UjaH/go\nMA4YVnA4ImJSBeeYBNxRwcd1RsQBkrYDJgOHRMSKamOup6lTp65+3tHRQUdHx+rXnkNjZq2us7OT\nzs7Oup6z2pUBTgJ+QKohPAssLyxS4akeAHasoNyS7PF84C7goWzUmUi1G2Wvl0fEMrprKCNIK0rn\n5GoouZpNfrlCI/LKrSE/0RTyHBoza3WFf0CfddZZNZ+z2hrNqaT70JxQS80iSwrPVvGWfyLVoIo1\ndc0HvksamJDrixlPz0ST63N5MnvMLzc9V0jS1qTRc0/SB246MzNbU7WJZgvgx01ovvoIazbTnQ7s\nThqY8FK27/fAXODjpJFxOUcD80g1KSLiBUmPZuUuKyi3Ari1L0F6MICZ2ZqqTTR/BN5KasbqN9mw\n6h4kHU9qMrs/r9zKbC7MhZJmk9ZfmwQcB3wmIlbmnWIycJOki4CrSUlrCnBesTk0lXCNxsxsTdUm\nms8BV0p6JiLua0RAVVpj9mREXCypi9TM9yVgFnByRFxcUO5WSYcDZwLHkprazgam9TUYDwYwM1tT\n2ZUBJL1Az//QNwY2IHXUF/aZRERsXdcIB5DeVgbo6oJ114WVeXWmJUtgvfX6KTgzswaox8oAldRo\n7qKfFstsZfPn90wyG23kJGNmBhUkmog4rh/iaHkeCGBmVlwrrQwwoHkggJlZcWVrNJKOIa2GPC97\n3quI+FldImsxTjRmZsVV0kfzE9KKzfOy570JoC0TjZvOzMyKqyTRbEv3Tca2bWAsLc01GjOz4ioZ\nDPB8sefWk+fQmJkV58EAdeIFNc3MiqtkMMBzVD6PJiLibbWF1JrcdGZmVlwlfTT34gmbZXkwgJlZ\ncWWXoLFupZagWbUKhg5Ny9DkLFuWlqQxM2tl9ViCxn00dfDaaz2TzMiRTjJmZjlVJxpJu0m6QdJc\nSSsl7Z7tnybp/fUPceBzs5mZWWlVJRpJE0k3F9uRdKfN/Pd3AZ+qX2itwwMBzMxKq7ZG83Xgt6Rb\nIH+x4NgM0s3D2o7n0JiZlVbtjc92Bz4cESGpsFd8LrBZfcJqLZ5DY2ZWWrU1mmXA8BLHNgdery2c\n1uSmMzOz0qpNNL8DPi9pSN6+XM3mE8DddYmqxXgwgJlZadU2nZ0BPAA8ClxPSjLHSvo2sAfwrvqG\n1xpcozEzK62qGk1EPArsB8wBpgACPpMd3j8inqlveK3BgwHMzErr88oAkoYBI4GFEbGkrlENUKVW\nBhg1CubN6349ezZsvnk/BmZm1iD9vjKApANyzyNiWUTMzk8ykr5USzCt6M03eyYZCTZry7F3ZmbF\nVTsY4AZJ7yx2QNIXSfNs2sqrr/Z8vdlmsHa1PV9mZoNYtYnmOuA2Sdvk75T0eeBbwOfqE1br8Bwa\nM7PeVZtoPgVMB+6QNApA0ueAbwNfiIjv1zm+Ac8jzszMelftqLMu4EjSqLPbJH0Z+A5wakSc34D4\nBjzPoTEz613VqzdHxDLgg8AwUp/Mf0bEd+odWKtwjcbMrHeV3Mr5ZyUOzQFGA+/MKxMRcWy9gmsF\nnkNjZta7SsZH7UfpWzkvBvbNe90vt+uUdCTpNgUvRsS4gmOdpJjzBakP6fyCsocC/w38EylxXgKc\nkzURVsSDAczMelc20UTENv0QR8UkbUzqF3q5RJEgLZFzImnlgpyZBec5kLSMziXAF4DdgHOADYDT\nK43HTWdmZr1rxRkf3wL+BLwCTCpR5o2IeLjMec4B7ouI/8he3ytpQ2CKpO9ExKu9vHc1DwYwM+td\n2cEAksZJWifvea9bI4OVtA/wMeDkGs+zJbArcEXBocuBocBBlZ7LNRozs95VUqN5DtgLeIjU/FSu\nH2ZImeN9Imlt4GLgmxHxd6nXpXd2k7SQdO+cp4DvRsRlecfHk67jifw3RcRMSUuAnSqJadkyeD3v\nDjxDhsCmm1byTjOz9lFJojkB+Fve837p8C/iK6TaRrllbu4l1VSeBTYBjgEulTQ2IqZlZUZmjwuK\nvH9B3vFeFTabjR4Na1U9YNzMbHCrZDDAT/Oe/6QeHyppEnBHBUU7I+IASdsBk4FDImJFb2+IiKkF\nu26SdAMwWdJ5ta40PXVq9+lHj+4AOla/drOZmbW6zs5OOjs763rOPt8moKYPTbcYqKQ/Z0lEvCjp\nFmAVcFTuFMCFpGHM7wCWZxNJS33eEcA1wN4RMV3S+4Gbc68Lyi4CLoyI04qcp8dtAm68EQ45pPv4\nQQfBLbdUcFVmZi2iHrcJqGTC5mXlyuSJiPhEBYWWkZq2KvVPpMRUrKlrPvBd4ItVnO8JUrIaT1q7\nDQBJW5P6dZ6s5CSeQ2NmVl4lfTQHUHm/TKOqRx8hLXmT73Rgd+Bw4KUy7z8KWAo8BhARL0h6FPg4\nkJ9IjwZWALdWEpRHnJmZldcSEzYj4qHCfZKOJzWZ3Z+3byLwZeAGYBZpMMBxpLXZTivon5lM6r+5\nCLialLSmAOd5Do2ZWf204oTNfIU1qJdJ13Q2MAp4E/gz8NGIuK7HGyNulXQ4cCZwLGkJmrOBaVTI\nNRozs/L6nGgkrQX8FTg4Ip4oV77eIuL4Ivv+BnyginP8CvhVX2PwgppmZuXVMutDwDbAuvUJpfV4\nMICZWXmeXlgDN52ZmZXnRNNHixbB4sXdr4cOhU02aV48ZmYDVZ8TTUSsAo4nrYXWdoqNOOt9+TUz\ns/ZU06iz/OVp2o2bzczMKlNVopF0TC+Hu4DXgUci4sWaomoBnkNjZlaZams0P6F77kp+Q1H+vi5J\n1wLHl1sAs5W5RmNmVplq+2j2AZ4HLgD2B3bMHr9Pmon/AdJy/ocBU+sW5QDkOTRmZpWptkbzJeCa\niJict+9Z4H5JbwAnRsRhkjYmrSM2udhJBgPPoTEzq0y1NZr3AXeVOHY3MCl7fh+wRV+DagVuOjMz\nq0y1iWY5sEeJY3uQVj7OnXdxiXKDggcDmJlVptqms58DZ0laBVwPvAqMBo4g9cnkltzfFXimTjEO\nSK7RmJlVpqo7bEpaD7gE+GiRw1cBn4yIZZI+ALwREffVJ8yBIXeHzQgYPhyW5d3T8x//gA03bF5s\nZmaNUI87bPbpVs6StgcmAGNJS/M/FBGDugYD3Ynm9dd7Ljez3nppORqvDGBmg02/3Mq5mIh4lupu\nxTyoFGs2c5IxMyuu6kQjaThwAmn+zEhgPnAP8OOIWFrf8AYmz6ExM6tcVaPOJI0FZgDnA3sCw7PH\nC4AZktpi7JXn0JiZVa7a4c3fBEYA+0bEthGxV0RsC0wENgG+Ue8AByKPODMzq1y1ieYg4PSIeCB/\nZ0Q8CPwXVdxGuZV5Do2ZWeWqTTQbALNLHHsxOz7ouUZjZla5ahPNM8DRJY4dBTxdWzitwYMBzMwq\nV+2os3OBn2Wd/leR5tCMBY4E/oXSSWhQ8WAAM7PKVZVoIuKKbHjzV4FL8w7NAU6KiKvqGdxA5aYz\nM7PK9XVlgLWAHeieR/MMcADw7YjYpa4RDiCSYtWqYNgwePPN7v2LF6claczMBptmrgzQBTxVEMzG\nwPhagmkFCxb0TDIbbugkY2bWm2oHA7Q9N5uZmVXHiaZKnkNjZladlkk0kmZK6irYVkn6UJGyn5T0\nlKRlkp6WdFKJcx4qaYakpdn5p2T9TyW5RmNmVp2yfTSS3lrhuRr9X24At5FusJavx+0JJH0SuAj4\nGum205OA72cdWhfnlTuQdPO2S4AvALsB55AmnZ5eKgjPoTEzq04lgwH+SvpPvhxVWK4WcyPioZIB\nSEOAs4GfRsR/Z7vvlbQF8D+SLo2IVdn+c4D7IuI/8sptCEyR9J2IeLXYZ3gOjZlZdSpJNMc3PIr6\n2QsYBVxZsP9y4DjS4p/3StqSdLvpfy9S7izSmm4/LfYBbjozM6tO2UQTEUX/w22SgyUtBoYAjwBf\nj4hf5x3PDa9+vOB9T5BqXDsB92blItu/WkTMlLQkK1eUm87MzKrTMoMBgBuBzwLvAz4GLAV+Kelj\neWVGZo8LCt47v+B4qXK5fSOL7AfcdGZmVq0+TdislaRJwB0VFO2MiAMAIuKUgnP8CvgDMI207lq/\ncI3GzKw6TUk0wAPAjhWUW1LqQER0Sfo58HVJYyJiDt01lBGk9ddycjWUXM0mv1yhEXnl1vDKK1Pz\nXnUwenRHyeDNzFpNZ2cnnZ2ddT1nUxJNRCwDnm3AqXN9MePpmWhyfS5PFik3PVdI0tak21M/SUlT\nVz8bMQLWXbfmmM3MBoyOjg46OjpWvz7rrLNqPmcr9dH0kA1lPhKYldVmAH4PzAU+XlD8aGAeqSZF\nRLwAPFqi3Arg1kpicLOZmVl5zWo6q4qkI4EPArcALwGbAyeThigfmSsXESslnQFcKGk2cCdpwuZx\nwGciYmXeaScDN0m6CLga2B2YApxXag5NIQ8EMDMrryUSDfAcaeWB/yX1tywG/g84MCLuzC8YERdL\n6gJOBb4EzAJOzl8VICt3q6TDgTOBY0lNbWeTBhdUxDUaM7Py+nQ/mnYlKfIXPzjlFDjvvCYGZGbW\nYPW4H03L9tEMBK7RmJmV50RTAycaM7PynGhq4MEAZmblOdHUwDUaM7PynGhq4ERjZlaeR51VIX/U\nmQQrVsDarTJA3MysDzzqrIlGjXKSMTOrhBNNH3kggJlZZZxo+sj9M2ZmlXGi6SMnGjOzyjjR9JGb\nzszMKuNE00eu0ZiZVcaJpo+caMzMKuNE00duOjMzq4wTTR+5RmNmVhknmj5yjcbMrDJegqYKuSVo\nhgyB5cthyJBmR2Rm1lhegqZJRo92kjEzq5QTTR+42czMrHJONH3ggQBmZpVzoukDJxozs8o50fSB\nm87MzCrnRNMHrtGYmVXOiaYPXKMxM6ucE00fuEZjZlY5J5o+cKIxM6ucE00fuOnMzKxyXoKmCpJi\nnXWC5ctBNS3IYGbWGtpqCRpJMyV1FWyrJH2ooFxniXKfK3LOQyXNkLQ0O/8USb3+TMaMcZIxM6vG\n2s0OoAoB3AZMLdj/TJFyjwInAvkpYWZ+IUkHAtcDlwBfAHYDzgE2AE4vFcQee1Qdt5lZW2uZpjNJ\nzwH3R8QxZcrdAwyJiP3KlJsBLIyIA/L2nQFMAcZFxKtF3hOt8vMyM6uHtmo6qydJWwK7AlcUHLoc\nGAoc1O9BtYDOzs5mh9A07Xzt4Otv9+uvVaslmoMlLZa0TNLvJR1SotxukhZKWiHpUUknFBwfT2pi\neyJ/Z0TMBJYAO9U98kGgnf+xtfO1g6+/3a+/Vq3UR3Mj8DDwHDAG+AzwS0lHRcRVeeXuJdVUngU2\nAY4BLpU0NiKmZWVGZo8LinzOgrzjZmZWo6YkGkmTgDsqKNqZ60OJiFMKzvEr4A/ANGB1oomIqQXn\nuEnSDcBkSedFxJJaYjczs+o0ZTCApGHAuAqKLomIF3s5z5eBrwNviYg5vZQ7ArgG2Dsipkt6P3Bz\n7nVB2UXwEvVEAAAIrklEQVTAhRFxWpHzeCSAmbWdWgcDNKVGExHLSE1bzfIEaejzeGB1opG0NTAc\neLLYm2r9YZuZtaNWGwywmqQhwJHArN5qM5mjgKXAYwAR8QJprs3HC8odDawAbq1vtGZm7aslBgNI\nOhL4IHAL8BKwOXAyaYjykXnlJgJfBm4AZpEGAxyXvfe0gv6ZyaT+m4uAq4HdSXNozis2h8bMzPqm\nJRINaaTZWOB/SSPCFgP/BxwYEXfmlXuZdE1nA6OAN4E/Ax+NiOvyTxgRt0o6HDgTOBaYk71vGmZm\nVj8R4a2XDdiStFTNQuB14BfAVs2Oq5+ufX+gq8g2v9mxNeBatwC+BzxI+kOmi7RCRGG5TYBLgdeA\nRaTRk+9odvz9cf3A1iV+H1YBGzX7Gmq49sOBX5JaQZYAT5P+4NxgsH/3lVx7Pb73VqnRNIWk9YB7\nSP07R2e7vwbcLWmXiFjatOD6TwCfJdUgc1Y2KZZG2o70j+6PwH3A+0qU+w1pxOTJpD8+JgP3SHpn\nRMzuj0AbpNLrh/Rv4KaCfW80KK7+cCrwIvCV7HFX4CygA9g7r9xg/O4rvXao5XtvdkYdyBtwCqn5\nbdu8fdtk+z7f7Pj64fr3J/3VckCzY+nn6/5Edt2Ff9Efku3fL2/fRsA8Ut9e02Nv8PXn/rI9odkx\n1vl6Ny2y7+jsZ9AxmL/7Cq+95u+9ZUed9ZODgT9ExHO5HZGWqXmA9IvXDjyku9vBwOyIuC+3IyL+\nQforr11+HwadiJhXZPfDpN/9LbLXg/K7r/Daa+ZE07vxwONF9j9Be62HdqWklZLmSrpS0lbNDqhJ\nevt9GCdpeD/H0yznSHozW0/w15Le0eyAGqCD1Gycm1PXTt99B+nanyrY3+fv3X00vRtJ8fXQ5gMj\n+jmWZngdOJe0ftw/SPfsmQI8KGm3iJjbzOCaYCRpBGSh+dnjCFKH6mC1HLgIuJ3UIb4j6ffhAUnv\niohmTsKuG0lbkPop7oiIR7LdbfHdF1z7jGx3zd+7E42VFBF/Av6Ut+t+SfcDD5EGCJzZlMCsKSLi\nFeDTebsekPRb0l/1U0jTBFqapPWBX5Mmbheu+j6olbr2enzvTjS9W0Dxmkupms6gFxGPSHoWeHez\nY2mC3n4fcsfbSkS8KOl3DILfh2wNxt+QBvzsFz1Hkg3q777Mta+h2u/dfTS9e4LUNltoJ0qsh2aD\nWm+/D7PCK4O3LElrk+bI7Q4cFBGF/74H7XdfwbXXzImmdzcCEyRtk9uRPd+HVMVsO5L2BHYg3aKh\n3dwIbCFp39wOSRuRRiS16+/DOGAiLfz7IEmkW410AIdExMNFig3K777Cay/2vqq+96bcJqBVZCNJ\n/kSasHlGtvurwPrAO1v5r5hKSLoc+BvwCGkwwO6kiV2LgD0iYn4vb285kv4te/ovwEmkdunXgNci\n4r7sH+XvSKtF/Cdp0t7pwDtIvw8v9X/U9VPB9Z9Lmk/xB1In+I6k34cNgQkR8Zf+j7p2kn5Aut6z\nSbcPyfdiRLw0WL/7Cq+99u+92ROGBvpG+sX6OT2XoFljaZLBuGW/TH8itT8vB54HfgCMaXZsDbre\n3LIahdvdeWVyy5DMJSXc22nxZUgqvX7geNJtNeZlvw+zgcuBtzc79hqv+7kS170K+O/B/N1Xcu31\n+N5dozEzs4ZyH42ZmTWUE42ZmTWUE42ZmTWUE42ZmTWUE42ZmTWUE42ZmTWUE42ZmTWUE41ZBSQd\nK6lL0luz16dIOqyJ8Wws6UxJuxY5do+ku5sRl1kxXr3ZrHL5s5s/D9wP/LJJsWxCuk3DC/S8lQPA\nf/R/OGalOdGYDRCShkbEikqLlzoQEU/XKSSzunDTmVmVJD0HbA0clTWndUm6LO/4OyXdKGm+pCWS\nfidpYsE5fiLpBUkTJD0gaQnwjezYRyTdJelVSW9ImiHpmLz3bg38nVTDujT7/FW5MpI6C5vOJG0v\n6ZeSFmQx/V7SgQVlpmbn2k7Sb7LPninpDMxq4ERjVr1DgVeA24D3ABOA/wGQtDvwAKlp69+BD5MW\nI7xT0m555whgY+Bq0jLt788eAd5GapI7CjiEtET9JZJOzI6/nJ1XwNeyz9+L7tV3eyxgKGnzLKad\nSSsyH0FaKPXmgmSTe98NwF3ZZ/8SOEtSy98905rHTWdmVYqIRyUtB+bGmvfv+BYwE/jniFgFkHfb\n2zNICSJnfeBjEfGbgvNPyz3Plqe/F3gLqe/lhxGxQlLuXvbPRcRDZUI+lZTU3h0Rz2XnvZV0876v\nAb/N/3jg3Ij4Wfb6bkmTgI8CPy3zOWZFuUZjVifZ7XD3A67PXg+RNAQYAtyZHcv3JmveA4Ss6epq\nSS9mZd4k1Y526GNo+wJ/yCUZgIjoItWmdpW0QUH5WwpePw6M6+NnmznRmNXRSFJSOYPuBPEmsAL4\nDKk5Ld9rUXCfDknrk5LSzqQbbE0E9gQuA9atIa6Xi+x/hdT8NqJgf+EN7ZYDw/r42WZuOjOro4Wk\nm4ddQGpmKjkyLFPsZlB7AVsBEyPi97mdktapIa75wNgi+zfPYlhQw7nNynKiMeub5cB6+TsiYomk\n+0m39n2k+NvKGp49rsztkDQC+FCRz6cwhhLuBU6RNC4iZmXnXAv4CDAjIhb1MVazijjRmFUuv4by\nJLCvpA+QmqDmRsTzwBeBeyXdDvyI1GQ1CtgdWCsiJpf5jAeBN4ALJU0FNgCmAK8BG+WVm0MazXak\npMeAxaSBAYXNXgDfAY4F7sjO+QZp9Nl2wL9Wdulmfec+GrPK5Td1nQ48A1wLPESapU9Wk3kX6b7y\n3yWN6DoPeAdwXy/nI3v/XNLw6SHAz0mjwi4BriwoF8AnSP0rd2QxfLDYuSPiZVJfzxPA94HrSP1F\n/xoRd5SLqcx+s7JU0BdpZmZWV67RmJlZQznRmJlZQznRmJlZQznRmJlZQznRmJlZQznRmJlZQznR\nmJlZQznRmJlZQ/1/lyjT09fmSBYAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.plot(range(len(loglikelihoods)), loglikelihoods, linewidth=4)\n", "plt.xlabel('Iteration')\n", @@ -568,11 +706,55 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "application/javascript": [ + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", + "}));\n", + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"https://static.turi.com/products/graphlab-create/2.1/canvas/css/canvas.css\"\n", + "}));\n", + "\n", + " (function(){\n", + "\n", + " var e = null;\n", + " if (typeof element == 'undefined') {\n", + " var scripts = document.getElementsByTagName('script');\n", + " var thisScriptTag = scripts[scripts.length-1];\n", + " var parentDiv = thisScriptTag.parentNode;\n", + " e = document.createElement('div');\n", + " parentDiv.appendChild(e);\n", + " } else {\n", + " e = element[0];\n", + " }\n", + "\n", + " if (typeof requirejs !== 'undefined') {\n", + " // disable load timeout; ipython_app.js is large and can take a while to load.\n", + " requirejs.config({waitSeconds: 0});\n", + " }\n", + "\n", + " require(['https://static.turi.com/products/graphlab-create/2.1/canvas/js/ipython_app.js'], function(IPythonApp){\n", + " var app = new IPythonApp();\n", + " app.attachView('sframe','Summary', {\"ipython\": true, \"sketch\": {\"blue\": {\"std\": 0.18454488372045472, \"complete\": true, \"min\": 0.012413068328822194, \"max\": 0.9524234190826288, \"quantile\": [0.012413068328822194, 0.03595010080645161, 0.05637369791666667, 0.07418464781746031, 0.09278945053499821, 0.10888055762543468, 0.11765058370591157, 0.12942280575895507, 0.1374814039923576, 0.14755347686733555, 0.1573432806407655, 0.1657578737478223, 0.17619520399305555, 0.18352957589285715, 0.18639658011642157, 0.1967742435515873, 0.20344822078933789, 0.20911791252367423, 0.2145844171125644, 0.2188612008385056, 0.2228684093012379, 0.22794157432929985, 0.23845473174366616, 0.2436806949400337, 0.24824802869380075, 0.254119388640873, 0.26148689766517635, 0.26863015909000815, 0.27642079095848426, 0.2797966343765524, 0.285086830720583, 0.2882738022678422, 0.2928050219233056, 0.29739183218564663, 0.3015509517609127, 0.30653652778330615, 0.3110139384251359, 0.31741034836065574, 0.3200353411036737, 0.32541216525591526, 0.3297635323660714, 0.33489808268319865, 0.33945746527777776, 0.34343980690150616, 0.34693849354197714, 0.351550294426422, 0.3555542663301428, 0.359411135953071, 0.36526329521255424, 0.36923652564940207, 0.3731988727918358, 0.377153087797619, 0.38215972420408423, 0.38842741414603127, 0.39442939814814815, 0.39810699205166417, 0.40173159153140997, 0.40660864006659925, 0.41227278974943277, 0.4169499669659118, 0.4220769684550422, 0.42502699219838397, 0.43069885227182264, 0.4385880741724357, 0.44239963673621463, 0.44858043569777406, 0.4544812207967055, 0.46293180534638556, 0.4676571814456036, 0.4705618668650241, 0.47783059393224103, 0.4840906392477204, 0.4875989695233548, 0.49397742796820665, 0.5000755191047129, 0.5093109868198463, 0.5138315581091032, 0.5191078643076066, 0.5278660531519536, 0.5350464170392449, 0.541809375995104, 0.5499370620086556, 0.5528044680512453, 0.5619764002446884, 0.5698368314676617, 0.5798289602654938, 0.5872267817338693, 0.6014121607730263, 0.6168796125118793, 0.627062946711412, 0.6431389884671069, 0.6527557075438841, 0.669431941721729, 0.699817359041232, 0.7157458378088077, 0.7332856503211462, 0.7541306507699951, 0.7723329768105158, 0.7909352490064581, 0.8663176916515806, 0.9524234190826288], \"median\": 0.3731988727918358, \"numeric\": true, \"num_unique\": 1331, \"num_undefined\": 0, \"var\": 0.03405681410739615, \"progress\": 1.0, \"size\": 1328, \"frequent_items\": {\"0.29760313034057617\": {\"frequency\": 1, \"value\": 0.29760313034057617}, \"0.1357421875\": {\"frequency\": 1, \"value\": 0.1357421875}, \"0.3297635323660714\": {\"frequency\": 1, \"value\": 0.3297635323660714}, \"0.3110139384251359\": {\"frequency\": 1, \"value\": 0.3110139384251359}, \"0.7336604628227211\": {\"frequency\": 1, \"value\": 0.7336604628227211}, \"0.48147821638588684\": {\"frequency\": 1, \"value\": 0.48147821638588684}, \"0.5788290550595238\": {\"frequency\": 1, \"value\": 0.5788290550595238}, \"0.5510082299948578\": {\"frequency\": 1, \"value\": 0.5510082299948578}, \"0.22388249813710878\": {\"frequency\": 1, \"value\": 0.22388249813710878}, \"0.4653315586419753\": {\"frequency\": 1, \"value\": 0.4653315586419753}, \"0.4538978382607571\": {\"frequency\": 1, \"value\": 0.4538978382607571}, \"0.8449950322901143\": {\"frequency\": 1, \"value\": 0.8449950322901143}, \"0.35290480212355213\": {\"frequency\": 1, \"value\": 0.35290480212355213}, \"0.36882794463738405\": {\"frequency\": 1, \"value\": 0.36882794463738405}, \"0.40755037568306013\": {\"frequency\": 1, \"value\": 0.40755037568306013}, \"0.6934030716668647\": {\"frequency\": 1, \"value\": 0.6934030716668647}, \"0.17643058655753968\": {\"frequency\": 1, \"value\": 0.17643058655753968}, \"0.5594351438492063\": {\"frequency\": 1, \"value\": 0.5594351438492063}, \"0.480988033234127\": {\"frequency\": 1, \"value\": 0.480988033234127}, \"0.6583006141036102\": {\"frequency\": 1, \"value\": 0.6583006141036102}, \"0.1365808887276078\": {\"frequency\": 1, \"value\": 0.1365808887276078}, \"0.5502741366466698\": {\"frequency\": 1, \"value\": 0.5502741366466698}, \"0.38261993181049236\": {\"frequency\": 1, \"value\": 0.38261993181049236}, \"0.11890787117094861\": {\"frequency\": 1, \"value\": 0.11890787117094861}, \"0.26148689766517635\": {\"frequency\": 1, \"value\": 0.26148689766517635}, \"0.6434705292134161\": {\"frequency\": 1, \"value\": 0.6434705292134161}, \"0.32541216525591526\": {\"frequency\": 1, \"value\": 0.32541216525591526}, \"0.31102372362462427\": {\"frequency\": 1, \"value\": 0.31102372362462427}, \"0.3796051857220735\": {\"frequency\": 1, \"value\": 0.3796051857220735}, \"0.26863015909000815\": {\"frequency\": 1, \"value\": 0.26863015909000815}, \"0.2836028461946604\": {\"frequency\": 1, \"value\": 0.2836028461946604}, \"0.458643449019025\": {\"frequency\": 1, \"value\": 0.458643449019025}, \"0.5507135649528068\": {\"frequency\": 1, \"value\": 0.5507135649528068}, \"0.6728995684979899\": {\"frequency\": 1, \"value\": 0.6728995684979899}, \"0.47783059393224103\": {\"frequency\": 1, \"value\": 0.47783059393224103}, \"0.46141243232254614\": {\"frequency\": 1, \"value\": 0.46141243232254614}, \"0.41867150341854936\": {\"frequency\": 1, \"value\": 0.41867150341854936}, \"0.2128710224680657\": {\"frequency\": 1, \"value\": 0.2128710224680657}, \"0.1282016114008942\": {\"frequency\": 1, \"value\": 0.1282016114008942}, \"0.042252044665592424\": {\"frequency\": 1, \"value\": 0.042252044665592424}, \"0.359411135953071\": {\"frequency\": 1, \"value\": 0.359411135953071}, \"0.32279612208147046\": {\"frequency\": 1, \"value\": 0.32279612208147046}, \"0.3028175163495838\": {\"frequency\": 1, \"value\": 0.3028175163495838}, \"0.3477273149524376\": {\"frequency\": 1, \"value\": 0.3477273149524376}, \"0.7873281424143216\": {\"frequency\": 1, \"value\": 0.7873281424143216}, \"0.29383029246109144\": {\"frequency\": 1, \"value\": 0.29383029246109144}, \"0.5525204276211042\": {\"frequency\": 1, \"value\": 0.5525204276211042}, \"0.1584040014273494\": {\"frequency\": 1, \"value\": 0.1584040014273494}, \"0.5046759008179755\": {\"frequency\": 1, \"value\": 0.5046759008179755}, \"0.6090010585419735\": {\"frequency\": 1, \"value\": 0.6090010585419735}, \"0.2876930421013413\": {\"frequency\": 1, \"value\": 0.2876930421013413}, \"0.7210410014820562\": {\"frequency\": 1, \"value\": 0.7210410014820562}, \"0.1841315726625005\": {\"frequency\": 1, \"value\": 0.1841315726625005}, \"0.39740469079628227\": {\"frequency\": 1, \"value\": 0.39740469079628227}, \"0.3124983743311534\": {\"frequency\": 1, \"value\": 0.3124983743311534}, \"0.4253179046590773\": {\"frequency\": 1, \"value\": 0.4253179046590773}, \"0.7062280601912666\": {\"frequency\": 1, \"value\": 0.7062280601912666}, \"0.4400297619047619\": {\"frequency\": 1, \"value\": 0.4400297619047619}, \"0.26671960168496855\": {\"frequency\": 1, \"value\": 0.26671960168496855}, \"0.08062640399180963\": {\"frequency\": 1, \"value\": 0.08062640399180963}, \"0.29786791755157765\": {\"frequency\": 1, \"value\": 0.29786791755157765}, \"0.5191078643076066\": {\"frequency\": 1, \"value\": 0.5191078643076066}, \"0.23016936785891703\": {\"frequency\": 1, \"value\": 0.23016936785891703}, \"0.24297696552579365\": {\"frequency\": 1, \"value\": 0.24297696552579365}, \"0.19406325843478953\": {\"frequency\": 1, \"value\": 0.19406325843478953}, \"0.3198381929656092\": {\"frequency\": 1, \"value\": 0.3198381929656092}, \"0.31348862742040867\": {\"frequency\": 1, \"value\": 0.31348862742040867}, \"0.5513294304862596\": {\"frequency\": 1, \"value\": 0.5513294304862596}, \"0.663183024691358\": {\"frequency\": 1, \"value\": 0.663183024691358}, \"0.4908045789930556\": {\"frequency\": 1, \"value\": 0.4908045789930556}, \"0.5499370620086556\": {\"frequency\": 1, \"value\": 0.5499370620086556}, \"0.1665824187748016\": {\"frequency\": 1, \"value\": 0.1665824187748016}, \"0.5133266982695139\": {\"frequency\": 1, \"value\": 0.5133266982695139}, \"0.057012412359974576\": {\"frequency\": 1, \"value\": 0.057012412359974576}, \"0.6600816798712122\": {\"frequency\": 1, \"value\": 0.6600816798712122}, \"0.5258360460069444\": {\"frequency\": 1, \"value\": 0.5258360460069444}, \"0.2674104253783353\": {\"frequency\": 1, \"value\": 0.2674104253783353}, \"0.6367757880261796\": {\"frequency\": 1, \"value\": 0.6367757880261796}, \"0.3337617206905117\": {\"frequency\": 1, \"value\": 0.3337617206905117}, \"0.5784268974546432\": {\"frequency\": 1, \"value\": 0.5784268974546432}, \"0.17103608008838986\": {\"frequency\": 1, \"value\": 0.17103608008838986}, \"0.3577239823816821\": {\"frequency\": 1, \"value\": 0.3577239823816821}, \"0.5453546675357243\": {\"frequency\": 1, \"value\": 0.5453546675357243}, \"0.10888055762543468\": {\"frequency\": 1, \"value\": 0.10888055762543468}, \"0.41256284704255064\": {\"frequency\": 1, \"value\": 0.41256284704255064}, \"0.4693847025583706\": {\"frequency\": 1, \"value\": 0.4693847025583706}, \"0.14379215044466404\": {\"frequency\": 1, \"value\": 0.14379215044466404}, \"0.5135720435609209\": {\"frequency\": 1, \"value\": 0.5135720435609209}, \"0.5242622559948474\": {\"frequency\": 1, \"value\": 0.5242622559948474}, \"0.7588017672636046\": {\"frequency\": 1, \"value\": 0.7588017672636046}, \"0.4245663035806593\": {\"frequency\": 1, \"value\": 0.4245663035806593}, \"0.48734768811376417\": {\"frequency\": 1, \"value\": 0.48734768811376417}, \"0.7072494732167734\": {\"frequency\": 1, \"value\": 0.7072494732167734}, \"0.3086001033897969\": {\"frequency\": 1, \"value\": 0.3086001033897969}, \"0.2385254681299603\": {\"frequency\": 1, \"value\": 0.2385254681299603}, \"0.25107530381944443\": {\"frequency\": 1, \"value\": 0.25107530381944443}, \"0.5838526018116373\": {\"frequency\": 1, \"value\": 0.5838526018116373}, \"0.2880304227209395\": {\"frequency\": 1, \"value\": 0.2880304227209395}, \"0.28591743827160493\": {\"frequency\": 1, \"value\": 0.28591743827160493}, \"0.38842741414603127\": {\"frequency\": 1, \"value\": 0.38842741414603127}, \"0.6090535449604743\": {\"frequency\": 1, \"value\": 0.6090535449604743}, \"0.18639658011642157\": {\"frequency\": 1, \"value\": 0.18639658011642157}, \"0.3594541932966706\": {\"frequency\": 1, \"value\": 0.3594541932966706}, \"0.24820075757575757\": {\"frequency\": 1, \"value\": 0.24820075757575757}, \"0.33539842585692997\": {\"frequency\": 1, \"value\": 0.33539842585692997}, \"0.2087737518628912\": {\"frequency\": 1, \"value\": 0.2087737518628912}, \"0.33416442073532904\": {\"frequency\": 1, \"value\": 0.33416442073532904}, \"0.5547011826812085\": {\"frequency\": 1, \"value\": 0.5547011826812085}, \"0.18352957589285715\": {\"frequency\": 1, \"value\": 0.18352957589285715}, \"0.20746628786748617\": {\"frequency\": 1, \"value\": 0.20746628786748617}, \"0.5333412506209637\": {\"frequency\": 1, \"value\": 0.5333412506209637}, \"0.014591095380029806\": {\"frequency\": 1, \"value\": 0.014591095380029806}, \"0.5457154146754282\": {\"frequency\": 1, \"value\": 0.5457154146754282}, \"0.5367802018679876\": {\"frequency\": 1, \"value\": 0.5367802018679876}, \"0.6196730409216086\": {\"frequency\": 1, \"value\": 0.6196730409216086}, \"0.8118739969135802\": {\"frequency\": 1, \"value\": 0.8118739969135802}, \"0.645530785410779\": {\"frequency\": 1, \"value\": 0.645530785410779}, \"0.22610851275083613\": {\"frequency\": 1, \"value\": 0.22610851275083613}, \"0.5691862965300465\": {\"frequency\": 1, \"value\": 0.5691862965300465}, \"0.6255758679318127\": {\"frequency\": 1, \"value\": 0.6255758679318127}, \"0.2774258101575555\": {\"frequency\": 1, \"value\": 0.2774258101575555}, \"0.5616210393540623\": {\"frequency\": 1, \"value\": 0.5616210393540623}, \"0.21064337339361025\": {\"frequency\": 1, \"value\": 0.21064337339361025}, \"0.7134436074513394\": {\"frequency\": 1, \"value\": 0.7134436074513394}, \"0.32573776084165906\": {\"frequency\": 1, \"value\": 0.32573776084165906}, \"0.27642079095848426\": {\"frequency\": 1, \"value\": 0.27642079095848426}, \"0.5106602647569445\": {\"frequency\": 1, \"value\": 0.5106602647569445}, \"0.18584808122205662\": {\"frequency\": 1, \"value\": 0.18584808122205662}, \"0.5786562927886809\": {\"frequency\": 1, \"value\": 0.5786562927886809}, \"0.4177023654513889\": {\"frequency\": 1, \"value\": 0.4177023654513889}, \"0.32783322466467957\": {\"frequency\": 1, \"value\": 0.32783322466467957}, \"0.7815202266714886\": {\"frequency\": 1, \"value\": 0.7815202266714886}, \"0.18359204624306105\": {\"frequency\": 1, \"value\": 0.18359204624306105}, \"0.41143446180555554\": {\"frequency\": 1, \"value\": 0.41143446180555554}, \"0.5032590436303387\": {\"frequency\": 1, \"value\": 0.5032590436303387}, \"0.4403614684502249\": {\"frequency\": 1, \"value\": 0.4403614684502249}, \"0.22877439424683696\": {\"frequency\": 1, \"value\": 0.22877439424683696}, \"0.30658297960964775\": {\"frequency\": 1, \"value\": 0.30658297960964775}, \"0.29178294212617983\": {\"frequency\": 1, \"value\": 0.29178294212617983}, \"0.6800027943368108\": {\"frequency\": 1, \"value\": 0.6800027943368108}, \"0.2302595641121032\": {\"frequency\": 1, \"value\": 0.2302595641121032}, \"0.6044556476651763\": {\"frequency\": 1, \"value\": 0.6044556476651763}, \"0.24810191669486129\": {\"frequency\": 1, \"value\": 0.24810191669486129}, \"0.5188807127460914\": {\"frequency\": 1, \"value\": 0.5188807127460914}, \"0.38924265710382516\": {\"frequency\": 1, \"value\": 0.38924265710382516}, \"0.4116721695188492\": {\"frequency\": 1, \"value\": 0.4116721695188492}, \"0.5132665021112767\": {\"frequency\": 1, \"value\": 0.5132665021112767}, \"0.6200977464564421\": {\"frequency\": 1, \"value\": 0.6200977464564421}, \"0.5187064326689113\": {\"frequency\": 1, \"value\": 0.5187064326689113}, \"0.1368419513987883\": {\"frequency\": 1, \"value\": 0.1368419513987883}, \"0.6752011284103508\": {\"frequency\": 1, \"value\": 0.6752011284103508}, \"0.41848088864006516\": {\"frequency\": 1, \"value\": 0.41848088864006516}, \"0.452619252532447\": {\"frequency\": 1, \"value\": 0.452619252532447}, \"0.3664883075703528\": {\"frequency\": 1, \"value\": 0.3664883075703528}, \"0.42984360420968\": {\"frequency\": 1, \"value\": 0.42984360420968}, \"0.21306559439202102\": {\"frequency\": 1, \"value\": 0.21306559439202102}, \"0.44414109002976193\": {\"frequency\": 1, \"value\": 0.44414109002976193}, \"0.29739183218564663\": {\"frequency\": 1, \"value\": 0.29739183218564663}, \"0.3958324795081967\": {\"frequency\": 1, \"value\": 0.3958324795081967}, \"0.2821164629036417\": {\"frequency\": 1, \"value\": 0.2821164629036417}, \"0.6522387295081967\": {\"frequency\": 1, \"value\": 0.6522387295081967}, \"0.5347281731246896\": {\"frequency\": 1, \"value\": 0.5347281731246896}, \"0.7167984298501373\": {\"frequency\": 1, \"value\": 0.7167984298501373}, \"0.3439822823660714\": {\"frequency\": 1, \"value\": 0.3439822823660714}, \"0.6327859236989735\": {\"frequency\": 1, \"value\": 0.6327859236989735}, \"0.14905598958333333\": {\"frequency\": 1, \"value\": 0.14905598958333333}, \"0.31649762834821427\": {\"frequency\": 1, \"value\": 0.31649762834821427}, \"0.2492565834176487\": {\"frequency\": 1, \"value\": 0.2492565834176487}, \"0.7881711821587788\": {\"frequency\": 1, \"value\": 0.7881711821587788}, \"0.2416169676476417\": {\"frequency\": 1, \"value\": 0.2416169676476417}, \"0.3138748913313463\": {\"frequency\": 1, \"value\": 0.3138748913313463}, \"0.8967427133503164\": {\"frequency\": 1, \"value\": 0.8967427133503164}, \"0.14755347686733555\": {\"frequency\": 1, \"value\": 0.14755347686733555}, \"0.38860540699110674\": {\"frequency\": 1, \"value\": 0.38860540699110674}, \"0.2891897631448413\": {\"frequency\": 1, \"value\": 0.2891897631448413}, \"0.3182941158234127\": {\"frequency\": 1, \"value\": 0.3182941158234127}, \"0.36033982851913743\": {\"frequency\": 1, \"value\": 0.36033982851913743}, \"0.06403069416996048\": {\"frequency\": 1, \"value\": 0.06403069416996048}, \"0.41172868932188733\": {\"frequency\": 1, \"value\": 0.41172868932188733}, \"0.5602141805266805\": {\"frequency\": 1, \"value\": 0.5602141805266805}, \"0.6242133570313122\": {\"frequency\": 1, \"value\": 0.6242133570313122}, \"0.32235176369760776\": {\"frequency\": 1, \"value\": 0.32235176369760776}, \"0.4131604151817534\": {\"frequency\": 1, \"value\": 0.4131604151817534}, \"0.7693876241968111\": {\"frequency\": 1, \"value\": 0.7693876241968111}, \"0.20526709202682564\": {\"frequency\": 1, \"value\": 0.20526709202682564}, \"0.06020476810515873\": {\"frequency\": 1, \"value\": 0.06020476810515873}, \"0.3015800435977066\": {\"frequency\": 1, \"value\": 0.3015800435977066}, \"0.3089037661450571\": {\"frequency\": 1, \"value\": 0.3089037661450571}, \"0.7246049894436165\": {\"frequency\": 1, \"value\": 0.7246049894436165}, \"0.3668435344099169\": {\"frequency\": 1, \"value\": 0.3668435344099169}, \"0.18439982008932124\": {\"frequency\": 1, \"value\": 0.18439982008932124}, \"0.44446606832837304\": {\"frequency\": 1, \"value\": 0.44446606832837304}, \"0.228147484097085\": {\"frequency\": 1, \"value\": 0.228147484097085}, \"0.19826767588227104\": {\"frequency\": 1, \"value\": 0.19826767588227104}, \"0.7044302542419023\": {\"frequency\": 1, \"value\": 0.7044302542419023}, \"0.4091432851702509\": {\"frequency\": 1, \"value\": 0.4091432851702509}, \"0.2575603292598456\": {\"frequency\": 1, \"value\": 0.2575603292598456}, \"0.3551102210630899\": {\"frequency\": 1, \"value\": 0.3551102210630899}, \"0.6107336619543651\": {\"frequency\": 1, \"value\": 0.6107336619543651}, \"0.3712759784360944\": {\"frequency\": 1, \"value\": 0.3712759784360944}, \"0.5093109868198463\": {\"frequency\": 1, \"value\": 0.5093109868198463}, \"0.35859889655395455\": {\"frequency\": 1, \"value\": 0.35859889655395455}, \"0.39879770891069194\": {\"frequency\": 1, \"value\": 0.39879770891069194}, \"0.31740446748534884\": {\"frequency\": 1, \"value\": 0.31740446748534884}, \"0.398424107585216\": {\"frequency\": 1, \"value\": 0.398424107585216}, \"0.33101667287630404\": {\"frequency\": 1, \"value\": 0.33101667287630404}, \"0.3792376117734724\": {\"frequency\": 1, \"value\": 0.3792376117734724}, \"0.1615994503862151\": {\"frequency\": 1, \"value\": 0.1615994503862151}, \"0.5013965768480942\": {\"frequency\": 1, \"value\": 0.5013965768480942}, \"0.33791192475124376\": {\"frequency\": 1, \"value\": 0.33791192475124376}, \"0.2627943368107303\": {\"frequency\": 1, \"value\": 0.2627943368107303}, \"0.6181964108296075\": {\"frequency\": 1, \"value\": 0.6181964108296075}, \"0.24898193359375\": {\"frequency\": 1, \"value\": 0.24898193359375}, \"0.3455966331845238\": {\"frequency\": 1, \"value\": 0.3455966331845238}, \"0.5237261574074074\": {\"frequency\": 1, \"value\": 0.5237261574074074}, \"0.4347642299107143\": {\"frequency\": 1, \"value\": 0.4347642299107143}, \"0.636079551108546\": {\"frequency\": 1, \"value\": 0.636079551108546}, \"0.7325916646349958\": {\"frequency\": 1, \"value\": 0.7325916646349958}, \"0.4517601376488095\": {\"frequency\": 1, \"value\": 0.4517601376488095}, \"0.20576904480898164\": {\"frequency\": 1, \"value\": 0.20576904480898164}, \"0.3435426607341878\": {\"frequency\": 1, \"value\": 0.3435426607341878}, \"0.34678431919642855\": {\"frequency\": 1, \"value\": 0.34678431919642855}, \"0.6415769374068554\": {\"frequency\": 1, \"value\": 0.6415769374068554}, \"0.09287204502257068\": {\"frequency\": 1, \"value\": 0.09287204502257068}, \"0.2880379231770833\": {\"frequency\": 1, \"value\": 0.2880379231770833}, \"0.06461685071946026\": {\"frequency\": 1, \"value\": 0.06461685071946026}, \"0.2419290415870932\": {\"frequency\": 1, \"value\": 0.2419290415870932}, \"0.25733460441468253\": {\"frequency\": 1, \"value\": 0.25733460441468253}, \"0.764913733804681\": {\"frequency\": 1, \"value\": 0.764913733804681}, \"0.33489808268319865\": {\"frequency\": 1, \"value\": 0.33489808268319865}, \"0.7453061908458669\": {\"frequency\": 1, \"value\": 0.7453061908458669}, \"0.37444516890213614\": {\"frequency\": 1, \"value\": 0.37444516890213614}, \"0.4486292295653552\": {\"frequency\": 1, \"value\": 0.4486292295653552}, \"0.699817359041232\": {\"frequency\": 1, \"value\": 0.699817359041232}, \"0.1766802964990899\": {\"frequency\": 1, \"value\": 0.1766802964990899}, \"0.8663176916515806\": {\"frequency\": 1, \"value\": 0.8663176916515806}, \"0.3720978213028169\": {\"frequency\": 1, \"value\": 0.3720978213028169}, \"0.43546423471520124\": {\"frequency\": 1, \"value\": 0.43546423471520124}, \"0.3866525607638889\": {\"frequency\": 1, \"value\": 0.3866525607638889}, \"0.20718005068504\": {\"frequency\": 1, \"value\": 0.20718005068504}, \"0.13536314791716164\": {\"frequency\": 1, \"value\": 0.13536314791716164}, \"0.04202873666188883\": {\"frequency\": 1, \"value\": 0.04202873666188883}, \"0.2447428184581857\": {\"frequency\": 1, \"value\": 0.2447428184581857}, \"0.29159471761748307\": {\"frequency\": 1, \"value\": 0.29159471761748307}, \"0.6278230636518329\": {\"frequency\": 1, \"value\": 0.6278230636518329}, \"0.804993342251543\": {\"frequency\": 1, \"value\": 0.804993342251543}, \"0.4946179104997215\": {\"frequency\": 1, \"value\": 0.4946179104997215}, \"0.24824802869380075\": {\"frequency\": 1, \"value\": 0.24824802869380075}, \"0.5158335692151839\": {\"frequency\": 1, \"value\": 0.5158335692151839}, \"0.06341543209876543\": {\"frequency\": 1, \"value\": 0.06341543209876543}, \"0.17456178695436508\": {\"frequency\": 1, \"value\": 0.17456178695436508}, \"0.44494280911570316\": {\"frequency\": 1, \"value\": 0.44494280911570316}, \"0.8252882501389606\": {\"frequency\": 1, \"value\": 0.8252882501389606}, \"0.1515276513427401\": {\"frequency\": 1, \"value\": 0.1515276513427401}, \"0.5523578680392469\": {\"frequency\": 1, \"value\": 0.5523578680392469}, \"0.4544812207967055\": {\"frequency\": 1, \"value\": 0.4544812207967055}, \"0.221891452092991\": {\"frequency\": 1, \"value\": 0.221891452092991}, \"0.22067208246630995\": {\"frequency\": 1, \"value\": 0.22067208246630995}, \"0.781990963832942\": {\"frequency\": 1, \"value\": 0.781990963832942}, \"0.21499751984126983\": {\"frequency\": 1, \"value\": 0.21499751984126983}, \"0.21004377794336812\": {\"frequency\": 1, \"value\": 0.21004377794336812}, \"0.11474796634376552\": {\"frequency\": 1, \"value\": 0.11474796634376552}, \"0.45150850297914596\": {\"frequency\": 1, \"value\": 0.45150850297914596}, \"0.2103544381188612\": {\"frequency\": 1, \"value\": 0.2103544381188612}, \"0.467087668613769\": {\"frequency\": 1, \"value\": 0.467087668613769}, \"0.22056638291517325\": {\"frequency\": 1, \"value\": 0.22056638291517325}, \"0.1954287574404762\": {\"frequency\": 1, \"value\": 0.1954287574404762}, \"0.329195839661128\": {\"frequency\": 1, \"value\": 0.329195839661128}, \"0.2394734535390308\": {\"frequency\": 1, \"value\": 0.2394734535390308}, \"0.3604134153289734\": {\"frequency\": 1, \"value\": 0.3604134153289734}, \"0.38090334699453554\": {\"frequency\": 1, \"value\": 0.38090334699453554}, \"0.1488491218319806\": {\"frequency\": 1, \"value\": 0.1488491218319806}, \"0.4131066644145482\": {\"frequency\": 1, \"value\": 0.4131066644145482}, \"0.3946359121086009\": {\"frequency\": 1, \"value\": 0.3946359121086009}, \"0.7810880837059115\": {\"frequency\": 1, \"value\": 0.7810880837059115}, \"0.503460377660291\": {\"frequency\": 1, \"value\": 0.503460377660291}, \"0.7909352490064581\": {\"frequency\": 1, \"value\": 0.7909352490064581}, \"0.2981914138687657\": {\"frequency\": 1, \"value\": 0.2981914138687657}, \"0.09550511483501174\": {\"frequency\": 1, \"value\": 0.09550511483501174}, \"0.7685033999015278\": {\"frequency\": 1, \"value\": 0.7685033999015278}, \"0.2831536395248402\": {\"frequency\": 1, \"value\": 0.2831536395248402}, \"0.20863639641521445\": {\"frequency\": 1, \"value\": 0.20863639641521445}, \"0.7128606996144774\": {\"frequency\": 1, \"value\": 0.7128606996144774}, \"0.24621366854822738\": {\"frequency\": 1, \"value\": 0.24621366854822738}, \"0.14887685185185184\": {\"frequency\": 1, \"value\": 0.14887685185185184}, \"0.38816784649776453\": {\"frequency\": 1, \"value\": 0.38816784649776453}, \"0.37371112710869736\": {\"frequency\": 1, \"value\": 0.37371112710869736}, \"0.12352430555555556\": {\"frequency\": 1, \"value\": 0.12352430555555556}, \"0.5118994504470938\": {\"frequency\": 1, \"value\": 0.5118994504470938}, \"0.45577267266151406\": {\"frequency\": 1, \"value\": 0.45577267266151406}, \"0.45078598484848487\": {\"frequency\": 1, \"value\": 0.45078598484848487}, \"0.30287699960862413\": {\"frequency\": 1, \"value\": 0.30287699960862413}, \"0.9017016702286973\": {\"frequency\": 1, \"value\": 0.9017016702286973}, \"0.2882738022678422\": {\"frequency\": 1, \"value\": 0.2882738022678422}, \"0.20370184940094735\": {\"frequency\": 1, \"value\": 0.20370184940094735}, \"0.4988214884500745\": {\"frequency\": 1, \"value\": 0.4988214884500745}, \"0.4238926091269841\": {\"frequency\": 1, \"value\": 0.4238926091269841}, \"0.05414093017578125\": {\"frequency\": 1, \"value\": 0.05414093017578125}, \"0.22219109156356234\": {\"frequency\": 1, \"value\": 0.22219109156356234}, \"0.3579699919274714\": {\"frequency\": 1, \"value\": 0.3579699919274714}, \"0.6137106274801587\": {\"frequency\": 1, \"value\": 0.6137106274801587}, \"0.5801572668719898\": {\"frequency\": 1, \"value\": 0.5801572668719898}, \"0.40644585460448057\": {\"frequency\": 1, \"value\": 0.40644585460448057}, \"0.5810823818660518\": {\"frequency\": 1, \"value\": 0.5810823818660518}, \"0.5847864042482295\": {\"frequency\": 1, \"value\": 0.5847864042482295}, \"0.7337876207933169\": {\"frequency\": 1, \"value\": 0.7337876207933169}, \"0.4969862494276557\": {\"frequency\": 1, \"value\": 0.4969862494276557}, \"0.39215039741679086\": {\"frequency\": 1, \"value\": 0.39215039741679086}, \"0.4198045686792978\": {\"frequency\": 1, \"value\": 0.4198045686792978}, \"0.38214063246001434\": {\"frequency\": 1, \"value\": 0.38214063246001434}, \"0.717679731670051\": {\"frequency\": 1, \"value\": 0.717679731670051}, \"0.6484577589418778\": {\"frequency\": 1, \"value\": 0.6484577589418778}, \"0.4406849113343254\": {\"frequency\": 1, \"value\": 0.4406849113343254}, \"0.4823292464888199\": {\"frequency\": 1, \"value\": 0.4823292464888199}, \"0.09743532478415692\": {\"frequency\": 1, \"value\": 0.09743532478415692}, \"0.3058592060445502\": {\"frequency\": 1, \"value\": 0.3058592060445502}, \"0.04522268453588764\": {\"frequency\": 1, \"value\": 0.04522268453588764}, \"0.31741034836065574\": {\"frequency\": 1, \"value\": 0.31741034836065574}, \"0.5528044680512453\": {\"frequency\": 1, \"value\": 0.5528044680512453}, \"0.5224547371031746\": {\"frequency\": 1, \"value\": 0.5224547371031746}, \"0.17619520399305555\": {\"frequency\": 1, \"value\": 0.17619520399305555}, \"0.48520672314704716\": {\"frequency\": 1, \"value\": 0.48520672314704716}, \"0.3088100413694015\": {\"frequency\": 1, \"value\": 0.3088100413694015}, \"0.22976890216981508\": {\"frequency\": 1, \"value\": 0.22976890216981508}, \"0.49397742796820665\": {\"frequency\": 1, \"value\": 0.49397742796820665}, \"0.7300500904540047\": {\"frequency\": 1, \"value\": 0.7300500904540047}, \"0.31287622640337803\": {\"frequency\": 1, \"value\": 0.31287622640337803}, \"0.43069885227182264\": {\"frequency\": 1, \"value\": 0.43069885227182264}, \"0.34693849354197714\": {\"frequency\": 1, \"value\": 0.34693849354197714}, \"0.20492667116754198\": {\"frequency\": 1, \"value\": 0.20492667116754198}, \"0.3846076761586842\": {\"frequency\": 1, \"value\": 0.3846076761586842}, \"0.6347477520490172\": {\"frequency\": 1, \"value\": 0.6347477520490172}, \"0.12890330001192415\": {\"frequency\": 1, \"value\": 0.12890330001192415}, \"0.4705618668650241\": {\"frequency\": 1, \"value\": 0.4705618668650241}, \"0.3241745063338301\": {\"frequency\": 1, \"value\": 0.3241745063338301}, \"0.388879781420765\": {\"frequency\": 1, \"value\": 0.388879781420765}, \"0.4489537537257824\": {\"frequency\": 1, \"value\": 0.4489537537257824}, \"0.46835549257048387\": {\"frequency\": 1, \"value\": 0.46835549257048387}, \"0.2517674180327869\": {\"frequency\": 1, \"value\": 0.2517674180327869}, \"0.5127749267316618\": {\"frequency\": 1, \"value\": 0.5127749267316618}, \"0.24996698288690475\": {\"frequency\": 1, \"value\": 0.24996698288690475}, \"0.11102125248385494\": {\"frequency\": 1, \"value\": 0.11102125248385494}, \"0.5491421385991058\": {\"frequency\": 1, \"value\": 0.5491421385991058}, \"0.18179279992548436\": {\"frequency\": 1, \"value\": 0.18179279992548436}, \"0.3963248817531659\": {\"frequency\": 1, \"value\": 0.3963248817531659}, \"0.6860780901865998\": {\"frequency\": 1, \"value\": 0.6860780901865998}, \"0.0760566615887746\": {\"frequency\": 1, \"value\": 0.0760566615887746}, \"0.5176341725457074\": {\"frequency\": 1, \"value\": 0.5176341725457074}, \"0.27818251676602085\": {\"frequency\": 1, \"value\": 0.27818251676602085}, \"0.4153921422909235\": {\"frequency\": 1, \"value\": 0.4153921422909235}, \"0.4664778816791995\": {\"frequency\": 1, \"value\": 0.4664778816791995}, \"0.5766923664160102\": {\"frequency\": 1, \"value\": 0.5766923664160102}, \"0.4771845177974366\": {\"frequency\": 1, \"value\": 0.4771845177974366}, \"0.488580715974333\": {\"frequency\": 1, \"value\": 0.488580715974333}, \"0.49048782685424536\": {\"frequency\": 1, \"value\": 0.49048782685424536}, \"0.3306553496025832\": {\"frequency\": 1, \"value\": 0.3306553496025832}, \"0.295807136656746\": {\"frequency\": 1, \"value\": 0.295807136656746}, \"0.44334889852689924\": {\"frequency\": 1, \"value\": 0.44334889852689924}, \"0.6524262709620258\": {\"frequency\": 1, \"value\": 0.6524262709620258}, \"0.38215972420408423\": {\"frequency\": 1, \"value\": 0.38215972420408423}, \"0.13411705818880176\": {\"frequency\": 1, \"value\": 0.13411705818880176}, \"0.38673235493870156\": {\"frequency\": 1, \"value\": 0.38673235493870156}, \"0.45318032843956396\": {\"frequency\": 1, \"value\": 0.45318032843956396}, \"0.44239963673621463\": {\"frequency\": 1, \"value\": 0.44239963673621463}, \"0.25749711256295355\": {\"frequency\": 1, \"value\": 0.25749711256295355}, \"0.7523891579731744\": {\"frequency\": 1, \"value\": 0.7523891579731744}, \"0.19784939494153786\": {\"frequency\": 1, \"value\": 0.19784939494153786}, \"0.4587721994535519\": {\"frequency\": 1, \"value\": 0.4587721994535519}, \"0.23982096587292115\": {\"frequency\": 1, \"value\": 0.23982096587292115}, \"0.3294912754595132\": {\"frequency\": 1, \"value\": 0.3294912754595132}, \"0.3272713603670635\": {\"frequency\": 1, \"value\": 0.3272713603670635}, \"0.31768013871750983\": {\"frequency\": 1, \"value\": 0.31768013871750983}, \"0.4685313886429651\": {\"frequency\": 1, \"value\": 0.4685313886429651}, \"0.33750810185185187\": {\"frequency\": 1, \"value\": 0.33750810185185187}, \"0.34339930613176234\": {\"frequency\": 1, \"value\": 0.34339930613176234}, \"0.48543276454842177\": {\"frequency\": 1, \"value\": 0.48543276454842177}, \"0.3003782242063492\": {\"frequency\": 1, \"value\": 0.3003782242063492}, \"0.7055838531373517\": {\"frequency\": 1, \"value\": 0.7055838531373517}, \"0.4720477079617519\": {\"frequency\": 1, \"value\": 0.4720477079617519}, \"0.397513530305895\": {\"frequency\": 1, \"value\": 0.397513530305895}, \"0.37561597622198006\": {\"frequency\": 1, \"value\": 0.37561597622198006}, \"0.5339110339506172\": {\"frequency\": 1, \"value\": 0.5339110339506172}, \"0.26677384220577705\": {\"frequency\": 1, \"value\": 0.26677384220577705}, \"0.22324438027819177\": {\"frequency\": 1, \"value\": 0.22324438027819177}, \"0.3081289755659664\": {\"frequency\": 1, \"value\": 0.3081289755659664}, \"0.4108765679334327\": {\"frequency\": 1, \"value\": 0.4108765679334327}, \"0.3525454043171379\": {\"frequency\": 1, \"value\": 0.3525454043171379}, \"0.3578464032432809\": {\"frequency\": 1, \"value\": 0.3578464032432809}, \"0.24346001164288544\": {\"frequency\": 1, \"value\": 0.24346001164288544}, \"0.1573432806407655\": {\"frequency\": 1, \"value\": 0.1573432806407655}, \"0.44279720876800793\": {\"frequency\": 1, \"value\": 0.44279720876800793}, \"0.1374814039923576\": {\"frequency\": 1, \"value\": 0.1374814039923576}, \"0.4229978576751118\": {\"frequency\": 1, \"value\": 0.4229978576751118}, \"0.47700431569796325\": {\"frequency\": 1, \"value\": 0.47700431569796325}, \"0.16069020061728395\": {\"frequency\": 1, \"value\": 0.16069020061728395}, \"0.5051372585778491\": {\"frequency\": 1, \"value\": 0.5051372585778491}, \"0.3033080369581658\": {\"frequency\": 1, \"value\": 0.3033080369581658}, \"0.403588679639859\": {\"frequency\": 1, \"value\": 0.403588679639859}, \"0.21128673735119047\": {\"frequency\": 1, \"value\": 0.21128673735119047}, \"0.4220769684550422\": {\"frequency\": 1, \"value\": 0.4220769684550422}, \"0.2158449811127829\": {\"frequency\": 1, \"value\": 0.2158449811127829}, \"0.42745893329817297\": {\"frequency\": 1, \"value\": 0.42745893329817297}, \"0.8497249781077101\": {\"frequency\": 1, \"value\": 0.8497249781077101}, \"0.4505454595120788\": {\"frequency\": 1, \"value\": 0.4505454595120788}, \"0.3065213611525087\": {\"frequency\": 1, \"value\": 0.3065213611525087}, \"0.5773265958768008\": {\"frequency\": 1, \"value\": 0.5773265958768008}, \"0.2753444020119225\": {\"frequency\": 1, \"value\": 0.2753444020119225}, \"0.7624712607408727\": {\"frequency\": 1, \"value\": 0.7624712607408727}, \"0.15557733444940477\": {\"frequency\": 1, \"value\": 0.15557733444940477}, \"0.358297022399793\": {\"frequency\": 1, \"value\": 0.358297022399793}, \"0.6429200819672131\": {\"frequency\": 1, \"value\": 0.6429200819672131}, \"0.44853142169648524\": {\"frequency\": 1, \"value\": 0.44853142169648524}, \"0.41243985615079365\": {\"frequency\": 1, \"value\": 0.41243985615079365}, \"0.1280917096860826\": {\"frequency\": 1, \"value\": 0.1280917096860826}, \"0.2797966343765524\": {\"frequency\": 1, \"value\": 0.2797966343765524}, \"0.3431297884661071\": {\"frequency\": 1, \"value\": 0.3431297884661071}, \"0.5914350247524752\": {\"frequency\": 1, \"value\": 0.5914350247524752}, \"0.5659170845829561\": {\"frequency\": 1, \"value\": 0.5659170845829561}, \"0.7723329768105158\": {\"frequency\": 1, \"value\": 0.7723329768105158}, \"0.25715831470442124\": {\"frequency\": 1, \"value\": 0.25715831470442124}, \"0.3953963380648038\": {\"frequency\": 1, \"value\": 0.3953963380648038}, \"0.351749565325385\": {\"frequency\": 1, \"value\": 0.351749565325385}, \"0.09278945053499821\": {\"frequency\": 1, \"value\": 0.09278945053499821}, \"0.3982967509920635\": {\"frequency\": 1, \"value\": 0.3982967509920635}, \"0.31517092156589577\": {\"frequency\": 1, \"value\": 0.31517092156589577}, \"0.5352054394694438\": {\"frequency\": 1, \"value\": 0.5352054394694438}, \"0.21819420570340325\": {\"frequency\": 1, \"value\": 0.21819420570340325}, \"0.05637369791666667\": {\"frequency\": 1, \"value\": 0.05637369791666667}, \"0.5150903068262727\": {\"frequency\": 1, \"value\": 0.5150903068262727}, \"0.16121067639949868\": {\"frequency\": 1, \"value\": 0.16121067639949868}, \"0.5383306368939137\": {\"frequency\": 1, \"value\": 0.5383306368939137}, \"0.36580531234475905\": {\"frequency\": 1, \"value\": 0.36580531234475905}, \"0.29866556541814276\": {\"frequency\": 1, \"value\": 0.29866556541814276}, \"0.4651271528358001\": {\"frequency\": 1, \"value\": 0.4651271528358001}, \"0.43194214786464524\": {\"frequency\": 1, \"value\": 0.43194214786464524}, \"0.401750130942997\": {\"frequency\": 1, \"value\": 0.401750130942997}, \"0.4657335714659017\": {\"frequency\": 1, \"value\": 0.4657335714659017}, \"0.2720847803805278\": {\"frequency\": 1, \"value\": 0.2720847803805278}, \"0.46775405048935914\": {\"frequency\": 1, \"value\": 0.46775405048935914}, \"0.3281608072916667\": {\"frequency\": 1, \"value\": 0.3281608072916667}, \"0.5210508258817685\": {\"frequency\": 1, \"value\": 0.5210508258817685}, \"0.5390683128720238\": {\"frequency\": 1, \"value\": 0.5390683128720238}, \"0.2766665676724479\": {\"frequency\": 1, \"value\": 0.2766665676724479}, \"0.3947580325464312\": {\"frequency\": 1, \"value\": 0.3947580325464312}, \"0.3668144215753561\": {\"frequency\": 1, \"value\": 0.3668144215753561}, \"0.3727761386468529\": {\"frequency\": 1, \"value\": 0.3727761386468529}, \"0.541809375995104\": {\"frequency\": 1, \"value\": 0.541809375995104}, \"0.4778556098502852\": {\"frequency\": 1, \"value\": 0.4778556098502852}, \"0.785841561107464\": {\"frequency\": 1, \"value\": 0.785841561107464}, \"0.377153087797619\": {\"frequency\": 1, \"value\": 0.377153087797619}, \"0.2432706008295536\": {\"frequency\": 1, \"value\": 0.2432706008295536}, \"0.36698184688093544\": {\"frequency\": 1, \"value\": 0.36698184688093544}, \"0.4154356032504402\": {\"frequency\": 1, \"value\": 0.4154356032504402}, \"0.6014121607730263\": {\"frequency\": 1, \"value\": 0.6014121607730263}, \"0.6431389884671069\": {\"frequency\": 1, \"value\": 0.6431389884671069}, \"0.49555020771329367\": {\"frequency\": 1, \"value\": 0.49555020771329367}, \"0.8097637747283366\": {\"frequency\": 1, \"value\": 0.8097637747283366}, \"0.3737905550065876\": {\"frequency\": 1, \"value\": 0.3737905550065876}, \"0.2228684093012379\": {\"frequency\": 1, \"value\": 0.2228684093012379}, \"0.46293180534638556\": {\"frequency\": 1, \"value\": 0.46293180534638556}, \"0.5449410551298804\": {\"frequency\": 1, \"value\": 0.5449410551298804}, \"0.44172065852033104\": {\"frequency\": 1, \"value\": 0.44172065852033104}, \"0.40401750238397965\": {\"frequency\": 1, \"value\": 0.40401750238397965}, \"0.3362728898106151\": {\"frequency\": 1, \"value\": 0.3362728898106151}, \"0.3257371737487069\": {\"frequency\": 1, \"value\": 0.3257371737487069}, \"0.374415863801054\": {\"frequency\": 1, \"value\": 0.374415863801054}, \"0.35406094393462423\": {\"frequency\": 1, \"value\": 0.35406094393462423}, \"0.5302883575286464\": {\"frequency\": 1, \"value\": 0.5302883575286464}, \"0.6005433734774908\": {\"frequency\": 1, \"value\": 0.6005433734774908}, \"0.5533186141304348\": {\"frequency\": 1, \"value\": 0.5533186141304348}, \"0.5477517799924372\": {\"frequency\": 1, \"value\": 0.5477517799924372}, \"0.11500386846714167\": {\"frequency\": 1, \"value\": 0.11500386846714167}, \"0.3125455958433902\": {\"frequency\": 1, \"value\": 0.3125455958433902}, \"0.563622693425893\": {\"frequency\": 1, \"value\": 0.563622693425893}, \"0.30794607717529754\": {\"frequency\": 1, \"value\": 0.30794607717529754}, \"0.028134223090277778\": {\"frequency\": 1, \"value\": 0.028134223090277778}, \"0.3282707342154822\": {\"frequency\": 1, \"value\": 0.3282707342154822}, \"0.33846742021276593\": {\"frequency\": 1, \"value\": 0.33846742021276593}, \"0.11765058370591157\": {\"frequency\": 1, \"value\": 0.11765058370591157}, \"0.4082863941106544\": {\"frequency\": 1, \"value\": 0.4082863941106544}, \"0.773000125164395\": {\"frequency\": 1, \"value\": 0.773000125164395}, \"0.4929712034405311\": {\"frequency\": 1, \"value\": 0.4929712034405311}, \"0.49131959912291123\": {\"frequency\": 1, \"value\": 0.49131959912291123}, \"0.34539860760060503\": {\"frequency\": 1, \"value\": 0.34539860760060503}, \"0.2168789351575555\": {\"frequency\": 1, \"value\": 0.2168789351575555}, \"0.4021093285339017\": {\"frequency\": 1, \"value\": 0.4021093285339017}, \"0.6911898926033914\": {\"frequency\": 1, \"value\": 0.6911898926033914}, \"0.11019459136528209\": {\"frequency\": 1, \"value\": 0.11019459136528209}, \"0.174071820924408\": {\"frequency\": 1, \"value\": 0.174071820924408}, \"0.37479299816686484\": {\"frequency\": 1, \"value\": 0.37479299816686484}, \"0.030814964657738097\": {\"frequency\": 1, \"value\": 0.030814964657738097}, \"0.14407586056095825\": {\"frequency\": 1, \"value\": 0.14407586056095825}, \"0.6525920758928572\": {\"frequency\": 1, \"value\": 0.6525920758928572}, \"0.5250107183689025\": {\"frequency\": 1, \"value\": 0.5250107183689025}, \"0.4686407955109127\": {\"frequency\": 1, \"value\": 0.4686407955109127}, \"0.3914347362895257\": {\"frequency\": 1, \"value\": 0.3914347362895257}, \"0.2267126179831098\": {\"frequency\": 1, \"value\": 0.2267126179831098}, \"0.4239857868039247\": {\"frequency\": 1, \"value\": 0.4239857868039247}, \"0.5354551303708415\": {\"frequency\": 1, \"value\": 0.5354551303708415}, \"0.3407860184991639\": {\"frequency\": 1, \"value\": 0.3407860184991639}, \"0.17157802409339296\": {\"frequency\": 1, \"value\": 0.17157802409339296}, \"0.2693427292213734\": {\"frequency\": 1, \"value\": 0.2693427292213734}, \"0.3759596535047566\": {\"frequency\": 1, \"value\": 0.3759596535047566}, \"0.5464805569417677\": {\"frequency\": 1, \"value\": 0.5464805569417677}, \"0.8380056839101621\": {\"frequency\": 1, \"value\": 0.8380056839101621}, \"0.5986334312138671\": {\"frequency\": 1, \"value\": 0.5986334312138671}, \"0.36526329521255424\": {\"frequency\": 1, \"value\": 0.36526329521255424}, \"0.8521025832091406\": {\"frequency\": 1, \"value\": 0.8521025832091406}, \"0.30530448003369004\": {\"frequency\": 1, \"value\": 0.30530448003369004}, \"0.4840906392477204\": {\"frequency\": 1, \"value\": 0.4840906392477204}, \"0.4158581415168018\": {\"frequency\": 1, \"value\": 0.4158581415168018}, \"0.12734472378027065\": {\"frequency\": 1, \"value\": 0.12734472378027065}, \"0.2457576167853466\": {\"frequency\": 1, \"value\": 0.2457576167853466}, \"0.5580777219742064\": {\"frequency\": 1, \"value\": 0.5580777219742064}, \"0.3512565617042651\": {\"frequency\": 1, \"value\": 0.3512565617042651}, \"0.627062946711412\": {\"frequency\": 1, \"value\": 0.627062946711412}, \"0.5655440397622311\": {\"frequency\": 1, \"value\": 0.5655440397622311}, \"0.3842445169764757\": {\"frequency\": 1, \"value\": 0.3842445169764757}, \"0.39241345317933435\": {\"frequency\": 1, \"value\": 0.39241345317933435}, \"0.4010730962643678\": {\"frequency\": 1, \"value\": 0.4010730962643678}, \"0.26403351314484125\": {\"frequency\": 1, \"value\": 0.26403351314484125}, \"0.27948947482638886\": {\"frequency\": 1, \"value\": 0.27948947482638886}, \"0.12406645275297619\": {\"frequency\": 1, \"value\": 0.12406645275297619}, \"0.13827853328365625\": {\"frequency\": 1, \"value\": 0.13827853328365625}, \"0.1657578737478223\": {\"frequency\": 1, \"value\": 0.1657578737478223}, \"0.49562199758562325\": {\"frequency\": 1, \"value\": 0.49562199758562325}, \"0.012413068328822194\": {\"frequency\": 1, \"value\": 0.012413068328822194}, \"0.17001895065398334\": {\"frequency\": 1, \"value\": 0.17001895065398334}, \"0.7356108809495525\": {\"frequency\": 1, \"value\": 0.7356108809495525}, \"0.30901475694444447\": {\"frequency\": 1, \"value\": 0.30901475694444447}, \"0.3092145520264117\": {\"frequency\": 1, \"value\": 0.3092145520264117}, \"0.4100862346572372\": {\"frequency\": 1, \"value\": 0.4100862346572372}, \"0.05480174231150794\": {\"frequency\": 1, \"value\": 0.05480174231150794}, \"0.7537454784958006\": {\"frequency\": 1, \"value\": 0.7537454784958006}, \"0.13517950037797405\": {\"frequency\": 1, \"value\": 0.13517950037797405}, \"0.5016869734473224\": {\"frequency\": 1, \"value\": 0.5016869734473224}, \"0.199928383862497\": {\"frequency\": 1, \"value\": 0.199928383862497}, \"0.4174315550844083\": {\"frequency\": 1, \"value\": 0.4174315550844083}, \"0.6609172067901234\": {\"frequency\": 1, \"value\": 0.6609172067901234}, \"0.5445999355733968\": {\"frequency\": 1, \"value\": 0.5445999355733968}, \"0.6567246180044183\": {\"frequency\": 1, \"value\": 0.6567246180044183}, \"0.29464825364375274\": {\"frequency\": 1, \"value\": 0.29464825364375274}, \"0.20434485084100285\": {\"frequency\": 1, \"value\": 0.20434485084100285}, \"0.41125543648543805\": {\"frequency\": 1, \"value\": 0.41125543648543805}, \"0.3700154670963635\": {\"frequency\": 1, \"value\": 0.3700154670963635}, \"0.11180429785455559\": {\"frequency\": 1, \"value\": 0.11180429785455559}, \"0.5619425084832623\": {\"frequency\": 1, \"value\": 0.5619425084832623}, \"0.9080704962832862\": {\"frequency\": 1, \"value\": 0.9080704962832862}, \"0.3617490191497567\": {\"frequency\": 1, \"value\": 0.3617490191497567}, \"0.5735055493551587\": {\"frequency\": 1, \"value\": 0.5735055493551587}, \"0.28956099991545314\": {\"frequency\": 1, \"value\": 0.28956099991545314}, \"0.18530808221726192\": {\"frequency\": 1, \"value\": 0.18530808221726192}, \"0.6580843268753105\": {\"frequency\": 1, \"value\": 0.6580843268753105}, \"0.47298928812750907\": {\"frequency\": 1, \"value\": 0.47298928812750907}, \"0.18601713942403375\": {\"frequency\": 1, \"value\": 0.18601713942403375}, \"0.36236211419753084\": {\"frequency\": 1, \"value\": 0.36236211419753084}, \"0.5370671106557378\": {\"frequency\": 1, \"value\": 0.5370671106557378}, \"0.5704335530598958\": {\"frequency\": 1, \"value\": 0.5704335530598958}, \"0.07836123511904762\": {\"frequency\": 1, \"value\": 0.07836123511904762}, \"0.9485040400887779\": {\"frequency\": 1, \"value\": 0.9485040400887779}, \"0.21329139107709078\": {\"frequency\": 1, \"value\": 0.21329139107709078}, \"0.4218252447956056\": {\"frequency\": 1, \"value\": 0.4218252447956056}, \"0.2556953125\": {\"frequency\": 1, \"value\": 0.2556953125}, \"0.3759116759170844\": {\"frequency\": 1, \"value\": 0.3759116759170844}, \"0.25402721734068384\": {\"frequency\": 1, \"value\": 0.25402721734068384}, \"0.23659102626217451\": {\"frequency\": 1, \"value\": 0.23659102626217451}, \"0.323297098355706\": {\"frequency\": 1, \"value\": 0.323297098355706}, \"0.2839127486381439\": {\"frequency\": 1, \"value\": 0.2839127486381439}, \"0.07039728033369043\": {\"frequency\": 1, \"value\": 0.07039728033369043}, \"0.5113360305059523\": {\"frequency\": 1, \"value\": 0.5113360305059523}, \"0.250517578125\": {\"frequency\": 1, \"value\": 0.250517578125}, \"0.18402962470449172\": {\"frequency\": 1, \"value\": 0.18402962470449172}, \"0.3048435171385991\": {\"frequency\": 1, \"value\": 0.3048435171385991}, \"0.42184054404402416\": {\"frequency\": 1, \"value\": 0.42184054404402416}, \"0.1301800474456911\": {\"frequency\": 1, \"value\": 0.1301800474456911}, \"0.7157458378088077\": {\"frequency\": 1, \"value\": 0.7157458378088077}, \"0.24575720893012154\": {\"frequency\": 1, \"value\": 0.24575720893012154}, \"0.2951867935505319\": {\"frequency\": 1, \"value\": 0.2951867935505319}, \"0.026079876612103176\": {\"frequency\": 1, \"value\": 0.026079876612103176}, \"0.3713545547690015\": {\"frequency\": 1, \"value\": 0.3713545547690015}, \"0.4128396261559635\": {\"frequency\": 1, \"value\": 0.4128396261559635}, \"0.21474020429706905\": {\"frequency\": 1, \"value\": 0.21474020429706905}, \"0.07531722780257936\": {\"frequency\": 1, \"value\": 0.07531722780257936}, \"0.4927229643529528\": {\"frequency\": 1, \"value\": 0.4927229643529528}, \"0.15953372734642318\": {\"frequency\": 1, \"value\": 0.15953372734642318}, \"0.7479145061728395\": {\"frequency\": 1, \"value\": 0.7479145061728395}, \"0.498406684674615\": {\"frequency\": 1, \"value\": 0.498406684674615}, \"0.46760163483796297\": {\"frequency\": 1, \"value\": 0.46760163483796297}, \"0.21985297309027776\": {\"frequency\": 1, \"value\": 0.21985297309027776}, \"0.5567909012657724\": {\"frequency\": 1, \"value\": 0.5567909012657724}, \"0.2578241613760299\": {\"frequency\": 1, \"value\": 0.2578241613760299}, \"0.4655495673648247\": {\"frequency\": 1, \"value\": 0.4655495673648247}, \"0.6480695789865872\": {\"frequency\": 1, \"value\": 0.6480695789865872}, \"0.42549071659215104\": {\"frequency\": 1, \"value\": 0.42549071659215104}, \"0.28182695293094884\": {\"frequency\": 1, \"value\": 0.28182695293094884}, \"0.26946387674564337\": {\"frequency\": 1, \"value\": 0.26946387674564337}, \"0.7066652382776738\": {\"frequency\": 1, \"value\": 0.7066652382776738}, \"0.18352031548400574\": {\"frequency\": 1, \"value\": 0.18352031548400574}, \"0.22270577197687377\": {\"frequency\": 1, \"value\": 0.22270577197687377}, \"0.3820713105372963\": {\"frequency\": 1, \"value\": 0.3820713105372963}, \"0.3794848736702128\": {\"frequency\": 1, \"value\": 0.3794848736702128}, \"0.4297817765255009\": {\"frequency\": 1, \"value\": 0.4297817765255009}, \"0.27698455459770116\": {\"frequency\": 1, \"value\": 0.27698455459770116}, \"0.5518116616989568\": {\"frequency\": 1, \"value\": 0.5518116616989568}, \"0.36331163194444444\": {\"frequency\": 1, \"value\": 0.36331163194444444}, \"0.20047371770988573\": {\"frequency\": 1, \"value\": 0.20047371770988573}, \"0.6930391484543171\": {\"frequency\": 1, \"value\": 0.6930391484543171}, \"0.6527557075438841\": {\"frequency\": 1, \"value\": 0.6527557075438841}, \"0.5627651962312901\": {\"frequency\": 1, \"value\": 0.5627651962312901}, \"0.7080774027906884\": {\"frequency\": 1, \"value\": 0.7080774027906884}, \"0.705574246980497\": {\"frequency\": 1, \"value\": 0.705574246980497}, \"0.23952769561258608\": {\"frequency\": 1, \"value\": 0.23952769561258608}, \"0.5153046404292849\": {\"frequency\": 1, \"value\": 0.5153046404292849}, \"0.38019343020367613\": {\"frequency\": 1, \"value\": 0.38019343020367613}, \"0.18316912042749672\": {\"frequency\": 1, \"value\": 0.18316912042749672}, \"0.04072066992894957\": {\"frequency\": 1, \"value\": 0.04072066992894957}, \"0.033094985875706216\": {\"frequency\": 1, \"value\": 0.033094985875706216}, \"0.41974614953586165\": {\"frequency\": 1, \"value\": 0.41974614953586165}, \"0.2874628197963239\": {\"frequency\": 1, \"value\": 0.2874628197963239}, \"0.3385834591244935\": {\"frequency\": 1, \"value\": 0.3385834591244935}, \"0.2436806949400337\": {\"frequency\": 1, \"value\": 0.2436806949400337}, \"0.38674413189269746\": {\"frequency\": 1, \"value\": 0.38674413189269746}, \"0.43299304520615994\": {\"frequency\": 1, \"value\": 0.43299304520615994}, \"0.17740654495777447\": {\"frequency\": 1, \"value\": 0.17740654495777447}, \"0.4249853999572105\": {\"frequency\": 1, \"value\": 0.4249853999572105}, \"0.3774028933808958\": {\"frequency\": 1, \"value\": 0.3774028933808958}, \"0.11920314828614009\": {\"frequency\": 1, \"value\": 0.11920314828614009}, \"0.42997836285012336\": {\"frequency\": 1, \"value\": 0.42997836285012336}, \"0.3279279396333254\": {\"frequency\": 1, \"value\": 0.3279279396333254}, \"0.12422977857468123\": {\"frequency\": 1, \"value\": 0.12422977857468123}, \"0.4222047317436662\": {\"frequency\": 1, \"value\": 0.4222047317436662}, \"0.3644859725871954\": {\"frequency\": 1, \"value\": 0.3644859725871954}, \"0.36622368666169897\": {\"frequency\": 1, \"value\": 0.36622368666169897}, \"0.6102080233134921\": {\"frequency\": 1, \"value\": 0.6102080233134921}, \"0.5350464170392449\": {\"frequency\": 1, \"value\": 0.5350464170392449}, \"0.5692634490352348\": {\"frequency\": 1, \"value\": 0.5692634490352348}, \"0.15679428941240586\": {\"frequency\": 1, \"value\": 0.15679428941240586}, \"0.024833395823433912\": {\"frequency\": 1, \"value\": 0.024833395823433912}, \"0.3567202053606817\": {\"frequency\": 1, \"value\": 0.3567202053606817}, \"0.7486217808382757\": {\"frequency\": 1, \"value\": 0.7486217808382757}, \"0.17922573584202683\": {\"frequency\": 1, \"value\": 0.17922573584202683}, \"0.2865766269249876\": {\"frequency\": 1, \"value\": 0.2865766269249876}, \"0.1967742435515873\": {\"frequency\": 1, \"value\": 0.1967742435515873}, \"0.07773175804623979\": {\"frequency\": 1, \"value\": 0.07773175804623979}, \"0.4851007450208086\": {\"frequency\": 1, \"value\": 0.4851007450208086}, \"0.35053598793933843\": {\"frequency\": 1, \"value\": 0.35053598793933843}, \"0.3469007010503369\": {\"frequency\": 1, \"value\": 0.3469007010503369}, \"0.22516734972677596\": {\"frequency\": 1, \"value\": 0.22516734972677596}, \"0.2556062934674615\": {\"frequency\": 1, \"value\": 0.2556062934674615}, \"0.7795729637145996\": {\"frequency\": 1, \"value\": 0.7795729637145996}, \"0.3970654013239039\": {\"frequency\": 1, \"value\": 0.3970654013239039}, \"0.2859663816718371\": {\"frequency\": 1, \"value\": 0.2859663816718371}, \"0.23860508258817684\": {\"frequency\": 1, \"value\": 0.23860508258817684}, \"0.41664155350813176\": {\"frequency\": 1, \"value\": 0.41664155350813176}, \"0.4595341700085579\": {\"frequency\": 1, \"value\": 0.4595341700085579}, \"0.2783866729200167\": {\"frequency\": 1, \"value\": 0.2783866729200167}, \"0.3427674801291605\": {\"frequency\": 1, \"value\": 0.3427674801291605}, \"0.16047221603287778\": {\"frequency\": 1, \"value\": 0.16047221603287778}, \"0.40102243835330176\": {\"frequency\": 1, \"value\": 0.40102243835330176}, \"0.4739116360008757\": {\"frequency\": 1, \"value\": 0.4739116360008757}, \"0.29459524633953305\": {\"frequency\": 1, \"value\": 0.29459524633953305}, \"0.39362097283560116\": {\"frequency\": 1, \"value\": 0.39362097283560116}, \"0.1938792493268393\": {\"frequency\": 1, \"value\": 0.1938792493268393}, \"0.14377326055805437\": {\"frequency\": 1, \"value\": 0.14377326055805437}, \"0.3731988727918358\": {\"frequency\": 1, \"value\": 0.3731988727918358}, \"0.18455570044709388\": {\"frequency\": 1, \"value\": 0.18455570044709388}, \"0.22441602168915692\": {\"frequency\": 1, \"value\": 0.22441602168915692}, \"0.669431941721729\": {\"frequency\": 1, \"value\": 0.669431941721729}, \"0.2859467358098157\": {\"frequency\": 1, \"value\": 0.2859467358098157}, \"0.13793790799267602\": {\"frequency\": 1, \"value\": 0.13793790799267602}, \"0.48724051477893693\": {\"frequency\": 1, \"value\": 0.48724051477893693}, \"0.4719184736098396\": {\"frequency\": 1, \"value\": 0.4719184736098396}, \"0.44877232142857143\": {\"frequency\": 1, \"value\": 0.44877232142857143}, \"0.38418139058164885\": {\"frequency\": 1, \"value\": 0.38418139058164885}, \"0.6674714311835768\": {\"frequency\": 1, \"value\": 0.6674714311835768}, \"0.6740472358569765\": {\"frequency\": 1, \"value\": 0.6740472358569765}, \"0.4560850975764407\": {\"frequency\": 1, \"value\": 0.4560850975764407}, \"0.3568835382513661\": {\"frequency\": 1, \"value\": 0.3568835382513661}, \"0.3530550130208333\": {\"frequency\": 1, \"value\": 0.3530550130208333}, \"0.07272550788078024\": {\"frequency\": 1, \"value\": 0.07272550788078024}, \"0.4858725201669054\": {\"frequency\": 1, \"value\": 0.4858725201669054}, \"0.4279679192772156\": {\"frequency\": 1, \"value\": 0.4279679192772156}, \"0.7349796567557918\": {\"frequency\": 1, \"value\": 0.7349796567557918}, \"0.2145844171125644\": {\"frequency\": 1, \"value\": 0.2145844171125644}, \"0.44450105676328505\": {\"frequency\": 1, \"value\": 0.44450105676328505}, \"0.46195961530846597\": {\"frequency\": 1, \"value\": 0.46195961530846597}, \"0.22736889903129656\": {\"frequency\": 1, \"value\": 0.22736889903129656}, \"0.3200353411036737\": {\"frequency\": 1, \"value\": 0.3200353411036737}, \"0.38995100680201333\": {\"frequency\": 1, \"value\": 0.38995100680201333}, \"0.5100331636444708\": {\"frequency\": 1, \"value\": 0.5100331636444708}, \"0.3379365375062096\": {\"frequency\": 1, \"value\": 0.3379365375062096}, \"0.33831514644008115\": {\"frequency\": 1, \"value\": 0.33831514644008115}, \"0.3472896990878889\": {\"frequency\": 1, \"value\": 0.3472896990878889}, \"0.3225550285218254\": {\"frequency\": 1, \"value\": 0.3225550285218254}, \"0.4688692250372578\": {\"frequency\": 1, \"value\": 0.4688692250372578}, \"0.44006587921626983\": {\"frequency\": 1, \"value\": 0.44006587921626983}, \"0.1350033376800795\": {\"frequency\": 1, \"value\": 0.1350033376800795}, \"0.39692809089781744\": {\"frequency\": 1, \"value\": 0.39692809089781744}, \"0.31809963728456\": {\"frequency\": 1, \"value\": 0.31809963728456}, \"0.22794157432929985\": {\"frequency\": 1, \"value\": 0.22794157432929985}, \"0.558607142414784\": {\"frequency\": 1, \"value\": 0.558607142414784}, \"0.27799989908970246\": {\"frequency\": 1, \"value\": 0.27799989908970246}, \"0.18546337954762568\": {\"frequency\": 1, \"value\": 0.18546337954762568}, \"0.46928480079888335\": {\"frequency\": 1, \"value\": 0.46928480079888335}, \"0.5930002170138889\": {\"frequency\": 1, \"value\": 0.5930002170138889}, \"0.18932805646929823\": {\"frequency\": 1, \"value\": 0.18932805646929823}, \"0.29898383528705286\": {\"frequency\": 1, \"value\": 0.29898383528705286}, \"0.2943897478887233\": {\"frequency\": 1, \"value\": 0.2943897478887233}, \"0.44654568427496416\": {\"frequency\": 1, \"value\": 0.44654568427496416}, \"0.27868714347718254\": {\"frequency\": 1, \"value\": 0.27868714347718254}, \"0.44817801477893693\": {\"frequency\": 1, \"value\": 0.44817801477893693}, \"0.15303946769394577\": {\"frequency\": 1, \"value\": 0.15303946769394577}, \"0.35624601958364843\": {\"frequency\": 1, \"value\": 0.35624601958364843}, \"0.42502699219838397\": {\"frequency\": 1, \"value\": 0.42502699219838397}, \"0.3224032180756198\": {\"frequency\": 1, \"value\": 0.3224032180756198}, \"0.4175647754673732\": {\"frequency\": 1, \"value\": 0.4175647754673732}, \"0.19814052409339294\": {\"frequency\": 1, \"value\": 0.19814052409339294}, \"0.6503480009555213\": {\"frequency\": 1, \"value\": 0.6503480009555213}, \"0.46838739189939704\": {\"frequency\": 1, \"value\": 0.46838739189939704}, \"0.5680263264973958\": {\"frequency\": 1, \"value\": 0.5680263264973958}, \"0.2156465784898162\": {\"frequency\": 1, \"value\": 0.2156465784898162}, \"0.17801810678167757\": {\"frequency\": 1, \"value\": 0.17801810678167757}, \"0.15834285203637372\": {\"frequency\": 1, \"value\": 0.15834285203637372}, \"0.37119376081702077\": {\"frequency\": 1, \"value\": 0.37119376081702077}, \"0.36018422067901235\": {\"frequency\": 1, \"value\": 0.36018422067901235}, \"0.3583574342533386\": {\"frequency\": 1, \"value\": 0.3583574342533386}, \"0.5128992178210464\": {\"frequency\": 1, \"value\": 0.5128992178210464}, \"0.14463682432432431\": {\"frequency\": 1, \"value\": 0.14463682432432431}, \"0.315611804520616\": {\"frequency\": 1, \"value\": 0.315611804520616}, \"0.10362962334387682\": {\"frequency\": 1, \"value\": 0.10362962334387682}, \"0.46782353250643693\": {\"frequency\": 1, \"value\": 0.46782353250643693}, \"0.2299372347072358\": {\"frequency\": 1, \"value\": 0.2299372347072358}, \"0.21520662568306012\": {\"frequency\": 1, \"value\": 0.21520662568306012}, \"0.3398421975906607\": {\"frequency\": 1, \"value\": 0.3398421975906607}, \"0.48750141466727026\": {\"frequency\": 1, \"value\": 0.48750141466727026}, \"0.27861455298210147\": {\"frequency\": 1, \"value\": 0.27861455298210147}, \"0.28012910719262624\": {\"frequency\": 1, \"value\": 0.28012910719262624}, \"0.43550792600406\": {\"frequency\": 1, \"value\": 0.43550792600406}, \"0.486647161941678\": {\"frequency\": 1, \"value\": 0.486647161941678}, \"0.3012353515625\": {\"frequency\": 1, \"value\": 0.3012353515625}, \"0.3012489597823927\": {\"frequency\": 1, \"value\": 0.3012489597823927}, \"0.13466227334823647\": {\"frequency\": 1, \"value\": 0.13466227334823647}, \"0.4075106724913426\": {\"frequency\": 1, \"value\": 0.4075106724913426}, \"0.4950433122205663\": {\"frequency\": 1, \"value\": 0.4950433122205663}, \"0.376548086539227\": {\"frequency\": 1, \"value\": 0.376548086539227}, \"0.40665126447676175\": {\"frequency\": 1, \"value\": 0.40665126447676175}, \"0.38840404713522\": {\"frequency\": 1, \"value\": 0.38840404713522}, \"0.3300316691505216\": {\"frequency\": 1, \"value\": 0.3300316691505216}, \"0.19840295925400667\": {\"frequency\": 1, \"value\": 0.19840295925400667}, \"0.2511562965029762\": {\"frequency\": 1, \"value\": 0.2511562965029762}, \"0.7311287047371032\": {\"frequency\": 1, \"value\": 0.7311287047371032}, \"0.1697385496088229\": {\"frequency\": 1, \"value\": 0.1697385496088229}, \"0.6766732656710034\": {\"frequency\": 1, \"value\": 0.6766732656710034}, \"0.17515282150175063\": {\"frequency\": 1, \"value\": 0.17515282150175063}, \"0.6686216157476403\": {\"frequency\": 1, \"value\": 0.6686216157476403}, \"0.23355335771276595\": {\"frequency\": 1, \"value\": 0.23355335771276595}, \"0.495652960298111\": {\"frequency\": 1, \"value\": 0.495652960298111}, \"0.507341224923377\": {\"frequency\": 1, \"value\": 0.507341224923377}, \"0.3404448426590765\": {\"frequency\": 1, \"value\": 0.3404448426590765}, \"0.7987221082051595\": {\"frequency\": 1, \"value\": 0.7987221082051595}, \"0.20881607165892674\": {\"frequency\": 1, \"value\": 0.20881607165892674}, \"0.27077178821516673\": {\"frequency\": 1, \"value\": 0.27077178821516673}, \"0.6559244018274333\": {\"frequency\": 1, \"value\": 0.6559244018274333}, \"0.4503535442677368\": {\"frequency\": 1, \"value\": 0.4503535442677368}, \"0.425277518285896\": {\"frequency\": 1, \"value\": 0.425277518285896}, \"0.4504746618110002\": {\"frequency\": 1, \"value\": 0.4504746618110002}, \"0.516720344576955\": {\"frequency\": 1, \"value\": 0.516720344576955}, \"0.024585368901956124\": {\"frequency\": 1, \"value\": 0.024585368901956124}, \"0.48852078419811323\": {\"frequency\": 1, \"value\": 0.48852078419811323}, \"0.21830119846000995\": {\"frequency\": 1, \"value\": 0.21830119846000995}, \"0.3405477676353701\": {\"frequency\": 1, \"value\": 0.3405477676353701}, \"0.138286984886011\": {\"frequency\": 1, \"value\": 0.138286984886011}, \"0.7301188392093911\": {\"frequency\": 1, \"value\": 0.7301188392093911}, \"0.5668486048640687\": {\"frequency\": 1, \"value\": 0.5668486048640687}, \"0.26256886285340936\": {\"frequency\": 1, \"value\": 0.26256886285340936}, \"0.17893978204172875\": {\"frequency\": 1, \"value\": 0.17893978204172875}, \"0.21887380464480874\": {\"frequency\": 1, \"value\": 0.21887380464480874}, \"0.4032843565905744\": {\"frequency\": 1, \"value\": 0.4032843565905744}, \"0.49016718675346393\": {\"frequency\": 1, \"value\": 0.49016718675346393}, \"0.7474391455538997\": {\"frequency\": 1, \"value\": 0.7474391455538997}, \"0.20911791252367423\": {\"frequency\": 1, \"value\": 0.20911791252367423}, \"0.5159170785027745\": {\"frequency\": 1, \"value\": 0.5159170785027745}, \"0.34048986797456515\": {\"frequency\": 1, \"value\": 0.34048986797456515}, \"0.5799168092982526\": {\"frequency\": 1, \"value\": 0.5799168092982526}, \"0.3897758680752037\": {\"frequency\": 1, \"value\": 0.3897758680752037}, \"0.19151111525086936\": {\"frequency\": 1, \"value\": 0.19151111525086936}, \"0.04492599354957428\": {\"frequency\": 1, \"value\": 0.04492599354957428}, \"0.15365936769917637\": {\"frequency\": 1, \"value\": 0.15365936769917637}, \"0.36983149102393614\": {\"frequency\": 1, \"value\": 0.36983149102393614}, \"0.4189655465351918\": {\"frequency\": 1, \"value\": 0.4189655465351918}, \"0.28634143691008446\": {\"frequency\": 1, \"value\": 0.28634143691008446}, \"0.626495221634558\": {\"frequency\": 1, \"value\": 0.626495221634558}, \"0.3317516349583829\": {\"frequency\": 1, \"value\": 0.3317516349583829}, \"0.41335949143070044\": {\"frequency\": 1, \"value\": 0.41335949143070044}, \"0.7604247149299173\": {\"frequency\": 1, \"value\": 0.7604247149299173}, \"0.5211454452309985\": {\"frequency\": 1, \"value\": 0.5211454452309985}, \"0.03595010080645161\": {\"frequency\": 1, \"value\": 0.03595010080645161}, \"0.5666059027777778\": {\"frequency\": 1, \"value\": 0.5666059027777778}, \"0.2176324981371088\": {\"frequency\": 1, \"value\": 0.2176324981371088}, \"0.734691722972973\": {\"frequency\": 1, \"value\": 0.734691722972973}, \"0.6478115173347132\": {\"frequency\": 1, \"value\": 0.6478115173347132}, \"0.6759752608298952\": {\"frequency\": 1, \"value\": 0.6759752608298952}, \"0.2448109654017857\": {\"frequency\": 1, \"value\": 0.2448109654017857}, \"0.3899622498764822\": {\"frequency\": 1, \"value\": 0.3899622498764822}, \"0.20271077478805566\": {\"frequency\": 1, \"value\": 0.20271077478805566}, \"0.6238454475308642\": {\"frequency\": 1, \"value\": 0.6238454475308642}, \"0.5804789182811724\": {\"frequency\": 1, \"value\": 0.5804789182811724}, \"0.35064774279682065\": {\"frequency\": 1, \"value\": 0.35064774279682065}, \"0.2332414663652821\": {\"frequency\": 1, \"value\": 0.2332414663652821}, \"0.440369423504696\": {\"frequency\": 1, \"value\": 0.440369423504696}, \"0.39648700703527545\": {\"frequency\": 1, \"value\": 0.39648700703527545}, \"0.46269148284313727\": {\"frequency\": 1, \"value\": 0.46269148284313727}, \"0.5020187886677409\": {\"frequency\": 1, \"value\": 0.5020187886677409}, \"0.16380564856150795\": {\"frequency\": 1, \"value\": 0.16380564856150795}, \"0.6039425091052024\": {\"frequency\": 1, \"value\": 0.6039425091052024}, \"0.13639983438768202\": {\"frequency\": 1, \"value\": 0.13639983438768202}, \"0.28159278448001274\": {\"frequency\": 1, \"value\": 0.28159278448001274}, \"0.4826924189238944\": {\"frequency\": 1, \"value\": 0.4826924189238944}, \"0.4560841907813557\": {\"frequency\": 1, \"value\": 0.4560841907813557}, \"0.42237323506430163\": {\"frequency\": 1, \"value\": 0.42237323506430163}, \"0.5000755191047129\": {\"frequency\": 1, \"value\": 0.5000755191047129}, \"0.46265730281411016\": {\"frequency\": 1, \"value\": 0.46265730281411016}, \"0.306182037026558\": {\"frequency\": 1, \"value\": 0.306182037026558}, \"0.7210801866319444\": {\"frequency\": 1, \"value\": 0.7210801866319444}, \"0.39906674785057517\": {\"frequency\": 1, \"value\": 0.39906674785057517}, \"0.10276364543518077\": {\"frequency\": 1, \"value\": 0.10276364543518077}, \"0.22471984306876733\": {\"frequency\": 1, \"value\": 0.22471984306876733}, \"0.7103532608695652\": {\"frequency\": 1, \"value\": 0.7103532608695652}, \"0.3551571814456036\": {\"frequency\": 1, \"value\": 0.3551571814456036}, \"0.5024958922371032\": {\"frequency\": 1, \"value\": 0.5024958922371032}, \"0.3133903843765524\": {\"frequency\": 1, \"value\": 0.3133903843765524}, \"0.3184006851438492\": {\"frequency\": 1, \"value\": 0.3184006851438492}, \"0.6985671123074474\": {\"frequency\": 1, \"value\": 0.6985671123074474}, \"0.23845473174366616\": {\"frequency\": 1, \"value\": 0.23845473174366616}, \"0.2481724942891895\": {\"frequency\": 1, \"value\": 0.2481724942891895}, \"0.2928050219233056\": {\"frequency\": 1, \"value\": 0.2928050219233056}, \"0.7060355073701196\": {\"frequency\": 1, \"value\": 0.7060355073701196}, \"0.7892867455290611\": {\"frequency\": 1, \"value\": 0.7892867455290611}, \"0.37100255803944593\": {\"frequency\": 1, \"value\": 0.37100255803944593}, \"0.4924430163530466\": {\"frequency\": 1, \"value\": 0.4924430163530466}, \"0.47414893617021275\": {\"frequency\": 1, \"value\": 0.47414893617021275}, \"0.29717347160218255\": {\"frequency\": 1, \"value\": 0.29717347160218255}, \"0.19637772817460317\": {\"frequency\": 1, \"value\": 0.19637772817460317}, \"0.3087604720744681\": {\"frequency\": 1, \"value\": 0.3087604720744681}, \"0.5121792722305017\": {\"frequency\": 1, \"value\": 0.5121792722305017}, \"0.328763195479384\": {\"frequency\": 1, \"value\": 0.328763195479384}, \"0.8821468874007936\": {\"frequency\": 1, \"value\": 0.8821468874007936}, \"0.5248199881935074\": {\"frequency\": 1, \"value\": 0.5248199881935074}, \"0.5845064114505713\": {\"frequency\": 1, \"value\": 0.5845064114505713}, \"0.42931659049974125\": {\"frequency\": 1, \"value\": 0.42931659049974125}, \"0.25551326141879527\": {\"frequency\": 1, \"value\": 0.25551326141879527}, \"0.31902415651777216\": {\"frequency\": 1, \"value\": 0.31902415651777216}, \"0.34644443926974666\": {\"frequency\": 1, \"value\": 0.34644443926974666}, \"0.30530567097855493\": {\"frequency\": 1, \"value\": 0.30530567097855493}, \"0.5501244078908292\": {\"frequency\": 1, \"value\": 0.5501244078908292}, \"0.34707463984103326\": {\"frequency\": 1, \"value\": 0.34707463984103326}, \"0.29171950843478955\": {\"frequency\": 1, \"value\": 0.29171950843478955}, \"0.7226864346590909\": {\"frequency\": 1, \"value\": 0.7226864346590909}, \"0.22276189145553899\": {\"frequency\": 1, \"value\": 0.22276189145553899}, \"0.5250015500992063\": {\"frequency\": 1, \"value\": 0.5250015500992063}, \"0.414274169921875\": {\"frequency\": 1, \"value\": 0.414274169921875}, \"0.3612141732626444\": {\"frequency\": 1, \"value\": 0.3612141732626444}, \"0.34038726806640623\": {\"frequency\": 1, \"value\": 0.34038726806640623}, \"0.3517425794833582\": {\"frequency\": 1, \"value\": 0.3517425794833582}, \"0.3788991734601449\": {\"frequency\": 1, \"value\": 0.3788991734601449}, \"0.5872267817338693\": {\"frequency\": 1, \"value\": 0.5872267817338693}, \"0.4768157859893482\": {\"frequency\": 1, \"value\": 0.4768157859893482}, \"0.5072132699950322\": {\"frequency\": 1, \"value\": 0.5072132699950322}, \"0.3227724284022609\": {\"frequency\": 1, \"value\": 0.3227724284022609}, \"0.3220508879781421\": {\"frequency\": 1, \"value\": 0.3220508879781421}, \"0.1837094821162444\": {\"frequency\": 1, \"value\": 0.1837094821162444}, \"0.11020228794642857\": {\"frequency\": 1, \"value\": 0.11020228794642857}, \"0.6971849601795755\": {\"frequency\": 1, \"value\": 0.6971849601795755}, \"0.285086830720583\": {\"frequency\": 1, \"value\": 0.285086830720583}, \"0.27390702620466967\": {\"frequency\": 1, \"value\": 0.27390702620466967}, \"0.4823436076958106\": {\"frequency\": 1, \"value\": 0.4823436076958106}, \"0.39456876240079364\": {\"frequency\": 1, \"value\": 0.39456876240079364}, \"0.40780886159829566\": {\"frequency\": 1, \"value\": 0.40780886159829566}, \"0.31979521276595746\": {\"frequency\": 1, \"value\": 0.31979521276595746}, \"0.40173159153140997\": {\"frequency\": 1, \"value\": 0.40173159153140997}, \"0.10960455085740431\": {\"frequency\": 1, \"value\": 0.10960455085740431}, \"0.07974710131448412\": {\"frequency\": 1, \"value\": 0.07974710131448412}, \"0.5988347129216269\": {\"frequency\": 1, \"value\": 0.5988347129216269}, \"0.0366005502925606\": {\"frequency\": 1, \"value\": 0.0366005502925606}, \"0.12521324769633405\": {\"frequency\": 1, \"value\": 0.12521324769633405}, \"0.458796704588425\": {\"frequency\": 1, \"value\": 0.458796704588425}, \"0.24400149031296572\": {\"frequency\": 1, \"value\": 0.24400149031296572}, \"0.448410715170432\": {\"frequency\": 1, \"value\": 0.448410715170432}, \"0.4184155209246275\": {\"frequency\": 1, \"value\": 0.4184155209246275}, \"0.3642522951977401\": {\"frequency\": 1, \"value\": 0.3642522951977401}, \"0.10838859437003968\": {\"frequency\": 1, \"value\": 0.10838859437003968}, \"0.312428083506738\": {\"frequency\": 1, \"value\": 0.312428083506738}, \"0.1857445741949608\": {\"frequency\": 1, \"value\": 0.1857445741949608}, \"0.3732519946808511\": {\"frequency\": 1, \"value\": 0.3732519946808511}, \"0.2671683277446597\": {\"frequency\": 1, \"value\": 0.2671683277446597}, \"0.7541306507699951\": {\"frequency\": 1, \"value\": 0.7541306507699951}, \"0.5924405427223051\": {\"frequency\": 1, \"value\": 0.5924405427223051}, \"0.6870736452132936\": {\"frequency\": 1, \"value\": 0.6870736452132936}, \"0.6507640182563338\": {\"frequency\": 1, \"value\": 0.6507640182563338}, \"0.4275352647569444\": {\"frequency\": 1, \"value\": 0.4275352647569444}, \"0.20344822078933789\": {\"frequency\": 1, \"value\": 0.20344822078933789}, \"0.1850786653903162\": {\"frequency\": 1, \"value\": 0.1850786653903162}, \"0.08761002863545816\": {\"frequency\": 1, \"value\": 0.08761002863545816}, \"0.8822160873965544\": {\"frequency\": 1, \"value\": 0.8822160873965544}, \"0.6570317157228018\": {\"frequency\": 1, \"value\": 0.6570317157228018}, \"0.03805656369360229\": {\"frequency\": 1, \"value\": 0.03805656369360229}, \"0.2936390771818761\": {\"frequency\": 1, \"value\": 0.2936390771818761}, \"0.532155933432512\": {\"frequency\": 1, \"value\": 0.532155933432512}, \"0.8779847056517252\": {\"frequency\": 1, \"value\": 0.8779847056517252}, \"0.5207438776220993\": {\"frequency\": 1, \"value\": 0.5207438776220993}, \"0.26091644371779626\": {\"frequency\": 1, \"value\": 0.26091644371779626}, \"0.6040925327743296\": {\"frequency\": 1, \"value\": 0.6040925327743296}, \"0.28204700695479384\": {\"frequency\": 1, \"value\": 0.28204700695479384}, \"0.01985498353823506\": {\"frequency\": 1, \"value\": 0.01985498353823506}, \"0.26728949329359164\": {\"frequency\": 1, \"value\": 0.26728949329359164}, \"0.43039068995981156\": {\"frequency\": 1, \"value\": 0.43039068995981156}, \"0.27822503905783547\": {\"frequency\": 1, \"value\": 0.27822503905783547}, \"0.1453710596586401\": {\"frequency\": 1, \"value\": 0.1453710596586401}, \"0.4699936468823389\": {\"frequency\": 1, \"value\": 0.4699936468823389}, \"0.29220527508693495\": {\"frequency\": 1, \"value\": 0.29220527508693495}, \"0.22609429334326875\": {\"frequency\": 1, \"value\": 0.22609429334326875}, \"0.14312820434570311\": {\"frequency\": 1, \"value\": 0.14312820434570311}, \"0.5209044936412849\": {\"frequency\": 1, \"value\": 0.5209044936412849}, \"0.34586479547236587\": {\"frequency\": 1, \"value\": 0.34586479547236587}, \"0.290958024691358\": {\"frequency\": 1, \"value\": 0.290958024691358}, \"0.06567814403666986\": {\"frequency\": 1, \"value\": 0.06567814403666986}, \"0.29804656553277875\": {\"frequency\": 1, \"value\": 0.29804656553277875}, \"0.2485732926090067\": {\"frequency\": 1, \"value\": 0.2485732926090067}, \"0.33023796359411695\": {\"frequency\": 1, \"value\": 0.33023796359411695}, \"0.3739418777943368\": {\"frequency\": 1, \"value\": 0.3739418777943368}, \"0.4673437873000716\": {\"frequency\": 1, \"value\": 0.4673437873000716}, \"0.41227278974943277\": {\"frequency\": 1, \"value\": 0.41227278974943277}, \"0.45615957215598607\": {\"frequency\": 1, \"value\": 0.45615957215598607}, \"0.15765457387155196\": {\"frequency\": 1, \"value\": 0.15765457387155196}, \"0.5755986794968754\": {\"frequency\": 1, \"value\": 0.5755986794968754}, \"0.5818936457628467\": {\"frequency\": 1, \"value\": 0.5818936457628467}, \"0.4324626742676034\": {\"frequency\": 1, \"value\": 0.4324626742676034}, \"0.4010616470223325\": {\"frequency\": 1, \"value\": 0.4010616470223325}, \"0.2450542449951172\": {\"frequency\": 1, \"value\": 0.2450542449951172}, \"0.05773578369422441\": {\"frequency\": 1, \"value\": 0.05773578369422441}, \"0.42391063102149207\": {\"frequency\": 1, \"value\": 0.42391063102149207}, \"0.19725023872045835\": {\"frequency\": 1, \"value\": 0.19725023872045835}, \"0.17093788752480157\": {\"frequency\": 1, \"value\": 0.17093788752480157}, \"0.5619764002446884\": {\"frequency\": 1, \"value\": 0.5619764002446884}, \"0.20716475317299277\": {\"frequency\": 1, \"value\": 0.20716475317299277}, \"0.20960425556517068\": {\"frequency\": 1, \"value\": 0.20960425556517068}, \"0.2816663185077558\": {\"frequency\": 1, \"value\": 0.2816663185077558}, \"0.42350112002912865\": {\"frequency\": 1, \"value\": 0.42350112002912865}, \"0.30816117113760555\": {\"frequency\": 1, \"value\": 0.30816117113760555}, \"0.21082495032290113\": {\"frequency\": 1, \"value\": 0.21082495032290113}, \"0.6196284035449829\": {\"frequency\": 1, \"value\": 0.6196284035449829}, \"0.10257640165441176\": {\"frequency\": 1, \"value\": 0.10257640165441176}, \"0.5661442033035271\": {\"frequency\": 1, \"value\": 0.5661442033035271}, \"0.40177475259224615\": {\"frequency\": 1, \"value\": 0.40177475259224615}, \"0.050403489243190505\": {\"frequency\": 1, \"value\": 0.050403489243190505}, \"0.11040246212121212\": {\"frequency\": 1, \"value\": 0.11040246212121212}, \"0.6690078590029762\": {\"frequency\": 1, \"value\": 0.6690078590029762}, \"0.5504703310493188\": {\"frequency\": 1, \"value\": 0.5504703310493188}, \"0.32180629015974377\": {\"frequency\": 1, \"value\": 0.32180629015974377}, \"0.36550738249386233\": {\"frequency\": 1, \"value\": 0.36550738249386233}, \"0.2769595286885246\": {\"frequency\": 1, \"value\": 0.2769595286885246}, \"0.6455147082523405\": {\"frequency\": 1, \"value\": 0.6455147082523405}, \"0.5798289602654938\": {\"frequency\": 1, \"value\": 0.5798289602654938}, \"0.54780815325385\": {\"frequency\": 1, \"value\": 0.54780815325385}, \"0.4823627388447919\": {\"frequency\": 1, \"value\": 0.4823627388447919}, \"0.7332856503211462\": {\"frequency\": 1, \"value\": 0.7332856503211462}, \"0.5401487208485113\": {\"frequency\": 1, \"value\": 0.5401487208485113}, \"0.40660864006659925\": {\"frequency\": 1, \"value\": 0.40660864006659925}, \"0.20214944771027293\": {\"frequency\": 1, \"value\": 0.20214944771027293}, \"0.35737549677098857\": {\"frequency\": 1, \"value\": 0.35737549677098857}, \"0.3072970920138889\": {\"frequency\": 1, \"value\": 0.3072970920138889}, \"0.43445813152011925\": {\"frequency\": 1, \"value\": 0.43445813152011925}, \"0.5379917524529316\": {\"frequency\": 1, \"value\": 0.5379917524529316}, \"0.5401983180253155\": {\"frequency\": 1, \"value\": 0.5401983180253155}, \"0.2581363877856745\": {\"frequency\": 1, \"value\": 0.2581363877856745}, \"0.19631504848241862\": {\"frequency\": 1, \"value\": 0.19631504848241862}, \"0.16024747975849446\": {\"frequency\": 1, \"value\": 0.16024747975849446}, \"0.5294685304551606\": {\"frequency\": 1, \"value\": 0.5294685304551606}, \"0.20176221746150025\": {\"frequency\": 1, \"value\": 0.20176221746150025}, \"0.3383486245653254\": {\"frequency\": 1, \"value\": 0.3383486245653254}, \"0.4861332000248016\": {\"frequency\": 1, \"value\": 0.4861332000248016}, \"0.6364948718618206\": {\"frequency\": 1, \"value\": 0.6364948718618206}, \"0.7304620845734127\": {\"frequency\": 1, \"value\": 0.7304620845734127}, \"0.31862521056282206\": {\"frequency\": 1, \"value\": 0.31862521056282206}, \"0.4345630401234568\": {\"frequency\": 1, \"value\": 0.4345630401234568}, \"0.4680162224337617\": {\"frequency\": 1, \"value\": 0.4680162224337617}, \"0.28035891051413253\": {\"frequency\": 1, \"value\": 0.28035891051413253}, \"0.44215428840106674\": {\"frequency\": 1, \"value\": 0.44215428840106674}, \"0.0830412806492059\": {\"frequency\": 1, \"value\": 0.0830412806492059}, \"0.22504609860248448\": {\"frequency\": 1, \"value\": 0.22504609860248448}, \"0.5948750412525237\": {\"frequency\": 1, \"value\": 0.5948750412525237}, \"0.83054519007222\": {\"frequency\": 1, \"value\": 0.83054519007222}, \"0.6569008861383182\": {\"frequency\": 1, \"value\": 0.6569008861383182}, \"0.4243797084125287\": {\"frequency\": 1, \"value\": 0.4243797084125287}, \"0.3405903549382716\": {\"frequency\": 1, \"value\": 0.3405903549382716}, \"0.7678153676835318\": {\"frequency\": 1, \"value\": 0.7678153676835318}, \"0.8753781396246142\": {\"frequency\": 1, \"value\": 0.8753781396246142}, \"0.3727979866600791\": {\"frequency\": 1, \"value\": 0.3727979866600791}, \"0.440592650968336\": {\"frequency\": 1, \"value\": 0.440592650968336}, \"0.016814556018922563\": {\"frequency\": 1, \"value\": 0.016814556018922563}, \"0.23254859561011904\": {\"frequency\": 1, \"value\": 0.23254859561011904}, \"0.5507807835449589\": {\"frequency\": 1, \"value\": 0.5507807835449589}, \"0.278357301737686\": {\"frequency\": 1, \"value\": 0.278357301737686}, \"0.5441341515743371\": {\"frequency\": 1, \"value\": 0.5441341515743371}, \"0.19126571626571626\": {\"frequency\": 1, \"value\": 0.19126571626571626}, \"0.7241714532056371\": {\"frequency\": 1, \"value\": 0.7241714532056371}, \"0.18959999403198854\": {\"frequency\": 1, \"value\": 0.18959999403198854}, \"0.764682783100786\": {\"frequency\": 1, \"value\": 0.764682783100786}, \"0.533956780923994\": {\"frequency\": 1, \"value\": 0.533956780923994}, \"0.5822684926835318\": {\"frequency\": 1, \"value\": 0.5822684926835318}, \"0.07206392821659215\": {\"frequency\": 1, \"value\": 0.07206392821659215}, \"0.2522078838045635\": {\"frequency\": 1, \"value\": 0.2522078838045635}, \"0.25256650604470804\": {\"frequency\": 1, \"value\": 0.25256650604470804}, \"0.2992128228865607\": {\"frequency\": 1, \"value\": 0.2992128228865607}, \"0.4408582560221354\": {\"frequency\": 1, \"value\": 0.4408582560221354}, \"0.3675938943718523\": {\"frequency\": 1, \"value\": 0.3675938943718523}, \"0.1806344696969697\": {\"frequency\": 1, \"value\": 0.1806344696969697}, \"0.4695021018872977\": {\"frequency\": 1, \"value\": 0.4695021018872977}, \"0.5120786956910958\": {\"frequency\": 1, \"value\": 0.5120786956910958}, \"0.2114833585515481\": {\"frequency\": 1, \"value\": 0.2114833585515481}, \"0.43189693705735316\": {\"frequency\": 1, \"value\": 0.43189693705735316}, \"0.6096465847332015\": {\"frequency\": 1, \"value\": 0.6096465847332015}, \"0.343087925041129\": {\"frequency\": 1, \"value\": 0.343087925041129}, \"0.26642776912590055\": {\"frequency\": 1, \"value\": 0.26642776912590055}, \"0.2587138521119211\": {\"frequency\": 1, \"value\": 0.2587138521119211}, \"0.43588007938442863\": {\"frequency\": 1, \"value\": 0.43588007938442863}, \"0.6438446335565476\": {\"frequency\": 1, \"value\": 0.6438446335565476}, \"0.20093229974834886\": {\"frequency\": 1, \"value\": 0.20093229974834886}, \"0.4225914749432791\": {\"frequency\": 1, \"value\": 0.4225914749432791}, \"0.10921991257440476\": {\"frequency\": 1, \"value\": 0.10921991257440476}, \"0.4774594930442224\": {\"frequency\": 1, \"value\": 0.4774594930442224}, \"0.43988444042809377\": {\"frequency\": 1, \"value\": 0.43988444042809377}, \"0.3967566655227978\": {\"frequency\": 1, \"value\": 0.3967566655227978}, \"0.5875897292598112\": {\"frequency\": 1, \"value\": 0.5875897292598112}, \"0.34712185152425123\": {\"frequency\": 1, \"value\": 0.34712185152425123}, \"0.22232491629464285\": {\"frequency\": 1, \"value\": 0.22232491629464285}, \"0.01402436388339921\": {\"frequency\": 1, \"value\": 0.01402436388339921}, \"0.26587070823424497\": {\"frequency\": 1, \"value\": 0.26587070823424497}, \"0.26986517324888226\": {\"frequency\": 1, \"value\": 0.26986517324888226}, \"0.19446449639841032\": {\"frequency\": 1, \"value\": 0.19446449639841032}, \"0.3785432644038649\": {\"frequency\": 1, \"value\": 0.3785432644038649}, \"0.34595285338461235\": {\"frequency\": 1, \"value\": 0.34595285338461235}, \"0.2878567181926278\": {\"frequency\": 1, \"value\": 0.2878567181926278}, \"0.20962414893669928\": {\"frequency\": 1, \"value\": 0.20962414893669928}, \"0.29364862151368665\": {\"frequency\": 1, \"value\": 0.29364862151368665}, \"0.3422368975888628\": {\"frequency\": 1, \"value\": 0.3422368975888628}, \"0.1550519879691916\": {\"frequency\": 1, \"value\": 0.1550519879691916}, \"0.579236074654807\": {\"frequency\": 1, \"value\": 0.579236074654807}, \"0.1834680176752606\": {\"frequency\": 1, \"value\": 0.1834680176752606}, \"0.09997919771485345\": {\"frequency\": 1, \"value\": 0.09997919771485345}, \"0.39909565687613846\": {\"frequency\": 1, \"value\": 0.39909565687613846}, \"0.46306743584026955\": {\"frequency\": 1, \"value\": 0.46306743584026955}, \"0.14711303662369699\": {\"frequency\": 1, \"value\": 0.14711303662369699}, \"0.5535168633944746\": {\"frequency\": 1, \"value\": 0.5535168633944746}, \"0.11137694729431198\": {\"frequency\": 1, \"value\": 0.11137694729431198}, \"0.10185862208147044\": {\"frequency\": 1, \"value\": 0.10185862208147044}, \"0.0889148176201509\": {\"frequency\": 1, \"value\": 0.0889148176201509}, \"0.13405396174863388\": {\"frequency\": 1, \"value\": 0.13405396174863388}, \"0.2958313957093254\": {\"frequency\": 1, \"value\": 0.2958313957093254}, \"0.5065938120039682\": {\"frequency\": 1, \"value\": 0.5065938120039682}, \"0.6171238512170889\": {\"frequency\": 1, \"value\": 0.6171238512170889}, \"0.024483399272882806\": {\"frequency\": 1, \"value\": 0.024483399272882806}, \"0.29189696659215103\": {\"frequency\": 1, \"value\": 0.29189696659215103}, \"0.2690329832099944\": {\"frequency\": 1, \"value\": 0.2690329832099944}, \"0.08326970157299575\": {\"frequency\": 1, \"value\": 0.08326970157299575}, \"0.5801509012186188\": {\"frequency\": 1, \"value\": 0.5801509012186188}, \"0.10967703683035715\": {\"frequency\": 1, \"value\": 0.10967703683035715}, \"0.05108413480675079\": {\"frequency\": 1, \"value\": 0.05108413480675079}, \"0.4478575305114586\": {\"frequency\": 1, \"value\": 0.4478575305114586}, \"0.38875036056735895\": {\"frequency\": 1, \"value\": 0.38875036056735895}, \"0.5341811816939891\": {\"frequency\": 1, \"value\": 0.5341811816939891}, \"0.46621917918988853\": {\"frequency\": 1, \"value\": 0.46621917918988853}, \"0.48941165756564053\": {\"frequency\": 1, \"value\": 0.48941165756564053}, \"0.22399874174425083\": {\"frequency\": 1, \"value\": 0.22399874174425083}, \"0.19800181843745024\": {\"frequency\": 1, \"value\": 0.19800181843745024}, \"0.5728559674615002\": {\"frequency\": 1, \"value\": 0.5728559674615002}, \"0.34343980690150616\": {\"frequency\": 1, \"value\": 0.34343980690150616}, \"0.3517186724950397\": {\"frequency\": 1, \"value\": 0.3517186724950397}, \"0.18190498925757936\": {\"frequency\": 1, \"value\": 0.18190498925757936}, \"0.7548918447381423\": {\"frequency\": 1, \"value\": 0.7548918447381423}, \"0.35522427781235855\": {\"frequency\": 1, \"value\": 0.35522427781235855}, \"0.11839423502526458\": {\"frequency\": 1, \"value\": 0.11839423502526458}, \"0.5597620749910707\": {\"frequency\": 1, \"value\": 0.5597620749910707}, \"0.4247697963913424\": {\"frequency\": 1, \"value\": 0.4247697963913424}, \"0.46499720982142856\": {\"frequency\": 1, \"value\": 0.46499720982142856}, \"0.43523862596027546\": {\"frequency\": 1, \"value\": 0.43523862596027546}, \"0.014841499006458023\": {\"frequency\": 1, \"value\": 0.014841499006458023}, \"0.44858043569777406\": {\"frequency\": 1, \"value\": 0.44858043569777406}, \"0.5531651674937965\": {\"frequency\": 1, \"value\": 0.5531651674937965}, \"0.21495125434674614\": {\"frequency\": 1, \"value\": 0.21495125434674614}, \"0.40359868893678164\": {\"frequency\": 1, \"value\": 0.40359868893678164}, \"0.4464880619721808\": {\"frequency\": 1, \"value\": 0.4464880619721808}, \"0.4020361699015192\": {\"frequency\": 1, \"value\": 0.4020361699015192}, \"0.33535138785394936\": {\"frequency\": 1, \"value\": 0.33535138785394936}, \"0.5333328780594405\": {\"frequency\": 1, \"value\": 0.5333328780594405}, \"0.18926035457029308\": {\"frequency\": 1, \"value\": 0.18926035457029308}, \"0.27509252359662195\": {\"frequency\": 1, \"value\": 0.27509252359662195}, \"0.39810699205166417\": {\"frequency\": 1, \"value\": 0.39810699205166417}, \"0.09735483606067845\": {\"frequency\": 1, \"value\": 0.09735483606067845}, \"0.14755364371966262\": {\"frequency\": 1, \"value\": 0.14755364371966262}, \"0.5190471063989863\": {\"frequency\": 1, \"value\": 0.5190471063989863}, \"0.9524234190826288\": {\"frequency\": 1, \"value\": 0.9524234190826288}, \"0.3874607517092747\": {\"frequency\": 1, \"value\": 0.3874607517092747}, \"0.5691100037257825\": {\"frequency\": 1, \"value\": 0.5691100037257825}, \"0.2622770508353789\": {\"frequency\": 1, \"value\": 0.2622770508353789}, \"0.12942280575895507\": {\"frequency\": 1, \"value\": 0.12942280575895507}, \"0.46518939733030956\": {\"frequency\": 1, \"value\": 0.46518939733030956}, \"0.3012819739382239\": {\"frequency\": 1, \"value\": 0.3012819739382239}, \"0.3286563614744352\": {\"frequency\": 1, \"value\": 0.3286563614744352}, \"0.2487866512345679\": {\"frequency\": 1, \"value\": 0.2487866512345679}, \"0.3357625470669838\": {\"frequency\": 1, \"value\": 0.3357625470669838}, \"0.6220007958036068\": {\"frequency\": 1, \"value\": 0.6220007958036068}, \"0.08214141113222943\": {\"frequency\": 1, \"value\": 0.08214141113222943}, \"0.498569416492745\": {\"frequency\": 1, \"value\": 0.498569416492745}, \"0.47949879174750554\": {\"frequency\": 1, \"value\": 0.47949879174750554}, \"0.46411530271066354\": {\"frequency\": 1, \"value\": 0.46411530271066354}, \"0.07387815139095877\": {\"frequency\": 1, \"value\": 0.07387815139095877}, \"0.27451174358417396\": {\"frequency\": 1, \"value\": 0.27451174358417396}, \"0.08203451375626641\": {\"frequency\": 1, \"value\": 0.08203451375626641}, \"0.4169499669659118\": {\"frequency\": 1, \"value\": 0.4169499669659118}, \"0.3340992237615823\": {\"frequency\": 1, \"value\": 0.3340992237615823}, \"0.28644995955699354\": {\"frequency\": 1, \"value\": 0.28644995955699354}, \"0.3485735142934998\": {\"frequency\": 1, \"value\": 0.3485735142934998}, \"0.4385880741724357\": {\"frequency\": 1, \"value\": 0.4385880741724357}, \"0.42277865747640336\": {\"frequency\": 1, \"value\": 0.42277865747640336}, \"0.2887985027763088\": {\"frequency\": 1, \"value\": 0.2887985027763088}, \"0.17076889822134386\": {\"frequency\": 1, \"value\": 0.17076889822134386}, \"0.62019358544461\": {\"frequency\": 1, \"value\": 0.62019358544461}, \"0.47105579835531525\": {\"frequency\": 1, \"value\": 0.47105579835531525}, \"0.29028362518628914\": {\"frequency\": 1, \"value\": 0.29028362518628914}, \"0.48649018316462\": {\"frequency\": 1, \"value\": 0.48649018316462}, \"0.13672116068940118\": {\"frequency\": 1, \"value\": 0.13672116068940118}, \"0.3199133365712267\": {\"frequency\": 1, \"value\": 0.3199133365712267}, \"0.551389324784792\": {\"frequency\": 1, \"value\": 0.551389324784792}, \"0.590314595752608\": {\"frequency\": 1, \"value\": 0.590314595752608}, \"0.10049464676073132\": {\"frequency\": 1, \"value\": 0.10049464676073132}, \"0.3848432849702381\": {\"frequency\": 1, \"value\": 0.3848432849702381}, \"0.5798853545702931\": {\"frequency\": 1, \"value\": 0.5798853545702931}, \"0.41740196535022356\": {\"frequency\": 1, \"value\": 0.41740196535022356}, \"0.5424760509672619\": {\"frequency\": 1, \"value\": 0.5424760509672619}, \"0.36923652564940207\": {\"frequency\": 1, \"value\": 0.36923652564940207}, \"0.4852400393254534\": {\"frequency\": 1, \"value\": 0.4852400393254534}, \"0.1352187083300163\": {\"frequency\": 1, \"value\": 0.1352187083300163}, \"0.33476954483358173\": {\"frequency\": 1, \"value\": 0.33476954483358173}, \"0.3599597791366477\": {\"frequency\": 1, \"value\": 0.3599597791366477}, \"0.605277415548932\": {\"frequency\": 1, \"value\": 0.605277415548932}, \"0.16046556756085445\": {\"frequency\": 1, \"value\": 0.16046556756085445}, \"0.1254648858926305\": {\"frequency\": 1, \"value\": 0.1254648858926305}, \"0.3204255691093327\": {\"frequency\": 1, \"value\": 0.3204255691093327}, \"0.7610064731520917\": {\"frequency\": 1, \"value\": 0.7610064731520917}, \"0.28914910515264897\": {\"frequency\": 1, \"value\": 0.28914910515264897}, \"0.5473362208147045\": {\"frequency\": 1, \"value\": 0.5473362208147045}, \"0.29545083664060634\": {\"frequency\": 1, \"value\": 0.29545083664060634}, \"0.4396250914251881\": {\"frequency\": 1, \"value\": 0.4396250914251881}, \"0.35515112704918034\": {\"frequency\": 1, \"value\": 0.35515112704918034}, \"0.18938707278984643\": {\"frequency\": 1, \"value\": 0.18938707278984643}, \"0.5148071676587301\": {\"frequency\": 1, \"value\": 0.5148071676587301}, \"0.29337245404868356\": {\"frequency\": 1, \"value\": 0.29337245404868356}, \"0.38953513102334825\": {\"frequency\": 1, \"value\": 0.38953513102334825}, \"0.5839545539387286\": {\"frequency\": 1, \"value\": 0.5839545539387286}, \"0.4064572482638889\": {\"frequency\": 1, \"value\": 0.4064572482638889}, \"0.08181206597222222\": {\"frequency\": 1, \"value\": 0.08181206597222222}, \"0.3268156753992214\": {\"frequency\": 1, \"value\": 0.3268156753992214}, \"0.40170890468893045\": {\"frequency\": 1, \"value\": 0.40170890468893045}, \"0.5271303468186522\": {\"frequency\": 1, \"value\": 0.5271303468186522}, \"0.43587130791457784\": {\"frequency\": 1, \"value\": 0.43587130791457784}, \"0.39442939814814815\": {\"frequency\": 1, \"value\": 0.39442939814814815}, \"0.5785583367332723\": {\"frequency\": 1, \"value\": 0.5785583367332723}, \"0.3723189061260904\": {\"frequency\": 1, \"value\": 0.3723189061260904}, \"0.4945824807787698\": {\"frequency\": 1, \"value\": 0.4945824807787698}, \"0.8820926086178086\": {\"frequency\": 1, \"value\": 0.8820926086178086}, \"0.4433549118231495\": {\"frequency\": 1, \"value\": 0.4433549118231495}, \"0.4015214223710317\": {\"frequency\": 1, \"value\": 0.4015214223710317}, \"0.37163491187236414\": {\"frequency\": 1, \"value\": 0.37163491187236414}, \"0.37904162009438647\": {\"frequency\": 1, \"value\": 0.37904162009438647}, \"0.2144307452008796\": {\"frequency\": 1, \"value\": 0.2144307452008796}, \"0.3022797368198464\": {\"frequency\": 1, \"value\": 0.3022797368198464}, \"0.36791356184798807\": {\"frequency\": 1, \"value\": 0.36791356184798807}, \"0.48100886485280997\": {\"frequency\": 1, \"value\": 0.48100886485280997}, \"0.27714271299056137\": {\"frequency\": 1, \"value\": 0.27714271299056137}, \"0.5138315581091032\": {\"frequency\": 1, \"value\": 0.5138315581091032}, \"0.5902446709026952\": {\"frequency\": 1, \"value\": 0.5902446709026952}, \"0.7921570747455848\": {\"frequency\": 1, \"value\": 0.7921570747455848}, \"0.14990881609405457\": {\"frequency\": 1, \"value\": 0.14990881609405457}, \"0.24777982178340785\": {\"frequency\": 1, \"value\": 0.24777982178340785}, \"0.21577039930555555\": {\"frequency\": 1, \"value\": 0.21577039930555555}, \"0.25464208101098856\": {\"frequency\": 1, \"value\": 0.25464208101098856}, \"0.3604455143195478\": {\"frequency\": 1, \"value\": 0.3604455143195478}, \"0.2305722191220238\": {\"frequency\": 1, \"value\": 0.2305722191220238}, \"0.33945746527777776\": {\"frequency\": 1, \"value\": 0.33945746527777776}, \"0.40615719325122956\": {\"frequency\": 1, \"value\": 0.40615719325122956}, \"0.6354505091902632\": {\"frequency\": 1, \"value\": 0.6354505091902632}, \"0.5351175342315806\": {\"frequency\": 1, \"value\": 0.5351175342315806}, \"0.4011773606097271\": {\"frequency\": 1, \"value\": 0.4011773606097271}, \"0.15947474660818015\": {\"frequency\": 1, \"value\": 0.15947474660818015}, \"0.5915926943616493\": {\"frequency\": 1, \"value\": 0.5915926943616493}, \"0.6168796125118793\": {\"frequency\": 1, \"value\": 0.6168796125118793}, \"0.3096056735412775\": {\"frequency\": 1, \"value\": 0.3096056735412775}, \"0.776707084402602\": {\"frequency\": 1, \"value\": 0.776707084402602}, \"0.6296233258928572\": {\"frequency\": 1, \"value\": 0.6296233258928572}, \"0.22119030986090413\": {\"frequency\": 1, \"value\": 0.22119030986090413}, \"0.5410763362982102\": {\"frequency\": 1, \"value\": 0.5410763362982102}, \"0.14528067560854446\": {\"frequency\": 1, \"value\": 0.14528067560854446}, \"0.479623275566998\": {\"frequency\": 1, \"value\": 0.479623275566998}, \"0.5342680389965226\": {\"frequency\": 1, \"value\": 0.5342680389965226}, \"0.31746502520101105\": {\"frequency\": 1, \"value\": 0.31746502520101105}, \"0.49669190084782866\": {\"frequency\": 1, \"value\": 0.49669190084782866}, \"0.4938855952029157\": {\"frequency\": 1, \"value\": 0.4938855952029157}, \"0.11159256456519145\": {\"frequency\": 1, \"value\": 0.11159256456519145}, \"0.4876485655737705\": {\"frequency\": 1, \"value\": 0.4876485655737705}, \"0.3269757823400439\": {\"frequency\": 1, \"value\": 0.3269757823400439}, \"0.4990576053317677\": {\"frequency\": 1, \"value\": 0.4990576053317677}, \"0.5340506240685544\": {\"frequency\": 1, \"value\": 0.5340506240685544}, \"0.351550294426422\": {\"frequency\": 1, \"value\": 0.351550294426422}, \"0.35793953440844234\": {\"frequency\": 1, \"value\": 0.35793953440844234}, \"0.5512787536283749\": {\"frequency\": 1, \"value\": 0.5512787536283749}, \"0.28600665983606555\": {\"frequency\": 1, \"value\": 0.28600665983606555}, \"0.5433327404171476\": {\"frequency\": 1, \"value\": 0.5433327404171476}, \"0.35154469209558825\": {\"frequency\": 1, \"value\": 0.35154469209558825}, \"0.5166853731992052\": {\"frequency\": 1, \"value\": 0.5166853731992052}, \"0.5566894094634873\": {\"frequency\": 1, \"value\": 0.5566894094634873}, \"0.5278660531519536\": {\"frequency\": 1, \"value\": 0.5278660531519536}, \"0.4012795328235083\": {\"frequency\": 1, \"value\": 0.4012795328235083}, \"0.03954077190224097\": {\"frequency\": 1, \"value\": 0.03954077190224097}, \"0.5332381031092753\": {\"frequency\": 1, \"value\": 0.5332381031092753}, \"0.7682499192666932\": {\"frequency\": 1, \"value\": 0.7682499192666932}, \"0.8090743885869566\": {\"frequency\": 1, \"value\": 0.8090743885869566}, \"0.378331508019008\": {\"frequency\": 1, \"value\": 0.378331508019008}, \"0.5698368314676617\": {\"frequency\": 1, \"value\": 0.5698368314676617}, \"0.15944032175041775\": {\"frequency\": 1, \"value\": 0.15944032175041775}, \"0.07418464781746031\": {\"frequency\": 1, \"value\": 0.07418464781746031}, \"0.29929124751614505\": {\"frequency\": 1, \"value\": 0.29929124751614505}, \"0.353353825136612\": {\"frequency\": 1, \"value\": 0.353353825136612}, \"0.3015509517609127\": {\"frequency\": 1, \"value\": 0.3015509517609127}, \"0.34587260802469133\": {\"frequency\": 1, \"value\": 0.34587260802469133}, \"0.23408345752608048\": {\"frequency\": 1, \"value\": 0.23408345752608048}, \"0.15834121297346224\": {\"frequency\": 1, \"value\": 0.15834121297346224}, \"0.5150424808941158\": {\"frequency\": 1, \"value\": 0.5150424808941158}, \"0.8938259182717102\": {\"frequency\": 1, \"value\": 0.8938259182717102}, \"0.3415824187748016\": {\"frequency\": 1, \"value\": 0.3415824187748016}, \"0.5100929986964137\": {\"frequency\": 1, \"value\": 0.5100929986964137}, \"0.36649402950187\": {\"frequency\": 1, \"value\": 0.36649402950187}, \"0.5033840535813796\": {\"frequency\": 1, \"value\": 0.5033840535813796}, \"0.7676522136090435\": {\"frequency\": 1, \"value\": 0.7676522136090435}, \"0.7805563813537396\": {\"frequency\": 1, \"value\": 0.7805563813537396}, \"0.5868756188303547\": {\"frequency\": 1, \"value\": 0.5868756188303547}, \"0.633164586438152\": {\"frequency\": 1, \"value\": 0.633164586438152}, \"0.22659622190872192\": {\"frequency\": 1, \"value\": 0.22659622190872192}, \"0.28233108040900773\": {\"frequency\": 1, \"value\": 0.28233108040900773}, \"0.777993014764052\": {\"frequency\": 1, \"value\": 0.777993014764052}, \"0.30653652778330615\": {\"frequency\": 1, \"value\": 0.30653652778330615}, \"0.4676571814456036\": {\"frequency\": 1, \"value\": 0.4676571814456036}, \"0.36183664610176314\": {\"frequency\": 1, \"value\": 0.36183664610176314}, \"0.4708690387481371\": {\"frequency\": 1, \"value\": 0.4708690387481371}, \"0.3042990909383926\": {\"frequency\": 1, \"value\": 0.3042990909383926}, \"0.41229305179577186\": {\"frequency\": 1, \"value\": 0.41229305179577186}, \"0.48025498323397914\": {\"frequency\": 1, \"value\": 0.48025498323397914}, \"0.38903267797436614\": {\"frequency\": 1, \"value\": 0.38903267797436614}, \"0.4371663096125186\": {\"frequency\": 1, \"value\": 0.4371663096125186}, \"0.28015935037117384\": {\"frequency\": 1, \"value\": 0.28015935037117384}, \"0.33177349680878476\": {\"frequency\": 1, \"value\": 0.33177349680878476}, \"0.3137656017138599\": {\"frequency\": 1, \"value\": 0.3137656017138599}, \"0.34440479438628463\": {\"frequency\": 1, \"value\": 0.34440479438628463}, \"0.6238483596600825\": {\"frequency\": 1, \"value\": 0.6238483596600825}, \"0.24992405287281222\": {\"frequency\": 1, \"value\": 0.24992405287281222}, \"0.3330054644808743\": {\"frequency\": 1, \"value\": 0.3330054644808743}, \"0.4065520535663762\": {\"frequency\": 1, \"value\": 0.4065520535663762}, \"0.6184746802036761\": {\"frequency\": 1, \"value\": 0.6184746802036761}, \"0.7012278891509434\": {\"frequency\": 1, \"value\": 0.7012278891509434}, \"0.7620675028858018\": {\"frequency\": 1, \"value\": 0.7620675028858018}, \"0.21626280737704917\": {\"frequency\": 1, \"value\": 0.21626280737704917}, \"0.2188612008385056\": {\"frequency\": 1, \"value\": 0.2188612008385056}, \"0.37696312313988095\": {\"frequency\": 1, \"value\": 0.37696312313988095}, \"0.3387881324404762\": {\"frequency\": 1, \"value\": 0.3387881324404762}, \"0.23927471032739336\": {\"frequency\": 1, \"value\": 0.23927471032739336}, \"0.19389479423031122\": {\"frequency\": 1, \"value\": 0.19389479423031122}, \"0.4864042782442369\": {\"frequency\": 1, \"value\": 0.4864042782442369}, \"0.6156715988586157\": {\"frequency\": 1, \"value\": 0.6156715988586157}, \"0.49664014960060254\": {\"frequency\": 1, \"value\": 0.49664014960060254}, \"0.4875989695233548\": {\"frequency\": 1, \"value\": 0.4875989695233548}, \"0.6099478857750099\": {\"frequency\": 1, \"value\": 0.6099478857750099}, \"0.4721029565786331\": {\"frequency\": 1, \"value\": 0.4721029565786331}, \"0.3469434811079743\": {\"frequency\": 1, \"value\": 0.3469434811079743}, \"0.47962520867284075\": {\"frequency\": 1, \"value\": 0.47962520867284075}, \"0.22895546626589824\": {\"frequency\": 1, \"value\": 0.22895546626589824}, \"0.5623581097863884\": {\"frequency\": 1, \"value\": 0.5623581097863884}, \"0.14488291015625\": {\"frequency\": 1, \"value\": 0.14488291015625}, \"0.9190251543209876\": {\"frequency\": 1, \"value\": 0.9190251543209876}, \"0.34701015980887306\": {\"frequency\": 1, \"value\": 0.34701015980887306}, \"0.2918220623146139\": {\"frequency\": 1, \"value\": 0.2918220623146139}, \"0.27189968668329767\": {\"frequency\": 1, \"value\": 0.27189968668329767}, \"0.17581724478067906\": {\"frequency\": 1, \"value\": 0.17581724478067906}, \"0.2970780907755874\": {\"frequency\": 1, \"value\": 0.2970780907755874}, \"0.4282437439049875\": {\"frequency\": 1, \"value\": 0.4282437439049875}, \"0.3453620550463737\": {\"frequency\": 1, \"value\": 0.3453620550463737}, \"0.5775155779068846\": {\"frequency\": 1, \"value\": 0.5775155779068846}, \"0.22200041421207659\": {\"frequency\": 1, \"value\": 0.22200041421207659}, \"0.32387958829365077\": {\"frequency\": 1, \"value\": 0.32387958829365077}, \"0.3214872968389433\": {\"frequency\": 1, \"value\": 0.3214872968389433}, \"0.2334923093469006\": {\"frequency\": 1, \"value\": 0.2334923093469006}, \"0.5203871519538048\": {\"frequency\": 1, \"value\": 0.5203871519538048}, \"0.5395252821180555\": {\"frequency\": 1, \"value\": 0.5395252821180555}, \"0.15377258755588674\": {\"frequency\": 1, \"value\": 0.15377258755588674}, \"0.21445565940572384\": {\"frequency\": 1, \"value\": 0.21445565940572384}, \"0.40684105440206736\": {\"frequency\": 1, \"value\": 0.40684105440206736}, \"0.35723148921779263\": {\"frequency\": 1, \"value\": 0.35723148921779263}, \"0.3101859010183805\": {\"frequency\": 1, \"value\": 0.3101859010183805}, \"0.2041533935668157\": {\"frequency\": 1, \"value\": 0.2041533935668157}, \"0.254119388640873\": {\"frequency\": 1, \"value\": 0.254119388640873}, \"0.34999262605563836\": {\"frequency\": 1, \"value\": 0.34999262605563836}, \"0.06893965463789682\": {\"frequency\": 1, \"value\": 0.06893965463789682}, \"0.3343239969135802\": {\"frequency\": 1, \"value\": 0.3343239969135802}, \"0.3194052449448712\": {\"frequency\": 1, \"value\": 0.3194052449448712}, \"0.7337775142609126\": {\"frequency\": 1, \"value\": 0.7337775142609126}, \"0.3557519870839543\": {\"frequency\": 1, \"value\": 0.3557519870839543}, \"0.3555542663301428\": {\"frequency\": 1, \"value\": 0.3555542663301428}, \"0.21992790517824462\": {\"frequency\": 1, \"value\": 0.21992790517824462}, \"0.3802078927924611\": {\"frequency\": 1, \"value\": 0.3802078927924611}, \"0.62914390884349\": {\"frequency\": 1, \"value\": 0.62914390884349}, \"0.6004103818199921\": {\"frequency\": 1, \"value\": 0.6004103818199921}, \"0.25854149148688454\": {\"frequency\": 1, \"value\": 0.25854149148688454}, \"0.3697523030440234\": {\"frequency\": 1, \"value\": 0.3697523030440234}, \"0.36942910587086397\": {\"frequency\": 1, \"value\": 0.36942910587086397}, \"0.4871591315003961\": {\"frequency\": 1, \"value\": 0.4871591315003961}, \"0.245456681179831\": {\"frequency\": 1, \"value\": 0.245456681179831}, \"0.9231891618847992\": {\"frequency\": 1, \"value\": 0.9231891618847992}, \"0.26888086810730255\": {\"frequency\": 1, \"value\": 0.26888086810730255}, \"0.095465948198913\": {\"frequency\": 1, \"value\": 0.095465948198913}}, \"mean\": 0.3887497418265544}, \"image\": {\"progress\": 1.0, \"num_undefined\": 0, \"complete\": true, \"samples\": [{\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUTEhIVFhUXFRUVFxUYGBcXGBcVFxUXFhUVFxUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGxAQGy0lHyUtLS0tLS0tLS8tLS0tLS0tLS0tLS01LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAMIBAwMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAACAwABBAUGB//EAEIQAAEDAQMJBQYDBgYDAQAAAAEAAhEDBCExEkFRYXGBkaGxBRMiwdEGMkJS4fAUYpIVI0NygqIzU7LC4vEWY9KD/8QAGgEAAwEBAQEAAAAAAAAAAAAAAQIDAAQFBv/EADERAAICAAUBBgUEAgMAAAAAAAABAhEDEiExQVEEEzJhkaEicYGx8BRCUtHB8TNi4f/aAAwDAQACEQMRAD8A+WtCa0IGobQ+BAxNwXoXRKi7N4nF+bAea2BJotAAGhMTR2FaGBWlogUQUHKMOSwVZWsbKE8pSNDCFhyBNTA1LBTKZWsNJbjYQkJrURYtZkjOnMRBmpMYxCzNLcXkqwE3IVQiLVsoBUWo1SBRA5CIMVtREpbGrQW5iWaacSrDUbAkZ+6VFi0OCAhYF0Zy1UWLQWKd2mQjaMwYpkrQWoCERDO5iU5q3ZCRWuWMZu6UULiosAyMKUzxPJzNuG1XVfkgnhtTbNTyQBx2qb3orHVDWhEqhGAjYyiU0IslW0I2haw5UwA1HkpjWoslaw1QDQpCbkImLAW5myUTAtBp50IELWar1CYU1gQNIR94iK72LDU0BJY69aW3oNjRjZQCFwTwlOS5indi1RCZCEhbMbu6BCpzkRCEhCw5UCCiVAKwEbFohKGURYhyUcyEeG+QXOVF6hYgLUykI4MmWrCoU0bWgYpiaRYKTVCa6oFlq1FjA92rSTVUWMc8tyngZm3nbmW1oSLFT8MnFxk+S1hoULOqEQAjDVGhG0I2NlKDUYCIBSFrCo0HlKByAhWGo2khXBtjmuVghIyUbaR0oZ0FYcuAstAXoxQRNpQg8RDxwWLD9Skp2QUbaaTvB+5AYEymSmMorRTooKbHeEhQOlWVr7kQgNJDPZlh0ZJKkLSaCNtBbMbIZA1AWrY9mhUGJswrw7MgarATzSQFG7Fy0LKoNWju0mo2FsyNle4slUVL0L6iZEmq3IUFQq8UBKaxEugsuOhKeJzBOlRy1mysxkHQFFpuVI2gZZdTMwIw3UiAVsEKOY6u7oU1plaKbVTU+mFpTDh4VMFoRhqjL0xqRyKKBQpIe7TZUy0LDlsAU0cFECiCFjKJGjTemh7QghQUydBQtcmqXAfeAqslHToLa2wmJQeIhlhS3ZlpTmW6lQJVUaELW2q0CJC1t7G+GO5mfSICQV0CQUkWWSkztbj5E9ULpUJFyayzkYnitlKwEXynVKF0kjiErct+B45Nr1OXUs4zEFUbMuiyxggkEbCRPCUirRgTKVYnFjPC0s59VoAuWYCVqeG4JJphdMZVucs4t7APhC+jnT2ADC9DUcSmzIl3ckYqzVmjWt1RupJNPQE+dIm8KT3EhyWWpxpqBgWzm7t8GbJ2qi1aS3ahICZTQjhIz5CifKpHMhMkjK2kAiLIz9FTbMT8Tt4HqoaTc7xdmvXP9fY7r02r6hNBmMU5tIi+9LZSbmJ2wUxrBp5Qlb/KHivL3IKZk4wjLdCOnT0dD6JjWJHMosMU2mUbKZ0J2TqRtYdCV4gyw0KZSH3cnBgRCmnMbqQzdRsvQUykNMLZZrOJvhAAtTbOBEuAJzSJQckMovcIPANzRxhOa8mb41FZqdINnxTObP8AVG3vpukDXPMrZI8Cd5JaPXyRdWnBiEttATM3rVTYSJcBxPoibQ3rPEy7MZYedaoTZ6ZypW2pTLrxkzowQspE4CeJXQbZZAxB2KOJjN6lsLs6imkZGUjEHHaiZZ3tNwHI/wDS2UqJNzjxITmWPG87PF5BRl2hpUyvcQuzMLO7Ezy6grFabHfedkei67WsNz8NBnNtAlCbNTOmNWSehWjOjSV7nAPYusLIOyqgN1y9iykBg+kQMQXCY/lnFHSDTjkxMe9k47WqyxMTn3IOOFx7Hj3dkuAk3lZKtmcPhIXtK1nI+GP6soHlftXJt5nHy8lTDxW3QmJhqrPNvs4GJSi0Le+y5ToBvVVOy8nErqvzOL5I5b2jT1Wdy6L7MBr3o6dFmhMqEbbOZkom0ZXRNMfKobM4xAP0RtAabOZ+HVrousR0c1SOZCZWcJoac46I6ViBN581tGS34J23qzVAuFPhHopOcv2/4LKEN5tejKa0AXJVRjybsPvStVCq4H/Ddrw9FoLNJH3rUMzi9TqSU46f0Z6VF0CTzHknGg6bt+CZQZfoGe7HeU8MvxHD1UZSdnRGKoR3OlE2lsWgMH3CY1uxI5lFFMzspk4D73JoonQtVP7+wmZAObf9UucfIYcmMUYoh188CtzbOBfd96SDemspTmG2IPNK8dx1Q36dT0ZkpWRuvbJWqjZvleRpzHinijAwH3sS2ZfyA7DelfaJPkK7Nhxe3ov6NFAHDJa4aYM7yMUwgfL15pTbRk3lrm7buoRNc6peKhjRAJ4qLm7t6fnkVUVHY1WaoIu5EeaaXtJvcAdo9FjNkn4snXgesclTezW5q88+iTNhvd+wkm+EdKmwTIqAnRj5gq3tIwLduQIG7HmueyysNwfJGMZSdSqNaQ0vf/Kcs8iFtOLf0Fae7NnfEjEEaR4dxDplV3jYxjgOYhYrQwTi7geUhKfSGPinP4SCd5TxNkibnWoCDcf5SQd6VaO1muwpiRiZEn0QU7CXCRA2gDzQfhWzDntBHHkVeLoRwj1Atfaz8kAMiNc8QuJWq1HXlw4A8oXdo9luqGKYe/WGujiSuxZfYaIdWrBoxLQTwkmFeDbei9jmxpYeGtZe54+yNd8LSTsA6LtWTsGvUBL2ZI13HmvY0nWCjAa+i0jO0if1DFYbX7YWOm64Pd+ZoBHN08l1xw3yzzZ9rX7Is8paPZiqDdSJA+I4LPW7Kqs96nGyF6er7dUB7lN7hrhvU+Sz1PbIVLhQjXl/QJ6S5JrFnJ+A8rVo1BhSOox0uWGvZ65xEbTHJelt3aAqXGG7fVcOs5k++3iELXUt8XSjn/s2roHFWtJrUvmKia/MGvT89TiPLjiAjp0Jvkg719dfZJ96llTjOTdsELNV7Gsp96hwY8/6Qpd8mQUmt7PmDbNrJ3ou7jTxJ6r6TZ/Z2xg+5ud6EArPafZCg93gqlmhoiOam5JnRHtFcHgaVAe849fJaKT2HA/e9emtPsPUbeHl4/Kwk8Mpcev2ZUpnJd4cSMsFsxnGUFKSUuTrw+0R8hUgf9eafTbOcffNJoMcTAGUdUHhAWsUqkx3RJ0EG/dnUJQZ2QxolNiYnr5haWsCS9tVuNFjSNLSN16dQc4iS0ac133tUpQdf+l4YsW9vYaynfdyAT203n4btOVJ6Qsf4kjGlPGPqns7UYMzhsAx4woywcThWF9ph1o0Ch+Xm7yPkm0KOYDmkWbtKnMxUnHNOwX+S1HtRsgEln89Nx5hy554eKtKYjx09UPp2Fx0t1iD5KqrKTbnVRIxGUJ4BwhF+06IxeXH8oePols7Yoi9rKhPzOIk6pJMJYQxH+1/b7kXjMz0q9FwJDXkDG+/fJvG9ONagIuaNEg8hCjO3W5qIB0g47blnt/ahIgUg0nPeDyhX7qbdZWvqGM29zW+o1umc0BxMcFqdQYWzlumBdGH6jC8xZKxyr3RtvW2paqQM4nTeEZYOR1uP4laZuGQJywSNbg0f2kxwV2PtGjSJcLOC6bnGq6BscWQsP48OP36KVADfceAPE4p4YkoboMsLOtW/X+jp/8AlVXKJbSpmBcDL4zTlBwGcZlzbV27VdJLmNcRJ/dU9kS4fcIQ2m73jdoyjdumArFGiPdJ4TzVP1T2afoSXZIRf+zC/tO1OuNV0ajA3ZMRuXPtD3vvLnHSTJ54rumtSvABJ1egWV9pb7opu33eSrHtc3+0D7JhI5jKbSL5nT5QipG+I68VpfbQ0QWCfLbPkstS1iZa27XhyVFOct17gyYcNn7Dm0b74G1uPVXUoRhIOqQsj7aTFw6prLa+PdG8gcAUso4m48Z4L0F1KDY8Uk6z5rO5jZROqVHFR1l0v/tJVFJx8TJNKXhiBDNPJRWGDOTwj/aVE2bzFyvojezta2j46v6D6J7O16/xufrmmD1XgKvt284GqNjsnoUt3tq44urHa7/krd23ukeR3kFs2fTbP2o5xA7wNOujP+mV022uk4BtVwdqbSqt5L44fatpxFTfB80I9qGDBr+Xqg+z3yFY8eh90oWuzNF2WIu8IqtHKFdu7Xszm5L5cMQCHdDiviVP20LcDWGx0dHJtX24LxkvfVI/Nf8A7lL9LO/EOsfD6H0+q6wFw/ckzjLgwDgt9XtYMbNGuWZg11Vj27g83L5GPaakR72GbJIPIXqP9pqN3j4MPOGpn2Zvkbv4Vqj6x+3K7/C6tZHTpqPbxyCAuXaqAkudXswPytdUfvGS13VfOR7UUfnd+l3on0faOk6f3kR80jhOO5L+ma5GjjxW2h7Y12i4OBGeA7/c0IhaKfy3659V41vb1E/xWaMY+9qY3t6gf47d5Ql2ZHXDtjXKPX07VSBnIv1T6ro0rW1wvO4sBjZIJXhqfbFPNWYdj2+q02ft2nmr0/1t9Vz4nZXw2dEO0Qluj29lslFxuLrtoA3ZK6bez2Eg96RdENDAdxJ8l4al2sMe/pxrqs6Fy61i9oWMGV3tIDCRUp8LnY6l5+PhY3ErHlBNfC6PR2vsBpaAH1LpgOflcAAfJY7P2HF4FZ2xtNn+snoEyh7YUMmTXpAYSajBftla3+1llAE2qgP/ANaZ645lxd72mKytM5W8aGlWcPtLsyqXQLM9puv9+dpYA1ZR7P1/8py9H/5ZZcku/FU4094yOqqt7Q2aJNopZjJe2NM+8FWPa+0RVKP3GjiT/j9zzrexao+AnePVEbFUGNI7nN9V0qntPZXERWoE5oqMJOy8lCe2KTvdqNN2ZzT5qi7RjveP3OqE5VsjkmkM7SNo9YCE0yTcJ2ZA6Ero1LYDhUgbQ3rcs5cSf8UkH83/AMlXjiS5LGWrZYvMgfzMHQEyowtF5AMaYPPJWruyc8jTLo4qfhpHvsG0nzTd5a1NSM7q2iP0u9EBq3GGtB2GN2VhuWj8IALqlMjb9FBSaLi6dTQ7rctmjwZUYH2oj+E064PkFmNqdf4Y/p+q7ThRjB2+/lKUH2b5XbftyeOJH+IjT6nLFouvaMM8LM60OnBoG76rrvp2Yz43CfyzzIKwVqNmHxPO5o6wqQlFvZ+hOcpVuYHWh0+8OXootBFm/wDZwaor3H+L9COaXX3PlIRBqoQrBC9Y+dLDArDAiDVBr6LBorIGgKd2NA4I3btt/oqa05+iwaKFMaBwCvuxoCJyJsaUApC+6bo5K+5GgcEYbrHFER9grDZRYojQOCLuG6AiyhrRZOhrRuWCkB+HbnaFYs7dA2JjKeoEaifQJrGj5Ovmg2OomYWdvyBELM35E6odIARd9d6NB5oDpJACyNwyRO3kiFkb8o4+SrvRhgdBamwDdBGwEeqVoopLgzvsrR8M8eqv8IyPd6pwoCLhI0wCdkKxSGYCcflu1YIaG1MzrG35DwceaE2Bv+WfvaVpNOMCBvN2q6VYo3zn1EmeMJtBGr4Mj7AwfCBtxKX+FZ8oXVNBsSXgff3ck92B8RJzRyOCyaFlA5/4Nvyj71JjqRF3iwiJdhoicFpeeMah1KU+Pm5iTvTaE2qENbFwJGxxHKVTqIOIJ1kkprm33k7zPRU4j8x4+qakTbYg0W6OqJlPJ92RsJHQoi/RI1Xqy+cSefVakCyhUdf436/G6/nehc8/M8/1OPmqedZ4FBcM54LUgOTLg6XcT6q0N2l3BRGkC2CNnJQbOQTQ8T7ztRMJ1IzdIO3J8ylsZREsePlM7JRC0auUJ9SxuAyjd+n1Wcl32QhaY9NEyzoPRDUrHM2NpJv0pznSPdM7vRBGaFjNdBbLQ4HNwlGyrJv6Dop3f2CEYsx0HkFrRlGYeQYzHYCUDIGIP6QrbZgdA3+sIH2c6CULQzTWtDAWm4XcOiYGRjdtb9Uim57c5HA9Vbsk+8Tt+ysFNdP8DiCJ8WTsEeaGnRBH+INh8kunaAMMrZd6prba8e7cPzQeE4LahTi9yqZIwDuFx/tWhtR0T4t0fRJPaRxxdpLbuE47ldK1gmXztAb5CUNegycVopEFpM35X+noVpZaHR4coXfndPJMFqpkwC2NJZJnZEp9O0k+FryBnOQY3Nu6qbl5Fox/7fnqYm13TeHiM8O6SnPflGIqDWQWzuF6c0vvDazQMIcx7QdkuInaVodRqsF2Q7cW77seaVzQ6gzJUYwA+NwiCJJG3agYxpwJuzlrzO8XJptNRp/eNa3WHOPEAFLd2l/7G36G9ZBKZWCTiG6hAk33ZpDp2XXLAKQMl4IP5p3fFPJa3VmO96s0HYRzIWd7b5bUa44XvGGgTm1J42RnT2I+k2AQy7+rzlLDSbwCBqw6GFK/fXQ0XaIKVlVTMkaxAPIpkyUq6eww0wTAAJz4nmIVOs4FxLAdrugWUh+GGqAOaru6hzk7/qnIt+RpNKLg9vEzsMhD3A+I8XdICU2zvGadl/QqnXYwDovngVgGhtCmc7vvRclGiJOO8/8AFDTIOf8At81TjrHMdVg6B/hxpVIAHaeYURB9B1STd4AdcE8Ukhwvhv6R5rLSf4veI1ro2SgCJku2OAjaPqp2hlbAZajoG0DJPJG15OBIO37JT20WzgNoeSeAaUp7agJycpo/nHohaHVrcjbG8+9IGtC6yuBuI2wPRJcSP4gnceYCjXvxDzuW16mtdPc0Mouwyo3RzzIu7cNB/qnzWV9WqcSTtAPkqZaqjcHEbh6LZX1G7yK4ZoNmeT7rv1fRG6ykC8j+49Fn/G1DjVP3uRC0fnO/6BCpBjKH+zR+AbE3HbLeqB1JmbIGvH/chYC7Eztv8kbbI0/CdseVyF1uylX4YoECmP4nDJnhik1Krcz3cPOVodRpC4zO4dWqmtpDEu/t53BFNeYjjLbT1ZjdVGYE7Y8ks1HHPGxdT9yficOfIJgsVNwuqRt/7Rzx5sXuJvZr1OO3K0lPFV8RA3XHktwsUYknc8cwYVufTzMyv63dDetnjwZYM1u6OcWOOM9VbaZGDiN5C2vqU87Y2ud6eauaJzDnHNqObyN3WviXqShaKggd6QNcHmUNS2VSCO8fAx8fol2ilTH8N2o5jvASRQc7BgA2eZxSqtxm5L4b92RtVwuLnX7b+KI2k09F/wAzQbtN4KZZ7PEXls4SBedREcimOsWU4AvE6yeAknqi5IRQlRTKtUgQY1hjh0AC1Mtjh72USPl16QUFfsaoAPFO0j1lZ/2c9pm/aBI6rJxGkprhmlz6MiaU63OyQNZh16W9wi91GNAc8cQDG8ojYCR7x3t8iULOzHOMZbBtaPKUbQjUuhVWlTgGWbiXEby+CsxFP5x97ky09mFgkkcMVmFnb8zdhJB53JkxJJ3sMbTBzg/enJVmBiOf1SjZ/wCWNIk9EJYwZ+APmtYPoH3zdA4fVUplN0Hgosa/kYrPUh8i7HmtT7TOJc7UbhwkrHSHivuxWxtnBwe1LoBXwCXt+Qja67oox4nNwnqqfZzrO4oRQOgrB+Loa21WnMN7Y6InGLx3Q4g81nFmcM5G4hCZac29CkUztbo1/iHaafXqj8RvyGnWCsQftGw/VRkTceSGUZYj5/PU2EgY0XIA7O2jxkqMq1BgVDbT8TGO3eaFP8Y7lHl19EPp1XzJpjcDy8Vy0sGVj3o2jKHIyuWLYczQNk9ZQOtROInb9EHBsKx4rzOs6zs+Jw3ktPAgoDSpDO39f0XNFqd8zhsK0Uqj/wDMeNt44Ewg4NbsZY0JPSJvpWWmcHD9QPRG59Omb6pGxpJ4wVzhVJudXcOMcilmg74ZOsIZG93+fUfvqXwx/Pkmdj9p0g2CHEa2jpcs761lec42g/WOS5n4GofgO9WbG4XQOIRWHFbMSWPiy3hp8mddvZlI3tDo0ggpzOy2D4QRmNxK5Nnoll+XkHfJ4Are2tUgEFlQDSDI3EJJKXEisJQ5hRsbQjOTsmN+ZR4Mxku2kGByhIbb3jGmANZyeGUo7tBhuMzoDr+sKeWRZzhWgh9AZUlwOs3jhlJoJzOhup2TPETwRttDBeZb/MWg8jJRu7RZonb6lPb6E6itboxOouN7ZA0mDO1z3GeCSXPFziyNBm/p0Wir2g35OAYed6zttRJ8EtGYBgEbwFVWQk48MZZh8rG6zkiOTlKtSLsof0wI3B1/BZrS8uudVJGiPsJbKFxgADSY803zJN8JGsUs+UQDmu6OiVltNRrTdSE6XRxgXJRcALyTsMdQgdWGb75p6JOWgxlWfhaNd4HJVWePlG2Skmsc5ISw4aOKwmYd+K1DiVEidQUWNmYkYro2ZgjAYFUol4GjuHSumFK5gGNKiiHI3BnyyQZJTLOfEFaiMtjQ3QXaLQCIEXZrlnYVSi0PCHF8bCcUsuOkqKJkSkHSTSrUQe5SOwdI3IbRUN154qKJF4iz/wCM39msDh4gDdnE9U99Bobc1ov0BWoozfxHThpZEzHbRDRGfFOsVMZGA4KKJv2CL/l+hz7S4tvaSDquT+zrS8vaC9xGjKKpRUkvhIwbWIehtf8Ahk54xXIdgooufD2OzG8RyapvSziooutHly3GMeb7yrNQkXk8VFETXoUGjQjtOAUUQe4VszLKtwVqIkiigUUWMyKKKLBP/9k=\\n\", \"height\": 194, \"channels\": 3, \"width\": 259, \"type\": \"image\", \"id\": 4908206352}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxISEhUSExMVFhUVFRUVFxUYFxgYFxUWFhUXFxUVFRUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGxAQGy0lHyUtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAMIBAwMBEQACEQEDEQH/xAAcAAACAgMBAQAAAAAAAAAAAAADBAIFAAEGBwj/xABBEAABAwEFBQUFBQgCAgMBAAABAAIRAwQFEiExBkFRYXETIoGRoTJCUrHRFFOSwfAHFSNDYnKC4RaiM2Mkg/EX/8QAGgEAAwEBAQEAAAAAAAAAAAAAAQIDAAQFBv/EADQRAAICAQMDAQYEBwADAQAAAAABAhEDBBIhMUFREwUUIkJhoTJSgZEVI3Gx0eHwYsHxM//aAAwDAQACEQMRAD8A8Ta1wStploxlHksbHa2wcQBO5c2TG+x24skWuQbaTXb4zyy/NM5OINqkWFgsMHXLn8lz5cvBTHj5L6nd9Km0VHEPkZNnIdQuF5sk3tXB2LDCK3MrLQGEy0EctV0w3VUiE9nYgCiISBQMTBQCbBQCSCBiQQCbWMbCDCEalYTZQMCeU6FYAlOIzYKxjYcsYm0pWEJKATRcsYgXI0AwFYxMIGJhAYI0JbCTAQsJkLWYi4LWYgQjZiGFGwUU1azBhLXOEjUa+q7YzclaRKePY6bAWdrMQxDLfGRjlzVJuVcMSCjfI52DS44CMO6cjHylR3NL4upRxTfw9C0sV3squwtrNbp7W/jAC5smWUFbj+xaGHd0ZO9bsNEA9o140kbkuHOsjqqDlwSxq7KkvC6qOY3jWoxIFCghKbCRKVtIdJs2EDEwlYSYQCYsY2EDBGpWEm4IGF6hVEKwBKcQ2sY2FjBGJGEmgEg4ogIogJBAxMFAYI1KwoO0JGMgkIBNFYxEhYxEhExCEwDkn2nkvWUDilkFnViTKoopHO8jbCMtJ4oOCKRyvuSFoPFLsQ6yOxz7S6IkwpemrstvbVWQbVg6E+KLjYE0mPMtri0tIEdNOig8SUrRb1G41RptUnu7kXFLkCD0+amxhmzUS8wIHNxDR5kqcpKPUKi30GaljcJgtcBvaZnpvU1kQ7gyL7OW6/OR5rKaYNrRnZGJjJbcjUZgWs1EmtQsNGPCyAxWsVWJNi+JPQpvEtRjYctRibaiVoJLtEKNYN1RMkCzA9agEw5Cgk2pQjFIJGx0MsapNjomgE0iY0QsAg5EwNMajigwr2rPN2N9TZprWFwI9mjYnphaTAlk2VjFIYaApOyiDsZO5I3Q6QyKA4qe8psGKTGxqpybsooqgopU9zs0m6fg2yPkBKcmHY8hI0hk2FbUStBsJ2p4pdo1mByFGCNQYUResjMRrq8SMhZVJmLGNhAxNqDCbcUEjMgmATCVmCNSsIem1I2OkOUmKLY6QYBIMYiY0sYiUTA3FFABpjHJhy9ajkBuKZCtsgQmEaZEIirgkOqAyTsK1xStIdWbBchUQ/EbY53FZpBTYWnWSOIUy2sdWj75d4fmuTJHJ8p0w2fMx231qTiDTy/p3eCjijkXEimTY+YgGZp2ToKAlsNBWUSdyRyQyiTYErCkbqDJZGZXWgrogRkAJVCZorGNhYxKUAkHFFCs1KJqJByFGC0ykYyH7NTJUJsrFWWFmsj3GGtJI1gadeChKcY9WUjBslXstRphzXAnQRrOiEZxatMLg0RrUHNcWkZt1HDr5oqSatAcWuCLaLiYDTPRbckbay3s1xDCXVHhp3Dj9FzT1PNRR0RwLuZSuZmehzAEmRxJ+QQeokMsECxp7OUoEtceY08FJ6uVjejjPLfsZjRfSeqr6nm+mCdZGp1kYjxxAusnBOsgjxA/spTeohPRM+zHetvN6QRlnSuZRQGGUlNyKKIcWMuHd14KfqpdR/TvoCN2vG5P68WL6LB/ZH6QU3qRF9NhqNB3DRJKcRlBjdOnUmQouUCiUh4MfAULjZSmXV20qhgh2Y0kSB0C4s0orsXimW7KFM/+ZrDHAwfRc++S/DYzgn1N1zY2iRTiNJEj1WTzS7g2xXU4u+XMxS3eSV62n3VyceZLsVeJdVHOPXZdlWu4NpjEeE6DiQo5csMauQ8YOXQubbshUo03PqVGBzfczzzzzOmWei5oa6M5bUmV9B1ZzL3RlK70jnZoU3GIGpgdeEo3FdTbWy3u3Z81HtY6vSZIJOZLmxuIgCfFcuXVqMW1FstHTybq0BpXUcbmlwhriJkd4De0HXJNLOtqaBHC7pnd3Rs/dz6YhznOje7CZ3yOO7yXlZdTnUuS6xLsuBu0bGtdJoOAzmDuy0BCmtVL5uTNKJ1V20admogOABgYjEl3M89Vzye58iTUskvh6C9W9KLs2tY4tzBPdz5ZJdtFY4Zd2c/eF6PzLRSE5aZx1IzVIQXcslRX0q5Ob6obBzGExnuy8VVx8IZNk7VVspHeqknkCEIxyJ8IzafUVFSgDlWcPAn5J6yP5QWl3LYX9Q+8P4XKPu8/A26J5oSYhe9wcNsWfSVVIRo1TrhvugrSg5dzRmo9hjtmO0GaTbJdR90WKPjgqqyToEXCU9CtjVGmCpSdFIjTKYUWyqGGAqbY6Y3R5gKUiiaDsotPuhTc2u41J9hunSb8IUpSfkZJBmWZpOYU3OQaRYmwVMgGkAiRA1HHJR3rqG0EfdtPe6HDj+YWWWRqEbysdJwJxGeo+SriyTi+gsopnN3ls3X7PtmtOA6T7R5gcJXpYdZj3bH1OOeFu2iNHY+1OpioGgg54Z70fFHBM9fhUtovu8qLO5Lc+xYeya2q9wlzQDjmdMQnIdAoZYrO25Oki+xY411sfr7eV3Nwus1PE4DNwMET8J6jekWhhd7iV12YepczqwZaBQa0jCWtYwNbIzONriZMxu3KHvOy4WXeKFryZXuK01ZdV7NpMDugN8/l4ILU44fhv9RljvqEp7FimxxqVIJ9mB8yhPXNtUhYY4t0hB2ydZuEhxcMyTMQOh1Kp79CXVUH0a6MZslF9MT2TnRqC0iOqlOSk+o6TXYtxenZsa2nSwu35GBKjs3PlmcSJrWmqOvHd5rVBM1UuEQpXFXJHeblnmRnyTepHwK5UWQukl7H1Kbe5wM4oGU8eKn6lJpA3J9x600aLwWvDc+XKNYyU02uUzVIr37O2fgfNP6813CuexllsFlEtFIkiZJzCEsk3zYXF9inq2KnJhpj+1UWSVdSmxHItsDnbsP92S9Z5lE5VjbNsuCq52Frmfi3cYWerhFW0ze7zbGrDs0GvJquY5rfdBmTz4BTy65uNQTTHhpadyLB1CyvMOptA0BykeS5lPPHlSZdxxvqiuvC4LOx4AquEmc2yAOBOJdOLWZZRvaRlpoJ9SpvC6KVJ3frNM5hrBJI6nRdeLUzyL4Y/uQyaeMH8UidkslF7gGPLdx358ZMJcmTJFXJBjihJ/CzVpaGPLQ6QMpiM9+XVaDco20CaUZUbZUQcTWWtnu2uWhwpPggkGNQNVzTy406tFIphhRe0hrmuBIkAjUKbcXymOrL257CKrTLQ2NXE5zwDVyZZuL4ZRMs7tslnaf4lSI3GM8+HRSlKTBNzX4VZaULbRnJ1V2RADQAGgnnvgBLVEZQyPwI2i4TVxPpF2Z9mo2HERqHTDj5KkZBebbxP7FpQ2bs9nouqVQ0tDZeXwSPAaBM98uhyvUuctsTxy/Nqa32p1SnVOAPOFgJwBoOQA5j5r28GixvElKPNde489RKEuHwdrd37SrO+kO0ogVGhzS33SDpHHx5rz8vszJGVR5XkMXCVtSaLazUKNV7atns9Q9oSQYAYAAQRIyGpC4p7/wyZ0KWyPxtDd62FgJdXoMGDC8HESIA4QJ0OSWMpR+GLfIMclNcOxy7dqLFX/h0jLgAcGTZ6EwPzTzwTxq5RaOZ4sm61JMtjTmCaJ5Q5p/NS48E91cKf9yut1va1wFWgf6Yzcf1n5IKmdGPG6uEx1pcQMFNsRvPluS9exN0n8UhK126kw4awFMnnI8cskVFy6IpGMq3Qd/YqK1+WJs/xi8jg0+iotPkfYrvn9EVz9rqQkNpEg8TvVVpJ92bcvIGrtZIhrIO7PRFaR92NuiKO2krYtYj3eif3aNG9ReDprDb2VGhwc0E6tLgPRccoOLodit62ptPU6jKNB5TCOODl0HTS6lBVvEyRTe+MpM59Oi644kl8SQrd9Af2t33z0di/KC35OeFF7syT5rv3RjwiNSZd061NoaGjdE/VcUoyk22XjSQteVrfhhgg8eqphxxv4gTk0uCrslmqglzz+ty6sk8fSJCMZ3bKnaK8Kj3YSfLf1XZpMMIq0jn1OWT4KbCTvkrstI5Kb6sv7mY9rg/4cyfquDUOMltO7CmnZZ3lftKq0A0WhwOTgSJ6gcVzYdJkxu1LgtkzwkqaKeheb2uxNIb0H1ldcsEWqZzLK0+DpW7aWltLC2sZJz0kDllkuBaDHuuuC0skWraTYqdo7Q4y6q885T+6Y10Rlla6Fpd170hGI1D8QxZH81y5dPPtRaOReS5o3nYsU9kTxJefPiud4stG/X7HRWO9KJIFKQCMtDEajMLnlGUeqFeOTXLs6qg9rxIdh3AmCJ1yhMnu7nmTTg6as5T9pFKpSsdR9Oq54cMLwXANDSRoBrwhdGnivVimy+DIpWnFJroeCmmDOYBX0ttE6strnu8OIAhxyMZga5z4Lk1GZxVvg6MOJN+T2v7NaBZ6QstZtNsDJ7cg2M4MAyOeq+cjNbn6lv+gZuG9px5PKv2jbTVa9UUO17QUoGJowgvjvQ0E5ZjyXv+z9MlH1ZLr58E80lD4IKjnbvv6pReHBrMoBBaTmJ7xz1z3cF1ZdJDJGm2Lj1MoPoenXVf1aowveXsbhDxhkd2BiOeRyk5AL53NgUJKEXb6HpKMZLdQz//AEMdo9rmtfTBIY6DPImU70EnFPucahjvh0KWzbbExwY5zXjNriNeXL/S0NDJNbuhW8fY5K0259Rxe9xc47yV6EcSgqSJuVgu2R2gsJTr5pXAKZe3RQFTNonj16rizzcOGdWKFq0O2yxPMjCf7sp1mJUceWK7jvE2bq2ZtOnAbiMzJzz5ILI5y5Y7gorgFRqE5udJPH5QmkvCMl5MNFlP+I8gNmDHA71lKU/hj1M4qPLDEWQ59oEv89cUCoMuH2SxsiYaCYBJynqoKeWfQT4kroAbNY3ujE0HTkU27MvI1vwar3RTEBnexbkFml1Y0Wq5RXXrs+7snNYRJ8MuCvh1SU05CtKUWkc9WuppaAacPAgk+8RwXdHUNStS4JPEmqa5Kyns5UZ3sK6pa6EuLOdaZrksbxsnZUXEj2oEc/0Fz4cnqZEl2Lzjtg2cqykSV6jkkjg2tsL9gqE5NJ6CUvrQXVh9OQSndtY5Cm8noUrz413QVjl4GKV21/u3/hKnLPi8odY5eC2slwWsx/BfnyIXNPU4l3HUWWlPZ61NzNFx5RK55aiD4soq8oYtlC1ODQbO4YcgQwiPIKcPTTfxDOR0uxlntnaF9TG1rQJBnvAkCI3rny7fkJZ5wcalV9jrr9uWjWs1RtoMU83zk0tMe1w808ITx/zF2POx5n6iUV14PnW3XK7tHNou7RoPtDgdCfqvexapbE5qmdc8D3UjoLguutY6naVQ0MGsnJwO5omSYBXBqs8NRHbDqdGHHLG+S1/aRtQy0WdtKg6Qx0PIJECNI3yY3blP2dppRyXkXbglOOyMmnyzzGzVcLg6MwZHCea96cbVHHCVOx+ndlSu89m2SSDA172nqoPPDFH4mV9Jzdo9U2fuJzbBUNWqKQczsacmIzDXOzOpzECF4GfKpZlKKvmzrc2msS/UHS2GsxyFrGnFpM7zA3Jnrsn5RHGuzKe2bC2tpdgaKjRo5pAkcQ0mV0Q12NrngR0u5YXfsDLQatdrSR7DBiIPAmYHqoZPaKX4EPsa7D1HYCiGQ6pUL8+80ANjdkZ0Upe0Z3wuA0isr7Elvs1g6NRhg84zKde0b6xKrCmW933aLNSIaXEuzLjA3bhO5cmbM807Z0QjtVFPbLbDjhqB3+f5SujHitcqv0M50IvvQjV3geCstOn2EeUhTvbIuwOLQcyB3QeZ3Jnpu18i+t9AVr2jLxhNNuFPDRKLu+RJai+xWOtYn2GrpWN+SXqLwdfWrNrCXMwgZjMEfReRGMsTqLs9PbuXJKz2mnQaX4GzrJPhuGq0oTyySsm4qKsEza9kd5sRph/2nfs+XZk1lgWFgv42icNJ2ntYgMxoM1HLpvS/FIaEr/CL2mo7EA+kNdcUnlwRjFV8Mh3fgsKTy8tHYuIGsZn0/NR2pdxW6B3lctKu3vGoyM4NMmPIKuHNLE+OSc/iX+yitF02Oj7Vbf8ACQfIhdaz55/hQqhFdS4u+/brogN75PHCoy02efMl9xJOfytFjS21scEtDmncXMyPiDklejyrsJslJ/Ezna219vxEsBwk93+HOumcZrqjpsVcvn+pmo30JWXbO303Q9zi6MmuYPMjIpnp4dYv7i+lCS5iEftvbHOxCpAG4AQeoS+gvIfRxrjaWdbbq2Pjs6Y03Ncc43eYKn6fmQq02JdrAVb/AL3aIcKwnP8A8UcN+FPUPzfc0cWFvhI6i87AaNAirWr1q1opNZgMuaHEgugCAG6DPh1SZUoVT5dMjgn6k7UUoxbPL71uy12eoX1P4LAWMJaeoJ7vLFwC68WTFOOxcvk6rb+JPgpdsrXLwA8vAAcCYgg6HU59Y1XXoMdRbqiOpnz1Ofr2xzpGgJkgZCQImF3RxqJySy2BpVIIKdq0JGVM9y/Zbc1nfSbXORLQC0xk5p9qTqCcxEL5nWSbzOE3wjtzZZQgvTXU6vavZ6nbaYYH4S2S2DIxHe4BSxyWOW6JzYckoWpLqcef2fhjS7tSKgEDNrWkxxjT9c071cnw1wdkckb4LSz3eAwMq2mH6nCRLeAB081yvbutIs8s+0RO0UqjXzSr0zI952cDk12uqy2V8SHUm+wS0UaGD+JXEkTnXc0c4DVobr+FfawOUr6FPVrWCnkawOZ9g1HHrJyXRszy6R+yNv4/2Tsu0l3UfZFRxOrnAE9JccvBGWlzz6k3O+/9zdbbKwTPZOP+DMvMoLQ6jz9zbl5FrRtLdrjLqIceJptn1CaOj1S4Tr9R98PJF22lla3C1lTDuADGiOEIfw3PJ22rG9aCKK1XtZHyRQmeYGvRdcNPqI8bhXPE+xWG9aG6hT8XO+q6vd8v5n+yJepD8ozUr1WSBnEbzGXzUlGEjocpxBMvytMEMdB3tafmE70mOrTa/Um9RN8M6O6rxr14As7HQd7W+WY+S87Nhx4vnZaM3LqjsbJd/cBLWUz0AzXmuTb6meVRdLkHaNmKVZ2OpDjkAO0IA8G71THqJ441HgnPMn1TGbNs66mIY4saMyG1HeMudJWlkcnbSbJvUQ6c/sXFlu0hsE+Zc4+ZMpKb5OeeeN8ETdon2BrmS0blqkhvXT6v7i/7rrFxc3EQMogZjrwRUZvoU94xUlKhmxXLWDpLnxrhMQOipHHN9iOXV4qpJFsywO31KvSVVYX3bON549ooYo2FrTilx65/NVjh2u+SUszkqpCtuuyymXVLO0yYJ7NnqdfFPLalbsbHky3UZfdnM3qbCx7GU2dmZgvDHYWE5Aye6c9emqhke/mPQ9HAs6i3N34GNmrwDnv7aswik6PYgOBHdOKSN+nJaGyMlKXQXU45bahHl/Yubxt9nqScebWnMEQCZAPUZptTmx5ZWvBz4MGaHFdWeIbf2x3a4Q4ObGWm4mM9cp9V3+zcacbPQzyaVHC13lxJO/8AWi9qKSVI8+bbAEJyLRqERaLC7L0q0XAscY3t1aRwLTkVDNghlVSR04s0oHZ1rRa3UxaKdWqWO3DEDTESAYMQBvXjxjgU3jkkmvuehLft3LoVdepaci9tXOC0uDs+BBK6Ixw9q+xO5i1W3VQcy7EDvmQfFVjig1xQu+RBtodrJHii4RNuYOtaHRqjGCvoCUuCvfXf8RXSoR8EHKRDtSN58UdqBuNOr80VADnXcj2hPvI7UuwNzl3AGqRvT7UReVrubFY8UNqCssgrWu/QS2iy3UdpdtJ5qdnUmJiNR/peLmlFQ3RPVgpbqkXdXYqoassADdQdwK5I+0FsqRpRhdpnW3JsxWpEE1RA1Eb1xZcqydictVBKupe1LLTMh9Rpnk3I8uCjVdyCyTXMYv7nL3w20WeoHfa6DWQSJZGmgIAJJXXjWOa27W39C8Zb43VCdp24b2fZugkD+XAY+fAOHin9ym3x0+vU0YY4vcLWbb1/ag4C1mha094wOeXoqvQNR4fIrjCSqjprJtl2j8LQ8OIypkYjpqC0+Oa5Z4skFuvgT3OFUzorDeVRzmse8AkSe7hnkASljlk3VnLm08Ixcoqy3tFWo0AMaXmNSYHiup5MkeI8nFCMJO5Oilq3rbqYJqWYOb/63d4Cd88kHmy18X/fsda0+mk/gnz9QtS/CcuyrNkZOaRlO/Pf1CR6ptc3+5loq6Siylva4LTaw3/5RGRADqRaTmPaIdG6ZCbG4t21b+pZaiGG0o/s7OKtWxltY+KkhgdnUbL44ODRBK6XmhFdOS8M0cn4WasVx2qqHikXuzyxHMjiZOXTmpPLjbVotKSxq5MeGz9q7CoaxLA2YDcPegez3TopucIyTiv3As0ZPbfJ5neYGIgkkzny6Fe7hvbwc+Rc8lXUDea6lZCSQuQqEGjWFazbQ9nsxc4NGpIA8Uk5qKbZSGNt0e5bCWVlCi3G+IEQXbznPRfI6vLvytno5oSUFCKOir26zmQ40iImSQR5Ln+Lsjnjiyrnk5S/rVdxGJzaTiNwa6fQxC6cK1PSHB0xg1+N/c5irbLucSewYAObxPRodC7lDVx+YasPcobwtNmJIp0AOZfUPpiXdihmX45/ZEMksfyoqjG5rfX8yupX5IOvAB1EJ1JibQf2dqbexdiCU6DOCVzl5KRxw8BfsdI6pfVmhvRxvqCN3s4lN60vAvu2OwwsbPiPmk9WXgqsUTvn/tCY1v8ADszA7LvOO/mAF4sfZTv4pFpZU+7KW8dtbTVgy1pGhYCPzhdWP2bij9f6i+s0qihF9/2qr3TUe88BMzxgalWWkww5pIyzTfCAO+0tEllYA6kteB5kJ6wt8NfYW8i8jtnuq21mgijVc3dOWR3tDiJ8FGWfT43Tkkxqm1yaNAUXGjXp1e11DQ4CJEgwAZR3PIt+NqgpJfiQWzMFRs06dSZjFLQBG7dmkm9j+JoeKvomWt2XvVsmJtKi4OdmZ73kRqPErmyYI56cpdAypcNAX3pbwW1IrQXd0ljoJB0BIzORyVFptPVcAc74R0Fi2nvWiYqUqzu0ADQ6m4GdMsvRReDDXwTr9SLxYp8tLjwXrtsLx7PKxEQIlxz1j2TBmVKor4XkJrSYXKyktu0N5+040qQOXedTEb9HOkJo4sLfVv8A7+hdYoJUl/cXrXtbnNE2ug0f01qQPUgGfJMsOJfK/uHbH8v2LbZt9pqOfjr03ta3RlRriXHSY8deG9c2phCMfhTT+oXJLt9i47INPddhLgTIOQ5yuMfduXKujTLG/DD6hJzJg5HyWb5tA9SKfCOFtewh7z3vEOJII3akT6L1o+06SSRvSjJs5y8rjpMe3OGmAYmAchOefNd2HVzlF8ciTwRTL27NibOW4nPLpGQGR65rize1MqdJUPHTQRS3lsu+k8kNBbu1z/2uvDr45I03yJLT07Rly3T2rhAwEEGTyOa2p1Ppx8jY8VneXncbKrQ1lcUwP6C6Z035LxsGo2NykrLTc2qSOdt+zDaTZdapB4Uz8sa78eu3yqMPv/oT0pVyJ1dmxEivP/1nf/lPoqrW/wDj9ze7SFqmz0Ak1WiBOhj0k+iday3SiwPS0uWVJsg07al5v8/YXYp/+L+3+SHpLygDqH/spx/d+UT6J1L6P9hHj+qIOox77DzDtfSUVL6MDx/VEeyEe23p3voju+gPT+qCNpAe+3wxH8krk32HUEu4Q2dkZVB5FLvfgb015BuY0e8PCfomTb7AcUu4EhvxehT8+BaXkI620R7NNzub3adAyPmlWLI+rS/ov8m9XEukX+r/AMEqN6taZFCn/liePImPMISwNqnJ/pwZZ4p2ooyte1V5nEQPgZ3GAcmtgIxwQiqr9Xy/uZ5pP/RKhedZpltaqD/e7y1Syw42qcV+xlkl2YVl7V/vqv4z9Uj0+L8q/YdZZ+Swo7TWsODu3qT/AHHPqN6i9HhqtqDvvqCqXvWqOlzzz0E9SEVp4RXCH9Rvgds99vZ7NRzd8tJBnjI3qMtMpdUPvXQhar6tTvYrVoOZGN0Tx1TwwYl+JISVvmKFGVrU7uh1Z05xieZ5xKo1hXLS+wtTJE2hgM42g65kT1S/yZvihv5iROjZKzhiDXEcYKWWTFF1YyjNhhd9oP8ALfH9pS+tiXdB2SLzZ+7rYJZTY9ofGI94ZeELk1GXDLlu6GVRXxUdLeVlr0qbWHFGQBjMH9dV50XGUraHxzhP8IGwW2tnTLpcOMTqjkhH8SXA+yPci/tqmJoxc9fRZbI0w1FFHbNnqhdIpvcSZOWZ6Bd2PVxqronKMetlvYbntQaP4TgdwXNknBsyy411ki3/AHBWa3E55LjHd3DkueU12QkNVCUqK9tzVZw4NOg1T+si3qY0rsyrdNpya4HLTNZZYLmjLLjfckLpqObDhPNL6yTtDepDpZztSxvNUtMQNDy58l3rLFQtBSbZNtgc4HvZN8zlu5IPMotcdRttlReWzTnQ/GydCCQDlvOeZXXh1yXw0zmyaXc7sRqbLv3Z85y9Fda+Pcm9E+wahsu4+05oSS167Jjx0XlhHbMsbrVHp9Uvv8n8o3ucV3Mds0B7+R0ymVvfr7B9zXkXtFzMbkakdQqQ1UpfKLLTRXcqLRSpNn+KD0C7ISnL5TmnHHHrIC5lP7weSe5/lEax/mRZUtjrUYloHXd5Lml7TwLuGOimON2JqjV7PPTwUX7Vx9kysdC/JY2TZPCMMguIzz+XJc2T2jbvsdMNLGKN/wDB3wJcwcSTkFv4rG+jJe7Roesuw1H36zj/AGMceucKUvamR/hj+7B6MV2LY7N2NlPu0KlVw/xJ5y6Aub33PKXM0htlcUiqN20w+P3dUwjeXOGfM6R4rp9XJtv1VZqjdUWFipUKfeq0LKw6huJ73DP3oaR6qE5TlxGcmGn4/sPm3sy7M0WNiHA03Z8xDQo+m/mv7f5Ntkl5/U1UvBwEtdZCdMOJzDr/AFACEVhi+u79gW1xTHLIx9VrTUdRzzwsDHCORJ9YUpbYSaV/2M5UuP8A2XNKlTa3DB6yGnwwxClfJztzb6/b/Jp7XN0LxyMO18Eb+gVUvBqzWd+naO4kAkeec+S1mySiuaBW26HVCO+6BGrnHTqjFtBhqIQXQ3QuujTM4HE/FmT6rObfDM805dGiNpt9nYS11RgPDEcQ5kLLHJq0mZKbr/QvaK1MFru/mRDhmfmhFN8FlGdVwNMtbZkPeXDKC3Eek4oQJPFKuiobs7ATJdU13yB0iIQIzbSpJDLnRI9TH5LE0r5FXBo3jPLUgoFlbELU8GW6EDXXoh9Tpxprk5e2vdT72ESDEzrul3gu7GlPizpboFc9EF1TGZzBBBBkcwMp0T6iTSjtNGzV83NSrPDu1wd3Md05DfrkUdNqp441tsWWPc+Tn6131KTSRWY4DUNdmd2nRehHNDI0nFr+qJOM4rhiDryluGAAN4nFw9omVdYKdk3lbVCtS8GN952XP5Roqxwyl2JyzRjy2BtO1r4hsndLjMJ4ezo3bOXL7WUeI8lBabxqVDLnFd8MMIdEeXl1uXI+WKlyqcrk31MlYFnq9ndVd7Tqg4ZD818pNQj0SPt0pPqW1LGBnnGcw3Mx01XI9rfBaimq1a2PGHHXXKf9BdkY49u1ojLddl+y0VMOZBPMgea4HCO7gp2GKNZ+8jTcQpSjHsCitrPwvLpe4ZgDEcMneYK6oq41SX6AaVjtGi1477s+R/MzKjKTi/hRqMr3DSqZtcWzu3eC0NXOHDVk5fUpL0u+nT7odVqOBzwwB0ld2HNKfLSQrjwMXdQY9s1KBbhdIAklwjQyZKlmnKLqErsZRtcotxYz2ZJeWCY4EDUQPyXLvW7hWNaugdgvhrKwp43PnUVCMgNSOJ0yVJ4JOG+q/oTnBP4e4TaHbwNpPFNsPAGEkAyTyVNPopZJLd07nL7vHFbbsnsTtY6uD27Whw0IMAjfIS63SrBJbOUB4nkj8J1pvSnE4mx1XFbI+7T6UI27aGk3IQ7xTKEn0RbHpJPlujyzaCxNq1H1e1DXOM5mABwJXuaXLLHBQ22XyYU+boNdd7PstPs/tVIiZAd3oB4SlzYFnnu9NirbBfFJDti2+caverURT3tAAnxKnk9mNY/hi7JxyYJSpyX7lnU/aDSZMVmEboMn0XPH2ZmfysactJ1cl+5U1/2hg4ix4kmc5A8AumPsifG5A9501Umjn7RtbXeS77TBgxnHkPou6Ps/HHjYSeqglxJIUO2dpDS01WkmO8GjFllExnoq/wAMw3e37kv4jS5kiutO0tV0gvLgREbl0Q0OONUiE/abvjlC1O+HNHdc4TqJVHpoy6pCL2jtXFm61+1HiHEmBGqEdJCLtAl7TlJU0JPtrjvV1iijlnrJvoD+0O4ptkSXvGTyQc4nUopUTlOUurIoimLGMWMYsY9Nq36SO6A08ZmV8zHSJPnk+1ed9ht16VgwF1Mwd8ZQdFJafG5cMfdNK2hH99n4R0VvdPqJ630NVL8ByLPUj5Ix0rXRmeZPsS/5I5ohrQBzJPoh7iny2D1/CA1NoXEQQE60STsHrEqV/O5IS0aCsxL9/VJ1zQ9zgH1Wbbfr95lB6SJvVYF20Dm6Tx1TrRJivNQnbNqqjgGnQcXFXx+zoJ2c89XRV19oDMw2eImfNdUdGqo5J+0Yp/UVtV/PeIMepVYaSMWc2T2k2uEEuq83F4NSqabRqWwHHkMifQpc2Bbfhjb+o2m1bnL+ZPal46l1bdoiGGnStFMsPGkH1OpqPpzPQrlxaXm5w5/rS+zO3NqcfyZP7/8Aw5q2PgAi0YyZkAPBHUnLyXfjVunCv2PLzzpWstvxyV7qhO8roSSOB5JPqyMoi22YsbkyVgWZKxjSxjFjGLGMWMYsYxYxixjFjGLGMWMYsYxYx6YyrZ6Yww2eJzIO4hfNOOabs+5Xpx4JVL7OWFzTxnJBaXyh3mXZlTeFsaZdhYXb89fBdeHFLpbo5s049eLKStbhugcl2xws82eqgu4rUvBVWE5p66K6C7rcdyosSOaWul2RjLxqDQ+izwwYi1+ZdGE/e1Xj6BL7vAp/Es1A3XhUPvJvRh4JvXZn3AOruOrj5p1FLsQlmyS6tkCU1E22+ppYBixjYWCiYCA6TNuQDKwZCYm0Ep05SuRXHi3KzHNWTNKDTNNYs2CONN1Y/Qulz8wQoS1Cj1O6Hs9y6Mm64K3wpffMfkL9l5OwN9y1Rq0plqoPuI/ZuRETdFTgj7zAz9nZANWxPbqCqLLFkZ6PJEH9lfE4THFHfHyT92ydaB4E1ktrujZplawvG0RIRFaaNLAMWMbhY1GljFkLRPvLm2V2PZWpUvmA1rQ7iqRgjmzamafDF3VXHUlOopdDklmnLqyCYmZhK1m2s0sAxYxixjFjGLGMWMYsYkGHghaGUJPohmwWJ9V7abGkucQGjiToAkyZIwi5M6MGCU5VR6zs7+xmtUaXWiaRjJuRJ67gvLy6nUyv0cf78fsei56PFS/E/p0GL2/ZRSs1LtatWIBhjc3Pf7rWz6qGTU6vH/8Aokr+v/pF8OTT5p7cUG/+7nBf8QqEy5zRJ0G76Lo/iUEuEF+y90m2x+x7LtpnvHFy/NQye0HNccHTi0MMY7UuagdWZqC1WVdGXenxvqhEbPUgdFf32bRJaPHfQap3VTb7MjxIUnqJvqVWCK6BTQcB3Xfml3pvlDbGlwyLnuiCJ6//AIslG+A8g32g/CmUF5A2BdX/AKQnUfqK39BK0NDsi3JXg3HlMlOKlw0J/YWD3Z6q3rSfch7vjXNEX2VnworJLyZ4YeBU3aCdYVfXaOaWihJ8j1juQQXYSRxOQUMmqd1Z04tBjSvaV9qhmWAA5hdELlzZzZtuPhRRWVHldKR5E5ysEnIBGMKVtFoQn2J9i4obkinoZJdSf2eNyXeV91pcoIyzzuSudFY6fcugN1lcmWREZaTJ1RKldr3cEJZ4oMPZ+WQyy53b1J6mJ0x9mPuwrLm4pXqi0fZsO4UXGCk97Y/8NxsnS2dnUoPWmj7Kx9x6hs0zeCVCWul2Lw9mYV2GqezlMZ4VKWtn5LR0GFdIj9C6GD3Queepk+50RwRXYsbHdzWkENGXJc+TPKS5ZaONLojtbFtPaWNDQ85ZCc/muZajPDiORpf1OXJ7N085bnEWtzrTaO8Q93OD6KG9OW6crf1ZSCwYFti0iprXfUb7THDwKsskezKqUZdGhZ1HknUhqBmkm3GoE6mmUgUCcwJ0wUBc0J02CgZCYFA3tTIDQF0J1YoEgck/IKRF1McvMIpsFI22nTkh3D2gcgfzRbn1RtsejNMdRb/UZ6Qs1kl9DLYgv2weEaD0Sekx96OUvN8vJ4kr1sKqNHi6ttuyvLFezzJQbI9mjYnpseaxQbPWjjoM1vJK2XjH6ExQlLvG9O+oelQjQpHMpGFdA1OypHkHWMapWZRlMooDLLOpuZRRGKdnCm5jKIzTs44KTmx1EOyiEjkPQdjFNsag9Jp+GfBTk15CWFDF91P+P+lCVfmM2h6jaC3+VH+ChKF/N9yUoJ9/uP0bcRmaX/UBRcPqQlhT43fcOb14tcP1wS+mS908NETeVM6tcfE/VH0pDe7TXRr/AL9BS0V6R90/rxTxjNdy8IZV3EqhpfCqrf5LpT7sRrMpnfCvFzHpdxOpQb8SvGb8CuKFn2YfEqKf0FcUAfZeaosgjgL1LH1VFlFcBd1i6qiyiemCfZUyyCuAF1lTrIK4EDQTbxdoN1nCbexdpo0zxK24IvVs2LVUjkonLGpdQJsap6onopEDZSj6grwjlO3O4N8lF4o+TqWaXgap3gfhb5KTwryyizvwO0rzG+m3yCjLB9WUWf6DdK8qW+m38Ki8E+0n+4/qx8DTLwofdM/CFJ4cv5n+43qR8BmXjR+6Z+EfRI8GX8z/AHNviMU71pfdt/CPopvT5PP3NuQxSvSjvaPw/QKctPk8/cFoap3nZ+A8j9FJ4M3kHPZhG2qyHc3yP0S7M6F+PyGp1LOdGNPj9UrWZdWGsn5h+z1APZot8MKhK+8iM4vvNjTLdH8uPJI4/Ui8F/MH+2l3LyS1RP0VEXr4j77fED6plRSFLsJ1HuGpCdJM6IxixN9TiqpHQog3hsap1usKsSqgbjKtEahZzTwKqmK0DNJ3wu8im3LyAGaTvhd5FMmvIOSBpO4ecD5o2gAnjmPxD6p0AGSN7h5pqZrBuLPiHr9EyUvALQF5Zx9CnSkK2gfasG//AKg/Mptsn/8ARdyNG1N4D8Dfqj6b/wCZt6/5AX12Hd/1aPzTqEhHJEO2b+g36I7WbegT7Y34R5N+idY35B6q8A/tjfgHk36I+m/JvVXgHTspyzGfVM8iMsTLGhYGxJePRc8sz7IvHDHuxltmot1eznmJ8pU9+R9ExtkF3Qdv2Qa1B6/RTfr+A3h8kjXsg3uPQH84Q2ahm34l0Cstdk+F/p9Ujx6jygb4eA4tVk3Nf+vFJ6eo8oKkggtVl+B368Uvp5/KDuRNlqs3wO/XilePN5NYdtrofdn9eKR48v5jck23lRGlMeX+0voZH8wOfIxTvumNKQSPSzfzCvG33GKe0g+AJHo5eSb06fcn/wAiaf5QQ90f5jLTP8zAm82nPsPIlN6DXzFVjmvmIVLwZ9z/ANiisL/MMoTXzGm3i37o/in8lngf5jOM33JOvZo/lEeP+kFp3+YX05eSDr64M9f9JlpfLN6YvVv07mjzKeOkXdh2UI171edwHn9VeOnihuRKpaXnirLHFC8gC5x4qlJApsgWO4JriDawTmOTJoG1kXN5opgcQTm8DKdMXaBeCnVCOLIGeBRNtYJxPwlOqEcX4IPc6Iwjqikr6malXQWcHKqontZrsjxHmjuQdjMqvM6lCKVBk3ZFyKFZNiDMuoekkY6CApAoM154nzSNIewrXHilaGJh54lLSCgjHniUrSGQZjjxKRpDDVF54nzUpJDpjdleZ1PmpySoKZjXGUGuBkM0NSpSHiONGQ6qXcJsME6DQIW6MRI18EQhHbvBKgdwNraJGSbG3QQVdgnQeSpFs1AXDJOupgdQpkBirzmqpcCCloec8z5qsUicmxFzjxVqJMg5MBm6eizMheuc1SJOQu4qgjMnJbuG+AVYpoiyAOKoiLbBEpiLbP/Z\\n\", \"height\": 194, \"channels\": 3, \"width\": 259, \"type\": \"image\", \"id\": 4908207312}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxISEhUSEhAVFRUPDw8QDw8SFRIQFQ8PFRUWFhUVFRUYHSggGBolGxUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGi0lHR0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIALcBEwMBEQACEQEDEQH/xAAbAAADAQEBAQEAAAAAAAAAAAACAwQBBQAGB//EADwQAAIBAgIIAwYFBAEEAwAAAAABAgMRBCEFEjFBUWFxkRNSoQYUIoHR8DJCkrHBU2Ki8UMVM+HyFiNj/8QAGQEAAwEBAQAAAAAAAAAAAAAAAQIDAAQF/8QANBEAAgIBAQYDBgYCAwEAAAAAAAECEQMSBBMhMUFRBWGRFCJCUqHwFXGBsdHhwfEjMpJT/9oADAMBAAIRAxEAPwD8Z8QQ9DeWMpz5mHhJPgUxo62wybRSUUyiOGtsY2oXQiujV1OojVlIvSUQx7BoGcrLqOmJJWFcQHo4ttmo2k6dPFt2SiLRqLVQk/ibtbiLYdIijifjzldIJqLY49XsnbmCjaTu0q8FC6mm2uIgmnicu0pytHvuMUqjt4PDKnG8pIFk5ceQDx1NO7mnbcYOngMpaYTeUTC7sojWlP8ALbm8gWBxSF4vSdOivilnwVma30NHHZyaftJGTyeXMLtFVhRDpPT+rslfowxVmePScDFY7xM8+5VKgUc2cG3kmxrNQt6y3BBQDqsPAWjfGZgUNjj5pbX3NpQtDKelKq2Sa6G0o1MJaSqyf45P5sGlA4llHS9SP/I788xdKNY2t7UVUrJt8wbtBsCh7T1lnKKfUzxoN+RNpD2lrT2NxXBNoCww6oZZJLgmcuppetb/ALku7H3UOwN5PuLWmq39SXcbdxF1SPnqdEDmDHgZRDC5i7w6VsvU7OCwasHXYZYtI+ejpWusw6xdDIqlG20axaFZhswyKZrDRTh2t4rGSR1IY2EV8N78SdPqPw6F2H8ev8K2CSlGPMZY5S5HcpaD1KblJXaW3ciW+i3zNu5LofLVKMpSduJ0WqE0nb0boaTzk++wSUw8jv0aMYLOolboSuxReKrxqfDC8uZkFRApaLhBa1R6q4MOo35G+9winqJLg2Y1Ea0nWV71Mt2xBpB0I5GPqubu38x48A0cqpNrJDgoCNNvaGwND3h7Lb8gWbSZKo4q17dDUmC2TTxQdIti3ry/Kw8EZ2DPCz3q3XIKkhWhaoy4NhtAoop4aflA2jaWV0lGKzauLZqJZqLdxhWga1S+zsjIFCXTlvfqG0ajIwvuuYwMsNxyNZjPdocTWwEFPCtEHI9OGHSWQopCluCGRxKWzIoonLkyJh+/y4j0RCjOMvxPPmbkBItjo+mlrOa6J3F1sOlENSCbtF5DGPSwMrX3G1BoWqbW0Nmooo4yUdja6COKYybR0I6erPJ1JNcHmuxH2eHNIss0+46lpXO79EhtFchG75lVDHyqSspW6u1gNUZRs7EI4eKvOtrPeln6iW3yM4tFuE0tBZUaV+drivhzF3TkbXpTrZ1GorhfMykkZQo42Pw6TtB39R0xkiSej61tZxslvY2tGoRq327g2GiSrQzCpCtB0aS25hsWj1bFxWUU2+LMk2Ahq3lnJ2HQo/DeEtzbA7MdTDw1soqxNhOitDK15yS+YusAuc8PS4SaD7zMczG46pW+GlTy4r6jpJcxeJJHQlV51JKK66z7B3i6G0BrRKX4YTn1yBrNpDWiqm+OouZtaBpKKGioc5vgtgHNm0IOpo6exKnBfJsGtG0k1XRSWcnrc3khlMGgR7vT8y/SG2LpR80q3AppKqbDptveCkNrbBUMw2LzPThbYwpgo2EJGtG0sJyfEAaH0ZCspFB+8MIGOpScum8VtIZRbOnQw0LZ55XsiUplY4ZS5IRWw9/wrsrm1pc2FYJy5IjqUJRdmmuuQ8Zp8gTwyg6kqZqg/wDRtQqiOtJflfzFsfSNpYupHZJroK1F8x1a6lD0pUX55dzLHHsJKbLcLpaUFdu74WX7iSih0rXEtXtDGS+NSfJWsJol0G0wE/8AU4ydlTsnv3jU+omlF2HwsZK9m78PqI8lG3b6EGIwErtXtfdtKxyKrElBkNTRrWSu3zQ6mTcSWvgbfils3DqQrRB47WURqXUFspoYyotkmugGkC2U06Vapvk+7FbijaWU0NBVJtJu3JsV5Ug6D6PB+znhrWnUSiudiMso0I6nSHz8OK+FRmuImux9y9SixFfSjSstVPckkaKfNjzhC9MVfmcXEuc225FVkjQHsuRPTQmlh6zeV7cVl6ja4k54pR5nq1NwzlJLq7hTvkT00czFY+O+blyRRRYjaI/fo+T1Y2li2j5+NQtQqkMjVBQ9hxqAChsZgGGpviCw0bFcQWMkuo2nC4G6HjCy2lNRX4UyEk5PmduOccaukw44uTyUFZ2vzA8aXNjraZS4KKplSxNlsSy2Jq5HRbOtZajVJfkTLETvk2V0xricu9yp+6Z4rbvL4rcRlFLkQlKcn73FlFLGarukl0RmhQ62O1nnmDSEU5mGcWwHTuHULumOp23q4G+w0YNcx8sRTSyp58W7k0pN8WWeiuCJ1iXfL0HpE2n0KKfjS2awPcQrUymGHrxWs5avV5i7zG3RnhyVYXvskvimnbixqXRE3B9WR18RGf4nfklZDq0TaRVhMHh3nObXJL+QOclyBoRfLD4SyUZJcW7tk9cxli48SylOEI2p5/3NpInqbfEd4epHKjeWvKsk/LFtlFLhVE3FA47S0EtV524t3EeFzL7PtG5vhzI6ntHGyio5cF9R8eBxF2jOskrPYfSdN56tvviGeNtVYmHMoS1UFLSFNZrttFjgotl2yc+pDi8dUqbJNLsWjBI45SbOZWoPa5N9SqkTaJJ0+CGsTSB4UvL6B1I2k5CRWyaiHFAsdIbAVlEUU4t7BG6Kxg5chmo+AupDbt9UFqW2mUrBKDRniMekRtlmGjrL+CM5aWduDFvFwGyo2/MulxFO+hd4NPNoCLGJJtDnVE0ldbYu4wtDoQW99hW2MkjzS3AtjaTyNYVE8rmsOkYr7rgtB0PoFToyk9hrSFpllFwpZyab4bRXcjXR7Fabk1aMVHmtoY4l1Jym+hz6lSTV3J5lEl0JSb6ksp8yhMxTMCzXiHxNQLM8ZmoNhe9y4s2lCuQTx07WTsbSgahV1+ZsPHoCkJnNbgqxXQKqPmEAfjviCkbiMhjGt4NILGRxMX+O75LIFPoHh1L8NpajDZRv1YjxyfUOpFP/AMmW6jT7C7jzNrPg0zuORMJSAx02NixWVQ6mxGWi2iqnirEnjs6YbQ0N8dSWYulorvYzXEBxQ6kyEscXyNiHmKlXIbcUrzNQApBxiBsdRGKKFsooIJAsZRDUAWMoDIwA2UUBtOKW1XEk2+TKwik+Ksrp1Y8LdCElPpxOuLhVVRurB/m+V7G3k10J7jE3dia+Hp8ezuPDJPsLkwYUuZFJJbF8zoTs86eOiaoUTISximPZLRQDuGxXFmGsXSwXcIrTBzCLQajJgtIKjJm+7viga0NuZHpYdpXyfRm1pheGSVi7hJ0C0GwaTLGsGk80azUA2GxaM1jAOamVOdNBJgHTGRYGUTGRFZRDYoVsokNiIyyQ6CFbKqNlWHsnn+xKTZ04kk+IOIqzTva8Xvt/I0FGq6k80sildWvy/wAjIz3qy/c1dw6nVrgapcWu6yNXkZTSdNofRpxlsafR/wAEptx6HVijCfJodHD5iPJwLLCrpjJYSSEWZMd7O0eVNrcHVYVCug1J8BLRan2PajNqBpBUb7xrYqpmb9nzDaEpti50XuT7DKaJzxPohFWm1tVrlYu+Ry5Fp5oTJIemc7nFgeGGwaUY4BsVxFyiMiUkDbkGxNLPZmsKizLGs2hnrAsOhntU1m0AuBtQHjBcA6hd2Y4GsVwAcQ2I4g2CLpOSi5xoNMA6DiwFExkZitFExqkLRRNjYMRlolMJIm0Xi0OhJCstFldGs104biM4JnXizSjy5FCnF5OEbdEScWuTZ0b1S4SivQVPRtGWzWj0d0FZ8sfMV7Js8+lAx0NHdV9A+1S6oH4di6NjKejqq2VVbqwPaovmgx2Bx5SKKeGrL86fzJvPjfNFY4MkfjDhDELcn1aYryYWFRyR+JMrpqb/ABQt0asScoLk/UtG/iDlSb3fshd4hriB4FuHS6DvbAkuhsEty2fMVyfVjOKRysbpKqm1q6ueWX2jtxYMTV8zzdoz5otpKjlyqva5Xb3tndGlwo8mak+LfEdgsBOVp3dm8hMm0xj7pTZ/D8k6yHQrYaMfzN5Z2zz6kIZZS6HoZNmxw5t2ROOdv3aR0XwOFpXSZ5UJN2Sv0zFeRLiwrBOTpcQJRae/55DKVoSUNLoxINgUWeaFsfQAw2BxMZrBQLDYjR6xrBQEg2I0CNZNowNi8Djxgy9nEoMYoMWx1B9Q1AFjqIcYAsdRGxgK2VjFjoU1xJuRZRobGK4gbHSHUxGWiimHQmzoiPiTZeNDIisuh0CUi8B8STLoYhQsJCim2NZrPWMazNU1ms1ZG5m5nptNZpPqrmXDkDSTzpQt/wBuPZFFKV8wOEa5Ho1FFWUUktiG06nbYlqKpInrqMs3FX53a7Foao8E+Bz5I48nGSV+YVKEfLG64KwsnPu6KQhi6RVryoL4nwS4JoHuruxv+R8qSFVcO27truUjlS4IhPZ3J6m0TyolNZB4gHQfBjaxHj8gXQl5X2YVNdxHB9hcqL4MZSRNwYDpPgOpIi4SBcA6hd3QEkYVoVJDpkZICwSdHORUghkRWUVBqKBbHSXcfSpRe2VudhJSfRFYxj3KfAp6t/Eblf8ACo5W6k9c75cCumFcwI0k9/e/8BtmpBOnbY7/ACt+4LGSGQpv/bSA2UiiqFF+ZfJknI6Ioop0XxXck5HTBD4U2Tcjpgh0IciTZ0RQ5REbHsZFCtithqItiNhagLBqNdM2o2oHUDYdRmoaw6gZQCmFMBxGTGsW6Q6nRKUbPRw62tx+buNvSTxjo1ILbCL6K1xHqfUO7HLG0lsoR+eYm7m/iEeKXzGvSkP6MOxlgfzMV45fMxc9MPdCC6RKLZ11bF0ebJp6TnwXZFFhgD3kKqaRqPh2GWKCEbkIlipPaVUIok5MF1uNvUbSTbEznH7uOkybEtQ33H4knQuUobod2Hj3JuuwvWXlQwnDscJHUecgkAohkRWOkHEVlFEOLAUSGxYrKKIyKFsqsY2MGK5IosTGwTEbRaMGimmyTOiESqkyMjqgiumyLOqPIdFCMzGwQjEY2KFbEbGKAtiORrpgsGoHUDYdRjgGw6hcojJjJi2hh0wdQNjWZqBs1maprDYDiGzcAZRGTA4i5QYyaJuDFSTKJolKLFSTHTRCUZCpJjpojKLFSbHVEmmA2NZNoBoaxHEBoNk3EHV5hsXSchQOizhWNDIU1xFciscce42MI8RW2WjCAerHdf0FtldMFyDikBjpIbG3AR2USXYbFIVtlUkOhFCNsvGKHxjyJtllHyHQguAjbLRgiiFIk5FljodFCMpQ6AjEZRTSZN2Sk2V08PyIuZCWQso4XkSlkOeWUf7jyJ74nvxTwXIfej74XUwttwyyWPHLZHVhyLRZeMgY4ZvcF5EgvKkelhzazLILlR5DKQ6mLlTGTHUhUkMh0wJDDIBoIwuUBkxXFMXKiOpk3isB0Bt4TeAVKjyHUyUsNCZ0h1IjLEhUqYykRljFygOpEXAW0hrZNpHH1Trs83QGlzFKJcOYcRWWir5DYillaGQfIVloPyHxlHa8ibT6HQpY0rlwHU3TavrfwI9a6F4SwSV2UqnBO2tZk7l2OnRiTpviOpU09ktm0nKTXNFYQg+T5FFOkTciiSRXQoJuzkllclKbSuhZzaVpWUPD0k7SrZvyx1u7TyJ68jVqJLeZHxUfrX+B1LB029VVbNK92kl31tokss0rcfv0JyzZErcfv0KsLgYTv/8Aavh2vVaSfUlPNKPw8yGTPONe7z8y7RMIOUo+KrwdrOLesuMWiGdyUU9PM59plNRUtPPz/c+goUqN7KqtZWvG2eausjzpSyc3HgeTOWZK3HgWRoRaumnue36EXJp8SDnJOmhPuMm38Dta+tZtd0i61adVMpv4pc+JBpLBtWtUp/Em4xs9ZpbWlfcVxZO6Z1bPmT+F8PQhp4WMPxLN8mr/ACLPI5cjplllLlyPVJR2W2brGSYIqRJWxEFla99mTX7otGEmXhjkyCpXT/0XUGjqjBomnUjx68iqiy0YsXOUeIyTGSYj3im9kr9Mym7muaMpp8mA8RDjbqmv3Du5BU13ETx8Er522XsUWGTdCPacaWq+AqnpKnK/xWtull24jS2fJHoJj27BO+NV34E89L076t3zexLuVWyzqyEvFMKlpF1NIQeyaGWCa5oSe34pcpCKuNirXd7q6azuUjhbOee2RilfXkST0iuD9PqWWzs4pben0F++3Wxj7mmT9stWL975eo26JPa2cb3lcH3Ords8f2uNU0wlio8GDdsdbZj7MOOLjwfoB433KR22HysYsXHyv0F3Uu5Zbbi+VjY42HlYjxS7l47fgXwMb79T8j7i7iXcv+JYHX/G/UesfS3Ql82v4F3GTui/4psq5Y3+tD4aSo76cueaEezZPmRaPjGy/wDyf0KIaWorZTl3X1JvZMr+JFY+N7PHljf0/koWmMO9tKTyttX1J+x5ukkF+OYX8L9F/I6lpnDrPwp919RJbFmfxIP43j6J+i/kdHTWG/p1O8fqI9iz/MvqH8bj2fov5KKem8Jvp1e8fqI9h2j5o/UV+MX/AK/spo+0GEX/AB1u8V/JKXh+0P4o/UV+Jauv0/sroe0WCX/BUfzWfZkJ+H7U/jX3+gHtc5cp/Qupe0+CWyjVs7XV8nbNX+IhLw7ausl9/oLeSXxr0/o7GE9r8K3fUr3lFxykpWb3xu9vM5V4dli6m1p8v9E34fmmqjKPDya9eB3sbpzBOjrycnNx1dS7dnHPVdst+4b2fA8ajHXvOl1SV/s15ehw4th2xZtKpJdfz6nx2M9oaMVehScZJfDUc87P8Sa3plMexZJP35cO1eh7cdkyV/yzTXal+hxMX7VVXt1stmcrL1O/H4Zj6UBywYvgf0OTi9Ouo7znPr+J/K75I7MewKC91IX8SwwVRi0vKgYe0GrFR+N242/2F+H274A/FsK+Ft/oTV9Ozk8pSWzJFYbBFc6Iz8Wi/wDrFr0ET0xJ/mlv+ZRbFHyJvxf8yaWNll8cvh/DtyLLZ12RzS8Rk64vgLeMluqS47WsxvZ49Uif4hNcpSAniZPbOT66wywxXJInLbZy5yYpT5vPqPoJe0fmA2+L9Q6RHmMUms036mcLAs1O02DKX3Zh0geWwXL7sHSK8lg5cfQNMGuPUyTW5vsZJgc49AL8/QNC6kc8oeaeMY3WBQdTNU2ahlNo1VWakHeyCVaX2gaUNvZmqvL7RtKDvpm+8yNpRt/I1YuQNCD7RI1Y2fE2hB9qmEsfPiDdoZbVMNaRny7A3aG9qn2GR0pU4LsDdodbXPsMjpepwFeJdyi2yXy/foNhpqflFeBdy0dvkvhHQ03Ph+5OWzrudMPEJdjoUNPygticnyeSOWeyKb8j08fiKxx4q2ynD+0U3GSaV9q2kp7FFNNHXg8QjNSbXFcjnVNMz4HTHZonmZdulfITLS8+H7lVgRzS22XYVLScnuXqOsaRGW1N9AHj35f3G0Enm8jPfnw9A6RN75APHPguzG0ivIY8c+XZh0ivKe9+fLszaQbwx418uz+gdIHlZnvsuXZ/Q1A3gLxkuXZmozyMz3uXFfpYaQuuX2jHipcV+k1I2uX2gXiJeb/E1IVzl3+gHjT83+IaQNUu/wBDzqy83+JqQNUu/wBAfGl5vQ1IGuXf6Ew5zBJAGSCUQWUUEMjBC2VjjQyMEK2WjBBqCBZRQQaggWOsaDjTFciiwpjFSQuplVgiNjRX2hdY62ZdxkaC+0gPIOtlXcbGigbwZbIOhh19oV5Si2Ox8MIuC7CPOii2FjoYHkhHtCKx2CX3/odDR/Jdn9BHnTKx2GS419H/AAF/0/71Qb9fbG9jl9o9DAW/9WLLMmv7Hhssou/8MXVwH3qsaOdCZNilfD9mTTwb4ehZZkcs9jl2+gmWG5eg6yohLZH2foLeG5DbxE/Zn2YMsP1DvBXs/wCYPgdRtYvs/wCfob4C59jaxXg/P0PeB1DrFeH8wfB69htYu6XmedHm/Q2pg3S7mOibUDdruA6PMOoXQu4DpPj6B1G3a7i3TfmRtXkLo8wXT/uQdXkDQu4Oo/MbV5A0+ZmrLig35A0vuckueUaYxqbAMmwlJgpFFKYalIFIopZA1OXBC0h1PJ2DVSXBApFFkydg41peUGlFFlyLoGsS/K/X6C6EOton2DjjH/Tf38gbtdw+1T+VjIY7/wDOQHiXceO2T+VjY6QXkkK8XmVW2y7D4aSXll6CvCiq219iinpVeWXp9Sb2dFoeINckUU9KryT7EpbPHudUPEZ/KyiOmP7J/pZN7Ku5deJy+V+gx6aitql+li+x+Y/4pXNMU9PR4S7W/cPsXmL+LLsDLTUX+V94/UK2SuoJeKWv+v7CZ6Ujwfp9Si2bzIy8R8v2FPHp7mOsBCW3X0BeMXPtcbci+2LzFSxkf7v0y+gd0xHtcfP0MWKjz/TL6B3TB7XH7QaxMePozbtm9qiF4y4m0MHtEWe10HQxd9Exs2lm3iBbNTA5oBsahLQDZuIHQDDxFdAsIKQthFqJgQUjjJnTR4ikEpGodSCjLkLRSMl2GKXIWiqkuwafIBVNdgl0AOq7BroAoq7DI24IV2Vjp6oZG3BC8Sy0fKHGK4IW33HSh8o2PQV2UWn5RsLcP3Fd9yqcfl+/UfBL7bEbZVKHy/V/yVUorgSdl46F0KaSXAjKzrxuHYtpKPBdiErOyKg+g5pW2R/SmJb8x93F9EKlQj5af6EOpvu/Um9ni+kfQmq4OPkpfOCKxyvu/UjPZIvpD/yR1MHwVJdIyX7Mssv5+pyz2Pto9H/JLVwkt3h/5r+Sscq8/ocuTYpvk4fUR7vU4Q/VMpvIef0Od7HmXy+rAlTn5Yd2Mpw7sm8GdfDH1/sHUf8ATXyb+odS7k3jyLnBff6nvD/s9X9Q35iOD6w/f+TVQXC3zl9Q6vMTdeX7meB17sOpg3SPeE+L/U/obUDdLv8AX+jdTm+7BqG3ddfqYzWbT5/UFsNgoFsIGDJmFdgNhFdg3CazjnUeGaYISYo8WMixWWixiYCqYSFKJhIBRMZFisrFjIisshsWKUQcWBlEhsGKyqjIopsmy0YyKYMk6OhRl3KaLZOVHRjWTuVQ1uPp/wCSL0nUo5O/0/sd8XL7+YnuldOSun3+oubly9RlpJS3vkJm5cUUWki3kfVE9RviUVE5a+6JqknyKJI5pyyd0LcmNSJ6snkLk2OqJvWDcPAX3zbm4Aes9c3Am1IxsbgI1J9gWw2hdMvICUhrRNwkLlJ8u4eBNxl2AcnwXcPAV6+wLk+AeAr1dgW3wDwBx7At8ggt9jLmFs5J0njmgCgkYZBxFZWIaFKqg0AogkAdBxYrKxYyLBRVMZFitFVJDIsWiikkNixWiimh9OQjRWORFFORNxLxy+ZTSkSki0Z+ZXTqcyMonZDK+4brdBdBR5n1AlVGUBHmXUTOqh1FkpZosnnUKKLISyoROZRRIyyJinIZIk5gSkMkI5gphoXWgkzUK5nmw0I8hjDpE3gLDpNvAWjaRXlBaGoXeMBo1A1gMNCuYLCK5IFhFsENC2co6TxjTGNQBkHEBVBoUog0wFUwkAdBxYrKJhxYKKKQyLFospIYmLQ6mMixWh1ND6YjRRTiyiArsonHsPpyROSZaM4roURqIm4s6I5IBuqhNDKPNECVRDKLElkTEzkOkRlJdCeb6FUiEpNiJ3KKjnlq6ANsZUTbkgNZhpCOcj1w0LqZusaga2e1w0DWz2saga2ZrBoXUY5GNYDkagWA5BoFgthBYDZgGBAYYByzoPKPGMagBQSAUQaAUQaAUQSAOrCQBkEgDoOLFHT7DEwDpsbFsA1sdC4rHVjo9RWh02Nh1EZaLHRELI9cA1guTDQupgOTDSFbkLk3xGVE25dxck+I6olKwGMJxMYUKzLGFNMA9cID1zAMuYxkmYwDYQAtmAC2EwLZgAuQQWDrBFs//9k=\\n\", \"height\": 183, \"channels\": 3, \"width\": 275, \"type\": \"image\", \"id\": 4908207184}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUSEhMVFRUVFRUVFRYVFxcVFRUVFRUWFhUVFRUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGyslHyUtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIALcBFAMBEQACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAACAwABBAUGB//EAEYQAAEDAQQGBgUJBQkBAQAAAAEAAhEDBBIhMQVBUWFxkQYTgaGx0RQiUpLBFRYyQmJyouHwIyRTwtIHM0NjgpOjstNzNP/EABsBAAMBAQEBAQAAAAAAAAAAAAABAgMEBQYH/8QAOhEAAgEDAQUFBgYBAwUBAAAAAAECAxESBBMhMUFRBRRhkaEVUoGx0eEiMkJxwfDxJDPiIzSCwtJD/9oADAMBAAIRAxEAPwDCzpTTjIk7hA71953Rt7mVtEbKenWEYDvHxUPSSRWaOjSrgichvXPKDTsUmW6mXD1HR2YIUkvzIALTQc0XnPJAzyAThNN2SA8zpKuy9eDmt/E4nhC9GlFqNmZyaNWiNL0hhUfekZOaLo7VjXoye+HzHGa5ktlust6QXkziKYAHva0QhWtbd8RuUbjq9oqXBUs5NOmc3PuyTxMkqVCOWNTfLwuN3tuNNLTLqDP3txcXYsDLt4jI5RAWUtPGpL/pK1uNwyxW83VdM2VtMVBUAkYAYv7WrFaes5OLX0HkrXMHzupNi66pUwyLWtE8c1r3GUuNl5sW0RjbpO02p91tUUmk4BpDTzzK3dCjQjdxv6/YLt8wrXaK9K8KtsGByb67iRqIAw7SlCFKe+NP+BO65l6H6Sw43mVHzrNxoHAah2pVtJkt1l5gpnoa+naTGhz/AFZyEtM8CDC4Y6WcnaP8lOSRzG9L2FwHVOgmJkHtgBdHs+SX5kJTPRsqAtvYxE4gg8lwNNOxZzzplmJDSQ3My1oHGTuXR3aW674iuc216aq1ARRFICDMuvu7GjyXRDSwg/xt+VkTd8jyjHtLjg0xJJAIy4r07biUwKhDxdGeqB+SdrBxEVrA6nBe0gHKdazi0+DE424nT0Q2i4GGQ4b8eKieS4MqNgLbZBitIyJaOdUspCu6IxAFnOpK4Ysa0vGEmNyd0OzBJhVkAs1QjNCE1nTqWU5t8AsLaxSmwsNDVtFyCxc71aArrN6WRNzJTrEZLjjVaCxoo2xw1rWNS/EN51qWnS0ANAkZk4k9mSHThJ72Vmzb87qoGAa7iMuKxlpKXHeVtGJf0pc8RUaHDZACI0KcXeN0G0fMXW0jZnNgUC122ZnwhXGM07uV1+wZRfI5ForAABoElzR3ye4FGpqJRSXNpfy/RElCsQZyVbVhY6Ng0w5pAcA5gn1SMMdYOYKJRjPfwfUpSaMlvtTqrzUeZJ5AbBuQkorGInvMpdClzaFYgcUs2x2GNOucVrF2XERXallJhYjuKG2h2TLZTkwksp8wshj2dWQQ4znhIIVNWXENxodpmuQG9dVgfbPjKzVOF7qK8huQdn6oiXudM4tOZG0Gc+K1eXIFbmMfbAx80GNgfRLhedlnngpxbjaXoPg9wNSq9zcWtGsw3EneVaVt4bzLScWukTn2p35CSaPWMs1mqNv1axvgSWvN4jlMjguGU60ZYxhu6o13MXYbXZ2uhzSQJF9rHY7DGYTqRqNXT+AKyOjesLx/ex94OZ4hc+Wpj+kNwLNF2V5AZWmdknmdSp6itFXlEMUah0ZaMQ4cp+Kz783yHiNdoxl3Fow+sfVUqvLLcx2ODbtDMkXXh05Qu2nqG1+JEuJx9IaPFM4weGPgumnJTV0Q1YxObsWlhXEOJUu6JYpxO1TlJCA61LasViutCnahYFrzqUpvkBL5SYXIEt4DBirW/cAbmARBPJU4W4MNw0OvNujMLT80bDMj6R6xjfvO5CP5l59RN6inD935K38gaX0zGS7ZRdh2FN4LOIWJik2wBISYyrpSCxAChSDEYBgtUxWBuKB2GswWkXYOBby1W1Fg2BeGxRmkInAIzV9wWNNOq4CAGjfGPNXkUkHTL2xDuRlU7vigSsS0tukS0yRMmRjuhS5cwaJY7RF6WtMiBM4b8DiUruQLcen6J6Vq/wB02ixzdZGDsdeJgrh1dGL/AByk0XFs9jXosAHqUwThi0GewLzIyk+bNDJbdHXiKggPbxiPgtadbFOL4MBVp0U52LnEkYgCABuyVw1EY7khWHWSwAYEug/VJkKKla+9AN9AuB3VtAkap81G2zazYzwun7WS+HAMMYgmZO1e1p4qMbp3M5M4Bq8Fq6ljOwt1ZLagLfUlQ5iEPKxlIYu8s8hGmmw7F2R3ciLGjqQY2rVwiwGDRuF7GBuUOnG/ErECnZHHFrSRuTxigswxZnAw5pHEQmrMdmeu0R0cp1WAtLQ/WJkDsXDW1bpS3rcaqCOdZOjRqW+tQFQTQoU8YwDqjr0R92F5/tBPVbS25Rt/IlH8R1X6DrUhjTa8Zb+OS71q6VTg2i7NHFtFibMBjmDVePPVkuyMt29p/sS0Zvk9zMXUiRtcCG+8EZQluTDGxgqUhKbgnwJA6neFGzCxBTlCigszT6O0MOD7+qIuxv1qsB28DM6iRnI44KFAQbDAMZrRNJBYAWVxxDSYzIy5rKzbDEB1JPBg0UAkkxBBypBcfSthEYZbMFpmnuHkzp2h1S1OaBUGwNcZIJ1SBjlrWOMaUW0v3Ks5HMtFiew4h3ukeITy6byXBimPIOWOrMeCM30Cx6jQfXPdTJkADAh0D1ctRxxOYWFZwUX1LSZ9DpvBGYleG00WU57cpzTSYCX2qm03XPAO/wCJVKnOSukBxdMVw50UqjMc3MqNv5Ygg5Bduni0rzT+K3CPCaY0U9jvWmXY6ieYXoxaqK8WZuJzeqRZixCbZiTEJqAWZ0PkQayZwgXZBnfKMYlYHOtejy3GNf6wUzpLkQ0YTTK5XEVj0ln0Y52RncCB3r0ZVFHiNRGHQ7hq5kfEpKtHqGBpodbTMjUDndOGRwOfBRLCasyldBDSrwDDGgnNwBaTxAwSdCLfFhkzM+0PfmJ4fBaKMY8BXbKZpaq2A1xaGmWxqO1J0YNttXuGTORofStXr7RWD3B1RzQSCZIbeAmN0LyOzoQqVa0mt17L4XEpb7nXp6crB14VKk/eMcjgvWdCk1bFeRWYdp09VqulzzOotgRwIxUw09OCskPI0WfTzgLr3OqMiC1x+JnFTLTQbvFJMakY69pacQ0Eb4EDZIAWyTSC5krMk+q3VtlUIZS0XVMQzE5Th3nBZ7SK5jxZpo2Sux0AAuAwgiB/qBiUOpGUd/ALMqvonGalWneOJF+SPvGO5QqilwTt+w7BNsllY2TXl2BgNLuwAxzKm8090fUNyMta3NGFNzy32XYA8QFsmuLtcm/QGhpA+yyJ9hp7MdSW6XXzGmwarw7MMb90QrUUg4g09EvfJEEDePis5WT3iwLZYAD6xIGtWoBijuaDZZm/Sqlrp9QwAQdpcTAXPqNra0Y7uZUbI9j6a0U2lpp1cILr4zA1wDj5rydk3J3vHwt/gs8x0gt1cT+xa0SIcGyO9ua9HT06fKV30v8AciTfI88NLWgOkPunc1o+C6HSi1Zr5kXkXaNNWpzr5e4GIlvqYf6YUKlGKtju8x3YFHStfE33nj6w5FNQi1wBXKfpGvBl7oOYyB4jJOyW+w7MzC0OBkEp7QVmaLLaMZdfjd+avK6KR6HRFnp2hhBc2m8YgubBcJ9vKe9c9apKlLJJtf3kWgNIdHc3Bx+9Hq+8iGqUnb/PkDicmnaqlEmkZZjBeL18cJIwwC3tGdm9/wAjPetx3dB2OzVGuNZ5fjtggbSJlc2pq1oNKmikkzXW6L2UkkVQ0HECRly4rFayqlZwu/2BxRpsukGQA4BriMjGPbkpnRlxW9FWHVWscMQCN0BRFyi9wOJiqaPon1g0kbAAeS2VapwbFgjJU0TrZDRsuye0Xe4rVaj3v76kuHQZS0G8iA8Nn7HgSMFMtVFcvUeBmtnRUspvqdaPUa55kamgn4KZ9opRe4nCyPK9FtEk0OsIPrON3eGwJ53uS5+yVhSbfNipwurnRfo9w+qe0L1849S9mw26MdGMDX+gltEGzZdm0Q9xAEMBMXn+qOWZUTrRj4hs2amaJa0kPeHAGJZkeEjJTtm1uXmUqZ0R0d9WQCdhBDcTkMcise+K9nuHgKboCqTFx+BzN2PHFW9XTSvcWAdtsD4itUuBuGDYJ3er2ZqYVYv8ivfxBx6l2bQdkw/aS7WKjKobzEKJVq1/y7vBoMUa29H7E5smvSbEzde2MDnjisnqa8XbB+QbjnWfo2yqS9tRvVAmX+qIGowHEnuW1TU47nH8XTf9AsjFU0dRa+6DUc2YlrWgRxc5bxlNxvZL4/YVjfW0XZbt4Wm6fZeySDxZIWca9e9nC/in9QtY59osoAgV2O3XHfFq6Izk3+Vr4r6iOZVYcjjwWpLRmdQOpQ4vkKw6nVe2Lrrp1xgdypq63gb36XrOEPqVHDe4+aiNGmt6il8BqTMjqoIWjQ73BU2YBNqIHcIVE7jI56BO4F9Fxbw320gAEnDIJXih3ZKdsdGDiAcwDnxR+F77BdiH1AU73EKaIylJKxNgusO9VkxGX0neuTNhkMZbCAQCQDnBwTyHmPoW0iIeRGwlWrPiGZ7Cy6XZ1Yc11JpGd6GzhiWj6RK5pUHlvTt4f2xrmrFHpOCMKjWnbcnxKO57969RZrqee6Q9NHOovpCox3WMdTIaG4BwumTmDBK8/WVNLTg4xd34O9vUiVTdZHHp9Na7abKQZTDGNa1oF8GGiBJvYrhpdobNWUUSqrSsi7F0hNSoGupNMziHOwgTkc8tutejpO051qqp48b/AA3FKo296O3R0tEeqMMsSvXcEzZTNLtLkmQBOYJAvc81GySKyHDpNWyEdoBHJYvTUx3NNLpdWaIhnuxjtwWT0lN9fMN3MK09Marm3WgCWlpMmZOF4AQAlHR007huPM1HEnEk8yuu7RNkPs1vcwgguMaiSRwIRZNWaFwNFa10ajrzqRYdd0y0wPZwgogpRVsr/uKy5jBphwaQ2GzgXBrZI3lN0ot3YXEm31HfSquw5clcacFwSF8TTVtzOruQHOmb5aAeAgpKnLPK9l0uDaOS+vvW9zMadIm4GXWYT611t4gxgTnhHepUVlld+e4MnYyPrqrom4s1UZILhCqTkP1xU5XKV+QYdtCMikgoUuReJEsh2CASyKxIWqXJjwRVxLIMEUaYRuFgiixUmS4i3MQ2Q4lAKkybE6tOwsTnNC5FYzSCmFVxlB6FJCFVLbjDZcd2Q4nJc0+0N+NJOT8OHxZLEuouf9N2Hsty7TrXPLTVtR/vzsvdj9QsOp0GgQGiDnv4rrhpaFOOEYqzHYwMoAVWtIBAnVmIMEjWfJeHT06hrI05JNL1Vna4HUpBrTLWgcAAvoYUqVN3hFL9kMd161zHcIVylcrJhttCCs2MFdLiUqgQtCEVtCGuUxbQjaxRcMmQ1U7g5EFQnUlkF2WXFPNoGixUOtUqgWLLk8x2Qt91GRDSEv3JORDQCm4rBtcdqdxq5YedpScik2EHKXIpBioVLZomwusKnIq7LDilkPexgPBFyywi47FOKpSIYpxKeRmwCU8iGiryeQrGCVgZFFAgHUZzMjZkO3aspUs3+N3XTl8eorBtYBuW0IqKstw7EhWKxEAYqjorA7h4fmvGqSUddd+HyFzNy9m5W8iYFhAwgU0AV5MYQci4Fh6LjCvouMIOSuh7y53pXQ94TSnce8KUZDsVCWQYlEIyFiAQjIWIJCLisVCLhYsBTcqwbWqWykhrQpyNFEYApyNFEsBLMaiXdRkPEkIyDEAhPIhxFuKrIhoC8nkQS8ncVjEAkc5cJjLhMAYSFYkICxIQBgcJrRu/lXktKWuafT+CbbzWyYg5jDyK9OnJ2s+KANaXKIEXAtFxkRcCwUXGWEXAIIbKQYSuMNoRcpIYAi5WIYYlcpRCuJXLxJcU5DwKLEZiwBNNPMWzALUZEYFAIyDEY0KXI1jEc0KHI1URgaocjRQLuqMi1Au4lmPAotTzJcASxVkS4CntVKRk4CrirIzwBup5E4nOvq8jhuEHIyGggi7KCBRkMsIyKsXdTuFjntH7wf19ReVF/wCtf95Gdvx2NzqeM9h+H63r0W7SuW4F9WruPAlxPIWJLqLhiSE7hYkIuOwQCLhYIBFx2DDUXKSGMapuWkOY1S5G0Yoa1ilyNFBBimpczRUwuqUuZeyJ1SjMrZFGijaC2ID6KaqGbpCjSVZkbMgYlmCgNaFDmaxiOa1ZuZvGAwNUOZqoF3VOZWAJahTJcAXBWpmbgJc1aKRhKAssVZEOAJYjMnA40HYu2x4xYSsNBBOxSCBSKuG1FigwnYZzqX/6T2/9V5MP+9f95Ga/3DrQvUsdCLupMonVqbjxBNJFxYAmmjInAq4qyDEsNRkGIQYnkGIbWJZFqI1rVLkaKI1rFLkaqI5lNZuRvGmxzaazcjeNIa2iVm5o2VIMWcrN1UaKiELMVLqotUS/RCp2wbAU+xHYmqxD0wv0Pcntie7Btsil1i46YeywlZOsbLToM2E7FO2K2IBsx2I2obKwt1EpqoS6YDqB2JqoiHSEupHYtFUMJUGA6mVSqmTovoLLVe0I2Zx/1mvaPnbEI3IbHYotKm7CxUKbjsWCi4wwUXKObQP7we3/AKryKb/1r+PyMo/7h2A9etc6UMa4KGzRDWwobNIpDWsClyNVAMUgocjRU7l+jhLMrYFGzI2gu7g+jI2ou7srqYT2hOyaCaxGZSgMY1S5GsYoewBQ2dEUh7GjasZSZurGhjVk2axHNCzZqhjVDKTDDhsKzd+pQYc1LeFwppwZz1buO1K7Jd77jJWInDyVoYdCqokijYyuNiyaE4hCow5hTvC0gXClsSvMLTIaVLbCMpivPoJdZqZ+srzkPf0BNmbqM96ebKQBot9kJ5sMUfOg9fWXPz5MY2qi5akOZWTuWmmOEHWk2aKzCFMFTctRuX6Olkitkcax05tRb9p/cD5Lx6Uv9W34s5qcL1sf3PQCwlek6iPRWlkGLEdil1EWtLLoMZYys3URrHSyY9lics3WRvHSTNdKwncsZV0dUNK1xNAsJ1LN1zXYBDRz9ijboNiWNHu2JOuh7LxLOjXbEtuDpIU/RpGoq1qBbBCnWLiqVcnu4Asye2FsRrKKh1C1TGtonYoczVQGNYdihzLURzQsnIpIa1o/UKXIdg7gU5DL6oFLMQp9m4frsTVQE0LZTE5durwTcijXSLdnespXJkmHDVF5E/iKLGoykO8hTw1aJspXE3WqrsZTqYRcBDqY2qrgfPzTX1Fz8/wLuFO4YssAoyHZjWyjI0SY9hKLmiHsJUs2Vzi6Of8AvZP2qn8y8ijv1L/dnLRdq9/3PUsthC9B00z2IaqUTQzSB1hZOijpjrnzQ9mkd3gsZUTojrF0NdG3t2eC55UpHRHUwZuo2hu7uWEoSNck+ZqZWG5ZOLJa8RwrjYFDgyMfEIWn9QpwYsEQ2o7k8ECpxBfazsahUylTQPpG1o5p4PqGHiAarfZTtLqVi+oB6rZB4IvMEpA9UzUWpOcuhV30G0A0HEtjcQolKTW4Um2txsNOiR9IDkufKouRz5VVyEOpMH1gVSnJ8jVSm+QJDE7zKvMU5g1KlJlpvmKfT4qlItSM9WitFJFp3KptQyh7QVk2upm2hhGGRn9aoUX8SefEz1J2LSL8TVWFhhVZA7AvaVSZNjO5p3q8icTyfoFT2HRtIIC+i2sep8d3Wr7rDp6PqnJhPDFDrQXFlLS1nwiW6wVB9JpbxwPJJVYvgwemqL8ysV6Md3MJ5onZSHssbjk108BHOVO1XM1jppvgjRT0XWz6sxtwjxSeop9TWOkrdPkea0TScbYWgS69VwkZi9OPNeXRmlXcnw3nnaenKWoxS37z1forxmwcwfBeg6sXwZ7C09RcYjDTjNjB/qHhKjPxNcLcYoNrGazyE/FS5T5FqNPqMZZg76Lp7APis5VWuKNFRjLgxVSi4T62AMas01JPkQ4SjzLvEZPB5qbJ8ik2uEg22p2sqXTRarPmNbaAfrdxWbg0axqJ8xgfvU2NFJdR7HfaUNFoc1h2hQ2irDRScpbQwhRKnJDuTqCpzQXRDZtynaoeSANjKW2iPaIv0Vyl1oj2kSxZ3alLrRDaR5jmWaoM2HxWUq9PqZurTfM0MsVQ5MdyWL1EFzMnXpri0G7RtQj6DuSnvMFzJWppr9SMx0XVH1Hcir73B8zbvVN/qRqs9gqZ3XcisJ6iJhPUU1uujX6C+PonkfJYbeN+Jjt4X4nMtFFwOI7iumFaL5nZCcWtzKNOArVW7HkmzLUK6YyNomZxWtzTEqz1Xj6QA98z2l8jkvTko8v76HlpTtvI+0vkfsqbve5yU8Vbe2J5cjSKNNzQXUrp1gesBwnUVllOLsmaYNrek/3AdQswj9g446mv/UKs6nvGEqUfd9DZSFmOAoxhjep6wcsR2rNyqLi/UpQbQ5posxbTgzHqNg9yHnLmPGSPmXRNw+VCTkX2nUTmKmoYrON77j53R/8Aebusj6NWsjHOm86Nhb8StVOSR9Ir23oBujaIEEudxz7Ix7E3VqN7icd1rGd2iaZN4PgeyWEjvdKrbStZkYb7ht0dTMiWf7R+LvBTtJ/1jcU/0hP0fT2UAP8A5u/9EbWXj5kbHwEPsbWDA0o4Vsd8Neqzb6+n0Gk1wMtoF0XooQZgftATBjWVcd+7f6DeS6EsulW5Os1I6pxaOOMpTovlJmeTY52lKE42YDhdPiFOxnb8w8muIIttA4im8bgKceCTpz6msZvkhVW2MP0Q4e4B+EIVNrizSNRjLPam/WvDgQe6FE4Pkaqo2bG2mn/mcYHmsXGXgVlLwNFmtNE5ue3i2fAlZThPlYmW05JP4nSszqB/xDOyCCea5KkavQ5qm3902OfTGEEdkHvWGym+Zgo1XzNNK10dbSeQ8FjKhPqZSo1+TGOtdA/4Z4zCnYzXMhUdQv1DaGkaLRAY48XeQUOh1InpqsndyXkaG6TpxN10CJ9bbksnSSZk9LO9rryGjS1EGHAg73Dht3FLZw8TPutZ74v0ZpbXpOzYY+1EatZ4hKKgv6jFwqR5+RYtFJhi60cLnwTlOnHj/wCotnVmr3fqaGWmmR9HuaVUatG35fSJm6dRPj8zJVrUjmAexp+KwTp3un6fc2jGquD+Zit1Szkes0e7dPctk78PodNGOoi7p+tzh2qy2dwwDBuDnf8Amt4Smt9z0qdXURe+/kv/AKOZV0ZSnAHsqYdk0l0qvJI7I6mtb/j/AMjx1O2P2jwX1zpRPLjWqX5By6M3TxBHKFNo3NcajXMFrn6nEdsJ4x6CSnykOaauqofeHmoahzRpGnVfCXqG1lX+J+MZe9ipvDoaKhW94aG1sIqTt9ZuH4sUXp80U6Nbkzw3Rku9N9X6U1ccNjpx5rjpY57+B83oMnqt3Hee5NauNZ7vguzGkz6TGuuQPpNbeezyQ4UxJVugYtFfYfdUY0+pSVXoLe+qc73IiOGxVaHgGMyXqu1/bKLQBQn4lGiTtPZ+SLpFbIr0Td3JbQfd0yxYknVK7shg0WVLrh3ePUYNFP3c1G3QbKK5kGiamzvS28QUI9Sxoyp7Kl1olKMVzGM0dW1N7x5rN1YFZR6lmwVRm08x5pbWD5lRnHqEGVBt5qW4s0TgxlJ7zkTz81EsUU1BcUMbUftPMallJIhxgNo1j7cLCpFpcCZQXGx1KNGR/es5meQXnVKkk/ys4p1LP8rNdPRzTnUMHc4hc0tRPoc8tS1wj8jUzQzRldd95r57isHqJPiYPWyfG6/Zr6GqzaLaMw2eJ8JWUqrvvMKmqk+FzpWbRrdQPMLOEXUlZK/xRyz1MjY3Rg2d/wCS612ZUnwjb/yT/gwepfUxWvRPDmuSenrUZWdvM6KWrsciv0fc7KOa2pVJ3svmd0O0YR4iqfRj25n7LwP5StnqnHdYuXal/wAvqvuE7oyJwLwPvz3woevmifaTfFLyPgbNORq71+kPUQZ48dZJchw6Su2R2qNtSN12pUL+ce0eCe2ph7TlzQ6n0pIyHKEnOkzaPbNSPBDqfS3d4eSn/ovmartya5DW9Mfsz2jyRjS6l+3Xziee0Bbuqr9bEw18xvBkripWzV+B5Gk1Gxrqrbhf1PSjpeNbTzXbjT6ntrt2POIR6Ws9l3vJYQ6le3afuso9LGfb5oxh1D25S91kHSyn9pLCHUr27S6MYzpdTHtfFJ04PmP25S5ph/O+kfa5fkjZQ6jXbdDoy29LKW13L8ktlHkyl21p+jLPSujrvcvyRsl1H7a0/iV86aO1w4CEbFdUHtnTeILulFLUXcvzT2MeqE+2aHK5Xzqp/a5AfFLYR6i9t0ejC+ddOZunuPiUtguoe2qPRlfOqnqaeYHglsPFDfbVHlFgnpZ9n/kPkju66oj21D3PX7FjpYfZ/wCT8lPd49Q9sR9xef2LHSs6mj/cPkpenXUftiL/AELz+xD0qnNjfe/JR3dLmNdrpcI+pB0o+w3mVMqHiWu1o9BrOlP2G96xlpr8y12lBmuj0tH8On+LzXLPQ3/UylqaUub9PodSz9NGj/ApHfNT+pcc+y0/1v0BUac//wBJen0OhZ+nUf4NLnU/qXPLsmHVjfZdOfCo/T6HasXT/bRb2Od8U1QVF5Qir/u/qc1XsC63Tfkj0lh6WUniSLp4ysX2vVpu0qXk/qjya3ZNWD3byaR6SNa2826eK5n2tXrVLQgkvHeFDs1zlaVzyVr/ALRKoP8Ads7JC73p6lWzcrfskj2o9gUUruTOfV/tQqjOlTPa4JS7JdT8036GU+ytLD9b9DK7+1Wp/Ap+87yU+wY++/JGD0mmX635Hxw6RGpp7V9vLtSCX4YHzVjDWqFxkn8uC8qpVlUllIZsZpKAAWgwM5z35L0afajjFJwT8RFu0mdTG9uKJdrS5QXz+gwflN3ss5HzU+1Knux8n9QJ8pu9hnI+aXtOfuR8vuAiz2osMgA4EY5QRBXFTquElK1/3Ad8on2Gcj5rs9pT92PkBfykfYp8j5pe0Z84R8vuO4bdJDXSb4LRdpL9VNf34BcY3SNPXT5QtV2jp+dP5BdDm2ugdUcW+QW8dZopcVb4DuhrXUTkWduHit4y0UuDiG4c2zNOQYeAn4rZaWlL8uP9+Iy/Qxsby/NPuUei8vuFixZBsby/NPuMfDy+4F+iDY3kfNHco9F/fiMnoY2N7/NHcY9F/fiG4sWJuzx81D0Ef7/ke4Z6AzYeZU9wXU0tEoaPZv5/kl3CIJRCOjmbj735JdwT5jxS4fyV8nN/U+aH2cnzCyINFN2lS+zV1KUEOp6Mp6754OAHe0qJdmvlI2goc7+f2Dbo2n/me83+lZPs6fven3NkqXR+f2DGjqf+Z77f6Fm+zanVeX3LTp8r+f2GMsLP8z32/wBCxl2fU6ryN4Sj4+Y6nZYODiBtPreELnnoJ9TvpVrcDpULPGPWg/6XLkno59D06ep3bzZTvD67fxD+Vck9FL3TXbU3xXy+outaKmWfApLRNcIlKVJbzmWqhVOTDzHmt40WuRzairJ7onJr2St7B7j8V0RpvoeNWjVfIxOslX+G/wB0rXCXQ4HGpf8AKzzC5jxSkARAEQBEARAFoAiAIgCkAWgCIAiALBQt3AB1O11Bk9w7THJbR1FWPCT8xptDflOr7Z7vJa9+1HvsebINJ1fbPd5I7/qPfYZMsaSq+2e7yT7/AKj32LJhjSlX2zyb5J+0NR779B5MsaUq+2fdb5J+0NR779PoPNlnStb2z7rfGEd/1D/W/T6BnIpulKwyqO7vJLv2o99jVSS4MP5YrfxPws/pTWv1C/X8voPbTfP5FjTNf2/ws/pT9oan3/RfQNtPr8jQ7S9qYReJbsD6TBPNmKXf67/V8voaqvVj/hfQ7eiulVIM/eOsc6cqVCzBsfefiT2BYvU6hvdL1ZvHXS/V8kbx01srfo2Uv/8AoKTedwI7xX5zfmbLtCK/R8voL+flMnGwUY+y+6f+ih1ar4TfmN9oK1lH1+38mSn0opAuIszheM42mqQDuAAhS51H+p/34hHWfD4v6ma19IXPBAaGAnU+qTGz1nkdyi8ucmaLWPqZPTztKlo2Wsa5h1LfgkkXU1t1xMz7ZKtHJPV3W8S+1mIvHgCrTOSdeT5ifST7R5p5Mw2supzlmc5SALQBUIAkIAiAIgCIAiAIgCIAiAKQBaAIgCIAiAIgC0ARAElAFygB1e1OfF67hgLrGM53GieJTyZcpuVr/IVeRcgsEbEXGWHIuFwryYwgUDQV5A7hB6RWRfWIsVmyzUQN1G0AXIsZtlFArgFBJnCRJEARAElAEQBaALhAEhAFQgCFAEhAFQgCIAiAKQBEAWgCIAiAIgCIAiALQBEARAEQBaALDkAWKhQO4QqFO4XL61Fx3J1iLhcovQFyi9Aii9FwP//Z\\n\", \"height\": 183, \"channels\": 3, \"width\": 276, \"type\": \"image\", \"id\": 4908206800}]}, \"rgb\": {\"complete\": true, \"numeric\": false, \"num_unique\": 3922, \"num_undefined\": 0, \"progress\": 1.0, \"frequent_items\": {\"0.443019\": {\"frequency\": 1, \"value\": \"0.443019\"}, \"0.29172\": {\"frequency\": 2, \"value\": \"0.29172\"}, \"0.418481\": {\"frequency\": 1, \"value\": \"0.418481\"}, \"0.442012\": {\"frequency\": 1, \"value\": \"0.442012\"}, \"0.0570124\": {\"frequency\": 1, \"value\": \"0.0570124\"}, \"0.56007\": {\"frequency\": 1, \"value\": \"0.56007\"}, \"0.489568\": {\"frequency\": 1, \"value\": \"0.489568\"}, \"0.282047\": {\"frequency\": 1, \"value\": \"0.282047\"}, \"0.512445\": {\"frequency\": 1, \"value\": \"0.512445\"}, \"0.262569\": {\"frequency\": 1, \"value\": \"0.262569\"}, \"0.281666\": {\"frequency\": 1, \"value\": \"0.281666\"}, \"0.222325\": {\"frequency\": 1, \"value\": \"0.222325\"}, \"0.320569\": {\"frequency\": 1, \"value\": \"0.320569\"}, \"0.443385\": {\"frequency\": 1, \"value\": \"0.443385\"}, \"0.412983\": {\"frequency\": 1, \"value\": \"0.412983\"}, \"0.301257\": {\"frequency\": 1, \"value\": \"0.301257\"}, \"0.407554\": {\"frequency\": 1, \"value\": \"0.407554\"}, \"0.230705\": {\"frequency\": 1, \"value\": \"0.230705\"}, \"0.293263\": {\"frequency\": 1, \"value\": \"0.293263\"}, \"0.596432\": {\"frequency\": 1, \"value\": \"0.596432\"}, \"0.464167\": {\"frequency\": 1, \"value\": \"0.464167\"}, \"0.485101\": {\"frequency\": 1, \"value\": \"0.485101\"}, \"0.592441\": {\"frequency\": 1, \"value\": \"0.592441\"}, \"0.446114\": {\"frequency\": 1, \"value\": \"0.446114\"}, \"0.442548\": {\"frequency\": 1, \"value\": \"0.442548\"}, \"0.594875\": {\"frequency\": 1, \"value\": \"0.594875\"}, \"0.344405\": {\"frequency\": 1, \"value\": \"0.344405\"}, \"0.505428\": {\"frequency\": 1, \"value\": \"0.505428\"}, \"0.645861\": {\"frequency\": 1, \"value\": \"0.645861\"}, \"0.270942\": {\"frequency\": 1, \"value\": \"0.270942\"}, \"0.272522\": {\"frequency\": 1, \"value\": \"0.272522\"}, \"0.272033\": {\"frequency\": 1, \"value\": \"0.272033\"}, \"0.155577\": {\"frequency\": 1, \"value\": \"0.155577\"}, \"0.714999\": {\"frequency\": 1, \"value\": \"0.714999\"}, \"0.66893\": {\"frequency\": 1, \"value\": \"0.66893\"}, \"0.170769\": {\"frequency\": 1, \"value\": \"0.170769\"}, \"0.515491\": {\"frequency\": 1, \"value\": \"0.515491\"}, \"0.596583\": {\"frequency\": 1, \"value\": \"0.596583\"}, \"0.721041\": {\"frequency\": 1, \"value\": \"0.721041\"}, \"0.351174\": {\"frequency\": 1, \"value\": \"0.351174\"}, \"0.515834\": {\"frequency\": 1, \"value\": \"0.515834\"}, \"0.216879\": {\"frequency\": 1, \"value\": \"0.216879\"}, \"0.153659\": {\"frequency\": 1, \"value\": \"0.153659\"}, \"0.351173\": {\"frequency\": 1, \"value\": \"0.351173\"}, \"0.312711\": {\"frequency\": 1, \"value\": \"0.312711\"}, \"0.233589\": {\"frequency\": 1, \"value\": \"0.233589\"}, \"0.413744\": {\"frequency\": 1, \"value\": \"0.413744\"}, \"0.255131\": {\"frequency\": 1, \"value\": \"0.255131\"}, \"0.2579\": {\"frequency\": 1, \"value\": \"0.2579\"}, \"0.0947498\": {\"frequency\": 1, \"value\": \"0.0947498\"}, \"0.353934\": {\"frequency\": 1, \"value\": \"0.353934\"}, \"0.479043\": {\"frequency\": 1, \"value\": \"0.479043\"}, \"0.361212\": {\"frequency\": 1, \"value\": \"0.361212\"}, \"0.478061\": {\"frequency\": 1, \"value\": \"0.478061\"}, \"0.569427\": {\"frequency\": 1, \"value\": \"0.569427\"}, \"0.385158\": {\"frequency\": 1, \"value\": \"0.385158\"}, \"0.361214\": {\"frequency\": 2, \"value\": \"0.361214\"}, \"0.322555\": {\"frequency\": 1, \"value\": \"0.322555\"}, \"0.274111\": {\"frequency\": 1, \"value\": \"0.274111\"}, \"0.347347\": {\"frequency\": 1, \"value\": \"0.347347\"}, \"0.446488\": {\"frequency\": 1, \"value\": \"0.446488\"}, \"0.311492\": {\"frequency\": 1, \"value\": \"0.311492\"}, \"0.530348\": {\"frequency\": 1, \"value\": \"0.530348\"}, \"0.371289\": {\"frequency\": 1, \"value\": \"0.371289\"}, \"0.549142\": {\"frequency\": 1, \"value\": \"0.549142\"}, \"0.542837\": {\"frequency\": 1, \"value\": \"0.542837\"}, \"0.789543\": {\"frequency\": 1, \"value\": \"0.789543\"}, \"0.331532\": {\"frequency\": 1, \"value\": \"0.331532\"}, \"0.514728\": {\"frequency\": 1, \"value\": \"0.514728\"}, \"0.621522\": {\"frequency\": 1, \"value\": \"0.621522\"}, \"0.71768\": {\"frequency\": 1, \"value\": \"0.71768\"}, \"0.587177\": {\"frequency\": 1, \"value\": \"0.587177\"}, \"0.372098\": {\"frequency\": 1, \"value\": \"0.372098\"}, \"0.600965\": {\"frequency\": 1, \"value\": \"0.600965\"}, \"0.528277\": {\"frequency\": 1, \"value\": \"0.528277\"}, \"0.495361\": {\"frequency\": 1, \"value\": \"0.495361\"}, \"0.613711\": {\"frequency\": 1, \"value\": \"0.613711\"}, \"0.609386\": {\"frequency\": 1, \"value\": \"0.609386\"}, \"0.306204\": {\"frequency\": 1, \"value\": \"0.306204\"}, \"0.27708\": {\"frequency\": 1, \"value\": \"0.27708\"}, \"0.479623\": {\"frequency\": 1, \"value\": \"0.479623\"}, \"0.268881\": {\"frequency\": 1, \"value\": \"0.268881\"}, \"0.0145911\": {\"frequency\": 1, \"value\": \"0.0145911\"}, \"0.63356\": {\"frequency\": 1, \"value\": \"0.63356\"}, \"0.345597\": {\"frequency\": 1, \"value\": \"0.345597\"}, \"0.250528\": {\"frequency\": 1, \"value\": \"0.250528\"}, \"0.487634\": {\"frequency\": 1, \"value\": \"0.487634\"}, \"0.571554\": {\"frequency\": 1, \"value\": \"0.571554\"}, \"0.185079\": {\"frequency\": 1, \"value\": \"0.185079\"}, \"0.524603\": {\"frequency\": 1, \"value\": \"0.524603\"}, \"0.358297\": {\"frequency\": 1, \"value\": \"0.358297\"}, \"0.521051\": {\"frequency\": 1, \"value\": \"0.521051\"}, \"0.438588\": {\"frequency\": 1, \"value\": \"0.438588\"}, \"0.422779\": {\"frequency\": 1, \"value\": \"0.422779\"}, \"0.439852\": {\"frequency\": 1, \"value\": \"0.439852\"}, \"0.350775\": {\"frequency\": 1, \"value\": \"0.350775\"}, \"0.521059\": {\"frequency\": 1, \"value\": \"0.521059\"}, \"0.338583\": {\"frequency\": 1, \"value\": \"0.338583\"}, \"0.573888\": {\"frequency\": 1, \"value\": \"0.573888\"}, \"0.323074\": {\"frequency\": 1, \"value\": \"0.323074\"}, \"0.289682\": {\"frequency\": 1, \"value\": \"0.289682\"}, \"0.696983\": {\"frequency\": 1, \"value\": \"0.696983\"}, \"0.436052\": {\"frequency\": 1, \"value\": \"0.436052\"}, \"0.643139\": {\"frequency\": 1, \"value\": \"0.643139\"}, \"0.416884\": {\"frequency\": 1, \"value\": \"0.416884\"}, \"0.355477\": {\"frequency\": 1, \"value\": \"0.355477\"}, \"0.587004\": {\"frequency\": 1, \"value\": \"0.587004\"}, \"0.331621\": {\"frequency\": 1, \"value\": \"0.331621\"}, \"0.332539\": {\"frequency\": 1, \"value\": \"0.332539\"}, \"0.475663\": {\"frequency\": 1, \"value\": \"0.475663\"}, \"0.522\": {\"frequency\": 1, \"value\": \"0.522\"}, \"0.0999792\": {\"frequency\": 1, \"value\": \"0.0999792\"}, \"0.192909\": {\"frequency\": 1, \"value\": \"0.192909\"}, \"0.420969\": {\"frequency\": 1, \"value\": \"0.420969\"}, \"0.57469\": {\"frequency\": 1, \"value\": \"0.57469\"}, \"0.453496\": {\"frequency\": 1, \"value\": \"0.453496\"}, \"0.324175\": {\"frequency\": 1, \"value\": \"0.324175\"}, \"0.412766\": {\"frequency\": 1, \"value\": \"0.412766\"}, \"0.36182\": {\"frequency\": 1, \"value\": \"0.36182\"}, \"0.346901\": {\"frequency\": 1, \"value\": \"0.346901\"}, \"0.416869\": {\"frequency\": 1, \"value\": \"0.416869\"}, \"0.422596\": {\"frequency\": 1, \"value\": \"0.422596\"}, \"0.221557\": {\"frequency\": 1, \"value\": \"0.221557\"}, \"0.454319\": {\"frequency\": 1, \"value\": \"0.454319\"}, \"0.341582\": {\"frequency\": 1, \"value\": \"0.341582\"}, \"0.265298\": {\"frequency\": 1, \"value\": \"0.265298\"}, \"0.811874\": {\"frequency\": 1, \"value\": \"0.811874\"}, \"0.457516\": {\"frequency\": 1, \"value\": \"0.457516\"}, \"0.28645\": {\"frequency\": 1, \"value\": \"0.28645\"}, \"0.288643\": {\"frequency\": 1, \"value\": \"0.288643\"}, \"0.580296\": {\"frequency\": 1, \"value\": \"0.580296\"}, \"0.346478\": {\"frequency\": 1, \"value\": \"0.346478\"}, \"0.553991\": {\"frequency\": 1, \"value\": \"0.553991\"}, \"0.401022\": {\"frequency\": 1, \"value\": \"0.401022\"}, \"0.30876\": {\"frequency\": 1, \"value\": \"0.30876\"}, \"0.448178\": {\"frequency\": 1, \"value\": \"0.448178\"}, \"0.34065\": {\"frequency\": 1, \"value\": \"0.34065\"}, \"0.331752\": {\"frequency\": 1, \"value\": \"0.331752\"}, \"0.348629\": {\"frequency\": 1, \"value\": \"0.348629\"}, \"0.567978\": {\"frequency\": 1, \"value\": \"0.567978\"}, \"0.662744\": {\"frequency\": 1, \"value\": \"0.662744\"}, \"0.298544\": {\"frequency\": 1, \"value\": \"0.298544\"}, \"0.338349\": {\"frequency\": 1, \"value\": \"0.338349\"}, \"0.618702\": {\"frequency\": 1, \"value\": \"0.618702\"}, \"0.723998\": {\"frequency\": 1, \"value\": \"0.723998\"}, \"0.22752\": {\"frequency\": 1, \"value\": \"0.22752\"}, \"0.388868\": {\"frequency\": 1, \"value\": \"0.388868\"}, \"0.352605\": {\"frequency\": 1, \"value\": \"0.352605\"}, \"0.316498\": {\"frequency\": 2, \"value\": \"0.316498\"}, \"0.388427\": {\"frequency\": 1, \"value\": \"0.388427\"}, \"0.395396\": {\"frequency\": 1, \"value\": \"0.395396\"}, \"0.493103\": {\"frequency\": 1, \"value\": \"0.493103\"}, \"0.39941\": {\"frequency\": 1, \"value\": \"0.39941\"}, \"0.576692\": {\"frequency\": 1, \"value\": \"0.576692\"}, \"0.41075\": {\"frequency\": 1, \"value\": \"0.41075\"}, \"0.577743\": {\"frequency\": 1, \"value\": \"0.577743\"}, \"0.673454\": {\"frequency\": 1, \"value\": \"0.673454\"}, \"0.444501\": {\"frequency\": 1, \"value\": \"0.444501\"}, \"0.342237\": {\"frequency\": 1, \"value\": \"0.342237\"}, \"0.0634154\": {\"frequency\": 1, \"value\": \"0.0634154\"}, \"0.600172\": {\"frequency\": 1, \"value\": \"0.600172\"}, \"0.723959\": {\"frequency\": 1, \"value\": \"0.723959\"}, \"0.730462\": {\"frequency\": 1, \"value\": \"0.730462\"}, \"0.598349\": {\"frequency\": 1, \"value\": \"0.598349\"}, \"0.330575\": {\"frequency\": 1, \"value\": \"0.330575\"}, \"0.48599\": {\"frequency\": 1, \"value\": \"0.48599\"}, \"0.454083\": {\"frequency\": 1, \"value\": \"0.454083\"}, \"0.647709\": {\"frequency\": 1, \"value\": \"0.647709\"}, \"0.534613\": {\"frequency\": 1, \"value\": \"0.534613\"}, \"0.445291\": {\"frequency\": 1, \"value\": \"0.445291\"}, \"0.715746\": {\"frequency\": 1, \"value\": \"0.715746\"}, \"0.191775\": {\"frequency\": 1, \"value\": \"0.191775\"}, \"0.288799\": {\"frequency\": 1, \"value\": \"0.288799\"}, \"0.534619\": {\"frequency\": 1, \"value\": \"0.534619\"}, \"0.635559\": {\"frequency\": 1, \"value\": \"0.635559\"}, \"0.450786\": {\"frequency\": 1, \"value\": \"0.450786\"}, \"0.356032\": {\"frequency\": 1, \"value\": \"0.356032\"}, \"0.118908\": {\"frequency\": 1, \"value\": \"0.118908\"}, \"0.52237\": {\"frequency\": 1, \"value\": \"0.52237\"}, \"0.403223\": {\"frequency\": 1, \"value\": \"0.403223\"}, \"0.359763\": {\"frequency\": 1, \"value\": \"0.359763\"}, \"0.28474\": {\"frequency\": 1, \"value\": \"0.28474\"}, \"0.223882\": {\"frequency\": 1, \"value\": \"0.223882\"}, \"0.448954\": {\"frequency\": 1, \"value\": \"0.448954\"}, \"0.0260799\": {\"frequency\": 1, \"value\": \"0.0260799\"}, \"0.450545\": {\"frequency\": 1, \"value\": \"0.450545\"}, \"0.413107\": {\"frequency\": 1, \"value\": \"0.413107\"}, \"0.544683\": {\"frequency\": 1, \"value\": \"0.544683\"}, \"0.207165\": {\"frequency\": 1, \"value\": \"0.207165\"}, \"0.377422\": {\"frequency\": 1, \"value\": \"0.377422\"}, \"0.40405\": {\"frequency\": 1, \"value\": \"0.40405\"}, \"0.415994\": {\"frequency\": 1, \"value\": \"0.415994\"}, \"0.298168\": {\"frequency\": 1, \"value\": \"0.298168\"}, \"0.429109\": {\"frequency\": 1, \"value\": \"0.429109\"}, \"0.212817\": {\"frequency\": 1, \"value\": \"0.212817\"}, \"0.604093\": {\"frequency\": 1, \"value\": \"0.604093\"}, \"0.395156\": {\"frequency\": 1, \"value\": \"0.395156\"}, \"0.511228\": {\"frequency\": 1, \"value\": \"0.511228\"}, \"0.265127\": {\"frequency\": 1, \"value\": \"0.265127\"}, \"0.604095\": {\"frequency\": 1, \"value\": \"0.604095\"}, \"0.440757\": {\"frequency\": 1, \"value\": \"0.440757\"}, \"0.395889\": {\"frequency\": 1, \"value\": \"0.395889\"}, \"0.303469\": {\"frequency\": 1, \"value\": \"0.303469\"}, \"0.483849\": {\"frequency\": 1, \"value\": \"0.483849\"}, \"0.268704\": {\"frequency\": 1, \"value\": \"0.268704\"}, \"0.434775\": {\"frequency\": 1, \"value\": \"0.434775\"}, \"0.541565\": {\"frequency\": 1, \"value\": \"0.541565\"}, \"0.451544\": {\"frequency\": 1, \"value\": \"0.451544\"}, \"0.358965\": {\"frequency\": 1, \"value\": \"0.358965\"}, \"0.47665\": {\"frequency\": 1, \"value\": \"0.47665\"}, \"0.398406\": {\"frequency\": 1, \"value\": \"0.398406\"}, \"0.626425\": {\"frequency\": 1, \"value\": \"0.626425\"}, \"0.592624\": {\"frequency\": 1, \"value\": \"0.592624\"}, \"0.13018\": {\"frequency\": 1, \"value\": \"0.13018\"}, \"0.389776\": {\"frequency\": 1, \"value\": \"0.389776\"}, \"0.825288\": {\"frequency\": 1, \"value\": \"0.825288\"}, \"0.128092\": {\"frequency\": 1, \"value\": \"0.128092\"}, \"0.533911\": {\"frequency\": 1, \"value\": \"0.533911\"}, \"0.377558\": {\"frequency\": 1, \"value\": \"0.377558\"}, \"0.447858\": {\"frequency\": 1, \"value\": \"0.447858\"}, \"0.429524\": {\"frequency\": 1, \"value\": \"0.429524\"}, \"0.695401\": {\"frequency\": 1, \"value\": \"0.695401\"}, \"0.428187\": {\"frequency\": 1, \"value\": \"0.428187\"}, \"0.303064\": {\"frequency\": 1, \"value\": \"0.303064\"}, \"0.641808\": {\"frequency\": 1, \"value\": \"0.641808\"}, \"0.386944\": {\"frequency\": 1, \"value\": \"0.386944\"}, \"0.386946\": {\"frequency\": 1, \"value\": \"0.386946\"}, \"0.303068\": {\"frequency\": 1, \"value\": \"0.303068\"}, \"0.24346\": {\"frequency\": 1, \"value\": \"0.24346\"}, \"0.456309\": {\"frequency\": 1, \"value\": \"0.456309\"}, \"0.476868\": {\"frequency\": 1, \"value\": \"0.476868\"}, \"0.402957\": {\"frequency\": 1, \"value\": \"0.402957\"}, \"0.397714\": {\"frequency\": 1, \"value\": \"0.397714\"}, \"0.539525\": {\"frequency\": 1, \"value\": \"0.539525\"}, \"0.431187\": {\"frequency\": 1, \"value\": \"0.431187\"}, \"0.844995\": {\"frequency\": 1, \"value\": \"0.844995\"}, \"0.35511\": {\"frequency\": 1, \"value\": \"0.35511\"}, \"0.402036\": {\"frequency\": 1, \"value\": \"0.402036\"}, \"0.431181\": {\"frequency\": 1, \"value\": \"0.431181\"}, \"0.480586\": {\"frequency\": 2, \"value\": \"0.480586\"}, \"0.269385\": {\"frequency\": 1, \"value\": \"0.269385\"}, \"0.148807\": {\"frequency\": 1, \"value\": \"0.148807\"}, \"0.356344\": {\"frequency\": 1, \"value\": \"0.356344\"}, \"0.734692\": {\"frequency\": 1, \"value\": \"0.734692\"}, \"0.334062\": {\"frequency\": 1, \"value\": \"0.334062\"}, \"0.470541\": {\"frequency\": 1, \"value\": \"0.470541\"}, \"0.224441\": {\"frequency\": 1, \"value\": \"0.224441\"}, \"0.385383\": {\"frequency\": 1, \"value\": \"0.385383\"}, \"0.373252\": {\"frequency\": 1, \"value\": \"0.373252\"}, \"0.413359\": {\"frequency\": 1, \"value\": \"0.413359\"}, \"0.522777\": {\"frequency\": 1, \"value\": \"0.522777\"}, \"0.473892\": {\"frequency\": 1, \"value\": \"0.473892\"}, \"0.233378\": {\"frequency\": 1, \"value\": \"0.233378\"}, \"0.440576\": {\"frequency\": 1, \"value\": \"0.440576\"}, \"0.591565\": {\"frequency\": 1, \"value\": \"0.591565\"}, \"0.34595\": {\"frequency\": 1, \"value\": \"0.34595\"}, \"0.489577\": {\"frequency\": 1, \"value\": \"0.489577\"}, \"0.414641\": {\"frequency\": 1, \"value\": \"0.414641\"}, \"0.289492\": {\"frequency\": 1, \"value\": \"0.289492\"}, \"0.244001\": {\"frequency\": 1, \"value\": \"0.244001\"}, \"0.468598\": {\"frequency\": 1, \"value\": \"0.468598\"}, \"0.397003\": {\"frequency\": 1, \"value\": \"0.397003\"}, \"0.486404\": {\"frequency\": 1, \"value\": \"0.486404\"}, \"0.406309\": {\"frequency\": 1, \"value\": \"0.406309\"}, \"0.409837\": {\"frequency\": 1, \"value\": \"0.409837\"}, \"0.724508\": {\"frequency\": 1, \"value\": \"0.724508\"}, \"0.222868\": {\"frequency\": 1, \"value\": \"0.222868\"}, \"0.419364\": {\"frequency\": 1, \"value\": \"0.419364\"}, \"0.285139\": {\"frequency\": 1, \"value\": \"0.285139\"}, \"0.423986\": {\"frequency\": 1, \"value\": \"0.423986\"}, \"0.3086\": {\"frequency\": 1, \"value\": \"0.3086\"}, \"0.411672\": {\"frequency\": 1, \"value\": \"0.411672\"}, \"0.231071\": {\"frequency\": 1, \"value\": \"0.231071\"}, \"0.359213\": {\"frequency\": 1, \"value\": \"0.359213\"}, \"0.435353\": {\"frequency\": 1, \"value\": \"0.435353\"}, \"0.248248\": {\"frequency\": 1, \"value\": \"0.248248\"}, \"0.552121\": {\"frequency\": 1, \"value\": \"0.552121\"}, \"0.435357\": {\"frequency\": 1, \"value\": \"0.435357\"}, \"0.442154\": {\"frequency\": 1, \"value\": \"0.442154\"}, \"0.443947\": {\"frequency\": 1, \"value\": \"0.443947\"}, \"0.464391\": {\"frequency\": 1, \"value\": \"0.464391\"}, \"0.299361\": {\"frequency\": 1, \"value\": \"0.299361\"}, \"0.535118\": {\"frequency\": 1, \"value\": \"0.535118\"}, \"0.383515\": {\"frequency\": 1, \"value\": \"0.383515\"}, \"0.448943\": {\"frequency\": 1, \"value\": \"0.448943\"}, \"0.620933\": {\"frequency\": 1, \"value\": \"0.620933\"}, \"0.564625\": {\"frequency\": 1, \"value\": \"0.564625\"}, \"0.673052\": {\"frequency\": 1, \"value\": \"0.673052\"}, \"0.311726\": {\"frequency\": 1, \"value\": \"0.311726\"}, \"0.233625\": {\"frequency\": 1, \"value\": \"0.233625\"}, \"0.442444\": {\"frequency\": 1, \"value\": \"0.442444\"}, \"0.219025\": {\"frequency\": 1, \"value\": \"0.219025\"}, \"0.281434\": {\"frequency\": 1, \"value\": \"0.281434\"}, \"0.272028\": {\"frequency\": 1, \"value\": \"0.272028\"}, \"0.565049\": {\"frequency\": 1, \"value\": \"0.565049\"}, \"0.626796\": {\"frequency\": 1, \"value\": \"0.626796\"}, \"0.199905\": {\"frequency\": 1, \"value\": \"0.199905\"}, \"0.358653\": {\"frequency\": 1, \"value\": \"0.358653\"}, \"0.578427\": {\"frequency\": 1, \"value\": \"0.578427\"}, \"0.507341\": {\"frequency\": 1, \"value\": \"0.507341\"}, \"0.19725\": {\"frequency\": 1, \"value\": \"0.19725\"}, \"0.330032\": {\"frequency\": 1, \"value\": \"0.330032\"}, \"0.452337\": {\"frequency\": 1, \"value\": \"0.452337\"}, \"0.617023\": {\"frequency\": 1, \"value\": \"0.617023\"}, \"0.443957\": {\"frequency\": 1, \"value\": \"0.443957\"}, \"0.672485\": {\"frequency\": 1, \"value\": \"0.672485\"}, \"0.375803\": {\"frequency\": 1, \"value\": \"0.375803\"}, \"0.546481\": {\"frequency\": 1, \"value\": \"0.546481\"}, \"0.461512\": {\"frequency\": 1, \"value\": \"0.461512\"}, \"0.321487\": {\"frequency\": 1, \"value\": \"0.321487\"}, \"0.297603\": {\"frequency\": 1, \"value\": \"0.297603\"}, \"0.297358\": {\"frequency\": 1, \"value\": \"0.297358\"}, \"0.239704\": {\"frequency\": 1, \"value\": \"0.239704\"}, \"0.421346\": {\"frequency\": 1, \"value\": \"0.421346\"}, \"0.457477\": {\"frequency\": 1, \"value\": \"0.457477\"}, \"0.551279\": {\"frequency\": 1, \"value\": \"0.551279\"}, \"0.297173\": {\"frequency\": 1, \"value\": \"0.297173\"}, \"0.571258\": {\"frequency\": 1, \"value\": \"0.571258\"}, \"0.66397\": {\"frequency\": 1, \"value\": \"0.66397\"}, \"0.566144\": {\"frequency\": 1, \"value\": \"0.566144\"}, \"0.77203\": {\"frequency\": 1, \"value\": \"0.77203\"}, \"0.449566\": {\"frequency\": 1, \"value\": \"0.449566\"}, \"0.352985\": {\"frequency\": 1, \"value\": \"0.352985\"}, \"0.239528\": {\"frequency\": 1, \"value\": \"0.239528\"}, \"0.426903\": {\"frequency\": 1, \"value\": \"0.426903\"}, \"0.266653\": {\"frequency\": 1, \"value\": \"0.266653\"}, \"0.155497\": {\"frequency\": 1, \"value\": \"0.155497\"}, \"0.427083\": {\"frequency\": 1, \"value\": \"0.427083\"}, \"0.376548\": {\"frequency\": 1, \"value\": \"0.376548\"}, \"0.179381\": {\"frequency\": 1, \"value\": \"0.179381\"}, \"0.373711\": {\"frequency\": 1, \"value\": \"0.373711\"}, \"0.310536\": {\"frequency\": 1, \"value\": \"0.310536\"}, \"0.413646\": {\"frequency\": 1, \"value\": \"0.413646\"}, \"0.49169\": {\"frequency\": 1, \"value\": \"0.49169\"}, \"0.413642\": {\"frequency\": 1, \"value\": \"0.413642\"}, \"0.0248334\": {\"frequency\": 1, \"value\": \"0.0248334\"}, \"0.798722\": {\"frequency\": 1, \"value\": \"0.798722\"}, \"0.207203\": {\"frequency\": 1, \"value\": \"0.207203\"}, \"0.285087\": {\"frequency\": 1, \"value\": \"0.285087\"}, \"0.305895\": {\"frequency\": 1, \"value\": \"0.305895\"}, \"0.313875\": {\"frequency\": 1, \"value\": \"0.313875\"}, \"0.319405\": {\"frequency\": 1, \"value\": \"0.319405\"}, \"0.313871\": {\"frequency\": 1, \"value\": \"0.313871\"}, \"0.531849\": {\"frequency\": 1, \"value\": \"0.531849\"}, \"0.38737\": {\"frequency\": 1, \"value\": \"0.38737\"}, \"0.180634\": {\"frequency\": 1, \"value\": \"0.180634\"}, \"0.345362\": {\"frequency\": 1, \"value\": \"0.345362\"}, \"0.534442\": {\"frequency\": 1, \"value\": \"0.534442\"}, \"0.307946\": {\"frequency\": 1, \"value\": \"0.307946\"}, \"0.680514\": {\"frequency\": 1, \"value\": \"0.680514\"}, \"0.550781\": {\"frequency\": 1, \"value\": \"0.550781\"}, \"0.143128\": {\"frequency\": 1, \"value\": \"0.143128\"}, \"0.450977\": {\"frequency\": 1, \"value\": \"0.450977\"}, \"0.364271\": {\"frequency\": 1, \"value\": \"0.364271\"}, \"0.538331\": {\"frequency\": 1, \"value\": \"0.538331\"}, \"0.32388\": {\"frequency\": 1, \"value\": \"0.32388\"}, \"0.408549\": {\"frequency\": 1, \"value\": \"0.408549\"}, \"0.147113\": {\"frequency\": 1, \"value\": \"0.147113\"}, \"0.90807\": {\"frequency\": 1, \"value\": \"0.90807\"}, \"0.497811\": {\"frequency\": 1, \"value\": \"0.497811\"}, \"0.188547\": {\"frequency\": 1, \"value\": \"0.188547\"}, \"0.36426\": {\"frequency\": 1, \"value\": \"0.36426\"}, \"0.358357\": {\"frequency\": 1, \"value\": \"0.358357\"}, \"0.398383\": {\"frequency\": 1, \"value\": \"0.398383\"}, \"0.476787\": {\"frequency\": 1, \"value\": \"0.476787\"}, \"0.236894\": {\"frequency\": 1, \"value\": \"0.236894\"}, \"0.703315\": {\"frequency\": 1, \"value\": \"0.703315\"}, \"0.37111\": {\"frequency\": 1, \"value\": \"0.37111\"}, \"0.39608\": {\"frequency\": 1, \"value\": \"0.39608\"}, \"0.404006\": {\"frequency\": 1, \"value\": \"0.404006\"}, \"0.573323\": {\"frequency\": 1, \"value\": \"0.573323\"}, \"0.382071\": {\"frequency\": 1, \"value\": \"0.382071\"}, \"0.407495\": {\"frequency\": 1, \"value\": \"0.407495\"}, \"0.401521\": {\"frequency\": 3, \"value\": \"0.401521\"}, \"0.419981\": {\"frequency\": 1, \"value\": \"0.419981\"}, \"0.422589\": {\"frequency\": 1, \"value\": \"0.422589\"}, \"0.430268\": {\"frequency\": 1, \"value\": \"0.430268\"}, \"0.335929\": {\"frequency\": 1, \"value\": \"0.335929\"}, \"0.472948\": {\"frequency\": 1, \"value\": \"0.472948\"}, \"0.371494\": {\"frequency\": 1, \"value\": \"0.371494\"}, \"0.329922\": {\"frequency\": 1, \"value\": \"0.329922\"}, \"0.339171\": {\"frequency\": 1, \"value\": \"0.339171\"}, \"0.472946\": {\"frequency\": 1, \"value\": \"0.472946\"}, \"0.326816\": {\"frequency\": 1, \"value\": \"0.326816\"}, \"0.747915\": {\"frequency\": 1, \"value\": \"0.747915\"}, \"0.675201\": {\"frequency\": 1, \"value\": \"0.675201\"}, \"0.429737\": {\"frequency\": 1, \"value\": \"0.429737\"}, \"0.316692\": {\"frequency\": 1, \"value\": \"0.316692\"}, \"0.838006\": {\"frequency\": 1, \"value\": \"0.838006\"}, \"0.438448\": {\"frequency\": 1, \"value\": \"0.438448\"}, \"0.246214\": {\"frequency\": 3, \"value\": \"0.246214\"}, \"0.425801\": {\"frequency\": 1, \"value\": \"0.425801\"}, \"0.371693\": {\"frequency\": 1, \"value\": \"0.371693\"}, \"0.291822\": {\"frequency\": 1, \"value\": \"0.291822\"}, \"0.542934\": {\"frequency\": 1, \"value\": \"0.542934\"}, \"0.355665\": {\"frequency\": 1, \"value\": \"0.355665\"}, \"0.401458\": {\"frequency\": 1, \"value\": \"0.401458\"}, \"0.587833\": {\"frequency\": 1, \"value\": \"0.587833\"}, \"0.455129\": {\"frequency\": 1, \"value\": \"0.455129\"}, \"0.277724\": {\"frequency\": 1, \"value\": \"0.277724\"}, \"0.688355\": {\"frequency\": 1, \"value\": \"0.688355\"}, \"0.470047\": {\"frequency\": 1, \"value\": \"0.470047\"}, \"0.787328\": {\"frequency\": 1, \"value\": \"0.787328\"}, \"0.483292\": {\"frequency\": 1, \"value\": \"0.483292\"}, \"0.569263\": {\"frequency\": 1, \"value\": \"0.569263\"}, \"0.707836\": {\"frequency\": 1, \"value\": \"0.707836\"}, \"0.432993\": {\"frequency\": 1, \"value\": \"0.432993\"}, \"0.252758\": {\"frequency\": 1, \"value\": \"0.252758\"}, \"0.511831\": {\"frequency\": 1, \"value\": \"0.511831\"}, \"0.486396\": {\"frequency\": 1, \"value\": \"0.486396\"}, \"0.560407\": {\"frequency\": 1, \"value\": \"0.560407\"}, \"0.414831\": {\"frequency\": 1, \"value\": \"0.414831\"}, \"0.698567\": {\"frequency\": 1, \"value\": \"0.698567\"}, \"0.633287\": {\"frequency\": 1, \"value\": \"0.633287\"}, \"0.171578\": {\"frequency\": 1, \"value\": \"0.171578\"}, \"0.439884\": {\"frequency\": 1, \"value\": \"0.439884\"}, \"0.044926\": {\"frequency\": 1, \"value\": \"0.044926\"}, \"0.495096\": {\"frequency\": 1, \"value\": \"0.495096\"}, \"0.225586\": {\"frequency\": 1, \"value\": \"0.225586\"}, \"0.0563737\": {\"frequency\": 1, \"value\": \"0.0563737\"}, \"0.27319\": {\"frequency\": 1, \"value\": \"0.27319\"}, \"0.287322\": {\"frequency\": 1, \"value\": \"0.287322\"}, \"0.476334\": {\"frequency\": 1, \"value\": \"0.476334\"}, \"0.526049\": {\"frequency\": 1, \"value\": \"0.526049\"}, \"0.518706\": {\"frequency\": 1, \"value\": \"0.518706\"}, \"0.302818\": {\"frequency\": 1, \"value\": \"0.302818\"}, \"0.368828\": {\"frequency\": 1, \"value\": \"0.368828\"}, \"0.138279\": {\"frequency\": 1, \"value\": \"0.138279\"}, \"0.425027\": {\"frequency\": 1, \"value\": \"0.425027\"}, \"0.249329\": {\"frequency\": 1, \"value\": \"0.249329\"}, \"0.777993\": {\"frequency\": 1, \"value\": \"0.777993\"}, \"0.372798\": {\"frequency\": 1, \"value\": \"0.372798\"}, \"0.269761\": {\"frequency\": 1, \"value\": \"0.269761\"}, \"0.353055\": {\"frequency\": 1, \"value\": \"0.353055\"}, \"0.41445\": {\"frequency\": 1, \"value\": \"0.41445\"}, \"0.572057\": {\"frequency\": 1, \"value\": \"0.572057\"}, \"0.591593\": {\"frequency\": 1, \"value\": \"0.591593\"}, \"0.581082\": {\"frequency\": 1, \"value\": \"0.581082\"}, \"0.416453\": {\"frequency\": 1, \"value\": \"0.416453\"}, \"0.379656\": {\"frequency\": 1, \"value\": \"0.379656\"}, \"0.573057\": {\"frequency\": 1, \"value\": \"0.573057\"}, \"0.210777\": {\"frequency\": 1, \"value\": \"0.210777\"}, \"0.513884\": {\"frequency\": 1, \"value\": \"0.513884\"}, \"0.270553\": {\"frequency\": 1, \"value\": \"0.270553\"}, \"0.41477\": {\"frequency\": 1, \"value\": \"0.41477\"}, \"0.923189\": {\"frequency\": 1, \"value\": \"0.923189\"}, \"0.465761\": {\"frequency\": 1, \"value\": \"0.465761\"}, \"0.652756\": {\"frequency\": 1, \"value\": \"0.652756\"}, \"0.674047\": {\"frequency\": 1, \"value\": \"0.674047\"}, \"0.430286\": {\"frequency\": 1, \"value\": \"0.430286\"}, \"0.0359501\": {\"frequency\": 1, \"value\": \"0.0359501\"}, \"0.619282\": {\"frequency\": 1, \"value\": \"0.619282\"}, \"0.653187\": {\"frequency\": 1, \"value\": \"0.653187\"}, \"0.343982\": {\"frequency\": 1, \"value\": \"0.343982\"}, \"0.477123\": {\"frequency\": 1, \"value\": \"0.477123\"}, \"0.295451\": {\"frequency\": 1, \"value\": \"0.295451\"}, \"0.498671\": {\"frequency\": 1, \"value\": \"0.498671\"}, \"0.440369\": {\"frequency\": 1, \"value\": \"0.440369\"}, \"0.226596\": {\"frequency\": 1, \"value\": \"0.226596\"}, \"0.374269\": {\"frequency\": 1, \"value\": \"0.374269\"}, \"0.668622\": {\"frequency\": 1, \"value\": \"0.668622\"}, \"0.428244\": {\"frequency\": 1, \"value\": \"0.428244\"}, \"0.394569\": {\"frequency\": 1, \"value\": \"0.394569\"}, \"0.315941\": {\"frequency\": 1, \"value\": \"0.315941\"}, \"0.579917\": {\"frequency\": 1, \"value\": \"0.579917\"}, \"0.781991\": {\"frequency\": 1, \"value\": \"0.781991\"}, \"0.553319\": {\"frequency\": 1, \"value\": \"0.553319\"}, \"0.357117\": {\"frequency\": 1, \"value\": \"0.357117\"}, \"0.407662\": {\"frequency\": 1, \"value\": \"0.407662\"}, \"0.106113\": {\"frequency\": 1, \"value\": \"0.106113\"}, \"0.479625\": {\"frequency\": 1, \"value\": \"0.479625\"}, \"0.165905\": {\"frequency\": 1, \"value\": \"0.165905\"}, \"0.410848\": {\"frequency\": 1, \"value\": \"0.410848\"}, \"0.388168\": {\"frequency\": 1, \"value\": \"0.388168\"}, \"0.287693\": {\"frequency\": 3, \"value\": \"0.287693\"}, \"0.300075\": {\"frequency\": 1, \"value\": \"0.300075\"}, \"0.589381\": {\"frequency\": 1, \"value\": \"0.589381\"}, \"0.561753\": {\"frequency\": 1, \"value\": \"0.561753\"}, \"0.383679\": {\"frequency\": 1, \"value\": \"0.383679\"}, \"0.365201\": {\"frequency\": 1, \"value\": \"0.365201\"}, \"0.600543\": {\"frequency\": 1, \"value\": \"0.600543\"}, \"0.129423\": {\"frequency\": 1, \"value\": \"0.129423\"}, \"0.329491\": {\"frequency\": 1, \"value\": \"0.329491\"}, \"0.408371\": {\"frequency\": 1, \"value\": \"0.408371\"}, \"0.61675\": {\"frequency\": 1, \"value\": \"0.61675\"}, \"0.427706\": {\"frequency\": 1, \"value\": \"0.427706\"}, \"0.29263\": {\"frequency\": 1, \"value\": \"0.29263\"}, \"0.268173\": {\"frequency\": 1, \"value\": \"0.268173\"}, \"0.444084\": {\"frequency\": 1, \"value\": \"0.444084\"}, \"0.184132\": {\"frequency\": 1, \"value\": \"0.184132\"}, \"0.565544\": {\"frequency\": 1, \"value\": \"0.565544\"}, \"0.293649\": {\"frequency\": 1, \"value\": \"0.293649\"}, \"0.342909\": {\"frequency\": 1, \"value\": \"0.342909\"}, \"0.331973\": {\"frequency\": 1, \"value\": \"0.331973\"}, \"0.369752\": {\"frequency\": 1, \"value\": \"0.369752\"}, \"0.498419\": {\"frequency\": 1, \"value\": \"0.498419\"}, \"0.391405\": {\"frequency\": 1, \"value\": \"0.391405\"}, \"0.513267\": {\"frequency\": 1, \"value\": \"0.513267\"}, \"0.628263\": {\"frequency\": 1, \"value\": \"0.628263\"}, \"0.25756\": {\"frequency\": 1, \"value\": \"0.25756\"}, \"0.722686\": {\"frequency\": 1, \"value\": \"0.722686\"}, \"0.666863\": {\"frequency\": 1, \"value\": \"0.666863\"}, \"0.299778\": {\"frequency\": 1, \"value\": \"0.299778\"}, \"0.465385\": {\"frequency\": 1, \"value\": \"0.465385\"}, \"0.435508\": {\"frequency\": 1, \"value\": \"0.435508\"}, \"0.433953\": {\"frequency\": 1, \"value\": \"0.433953\"}, \"0.0602048\": {\"frequency\": 1, \"value\": \"0.0602048\"}, \"0.620784\": {\"frequency\": 1, \"value\": \"0.620784\"}, \"0.201182\": {\"frequency\": 1, \"value\": \"0.201182\"}, \"0.522013\": {\"frequency\": 1, \"value\": \"0.522013\"}, \"0.51592\": {\"frequency\": 1, \"value\": \"0.51592\"}, \"0.43147\": {\"frequency\": 1, \"value\": \"0.43147\"}, \"0.448597\": {\"frequency\": 1, \"value\": \"0.448597\"}, \"0.498528\": {\"frequency\": 1, \"value\": \"0.498528\"}, \"0.301235\": {\"frequency\": 1, \"value\": \"0.301235\"}, \"0.543048\": {\"frequency\": 1, \"value\": \"0.543048\"}, \"0.183169\": {\"frequency\": 1, \"value\": \"0.183169\"}, \"0.211287\": {\"frequency\": 1, \"value\": \"0.211287\"}, \"0.525002\": {\"frequency\": 1, \"value\": \"0.525002\"}, \"0.166582\": {\"frequency\": 1, \"value\": \"0.166582\"}, \"0.403781\": {\"frequency\": 1, \"value\": \"0.403781\"}, \"0.39545\": {\"frequency\": 1, \"value\": \"0.39545\"}, \"0.321159\": {\"frequency\": 1, \"value\": \"0.321159\"}, \"0.431084\": {\"frequency\": 1, \"value\": \"0.431084\"}, \"0.394746\": {\"frequency\": 1, \"value\": \"0.394746\"}, \"0.377153\": {\"frequency\": 1, \"value\": \"0.377153\"}, \"0.482363\": {\"frequency\": 1, \"value\": \"0.482363\"}, \"0.513467\": {\"frequency\": 1, \"value\": \"0.513467\"}, \"0.197268\": {\"frequency\": 1, \"value\": \"0.197268\"}, \"0.367914\": {\"frequency\": 1, \"value\": \"0.367914\"}, \"0.135219\": {\"frequency\": 1, \"value\": \"0.135219\"}, \"0.270641\": {\"frequency\": 1, \"value\": \"0.270641\"}, \"0.344109\": {\"frequency\": 1, \"value\": \"0.344109\"}, \"0.381234\": {\"frequency\": 1, \"value\": \"0.381234\"}, \"0.304414\": {\"frequency\": 1, \"value\": \"0.304414\"}, \"0.541901\": {\"frequency\": 1, \"value\": \"0.541901\"}, \"0.360391\": {\"frequency\": 1, \"value\": \"0.360391\"}, \"0.299603\": {\"frequency\": 1, \"value\": \"0.299603\"}, \"0.448629\": {\"frequency\": 1, \"value\": \"0.448629\"}, \"0.447445\": {\"frequency\": 1, \"value\": \"0.447445\"}, \"0.200932\": {\"frequency\": 1, \"value\": \"0.200932\"}, \"0.364486\": {\"frequency\": 1, \"value\": \"0.364486\"}, \"0.63608\": {\"frequency\": 1, \"value\": \"0.63608\"}, \"0.187007\": {\"frequency\": 1, \"value\": \"0.187007\"}, \"0.238731\": {\"frequency\": 1, \"value\": \"0.238731\"}, \"0.194063\": {\"frequency\": 1, \"value\": \"0.194063\"}, \"0.433779\": {\"frequency\": 1, \"value\": \"0.433779\"}, \"0.581894\": {\"frequency\": 1, \"value\": \"0.581894\"}, \"0.215615\": {\"frequency\": 1, \"value\": \"0.215615\"}, \"0.581891\": {\"frequency\": 1, \"value\": \"0.581891\"}, \"0.552467\": {\"frequency\": 1, \"value\": \"0.552467\"}, \"0.476528\": {\"frequency\": 1, \"value\": \"0.476528\"}, \"0.452303\": {\"frequency\": 1, \"value\": \"0.452303\"}, \"0.394636\": {\"frequency\": 1, \"value\": \"0.394636\"}, \"0.283913\": {\"frequency\": 1, \"value\": \"0.283913\"}, \"0.367356\": {\"frequency\": 1, \"value\": \"0.367356\"}, \"0.493496\": {\"frequency\": 1, \"value\": \"0.493496\"}, \"0.297188\": {\"frequency\": 1, \"value\": \"0.297188\"}, \"0.524571\": {\"frequency\": 1, \"value\": \"0.524571\"}, \"0.499522\": {\"frequency\": 1, \"value\": \"0.499522\"}, \"0.435239\": {\"frequency\": 1, \"value\": \"0.435239\"}, \"0.523726\": {\"frequency\": 1, \"value\": \"0.523726\"}, \"0.478511\": {\"frequency\": 1, \"value\": \"0.478511\"}, \"0.484892\": {\"frequency\": 1, \"value\": \"0.484892\"}, \"0.377085\": {\"frequency\": 1, \"value\": \"0.377085\"}, \"0.369237\": {\"frequency\": 1, \"value\": \"0.369237\"}, \"0.706228\": {\"frequency\": 1, \"value\": \"0.706228\"}, \"0.34639\": {\"frequency\": 1, \"value\": \"0.34639\"}, \"0.707249\": {\"frequency\": 1, \"value\": \"0.707249\"}, \"0.367597\": {\"frequency\": 1, \"value\": \"0.367597\"}, \"0.367594\": {\"frequency\": 1, \"value\": \"0.367594\"}, \"0.468586\": {\"frequency\": 1, \"value\": \"0.468586\"}, \"0.347896\": {\"frequency\": 1, \"value\": \"0.347896\"}, \"0.365841\": {\"frequency\": 1, \"value\": \"0.365841\"}, \"0.280359\": {\"frequency\": 1, \"value\": \"0.280359\"}, \"0.130025\": {\"frequency\": 1, \"value\": \"0.130025\"}, \"0.213291\": {\"frequency\": 1, \"value\": \"0.213291\"}, \"0.196484\": {\"frequency\": 1, \"value\": \"0.196484\"}, \"0.610734\": {\"frequency\": 1, \"value\": \"0.610734\"}, \"0.232763\": {\"frequency\": 1, \"value\": \"0.232763\"}, \"0.226109\": {\"frequency\": 1, \"value\": \"0.226109\"}, \"0.462642\": {\"frequency\": 1, \"value\": \"0.462642\"}, \"0.252208\": {\"frequency\": 1, \"value\": \"0.252208\"}, \"0.609179\": {\"frequency\": 1, \"value\": \"0.609179\"}, \"0.31979\": {\"frequency\": 1, \"value\": \"0.31979\"}, \"0.306952\": {\"frequency\": 1, \"value\": \"0.306952\"}, \"0.730119\": {\"frequency\": 1, \"value\": \"0.730119\"}, \"0.280596\": {\"frequency\": 1, \"value\": \"0.280596\"}, \"0.385683\": {\"frequency\": 1, \"value\": \"0.385683\"}, \"0.429844\": {\"frequency\": 1, \"value\": \"0.429844\"}, \"0.53678\": {\"frequency\": 1, \"value\": \"0.53678\"}, \"0.315555\": {\"frequency\": 1, \"value\": \"0.315555\"}, \"0.555945\": {\"frequency\": 1, \"value\": \"0.555945\"}, \"0.484091\": {\"frequency\": 1, \"value\": \"0.484091\"}, \"0.332087\": {\"frequency\": 1, \"value\": \"0.332087\"}, \"0.347952\": {\"frequency\": 1, \"value\": \"0.347952\"}, \"0.257335\": {\"frequency\": 1, \"value\": \"0.257335\"}, \"0.613916\": {\"frequency\": 1, \"value\": \"0.613916\"}, \"0.256689\": {\"frequency\": 1, \"value\": \"0.256689\"}, \"0.529253\": {\"frequency\": 1, \"value\": \"0.529253\"}, \"0.600898\": {\"frequency\": 1, \"value\": \"0.600898\"}, \"0.35658\": {\"frequency\": 1, \"value\": \"0.35658\"}, \"0.157343\": {\"frequency\": 1, \"value\": \"0.157343\"}, \"0.772333\": {\"frequency\": 1, \"value\": \"0.772333\"}, \"0.0548017\": {\"frequency\": 1, \"value\": \"0.0548017\"}, \"0.368245\": {\"frequency\": 1, \"value\": \"0.368245\"}, \"0.345399\": {\"frequency\": 1, \"value\": \"0.345399\"}, \"0.534454\": {\"frequency\": 1, \"value\": \"0.534454\"}, \"0.429904\": {\"frequency\": 1, \"value\": \"0.429904\"}, \"0.605277\": {\"frequency\": 1, \"value\": \"0.605277\"}, \"0.306521\": {\"frequency\": 1, \"value\": \"0.306521\"}, \"0.266538\": {\"frequency\": 1, \"value\": \"0.266538\"}, \"0.349016\": {\"frequency\": 1, \"value\": \"0.349016\"}, \"0.305424\": {\"frequency\": 1, \"value\": \"0.305424\"}, \"0.278097\": {\"frequency\": 1, \"value\": \"0.278097\"}, \"0.569837\": {\"frequency\": 1, \"value\": \"0.569837\"}, \"0.382246\": {\"frequency\": 1, \"value\": \"0.382246\"}, \"0.327237\": {\"frequency\": 1, \"value\": \"0.327237\"}, \"0.559435\": {\"frequency\": 1, \"value\": \"0.559435\"}, \"0.471442\": {\"frequency\": 1, \"value\": \"0.471442\"}, \"0.51607\": {\"frequency\": 1, \"value\": \"0.51607\"}, \"0.297765\": {\"frequency\": 1, \"value\": \"0.297765\"}, \"0.48824\": {\"frequency\": 1, \"value\": \"0.48824\"}, \"0.521109\": {\"frequency\": 1, \"value\": \"0.521109\"}, \"0.22119\": {\"frequency\": 1, \"value\": \"0.22119\"}, \"0.618475\": {\"frequency\": 1, \"value\": \"0.618475\"}, \"0.379466\": {\"frequency\": 1, \"value\": \"0.379466\"}, \"0.16069\": {\"frequency\": 1, \"value\": \"0.16069\"}, \"0.393353\": {\"frequency\": 1, \"value\": \"0.393353\"}, \"0.520945\": {\"frequency\": 1, \"value\": \"0.520945\"}, \"0.30454\": {\"frequency\": 1, \"value\": \"0.30454\"}, \"0.316701\": {\"frequency\": 1, \"value\": \"0.316701\"}, \"0.465549\": {\"frequency\": 1, \"value\": \"0.465549\"}, \"0.540185\": {\"frequency\": 1, \"value\": \"0.540185\"}, \"0.363459\": {\"frequency\": 1, \"value\": \"0.363459\"}, \"0.253799\": {\"frequency\": 1, \"value\": \"0.253799\"}, \"0.733778\": {\"frequency\": 1, \"value\": \"0.733778\"}, \"0.337912\": {\"frequency\": 1, \"value\": \"0.337912\"}, \"0.607788\": {\"frequency\": 1, \"value\": \"0.607788\"}, \"0.236864\": {\"frequency\": 1, \"value\": \"0.236864\"}, \"0.331773\": {\"frequency\": 1, \"value\": \"0.331773\"}, \"0.409143\": {\"frequency\": 1, \"value\": \"0.409143\"}, \"0.534051\": {\"frequency\": 1, \"value\": \"0.534051\"}, \"0.27696\": {\"frequency\": 1, \"value\": \"0.27696\"}, \"0.619673\": {\"frequency\": 1, \"value\": \"0.619673\"}, \"0.767652\": {\"frequency\": 1, \"value\": \"0.767652\"}, \"0.315171\": {\"frequency\": 1, \"value\": \"0.315171\"}, \"0.198403\": {\"frequency\": 1, \"value\": \"0.198403\"}, \"0.4867\": {\"frequency\": 1, \"value\": \"0.4867\"}, \"0.376758\": {\"frequency\": 1, \"value\": \"0.376758\"}, \"0.411255\": {\"frequency\": 1, \"value\": \"0.411255\"}, \"0.294648\": {\"frequency\": 1, \"value\": \"0.294648\"}, \"0.579431\": {\"frequency\": 1, \"value\": \"0.579431\"}, \"0.453943\": {\"frequency\": 1, \"value\": \"0.453943\"}, \"0.339842\": {\"frequency\": 1, \"value\": \"0.339842\"}, \"0.354125\": {\"frequency\": 1, \"value\": \"0.354125\"}, \"0.265927\": {\"frequency\": 1, \"value\": \"0.265927\"}, \"0.0452227\": {\"frequency\": 1, \"value\": \"0.0452227\"}, \"0.425237\": {\"frequency\": 1, \"value\": \"0.425237\"}, \"0.357231\": {\"frequency\": 1, \"value\": \"0.357231\"}, \"0.406157\": {\"frequency\": 1, \"value\": \"0.406157\"}, \"0.267208\": {\"frequency\": 1, \"value\": \"0.267208\"}, \"0.611604\": {\"frequency\": 1, \"value\": \"0.611604\"}, \"0.426901\": {\"frequency\": 1, \"value\": \"0.426901\"}, \"0.354907\": {\"frequency\": 1, \"value\": \"0.354907\"}, \"0.458451\": {\"frequency\": 1, \"value\": \"0.458451\"}, \"0.580437\": {\"frequency\": 1, \"value\": \"0.580437\"}, \"0.348773\": {\"frequency\": 1, \"value\": \"0.348773\"}, \"0.443488\": {\"frequency\": 1, \"value\": \"0.443488\"}, \"0.350244\": {\"frequency\": 1, \"value\": \"0.350244\"}, \"0.595204\": {\"frequency\": 1, \"value\": \"0.595204\"}, \"0.590315\": {\"frequency\": 1, \"value\": \"0.590315\"}, \"0.440864\": {\"frequency\": 1, \"value\": \"0.440864\"}, \"0.236264\": {\"frequency\": 1, \"value\": \"0.236264\"}, \"0.374284\": {\"frequency\": 1, \"value\": \"0.374284\"}, \"0.252567\": {\"frequency\": 1, \"value\": \"0.252567\"}, \"0.295594\": {\"frequency\": 1, \"value\": \"0.295594\"}, \"0.264528\": {\"frequency\": 1, \"value\": \"0.264528\"}, \"0.660917\": {\"frequency\": 1, \"value\": \"0.660917\"}, \"0.278\": {\"frequency\": 1, \"value\": \"0.278\"}, \"0.404018\": {\"frequency\": 1, \"value\": \"0.404018\"}, \"0.326553\": {\"frequency\": 1, \"value\": \"0.326553\"}, \"0.374445\": {\"frequency\": 1, \"value\": \"0.374445\"}, \"0.400556\": {\"frequency\": 1, \"value\": \"0.400556\"}, \"0.318294\": {\"frequency\": 1, \"value\": \"0.318294\"}, \"0.354634\": {\"frequency\": 1, \"value\": \"0.354634\"}, \"0.767815\": {\"frequency\": 1, \"value\": \"0.767815\"}, \"0.421791\": {\"frequency\": 1, \"value\": \"0.421791\"}, \"0.298984\": {\"frequency\": 1, \"value\": \"0.298984\"}, \"0.579844\": {\"frequency\": 1, \"value\": \"0.579844\"}, \"0.455579\": {\"frequency\": 1, \"value\": \"0.455579\"}, \"0.481657\": {\"frequency\": 1, \"value\": \"0.481657\"}, \"0.289327\": {\"frequency\": 1, \"value\": \"0.289327\"}, \"0.422591\": {\"frequency\": 1, \"value\": \"0.422591\"}, \"0.561692\": {\"frequency\": 1, \"value\": \"0.561692\"}, \"0.350592\": {\"frequency\": 1, \"value\": \"0.350592\"}, \"0.532248\": {\"frequency\": 1, \"value\": \"0.532248\"}, \"0.554213\": {\"frequency\": 1, \"value\": \"0.554213\"}, \"0.446867\": {\"frequency\": 1, \"value\": \"0.446867\"}, \"0.383046\": {\"frequency\": 1, \"value\": \"0.383046\"}, \"0.334258\": {\"frequency\": 1, \"value\": \"0.334258\"}, \"0.194312\": {\"frequency\": 1, \"value\": \"0.194312\"}, \"0.526022\": {\"frequency\": 1, \"value\": \"0.526022\"}, \"0.377403\": {\"frequency\": 1, \"value\": \"0.377403\"}, \"0.511899\": {\"frequency\": 1, \"value\": \"0.511899\"}, \"0.424985\": {\"frequency\": 1, \"value\": \"0.424985\"}, \"0.499295\": {\"frequency\": 1, \"value\": \"0.499295\"}, \"0.48649\": {\"frequency\": 1, \"value\": \"0.48649\"}, \"0.735611\": {\"frequency\": 1, \"value\": \"0.735611\"}, \"0.313003\": {\"frequency\": 1, \"value\": \"0.313003\"}, \"0.512498\": {\"frequency\": 1, \"value\": \"0.512498\"}, \"0.386768\": {\"frequency\": 1, \"value\": \"0.386768\"}, \"0.505151\": {\"frequency\": 1, \"value\": \"0.505151\"}, \"0.660629\": {\"frequency\": 1, \"value\": \"0.660629\"}, \"0.40175\": {\"frequency\": 1, \"value\": \"0.40175\"}, \"0.595841\": {\"frequency\": 1, \"value\": \"0.595841\"}, \"0.245757\": {\"frequency\": 1, \"value\": \"0.245757\"}, \"0.245758\": {\"frequency\": 1, \"value\": \"0.245758\"}, \"0.50436\": {\"frequency\": 1, \"value\": \"0.50436\"}, \"0.354755\": {\"frequency\": 1, \"value\": \"0.354755\"}, \"0.3564\": {\"frequency\": 1, \"value\": \"0.3564\"}, \"0.356747\": {\"frequency\": 1, \"value\": \"0.356747\"}, \"0.410877\": {\"frequency\": 1, \"value\": \"0.410877\"}, \"0.61241\": {\"frequency\": 1, \"value\": \"0.61241\"}, \"0.204927\": {\"frequency\": 1, \"value\": \"0.204927\"}, \"0.425165\": {\"frequency\": 1, \"value\": \"0.425165\"}, \"0.126829\": {\"frequency\": 1, \"value\": \"0.126829\"}, \"0.223999\": {\"frequency\": 1, \"value\": \"0.223999\"}, \"0.5624\": {\"frequency\": 1, \"value\": \"0.5624\"}, \"0.385917\": {\"frequency\": 1, \"value\": \"0.385917\"}, \"0.490478\": {\"frequency\": 1, \"value\": \"0.490478\"}, \"0.253411\": {\"frequency\": 1, \"value\": \"0.253411\"}, \"0.416537\": {\"frequency\": 1, \"value\": \"0.416537\"}, \"0.577327\": {\"frequency\": 1, \"value\": \"0.577327\"}, \"0.388173\": {\"frequency\": 1, \"value\": \"0.388173\"}, \"0.39167\": {\"frequency\": 1, \"value\": \"0.39167\"}, \"0.513981\": {\"frequency\": 1, \"value\": \"0.513981\"}, \"0.660489\": {\"frequency\": 1, \"value\": \"0.660489\"}, \"0.185745\": {\"frequency\": 1, \"value\": \"0.185745\"}, \"0.327446\": {\"frequency\": 1, \"value\": \"0.327446\"}, \"0.29093\": {\"frequency\": 1, \"value\": \"0.29093\"}, \"0.469994\": {\"frequency\": 1, \"value\": \"0.469994\"}, \"0.432944\": {\"frequency\": 1, \"value\": \"0.432944\"}, \"0.135387\": {\"frequency\": 1, \"value\": \"0.135387\"}, \"0.498407\": {\"frequency\": 1, \"value\": \"0.498407\"}, \"0.514433\": {\"frequency\": 1, \"value\": \"0.514433\"}, \"0.51672\": {\"frequency\": 1, \"value\": \"0.51672\"}, \"0.286778\": {\"frequency\": 1, \"value\": \"0.286778\"}, \"0.293654\": {\"frequency\": 1, \"value\": \"0.293654\"}, \"0.456674\": {\"frequency\": 1, \"value\": \"0.456674\"}, \"0.282214\": {\"frequency\": 1, \"value\": \"0.282214\"}, \"0.546244\": {\"frequency\": 1, \"value\": \"0.546244\"}, \"0.667471\": {\"frequency\": 1, \"value\": \"0.667471\"}, \"0.498797\": {\"frequency\": 1, \"value\": \"0.498797\"}, \"0.470562\": {\"frequency\": 1, \"value\": \"0.470562\"}, \"0.497772\": {\"frequency\": 1, \"value\": \"0.497772\"}, \"0.440918\": {\"frequency\": 1, \"value\": \"0.440918\"}, \"0.391479\": {\"frequency\": 1, \"value\": \"0.391479\"}, \"0.299291\": {\"frequency\": 1, \"value\": \"0.299291\"}, \"0.460369\": {\"frequency\": 1, \"value\": \"0.460369\"}, \"0.517199\": {\"frequency\": 1, \"value\": \"0.517199\"}, \"0.258219\": {\"frequency\": 1, \"value\": \"0.258219\"}, \"0.706036\": {\"frequency\": 1, \"value\": \"0.706036\"}, \"0.366982\": {\"frequency\": 1, \"value\": \"0.366982\"}, \"0.485738\": {\"frequency\": 1, \"value\": \"0.485738\"}, \"0.410472\": {\"frequency\": 1, \"value\": \"0.410472\"}, \"0.385863\": {\"frequency\": 1, \"value\": \"0.385863\"}, \"0.575599\": {\"frequency\": 1, \"value\": \"0.575599\"}, \"0.465151\": {\"frequency\": 1, \"value\": \"0.465151\"}, \"0.440593\": {\"frequency\": 1, \"value\": \"0.440593\"}, \"0.365507\": {\"frequency\": 1, \"value\": \"0.365507\"}, \"0.303686\": {\"frequency\": 1, \"value\": \"0.303686\"}, \"0.492009\": {\"frequency\": 1, \"value\": \"0.492009\"}, \"0.326976\": {\"frequency\": 1, \"value\": \"0.326976\"}, \"0.467602\": {\"frequency\": 1, \"value\": \"0.467602\"}, \"0.262712\": {\"frequency\": 1, \"value\": \"0.262712\"}, \"0.397846\": {\"frequency\": 1, \"value\": \"0.397846\"}, \"0.343088\": {\"frequency\": 1, \"value\": \"0.343088\"}, \"0.451509\": {\"frequency\": 1, \"value\": \"0.451509\"}, \"0.44858\": {\"frequency\": 1, \"value\": \"0.44858\"}, \"0.384576\": {\"frequency\": 1, \"value\": \"0.384576\"}, \"0.312035\": {\"frequency\": 1, \"value\": \"0.312035\"}, \"0.347727\": {\"frequency\": 1, \"value\": \"0.347727\"}, \"0.394002\": {\"frequency\": 1, \"value\": \"0.394002\"}, \"0.189387\": {\"frequency\": 1, \"value\": \"0.189387\"}, \"0.38888\": {\"frequency\": 1, \"value\": \"0.38888\"}, \"0.513327\": {\"frequency\": 1, \"value\": \"0.513327\"}, \"0.481123\": {\"frequency\": 1, \"value\": \"0.481123\"}, \"0.648458\": {\"frequency\": 1, \"value\": \"0.648458\"}, \"0.377367\": {\"frequency\": 1, \"value\": \"0.377367\"}, \"0.362185\": {\"frequency\": 1, \"value\": \"0.362185\"}, \"0.459869\": {\"frequency\": 1, \"value\": \"0.459869\"}, \"0.607005\": {\"frequency\": 1, \"value\": \"0.607005\"}, \"0.371262\": {\"frequency\": 1, \"value\": \"0.371262\"}, \"0.300245\": {\"frequency\": 1, \"value\": \"0.300245\"}, \"0.202691\": {\"frequency\": 1, \"value\": \"0.202691\"}, \"0.45624\": {\"frequency\": 1, \"value\": \"0.45624\"}, \"0.351692\": {\"frequency\": 1, \"value\": \"0.351692\"}, \"0.363325\": {\"frequency\": 1, \"value\": \"0.363325\"}, \"0.296812\": {\"frequency\": 1, \"value\": \"0.296812\"}, \"0.700166\": {\"frequency\": 1, \"value\": \"0.700166\"}, \"0.507595\": {\"frequency\": 1, \"value\": \"0.507595\"}, \"0.547752\": {\"frequency\": 1, \"value\": \"0.547752\"}, \"0.1844\": {\"frequency\": 1, \"value\": \"0.1844\"}, \"0.186017\": {\"frequency\": 1, \"value\": \"0.186017\"}, \"0.238236\": {\"frequency\": 1, \"value\": \"0.238236\"}, \"0.343399\": {\"frequency\": 1, \"value\": \"0.343399\"}, \"0.414594\": {\"frequency\": 1, \"value\": \"0.414594\"}, \"0.251156\": {\"frequency\": 1, \"value\": \"0.251156\"}, \"0.480966\": {\"frequency\": 1, \"value\": \"0.480966\"}, \"0.468641\": {\"frequency\": 1, \"value\": \"0.468641\"}, \"0.125213\": {\"frequency\": 1, \"value\": \"0.125213\"}, \"0.373088\": {\"frequency\": 1, \"value\": \"0.373088\"}, \"0.384181\": {\"frequency\": 1, \"value\": \"0.384181\"}, \"0.283926\": {\"frequency\": 1, \"value\": \"0.283926\"}, \"0.582245\": {\"frequency\": 1, \"value\": \"0.582245\"}, \"0.460467\": {\"frequency\": 1, \"value\": \"0.460467\"}, \"0.479032\": {\"frequency\": 1, \"value\": \"0.479032\"}, \"0.471215\": {\"frequency\": 1, \"value\": \"0.471215\"}, \"0.418102\": {\"frequency\": 1, \"value\": \"0.418102\"}, \"0.364926\": {\"frequency\": 1, \"value\": \"0.364926\"}, \"0.234271\": {\"frequency\": 1, \"value\": \"0.234271\"}, \"0.210354\": {\"frequency\": 1, \"value\": \"0.210354\"}, \"0.336534\": {\"frequency\": 1, \"value\": \"0.336534\"}, \"0.503278\": {\"frequency\": 1, \"value\": \"0.503278\"}, \"0.624213\": {\"frequency\": 1, \"value\": \"0.624213\"}, \"0.627973\": {\"frequency\": 1, \"value\": \"0.627973\"}, \"0.316195\": {\"frequency\": 1, \"value\": \"0.316195\"}, \"0.302638\": {\"frequency\": 1, \"value\": \"0.302638\"}, \"0.297405\": {\"frequency\": 1, \"value\": \"0.297405\"}, \"0.176195\": {\"frequency\": 1, \"value\": \"0.176195\"}, \"0.45094\": {\"frequency\": 1, \"value\": \"0.45094\"}, \"0.418672\": {\"frequency\": 1, \"value\": \"0.418672\"}, \"0.484175\": {\"frequency\": 1, \"value\": \"0.484175\"}, \"0.186535\": {\"frequency\": 1, \"value\": \"0.186535\"}, \"0.364582\": {\"frequency\": 1, \"value\": \"0.364582\"}, \"0.423501\": {\"frequency\": 1, \"value\": \"0.423501\"}, \"0.314177\": {\"frequency\": 1, \"value\": \"0.314177\"}, \"0.462657\": {\"frequency\": 1, \"value\": \"0.462657\"}, \"0.0927895\": {\"frequency\": 1, \"value\": \"0.0927895\"}, \"0.372606\": {\"frequency\": 1, \"value\": \"0.372606\"}, \"0.218194\": {\"frequency\": 1, \"value\": \"0.218194\"}, \"0.66373\": {\"frequency\": 1, \"value\": \"0.66373\"}, \"0.08761\": {\"frequency\": 1, \"value\": \"0.08761\"}, \"0.472548\": {\"frequency\": 1, \"value\": \"0.472548\"}, \"0.603943\": {\"frequency\": 1, \"value\": \"0.603943\"}, \"0.33704\": {\"frequency\": 1, \"value\": \"0.33704\"}, \"0.556689\": {\"frequency\": 1, \"value\": \"0.556689\"}, \"0.755001\": {\"frequency\": 1, \"value\": \"0.755001\"}, \"0.431942\": {\"frequency\": 1, \"value\": \"0.431942\"}, \"0.52776\": {\"frequency\": 1, \"value\": \"0.52776\"}, \"0.582268\": {\"frequency\": 1, \"value\": \"0.582268\"}, \"0.18219\": {\"frequency\": 1, \"value\": \"0.18219\"}, \"0.585963\": {\"frequency\": 1, \"value\": \"0.585963\"}, \"0.515468\": {\"frequency\": 1, \"value\": \"0.515468\"}, \"0.479499\": {\"frequency\": 1, \"value\": \"0.479499\"}, \"0.452791\": {\"frequency\": 1, \"value\": \"0.452791\"}, \"0.597013\": {\"frequency\": 1, \"value\": \"0.597013\"}, \"0.310277\": {\"frequency\": 1, \"value\": \"0.310277\"}, \"0.273976\": {\"frequency\": 1, \"value\": \"0.273976\"}, \"0.27865\": {\"frequency\": 1, \"value\": \"0.27865\"}, \"0.345389\": {\"frequency\": 1, \"value\": \"0.345389\"}, \"0.690259\": {\"frequency\": 1, \"value\": \"0.690259\"}, \"0.239473\": {\"frequency\": 1, \"value\": \"0.239473\"}, \"0.345542\": {\"frequency\": 1, \"value\": \"0.345542\"}, \"0.415404\": {\"frequency\": 1, \"value\": \"0.415404\"}, \"0.427865\": {\"frequency\": 1, \"value\": \"0.427865\"}, \"0.415408\": {\"frequency\": 1, \"value\": \"0.415408\"}, \"0.465189\": {\"frequency\": 1, \"value\": \"0.465189\"}, \"0.551638\": {\"frequency\": 1, \"value\": \"0.551638\"}, \"0.381979\": {\"frequency\": 1, \"value\": \"0.381979\"}, \"0.551329\": {\"frequency\": 1, \"value\": \"0.551329\"}, \"0.547576\": {\"frequency\": 1, \"value\": \"0.547576\"}, \"0.414971\": {\"frequency\": 1, \"value\": \"0.414971\"}, \"0.297883\": {\"frequency\": 1, \"value\": \"0.297883\"}, \"0.263819\": {\"frequency\": 1, \"value\": \"0.263819\"}, \"0.737731\": {\"frequency\": 1, \"value\": \"0.737731\"}, \"0.559426\": {\"frequency\": 1, \"value\": \"0.559426\"}, \"0.412755\": {\"frequency\": 1, \"value\": \"0.412755\"}, \"0.479145\": {\"frequency\": 1, \"value\": \"0.479145\"}, \"0.393105\": {\"frequency\": 1, \"value\": \"0.393105\"}, \"0.26863\": {\"frequency\": 1, \"value\": \"0.26863\"}, \"0.377985\": {\"frequency\": 1, \"value\": \"0.377985\"}, \"0.570434\": {\"frequency\": 1, \"value\": \"0.570434\"}, \"0.290352\": {\"frequency\": 1, \"value\": \"0.290352\"}, \"0.136721\": {\"frequency\": 1, \"value\": \"0.136721\"}, \"0.419078\": {\"frequency\": 1, \"value\": \"0.419078\"}, \"0.373468\": {\"frequency\": 1, \"value\": \"0.373468\"}, \"0.313923\": {\"frequency\": 1, \"value\": \"0.313923\"}, \"0.339394\": {\"frequency\": 1, \"value\": \"0.339394\"}, \"0.322882\": {\"frequency\": 1, \"value\": \"0.322882\"}, \"0.593\": {\"frequency\": 1, \"value\": \"0.593\"}, \"0.346444\": {\"frequency\": 1, \"value\": \"0.346444\"}, \"0.409795\": {\"frequency\": 1, \"value\": \"0.409795\"}, \"0.0889148\": {\"frequency\": 1, \"value\": \"0.0889148\"}, \"0.550124\": {\"frequency\": 1, \"value\": \"0.550124\"}, \"0.487159\": {\"frequency\": 1, \"value\": \"0.487159\"}, \"0.540198\": {\"frequency\": 1, \"value\": \"0.540198\"}, \"0.0124131\": {\"frequency\": 1, \"value\": \"0.0124131\"}, \"0.378163\": {\"frequency\": 1, \"value\": \"0.378163\"}, \"0.253145\": {\"frequency\": 1, \"value\": \"0.253145\"}, \"0.78152\": {\"frequency\": 1, \"value\": \"0.78152\"}, \"0.155052\": {\"frequency\": 1, \"value\": \"0.155052\"}, \"0.295853\": {\"frequency\": 1, \"value\": \"0.295853\"}, \"0.522455\": {\"frequency\": 1, \"value\": \"0.522455\"}, \"0.233667\": {\"frequency\": 1, \"value\": \"0.233667\"}, \"0.294673\": {\"frequency\": 1, \"value\": \"0.294673\"}, \"0.382613\": {\"frequency\": 1, \"value\": \"0.382613\"}, \"0.457985\": {\"frequency\": 1, \"value\": \"0.457985\"}, \"0.500283\": {\"frequency\": 1, \"value\": \"0.500283\"}, \"0.570237\": {\"frequency\": 1, \"value\": \"0.570237\"}, \"0.558595\": {\"frequency\": 1, \"value\": \"0.558595\"}, \"0.426154\": {\"frequency\": 1, \"value\": \"0.426154\"}, \"0.324305\": {\"frequency\": 1, \"value\": \"0.324305\"}, \"0.333702\": {\"frequency\": 1, \"value\": \"0.333702\"}, \"0.584394\": {\"frequency\": 1, \"value\": \"0.584394\"}, \"0.474012\": {\"frequency\": 2, \"value\": \"0.474012\"}, \"0.673407\": {\"frequency\": 1, \"value\": \"0.673407\"}, \"0.466549\": {\"frequency\": 1, \"value\": \"0.466549\"}, \"0.354931\": {\"frequency\": 1, \"value\": \"0.354931\"}, \"0.241059\": {\"frequency\": 1, \"value\": \"0.241059\"}, \"0.421219\": {\"frequency\": 1, \"value\": \"0.421219\"}, \"0.601412\": {\"frequency\": 1, \"value\": \"0.601412\"}, \"0.334973\": {\"frequency\": 1, \"value\": \"0.334973\"}, \"0.389799\": {\"frequency\": 1, \"value\": \"0.389799\"}, \"0.877985\": {\"frequency\": 1, \"value\": \"0.877985\"}, \"0.359289\": {\"frequency\": 1, \"value\": \"0.359289\"}, \"0.303308\": {\"frequency\": 1, \"value\": \"0.303308\"}, \"0.125465\": {\"frequency\": 1, \"value\": \"0.125465\"}, \"0.346938\": {\"frequency\": 1, \"value\": \"0.346938\"}, \"0.374985\": {\"frequency\": 1, \"value\": \"0.374985\"}, \"0.191266\": {\"frequency\": 1, \"value\": \"0.191266\"}, \"0.882093\": {\"frequency\": 1, \"value\": \"0.882093\"}, \"0.417836\": {\"frequency\": 1, \"value\": \"0.417836\"}, \"0.21473\": {\"frequency\": 1, \"value\": \"0.21473\"}, \"0.21474\": {\"frequency\": 1, \"value\": \"0.21474\"}, \"0.57521\": {\"frequency\": 1, \"value\": \"0.57521\"}, \"0.333939\": {\"frequency\": 1, \"value\": \"0.333939\"}, \"0.271683\": {\"frequency\": 1, \"value\": \"0.271683\"}, \"0.302877\": {\"frequency\": 1, \"value\": \"0.302877\"}, \"0.399096\": {\"frequency\": 1, \"value\": \"0.399096\"}, \"0.519108\": {\"frequency\": 1, \"value\": \"0.519108\"}, \"0.376963\": {\"frequency\": 1, \"value\": \"0.376963\"}, \"0.501397\": {\"frequency\": 1, \"value\": \"0.501397\"}, \"0.275344\": {\"frequency\": 1, \"value\": \"0.275344\"}, \"0.213066\": {\"frequency\": 1, \"value\": \"0.213066\"}, \"0.315047\": {\"frequency\": 1, \"value\": \"0.315047\"}, \"0.486043\": {\"frequency\": 1, \"value\": \"0.486043\"}, \"0.444466\": {\"frequency\": 1, \"value\": \"0.444466\"}, \"0.418004\": {\"frequency\": 1, \"value\": \"0.418004\"}, \"0.250957\": {\"frequency\": 1, \"value\": \"0.250957\"}, \"0.611104\": {\"frequency\": 1, \"value\": \"0.611104\"}, \"0.158343\": {\"frequency\": 1, \"value\": \"0.158343\"}, \"0.158341\": {\"frequency\": 1, \"value\": \"0.158341\"}, \"0.317028\": {\"frequency\": 1, \"value\": \"0.317028\"}, \"0.328271\": {\"frequency\": 1, \"value\": \"0.328271\"}, \"0.440164\": {\"frequency\": 1, \"value\": \"0.440164\"}, \"0.458844\": {\"frequency\": 1, \"value\": \"0.458844\"}, \"0.246149\": {\"frequency\": 1, \"value\": \"0.246149\"}, \"0.314023\": {\"frequency\": 1, \"value\": \"0.314023\"}, \"0.596872\": {\"frequency\": 1, \"value\": \"0.596872\"}, \"0.33789\": {\"frequency\": 1, \"value\": \"0.33789\"}, \"0.4521\": {\"frequency\": 1, \"value\": \"0.4521\"}, \"0.389962\": {\"frequency\": 1, \"value\": \"0.389962\"}, \"0.0797471\": {\"frequency\": 1, \"value\": \"0.0797471\"}, \"0.455106\": {\"frequency\": 1, \"value\": \"0.455106\"}, \"0.4251\": {\"frequency\": 1, \"value\": \"0.4251\"}, \"0.293408\": {\"frequency\": 1, \"value\": \"0.293408\"}, \"0.239411\": {\"frequency\": 1, \"value\": \"0.239411\"}, \"0.248102\": {\"frequency\": 1, \"value\": \"0.248102\"}, \"0.410864\": {\"frequency\": 1, \"value\": \"0.410864\"}, \"0.208774\": {\"frequency\": 1, \"value\": \"0.208774\"}, \"0.305304\": {\"frequency\": 1, \"value\": \"0.305304\"}, \"0.429317\": {\"frequency\": 1, \"value\": \"0.429317\"}, \"0.769388\": {\"frequency\": 1, \"value\": \"0.769388\"}, \"0.357687\": {\"frequency\": 1, \"value\": \"0.357687\"}, \"0.554626\": {\"frequency\": 1, \"value\": \"0.554626\"}, \"0.30158\": {\"frequency\": 1, \"value\": \"0.30158\"}, \"0.54961\": {\"frequency\": 1, \"value\": \"0.54961\"}, \"0.541333\": {\"frequency\": 1, \"value\": \"0.541333\"}, \"0.378343\": {\"frequency\": 1, \"value\": \"0.378343\"}, \"0.585562\": {\"frequency\": 1, \"value\": \"0.585562\"}, \"0.586494\": {\"frequency\": 1, \"value\": \"0.586494\"}, \"0.359685\": {\"frequency\": 1, \"value\": \"0.359685\"}, \"0.726304\": {\"frequency\": 1, \"value\": \"0.726304\"}, \"0.379742\": {\"frequency\": 1, \"value\": \"0.379742\"}, \"0.356884\": {\"frequency\": 1, \"value\": \"0.356884\"}, \"0.440293\": {\"frequency\": 1, \"value\": \"0.440293\"}, \"0.185463\": {\"frequency\": 1, \"value\": \"0.185463\"}, \"0.348928\": {\"frequency\": 1, \"value\": \"0.348928\"}, \"0.390847\": {\"frequency\": 1, \"value\": \"0.390847\"}, \"0.495451\": {\"frequency\": 1, \"value\": \"0.495451\"}, \"0.252793\": {\"frequency\": 1, \"value\": \"0.252793\"}, \"0.54318\": {\"frequency\": 1, \"value\": \"0.54318\"}, \"0.515305\": {\"frequency\": 1, \"value\": \"0.515305\"}, \"0.20259\": {\"frequency\": 1, \"value\": \"0.20259\"}, \"0.502517\": {\"frequency\": 1, \"value\": \"0.502517\"}, \"0.502513\": {\"frequency\": 1, \"value\": \"0.502513\"}, \"0.502044\": {\"frequency\": 1, \"value\": \"0.502044\"}, \"0.0420287\": {\"frequency\": 1, \"value\": \"0.0420287\"}, \"0.322796\": {\"frequency\": 1, \"value\": \"0.322796\"}, \"0.2719\": {\"frequency\": 1, \"value\": \"0.2719\"}, \"0.462302\": {\"frequency\": 1, \"value\": \"0.462302\"}, \"0.626301\": {\"frequency\": 1, \"value\": \"0.626301\"}, \"0.497162\": {\"frequency\": 1, \"value\": \"0.497162\"}, \"0.54646\": {\"frequency\": 1, \"value\": \"0.54646\"}, \"0.692704\": {\"frequency\": 1, \"value\": \"0.692704\"}, \"0.276667\": {\"frequency\": 1, \"value\": \"0.276667\"}, \"0.160472\": {\"frequency\": 1, \"value\": \"0.160472\"}, \"0.541326\": {\"frequency\": 1, \"value\": \"0.541326\"}, \"0.523706\": {\"frequency\": 1, \"value\": \"0.523706\"}, \"0.506609\": {\"frequency\": 1, \"value\": \"0.506609\"}, \"0.372202\": {\"frequency\": 1, \"value\": \"0.372202\"}, \"0.254027\": {\"frequency\": 1, \"value\": \"0.254027\"}, \"0.299754\": {\"frequency\": 1, \"value\": \"0.299754\"}, \"0.425573\": {\"frequency\": 1, \"value\": \"0.425573\"}, \"0.498874\": {\"frequency\": 1, \"value\": \"0.498874\"}, \"0.34729\": {\"frequency\": 1, \"value\": \"0.34729\"}, \"0.625576\": {\"frequency\": 1, \"value\": \"0.625576\"}, \"0.56911\": {\"frequency\": 1, \"value\": \"0.56911\"}, \"0.383232\": {\"frequency\": 1, \"value\": \"0.383232\"}, \"0.516392\": {\"frequency\": 1, \"value\": \"0.516392\"}, \"0.1364\": {\"frequency\": 1, \"value\": \"0.1364\"}, \"0.465127\": {\"frequency\": 1, \"value\": \"0.465127\"}, \"0.24778\": {\"frequency\": 1, \"value\": \"0.24778\"}, \"0.0640307\": {\"frequency\": 1, \"value\": \"0.0640307\"}, \"0.386592\": {\"frequency\": 1, \"value\": \"0.386592\"}, \"0.263102\": {\"frequency\": 1, \"value\": \"0.263102\"}, \"0.134117\": {\"frequency\": 1, \"value\": \"0.134117\"}, \"0.0818121\": {\"frequency\": 1, \"value\": \"0.0818121\"}, \"0.281998\": {\"frequency\": 1, \"value\": \"0.281998\"}, \"0.603073\": {\"frequency\": 1, \"value\": \"0.603073\"}, \"0.402856\": {\"frequency\": 1, \"value\": \"0.402856\"}, \"0.494093\": {\"frequency\": 1, \"value\": \"0.494093\"}, \"0.447395\": {\"frequency\": 1, \"value\": \"0.447395\"}, \"0.315749\": {\"frequency\": 1, \"value\": \"0.315749\"}, \"0.514709\": {\"frequency\": 1, \"value\": \"0.514709\"}, \"0.421846\": {\"frequency\": 1, \"value\": \"0.421846\"}, \"0.459873\": {\"frequency\": 1, \"value\": \"0.459873\"}, \"0.781088\": {\"frequency\": 1, \"value\": \"0.781088\"}, \"0.421841\": {\"frequency\": 1, \"value\": \"0.421841\"}, \"0.389033\": {\"frequency\": 1, \"value\": \"0.389033\"}, \"0.20269\": {\"frequency\": 1, \"value\": \"0.20269\"}, \"0.541809\": {\"frequency\": 1, \"value\": \"0.541809\"}, \"0.586036\": {\"frequency\": 1, \"value\": \"0.586036\"}, \"0.312039\": {\"frequency\": 1, \"value\": \"0.312039\"}, \"0.395832\": {\"frequency\": 1, \"value\": \"0.395832\"}, \"0.249679\": {\"frequency\": 1, \"value\": \"0.249679\"}, \"0.543118\": {\"frequency\": 1, \"value\": \"0.543118\"}, \"0.183709\": {\"frequency\": 1, \"value\": \"0.183709\"}, \"0.258442\": {\"frequency\": 1, \"value\": \"0.258442\"}, \"0.43588\": {\"frequency\": 1, \"value\": \"0.43588\"}, \"0.324833\": {\"frequency\": 1, \"value\": \"0.324833\"}, \"0.433848\": {\"frequency\": 1, \"value\": \"0.433848\"}, \"0.4424\": {\"frequency\": 1, \"value\": \"0.4424\"}, \"0.438898\": {\"frequency\": 1, \"value\": \"0.438898\"}, \"0.365405\": {\"frequency\": 1, \"value\": \"0.365405\"}, \"0.281195\": {\"frequency\": 1, \"value\": \"0.281195\"}, \"0.514876\": {\"frequency\": 1, \"value\": \"0.514876\"}, \"0.528656\": {\"frequency\": 1, \"value\": \"0.528656\"}, \"0.446733\": {\"frequency\": 1, \"value\": \"0.446733\"}, \"0.241617\": {\"frequency\": 1, \"value\": \"0.241617\"}, \"0.6389\": {\"frequency\": 1, \"value\": \"0.6389\"}, \"0.425036\": {\"frequency\": 1, \"value\": \"0.425036\"}, \"0.286341\": {\"frequency\": 1, \"value\": \"0.286341\"}, \"0.499744\": {\"frequency\": 1, \"value\": \"0.499744\"}, \"0.410073\": {\"frequency\": 1, \"value\": \"0.410073\"}, \"0.414568\": {\"frequency\": 1, \"value\": \"0.414568\"}, \"0.229937\": {\"frequency\": 1, \"value\": \"0.229937\"}, \"0.227369\": {\"frequency\": 1, \"value\": \"0.227369\"}, \"0.347375\": {\"frequency\": 1, \"value\": \"0.347375\"}, \"0.327928\": {\"frequency\": 1, \"value\": \"0.327928\"}, \"0.480712\": {\"frequency\": 1, \"value\": \"0.480712\"}, \"0.479553\": {\"frequency\": 1, \"value\": \"0.479553\"}, \"0.434441\": {\"frequency\": 1, \"value\": \"0.434441\"}, \"0.185848\": {\"frequency\": 1, \"value\": \"0.185848\"}, \"0.249257\": {\"frequency\": 1, \"value\": \"0.249257\"}, \"0.830545\": {\"frequency\": 1, \"value\": \"0.830545\"}, \"0.267481\": {\"frequency\": 1, \"value\": \"0.267481\"}, \"0.471225\": {\"frequency\": 1, \"value\": \"0.471225\"}, \"0.398107\": {\"frequency\": 1, \"value\": \"0.398107\"}, \"0.147553\": {\"frequency\": 1, \"value\": \"0.147553\"}, \"0.703783\": {\"frequency\": 1, \"value\": \"0.703783\"}, \"0.643699\": {\"frequency\": 1, \"value\": \"0.643699\"}, \"0.233015\": {\"frequency\": 1, \"value\": \"0.233015\"}, \"0.412819\": {\"frequency\": 1, \"value\": \"0.412819\"}, \"0.343254\": {\"frequency\": 1, \"value\": \"0.343254\"}, \"0.397877\": {\"frequency\": 1, \"value\": \"0.397877\"}, \"0.442051\": {\"frequency\": 1, \"value\": \"0.442051\"}, \"0.153183\": {\"frequency\": 1, \"value\": \"0.153183\"}, \"0.314168\": {\"frequency\": 1, \"value\": \"0.314168\"}, \"0.196315\": {\"frequency\": 1, \"value\": \"0.196315\"}, \"0.259959\": {\"frequency\": 1, \"value\": \"0.259959\"}, \"0.671842\": {\"frequency\": 1, \"value\": \"0.671842\"}, \"0.384608\": {\"frequency\": 1, \"value\": \"0.384608\"}, \"0.371003\": {\"frequency\": 1, \"value\": \"0.371003\"}, \"0.494768\": {\"frequency\": 1, \"value\": \"0.494768\"}, \"0.462666\": {\"frequency\": 1, \"value\": \"0.462666\"}, \"0.23026\": {\"frequency\": 1, \"value\": \"0.23026\"}, \"0.118394\": {\"frequency\": 1, \"value\": \"0.118394\"}, \"0.45244\": {\"frequency\": 1, \"value\": \"0.45244\"}, \"0.488094\": {\"frequency\": 1, \"value\": \"0.488094\"}, \"0.429815\": {\"frequency\": 1, \"value\": \"0.429815\"}, \"0.414308\": {\"frequency\": 1, \"value\": \"0.414308\"}, \"0.50999\": {\"frequency\": 1, \"value\": \"0.50999\"}, \"0.658046\": {\"frequency\": 1, \"value\": \"0.658046\"}, \"0.136842\": {\"frequency\": 1, \"value\": \"0.136842\"}, \"0.534995\": {\"frequency\": 1, \"value\": \"0.534995\"}, \"0.32157\": {\"frequency\": 1, \"value\": \"0.32157\"}, \"0.339944\": {\"frequency\": 1, \"value\": \"0.339944\"}, \"0.46196\": {\"frequency\": 1, \"value\": \"0.46196\"}, \"0.377294\": {\"frequency\": 1, \"value\": \"0.377294\"}, \"0.585913\": {\"frequency\": 1, \"value\": \"0.585913\"}, \"0.413473\": {\"frequency\": 1, \"value\": \"0.413473\"}, \"0.42477\": {\"frequency\": 1, \"value\": \"0.42477\"}, \"0.130299\": {\"frequency\": 1, \"value\": \"0.130299\"}, \"0.521407\": {\"frequency\": 1, \"value\": \"0.521407\"}, \"0.35672\": {\"frequency\": 1, \"value\": \"0.35672\"}, \"0.355151\": {\"frequency\": 1, \"value\": \"0.355151\"}, \"0.556361\": {\"frequency\": 1, \"value\": \"0.556361\"}, \"0.15944\": {\"frequency\": 1, \"value\": \"0.15944\"}, \"0.370267\": {\"frequency\": 1, \"value\": \"0.370267\"}, \"0.566359\": {\"frequency\": 1, \"value\": \"0.566359\"}, \"0.14436\": {\"frequency\": 1, \"value\": \"0.14436\"}, \"0.196774\": {\"frequency\": 1, \"value\": \"0.196774\"}, \"0.27854\": {\"frequency\": 1, \"value\": \"0.27854\"}, \"0.48497\": {\"frequency\": 1, \"value\": \"0.48497\"}, \"0.409012\": {\"frequency\": 1, \"value\": \"0.409012\"}, \"0.310596\": {\"frequency\": 1, \"value\": \"0.310596\"}, \"0.520387\": {\"frequency\": 1, \"value\": \"0.520387\"}, \"0.524807\": {\"frequency\": 1, \"value\": \"0.524807\"}, \"0.565917\": {\"frequency\": 1, \"value\": \"0.565917\"}, \"0.448731\": {\"frequency\": 1, \"value\": \"0.448731\"}, \"0.701228\": {\"frequency\": 1, \"value\": \"0.701228\"}, \"0.289406\": {\"frequency\": 1, \"value\": \"0.289406\"}, \"0.494313\": {\"frequency\": 1, \"value\": \"0.494313\"}, \"0.144637\": {\"frequency\": 1, \"value\": \"0.144637\"}, \"0.527826\": {\"frequency\": 1, \"value\": \"0.527826\"}, \"0.484768\": {\"frequency\": 1, \"value\": \"0.484768\"}, \"0.0715975\": {\"frequency\": 1, \"value\": \"0.0715975\"}, \"0.340387\": {\"frequency\": 1, \"value\": \"0.340387\"}, \"0.578656\": {\"frequency\": 1, \"value\": \"0.578656\"}, \"0.1896\": {\"frequency\": 1, \"value\": \"0.1896\"}, \"0.535455\": {\"frequency\": 1, \"value\": \"0.535455\"}, \"0.281173\": {\"frequency\": 1, \"value\": \"0.281173\"}, \"0.435871\": {\"frequency\": 1, \"value\": \"0.435871\"}, \"0.377789\": {\"frequency\": 1, \"value\": \"0.377789\"}, \"0.318613\": {\"frequency\": 1, \"value\": \"0.318613\"}, \"0.453361\": {\"frequency\": 1, \"value\": \"0.453361\"}, \"0.490329\": {\"frequency\": 1, \"value\": \"0.490329\"}, \"0.412192\": {\"frequency\": 1, \"value\": \"0.412192\"}, \"0.570402\": {\"frequency\": 1, \"value\": \"0.570402\"}, \"0.367622\": {\"frequency\": 1, \"value\": \"0.367622\"}, \"0.427459\": {\"frequency\": 1, \"value\": \"0.427459\"}, \"0.487703\": {\"frequency\": 1, \"value\": \"0.487703\"}, \"0.421115\": {\"frequency\": 1, \"value\": \"0.421115\"}, \"0.350648\": {\"frequency\": 1, \"value\": \"0.350648\"}, \"0.256336\": {\"frequency\": 1, \"value\": \"0.256336\"}, \"0.691917\": {\"frequency\": 1, \"value\": \"0.691917\"}, \"0.0244834\": {\"frequency\": 1, \"value\": \"0.0244834\"}, \"0.733286\": {\"frequency\": 1, \"value\": \"0.733286\"}, \"0.337937\": {\"frequency\": 1, \"value\": \"0.337937\"}, \"0.280159\": {\"frequency\": 1, \"value\": \"0.280159\"}, \"0.680144\": {\"frequency\": 1, \"value\": \"0.680144\"}, \"0.441373\": {\"frequency\": 1, \"value\": \"0.441373\"}, \"0.515042\": {\"frequency\": 1, \"value\": \"0.515042\"}, \"0.511593\": {\"frequency\": 1, \"value\": \"0.511593\"}, \"0.503579\": {\"frequency\": 1, \"value\": \"0.503579\"}, \"0.491123\": {\"frequency\": 1, \"value\": \"0.491123\"}, \"0.547418\": {\"frequency\": 1, \"value\": \"0.547418\"}, \"0.314133\": {\"frequency\": 1, \"value\": \"0.314133\"}, \"0.438401\": {\"frequency\": 1, \"value\": \"0.438401\"}, \"0.408424\": {\"frequency\": 1, \"value\": \"0.408424\"}, \"0.495653\": {\"frequency\": 1, \"value\": \"0.495653\"}, \"0.452619\": {\"frequency\": 1, \"value\": \"0.452619\"}, \"0.451942\": {\"frequency\": 1, \"value\": \"0.451942\"}, \"0.406841\": {\"frequency\": 1, \"value\": \"0.406841\"}, \"0.413922\": {\"frequency\": 1, \"value\": \"0.413922\"}, \"0.204671\": {\"frequency\": 1, \"value\": \"0.204671\"}, \"0.257696\": {\"frequency\": 1, \"value\": \"0.257696\"}, \"0.111377\": {\"frequency\": 1, \"value\": \"0.111377\"}, \"0.214998\": {\"frequency\": 1, \"value\": \"0.214998\"}, \"0.426928\": {\"frequency\": 1, \"value\": \"0.426928\"}, \"0.653159\": {\"frequency\": 1, \"value\": \"0.653159\"}, \"0.382134\": {\"frequency\": 1, \"value\": \"0.382134\"}, \"0.401177\": {\"frequency\": 1, \"value\": \"0.401177\"}, \"0.454992\": {\"frequency\": 1, \"value\": \"0.454992\"}, \"0.64292\": {\"frequency\": 1, \"value\": \"0.64292\"}, \"0.30898\": {\"frequency\": 1, \"value\": \"0.30898\"}, \"0.526892\": {\"frequency\": 1, \"value\": \"0.526892\"}, \"0.73005\": {\"frequency\": 1, \"value\": \"0.73005\"}, \"0.470935\": {\"frequency\": 1, \"value\": \"0.470935\"}, \"0.718721\": {\"frequency\": 1, \"value\": \"0.718721\"}, \"0.431897\": {\"frequency\": 1, \"value\": \"0.431897\"}, \"0.392976\": {\"frequency\": 1, \"value\": \"0.392976\"}, \"0.270431\": {\"frequency\": 1, \"value\": \"0.270431\"}, \"0.503817\": {\"frequency\": 1, \"value\": \"0.503817\"}, \"0.484417\": {\"frequency\": 1, \"value\": \"0.484417\"}, \"0.463389\": {\"frequency\": 1, \"value\": \"0.463389\"}, \"0.44629\": {\"frequency\": 1, \"value\": \"0.44629\"}, \"0.637128\": {\"frequency\": 1, \"value\": \"0.637128\"}, \"0.467254\": {\"frequency\": 1, \"value\": \"0.467254\"}, \"0.495043\": {\"frequency\": 1, \"value\": \"0.495043\"}, \"0.511686\": {\"frequency\": 1, \"value\": \"0.511686\"}, \"0.386601\": {\"frequency\": 1, \"value\": \"0.386601\"}, \"0.608117\": {\"frequency\": 1, \"value\": \"0.608117\"}, \"0.371355\": {\"frequency\": 1, \"value\": \"0.371355\"}, \"0.264348\": {\"frequency\": 1, \"value\": \"0.264348\"}, \"0.450321\": {\"frequency\": 1, \"value\": \"0.450321\"}, \"0.526438\": {\"frequency\": 1, \"value\": \"0.526438\"}, \"0.430949\": {\"frequency\": 1, \"value\": \"0.430949\"}, \"0.450985\": {\"frequency\": 1, \"value\": \"0.450985\"}, \"0.323297\": {\"frequency\": 1, \"value\": \"0.323297\"}, \"0.392572\": {\"frequency\": 1, \"value\": \"0.392572\"}, \"0.346943\": {\"frequency\": 1, \"value\": \"0.346943\"}, \"0.400201\": {\"frequency\": 1, \"value\": \"0.400201\"}, \"0.271692\": {\"frequency\": 1, \"value\": \"0.271692\"}, \"0.2851\": {\"frequency\": 1, \"value\": \"0.2851\"}, \"0.636776\": {\"frequency\": 1, \"value\": \"0.636776\"}, \"0.291783\": {\"frequency\": 1, \"value\": \"0.291783\"}, \"0.421066\": {\"frequency\": 1, \"value\": \"0.421066\"}, \"0.284874\": {\"frequency\": 1, \"value\": \"0.284874\"}, \"0.461661\": {\"frequency\": 1, \"value\": \"0.461661\"}, \"0.38216\": {\"frequency\": 1, \"value\": \"0.38216\"}, \"0.399247\": {\"frequency\": 1, \"value\": \"0.399247\"}, \"0.308904\": {\"frequency\": 1, \"value\": \"0.308904\"}, \"0.414927\": {\"frequency\": 1, \"value\": \"0.414927\"}, \"0.664748\": {\"frequency\": 1, \"value\": \"0.664748\"}, \"0.386744\": {\"frequency\": 1, \"value\": \"0.386744\"}, \"0.368341\": {\"frequency\": 1, \"value\": \"0.368341\"}, \"0.322694\": {\"frequency\": 1, \"value\": \"0.322694\"}, \"0.514316\": {\"frequency\": 1, \"value\": \"0.514316\"}, \"0.506594\": {\"frequency\": 1, \"value\": \"0.506594\"}, \"0.492486\": {\"frequency\": 1, \"value\": \"0.492486\"}, \"0.442103\": {\"frequency\": 1, \"value\": \"0.442103\"}, \"0.461069\": {\"frequency\": 1, \"value\": \"0.461069\"}, \"0.526383\": {\"frequency\": 1, \"value\": \"0.526383\"}, \"0.389951\": {\"frequency\": 1, \"value\": \"0.389951\"}, \"0.407419\": {\"frequency\": 1, \"value\": \"0.407419\"}, \"0.407417\": {\"frequency\": 1, \"value\": \"0.407417\"}, \"0.326625\": {\"frequency\": 1, \"value\": \"0.326625\"}, \"0.400373\": {\"frequency\": 1, \"value\": \"0.400373\"}, \"0.189294\": {\"frequency\": 1, \"value\": \"0.189294\"}, \"0.398446\": {\"frequency\": 1, \"value\": \"0.398446\"}, \"0.308525\": {\"frequency\": 1, \"value\": \"0.308525\"}, \"0.513832\": {\"frequency\": 1, \"value\": \"0.513832\"}, \"0.469285\": {\"frequency\": 1, \"value\": \"0.469285\"}, \"0.497375\": {\"frequency\": 1, \"value\": \"0.497375\"}, \"0.469287\": {\"frequency\": 1, \"value\": \"0.469287\"}, \"0.209366\": {\"frequency\": 1, \"value\": \"0.209366\"}, \"0.648614\": {\"frequency\": 1, \"value\": \"0.648614\"}, \"0.217772\": {\"frequency\": 1, \"value\": \"0.217772\"}, \"0.335464\": {\"frequency\": 1, \"value\": \"0.335464\"}, \"0.464538\": {\"frequency\": 1, \"value\": \"0.464538\"}, \"0.620194\": {\"frequency\": 1, \"value\": \"0.620194\"}, \"0.757161\": {\"frequency\": 1, \"value\": \"0.757161\"}, \"0.551988\": {\"frequency\": 1, \"value\": \"0.551988\"}, \"0.202452\": {\"frequency\": 1, \"value\": \"0.202452\"}, \"0.253435\": {\"frequency\": 1, \"value\": \"0.253435\"}, \"0.624168\": {\"frequency\": 1, \"value\": \"0.624168\"}, \"0.304087\": {\"frequency\": 1, \"value\": \"0.304087\"}, \"0.39109\": {\"frequency\": 1, \"value\": \"0.39109\"}, \"0.306582\": {\"frequency\": 1, \"value\": \"0.306582\"}, \"0.306583\": {\"frequency\": 1, \"value\": \"0.306583\"}, \"0.365912\": {\"frequency\": 1, \"value\": \"0.365912\"}, \"0.712821\": {\"frequency\": 1, \"value\": \"0.712821\"}, \"0.40755\": {\"frequency\": 1, \"value\": \"0.40755\"}, \"0.597642\": {\"frequency\": 1, \"value\": \"0.597642\"}, \"0.329196\": {\"frequency\": 1, \"value\": \"0.329196\"}, \"0.240399\": {\"frequency\": 1, \"value\": \"0.240399\"}, \"0.514224\": {\"frequency\": 1, \"value\": \"0.514224\"}, \"0.508744\": {\"frequency\": 1, \"value\": \"0.508744\"}, \"0.135363\": {\"frequency\": 1, \"value\": \"0.135363\"}, \"0.937482\": {\"frequency\": 1, \"value\": \"0.937482\"}, \"0.327661\": {\"frequency\": 1, \"value\": \"0.327661\"}, \"0.656272\": {\"frequency\": 1, \"value\": \"0.656272\"}, \"0.315284\": {\"frequency\": 1, \"value\": \"0.315284\"}, \"0.477004\": {\"frequency\": 1, \"value\": \"0.477004\"}, \"0.432929\": {\"frequency\": 1, \"value\": \"0.432929\"}, \"0.177979\": {\"frequency\": 1, \"value\": \"0.177979\"}, \"0.390103\": {\"frequency\": 1, \"value\": \"0.390103\"}, \"0.515917\": {\"frequency\": 1, \"value\": \"0.515917\"}, \"0.310893\": {\"frequency\": 1, \"value\": \"0.310893\"}, \"0.743109\": {\"frequency\": 1, \"value\": \"0.743109\"}, \"0.203876\": {\"frequency\": 1, \"value\": \"0.203876\"}, \"0.263731\": {\"frequency\": 1, \"value\": \"0.263731\"}, \"0.362459\": {\"frequency\": 1, \"value\": \"0.362459\"}, \"0.208163\": {\"frequency\": 1, \"value\": \"0.208163\"}, \"0.413317\": {\"frequency\": 1, \"value\": \"0.413317\"}, \"0.288972\": {\"frequency\": 1, \"value\": \"0.288972\"}, \"0.0709851\": {\"frequency\": 1, \"value\": \"0.0709851\"}, \"0.478238\": {\"frequency\": 1, \"value\": \"0.478238\"}, \"0.160466\": {\"frequency\": 1, \"value\": \"0.160466\"}, \"0.24095\": {\"frequency\": 1, \"value\": \"0.24095\"}, \"0.244653\": {\"frequency\": 1, \"value\": \"0.244653\"}, \"0.627087\": {\"frequency\": 1, \"value\": \"0.627087\"}, \"0.625581\": {\"frequency\": 1, \"value\": \"0.625581\"}, \"0.260916\": {\"frequency\": 1, \"value\": \"0.260916\"}, \"0.301915\": {\"frequency\": 2, \"value\": \"0.301915\"}, \"0.333762\": {\"frequency\": 1, \"value\": \"0.333762\"}, \"0.377202\": {\"frequency\": 1, \"value\": \"0.377202\"}, \"0.357544\": {\"frequency\": 1, \"value\": \"0.357544\"}, \"0.470745\": {\"frequency\": 1, \"value\": \"0.470745\"}, \"0.399067\": {\"frequency\": 1, \"value\": \"0.399067\"}, \"0.686078\": {\"frequency\": 1, \"value\": \"0.686078\"}, \"0.643845\": {\"frequency\": 1, \"value\": \"0.643845\"}, \"0.158404\": {\"frequency\": 1, \"value\": \"0.158404\"}, \"0.492062\": {\"frequency\": 1, \"value\": \"0.492062\"}, \"0.286459\": {\"frequency\": 1, \"value\": \"0.286459\"}, \"0.371694\": {\"frequency\": 1, \"value\": \"0.371694\"}, \"0.514133\": {\"frequency\": 1, \"value\": \"0.514133\"}, \"0.657874\": {\"frequency\": 1, \"value\": \"0.657874\"}, \"0.293781\": {\"frequency\": 1, \"value\": \"0.293781\"}, \"0.335398\": {\"frequency\": 1, \"value\": \"0.335398\"}, \"0.442261\": {\"frequency\": 1, \"value\": \"0.442261\"}, \"0.238455\": {\"frequency\": 1, \"value\": \"0.238455\"}, \"0.467159\": {\"frequency\": 1, \"value\": \"0.467159\"}, \"0.531231\": {\"frequency\": 1, \"value\": \"0.531231\"}, \"0.435068\": {\"frequency\": 1, \"value\": \"0.435068\"}, \"0.363276\": {\"frequency\": 1, \"value\": \"0.363276\"}, \"0.44832\": {\"frequency\": 1, \"value\": \"0.44832\"}, \"0.402689\": {\"frequency\": 1, \"value\": \"0.402689\"}, \"0.267036\": {\"frequency\": 1, \"value\": \"0.267036\"}, \"0.593541\": {\"frequency\": 1, \"value\": \"0.593541\"}, \"0.470869\": {\"frequency\": 1, \"value\": \"0.470869\"}, \"0.467395\": {\"frequency\": 1, \"value\": \"0.467395\"}, \"0.52129\": {\"frequency\": 1, \"value\": \"0.52129\"}, \"0.35494\": {\"frequency\": 1, \"value\": \"0.35494\"}, \"0.456084\": {\"frequency\": 1, \"value\": \"0.456084\"}, \"0.490631\": {\"frequency\": 1, \"value\": \"0.490631\"}, \"0.567559\": {\"frequency\": 1, \"value\": \"0.567559\"}, \"0.435464\": {\"frequency\": 1, \"value\": \"0.435464\"}, \"0.569589\": {\"frequency\": 1, \"value\": \"0.569589\"}, \"0.255974\": {\"frequency\": 1, \"value\": \"0.255974\"}, \"0.606219\": {\"frequency\": 1, \"value\": \"0.606219\"}, \"0.233241\": {\"frequency\": 1, \"value\": \"0.233241\"}, \"0.417406\": {\"frequency\": 1, \"value\": \"0.417406\"}, \"0.595213\": {\"frequency\": 1, \"value\": \"0.595213\"}, \"0.563712\": {\"frequency\": 1, \"value\": \"0.563712\"}, \"0.380193\": {\"frequency\": 1, \"value\": \"0.380193\"}, \"0.314801\": {\"frequency\": 1, \"value\": \"0.314801\"}, \"0.330856\": {\"frequency\": 1, \"value\": \"0.330856\"}, \"0.272771\": {\"frequency\": 1, \"value\": \"0.272771\"}, \"0.549937\": {\"frequency\": 1, \"value\": \"0.549937\"}, \"0.502496\": {\"frequency\": 1, \"value\": \"0.502496\"}, \"0.299816\": {\"frequency\": 1, \"value\": \"0.299816\"}, \"0.515861\": {\"frequency\": 1, \"value\": \"0.515861\"}, \"0.676731\": {\"frequency\": 1, \"value\": \"0.676731\"}, \"0.409904\": {\"frequency\": 1, \"value\": \"0.409904\"}, \"0.410064\": {\"frequency\": 1, \"value\": \"0.410064\"}, \"0.469719\": {\"frequency\": 1, \"value\": \"0.469719\"}, \"0.503384\": {\"frequency\": 1, \"value\": \"0.503384\"}, \"0.100495\": {\"frequency\": 1, \"value\": \"0.100495\"}, \"0.304526\": {\"frequency\": 1, \"value\": \"0.304526\"}, \"0.475213\": {\"frequency\": 1, \"value\": \"0.475213\"}, \"0.288118\": {\"frequency\": 1, \"value\": \"0.288118\"}, \"0.493447\": {\"frequency\": 1, \"value\": \"0.493447\"}, \"0.584572\": {\"frequency\": 1, \"value\": \"0.584572\"}, \"0.480877\": {\"frequency\": 1, \"value\": \"0.480877\"}, \"0.424437\": {\"frequency\": 1, \"value\": \"0.424437\"}, \"0.356963\": {\"frequency\": 1, \"value\": \"0.356963\"}, \"0.467088\": {\"frequency\": 1, \"value\": \"0.467088\"}, \"0.464061\": {\"frequency\": 1, \"value\": \"0.464061\"}, \"0.283949\": {\"frequency\": 1, \"value\": \"0.283949\"}, \"0.547882\": {\"frequency\": 1, \"value\": \"0.547882\"}, \"0.279489\": {\"frequency\": 1, \"value\": \"0.279489\"}, \"0.447038\": {\"frequency\": 1, \"value\": \"0.447038\"}, \"0.501668\": {\"frequency\": 1, \"value\": \"0.501668\"}, \"0.439112\": {\"frequency\": 1, \"value\": \"0.439112\"}, \"0.31768\": {\"frequency\": 1, \"value\": \"0.31768\"}, \"0.3598\": {\"frequency\": 1, \"value\": \"0.3598\"}, \"0.503259\": {\"frequency\": 1, \"value\": \"0.503259\"}, \"0.340445\": {\"frequency\": 1, \"value\": \"0.340445\"}, \"0.111804\": {\"frequency\": 1, \"value\": \"0.111804\"}, \"0.272979\": {\"frequency\": 1, \"value\": \"0.272979\"}, \"0.42085\": {\"frequency\": 1, \"value\": \"0.42085\"}, \"0.508425\": {\"frequency\": 1, \"value\": \"0.508425\"}, \"0.128903\": {\"frequency\": 1, \"value\": \"0.128903\"}, \"0.408588\": {\"frequency\": 1, \"value\": \"0.408588\"}, \"0.296957\": {\"frequency\": 1, \"value\": \"0.296957\"}, \"0.439625\": {\"frequency\": 1, \"value\": \"0.439625\"}, \"0.481478\": {\"frequency\": 1, \"value\": \"0.481478\"}, \"0.49032\": {\"frequency\": 1, \"value\": \"0.49032\"}, \"0.36262\": {\"frequency\": 1, \"value\": \"0.36262\"}, \"0.460835\": {\"frequency\": 1, \"value\": \"0.460835\"}, \"0.460834\": {\"frequency\": 1, \"value\": \"0.460834\"}, \"0.468531\": {\"frequency\": 1, \"value\": \"0.468531\"}, \"0.380978\": {\"frequency\": 1, \"value\": \"0.380978\"}, \"0.45318\": {\"frequency\": 1, \"value\": \"0.45318\"}, \"0.183468\": {\"frequency\": 1, \"value\": \"0.183468\"}, \"0.163894\": {\"frequency\": 1, \"value\": \"0.163894\"}, \"0.535205\": {\"frequency\": 1, \"value\": \"0.535205\"}, \"0.343284\": {\"frequency\": 1, \"value\": \"0.343284\"}, \"0.46741\": {\"frequency\": 1, \"value\": \"0.46741\"}, \"0.619928\": {\"frequency\": 1, \"value\": \"0.619928\"}, \"0.387489\": {\"frequency\": 1, \"value\": \"0.387489\"}, \"0.313766\": {\"frequency\": 1, \"value\": \"0.313766\"}, \"0.313568\": {\"frequency\": 1, \"value\": \"0.313568\"}, \"0.319062\": {\"frequency\": 1, \"value\": \"0.319062\"}, \"0.464997\": {\"frequency\": 1, \"value\": \"0.464997\"}, \"0.42401\": {\"frequency\": 1, \"value\": \"0.42401\"}, \"0.245457\": {\"frequency\": 1, \"value\": \"0.245457\"}, \"0.35606\": {\"frequency\": 1, \"value\": \"0.35606\"}, \"0.373199\": {\"frequency\": 1, \"value\": \"0.373199\"}, \"0.377838\": {\"frequency\": 1, \"value\": \"0.377838\"}, \"0.618196\": {\"frequency\": 1, \"value\": \"0.618196\"}, \"0.42889\": {\"frequency\": 1, \"value\": \"0.42889\"}, \"0.412338\": {\"frequency\": 1, \"value\": \"0.412338\"}, \"0.622001\": {\"frequency\": 1, \"value\": \"0.622001\"}, \"0.655063\": {\"frequency\": 1, \"value\": \"0.655063\"}, \"0.724605\": {\"frequency\": 1, \"value\": \"0.724605\"}, \"0.384706\": {\"frequency\": 1, \"value\": \"0.384706\"}, \"0.482435\": {\"frequency\": 1, \"value\": \"0.482435\"}, \"0.472633\": {\"frequency\": 1, \"value\": \"0.472633\"}, \"0.374343\": {\"frequency\": 1, \"value\": \"0.374343\"}, \"0.442885\": {\"frequency\": 1, \"value\": \"0.442885\"}, \"0.41695\": {\"frequency\": 1, \"value\": \"0.41695\"}, \"0.462793\": {\"frequency\": 1, \"value\": \"0.462793\"}, \"0.29439\": {\"frequency\": 1, \"value\": \"0.29439\"}, \"0.305452\": {\"frequency\": 1, \"value\": \"0.305452\"}, \"0.547554\": {\"frequency\": 1, \"value\": \"0.547554\"}, \"0.563881\": {\"frequency\": 1, \"value\": \"0.563881\"}, \"0.414798\": {\"frequency\": 1, \"value\": \"0.414798\"}, \"0.453424\": {\"frequency\": 1, \"value\": \"0.453424\"}, \"0.627637\": {\"frequency\": 1, \"value\": \"0.627637\"}, \"0.480454\": {\"frequency\": 1, \"value\": \"0.480454\"}, \"0.502924\": {\"frequency\": 1, \"value\": \"0.502924\"}, \"0.484856\": {\"frequency\": 1, \"value\": \"0.484856\"}, \"0.241929\": {\"frequency\": 1, \"value\": \"0.241929\"}, \"0.792157\": {\"frequency\": 1, \"value\": \"0.792157\"}, \"0.255695\": {\"frequency\": 1, \"value\": \"0.255695\"}, \"0.367145\": {\"frequency\": 1, \"value\": \"0.367145\"}, \"0.479946\": {\"frequency\": 1, \"value\": \"0.479946\"}, \"0.410086\": {\"frequency\": 1, \"value\": \"0.410086\"}, \"0.717927\": {\"frequency\": 1, \"value\": \"0.717927\"}, \"0.419321\": {\"frequency\": 1, \"value\": \"0.419321\"}, \"0.434563\": {\"frequency\": 1, \"value\": \"0.434563\"}, \"0.379238\": {\"frequency\": 1, \"value\": \"0.379238\"}, \"0.422238\": {\"frequency\": 1, \"value\": \"0.422238\"}, \"0.33477\": {\"frequency\": 1, \"value\": \"0.33477\"}, \"0.170938\": {\"frequency\": 1, \"value\": \"0.170938\"}, \"0.47836\": {\"frequency\": 1, \"value\": \"0.47836\"}, \"0.355157\": {\"frequency\": 1, \"value\": \"0.355157\"}, \"0.416031\": {\"frequency\": 1, \"value\": \"0.416031\"}, \"0.22472\": {\"frequency\": 1, \"value\": \"0.22472\"}, \"0.63507\": {\"frequency\": 1, \"value\": \"0.63507\"}, \"0.216263\": {\"frequency\": 1, \"value\": \"0.216263\"}, \"0.577177\": {\"frequency\": 1, \"value\": \"0.577177\"}, \"0.236832\": {\"frequency\": 1, \"value\": \"0.236832\"}, \"0.340641\": {\"frequency\": 1, \"value\": \"0.340641\"}, \"0.520486\": {\"frequency\": 1, \"value\": \"0.520486\"}, \"0.436135\": {\"frequency\": 1, \"value\": \"0.436135\"}, \"0.472989\": {\"frequency\": 1, \"value\": \"0.472989\"}, \"0.216176\": {\"frequency\": 1, \"value\": \"0.216176\"}, \"0.209624\": {\"frequency\": 1, \"value\": \"0.209624\"}, \"0.26008\": {\"frequency\": 1, \"value\": \"0.26008\"}, \"0.252436\": {\"frequency\": 1, \"value\": \"0.252436\"}, \"0.211483\": {\"frequency\": 1, \"value\": \"0.211483\"}, \"0.619628\": {\"frequency\": 1, \"value\": \"0.619628\"}, \"0.396133\": {\"frequency\": 1, \"value\": \"0.396133\"}, \"0.295831\": {\"frequency\": 1, \"value\": \"0.295831\"}, \"0.515443\": {\"frequency\": 1, \"value\": \"0.515443\"}, \"0.38775\": {\"frequency\": 1, \"value\": \"0.38775\"}, \"0.37024\": {\"frequency\": 1, \"value\": \"0.37024\"}, \"0.305859\": {\"frequency\": 1, \"value\": \"0.305859\"}, \"0.427535\": {\"frequency\": 1, \"value\": \"0.427535\"}, \"0.392413\": {\"frequency\": 1, \"value\": \"0.392413\"}, \"0.357472\": {\"frequency\": 1, \"value\": \"0.357472\"}, \"0.430391\": {\"frequency\": 1, \"value\": \"0.430391\"}, \"0.382141\": {\"frequency\": 1, \"value\": \"0.382141\"}, \"0.17668\": {\"frequency\": 1, \"value\": \"0.17668\"}, \"0.561976\": {\"frequency\": 1, \"value\": \"0.561976\"}, \"0.377749\": {\"frequency\": 1, \"value\": \"0.377749\"}, \"0.445964\": {\"frequency\": 1, \"value\": \"0.445964\"}, \"0.433983\": {\"frequency\": 1, \"value\": \"0.433983\"}, \"0.30881\": {\"frequency\": 1, \"value\": \"0.30881\"}, \"0.882147\": {\"frequency\": 1, \"value\": \"0.882147\"}, \"0.592977\": {\"frequency\": 1, \"value\": \"0.592977\"}, \"0.392964\": {\"frequency\": 1, \"value\": \"0.392964\"}, \"0.733438\": {\"frequency\": 1, \"value\": \"0.733438\"}, \"0.457942\": {\"frequency\": 1, \"value\": \"0.457942\"}, \"0.215922\": {\"frequency\": 1, \"value\": \"0.215922\"}, \"0.6729\": {\"frequency\": 1, \"value\": \"0.6729\"}, \"0.466363\": {\"frequency\": 1, \"value\": \"0.466363\"}, \"0.31562\": {\"frequency\": 1, \"value\": \"0.31562\"}, \"0.546268\": {\"frequency\": 1, \"value\": \"0.546268\"}, \"0.57892\": {\"frequency\": 1, \"value\": \"0.57892\"}, \"0.846608\": {\"frequency\": 1, \"value\": \"0.846608\"}, \"0.358043\": {\"frequency\": 1, \"value\": \"0.358043\"}, \"0.326507\": {\"frequency\": 1, \"value\": \"0.326507\"}, \"0.599086\": {\"frequency\": 1, \"value\": \"0.599086\"}, \"0.433641\": {\"frequency\": 1, \"value\": \"0.433641\"}, \"0.30425\": {\"frequency\": 1, \"value\": \"0.30425\"}, \"0.298205\": {\"frequency\": 1, \"value\": \"0.298205\"}, \"0.372319\": {\"frequency\": 1, \"value\": \"0.372319\"}, \"0.318551\": {\"frequency\": 1, \"value\": \"0.318551\"}, \"0.952423\": {\"frequency\": 1, \"value\": \"0.952423\"}, \"0.411113\": {\"frequency\": 1, \"value\": \"0.411113\"}, \"0.392561\": {\"frequency\": 1, \"value\": \"0.392561\"}, \"0.264594\": {\"frequency\": 1, \"value\": \"0.264594\"}, \"0.376907\": {\"frequency\": 1, \"value\": \"0.376907\"}, \"0.470175\": {\"frequency\": 1, \"value\": \"0.470175\"}, \"0.321048\": {\"frequency\": 1, \"value\": \"0.321048\"}, \"0.357375\": {\"frequency\": 1, \"value\": \"0.357375\"}, \"0.179226\": {\"frequency\": 1, \"value\": \"0.179226\"}, \"0.40106\": {\"frequency\": 1, \"value\": \"0.40106\"}, \"0.353659\": {\"frequency\": 1, \"value\": \"0.353659\"}, \"0.492278\": {\"frequency\": 1, \"value\": \"0.492278\"}, \"0.723321\": {\"frequency\": 1, \"value\": \"0.723321\"}, \"0.573019\": {\"frequency\": 1, \"value\": \"0.573019\"}, \"0.415946\": {\"frequency\": 1, \"value\": \"0.415946\"}, \"0.492471\": {\"frequency\": 1, \"value\": \"0.492471\"}, \"0.212976\": {\"frequency\": 1, \"value\": \"0.212976\"}, \"0.483128\": {\"frequency\": 1, \"value\": \"0.483128\"}, \"0.40358\": {\"frequency\": 1, \"value\": \"0.40358\"}, \"0.440104\": {\"frequency\": 1, \"value\": \"0.440104\"}, \"0.283603\": {\"frequency\": 1, \"value\": \"0.283603\"}, \"0.478145\": {\"frequency\": 1, \"value\": \"0.478145\"}, \"0.30398\": {\"frequency\": 1, \"value\": \"0.30398\"}, \"0.581441\": {\"frequency\": 1, \"value\": \"0.581441\"}, \"0.3473\": {\"frequency\": 1, \"value\": \"0.3473\"}, \"0.198218\": {\"frequency\": 1, \"value\": \"0.198218\"}, \"0.494618\": {\"frequency\": 1, \"value\": \"0.494618\"}, \"0.400366\": {\"frequency\": 1, \"value\": \"0.400366\"}, \"0.156794\": {\"frequency\": 1, \"value\": \"0.156794\"}, \"0.510093\": {\"frequency\": 1, \"value\": \"0.510093\"}, \"0.353783\": {\"frequency\": 1, \"value\": \"0.353783\"}, \"0.391207\": {\"frequency\": 1, \"value\": \"0.391207\"}, \"0.387442\": {\"frequency\": 1, \"value\": \"0.387442\"}, \"0.544277\": {\"frequency\": 1, \"value\": \"0.544277\"}, \"0.582935\": {\"frequency\": 1, \"value\": \"0.582935\"}, \"0.545496\": {\"frequency\": 1, \"value\": \"0.545496\"}, \"0.497365\": {\"frequency\": 1, \"value\": \"0.497365\"}, \"0.322403\": {\"frequency\": 1, \"value\": \"0.322403\"}, \"0.226713\": {\"frequency\": 1, \"value\": \"0.226713\"}, \"0.473912\": {\"frequency\": 1, \"value\": \"0.473912\"}, \"0.109677\": {\"frequency\": 1, \"value\": \"0.109677\"}, \"0.220672\": {\"frequency\": 1, \"value\": \"0.220672\"}, \"0.417565\": {\"frequency\": 1, \"value\": \"0.417565\"}, \"0.378367\": {\"frequency\": 1, \"value\": \"0.378367\"}, \"0.509535\": {\"frequency\": 1, \"value\": \"0.509535\"}, \"0.219928\": {\"frequency\": 1, \"value\": \"0.219928\"}, \"0.278615\": {\"frequency\": 1, \"value\": \"0.278615\"}, \"0.123524\": {\"frequency\": 1, \"value\": \"0.123524\"}, \"0.49018\": {\"frequency\": 1, \"value\": \"0.49018\"}, \"0.327474\": {\"frequency\": 1, \"value\": \"0.327474\"}, \"0.300981\": {\"frequency\": 1, \"value\": \"0.300981\"}, \"0.366814\": {\"frequency\": 1, \"value\": \"0.366814\"}, \"0.225167\": {\"frequency\": 1, \"value\": \"0.225167\"}, \"0.366816\": {\"frequency\": 1, \"value\": \"0.366816\"}, \"0.0741846\": {\"frequency\": 1, \"value\": \"0.0741846\"}, \"0.4471\": {\"frequency\": 1, \"value\": \"0.4471\"}, \"0.391842\": {\"frequency\": 1, \"value\": \"0.391842\"}, \"0.283041\": {\"frequency\": 1, \"value\": \"0.283041\"}, \"0.303505\": {\"frequency\": 1, \"value\": \"0.303505\"}, \"0.518746\": {\"frequency\": 1, \"value\": \"0.518746\"}, \"0.656267\": {\"frequency\": 1, \"value\": \"0.656267\"}, \"0.550235\": {\"frequency\": 1, \"value\": \"0.550235\"}, \"0.844614\": {\"frequency\": 1, \"value\": \"0.844614\"}, \"0.0395408\": {\"frequency\": 1, \"value\": \"0.0395408\"}, \"0.756158\": {\"frequency\": 1, \"value\": \"0.756158\"}, \"0.214456\": {\"frequency\": 1, \"value\": \"0.214456\"}, \"0.403183\": {\"frequency\": 1, \"value\": \"0.403183\"}, \"0.182126\": {\"frequency\": 1, \"value\": \"0.182126\"}, \"0.267242\": {\"frequency\": 1, \"value\": \"0.267242\"}, \"0.469385\": {\"frequency\": 1, \"value\": \"0.469385\"}, \"0.224416\": {\"frequency\": 1, \"value\": \"0.224416\"}, \"0.505579\": {\"frequency\": 1, \"value\": \"0.505579\"}, \"0.34092\": {\"frequency\": 1, \"value\": \"0.34092\"}, \"0.39001\": {\"frequency\": 1, \"value\": \"0.39001\"}, \"0.378565\": {\"frequency\": 1, \"value\": \"0.378565\"}, \"0.443691\": {\"frequency\": 1, \"value\": \"0.443691\"}, \"0.509403\": {\"frequency\": 1, \"value\": \"0.509403\"}, \"0.171036\": {\"frequency\": 1, \"value\": \"0.171036\"}, \"0.0954659\": {\"frequency\": 1, \"value\": \"0.0954659\"}, \"0.561621\": {\"frequency\": 1, \"value\": \"0.561621\"}, \"0.587227\": {\"frequency\": 1, \"value\": \"0.587227\"}, \"0.34701\": {\"frequency\": 1, \"value\": \"0.34701\"}, \"0.43451\": {\"frequency\": 1, \"value\": \"0.43451\"}, \"0.504437\": {\"frequency\": 1, \"value\": \"0.504437\"}, \"0.482526\": {\"frequency\": 1, \"value\": \"0.482526\"}, \"0.434704\": {\"frequency\": 1, \"value\": \"0.434704\"}, \"0.368134\": {\"frequency\": 1, \"value\": \"0.368134\"}, \"0.408109\": {\"frequency\": 1, \"value\": \"0.408109\"}, \"0.537152\": {\"frequency\": 1, \"value\": \"0.537152\"}, \"0.626219\": {\"frequency\": 1, \"value\": \"0.626219\"}, \"0.542068\": {\"frequency\": 1, \"value\": \"0.542068\"}, \"0.761006\": {\"frequency\": 1, \"value\": \"0.761006\"}, \"0.126597\": {\"frequency\": 1, \"value\": \"0.126597\"}, \"0.456047\": {\"frequency\": 1, \"value\": \"0.456047\"}, \"0.509395\": {\"frequency\": 1, \"value\": \"0.509395\"}, \"0.498569\": {\"frequency\": 1, \"value\": \"0.498569\"}, \"0.660215\": {\"frequency\": 1, \"value\": \"0.660215\"}, \"0.377358\": {\"frequency\": 1, \"value\": \"0.377358\"}, \"0.63889\": {\"frequency\": 1, \"value\": \"0.63889\"}, \"0.780556\": {\"frequency\": 1, \"value\": \"0.780556\"}, \"0.305105\": {\"frequency\": 1, \"value\": \"0.305105\"}, \"0.478874\": {\"frequency\": 1, \"value\": \"0.478874\"}, \"0.483556\": {\"frequency\": 1, \"value\": \"0.483556\"}, \"0.464184\": {\"frequency\": 1, \"value\": \"0.464184\"}, \"0.39348\": {\"frequency\": 1, \"value\": \"0.39348\"}, \"0.413276\": {\"frequency\": 1, \"value\": \"0.413276\"}, \"0.181905\": {\"frequency\": 1, \"value\": \"0.181905\"}, \"0.557346\": {\"frequency\": 1, \"value\": \"0.557346\"}, \"0.503356\": {\"frequency\": 1, \"value\": \"0.503356\"}, \"0.137938\": {\"frequency\": 1, \"value\": \"0.137938\"}, \"0.468387\": {\"frequency\": 1, \"value\": \"0.468387\"}, \"0.54431\": {\"frequency\": 1, \"value\": \"0.54431\"}, \"0.345865\": {\"frequency\": 1, \"value\": \"0.345865\"}, \"0.380162\": {\"frequency\": 1, \"value\": \"0.380162\"}, \"0.370976\": {\"frequency\": 1, \"value\": \"0.370976\"}, \"0.351743\": {\"frequency\": 1, \"value\": \"0.351743\"}, \"0.320126\": {\"frequency\": 1, \"value\": \"0.320126\"}, \"0.468016\": {\"frequency\": 1, \"value\": \"0.468016\"}, \"0.360413\": {\"frequency\": 1, \"value\": \"0.360413\"}, \"0.371087\": {\"frequency\": 1, \"value\": \"0.371087\"}, \"0.31339\": {\"frequency\": 1, \"value\": \"0.31339\"}, \"0.515893\": {\"frequency\": 1, \"value\": \"0.515893\"}, \"0.0504035\": {\"frequency\": 1, \"value\": \"0.0504035\"}, \"0.31331\": {\"frequency\": 1, \"value\": \"0.31331\"}, \"0.531647\": {\"frequency\": 1, \"value\": \"0.531647\"}, \"0.252158\": {\"frequency\": 1, \"value\": \"0.252158\"}, \"0.531313\": {\"frequency\": 1, \"value\": \"0.531313\"}, \"0.31334\": {\"frequency\": 1, \"value\": \"0.31334\"}, \"0.414096\": {\"frequency\": 1, \"value\": \"0.414096\"}, \"0.352959\": {\"frequency\": 1, \"value\": \"0.352959\"}, \"0.489412\": {\"frequency\": 1, \"value\": \"0.489412\"}, \"0.399467\": {\"frequency\": 1, \"value\": \"0.399467\"}, \"0.456138\": {\"frequency\": 1, \"value\": \"0.456138\"}, \"0.697185\": {\"frequency\": 1, \"value\": \"0.697185\"}, \"0.153039\": {\"frequency\": 1, \"value\": \"0.153039\"}, \"0.449689\": {\"frequency\": 1, \"value\": \"0.449689\"}, \"0.498167\": {\"frequency\": 1, \"value\": \"0.498167\"}, \"0.531799\": {\"frequency\": 1, \"value\": \"0.531799\"}, \"0.731129\": {\"frequency\": 1, \"value\": \"0.731129\"}, \"0.647842\": {\"frequency\": 1, \"value\": \"0.647842\"}, \"0.251767\": {\"frequency\": 1, \"value\": \"0.251767\"}, \"0.26672\": {\"frequency\": 1, \"value\": \"0.26672\"}, \"0.322751\": {\"frequency\": 1, \"value\": \"0.322751\"}, \"0.306363\": {\"frequency\": 1, \"value\": \"0.306363\"}, \"0.394758\": {\"frequency\": 1, \"value\": \"0.394758\"}, \"0.505599\": {\"frequency\": 1, \"value\": \"0.505599\"}, \"0.415347\": {\"frequency\": 1, \"value\": \"0.415347\"}, \"0.453375\": {\"frequency\": 1, \"value\": \"0.453375\"}, \"0.560142\": {\"frequency\": 1, \"value\": \"0.560142\"}, \"0.466174\": {\"frequency\": 1, \"value\": \"0.466174\"}, \"0.233078\": {\"frequency\": 1, \"value\": \"0.233078\"}, \"0.529615\": {\"frequency\": 1, \"value\": \"0.529615\"}, \"0.484105\": {\"frequency\": 1, \"value\": \"0.484105\"}, \"0.652592\": {\"frequency\": 1, \"value\": \"0.652592\"}, \"0.336273\": {\"frequency\": 1, \"value\": \"0.336273\"}, \"0.67239\": {\"frequency\": 1, \"value\": \"0.67239\"}, \"0.277426\": {\"frequency\": 1, \"value\": \"0.277426\"}, \"0.435107\": {\"frequency\": 1, \"value\": \"0.435107\"}, \"0.415548\": {\"frequency\": 1, \"value\": \"0.415548\"}, \"0.411434\": {\"frequency\": 1, \"value\": \"0.411434\"}, \"0.495876\": {\"frequency\": 1, \"value\": \"0.495876\"}, \"0.0962303\": {\"frequency\": 1, \"value\": \"0.0962303\"}, \"0.543333\": {\"frequency\": 1, \"value\": \"0.543333\"}, \"0.397527\": {\"frequency\": 1, \"value\": \"0.397527\"}, \"0.267757\": {\"frequency\": 1, \"value\": \"0.267757\"}, \"0.319261\": {\"frequency\": 1, \"value\": \"0.319261\"}, \"0.282777\": {\"frequency\": 1, \"value\": \"0.282777\"}, \"0.161599\": {\"frequency\": 1, \"value\": \"0.161599\"}, \"0.160715\": {\"frequency\": 1, \"value\": \"0.160715\"}, \"0.57536\": {\"frequency\": 1, \"value\": \"0.57536\"}, \"0.259684\": {\"frequency\": 1, \"value\": \"0.259684\"}, \"0.403325\": {\"frequency\": 1, \"value\": \"0.403325\"}, \"0.248527\": {\"frequency\": 1, \"value\": \"0.248527\"}, \"0.491575\": {\"frequency\": 1, \"value\": \"0.491575\"}, \"0.402675\": {\"frequency\": 1, \"value\": \"0.402675\"}, \"0.474842\": {\"frequency\": 1, \"value\": \"0.474842\"}, \"0.0753172\": {\"frequency\": 1, \"value\": \"0.0753172\"}, \"0.237375\": {\"frequency\": 1, \"value\": \"0.237375\"}, \"0.255513\": {\"frequency\": 1, \"value\": \"0.255513\"}, \"0.439749\": {\"frequency\": 1, \"value\": \"0.439749\"}, \"0.251691\": {\"frequency\": 1, \"value\": \"0.251691\"}, \"0.446755\": {\"frequency\": 1, \"value\": \"0.446755\"}, \"0.446972\": {\"frequency\": 1, \"value\": \"0.446972\"}, \"0.479513\": {\"frequency\": 1, \"value\": \"0.479513\"}, \"0.652187\": {\"frequency\": 1, \"value\": \"0.652187\"}, \"0.377023\": {\"frequency\": 1, \"value\": \"0.377023\"}, \"0.429911\": {\"frequency\": 1, \"value\": \"0.429911\"}, \"0.504159\": {\"frequency\": 1, \"value\": \"0.504159\"}, \"0.42894\": {\"frequency\": 1, \"value\": \"0.42894\"}, \"0.676673\": {\"frequency\": 1, \"value\": \"0.676673\"}, \"0.462932\": {\"frequency\": 1, \"value\": \"0.462932\"}, \"0.415437\": {\"frequency\": 1, \"value\": \"0.415437\"}, \"0.415436\": {\"frequency\": 1, \"value\": \"0.415436\"}, \"0.28919\": {\"frequency\": 1, \"value\": \"0.28919\"}, \"0.472622\": {\"frequency\": 1, \"value\": \"0.472622\"}, \"0.311043\": {\"frequency\": 1, \"value\": \"0.311043\"}, \"0.322772\": {\"frequency\": 1, \"value\": \"0.322772\"}, \"0.315971\": {\"frequency\": 1, \"value\": \"0.315971\"}, \"0.432024\": {\"frequency\": 1, \"value\": \"0.432024\"}, \"0.332596\": {\"frequency\": 1, \"value\": \"0.332596\"}, \"0.214841\": {\"frequency\": 1, \"value\": \"0.214841\"}, \"0.528364\": {\"frequency\": 1, \"value\": \"0.528364\"}, \"0.352432\": {\"frequency\": 1, \"value\": \"0.352432\"}, \"0.247153\": {\"frequency\": 1, \"value\": \"0.247153\"}, \"0.446579\": {\"frequency\": 1, \"value\": \"0.446579\"}, \"0.253209\": {\"frequency\": 1, \"value\": \"0.253209\"}, \"0.373841\": {\"frequency\": 1, \"value\": \"0.373841\"}, \"0.587262\": {\"frequency\": 1, \"value\": \"0.587262\"}, \"0.332358\": {\"frequency\": 1, \"value\": \"0.332358\"}, \"0.515521\": {\"frequency\": 1, \"value\": \"0.515521\"}, \"0.299921\": {\"frequency\": 1, \"value\": \"0.299921\"}, \"0.525663\": {\"frequency\": 1, \"value\": \"0.525663\"}, \"0.441579\": {\"frequency\": 1, \"value\": \"0.441579\"}, \"0.18318\": {\"frequency\": 1, \"value\": \"0.18318\"}, \"0.251075\": {\"frequency\": 1, \"value\": \"0.251075\"}, \"0.339724\": {\"frequency\": 1, \"value\": \"0.339724\"}, \"0.529182\": {\"frequency\": 1, \"value\": \"0.529182\"}, \"0.682789\": {\"frequency\": 1, \"value\": \"0.682789\"}, \"0.367536\": {\"frequency\": 1, \"value\": \"0.367536\"}, \"0.439969\": {\"frequency\": 1, \"value\": \"0.439969\"}, \"0.473463\": {\"frequency\": 1, \"value\": \"0.473463\"}, \"0.47828\": {\"frequency\": 1, \"value\": \"0.47828\"}, \"0.401775\": {\"frequency\": 1, \"value\": \"0.401775\"}, \"0.486459\": {\"frequency\": 1, \"value\": \"0.486459\"}, \"0.13518\": {\"frequency\": 1, \"value\": \"0.13518\"}, \"0.393445\": {\"frequency\": 1, \"value\": \"0.393445\"}, \"0.339457\": {\"frequency\": 1, \"value\": \"0.339457\"}, \"0.254642\": {\"frequency\": 1, \"value\": \"0.254642\"}, \"0.513775\": {\"frequency\": 1, \"value\": \"0.513775\"}, \"0.239336\": {\"frequency\": 1, \"value\": \"0.239336\"}, \"0.336106\": {\"frequency\": 1, \"value\": \"0.336106\"}, \"0.477573\": {\"frequency\": 1, \"value\": \"0.477573\"}, \"0.269343\": {\"frequency\": 1, \"value\": \"0.269343\"}, \"0.503661\": {\"frequency\": 1, \"value\": \"0.503661\"}, \"0.19681\": {\"frequency\": 1, \"value\": \"0.19681\"}, \"0.36034\": {\"frequency\": 1, \"value\": \"0.36034\"}, \"0.754892\": {\"frequency\": 1, \"value\": \"0.754892\"}, \"0.647053\": {\"frequency\": 1, \"value\": \"0.647053\"}, \"0.312428\": {\"frequency\": 1, \"value\": \"0.312428\"}, \"0.274512\": {\"frequency\": 1, \"value\": \"0.274512\"}, \"0.415247\": {\"frequency\": 1, \"value\": \"0.415247\"}, \"0.285078\": {\"frequency\": 1, \"value\": \"0.285078\"}, \"0.304844\": {\"frequency\": 1, \"value\": \"0.304844\"}, \"0.127345\": {\"frequency\": 1, \"value\": \"0.127345\"}, \"0.426768\": {\"frequency\": 1, \"value\": \"0.426768\"}, \"0.454712\": {\"frequency\": 1, \"value\": \"0.454712\"}, \"0.558383\": {\"frequency\": 1, \"value\": \"0.558383\"}, \"0.388716\": {\"frequency\": 1, \"value\": \"0.388716\"}, \"0.354761\": {\"frequency\": 1, \"value\": \"0.354761\"}, \"0.468869\": {\"frequency\": 1, \"value\": \"0.468869\"}, \"0.393407\": {\"frequency\": 1, \"value\": \"0.393407\"}, \"0.126125\": {\"frequency\": 1, \"value\": \"0.126125\"}, \"0.384843\": {\"frequency\": 1, \"value\": \"0.384843\"}, \"0.0703973\": {\"frequency\": 1, \"value\": \"0.0703973\"}, \"0.350206\": {\"frequency\": 1, \"value\": \"0.350206\"}, \"0.306109\": {\"frequency\": 1, \"value\": \"0.306109\"}, \"0.391298\": {\"frequency\": 1, \"value\": \"0.391298\"}, \"0.584506\": {\"frequency\": 1, \"value\": \"0.584506\"}, \"0.537949\": {\"frequency\": 1, \"value\": \"0.537949\"}, \"0.390526\": {\"frequency\": 1, \"value\": \"0.390526\"}, \"0.374793\": {\"frequency\": 1, \"value\": \"0.374793\"}, \"0.646634\": {\"frequency\": 1, \"value\": \"0.646634\"}, \"0.516685\": {\"frequency\": 1, \"value\": \"0.516685\"}, \"0.349568\": {\"frequency\": 1, \"value\": \"0.349568\"}, \"0.533408\": {\"frequency\": 1, \"value\": \"0.533408\"}, \"0.488521\": {\"frequency\": 1, \"value\": \"0.488521\"}, \"0.629292\": {\"frequency\": 1, \"value\": \"0.629292\"}, \"0.492723\": {\"frequency\": 1, \"value\": \"0.492723\"}, \"0.388958\": {\"frequency\": 1, \"value\": \"0.388958\"}, \"0.578052\": {\"frequency\": 1, \"value\": \"0.578052\"}, \"0.406961\": {\"frequency\": 1, \"value\": \"0.406961\"}, \"0.246377\": {\"frequency\": 1, \"value\": \"0.246377\"}, \"0.413875\": {\"frequency\": 1, \"value\": \"0.413875\"}, \"0.198174\": {\"frequency\": 1, \"value\": \"0.198174\"}, \"0.504676\": {\"frequency\": 1, \"value\": \"0.504676\"}, \"0.391052\": {\"frequency\": 1, \"value\": \"0.391052\"}, \"0.470109\": {\"frequency\": 1, \"value\": \"0.470109\"}, \"0.239144\": {\"frequency\": 1, \"value\": \"0.239144\"}, \"0.389535\": {\"frequency\": 1, \"value\": \"0.389535\"}, \"0.241395\": {\"frequency\": 1, \"value\": \"0.241395\"}, \"0.461648\": {\"frequency\": 1, \"value\": \"0.461648\"}, \"0.519179\": {\"frequency\": 1, \"value\": \"0.519179\"}, \"0.135742\": {\"frequency\": 1, \"value\": \"0.135742\"}, \"0.465734\": {\"frequency\": 1, \"value\": \"0.465734\"}, \"0.421311\": {\"frequency\": 1, \"value\": \"0.421311\"}, \"0.780946\": {\"frequency\": 1, \"value\": \"0.780946\"}, \"0.485873\": {\"frequency\": 1, \"value\": \"0.485873\"}, \"0.353314\": {\"frequency\": 1, \"value\": \"0.353314\"}, \"0.415934\": {\"frequency\": 1, \"value\": \"0.415934\"}, \"0.331125\": {\"frequency\": 1, \"value\": \"0.331125\"}, \"0.346982\": {\"frequency\": 1, \"value\": \"0.346982\"}, \"0.518881\": {\"frequency\": 1, \"value\": \"0.518881\"}, \"0.308645\": {\"frequency\": 1, \"value\": \"0.308645\"}, \"0.48441\": {\"frequency\": 1, \"value\": \"0.48441\"}, \"0.595803\": {\"frequency\": 1, \"value\": \"0.595803\"}, \"0.212871\": {\"frequency\": 1, \"value\": \"0.212871\"}, \"0.483137\": {\"frequency\": 1, \"value\": \"0.483137\"}, \"0.0140244\": {\"frequency\": 1, \"value\": \"0.0140244\"}, \"0.335102\": {\"frequency\": 1, \"value\": \"0.335102\"}, \"0.458819\": {\"frequency\": 1, \"value\": \"0.458819\"}, \"0.134662\": {\"frequency\": 1, \"value\": \"0.134662\"}, \"0.743875\": {\"frequency\": 1, \"value\": \"0.743875\"}, \"0.451106\": {\"frequency\": 1, \"value\": \"0.451106\"}, \"0.374314\": {\"frequency\": 1, \"value\": \"0.374314\"}, \"0.246111\": {\"frequency\": 1, \"value\": \"0.246111\"}, \"0.388483\": {\"frequency\": 1, \"value\": \"0.388483\"}, \"0.406815\": {\"frequency\": 1, \"value\": \"0.406815\"}, \"0.542476\": {\"frequency\": 1, \"value\": \"0.542476\"}, \"0.410065\": {\"frequency\": 1, \"value\": \"0.410065\"}, \"0.468461\": {\"frequency\": 1, \"value\": \"0.468461\"}, \"0.368924\": {\"frequency\": 1, \"value\": \"0.368924\"}, \"0.396325\": {\"frequency\": 1, \"value\": \"0.396325\"}, \"0.198002\": {\"frequency\": 1, \"value\": \"0.198002\"}, \"0.356142\": {\"frequency\": 1, \"value\": \"0.356142\"}, \"0.440487\": {\"frequency\": 1, \"value\": \"0.440487\"}, \"0.367773\": {\"frequency\": 1, \"value\": \"0.367773\"}, \"0.388605\": {\"frequency\": 1, \"value\": \"0.388605\"}, \"0.4041\": {\"frequency\": 1, \"value\": \"0.4041\"}, \"0.679271\": {\"frequency\": 1, \"value\": \"0.679271\"}, \"0.330814\": {\"frequency\": 1, \"value\": \"0.330814\"}, \"0.157788\": {\"frequency\": 1, \"value\": \"0.157788\"}, \"0.491135\": {\"frequency\": 1, \"value\": \"0.491135\"}, \"0.313177\": {\"frequency\": 1, \"value\": \"0.313177\"}, \"0.585336\": {\"frequency\": 1, \"value\": \"0.585336\"}, \"0.591435\": {\"frequency\": 1, \"value\": \"0.591435\"}, \"0.356879\": {\"frequency\": 1, \"value\": \"0.356879\"}, \"0.328656\": {\"frequency\": 1, \"value\": \"0.328656\"}, \"0.454956\": {\"frequency\": 1, \"value\": \"0.454956\"}, \"0.279701\": {\"frequency\": 1, \"value\": \"0.279701\"}, \"0.348574\": {\"frequency\": 1, \"value\": \"0.348574\"}, \"0.875378\": {\"frequency\": 1, \"value\": \"0.875378\"}, \"0.117651\": {\"frequency\": 1, \"value\": \"0.117651\"}, \"0.432905\": {\"frequency\": 1, \"value\": \"0.432905\"}, \"0.329222\": {\"frequency\": 1, \"value\": \"0.329222\"}, \"0.409092\": {\"frequency\": 1, \"value\": \"0.409092\"}, \"0.208816\": {\"frequency\": 1, \"value\": \"0.208816\"}, \"0.429506\": {\"frequency\": 1, \"value\": \"0.429506\"}, \"0.349993\": {\"frequency\": 1, \"value\": \"0.349993\"}, \"0.533333\": {\"frequency\": 1, \"value\": \"0.533333\"}, \"0.641053\": {\"frequency\": 1, \"value\": \"0.641053\"}, \"0.324419\": {\"frequency\": 1, \"value\": \"0.324419\"}, \"0.269397\": {\"frequency\": 1, \"value\": \"0.269397\"}, \"0.302843\": {\"frequency\": 1, \"value\": \"0.302843\"}, \"0.309215\": {\"frequency\": 1, \"value\": \"0.309215\"}, \"0.331937\": {\"frequency\": 1, \"value\": \"0.331937\"}, \"0.546207\": {\"frequency\": 1, \"value\": \"0.546207\"}, \"0.351186\": {\"frequency\": 1, \"value\": \"0.351186\"}, \"0.807453\": {\"frequency\": 1, \"value\": \"0.807453\"}, \"0.764683\": {\"frequency\": 1, \"value\": \"0.764683\"}, \"0.518223\": {\"frequency\": 1, \"value\": \"0.518223\"}, \"0.208636\": {\"frequency\": 1, \"value\": \"0.208636\"}, \"0.295208\": {\"frequency\": 1, \"value\": \"0.295208\"}, \"0.324609\": {\"frequency\": 1, \"value\": \"0.324609\"}, \"0.325737\": {\"frequency\": 1, \"value\": \"0.325737\"}, \"0.948504\": {\"frequency\": 1, \"value\": \"0.948504\"}, \"0.61688\": {\"frequency\": 1, \"value\": \"0.61688\"}, \"0.512899\": {\"frequency\": 1, \"value\": \"0.512899\"}, \"0.373942\": {\"frequency\": 1, \"value\": \"0.373942\"}, \"0.325738\": {\"frequency\": 1, \"value\": \"0.325738\"}, \"0.325412\": {\"frequency\": 1, \"value\": \"0.325412\"}, \"0.194464\": {\"frequency\": 1, \"value\": \"0.194464\"}, \"0.390133\": {\"frequency\": 1, \"value\": \"0.390133\"}, \"0.333988\": {\"frequency\": 1, \"value\": \"0.333988\"}, \"0.43118\": {\"frequency\": 1, \"value\": \"0.43118\"}, \"0.271504\": {\"frequency\": 1, \"value\": \"0.271504\"}, \"0.490279\": {\"frequency\": 1, \"value\": \"0.490279\"}, \"0.160247\": {\"frequency\": 1, \"value\": \"0.160247\"}, \"0.56434\": {\"frequency\": 1, \"value\": \"0.56434\"}, \"0.388496\": {\"frequency\": 1, \"value\": \"0.388496\"}, \"0.319838\": {\"frequency\": 1, \"value\": \"0.319838\"}, \"0.0689397\": {\"frequency\": 1, \"value\": \"0.0689397\"}, \"0.657032\": {\"frequency\": 1, \"value\": \"0.657032\"}, \"0.460196\": {\"frequency\": 1, \"value\": \"0.460196\"}, \"0.3807\": {\"frequency\": 1, \"value\": \"0.3807\"}, \"0.508924\": {\"frequency\": 1, \"value\": \"0.508924\"}, \"0.383711\": {\"frequency\": 1, \"value\": \"0.383711\"}, \"0.513811\": {\"frequency\": 1, \"value\": \"0.513811\"}, \"0.664051\": {\"frequency\": 1, \"value\": \"0.664051\"}, \"0.483904\": {\"frequency\": 1, \"value\": \"0.483904\"}, \"0.536929\": {\"frequency\": 1, \"value\": \"0.536929\"}, \"0.296087\": {\"frequency\": 1, \"value\": \"0.296087\"}, \"0.337241\": {\"frequency\": 1, \"value\": \"0.337241\"}, \"0.442797\": {\"frequency\": 1, \"value\": \"0.442797\"}, \"0.370892\": {\"frequency\": 1, \"value\": \"0.370892\"}, \"0.747556\": {\"frequency\": 1, \"value\": \"0.747556\"}, \"0.372491\": {\"frequency\": 1, \"value\": \"0.372491\"}, \"0.535046\": {\"frequency\": 1, \"value\": \"0.535046\"}, \"0.40867\": {\"frequency\": 1, \"value\": \"0.40867\"}, \"0.520904\": {\"frequency\": 1, \"value\": \"0.520904\"}, \"0.39333\": {\"frequency\": 1, \"value\": \"0.39333\"}, \"0.597271\": {\"frequency\": 1, \"value\": \"0.597271\"}, \"0.606238\": {\"frequency\": 1, \"value\": \"0.606238\"}, \"0.366494\": {\"frequency\": 1, \"value\": \"0.366494\"}, \"0.628528\": {\"frequency\": 1, \"value\": \"0.628528\"}, \"0.406567\": {\"frequency\": 1, \"value\": \"0.406567\"}, \"0.204153\": {\"frequency\": 1, \"value\": \"0.204153\"}, \"0.312228\": {\"frequency\": 1, \"value\": \"0.312228\"}, \"0.408788\": {\"frequency\": 1, \"value\": \"0.408788\"}, \"0.45278\": {\"frequency\": 1, \"value\": \"0.45278\"}, \"0.313365\": {\"frequency\": 1, \"value\": \"0.313365\"}, \"0.658084\": {\"frequency\": 1, \"value\": \"0.658084\"}, \"0.398297\": {\"frequency\": 1, \"value\": \"0.398297\"}, \"0.221891\": {\"frequency\": 1, \"value\": \"0.221891\"}, \"0.251436\": {\"frequency\": 1, \"value\": \"0.251436\"}, \"0.345873\": {\"frequency\": 1, \"value\": \"0.345873\"}, \"0.893826\": {\"frequency\": 1, \"value\": \"0.893826\"}, \"0.583981\": {\"frequency\": 1, \"value\": \"0.583981\"}, \"0.308885\": {\"frequency\": 1, \"value\": \"0.308885\"}, \"0.387388\": {\"frequency\": 1, \"value\": \"0.387388\"}, \"0.262666\": {\"frequency\": 1, \"value\": \"0.262666\"}, \"0.577516\": {\"frequency\": 1, \"value\": \"0.577516\"}, \"0.390125\": {\"frequency\": 1, \"value\": \"0.390125\"}, \"0.286731\": {\"frequency\": 1, \"value\": \"0.286731\"}, \"0.448475\": {\"frequency\": 1, \"value\": \"0.448475\"}, \"0.794386\": {\"frequency\": 1, \"value\": \"0.794386\"}, \"0.684691\": {\"frequency\": 1, \"value\": \"0.684691\"}, \"0.326195\": {\"frequency\": 1, \"value\": \"0.326195\"}, \"0.468355\": {\"frequency\": 1, \"value\": \"0.468355\"}, \"0.762471\": {\"frequency\": 1, \"value\": \"0.762471\"}, \"0.397405\": {\"frequency\": 1, \"value\": \"0.397405\"}, \"0.475231\": {\"frequency\": 1, \"value\": \"0.475231\"}, \"0.10363\": {\"frequency\": 1, \"value\": \"0.10363\"}, \"0.0830413\": {\"frequency\": 1, \"value\": \"0.0830413\"}, \"0.496906\": {\"frequency\": 1, \"value\": \"0.496906\"}, \"0.375866\": {\"frequency\": 1, \"value\": \"0.375866\"}, \"0.267168\": {\"frequency\": 1, \"value\": \"0.267168\"}, \"0.169739\": {\"frequency\": 1, \"value\": \"0.169739\"}, \"0.3525\": {\"frequency\": 1, \"value\": \"0.3525\"}, \"0.655865\": {\"frequency\": 1, \"value\": \"0.655865\"}, \"0.276142\": {\"frequency\": 1, \"value\": \"0.276142\"}, \"0.174072\": {\"frequency\": 1, \"value\": \"0.174072\"}, \"0.550944\": {\"frequency\": 1, \"value\": \"0.550944\"}, \"0.418416\": {\"frequency\": 1, \"value\": \"0.418416\"}, \"0.398159\": {\"frequency\": 1, \"value\": \"0.398159\"}, \"0.498289\": {\"frequency\": 1, \"value\": \"0.498289\"}, \"0.178018\": {\"frequency\": 1, \"value\": \"0.178018\"}, \"0.366012\": {\"frequency\": 1, \"value\": \"0.366012\"}, \"0.300378\": {\"frequency\": 1, \"value\": \"0.300378\"}, \"0.366016\": {\"frequency\": 1, \"value\": \"0.366016\"}, \"0.69119\": {\"frequency\": 1, \"value\": \"0.69119\"}, \"0.152263\": {\"frequency\": 1, \"value\": \"0.152263\"}, \"0.31741\": {\"frequency\": 1, \"value\": \"0.31741\"}, \"0.666325\": {\"frequency\": 1, \"value\": \"0.666325\"}, \"0.259964\": {\"frequency\": 1, \"value\": \"0.259964\"}, \"0.110195\": {\"frequency\": 1, \"value\": \"0.110195\"}, \"0.563955\": {\"frequency\": 1, \"value\": \"0.563955\"}, \"0.472509\": {\"frequency\": 1, \"value\": \"0.472509\"}, \"0.547336\": {\"frequency\": 1, \"value\": \"0.547336\"}, \"0.601194\": {\"frequency\": 1, \"value\": \"0.601194\"}, \"0.503522\": {\"frequency\": 1, \"value\": \"0.503522\"}, \"0.528594\": {\"frequency\": 1, \"value\": \"0.528594\"}, \"0.479694\": {\"frequency\": 1, \"value\": \"0.479694\"}, \"0.238652\": {\"frequency\": 1, \"value\": \"0.238652\"}, \"0.579642\": {\"frequency\": 1, \"value\": \"0.579642\"}, \"0.109605\": {\"frequency\": 1, \"value\": \"0.109605\"}, \"0.42425\": {\"frequency\": 1, \"value\": \"0.42425\"}, \"0.355224\": {\"frequency\": 1, \"value\": \"0.355224\"}, \"0.347904\": {\"frequency\": 1, \"value\": \"0.347904\"}, \"0.361655\": {\"frequency\": 1, \"value\": \"0.361655\"}, \"0.493736\": {\"frequency\": 1, \"value\": \"0.493736\"}, \"0.282995\": {\"frequency\": 1, \"value\": \"0.282995\"}, \"0.702599\": {\"frequency\": 1, \"value\": \"0.702599\"}, \"0.203702\": {\"frequency\": 1, \"value\": \"0.203702\"}, \"0.385011\": {\"frequency\": 1, \"value\": \"0.385011\"}, \"0.243271\": {\"frequency\": 1, \"value\": \"0.243271\"}, \"0.399857\": {\"frequency\": 1, \"value\": \"0.399857\"}, \"0.569384\": {\"frequency\": 1, \"value\": \"0.569384\"}, \"0.0366006\": {\"frequency\": 1, \"value\": \"0.0366006\"}, \"0.643365\": {\"frequency\": 1, \"value\": \"0.643365\"}, \"0.485207\": {\"frequency\": 1, \"value\": \"0.485207\"}, \"0.809074\": {\"frequency\": 1, \"value\": \"0.809074\"}, \"0.650764\": {\"frequency\": 1, \"value\": \"0.650764\"}, \"0.551368\": {\"frequency\": 1, \"value\": \"0.551368\"}, \"0.919025\": {\"frequency\": 1, \"value\": \"0.919025\"}, \"0.203448\": {\"frequency\": 1, \"value\": \"0.203448\"}, \"0.659578\": {\"frequency\": 1, \"value\": \"0.659578\"}, \"0.490359\": {\"frequency\": 1, \"value\": \"0.490359\"}, \"0.31819\": {\"frequency\": 1, \"value\": \"0.31819\"}, \"0.322352\": {\"frequency\": 1, \"value\": \"0.322352\"}, \"0.408522\": {\"frequency\": 1, \"value\": \"0.408522\"}, \"0.493886\": {\"frequency\": 1, \"value\": \"0.493886\"}, \"0.39664\": {\"frequency\": 1, \"value\": \"0.39664\"}, \"0.144883\": {\"frequency\": 1, \"value\": \"0.144883\"}, \"0.804993\": {\"frequency\": 1, \"value\": \"0.804993\"}, \"0.609054\": {\"frequency\": 1, \"value\": \"0.609054\"}, \"0.849725\": {\"frequency\": 1, \"value\": \"0.849725\"}, \"0.312546\": {\"frequency\": 1, \"value\": \"0.312546\"}, \"0.41832\": {\"frequency\": 1, \"value\": \"0.41832\"}, \"0.493888\": {\"frequency\": 1, \"value\": \"0.493888\"}, \"0.148877\": {\"frequency\": 1, \"value\": \"0.148877\"}, \"0.0821414\": {\"frequency\": 1, \"value\": \"0.0821414\"}, \"0.457417\": {\"frequency\": 1, \"value\": \"0.457417\"}, \"0.290311\": {\"frequency\": 1, \"value\": \"0.290311\"}, \"0.472295\": {\"frequency\": 1, \"value\": \"0.472295\"}, \"0.333359\": {\"frequency\": 1, \"value\": \"0.333359\"}, \"0.151975\": {\"frequency\": 1, \"value\": \"0.151975\"}, \"0.47782\": {\"frequency\": 1, \"value\": \"0.47782\"}, \"0.48276\": {\"frequency\": 1, \"value\": \"0.48276\"}, \"0.338467\": {\"frequency\": 1, \"value\": \"0.338467\"}, \"0.401744\": {\"frequency\": 1, \"value\": \"0.401744\"}, \"0.200839\": {\"frequency\": 1, \"value\": \"0.200839\"}, \"0.832085\": {\"frequency\": 1, \"value\": \"0.832085\"}, \"0.591181\": {\"frequency\": 1, \"value\": \"0.591181\"}, \"0.289561\": {\"frequency\": 1, \"value\": \"0.289561\"}, \"0.487599\": {\"frequency\": 1, \"value\": \"0.487599\"}, \"0.41788\": {\"frequency\": 1, \"value\": \"0.41788\"}, \"0.453719\": {\"frequency\": 1, \"value\": \"0.453719\"}, \"0.27004\": {\"frequency\": 1, \"value\": \"0.27004\"}, \"0.6245\": {\"frequency\": 1, \"value\": \"0.6245\"}, \"0.487591\": {\"frequency\": 1, \"value\": \"0.487591\"}, \"0.535006\": {\"frequency\": 1, \"value\": \"0.535006\"}, \"0.177407\": {\"frequency\": 1, \"value\": \"0.177407\"}, \"0.37988\": {\"frequency\": 1, \"value\": \"0.37988\"}, \"0.412487\": {\"frequency\": 1, \"value\": \"0.412487\"}, \"0.352905\": {\"frequency\": 1, \"value\": \"0.352905\"}, \"0.141854\": {\"frequency\": 1, \"value\": \"0.141854\"}, \"0.535828\": {\"frequency\": 1, \"value\": \"0.535828\"}, \"0.422077\": {\"frequency\": 1, \"value\": \"0.422077\"}, \"0.705584\": {\"frequency\": 1, \"value\": \"0.705584\"}, \"0.355554\": {\"frequency\": 1, \"value\": \"0.355554\"}, \"0.507276\": {\"frequency\": 1, \"value\": \"0.507276\"}, \"0.422071\": {\"frequency\": 1, \"value\": \"0.422071\"}, \"0.442273\": {\"frequency\": 1, \"value\": \"0.442273\"}, \"0.257164\": {\"frequency\": 1, \"value\": \"0.257164\"}, \"0.554009\": {\"frequency\": 1, \"value\": \"0.554009\"}, \"0.471042\": {\"frequency\": 1, \"value\": \"0.471042\"}, \"0.577736\": {\"frequency\": 1, \"value\": \"0.577736\"}, \"0.175817\": {\"frequency\": 1, \"value\": \"0.175817\"}, \"0.416166\": {\"frequency\": 1, \"value\": \"0.416166\"}, \"0.310146\": {\"frequency\": 1, \"value\": \"0.310146\"}, \"0.537957\": {\"frequency\": 1, \"value\": \"0.537957\"}, \"0.210825\": {\"frequency\": 1, \"value\": \"0.210825\"}, \"0.354061\": {\"frequency\": 1, \"value\": \"0.354061\"}, \"0.331017\": {\"frequency\": 1, \"value\": \"0.331017\"}, \"0.408733\": {\"frequency\": 1, \"value\": \"0.408733\"}, \"0.551389\": {\"frequency\": 1, \"value\": \"0.551389\"}, \"0.149909\": {\"frequency\": 1, \"value\": \"0.149909\"}, \"0.302122\": {\"frequency\": 1, \"value\": \"0.302122\"}, \"0.386653\": {\"frequency\": 1, \"value\": \"0.386653\"}, \"0.44496\": {\"frequency\": 1, \"value\": \"0.44496\"}, \"0.374416\": {\"frequency\": 1, \"value\": \"0.374416\"}, \"0.222612\": {\"frequency\": 1, \"value\": \"0.222612\"}, \"0.209604\": {\"frequency\": 1, \"value\": \"0.209604\"}, \"0.578027\": {\"frequency\": 1, \"value\": \"0.578027\"}, \"0.516455\": {\"frequency\": 1, \"value\": \"0.516455\"}, \"0.493896\": {\"frequency\": 1, \"value\": \"0.493896\"}, \"0.222706\": {\"frequency\": 1, \"value\": \"0.222706\"}, \"0.668576\": {\"frequency\": 1, \"value\": \"0.668576\"}, \"0.198164\": {\"frequency\": 1, \"value\": \"0.198164\"}, \"0.669008\": {\"frequency\": 1, \"value\": \"0.669008\"}, \"0.773\": {\"frequency\": 1, \"value\": \"0.773\"}, \"0.425318\": {\"frequency\": 1, \"value\": \"0.425318\"}, \"0.375327\": {\"frequency\": 1, \"value\": \"0.375327\"}, \"0.334898\": {\"frequency\": 1, \"value\": \"0.334898\"}, \"0.388858\": {\"frequency\": 1, \"value\": \"0.388858\"}, \"0.526994\": {\"frequency\": 1, \"value\": \"0.526994\"}, \"0.349509\": {\"frequency\": 1, \"value\": \"0.349509\"}, \"0.40128\": {\"frequency\": 1, \"value\": \"0.40128\"}, \"0.279029\": {\"frequency\": 1, \"value\": \"0.279029\"}, \"0.459534\": {\"frequency\": 1, \"value\": \"0.459534\"}, \"0.38229\": {\"frequency\": 1, \"value\": \"0.38229\"}, \"0.445194\": {\"frequency\": 1, \"value\": \"0.445194\"}, \"0.386732\": {\"frequency\": 1, \"value\": \"0.386732\"}, \"0.332625\": {\"frequency\": 1, \"value\": \"0.332625\"}, \"0.660392\": {\"frequency\": 1, \"value\": \"0.660392\"}, \"0.378899\": {\"frequency\": 1, \"value\": \"0.378899\"}, \"0.402198\": {\"frequency\": 1, \"value\": \"0.402198\"}, \"0.595185\": {\"frequency\": 1, \"value\": \"0.595185\"}, \"0.374303\": {\"frequency\": 1, \"value\": \"0.374303\"}, \"0.400432\": {\"frequency\": 1, \"value\": \"0.400432\"}, \"0.295149\": {\"frequency\": 1, \"value\": \"0.295149\"}, \"0.558607\": {\"frequency\": 1, \"value\": \"0.558607\"}, \"0.534754\": {\"frequency\": 1, \"value\": \"0.534754\"}, \"0.486647\": {\"frequency\": 1, \"value\": \"0.486647\"}, \"0.626495\": {\"frequency\": 1, \"value\": \"0.626495\"}, \"0.114748\": {\"frequency\": 1, \"value\": \"0.114748\"}, \"0.787521\": {\"frequency\": 1, \"value\": \"0.787521\"}, \"0.184423\": {\"frequency\": 1, \"value\": \"0.184423\"}, \"0.497342\": {\"frequency\": 1, \"value\": \"0.497342\"}, \"0.407357\": {\"frequency\": 1, \"value\": \"0.407357\"}, \"0.304299\": {\"frequency\": 1, \"value\": \"0.304299\"}, \"0.145281\": {\"frequency\": 1, \"value\": \"0.145281\"}, \"0.424132\": {\"frequency\": 1, \"value\": \"0.424132\"}, \"0.534999\": {\"frequency\": 1, \"value\": \"0.534999\"}, \"0.352695\": {\"frequency\": 1, \"value\": \"0.352695\"}, \"0.37402\": {\"frequency\": 1, \"value\": \"0.37402\"}, \"0.176431\": {\"frequency\": 1, \"value\": \"0.176431\"}, \"0.404558\": {\"frequency\": 1, \"value\": \"0.404558\"}, \"0.675975\": {\"frequency\": 1, \"value\": \"0.675975\"}, \"0.44003\": {\"frequency\": 1, \"value\": \"0.44003\"}, \"0.474547\": {\"frequency\": 1, \"value\": \"0.474547\"}, \"0.265995\": {\"frequency\": 1, \"value\": \"0.265995\"}, \"0.218301\": {\"frequency\": 1, \"value\": \"0.218301\"}, \"0.216416\": {\"frequency\": 1, \"value\": \"0.216416\"}, \"0.482344\": {\"frequency\": 1, \"value\": \"0.482344\"}, \"0.210643\": {\"frequency\": 1, \"value\": \"0.210643\"}, \"0.25089\": {\"frequency\": 1, \"value\": \"0.25089\"}, \"0.415858\": {\"frequency\": 3, \"value\": \"0.415858\"}, \"0.334373\": {\"frequency\": 1, \"value\": \"0.334373\"}, \"0.423893\": {\"frequency\": 1, \"value\": \"0.423893\"}, \"0.579885\": {\"frequency\": 1, \"value\": \"0.579885\"}, \"0.367405\": {\"frequency\": 1, \"value\": \"0.367405\"}, \"0.428598\": {\"frequency\": 1, \"value\": \"0.428598\"}, \"0.249924\": {\"frequency\": 1, \"value\": \"0.249924\"}, \"0.193879\": {\"frequency\": 1, \"value\": \"0.193879\"}, \"0.428592\": {\"frequency\": 1, \"value\": \"0.428592\"}, \"0.361386\": {\"frequency\": 1, \"value\": \"0.361386\"}, \"0.533341\": {\"frequency\": 1, \"value\": \"0.533341\"}, \"0.391046\": {\"frequency\": 1, \"value\": \"0.391046\"}, \"0.637818\": {\"frequency\": 1, \"value\": \"0.637818\"}, \"0.549453\": {\"frequency\": 1, \"value\": \"0.549453\"}, \"0.564678\": {\"frequency\": 1, \"value\": \"0.564678\"}, \"0.633804\": {\"frequency\": 1, \"value\": \"0.633804\"}, \"0.539068\": {\"frequency\": 1, \"value\": \"0.539068\"}, \"0.325231\": {\"frequency\": 1, \"value\": \"0.325231\"}, \"0.394272\": {\"frequency\": 1, \"value\": \"0.394272\"}, \"0.402109\": {\"frequency\": 1, \"value\": \"0.402109\"}, \"0.620098\": {\"frequency\": 1, \"value\": \"0.620098\"}, \"0.513156\": {\"frequency\": 1, \"value\": \"0.513156\"}, \"0.417432\": {\"frequency\": 1, \"value\": \"0.417432\"}, \"0.461365\": {\"frequency\": 1, \"value\": \"0.461365\"}, \"0.628082\": {\"frequency\": 1, \"value\": \"0.628082\"}, \"0.378543\": {\"frequency\": 1, \"value\": \"0.378543\"}, \"0.226609\": {\"frequency\": 1, \"value\": \"0.226609\"}, \"0.298006\": {\"frequency\": 1, \"value\": \"0.298006\"}, \"0.174562\": {\"frequency\": 1, \"value\": \"0.174562\"}, \"0.202711\": {\"frequency\": 1, \"value\": \"0.202711\"}, \"0.461697\": {\"frequency\": 1, \"value\": \"0.461697\"}, \"0.233492\": {\"frequency\": 1, \"value\": \"0.233492\"}, \"0.498617\": {\"frequency\": 1, \"value\": \"0.498617\"}, \"0.40494\": {\"frequency\": 1, \"value\": \"0.40494\"}, \"0.314652\": {\"frequency\": 1, \"value\": \"0.314652\"}, \"0.0727255\": {\"frequency\": 1, \"value\": \"0.0727255\"}, \"0.283154\": {\"frequency\": 1, \"value\": \"0.283154\"}, \"0.357724\": {\"frequency\": 1, \"value\": \"0.357724\"}, \"0.466659\": {\"frequency\": 1, \"value\": \"0.466659\"}, \"0.428771\": {\"frequency\": 1, \"value\": \"0.428771\"}, \"0.536595\": {\"frequency\": 1, \"value\": \"0.536595\"}, \"0.402071\": {\"frequency\": 1, \"value\": \"0.402071\"}, \"0.512179\": {\"frequency\": 3, \"value\": \"0.512179\"}, \"0.480255\": {\"frequency\": 1, \"value\": \"0.480255\"}, \"0.467344\": {\"frequency\": 1, \"value\": \"0.467344\"}, \"0.262277\": {\"frequency\": 1, \"value\": \"0.262277\"}, \"0.512775\": {\"frequency\": 1, \"value\": \"0.512775\"}, \"0.366488\": {\"frequency\": 1, \"value\": \"0.366488\"}, \"0.406552\": {\"frequency\": 1, \"value\": \"0.406552\"}, \"0.440879\": {\"frequency\": 1, \"value\": \"0.440879\"}, \"0.175153\": {\"frequency\": 1, \"value\": \"0.175153\"}, \"0.443788\": {\"frequency\": 1, \"value\": \"0.443788\"}, \"0.580853\": {\"frequency\": 1, \"value\": \"0.580853\"}, \"0.618821\": {\"frequency\": 1, \"value\": \"0.618821\"}, \"0.124066\": {\"frequency\": 1, \"value\": \"0.124066\"}, \"0.254119\": {\"frequency\": 1, \"value\": \"0.254119\"}, \"0.0541409\": {\"frequency\": 1, \"value\": \"0.0541409\"}, \"0.351808\": {\"frequency\": 1, \"value\": \"0.351808\"}, \"0.0720639\": {\"frequency\": 1, \"value\": \"0.0720639\"}, \"0.456629\": {\"frequency\": 1, \"value\": \"0.456629\"}, \"0.524379\": {\"frequency\": 1, \"value\": \"0.524379\"}, \"0.603595\": {\"frequency\": 1, \"value\": \"0.603595\"}, \"0.151528\": {\"frequency\": 1, \"value\": \"0.151528\"}, \"0.656855\": {\"frequency\": 1, \"value\": \"0.656855\"}, \"0.536861\": {\"frequency\": 1, \"value\": \"0.536861\"}, \"0.468348\": {\"frequency\": 1, \"value\": \"0.468348\"}, \"0.266774\": {\"frequency\": 1, \"value\": \"0.266774\"}, \"0.396928\": {\"frequency\": 1, \"value\": \"0.396928\"}, \"0.0783612\": {\"frequency\": 1, \"value\": \"0.0783612\"}, \"0.424468\": {\"frequency\": 1, \"value\": \"0.424468\"}, \"0.18403\": {\"frequency\": 1, \"value\": \"0.18403\"}, \"0.463067\": {\"frequency\": 1, \"value\": \"0.463067\"}, \"0.512512\": {\"frequency\": 1, \"value\": \"0.512512\"}, \"0.583955\": {\"frequency\": 1, \"value\": \"0.583955\"}, \"0.476546\": {\"frequency\": 1, \"value\": \"0.476546\"}, \"0.347075\": {\"frequency\": 1, \"value\": \"0.347075\"}, \"0.476816\": {\"frequency\": 1, \"value\": \"0.476816\"}, \"0.513572\": {\"frequency\": 1, \"value\": \"0.513572\"}, \"0.596187\": {\"frequency\": 1, \"value\": \"0.596187\"}, \"0.532966\": {\"frequency\": 1, \"value\": \"0.532966\"}, \"0.56085\": {\"frequency\": 1, \"value\": \"0.56085\"}, \"0.250614\": {\"frequency\": 1, \"value\": \"0.250614\"}, \"0.340835\": {\"frequency\": 1, \"value\": \"0.340835\"}, \"0.362249\": {\"frequency\": 1, \"value\": \"0.362249\"}, \"0.335763\": {\"frequency\": 1, \"value\": \"0.335763\"}, \"0.381639\": {\"frequency\": 1, \"value\": \"0.381639\"}, \"0.345569\": {\"frequency\": 1, \"value\": \"0.345569\"}, \"0.367532\": {\"frequency\": 1, \"value\": \"0.367532\"}, \"0.176881\": {\"frequency\": 1, \"value\": \"0.176881\"}, \"0.443097\": {\"frequency\": 1, \"value\": \"0.443097\"}, \"0.34059\": {\"frequency\": 1, \"value\": \"0.34059\"}, \"0.498812\": {\"frequency\": 1, \"value\": \"0.498812\"}, \"0.440048\": {\"frequency\": 1, \"value\": \"0.440048\"}, \"0.752389\": {\"frequency\": 1, \"value\": \"0.752389\"}, \"0.439653\": {\"frequency\": 1, \"value\": \"0.439653\"}, \"0.340239\": {\"frequency\": 1, \"value\": \"0.340239\"}, \"0.281827\": {\"frequency\": 1, \"value\": \"0.281827\"}, \"0.531097\": {\"frequency\": 1, \"value\": \"0.531097\"}, \"0.549877\": {\"frequency\": 1, \"value\": \"0.549877\"}, \"0.364713\": {\"frequency\": 1, \"value\": \"0.364713\"}, \"0.472048\": {\"frequency\": 1, \"value\": \"0.472048\"}, \"0.0760567\": {\"frequency\": 1, \"value\": \"0.0760567\"}, \"0.366224\": {\"frequency\": 1, \"value\": \"0.366224\"}, \"0.416581\": {\"frequency\": 1, \"value\": \"0.416581\"}, \"0.349341\": {\"frequency\": 1, \"value\": \"0.349341\"}, \"0.281005\": {\"frequency\": 1, \"value\": \"0.281005\"}, \"0.201762\": {\"frequency\": 1, \"value\": \"0.201762\"}, \"0.337508\": {\"frequency\": 1, \"value\": \"0.337508\"}, \"0.397504\": {\"frequency\": 1, \"value\": \"0.397504\"}, \"0.115004\": {\"frequency\": 1, \"value\": \"0.115004\"}, \"0.223244\": {\"frequency\": 2, \"value\": \"0.223244\"}, \"0.524684\": {\"frequency\": 1, \"value\": \"0.524684\"}, \"0.687858\": {\"frequency\": 1, \"value\": \"0.687858\"}, \"0.402655\": {\"frequency\": 1, \"value\": \"0.402655\"}, \"0.42438\": {\"frequency\": 1, \"value\": \"0.42438\"}, \"0.298191\": {\"frequency\": 1, \"value\": \"0.298191\"}, \"0.42846\": {\"frequency\": 1, \"value\": \"0.42846\"}, \"0.286388\": {\"frequency\": 1, \"value\": \"0.286388\"}, \"0.415326\": {\"frequency\": 1, \"value\": \"0.415326\"}, \"0.32112\": {\"frequency\": 1, \"value\": \"0.32112\"}, \"0.484342\": {\"frequency\": 1, \"value\": \"0.484342\"}, \"0.415329\": {\"frequency\": 1, \"value\": \"0.415329\"}, \"0.558078\": {\"frequency\": 1, \"value\": \"0.558078\"}, \"0.62139\": {\"frequency\": 1, \"value\": \"0.62139\"}, \"0.567863\": {\"frequency\": 1, \"value\": \"0.567863\"}, \"0.297078\": {\"frequency\": 1, \"value\": \"0.297078\"}, \"0.214951\": {\"frequency\": 1, \"value\": \"0.214951\"}, \"0.527866\": {\"frequency\": 1, \"value\": \"0.527866\"}, \"0.311024\": {\"frequency\": 1, \"value\": \"0.311024\"}, \"0.632786\": {\"frequency\": 1, \"value\": \"0.632786\"}, \"0.345265\": {\"frequency\": 1, \"value\": \"0.345265\"}, \"0.372149\": {\"frequency\": 1, \"value\": \"0.372149\"}, \"0.50346\": {\"frequency\": 1, \"value\": \"0.50346\"}, \"0.503172\": {\"frequency\": 1, \"value\": \"0.503172\"}, \"0.307881\": {\"frequency\": 1, \"value\": \"0.307881\"}, \"0.540494\": {\"frequency\": 1, \"value\": \"0.540494\"}, \"0.231696\": {\"frequency\": 1, \"value\": \"0.231696\"}, \"0.169504\": {\"frequency\": 1, \"value\": \"0.169504\"}, \"0.490167\": {\"frequency\": 1, \"value\": \"0.490167\"}, \"0.463683\": {\"frequency\": 1, \"value\": \"0.463683\"}, \"0.441684\": {\"frequency\": 1, \"value\": \"0.441684\"}, \"0.4934\": {\"frequency\": 1, \"value\": \"0.4934\"}, \"0.187089\": {\"frequency\": 1, \"value\": \"0.187089\"}, \"0.554294\": {\"frequency\": 1, \"value\": \"0.554294\"}, \"0.333325\": {\"frequency\": 1, \"value\": \"0.333325\"}, \"0.788171\": {\"frequency\": 1, \"value\": \"0.788171\"}, \"0.39472\": {\"frequency\": 1, \"value\": \"0.39472\"}, \"0.610208\": {\"frequency\": 1, \"value\": \"0.610208\"}, \"0.41244\": {\"frequency\": 1, \"value\": \"0.41244\"}, \"0.297453\": {\"frequency\": 1, \"value\": \"0.297453\"}, \"0.663183\": {\"frequency\": 1, \"value\": \"0.663183\"}, \"0.482365\": {\"frequency\": 1, \"value\": \"0.482365\"}, \"0.481334\": {\"frequency\": 1, \"value\": \"0.481334\"}, \"0.291985\": {\"frequency\": 1, \"value\": \"0.291985\"}, \"0.294156\": {\"frequency\": 1, \"value\": \"0.294156\"}, \"0.454481\": {\"frequency\": 1, \"value\": \"0.454481\"}, \"0.274372\": {\"frequency\": 1, \"value\": \"0.274372\"}, \"0.341962\": {\"frequency\": 1, \"value\": \"0.341962\"}, \"0.278387\": {\"frequency\": 1, \"value\": \"0.278387\"}, \"0.706665\": {\"frequency\": 1, \"value\": \"0.706665\"}, \"0.387461\": {\"frequency\": 1, \"value\": \"0.387461\"}, \"0.340165\": {\"frequency\": 1, \"value\": \"0.340165\"}, \"0.500076\": {\"frequency\": 1, \"value\": \"0.500076\"}, \"0.207387\": {\"frequency\": 1, \"value\": \"0.207387\"}, \"0.0973548\": {\"frequency\": 1, \"value\": \"0.0973548\"}, \"0.28803\": {\"frequency\": 1, \"value\": \"0.28803\"}, \"0.427968\": {\"frequency\": 1, \"value\": \"0.427968\"}, \"0.541238\": {\"frequency\": 1, \"value\": \"0.541238\"}, \"0.578102\": {\"frequency\": 1, \"value\": \"0.578102\"}, \"0.401357\": {\"frequency\": 1, \"value\": \"0.401357\"}, \"0.519047\": {\"frequency\": 1, \"value\": \"0.519047\"}, \"0.266428\": {\"frequency\": 1, \"value\": \"0.266428\"}, \"0.310418\": {\"frequency\": 1, \"value\": \"0.310418\"}, \"0.222191\": {\"frequency\": 1, \"value\": \"0.222191\"}, \"0.382495\": {\"frequency\": 1, \"value\": \"0.382495\"}, \"0.460886\": {\"frequency\": 1, \"value\": \"0.460886\"}, \"0.475777\": {\"frequency\": 1, \"value\": \"0.475777\"}, \"0.705574\": {\"frequency\": 1, \"value\": \"0.705574\"}, \"0.305306\": {\"frequency\": 1, \"value\": \"0.305306\"}, \"0.550714\": {\"frequency\": 1, \"value\": \"0.550714\"}, \"0.550716\": {\"frequency\": 1, \"value\": \"0.550716\"}, \"0.502019\": {\"frequency\": 1, \"value\": \"0.502019\"}, \"0.486508\": {\"frequency\": 1, \"value\": \"0.486508\"}, \"0.195429\": {\"frequency\": 1, \"value\": \"0.195429\"}, \"0.412293\": {\"frequency\": 1, \"value\": \"0.412293\"}, \"0.422998\": {\"frequency\": 1, \"value\": \"0.422998\"}, \"0.450276\": {\"frequency\": 1, \"value\": \"0.450276\"}, \"0.687074\": {\"frequency\": 1, \"value\": \"0.687074\"}, \"0.291216\": {\"frequency\": 1, \"value\": \"0.291216\"}, \"0.382371\": {\"frequency\": 1, \"value\": \"0.382371\"}, \"0.618147\": {\"frequency\": 1, \"value\": \"0.618147\"}, \"0.101154\": {\"frequency\": 1, \"value\": \"0.101154\"}, \"0.471674\": {\"frequency\": 1, \"value\": \"0.471674\"}, \"0.551008\": {\"frequency\": 1, \"value\": \"0.551008\"}, \"0.629706\": {\"frequency\": 1, \"value\": \"0.629706\"}, \"0.355582\": {\"frequency\": 1, \"value\": \"0.355582\"}, \"0.393553\": {\"frequency\": 1, \"value\": \"0.393553\"}, \"0.159475\": {\"frequency\": 1, \"value\": \"0.159475\"}, \"0.361749\": {\"frequency\": 1, \"value\": \"0.361749\"}, \"0.269033\": {\"frequency\": 1, \"value\": \"0.269033\"}, \"0.599054\": {\"frequency\": 1, \"value\": \"0.599054\"}, \"0.289373\": {\"frequency\": 1, \"value\": \"0.289373\"}, \"0.52482\": {\"frequency\": 1, \"value\": \"0.52482\"}, \"0.333789\": {\"frequency\": 1, \"value\": \"0.333789\"}, \"0.594566\": {\"frequency\": 1, \"value\": \"0.594566\"}, \"0.453672\": {\"frequency\": 1, \"value\": \"0.453672\"}, \"0.41316\": {\"frequency\": 1, \"value\": \"0.41316\"}, \"0.37745\": {\"frequency\": 1, \"value\": \"0.37745\"}, \"0.411161\": {\"frequency\": 1, \"value\": \"0.411161\"}, \"0.393886\": {\"frequency\": 1, \"value\": \"0.393886\"}, \"0.507168\": {\"frequency\": 1, \"value\": \"0.507168\"}, \"0.453898\": {\"frequency\": 1, \"value\": \"0.453898\"}, \"0.464427\": {\"frequency\": 1, \"value\": \"0.464427\"}, \"0.389379\": {\"frequency\": 1, \"value\": \"0.389379\"}, \"0.33331\": {\"frequency\": 1, \"value\": \"0.33331\"}, \"0.489062\": {\"frequency\": 1, \"value\": \"0.489062\"}, \"0.699763\": {\"frequency\": 1, \"value\": \"0.699763\"}, \"0.250922\": {\"frequency\": 1, \"value\": \"0.250922\"}, \"0.413185\": {\"frequency\": 1, \"value\": \"0.413185\"}, \"0.450018\": {\"frequency\": 1, \"value\": \"0.450018\"}, \"0.510442\": {\"frequency\": 1, \"value\": \"0.510442\"}, \"0.554701\": {\"frequency\": 1, \"value\": \"0.554701\"}, \"0.474422\": {\"frequency\": 1, \"value\": \"0.474422\"}, \"0.732592\": {\"frequency\": 1, \"value\": \"0.732592\"}, \"0.350536\": {\"frequency\": 1, \"value\": \"0.350536\"}, \"0.492443\": {\"frequency\": 1, \"value\": \"0.492443\"}, \"0.424566\": {\"frequency\": 1, \"value\": \"0.424566\"}, \"0.505137\": {\"frequency\": 1, \"value\": \"0.505137\"}, \"0.590245\": {\"frequency\": 1, \"value\": \"0.590245\"}, \"0.629144\": {\"frequency\": 1, \"value\": \"0.629144\"}, \"0.165758\": {\"frequency\": 1, \"value\": \"0.165758\"}, \"0.534181\": {\"frequency\": 1, \"value\": \"0.534181\"}, \"0.420555\": {\"frequency\": 1, \"value\": \"0.420555\"}, \"0.635451\": {\"frequency\": 3, \"value\": \"0.635451\"}, \"0.39958\": {\"frequency\": 1, \"value\": \"0.39958\"}, \"0.500695\": {\"frequency\": 1, \"value\": \"0.500695\"}, \"0.533516\": {\"frequency\": 1, \"value\": \"0.533516\"}, \"0.324355\": {\"frequency\": 1, \"value\": \"0.324355\"}, \"0.359926\": {\"frequency\": 1, \"value\": \"0.359926\"}, \"0.257158\": {\"frequency\": 1, \"value\": \"0.257158\"}, \"0.430699\": {\"frequency\": 1, \"value\": \"0.430699\"}, \"0.718299\": {\"frequency\": 1, \"value\": \"0.718299\"}, \"0.678477\": {\"frequency\": 1, \"value\": \"0.678477\"}, \"0.535613\": {\"frequency\": 1, \"value\": \"0.535613\"}, \"0.353737\": {\"frequency\": 1, \"value\": \"0.353737\"}, \"0.294484\": {\"frequency\": 1, \"value\": \"0.294484\"}, \"0.392114\": {\"frequency\": 1, \"value\": \"0.392114\"}, \"0.26741\": {\"frequency\": 1, \"value\": \"0.26741\"}, \"0.483681\": {\"frequency\": 1, \"value\": \"0.483681\"}, \"0.511336\": {\"frequency\": 1, \"value\": \"0.511336\"}, \"0.451706\": {\"frequency\": 1, \"value\": \"0.451706\"}, \"0.378332\": {\"frequency\": 1, \"value\": \"0.378332\"}, \"0.374114\": {\"frequency\": 1, \"value\": \"0.374114\"}, \"0.43854\": {\"frequency\": 1, \"value\": \"0.43854\"}, \"0.244811\": {\"frequency\": 1, \"value\": \"0.244811\"}, \"0.498478\": {\"frequency\": 1, \"value\": \"0.498478\"}, \"0.519551\": {\"frequency\": 1, \"value\": \"0.519551\"}, \"0.304042\": {\"frequency\": 1, \"value\": \"0.304042\"}, \"0.416591\": {\"frequency\": 1, \"value\": \"0.416591\"}, \"0.712861\": {\"frequency\": 1, \"value\": \"0.712861\"}, \"0.244864\": {\"frequency\": 1, \"value\": \"0.244864\"}, \"0.418087\": {\"frequency\": 1, \"value\": \"0.418087\"}, \"0.461596\": {\"frequency\": 1, \"value\": \"0.461596\"}, \"0.408384\": {\"frequency\": 1, \"value\": \"0.408384\"}, \"0.307653\": {\"frequency\": 1, \"value\": \"0.307653\"}, \"0.416753\": {\"frequency\": 1, \"value\": \"0.416753\"}, \"0.383175\": {\"frequency\": 1, \"value\": \"0.383175\"}, \"0.635682\": {\"frequency\": 1, \"value\": \"0.635682\"}, \"0.244363\": {\"frequency\": 1, \"value\": \"0.244363\"}, \"0.253903\": {\"frequency\": 1, \"value\": \"0.253903\"}, \"0.300602\": {\"frequency\": 1, \"value\": \"0.300602\"}, \"0.624004\": {\"frequency\": 1, \"value\": \"0.624004\"}, \"0.440066\": {\"frequency\": 1, \"value\": \"0.440066\"}, \"0.253818\": {\"frequency\": 1, \"value\": \"0.253818\"}, \"0.458903\": {\"frequency\": 1, \"value\": \"0.458903\"}, \"0.529959\": {\"frequency\": 1, \"value\": \"0.529959\"}, \"0.656725\": {\"frequency\": 1, \"value\": \"0.656725\"}, \"0.288022\": {\"frequency\": 1, \"value\": \"0.288022\"}, \"0.495622\": {\"frequency\": 1, \"value\": \"0.495622\"}, \"0.588316\": {\"frequency\": 1, \"value\": \"0.588316\"}, \"0.541076\": {\"frequency\": 1, \"value\": \"0.541076\"}, \"0.264034\": {\"frequency\": 1, \"value\": \"0.264034\"}, \"0.346014\": {\"frequency\": 1, \"value\": \"0.346014\"}, \"0.467824\": {\"frequency\": 1, \"value\": \"0.467824\"}, \"0.546885\": {\"frequency\": 1, \"value\": \"0.546885\"}, \"0.482975\": {\"frequency\": 1, \"value\": \"0.482975\"}, \"0.293347\": {\"frequency\": 1, \"value\": \"0.293347\"}, \"0.033095\": {\"frequency\": 1, \"value\": \"0.033095\"}, \"0.537054\": {\"frequency\": 1, \"value\": \"0.537054\"}, \"0.656901\": {\"frequency\": 1, \"value\": \"0.656901\"}, \"0.0955051\": {\"frequency\": 1, \"value\": \"0.0955051\"}, \"0.308161\": {\"frequency\": 1, \"value\": \"0.308161\"}, \"0.722454\": {\"frequency\": 1, \"value\": \"0.722454\"}, \"0.220137\": {\"frequency\": 1, \"value\": \"0.220137\"}, \"0.417402\": {\"frequency\": 1, \"value\": \"0.417402\"}, \"0.246185\": {\"frequency\": 1, \"value\": \"0.246185\"}, \"0.696041\": {\"frequency\": 1, \"value\": \"0.696041\"}, \"0.536016\": {\"frequency\": 1, \"value\": \"0.536016\"}, \"0.482387\": {\"frequency\": 1, \"value\": \"0.482387\"}, \"0.335351\": {\"frequency\": 1, \"value\": \"0.335351\"}, \"0.456948\": {\"frequency\": 1, \"value\": \"0.456948\"}, \"0.399022\": {\"frequency\": 1, \"value\": \"0.399022\"}, \"0.300815\": {\"frequency\": 1, \"value\": \"0.300815\"}, \"0.443462\": {\"frequency\": 1, \"value\": \"0.443462\"}, \"0.29383\": {\"frequency\": 1, \"value\": \"0.29383\"}, \"0.332811\": {\"frequency\": 1, \"value\": \"0.332811\"}, \"0.377256\": {\"frequency\": 1, \"value\": \"0.377256\"}, \"0.329559\": {\"frequency\": 1, \"value\": \"0.329559\"}, \"0.176599\": {\"frequency\": 1, \"value\": \"0.176599\"}, \"0.483378\": {\"frequency\": 1, \"value\": \"0.483378\"}, \"0.466466\": {\"frequency\": 1, \"value\": \"0.466466\"}, \"0.713444\": {\"frequency\": 3, \"value\": \"0.713444\"}, \"0.328044\": {\"frequency\": 1, \"value\": \"0.328044\"}, \"0.213765\": {\"frequency\": 1, \"value\": \"0.213765\"}, \"0.51504\": {\"frequency\": 1, \"value\": \"0.51504\"}, \"0.0510841\": {\"frequency\": 1, \"value\": \"0.0510841\"}, \"0.144941\": {\"frequency\": 1, \"value\": \"0.144941\"}, \"0.262794\": {\"frequency\": 1, \"value\": \"0.262794\"}, \"0.407019\": {\"frequency\": 1, \"value\": \"0.407019\"}, \"0.440361\": {\"frequency\": 1, \"value\": \"0.440361\"}, \"0.276092\": {\"frequency\": 1, \"value\": \"0.276092\"}, \"0.423476\": {\"frequency\": 1, \"value\": \"0.423476\"}, \"0.468481\": {\"frequency\": 1, \"value\": \"0.468481\"}, \"0.440685\": {\"frequency\": 1, \"value\": \"0.440685\"}, \"0.480243\": {\"frequency\": 1, \"value\": \"0.480243\"}, \"0.553165\": {\"frequency\": 1, \"value\": \"0.553165\"}, \"0.485358\": {\"frequency\": 1, \"value\": \"0.485358\"}, \"0.0407207\": {\"frequency\": 1, \"value\": \"0.0407207\"}, \"0.493542\": {\"frequency\": 1, \"value\": \"0.493542\"}, \"0.479031\": {\"frequency\": 1, \"value\": \"0.479031\"}, \"0.359454\": {\"frequency\": 1, \"value\": \"0.359454\"}, \"0.389245\": {\"frequency\": 1, \"value\": \"0.389245\"}, \"0.389243\": {\"frequency\": 1, \"value\": \"0.389243\"}, \"0.239901\": {\"frequency\": 1, \"value\": \"0.239901\"}, \"0.427261\": {\"frequency\": 1, \"value\": \"0.427261\"}, \"0.337172\": {\"frequency\": 1, \"value\": \"0.337172\"}, \"0.465263\": {\"frequency\": 1, \"value\": \"0.465263\"}, \"0.350867\": {\"frequency\": 1, \"value\": \"0.350867\"}, \"0.444141\": {\"frequency\": 1, \"value\": \"0.444141\"}, \"0.301551\": {\"frequency\": 1, \"value\": \"0.301551\"}, \"0.460084\": {\"frequency\": 1, \"value\": \"0.460084\"}, \"0.24877\": {\"frequency\": 1, \"value\": \"0.24877\"}, \"0.51066\": {\"frequency\": 1, \"value\": \"0.51066\"}, \"0.528194\": {\"frequency\": 1, \"value\": \"0.528194\"}, \"0.267148\": {\"frequency\": 1, \"value\": \"0.267148\"}, \"0.425804\": {\"frequency\": 1, \"value\": \"0.425804\"}, \"0.442134\": {\"frequency\": 1, \"value\": \"0.442134\"}, \"0.238525\": {\"frequency\": 1, \"value\": \"0.238525\"}, \"0.60041\": {\"frequency\": 1, \"value\": \"0.60041\"}, \"0.375912\": {\"frequency\": 1, \"value\": \"0.375912\"}, \"0.317885\": {\"frequency\": 1, \"value\": \"0.317885\"}, \"0.463054\": {\"frequency\": 1, \"value\": \"0.463054\"}, \"0.693403\": {\"frequency\": 1, \"value\": \"0.693403\"}, \"0.309545\": {\"frequency\": 1, \"value\": \"0.309545\"}, \"0.277879\": {\"frequency\": 1, \"value\": \"0.277879\"}, \"0.309015\": {\"frequency\": 1, \"value\": \"0.309015\"}, \"0.647812\": {\"frequency\": 1, \"value\": \"0.647812\"}, \"0.182662\": {\"frequency\": 1, \"value\": \"0.182662\"}, \"0.675778\": {\"frequency\": 1, \"value\": \"0.675778\"}, \"0.471271\": {\"frequency\": 1, \"value\": \"0.471271\"}, \"0.693153\": {\"frequency\": 1, \"value\": \"0.693153\"}, \"0.362234\": {\"frequency\": 1, \"value\": \"0.362234\"}, \"0.205267\": {\"frequency\": 1, \"value\": \"0.205267\"}, \"0.286577\": {\"frequency\": 1, \"value\": \"0.286577\"}, \"0.326301\": {\"frequency\": 1, \"value\": \"0.326301\"}, \"0.111593\": {\"frequency\": 1, \"value\": \"0.111593\"}, \"0.394429\": {\"frequency\": 1, \"value\": \"0.394429\"}, \"0.512699\": {\"frequency\": 1, \"value\": \"0.512699\"}, \"0.351167\": {\"frequency\": 1, \"value\": \"0.351167\"}, \"0.342682\": {\"frequency\": 1, \"value\": \"0.342682\"}, \"0.285651\": {\"frequency\": 1, \"value\": \"0.285651\"}, \"0.299213\": {\"frequency\": 1, \"value\": \"0.299213\"}, \"0.43319\": {\"frequency\": 1, \"value\": \"0.43319\"}, \"0.569635\": {\"frequency\": 1, \"value\": \"0.569635\"}, \"0.34049\": {\"frequency\": 1, \"value\": \"0.34049\"}, \"0.111021\": {\"frequency\": 1, \"value\": \"0.111021\"}, \"0.462737\": {\"frequency\": 1, \"value\": \"0.462737\"}, \"0.563623\": {\"frequency\": 1, \"value\": \"0.563623\"}, \"0.710353\": {\"frequency\": 1, \"value\": \"0.710353\"}, \"0.277143\": {\"frequency\": 1, \"value\": \"0.277143\"}, \"0.277414\": {\"frequency\": 1, \"value\": \"0.277414\"}, \"0.614802\": {\"frequency\": 1, \"value\": \"0.614802\"}, \"0.364768\": {\"frequency\": 1, \"value\": \"0.364768\"}, \"0.654461\": {\"frequency\": 1, \"value\": \"0.654461\"}, \"0.0168146\": {\"frequency\": 1, \"value\": \"0.0168146\"}, \"0.512079\": {\"frequency\": 1, \"value\": \"0.512079\"}, \"0.790935\": {\"frequency\": 1, \"value\": \"0.790935\"}, \"0.284614\": {\"frequency\": 1, \"value\": \"0.284614\"}, \"0.423058\": {\"frequency\": 1, \"value\": \"0.423058\"}, \"0.373791\": {\"frequency\": 1, \"value\": \"0.373791\"}, \"0.397514\": {\"frequency\": 1, \"value\": \"0.397514\"}, \"0.50929\": {\"frequency\": 1, \"value\": \"0.50929\"}, \"0.283723\": {\"frequency\": 1, \"value\": \"0.283723\"}, \"0.52713\": {\"frequency\": 3, \"value\": \"0.52713\"}, \"0.382674\": {\"frequency\": 1, \"value\": \"0.382674\"}, \"0.359261\": {\"frequency\": 1, \"value\": \"0.359261\"}, \"0.703641\": {\"frequency\": 1, \"value\": \"0.703641\"}, \"0.65894\": {\"frequency\": 1, \"value\": \"0.65894\"}, \"0.729738\": {\"frequency\": 1, \"value\": \"0.729738\"}, \"0.408187\": {\"frequency\": 1, \"value\": \"0.408187\"}, \"0.248573\": {\"frequency\": 1, \"value\": \"0.248573\"}, \"0.455925\": {\"frequency\": 1, \"value\": \"0.455925\"}, \"0.319024\": {\"frequency\": 1, \"value\": \"0.319024\"}, \"0.313972\": {\"frequency\": 1, \"value\": \"0.313972\"}, \"0.623392\": {\"frequency\": 1, \"value\": \"0.623392\"}, \"0.145385\": {\"frequency\": 1, \"value\": \"0.145385\"}, \"0.447149\": {\"frequency\": 1, \"value\": \"0.447149\"}, \"0.439062\": {\"frequency\": 1, \"value\": \"0.439062\"}, \"0.523489\": {\"frequency\": 1, \"value\": \"0.523489\"}, \"0.616128\": {\"frequency\": 1, \"value\": \"0.616128\"}, \"0.422205\": {\"frequency\": 1, \"value\": \"0.422205\"}, \"0.367458\": {\"frequency\": 1, \"value\": \"0.367458\"}, \"0.299507\": {\"frequency\": 1, \"value\": \"0.299507\"}, \"0.766\": {\"frequency\": 1, \"value\": \"0.766\"}, \"0.579091\": {\"frequency\": 1, \"value\": \"0.579091\"}, \"0.438753\": {\"frequency\": 1, \"value\": \"0.438753\"}, \"0.102576\": {\"frequency\": 1, \"value\": \"0.102576\"}, \"0.367736\": {\"frequency\": 1, \"value\": \"0.367736\"}, \"0.651747\": {\"frequency\": 1, \"value\": \"0.651747\"}, \"0.449271\": {\"frequency\": 1, \"value\": \"0.449271\"}, \"0.433079\": {\"frequency\": 1, \"value\": \"0.433079\"}, \"0.311014\": {\"frequency\": 1, \"value\": \"0.311014\"}, \"0.385001\": {\"frequency\": 1, \"value\": \"0.385001\"}, \"0.584786\": {\"frequency\": 1, \"value\": \"0.584786\"}, \"0.560021\": {\"frequency\": 1, \"value\": \"0.560021\"}, \"0.527875\": {\"frequency\": 1, \"value\": \"0.527875\"}, \"0.882216\": {\"frequency\": 1, \"value\": \"0.882216\"}, \"0.415665\": {\"frequency\": 1, \"value\": \"0.415665\"}, \"0.396778\": {\"frequency\": 1, \"value\": \"0.396778\"}, \"0.453465\": {\"frequency\": 1, \"value\": \"0.453465\"}, \"0.490378\": {\"frequency\": 1, \"value\": \"0.490378\"}, \"0.297868\": {\"frequency\": 1, \"value\": \"0.297868\"}, \"0.319795\": {\"frequency\": 1, \"value\": \"0.319795\"}, \"0.345732\": {\"frequency\": 1, \"value\": \"0.345732\"}, \"0.226263\": {\"frequency\": 1, \"value\": \"0.226263\"}, \"0.586876\": {\"frequency\": 1, \"value\": \"0.586876\"}, \"0.355379\": {\"frequency\": 1, \"value\": \"0.355379\"}, \"0.541936\": {\"frequency\": 1, \"value\": \"0.541936\"}, \"0.41815\": {\"frequency\": 1, \"value\": \"0.41815\"}, \"0.539387\": {\"frequency\": 1, \"value\": \"0.539387\"}, \"0.794881\": {\"frequency\": 1, \"value\": \"0.794881\"}, \"0.367673\": {\"frequency\": 1, \"value\": \"0.367673\"}, \"0.419746\": {\"frequency\": 1, \"value\": \"0.419746\"}, \"0.773542\": {\"frequency\": 1, \"value\": \"0.773542\"}, \"0.35155\": {\"frequency\": 1, \"value\": \"0.35155\"}, \"0.935239\": {\"frequency\": 1, \"value\": \"0.935239\"}, \"0.257497\": {\"frequency\": 1, \"value\": \"0.257497\"}, \"0.258714\": {\"frequency\": 1, \"value\": \"0.258714\"}, \"0.653457\": {\"frequency\": 1, \"value\": \"0.653457\"}, \"0.611013\": {\"frequency\": 1, \"value\": \"0.611013\"}, \"0.319905\": {\"frequency\": 1, \"value\": \"0.319905\"}, \"0.0738782\": {\"frequency\": 1, \"value\": \"0.0738782\"}, \"0.317465\": {\"frequency\": 1, \"value\": \"0.317465\"}, \"0.369701\": {\"frequency\": 1, \"value\": \"0.369701\"}, \"0.629623\": {\"frequency\": 1, \"value\": \"0.629623\"}, \"0.567676\": {\"frequency\": 1, \"value\": \"0.567676\"}, \"0.488155\": {\"frequency\": 1, \"value\": \"0.488155\"}, \"0.470477\": {\"frequency\": 1, \"value\": \"0.470477\"}, \"0.437175\": {\"frequency\": 1, \"value\": \"0.437175\"}, \"0.247683\": {\"frequency\": 1, \"value\": \"0.247683\"}, \"0.202149\": {\"frequency\": 1, \"value\": \"0.202149\"}, \"0.365258\": {\"frequency\": 2, \"value\": \"0.365258\"}, \"0.433738\": {\"frequency\": 1, \"value\": \"0.433738\"}, \"0.558843\": {\"frequency\": 1, \"value\": \"0.558843\"}, \"0.319981\": {\"frequency\": 1, \"value\": \"0.319981\"}, \"0.553348\": {\"frequency\": 1, \"value\": \"0.553348\"}, \"0.558536\": {\"frequency\": 1, \"value\": \"0.558536\"}, \"0.637275\": {\"frequency\": 1, \"value\": \"0.637275\"}, \"0.392842\": {\"frequency\": 1, \"value\": \"0.392842\"}, \"0.559002\": {\"frequency\": 1, \"value\": \"0.559002\"}, \"0.18762\": {\"frequency\": 1, \"value\": \"0.18762\"}, \"0.407955\": {\"frequency\": 1, \"value\": \"0.407955\"}, \"0.393529\": {\"frequency\": 1, \"value\": \"0.393529\"}, \"0.191511\": {\"frequency\": 1, \"value\": \"0.191511\"}, \"0.493977\": {\"frequency\": 1, \"value\": \"0.493977\"}, \"0.441788\": {\"frequency\": 1, \"value\": \"0.441788\"}, \"0.579684\": {\"frequency\": 1, \"value\": \"0.579684\"}, \"0.275633\": {\"frequency\": 1, \"value\": \"0.275633\"}, \"0.102764\": {\"frequency\": 1, \"value\": \"0.102764\"}, \"0.401433\": {\"frequency\": 1, \"value\": \"0.401433\"}, \"0.285223\": {\"frequency\": 1, \"value\": \"0.285223\"}, \"0.338315\": {\"frequency\": 1, \"value\": \"0.338315\"}, \"0.450264\": {\"frequency\": 1, \"value\": \"0.450264\"}, \"0.422235\": {\"frequency\": 1, \"value\": \"0.422235\"}, \"0.12423\": {\"frequency\": 1, \"value\": \"0.12423\"}, \"0.392922\": {\"frequency\": 1, \"value\": \"0.392922\"}, \"0.560481\": {\"frequency\": 1, \"value\": \"0.560481\"}, \"0.4382\": {\"frequency\": 1, \"value\": \"0.4382\"}, \"0.355599\": {\"frequency\": 1, \"value\": \"0.355599\"}, \"0.339263\": {\"frequency\": 1, \"value\": \"0.339263\"}, \"0.680003\": {\"frequency\": 1, \"value\": \"0.680003\"}, \"0.463865\": {\"frequency\": 1, \"value\": \"0.463865\"}, \"0.708077\": {\"frequency\": 1, \"value\": \"0.708077\"}, \"0.76825\": {\"frequency\": 1, \"value\": \"0.76825\"}, \"0.466488\": {\"frequency\": 1, \"value\": \"0.466488\"}, \"0.500208\": {\"frequency\": 1, \"value\": \"0.500208\"}, \"0.331679\": {\"frequency\": 1, \"value\": \"0.331679\"}, \"0.363514\": {\"frequency\": 1, \"value\": \"0.363514\"}, \"0.563117\": {\"frequency\": 1, \"value\": \"0.563117\"}, \"0.298047\": {\"frequency\": 1, \"value\": \"0.298047\"}, \"0.298245\": {\"frequency\": 1, \"value\": \"0.298245\"}, \"0.436577\": {\"frequency\": 1, \"value\": \"0.436577\"}, \"0.418966\": {\"frequency\": 1, \"value\": \"0.418966\"}, \"0.429992\": {\"frequency\": 1, \"value\": \"0.429992\"}, \"0.474632\": {\"frequency\": 1, \"value\": \"0.474632\"}, \"0.290281\": {\"frequency\": 1, \"value\": \"0.290281\"}, \"0.535114\": {\"frequency\": 1, \"value\": \"0.535114\"}, \"0.019855\": {\"frequency\": 1, \"value\": \"0.019855\"}, \"0.290284\": {\"frequency\": 1, \"value\": \"0.290284\"}, \"0.354428\": {\"frequency\": 1, \"value\": \"0.354428\"}, \"0.643471\": {\"frequency\": 1, \"value\": \"0.643471\"}, \"0.57344\": {\"frequency\": 1, \"value\": \"0.57344\"}, \"0.344853\": {\"frequency\": 1, \"value\": \"0.344853\"}, \"0.731565\": {\"frequency\": 1, \"value\": \"0.731565\"}, \"0.289149\": {\"frequency\": 1, \"value\": \"0.289149\"}, \"0.474149\": {\"frequency\": 1, \"value\": \"0.474149\"}, \"0.511874\": {\"frequency\": 1, \"value\": \"0.511874\"}, \"0.709257\": {\"frequency\": 1, \"value\": \"0.709257\"}, \"0.378142\": {\"frequency\": 1, \"value\": \"0.378142\"}, \"0.313844\": {\"frequency\": 1, \"value\": \"0.313844\"}, \"0.290299\": {\"frequency\": 1, \"value\": \"0.290299\"}, \"0.406651\": {\"frequency\": 1, \"value\": \"0.406651\"}, \"0.377652\": {\"frequency\": 1, \"value\": \"0.377652\"}, \"0.362483\": {\"frequency\": 1, \"value\": \"0.362483\"}, \"0.361938\": {\"frequency\": 1, \"value\": \"0.361938\"}, \"0.369429\": {\"frequency\": 1, \"value\": \"0.369429\"}, \"0.520814\": {\"frequency\": 1, \"value\": \"0.520814\"}, \"0.510694\": {\"frequency\": 1, \"value\": \"0.510694\"}, \"0.432845\": {\"frequency\": 1, \"value\": \"0.432845\"}, \"0.042252\": {\"frequency\": 1, \"value\": \"0.042252\"}, \"0.593812\": {\"frequency\": 1, \"value\": \"0.593812\"}, \"0.706436\": {\"frequency\": 1, \"value\": \"0.706436\"}, \"0.0656781\": {\"frequency\": 1, \"value\": \"0.0656781\"}, \"0.445443\": {\"frequency\": 1, \"value\": \"0.445443\"}, \"0.49929\": {\"frequency\": 1, \"value\": \"0.49929\"}, \"0.0826562\": {\"frequency\": 1, \"value\": \"0.0826562\"}, \"0.294348\": {\"frequency\": 1, \"value\": \"0.294348\"}, \"0.535608\": {\"frequency\": 1, \"value\": \"0.535608\"}, \"0.534731\": {\"frequency\": 1, \"value\": \"0.534731\"}, \"0.298666\": {\"frequency\": 1, \"value\": \"0.298666\"}, \"0.58759\": {\"frequency\": 1, \"value\": \"0.58759\"}, \"0.243681\": {\"frequency\": 1, \"value\": \"0.243681\"}, \"0.406849\": {\"frequency\": 1, \"value\": \"0.406849\"}, \"0.0148415\": {\"frequency\": 1, \"value\": \"0.0148415\"}, \"0.566606\": {\"frequency\": 1, \"value\": \"0.566606\"}, \"0.461766\": {\"frequency\": 1, \"value\": \"0.461766\"}, \"0.503752\": {\"frequency\": 1, \"value\": \"0.503752\"}, \"0.636495\": {\"frequency\": 1, \"value\": \"0.636495\"}, \"0.55185\": {\"frequency\": 1, \"value\": \"0.55185\"}, \"0.276421\": {\"frequency\": 1, \"value\": \"0.276421\"}, \"0.378322\": {\"frequency\": 1, \"value\": \"0.378322\"}, \"0.285917\": {\"frequency\": 1, \"value\": \"0.285917\"}, \"0.516546\": {\"frequency\": 1, \"value\": \"0.516546\"}, \"0.331201\": {\"frequency\": 1, \"value\": \"0.331201\"}, \"0.474567\": {\"frequency\": 1, \"value\": \"0.474567\"}, \"0.580151\": {\"frequency\": 1, \"value\": \"0.580151\"}, \"0.486133\": {\"frequency\": 1, \"value\": \"0.486133\"}, \"0.284996\": {\"frequency\": 1, \"value\": \"0.284996\"}, \"0.558965\": {\"frequency\": 1, \"value\": \"0.558965\"}, \"0.16725\": {\"frequency\": 1, \"value\": \"0.16725\"}, \"0.288038\": {\"frequency\": 1, \"value\": \"0.288038\"}, \"0.709655\": {\"frequency\": 1, \"value\": \"0.709655\"}, \"0.500537\": {\"frequency\": 1, \"value\": \"0.500537\"}, \"0.245054\": {\"frequency\": 1, \"value\": \"0.245054\"}, \"0.35852\": {\"frequency\": 1, \"value\": \"0.35852\"}, \"0.419816\": {\"frequency\": 1, \"value\": \"0.419816\"}, \"0.300949\": {\"frequency\": 1, \"value\": \"0.300949\"}, \"0.536673\": {\"frequency\": 1, \"value\": \"0.536673\"}, \"0.537992\": {\"frequency\": 1, \"value\": \"0.537992\"}, \"0.461169\": {\"frequency\": 1, \"value\": \"0.461169\"}, \"0.25998\": {\"frequency\": 1, \"value\": \"0.25998\"}, \"0.553954\": {\"frequency\": 1, \"value\": \"0.553954\"}, \"0.198141\": {\"frequency\": 1, \"value\": \"0.198141\"}, \"0.424804\": {\"frequency\": 1, \"value\": \"0.424804\"}, \"0.482961\": {\"frequency\": 1, \"value\": \"0.482961\"}, \"0.606396\": {\"frequency\": 1, \"value\": \"0.606396\"}, \"0.578829\": {\"frequency\": 1, \"value\": \"0.578829\"}, \"0.451602\": {\"frequency\": 1, \"value\": \"0.451602\"}, \"0.390779\": {\"frequency\": 1, \"value\": \"0.390779\"}, \"0.578827\": {\"frequency\": 1, \"value\": \"0.578827\"}, \"0.460563\": {\"frequency\": 1, \"value\": \"0.460563\"}, \"0.537046\": {\"frequency\": 1, \"value\": \"0.537046\"}, \"0.101859\": {\"frequency\": 1, \"value\": \"0.101859\"}, \"0.324657\": {\"frequency\": 1, \"value\": \"0.324657\"}, \"0.473826\": {\"frequency\": 1, \"value\": \"0.473826\"}, \"0.44376\": {\"frequency\": 1, \"value\": \"0.44376\"}, \"0.219853\": {\"frequency\": 1, \"value\": \"0.219853\"}, \"0.615672\": {\"frequency\": 1, \"value\": \"0.615672\"}, \"0.482097\": {\"frequency\": 1, \"value\": \"0.482097\"}, \"0.4496\": {\"frequency\": 1, \"value\": \"0.4496\"}, \"0.4321\": {\"frequency\": 1, \"value\": \"0.4321\"}, \"0.407718\": {\"frequency\": 1, \"value\": \"0.407718\"}, \"0.210617\": {\"frequency\": 1, \"value\": \"0.210617\"}, \"0.443418\": {\"frequency\": 1, \"value\": \"0.443418\"}, \"0.327271\": {\"frequency\": 1, \"value\": \"0.327271\"}, \"0.408286\": {\"frequency\": 1, \"value\": \"0.408286\"}, \"0.248982\": {\"frequency\": 1, \"value\": \"0.248982\"}, \"0.401186\": {\"frequency\": 1, \"value\": \"0.401186\"}, \"0.406356\": {\"frequency\": 1, \"value\": \"0.406356\"}, \"0.360184\": {\"frequency\": 1, \"value\": \"0.360184\"}, \"0.466478\": {\"frequency\": 1, \"value\": \"0.466478\"}, \"0.444312\": {\"frequency\": 1, \"value\": \"0.444312\"}, \"0.348341\": {\"frequency\": 1, \"value\": \"0.348341\"}, \"0.280129\": {\"frequency\": 1, \"value\": \"0.280129\"}, \"0.357193\": {\"frequency\": 1, \"value\": \"0.357193\"}, \"0.220566\": {\"frequency\": 1, \"value\": \"0.220566\"}, \"0.827147\": {\"frequency\": 1, \"value\": \"0.827147\"}, \"0.360189\": {\"frequency\": 1, \"value\": \"0.360189\"}, \"0.514168\": {\"frequency\": 1, \"value\": \"0.514168\"}, \"0.471918\": {\"frequency\": 1, \"value\": \"0.471918\"}, \"0.434035\": {\"frequency\": 1, \"value\": \"0.434035\"}, \"0.423911\": {\"frequency\": 1, \"value\": \"0.423911\"}, \"0.312498\": {\"frequency\": 1, \"value\": \"0.312498\"}, \"0.440858\": {\"frequency\": 1, \"value\": \"0.440858\"}, \"0.602257\": {\"frequency\": 1, \"value\": \"0.602257\"}, \"0.356243\": {\"frequency\": 1, \"value\": \"0.356243\"}, \"0.467326\": {\"frequency\": 1, \"value\": \"0.467326\"}, \"0.356246\": {\"frequency\": 1, \"value\": \"0.356246\"}, \"0.471915\": {\"frequency\": 1, \"value\": \"0.471915\"}, \"0.283205\": {\"frequency\": 1, \"value\": \"0.283205\"}, \"0.602702\": {\"frequency\": 1, \"value\": \"0.602702\"}, \"0.249344\": {\"frequency\": 1, \"value\": \"0.249344\"}, \"0.329764\": {\"frequency\": 1, \"value\": \"0.329764\"}, \"0.507213\": {\"frequency\": 1, \"value\": \"0.507213\"}, \"0.461412\": {\"frequency\": 1, \"value\": \"0.461412\"}, \"0.396238\": {\"frequency\": 1, \"value\": \"0.396238\"}, \"0.451512\": {\"frequency\": 1, \"value\": \"0.451512\"}, \"0.510873\": {\"frequency\": 1, \"value\": \"0.510873\"}, \"0.487649\": {\"frequency\": 1, \"value\": \"0.487649\"}, \"0.410389\": {\"frequency\": 1, \"value\": \"0.410389\"}, \"0.357607\": {\"frequency\": 1, \"value\": \"0.357607\"}, \"0.334164\": {\"frequency\": 1, \"value\": \"0.334164\"}, \"0.505248\": {\"frequency\": 1, \"value\": \"0.505248\"}, \"0.444173\": {\"frequency\": 1, \"value\": \"0.444173\"}, \"0.092872\": {\"frequency\": 1, \"value\": \"0.092872\"}, \"0.465254\": {\"frequency\": 1, \"value\": \"0.465254\"}, \"0.321377\": {\"frequency\": 1, \"value\": \"0.321377\"}, \"0.264179\": {\"frequency\": 1, \"value\": \"0.264179\"}, \"0.434327\": {\"frequency\": 1, \"value\": \"0.434327\"}, \"0.559762\": {\"frequency\": 1, \"value\": \"0.559762\"}, \"0.434458\": {\"frequency\": 1, \"value\": \"0.434458\"}, \"0.301282\": {\"frequency\": 1, \"value\": \"0.301282\"}, \"0.365646\": {\"frequency\": 1, \"value\": \"0.365646\"}, \"0.646045\": {\"frequency\": 1, \"value\": \"0.646045\"}, \"0.347648\": {\"frequency\": 1, \"value\": \"0.347648\"}, \"0.568026\": {\"frequency\": 1, \"value\": \"0.568026\"}, \"0.477831\": {\"frequency\": 1, \"value\": \"0.477831\"}, \"0.553225\": {\"frequency\": 1, \"value\": \"0.553225\"}, \"0.242822\": {\"frequency\": 1, \"value\": \"0.242822\"}, \"0.030815\": {\"frequency\": 1, \"value\": \"0.030815\"}, \"0.390198\": {\"frequency\": 1, \"value\": \"0.390198\"}, \"0.381618\": {\"frequency\": 1, \"value\": \"0.381618\"}, \"0.423063\": {\"frequency\": 1, \"value\": \"0.423063\"}, \"0.227106\": {\"frequency\": 1, \"value\": \"0.227106\"}, \"0.218874\": {\"frequency\": 1, \"value\": \"0.218874\"}, \"0.333524\": {\"frequency\": 1, \"value\": \"0.333524\"}, \"0.410615\": {\"frequency\": 1, \"value\": \"0.410615\"}, \"0.582151\": {\"frequency\": 1, \"value\": \"0.582151\"}, \"0.406446\": {\"frequency\": 1, \"value\": \"0.406446\"}, \"0.476831\": {\"frequency\": 1, \"value\": \"0.476831\"}, \"0.490717\": {\"frequency\": 1, \"value\": \"0.490717\"}, \"0.236591\": {\"frequency\": 1, \"value\": \"0.236591\"}, \"0.56228\": {\"frequency\": 1, \"value\": \"0.56228\"}, \"0.411711\": {\"frequency\": 1, \"value\": \"0.411711\"}, \"0.536993\": {\"frequency\": 1, \"value\": \"0.536993\"}, \"0.481042\": {\"frequency\": 1, \"value\": \"0.481042\"}, \"0.384245\": {\"frequency\": 1, \"value\": \"0.384245\"}, \"0.773048\": {\"frequency\": 1, \"value\": \"0.773048\"}, \"0.607164\": {\"frequency\": 1, \"value\": \"0.607164\"}, \"0.571541\": {\"frequency\": 1, \"value\": \"0.571541\"}, \"0.425435\": {\"frequency\": 1, \"value\": \"0.425435\"}, \"0.623014\": {\"frequency\": 1, \"value\": \"0.623014\"}, \"0.370596\": {\"frequency\": 1, \"value\": \"0.370596\"}, \"0.442236\": {\"frequency\": 1, \"value\": \"0.442236\"}, \"0.456085\": {\"frequency\": 1, \"value\": \"0.456085\"}, \"0.762068\": {\"frequency\": 3, \"value\": \"0.762068\"}, \"0.334099\": {\"frequency\": 1, \"value\": \"0.334099\"}, \"0.49132\": {\"frequency\": 1, \"value\": \"0.49132\"}, \"0.501408\": {\"frequency\": 1, \"value\": \"0.501408\"}, \"0.350663\": {\"frequency\": 1, \"value\": \"0.350663\"}, \"0.380903\": {\"frequency\": 1, \"value\": \"0.380903\"}, \"0.327833\": {\"frequency\": 1, \"value\": \"0.327833\"}, \"0.212533\": {\"frequency\": 1, \"value\": \"0.212533\"}, \"0.493708\": {\"frequency\": 1, \"value\": \"0.493708\"}, \"0.423049\": {\"frequency\": 1, \"value\": \"0.423049\"}, \"0.302412\": {\"frequency\": 1, \"value\": \"0.302412\"}, \"0.77456\": {\"frequency\": 1, \"value\": \"0.77456\"}, \"0.578558\": {\"frequency\": 1, \"value\": \"0.578558\"}, \"0.402635\": {\"frequency\": 1, \"value\": \"0.402635\"}, \"0.809261\": {\"frequency\": 1, \"value\": \"0.809261\"}, \"0.478138\": {\"frequency\": 1, \"value\": \"0.478138\"}, \"0.403728\": {\"frequency\": 1, \"value\": \"0.403728\"}, \"0.617124\": {\"frequency\": 1, \"value\": \"0.617124\"}, \"0.573506\": {\"frequency\": 1, \"value\": \"0.573506\"}, \"0.347795\": {\"frequency\": 1, \"value\": \"0.347795\"}, \"0.214584\": {\"frequency\": 1, \"value\": \"0.214584\"}, \"0.423286\": {\"frequency\": 1, \"value\": \"0.423286\"}, \"0.418517\": {\"frequency\": 1, \"value\": \"0.418517\"}, \"0.571266\": {\"frequency\": 1, \"value\": \"0.571266\"}, \"0.446936\": {\"frequency\": 1, \"value\": \"0.446936\"}, \"0.366119\": {\"frequency\": 1, \"value\": \"0.366119\"}, \"0.416642\": {\"frequency\": 1, \"value\": \"0.416642\"}, \"0.736345\": {\"frequency\": 1, \"value\": \"0.736345\"}, \"0.562765\": {\"frequency\": 1, \"value\": \"0.562765\"}, \"0.560214\": {\"frequency\": 1, \"value\": \"0.560214\"}, \"0.258136\": {\"frequency\": 1, \"value\": \"0.258136\"}, \"0.38875\": {\"frequency\": 1, \"value\": \"0.38875\"}, \"0.317833\": {\"frequency\": 1, \"value\": \"0.317833\"}, \"0.225046\": {\"frequency\": 1, \"value\": \"0.225046\"}, \"0.31515\": {\"frequency\": 1, \"value\": \"0.31515\"}, \"0.487101\": {\"frequency\": 1, \"value\": \"0.487101\"}, \"0.479394\": {\"frequency\": 1, \"value\": \"0.479394\"}, \"0.262456\": {\"frequency\": 1, \"value\": \"0.262456\"}, \"0.504357\": {\"frequency\": 1, \"value\": \"0.504357\"}, \"0.488321\": {\"frequency\": 1, \"value\": \"0.488321\"}, \"0.291434\": {\"frequency\": 1, \"value\": \"0.291434\"}, \"0.386247\": {\"frequency\": 1, \"value\": \"0.386247\"}, \"0.552358\": {\"frequency\": 1, \"value\": \"0.552358\"}, \"0.55047\": {\"frequency\": 1, \"value\": \"0.55047\"}, \"0.530449\": {\"frequency\": 1, \"value\": \"0.530449\"}, \"0.414274\": {\"frequency\": 1, \"value\": \"0.414274\"}, \"0.542337\": {\"frequency\": 1, \"value\": \"0.542337\"}, \"0.499058\": {\"frequency\": 1, \"value\": \"0.499058\"}, \"0.427342\": {\"frequency\": 1, \"value\": \"0.427342\"}, \"0.18352\": {\"frequency\": 1, \"value\": \"0.18352\"}, \"0.18353\": {\"frequency\": 1, \"value\": \"0.18353\"}, \"0.226276\": {\"frequency\": 1, \"value\": \"0.226276\"}, \"0.148849\": {\"frequency\": 1, \"value\": \"0.148849\"}, \"0.557719\": {\"frequency\": 1, \"value\": \"0.557719\"}, \"0.525836\": {\"frequency\": 1, \"value\": \"0.525836\"}, \"0.376203\": {\"frequency\": 1, \"value\": \"0.376203\"}, \"0.475284\": {\"frequency\": 1, \"value\": \"0.475284\"}, \"0.452414\": {\"frequency\": 1, \"value\": \"0.452414\"}, \"0.681291\": {\"frequency\": 1, \"value\": \"0.681291\"}, \"0.237243\": {\"frequency\": 1, \"value\": \"0.237243\"}, \"0.595363\": {\"frequency\": 1, \"value\": \"0.595363\"}, \"0.281593\": {\"frequency\": 1, \"value\": \"0.281593\"}, \"0.524263\": {\"frequency\": 1, \"value\": \"0.524263\"}, \"0.524262\": {\"frequency\": 1, \"value\": \"0.524262\"}, \"0.571461\": {\"frequency\": 1, \"value\": \"0.571461\"}, \"0.311316\": {\"frequency\": 1, \"value\": \"0.311316\"}, \"0.393191\": {\"frequency\": 1, \"value\": \"0.393191\"}, \"0.197849\": {\"frequency\": 1, \"value\": \"0.197849\"}, \"0.393621\": {\"frequency\": 1, \"value\": \"0.393621\"}, \"0.484815\": {\"frequency\": 1, \"value\": \"0.484815\"}, \"0.500833\": {\"frequency\": 1, \"value\": \"0.500833\"}, \"0.473626\": {\"frequency\": 1, \"value\": \"0.473626\"}, \"0.330649\": {\"frequency\": 1, \"value\": \"0.330649\"}, \"0.652239\": {\"frequency\": 1, \"value\": \"0.652239\"}, \"0.437768\": {\"frequency\": 1, \"value\": \"0.437768\"}, \"0.255606\": {\"frequency\": 1, \"value\": \"0.255606\"}, \"0.419805\": {\"frequency\": 1, \"value\": \"0.419805\"}, \"0.633165\": {\"frequency\": 1, \"value\": \"0.633165\"}, \"0.239579\": {\"frequency\": 1, \"value\": \"0.239579\"}, \"0.403284\": {\"frequency\": 1, \"value\": \"0.403284\"}, \"0.437166\": {\"frequency\": 1, \"value\": \"0.437166\"}, \"0.540612\": {\"frequency\": 1, \"value\": \"0.540612\"}, \"0.31355\": {\"frequency\": 1, \"value\": \"0.31355\"}, \"0.277355\": {\"frequency\": 1, \"value\": \"0.277355\"}, \"0.42902\": {\"frequency\": 1, \"value\": \"0.42902\"}, \"0.328748\": {\"frequency\": 1, \"value\": \"0.328748\"}, \"0.529128\": {\"frequency\": 1, \"value\": \"0.529128\"}, \"0.379955\": {\"frequency\": 1, \"value\": \"0.379955\"}, \"0.228955\": {\"frequency\": 1, \"value\": \"0.228955\"}, \"0.257824\": {\"frequency\": 1, \"value\": \"0.257824\"}, \"0.364514\": {\"frequency\": 1, \"value\": \"0.364514\"}, \"0.730174\": {\"frequency\": 1, \"value\": \"0.730174\"}, \"0.396806\": {\"frequency\": 1, \"value\": \"0.396806\"}, \"0.398209\": {\"frequency\": 1, \"value\": \"0.398209\"}, \"0.332264\": {\"frequency\": 1, \"value\": \"0.332264\"}, \"0.12636\": {\"frequency\": 1, \"value\": \"0.12636\"}, \"0.760425\": {\"frequency\": 1, \"value\": \"0.760425\"}, \"0.437217\": {\"frequency\": 1, \"value\": \"0.437217\"}, \"0.348417\": {\"frequency\": 1, \"value\": \"0.348417\"}, \"0.273275\": {\"frequency\": 1, \"value\": \"0.273275\"}, \"0.257555\": {\"frequency\": 1, \"value\": \"0.257555\"}, \"0.376515\": {\"frequency\": 1, \"value\": \"0.376515\"}, \"0.493967\": {\"frequency\": 1, \"value\": \"0.493967\"}, \"0.467563\": {\"frequency\": 1, \"value\": \"0.467563\"}, \"0.453078\": {\"frequency\": 1, \"value\": \"0.453078\"}, \"0.407929\": {\"frequency\": 1, \"value\": \"0.407929\"}, \"0.264775\": {\"frequency\": 1, \"value\": \"0.264775\"}, \"0.480208\": {\"frequency\": 1, \"value\": \"0.480208\"}, \"0.500238\": {\"frequency\": 1, \"value\": \"0.500238\"}, \"0.530713\": {\"frequency\": 1, \"value\": \"0.530713\"}, \"0.164498\": {\"frequency\": 1, \"value\": \"0.164498\"}, \"0.486304\": {\"frequency\": 1, \"value\": \"0.486304\"}, \"0.379317\": {\"frequency\": 1, \"value\": \"0.379317\"}, \"0.435774\": {\"frequency\": 1, \"value\": \"0.435774\"}, \"0.416112\": {\"frequency\": 1, \"value\": \"0.416112\"}, \"0.143773\": {\"frequency\": 1, \"value\": \"0.143773\"}, \"0.437305\": {\"frequency\": 1, \"value\": \"0.437305\"}, \"0.418927\": {\"frequency\": 1, \"value\": \"0.418927\"}, \"0.466316\": {\"frequency\": 1, \"value\": \"0.466316\"}, \"0.340786\": {\"frequency\": 1, \"value\": \"0.340786\"}, \"0.520549\": {\"frequency\": 1, \"value\": \"0.520549\"}, \"0.745878\": {\"frequency\": 1, \"value\": \"0.745878\"}, \"0.547964\": {\"frequency\": 1, \"value\": \"0.547964\"}, \"0.386661\": {\"frequency\": 1, \"value\": \"0.386661\"}, \"0.295807\": {\"frequency\": 1, \"value\": \"0.295807\"}, \"0.642041\": {\"frequency\": 1, \"value\": \"0.642041\"}, \"0.348577\": {\"frequency\": 1, \"value\": \"0.348577\"}, \"0.54135\": {\"frequency\": 1, \"value\": \"0.54135\"}, \"0.340548\": {\"frequency\": 1, \"value\": \"0.340548\"}, \"0.338788\": {\"frequency\": 1, \"value\": \"0.338788\"}, \"0.45176\": {\"frequency\": 1, \"value\": \"0.45176\"}, \"0.381877\": {\"frequency\": 1, \"value\": \"0.381877\"}, \"0.517931\": {\"frequency\": 1, \"value\": \"0.517931\"}, \"0.38498\": {\"frequency\": 1, \"value\": \"0.38498\"}, \"0.426434\": {\"frequency\": 1, \"value\": \"0.426434\"}, \"0.426721\": {\"frequency\": 1, \"value\": \"0.426721\"}, \"0.318625\": {\"frequency\": 1, \"value\": \"0.318625\"}, \"0.37945\": {\"frequency\": 1, \"value\": \"0.37945\"}, \"0.401732\": {\"frequency\": 1, \"value\": \"0.401732\"}, \"0.226094\": {\"frequency\": 1, \"value\": \"0.226094\"}, \"0.346784\": {\"frequency\": 1, \"value\": \"0.346784\"}, \"0.294595\": {\"frequency\": 1, \"value\": \"0.294595\"}, \"0.313088\": {\"frequency\": 1, \"value\": \"0.313088\"}, \"0.455268\": {\"frequency\": 1, \"value\": \"0.455268\"}, \"0.265781\": {\"frequency\": 1, \"value\": \"0.265781\"}, \"0.5446\": {\"frequency\": 1, \"value\": \"0.5446\"}, \"0.194003\": {\"frequency\": 1, \"value\": \"0.194003\"}, \"0.564357\": {\"frequency\": 1, \"value\": \"0.564357\"}, \"0.228774\": {\"frequency\": 1, \"value\": \"0.228774\"}, \"0.320426\": {\"frequency\": 1, \"value\": \"0.320426\"}, \"0.378685\": {\"frequency\": 1, \"value\": \"0.378685\"}, \"0.355862\": {\"frequency\": 1, \"value\": \"0.355862\"}, \"0.331906\": {\"frequency\": 1, \"value\": \"0.331906\"}, \"0.758618\": {\"frequency\": 1, \"value\": \"0.758618\"}, \"0.46555\": {\"frequency\": 1, \"value\": \"0.46555\"}, \"0.443473\": {\"frequency\": 1, \"value\": \"0.443473\"}, \"0.21577\": {\"frequency\": 1, \"value\": \"0.21577\"}, \"0.455981\": {\"frequency\": 1, \"value\": \"0.455981\"}, \"0.159534\": {\"frequency\": 1, \"value\": \"0.159534\"}, \"0.396757\": {\"frequency\": 1, \"value\": \"0.396757\"}, \"0.278346\": {\"frequency\": 1, \"value\": \"0.278346\"}, \"0.745278\": {\"frequency\": 1, \"value\": \"0.745278\"}, \"0.426239\": {\"frequency\": 1, \"value\": \"0.426239\"}, \"0.161211\": {\"frequency\": 1, \"value\": \"0.161211\"}, \"0.526834\": {\"frequency\": 1, \"value\": \"0.526834\"}, \"0.39877\": {\"frequency\": 1, \"value\": \"0.39877\"}, \"0.453101\": {\"frequency\": 1, \"value\": \"0.453101\"}, \"0.398798\": {\"frequency\": 1, \"value\": \"0.398798\"}, \"0.534728\": {\"frequency\": 1, \"value\": \"0.534728\"}, \"0.186397\": {\"frequency\": 1, \"value\": \"0.186397\"}, \"0.356107\": {\"frequency\": 1, \"value\": \"0.356107\"}, \"0.532925\": {\"frequency\": 1, \"value\": \"0.532925\"}, \"0.13547\": {\"frequency\": 1, \"value\": \"0.13547\"}, \"0.420376\": {\"frequency\": 1, \"value\": \"0.420376\"}, \"0.408157\": {\"frequency\": 1, \"value\": \"0.408157\"}, \"0.320394\": {\"frequency\": 1, \"value\": \"0.320394\"}, \"0.285966\": {\"frequency\": 1, \"value\": \"0.285966\"}, \"0.496392\": {\"frequency\": 1, \"value\": \"0.496392\"}, \"0.289933\": {\"frequency\": 1, \"value\": \"0.289933\"}, \"0.232068\": {\"frequency\": 1, \"value\": \"0.232068\"}, \"0.631114\": {\"frequency\": 1, \"value\": \"0.631114\"}, \"0.444543\": {\"frequency\": 1, \"value\": \"0.444543\"}, \"0.555747\": {\"frequency\": 1, \"value\": \"0.555747\"}, \"0.49615\": {\"frequency\": 1, \"value\": \"0.49615\"}, \"0.283745\": {\"frequency\": 1, \"value\": \"0.283745\"}, \"0.589178\": {\"frequency\": 1, \"value\": \"0.589178\"}, \"0.20718\": {\"frequency\": 1, \"value\": \"0.20718\"}, \"0.315675\": {\"frequency\": 1, \"value\": \"0.315675\"}, \"0.514486\": {\"frequency\": 1, \"value\": \"0.514486\"}, \"0.535832\": {\"frequency\": 1, \"value\": \"0.535832\"}, \"0.534653\": {\"frequency\": 1, \"value\": \"0.534653\"}, \"0.395066\": {\"frequency\": 1, \"value\": \"0.395066\"}, \"0.143792\": {\"frequency\": 1, \"value\": \"0.143792\"}, \"0.324959\": {\"frequency\": 1, \"value\": \"0.324959\"}, \"0.17468\": {\"frequency\": 1, \"value\": \"0.17468\"}, \"0.329111\": {\"frequency\": 1, \"value\": \"0.329111\"}, \"0.545733\": {\"frequency\": 1, \"value\": \"0.545733\"}, \"0.812318\": {\"frequency\": 1, \"value\": \"0.812318\"}, \"0.428381\": {\"frequency\": 1, \"value\": \"0.428381\"}, \"0.247759\": {\"frequency\": 1, \"value\": \"0.247759\"}, \"0.586792\": {\"frequency\": 1, \"value\": \"0.586792\"}, \"0.464422\": {\"frequency\": 1, \"value\": \"0.464422\"}, \"0.400289\": {\"frequency\": 1, \"value\": \"0.400289\"}, \"0.44362\": {\"frequency\": 1, \"value\": \"0.44362\"}, \"0.295247\": {\"frequency\": 2, \"value\": \"0.295247\"}, \"0.378592\": {\"frequency\": 1, \"value\": \"0.378592\"}, \"0.314999\": {\"frequency\": 1, \"value\": \"0.314999\"}, \"0.34344\": {\"frequency\": 1, \"value\": \"0.34344\"}, \"0.508187\": {\"frequency\": 1, \"value\": \"0.508187\"}, \"0.417399\": {\"frequency\": 1, \"value\": \"0.417399\"}, \"0.660082\": {\"frequency\": 1, \"value\": \"0.660082\"}, \"0.371631\": {\"frequency\": 1, \"value\": \"0.371631\"}, \"0.387377\": {\"frequency\": 1, \"value\": \"0.387377\"}, \"0.371635\": {\"frequency\": 1, \"value\": \"0.371635\"}, \"0.633419\": {\"frequency\": 1, \"value\": \"0.633419\"}, \"0.434207\": {\"frequency\": 1, \"value\": \"0.434207\"}, \"0.562999\": {\"frequency\": 1, \"value\": \"0.562999\"}, \"0.438028\": {\"frequency\": 1, \"value\": \"0.438028\"}, \"0.40974\": {\"frequency\": 1, \"value\": \"0.40974\"}, \"0.335598\": {\"frequency\": 1, \"value\": \"0.335598\"}, \"0.545352\": {\"frequency\": 1, \"value\": \"0.545352\"}, \"0.628384\": {\"frequency\": 1, \"value\": \"0.628384\"}, \"0.532156\": {\"frequency\": 1, \"value\": \"0.532156\"}, \"0.403283\": {\"frequency\": 1, \"value\": \"0.403283\"}, \"0.439585\": {\"frequency\": 1, \"value\": \"0.439585\"}, \"0.545355\": {\"frequency\": 1, \"value\": \"0.545355\"}, \"0.659807\": {\"frequency\": 1, \"value\": \"0.659807\"}, \"0.292112\": {\"frequency\": 1, \"value\": \"0.292112\"}, \"0.0832697\": {\"frequency\": 1, \"value\": \"0.0832697\"}, \"0.518863\": {\"frequency\": 1, \"value\": \"0.518863\"}, \"0.287923\": {\"frequency\": 1, \"value\": \"0.287923\"}, \"0.203962\": {\"frequency\": 1, \"value\": \"0.203962\"}, \"0.329758\": {\"frequency\": 1, \"value\": \"0.329758\"}, \"0.390504\": {\"frequency\": 1, \"value\": \"0.390504\"}, \"0.467338\": {\"frequency\": 1, \"value\": \"0.467338\"}, \"0.440535\": {\"frequency\": 1, \"value\": \"0.440535\"}, \"0.551812\": {\"frequency\": 1, \"value\": \"0.551812\"}, \"0.248172\": {\"frequency\": 1, \"value\": \"0.248172\"}, \"0.545715\": {\"frequency\": 1, \"value\": \"0.545715\"}, \"0.451505\": {\"frequency\": 1, \"value\": \"0.451505\"}, \"0.716798\": {\"frequency\": 1, \"value\": \"0.716798\"}, \"0.607083\": {\"frequency\": 1, \"value\": \"0.607083\"}, \"0.37596\": {\"frequency\": 1, \"value\": \"0.37596\"}, \"0.579236\": {\"frequency\": 1, \"value\": \"0.579236\"}, \"0.276985\": {\"frequency\": 1, \"value\": \"0.276985\"}, \"0.267969\": {\"frequency\": 1, \"value\": \"0.267969\"}, \"0.412478\": {\"frequency\": 1, \"value\": \"0.412478\"}, \"0.44969\": {\"frequency\": 1, \"value\": \"0.44969\"}, \"0.307297\": {\"frequency\": 1, \"value\": \"0.307297\"}, \"0.312261\": {\"frequency\": 1, \"value\": \"0.312261\"}, \"0.533957\": {\"frequency\": 1, \"value\": \"0.533957\"}, \"0.666968\": {\"frequency\": 1, \"value\": \"0.666968\"}, \"0.360446\": {\"frequency\": 1, \"value\": \"0.360446\"}, \"0.195766\": {\"frequency\": 1, \"value\": \"0.195766\"}, \"0.306539\": {\"frequency\": 1, \"value\": \"0.306539\"}, \"0.55317\": {\"frequency\": 1, \"value\": \"0.55317\"}, \"0.185308\": {\"frequency\": 1, \"value\": \"0.185308\"}, \"0.443531\": {\"frequency\": 1, \"value\": \"0.443531\"}, \"0.383625\": {\"frequency\": 1, \"value\": \"0.383625\"}, \"0.0974353\": {\"frequency\": 1, \"value\": \"0.0974353\"}, \"0.347122\": {\"frequency\": 1, \"value\": \"0.347122\"}, \"0.443538\": {\"frequency\": 1, \"value\": \"0.443538\"}, \"0.444943\": {\"frequency\": 1, \"value\": \"0.444943\"}, \"0.390168\": {\"frequency\": 1, \"value\": \"0.390168\"}, \"0.650348\": {\"frequency\": 1, \"value\": \"0.650348\"}, \"0.581017\": {\"frequency\": 1, \"value\": \"0.581017\"}, \"0.779952\": {\"frequency\": 1, \"value\": \"0.779952\"}, \"0.295187\": {\"frequency\": 1, \"value\": \"0.295187\"}, \"0.447416\": {\"frequency\": 1, \"value\": \"0.447416\"}, \"0.414512\": {\"frequency\": 1, \"value\": \"0.414512\"}, \"0.499448\": {\"frequency\": 1, \"value\": \"0.499448\"}, \"0.379722\": {\"frequency\": 1, \"value\": \"0.379722\"}, \"0.443751\": {\"frequency\": 1, \"value\": \"0.443751\"}, \"0.309032\": {\"frequency\": 1, \"value\": \"0.309032\"}, \"0.654199\": {\"frequency\": 1, \"value\": \"0.654199\"}, \"0.153773\": {\"frequency\": 1, \"value\": \"0.153773\"}, \"0.468085\": {\"frequency\": 1, \"value\": \"0.468085\"}, \"0.293639\": {\"frequency\": 1, \"value\": \"0.293639\"}, \"0.287463\": {\"frequency\": 1, \"value\": \"0.287463\"}, \"0.413559\": {\"frequency\": 1, \"value\": \"0.413559\"}, \"0.539568\": {\"frequency\": 1, \"value\": \"0.539568\"}, \"0.397754\": {\"frequency\": 1, \"value\": \"0.397754\"}, \"0.35794\": {\"frequency\": 1, \"value\": \"0.35794\"}, \"0.35797\": {\"frequency\": 1, \"value\": \"0.35797\"}, \"0.406457\": {\"frequency\": 1, \"value\": \"0.406457\"}, \"0.578948\": {\"frequency\": 1, \"value\": \"0.578948\"}, \"0.53588\": {\"frequency\": 1, \"value\": \"0.53588\"}, \"0.341616\": {\"frequency\": 1, \"value\": \"0.341616\"}, \"0.272102\": {\"frequency\": 1, \"value\": \"0.272102\"}, \"0.471056\": {\"frequency\": 1, \"value\": \"0.471056\"}, \"0.398757\": {\"frequency\": 1, \"value\": \"0.398757\"}, \"0.349415\": {\"frequency\": 1, \"value\": \"0.349415\"}, \"0.204345\": {\"frequency\": 1, \"value\": \"0.204345\"}, \"0.498821\": {\"frequency\": 1, \"value\": \"0.498821\"}, \"0.239819\": {\"frequency\": 1, \"value\": \"0.239819\"}, \"0.465332\": {\"frequency\": 1, \"value\": \"0.465332\"}, \"0.319164\": {\"frequency\": 1, \"value\": \"0.319164\"}, \"0.438263\": {\"frequency\": 1, \"value\": \"0.438263\"}, \"0.328891\": {\"frequency\": 1, \"value\": \"0.328891\"}, \"0.415566\": {\"frequency\": 1, \"value\": \"0.415566\"}, \"0.293372\": {\"frequency\": 1, \"value\": \"0.293372\"}, \"0.371851\": {\"frequency\": 1, \"value\": \"0.371851\"}, \"0.301992\": {\"frequency\": 1, \"value\": \"0.301992\"}, \"0.60118\": {\"frequency\": 1, \"value\": \"0.60118\"}, \"0.366274\": {\"frequency\": 1, \"value\": \"0.366274\"}, \"0.259784\": {\"frequency\": 1, \"value\": \"0.259784\"}, \"0.448282\": {\"frequency\": 1, \"value\": \"0.448282\"}, \"0.297392\": {\"frequency\": 1, \"value\": \"0.297392\"}, \"0.745306\": {\"frequency\": 1, \"value\": \"0.745306\"}, \"0.266852\": {\"frequency\": 1, \"value\": \"0.266852\"}, \"0.444496\": {\"frequency\": 1, \"value\": \"0.444496\"}, \"0.547808\": {\"frequency\": 1, \"value\": \"0.547808\"}, \"0.344271\": {\"frequency\": 1, \"value\": \"0.344271\"}, \"0.593652\": {\"frequency\": 1, \"value\": \"0.593652\"}, \"0.569186\": {\"frequency\": 1, \"value\": \"0.569186\"}, \"0.583853\": {\"frequency\": 1, \"value\": \"0.583853\"}, \"0.243231\": {\"frequency\": 1, \"value\": \"0.243231\"}, \"0.275984\": {\"frequency\": 1, \"value\": \"0.275984\"}, \"0.592093\": {\"frequency\": 1, \"value\": \"0.592093\"}, \"0.272085\": {\"frequency\": 1, \"value\": \"0.272085\"}, \"0.381066\": {\"frequency\": 1, \"value\": \"0.381066\"}, \"0.369831\": {\"frequency\": 1, \"value\": \"0.369831\"}, \"0.210044\": {\"frequency\": 1, \"value\": \"0.210044\"}, \"0.571216\": {\"frequency\": 1, \"value\": \"0.571216\"}, \"0.362362\": {\"frequency\": 1, \"value\": \"0.362362\"}, \"0.809928\": {\"frequency\": 1, \"value\": \"0.809928\"}, \"0.230162\": {\"frequency\": 1, \"value\": \"0.230162\"}, \"0.257946\": {\"frequency\": 1, \"value\": \"0.257946\"}, \"0.134054\": {\"frequency\": 1, \"value\": \"0.134054\"}, \"0.464115\": {\"frequency\": 1, \"value\": \"0.464115\"}, \"0.748622\": {\"frequency\": 1, \"value\": \"0.748622\"}, \"0.110402\": {\"frequency\": 1, \"value\": \"0.110402\"}, \"0.197723\": {\"frequency\": 1, \"value\": \"0.197723\"}, \"0.487663\": {\"frequency\": 1, \"value\": \"0.487663\"}, \"0.487661\": {\"frequency\": 1, \"value\": \"0.487661\"}, \"0.449458\": {\"frequency\": 1, \"value\": \"0.449458\"}, \"0.189775\": {\"frequency\": 1, \"value\": \"0.189775\"}, \"0.452885\": {\"frequency\": 1, \"value\": \"0.452885\"}, \"0.297805\": {\"frequency\": 1, \"value\": \"0.297805\"}, \"0.569983\": {\"frequency\": 1, \"value\": \"0.569983\"}, \"0.435968\": {\"frequency\": 1, \"value\": \"0.435968\"}, \"0.63365\": {\"frequency\": 1, \"value\": \"0.63365\"}, \"0.312588\": {\"frequency\": 1, \"value\": \"0.312588\"}, \"0.402766\": {\"frequency\": 1, \"value\": \"0.402766\"}, \"0.548286\": {\"frequency\": 1, \"value\": \"0.548286\"}, \"0.415392\": {\"frequency\": 1, \"value\": \"0.415392\"}, \"0.514807\": {\"frequency\": 1, \"value\": \"0.514807\"}, \"0.652426\": {\"frequency\": 1, \"value\": \"0.652426\"}, \"0.215644\": {\"frequency\": 1, \"value\": \"0.215644\"}, \"0.215647\": {\"frequency\": 1, \"value\": \"0.215647\"}, \"0.35175\": {\"frequency\": 1, \"value\": \"0.35175\"}, \"0.396487\": {\"frequency\": 1, \"value\": \"0.396487\"}, \"0.427351\": {\"frequency\": 1, \"value\": \"0.427351\"}, \"0.785842\": {\"frequency\": 1, \"value\": \"0.785842\"}, \"0.354308\": {\"frequency\": 1, \"value\": \"0.354308\"}, \"0.396718\": {\"frequency\": 1, \"value\": \"0.396718\"}, \"0.407809\": {\"frequency\": 1, \"value\": \"0.407809\"}, \"0.51509\": {\"frequency\": 1, \"value\": \"0.51509\"}, \"0.452405\": {\"frequency\": 1, \"value\": \"0.452405\"}, \"0.469502\": {\"frequency\": 1, \"value\": \"0.469502\"}, \"0.446328\": {\"frequency\": 1, \"value\": \"0.446328\"}, \"0.488795\": {\"frequency\": 1, \"value\": \"0.488795\"}, \"0.345658\": {\"frequency\": 1, \"value\": \"0.345658\"}, \"0.449115\": {\"frequency\": 1, \"value\": \"0.449115\"}, \"0.330655\": {\"frequency\": 1, \"value\": \"0.330655\"}, \"0.418019\": {\"frequency\": 1, \"value\": \"0.418019\"}, \"0.412041\": {\"frequency\": 1, \"value\": \"0.412041\"}, \"0.484685\": {\"frequency\": 1, \"value\": \"0.484685\"}, \"0.556136\": {\"frequency\": 1, \"value\": \"0.556136\"}, \"0.471385\": {\"frequency\": 1, \"value\": \"0.471385\"}, \"0.422435\": {\"frequency\": 1, \"value\": \"0.422435\"}, \"0.39907\": {\"frequency\": 1, \"value\": \"0.39907\"}, \"0.779573\": {\"frequency\": 1, \"value\": \"0.779573\"}, \"0.451807\": {\"frequency\": 1, \"value\": \"0.451807\"}, \"0.280899\": {\"frequency\": 1, \"value\": \"0.280899\"}, \"0.504035\": {\"frequency\": 1, \"value\": \"0.504035\"}, \"0.277347\": {\"frequency\": 1, \"value\": \"0.277347\"}, \"0.222762\": {\"frequency\": 1, \"value\": \"0.222762\"}, \"0.119203\": {\"frequency\": 1, \"value\": \"0.119203\"}, \"0.405176\": {\"frequency\": 1, \"value\": \"0.405176\"}, \"0.520744\": {\"frequency\": 1, \"value\": \"0.520744\"}, \"0.25457\": {\"frequency\": 1, \"value\": \"0.25457\"}, \"0.476033\": {\"frequency\": 1, \"value\": \"0.476033\"}, \"0.0820345\": {\"frequency\": 1, \"value\": \"0.0820345\"}, \"0.604456\": {\"frequency\": 1, \"value\": \"0.604456\"}, \"0.426736\": {\"frequency\": 1, \"value\": \"0.426736\"}, \"0.382503\": {\"frequency\": 1, \"value\": \"0.382503\"}, \"0.72108\": {\"frequency\": 1, \"value\": \"0.72108\"}, \"0.385362\": {\"frequency\": 1, \"value\": \"0.385362\"}, \"0.333005\": {\"frequency\": 1, \"value\": \"0.333005\"}, \"0.627063\": {\"frequency\": 1, \"value\": \"0.627063\"}, \"0.35221\": {\"frequency\": 1, \"value\": \"0.35221\"}, \"0.267289\": {\"frequency\": 1, \"value\": \"0.267289\"}, \"0.355752\": {\"frequency\": 1, \"value\": \"0.355752\"}, \"0.215845\": {\"frequency\": 1, \"value\": \"0.215845\"}, \"0.609948\": {\"frequency\": 1, \"value\": \"0.609948\"}, \"0.430535\": {\"frequency\": 1, \"value\": \"0.430535\"}, \"0.544849\": {\"frequency\": 1, \"value\": \"0.544849\"}, \"0.38004\": {\"frequency\": 1, \"value\": \"0.38004\"}, \"0.573211\": {\"frequency\": 1, \"value\": \"0.573211\"}, \"0.310186\": {\"frequency\": 1, \"value\": \"0.310186\"}, \"0.323966\": {\"frequency\": 1, \"value\": \"0.323966\"}, \"0.202294\": {\"frequency\": 1, \"value\": \"0.202294\"}, \"0.487241\": {\"frequency\": 1, \"value\": \"0.487241\"}, \"0.636923\": {\"frequency\": 1, \"value\": \"0.636923\"}, \"0.188316\": {\"frequency\": 1, \"value\": \"0.188316\"}, \"0.422726\": {\"frequency\": 1, \"value\": \"0.422726\"}, \"0.495033\": {\"frequency\": 1, \"value\": \"0.495033\"}, \"0.307902\": {\"frequency\": 1, \"value\": \"0.307902\"}, \"0.138287\": {\"frequency\": 1, \"value\": \"0.138287\"}, \"0.617297\": {\"frequency\": 1, \"value\": \"0.617297\"}, \"0.328763\": {\"frequency\": 1, \"value\": \"0.328763\"}, \"0.492777\": {\"frequency\": 1, \"value\": \"0.492777\"}, \"0.278225\": {\"frequency\": 1, \"value\": \"0.278225\"}, \"0.277902\": {\"frequency\": 1, \"value\": \"0.277902\"}, \"0.454695\": {\"frequency\": 1, \"value\": \"0.454695\"}, \"0.456889\": {\"frequency\": 1, \"value\": \"0.456889\"}, \"0.409087\": {\"frequency\": 1, \"value\": \"0.409087\"}, \"0.54454\": {\"frequency\": 1, \"value\": \"0.54454\"}, \"0.277909\": {\"frequency\": 1, \"value\": \"0.277909\"}, \"0.553517\": {\"frequency\": 1, \"value\": \"0.553517\"}, \"0.36151\": {\"frequency\": 1, \"value\": \"0.36151\"}, \"0.490805\": {\"frequency\": 1, \"value\": \"0.490805\"}, \"0.352838\": {\"frequency\": 1, \"value\": \"0.352838\"}, \"0.401709\": {\"frequency\": 1, \"value\": \"0.401709\"}, \"0.457634\": {\"frequency\": 1, \"value\": \"0.457634\"}, \"0.230572\": {\"frequency\": 1, \"value\": \"0.230572\"}, \"0.38262\": {\"frequency\": 1, \"value\": \"0.38262\"}, \"0.205932\": {\"frequency\": 1, \"value\": \"0.205932\"}, \"0.416385\": {\"frequency\": 1, \"value\": \"0.416385\"}, \"0.46015\": {\"frequency\": 1, \"value\": \"0.46015\"}, \"0.274811\": {\"frequency\": 1, \"value\": \"0.274811\"}, \"0.41129\": {\"frequency\": 1, \"value\": \"0.41129\"}, \"0.222\": {\"frequency\": 1, \"value\": \"0.222\"}, \"0.5302\": {\"frequency\": 1, \"value\": \"0.5302\"}, \"0.480661\": {\"frequency\": 1, \"value\": \"0.480661\"}, \"0.560595\": {\"frequency\": 1, \"value\": \"0.560595\"}, \"0.597942\": {\"frequency\": 1, \"value\": \"0.597942\"}, \"0.510673\": {\"frequency\": 1, \"value\": \"0.510673\"}, \"0.170019\": {\"frequency\": 1, \"value\": \"0.170019\"}, \"0.311806\": {\"frequency\": 1, \"value\": \"0.311806\"}, \"0.114891\": {\"frequency\": 1, \"value\": \"0.114891\"}, \"0.292205\": {\"frequency\": 1, \"value\": \"0.292205\"}, \"0.437205\": {\"frequency\": 1, \"value\": \"0.437205\"}, \"0.477185\": {\"frequency\": 1, \"value\": \"0.477185\"}, \"0.501033\": {\"frequency\": 1, \"value\": \"0.501033\"}, \"0.504848\": {\"frequency\": 1, \"value\": \"0.504848\"}, \"0.45616\": {\"frequency\": 1, \"value\": \"0.45616\"}, \"0.328161\": {\"frequency\": 1, \"value\": \"0.328161\"}, \"0.265871\": {\"frequency\": 1, \"value\": \"0.265871\"}, \"0.360333\": {\"frequency\": 1, \"value\": \"0.360333\"}, \"0.278357\": {\"frequency\": 1, \"value\": \"0.278357\"}, \"0.401599\": {\"frequency\": 1, \"value\": \"0.401599\"}, \"0.594446\": {\"frequency\": 1, \"value\": \"0.594446\"}, \"0.530709\": {\"frequency\": 1, \"value\": \"0.530709\"}, \"0.187816\": {\"frequency\": 1, \"value\": \"0.187816\"}, \"0.327259\": {\"frequency\": 1, \"value\": \"0.327259\"}, \"0.357846\": {\"frequency\": 1, \"value\": \"0.357846\"}, \"0.345953\": {\"frequency\": 1, \"value\": \"0.345953\"}, \"0.421564\": {\"frequency\": 1, \"value\": \"0.421564\"}, \"0.699781\": {\"frequency\": 1, \"value\": \"0.699781\"}, \"0.754131\": {\"frequency\": 1, \"value\": \"0.754131\"}, \"0.372248\": {\"frequency\": 1, \"value\": \"0.372248\"}, \"0.318401\": {\"frequency\": 1, \"value\": \"0.318401\"}, \"0.265173\": {\"frequency\": 1, \"value\": \"0.265173\"}, \"0.485059\": {\"frequency\": 1, \"value\": \"0.485059\"}, \"0.354888\": {\"frequency\": 1, \"value\": \"0.354888\"}, \"0.209118\": {\"frequency\": 1, \"value\": \"0.209118\"}, \"0.28837\": {\"frequency\": 1, \"value\": \"0.28837\"}, \"0.292771\": {\"frequency\": 1, \"value\": \"0.292771\"}, \"0.279797\": {\"frequency\": 1, \"value\": \"0.279797\"}, \"0.376859\": {\"frequency\": 1, \"value\": \"0.376859\"}, \"0.544901\": {\"frequency\": 1, \"value\": \"0.544901\"}, \"0.358606\": {\"frequency\": 1, \"value\": \"0.358606\"}, \"0.181793\": {\"frequency\": 1, \"value\": \"0.181793\"}, \"0.544941\": {\"frequency\": 1, \"value\": \"0.544941\"}, \"0.493177\": {\"frequency\": 1, \"value\": \"0.493177\"}, \"0.697685\": {\"frequency\": 1, \"value\": \"0.697685\"}, \"0.51563\": {\"frequency\": 1, \"value\": \"0.51563\"}, \"0.331267\": {\"frequency\": 1, \"value\": \"0.331267\"}, \"0.430314\": {\"frequency\": 1, \"value\": \"0.430314\"}, \"0.346317\": {\"frequency\": 1, \"value\": \"0.346317\"}, \"0.379485\": {\"frequency\": 1, \"value\": \"0.379485\"}, \"0.777404\": {\"frequency\": 1, \"value\": \"0.777404\"}, \"0.30797\": {\"frequency\": 1, \"value\": \"0.30797\"}, \"0.47616\": {\"frequency\": 1, \"value\": \"0.47616\"}, \"0.467754\": {\"frequency\": 1, \"value\": \"0.467754\"}, \"0.50593\": {\"frequency\": 1, \"value\": \"0.50593\"}, \"0.429557\": {\"frequency\": 1, \"value\": \"0.429557\"}, \"0.249967\": {\"frequency\": 1, \"value\": \"0.249967\"}, \"0.437448\": {\"frequency\": 1, \"value\": \"0.437448\"}, \"0.526797\": {\"frequency\": 1, \"value\": \"0.526797\"}, \"0.290958\": {\"frequency\": 1, \"value\": \"0.290958\"}, \"0.428557\": {\"frequency\": 1, \"value\": \"0.428557\"}, \"0.578594\": {\"frequency\": 1, \"value\": \"0.578594\"}, \"0.17894\": {\"frequency\": 1, \"value\": \"0.17894\"}, \"0.189328\": {\"frequency\": 1, \"value\": \"0.189328\"}, \"0.459086\": {\"frequency\": 1, \"value\": \"0.459086\"}, \"0.475965\": {\"frequency\": 1, \"value\": \"0.475965\"}, \"0.30228\": {\"frequency\": 1, \"value\": \"0.30228\"}, \"0.145371\": {\"frequency\": 1, \"value\": \"0.145371\"}, \"0.537061\": {\"frequency\": 1, \"value\": \"0.537061\"}, \"0.322554\": {\"frequency\": 1, \"value\": \"0.322554\"}, \"0.317404\": {\"frequency\": 1, \"value\": \"0.317404\"}, \"0.554972\": {\"frequency\": 1, \"value\": \"0.554972\"}, \"0.537067\": {\"frequency\": 1, \"value\": \"0.537067\"}, \"0.589183\": {\"frequency\": 1, \"value\": \"0.589183\"}, \"0.227942\": {\"frequency\": 1, \"value\": \"0.227942\"}, \"0.61632\": {\"frequency\": 1, \"value\": \"0.61632\"}, \"0.292805\": {\"frequency\": 1, \"value\": \"0.292805\"}, \"0.406609\": {\"frequency\": 1, \"value\": \"0.406609\"}, \"0.5161\": {\"frequency\": 1, \"value\": \"0.5161\"}, \"0.352545\": {\"frequency\": 1, \"value\": \"0.352545\"}, \"0.312876\": {\"frequency\": 3, \"value\": \"0.312876\"}, \"0.696515\": {\"frequency\": 1, \"value\": \"0.696515\"}, \"0.30004\": {\"frequency\": 1, \"value\": \"0.30004\"}, \"0.193895\": {\"frequency\": 1, \"value\": \"0.193895\"}, \"0.579829\": {\"frequency\": 1, \"value\": \"0.579829\"}, \"0.428739\": {\"frequency\": 1, \"value\": \"0.428739\"}, \"0.718861\": {\"frequency\": 1, \"value\": \"0.718861\"}, \"0.448531\": {\"frequency\": 1, \"value\": \"0.448531\"}, \"0.135003\": {\"frequency\": 1, \"value\": \"0.135003\"}, \"0.332841\": {\"frequency\": 1, \"value\": \"0.332841\"}, \"0.498922\": {\"frequency\": 1, \"value\": \"0.498922\"}, \"0.313057\": {\"frequency\": 1, \"value\": \"0.313057\"}, \"0.466452\": {\"frequency\": 1, \"value\": \"0.466452\"}, \"0.20638\": {\"frequency\": 1, \"value\": \"0.20638\"}, \"0.635764\": {\"frequency\": 1, \"value\": \"0.635764\"}, \"0.291897\": {\"frequency\": 1, \"value\": \"0.291897\"}, \"0.184556\": {\"frequency\": 1, \"value\": \"0.184556\"}, \"0.0281342\": {\"frequency\": 1, \"value\": \"0.0281342\"}, \"0.328289\": {\"frequency\": 1, \"value\": \"0.328289\"}, \"0.309606\": {\"frequency\": 1, \"value\": \"0.309606\"}, \"0.244234\": {\"frequency\": 1, \"value\": \"0.244234\"}, \"0.261678\": {\"frequency\": 1, \"value\": \"0.261678\"}, \"0.467657\": {\"frequency\": 1, \"value\": \"0.467657\"}, \"0.699817\": {\"frequency\": 1, \"value\": \"0.699817\"}, \"0.462566\": {\"frequency\": 1, \"value\": \"0.462566\"}, \"0.351445\": {\"frequency\": 1, \"value\": \"0.351445\"}, \"0.282331\": {\"frequency\": 1, \"value\": \"0.282331\"}, \"0.245712\": {\"frequency\": 1, \"value\": \"0.245712\"}, \"0.128202\": {\"frequency\": 1, \"value\": \"0.128202\"}, \"0.356715\": {\"frequency\": 1, \"value\": \"0.356715\"}, \"0.789287\": {\"frequency\": 1, \"value\": \"0.789287\"}, \"0.485499\": {\"frequency\": 1, \"value\": \"0.485499\"}, \"0.108389\": {\"frequency\": 1, \"value\": \"0.108389\"}, \"0.319913\": {\"frequency\": 1, \"value\": \"0.319913\"}, \"0.200474\": {\"frequency\": 1, \"value\": \"0.200474\"}, \"0.404823\": {\"frequency\": 1, \"value\": \"0.404823\"}, \"0.417077\": {\"frequency\": 1, \"value\": \"0.417077\"}, \"0.490488\": {\"frequency\": 1, \"value\": \"0.490488\"}, \"0.383326\": {\"frequency\": 1, \"value\": \"0.383326\"}, \"0.430943\": {\"frequency\": 1, \"value\": \"0.430943\"}, \"0.55301\": {\"frequency\": 1, \"value\": \"0.55301\"}, \"0.287857\": {\"frequency\": 1, \"value\": \"0.287857\"}, \"0.532033\": {\"frequency\": 1, \"value\": \"0.532033\"}, \"0.287855\": {\"frequency\": 1, \"value\": \"0.287855\"}, \"0.330348\": {\"frequency\": 1, \"value\": \"0.330348\"}, \"0.407437\": {\"frequency\": 1, \"value\": \"0.407437\"}, \"0.286103\": {\"frequency\": 1, \"value\": \"0.286103\"}, \"0.505665\": {\"frequency\": 1, \"value\": \"0.505665\"}, \"0.414074\": {\"frequency\": 1, \"value\": \"0.414074\"}, \"0.431661\": {\"frequency\": 1, \"value\": \"0.431661\"}, \"0.423628\": {\"frequency\": 1, \"value\": \"0.423628\"}, \"0.477856\": {\"frequency\": 1, \"value\": \"0.477856\"}, \"0.423627\": {\"frequency\": 1, \"value\": \"0.423627\"}, \"0.287323\": {\"frequency\": 1, \"value\": \"0.287323\"}, \"0.516097\": {\"frequency\": 1, \"value\": \"0.516097\"}, \"0.302763\": {\"frequency\": 1, \"value\": \"0.302763\"}, \"0.39215\": {\"frequency\": 1, \"value\": \"0.39215\"}, \"0.372533\": {\"frequency\": 1, \"value\": \"0.372533\"}, \"0.161788\": {\"frequency\": 1, \"value\": \"0.161788\"}, \"0.160419\": {\"frequency\": 1, \"value\": \"0.160419\"}, \"0.315612\": {\"frequency\": 1, \"value\": \"0.315612\"}, \"0.421828\": {\"frequency\": 1, \"value\": \"0.421828\"}, \"0.753745\": {\"frequency\": 1, \"value\": \"0.753745\"}, \"0.160414\": {\"frequency\": 1, \"value\": \"0.160414\"}, \"0.357715\": {\"frequency\": 1, \"value\": \"0.357715\"}, \"0.42215\": {\"frequency\": 1, \"value\": \"0.42215\"}, \"0.343543\": {\"frequency\": 1, \"value\": \"0.343543\"}, \"0.300459\": {\"frequency\": 1, \"value\": \"0.300459\"}, \"0.301451\": {\"frequency\": 1, \"value\": \"0.301451\"}, \"0.342019\": {\"frequency\": 1, \"value\": \"0.342019\"}, \"0.34781\": {\"frequency\": 1, \"value\": \"0.34781\"}, \"0.443349\": {\"frequency\": 1, \"value\": \"0.443349\"}, \"0.371846\": {\"frequency\": 1, \"value\": \"0.371846\"}, \"0.239821\": {\"frequency\": 1, \"value\": \"0.239821\"}, \"0.863998\": {\"frequency\": 1, \"value\": \"0.863998\"}, \"0.163806\": {\"frequency\": 1, \"value\": \"0.163806\"}, \"0.218861\": {\"frequency\": 1, \"value\": \"0.218861\"}, \"0.463793\": {\"frequency\": 1, \"value\": \"0.463793\"}, \"0.238605\": {\"frequency\": 1, \"value\": \"0.238605\"}, \"0.258541\": {\"frequency\": 1, \"value\": \"0.258541\"}, \"0.330915\": {\"frequency\": 1, \"value\": \"0.330915\"}, \"0.432263\": {\"frequency\": 1, \"value\": \"0.432263\"}, \"0.340899\": {\"frequency\": 1, \"value\": \"0.340899\"}, \"0.343764\": {\"frequency\": 1, \"value\": \"0.343764\"}, \"0.262346\": {\"frequency\": 1, \"value\": \"0.262346\"}, \"0.349744\": {\"frequency\": 1, \"value\": \"0.349744\"}, \"0.731203\": {\"frequency\": 1, \"value\": \"0.731203\"}, \"0.205585\": {\"frequency\": 1, \"value\": \"0.205585\"}, \"0.351719\": {\"frequency\": 1, \"value\": \"0.351719\"}, \"0.468781\": {\"frequency\": 1, \"value\": \"0.468781\"}, \"0.498213\": {\"frequency\": 1, \"value\": \"0.498213\"}, \"0.32403\": {\"frequency\": 1, \"value\": \"0.32403\"}, \"0.655631\": {\"frequency\": 1, \"value\": \"0.655631\"}, \"0.356921\": {\"frequency\": 1, \"value\": \"0.356921\"}, \"0.421825\": {\"frequency\": 1, \"value\": \"0.421825\"}, \"0.68328\": {\"frequency\": 1, \"value\": \"0.68328\"}, \"0.901702\": {\"frequency\": 1, \"value\": \"0.901702\"}, \"0.248787\": {\"frequency\": 1, \"value\": \"0.248787\"}, \"0.424535\": {\"frequency\": 1, \"value\": \"0.424535\"}, \"0.478192\": {\"frequency\": 1, \"value\": \"0.478192\"}, \"0.478391\": {\"frequency\": 1, \"value\": \"0.478391\"}, \"0.306884\": {\"frequency\": 1, \"value\": \"0.306884\"}, \"0.509157\": {\"frequency\": 1, \"value\": \"0.509157\"}, \"0.396969\": {\"frequency\": 1, \"value\": \"0.396969\"}, \"0.184462\": {\"frequency\": 1, \"value\": \"0.184462\"}, \"0.432463\": {\"frequency\": 1, \"value\": \"0.432463\"}, \"0.666731\": {\"frequency\": 1, \"value\": \"0.666731\"}, \"0.147554\": {\"frequency\": 1, \"value\": \"0.147554\"}, \"0.480775\": {\"frequency\": 1, \"value\": \"0.480775\"}, \"0.339657\": {\"frequency\": 1, \"value\": \"0.339657\"}, \"0.414495\": {\"frequency\": 1, \"value\": \"0.414495\"}, \"0.284891\": {\"frequency\": 1, \"value\": \"0.284891\"}, \"0.566849\": {\"frequency\": 3, \"value\": \"0.566849\"}, \"0.563839\": {\"frequency\": 1, \"value\": \"0.563839\"}, \"0.242977\": {\"frequency\": 1, \"value\": \"0.242977\"}, \"0.429782\": {\"frequency\": 1, \"value\": \"0.429782\"}, \"0.528631\": {\"frequency\": 1, \"value\": \"0.528631\"}, \"0.36763\": {\"frequency\": 1, \"value\": \"0.36763\"}, \"0.404162\": {\"frequency\": 1, \"value\": \"0.404162\"}, \"0.398354\": {\"frequency\": 1, \"value\": \"0.398354\"}, \"0.556623\": {\"frequency\": 1, \"value\": \"0.556623\"}, \"0.234083\": {\"frequency\": 1, \"value\": \"0.234083\"}, \"0.261487\": {\"frequency\": 1, \"value\": \"0.261487\"}, \"0.442447\": {\"frequency\": 1, \"value\": \"0.442447\"}, \"0.609001\": {\"frequency\": 1, \"value\": \"0.609001\"}, \"0.603825\": {\"frequency\": 1, \"value\": \"0.603825\"}, \"0.479262\": {\"frequency\": 1, \"value\": \"0.479262\"}, \"0.385773\": {\"frequency\": 1, \"value\": \"0.385773\"}, \"0.776707\": {\"frequency\": 1, \"value\": \"0.776707\"}, \"0.457131\": {\"frequency\": 1, \"value\": \"0.457131\"}, \"0.715314\": {\"frequency\": 1, \"value\": \"0.715314\"}, \"0.580479\": {\"frequency\": 1, \"value\": \"0.580479\"}, \"0.583263\": {\"frequency\": 1, \"value\": \"0.583263\"}, \"0.467554\": {\"frequency\": 1, \"value\": \"0.467554\"}, \"0.269464\": {\"frequency\": 1, \"value\": \"0.269464\"}, \"0.499189\": {\"frequency\": 1, \"value\": \"0.499189\"}, \"0.78883\": {\"frequency\": 1, \"value\": \"0.78883\"}, \"0.451834\": {\"frequency\": 1, \"value\": \"0.451834\"}, \"0.527999\": {\"frequency\": 1, \"value\": \"0.527999\"}, \"0.563909\": {\"frequency\": 1, \"value\": \"0.563909\"}, \"0.523762\": {\"frequency\": 1, \"value\": \"0.523762\"}, \"0.553206\": {\"frequency\": 1, \"value\": \"0.553206\"}, \"0.479288\": {\"frequency\": 1, \"value\": \"0.479288\"}, \"0.49555\": {\"frequency\": 1, \"value\": \"0.49555\"}, \"0.322936\": {\"frequency\": 1, \"value\": \"0.322936\"}, \"0.361837\": {\"frequency\": 1, \"value\": \"0.361837\"}, \"0.524751\": {\"frequency\": 1, \"value\": \"0.524751\"}, \"0.464751\": {\"frequency\": 1, \"value\": \"0.464751\"}, \"0.48524\": {\"frequency\": 1, \"value\": \"0.48524\"}, \"0.415033\": {\"frequency\": 1, \"value\": \"0.415033\"}, \"0.745467\": {\"frequency\": 1, \"value\": \"0.745467\"}, \"0.196378\": {\"frequency\": 1, \"value\": \"0.196378\"}, \"0.365805\": {\"frequency\": 1, \"value\": \"0.365805\"}, \"0.364539\": {\"frequency\": 2, \"value\": \"0.364539\"}, \"0.345135\": {\"frequency\": 1, \"value\": \"0.345135\"}, \"0.42963\": {\"frequency\": 1, \"value\": \"0.42963\"}, \"0.463571\": {\"frequency\": 1, \"value\": \"0.463571\"}, \"0.609647\": {\"frequency\": 1, \"value\": \"0.609647\"}, \"0.205769\": {\"frequency\": 1, \"value\": \"0.205769\"}, \"0.337268\": {\"frequency\": 1, \"value\": \"0.337268\"}, \"0.405346\": {\"frequency\": 1, \"value\": \"0.405346\"}, \"0.724171\": {\"frequency\": 1, \"value\": \"0.724171\"}, \"0.488581\": {\"frequency\": 1, \"value\": \"0.488581\"}, \"0.41468\": {\"frequency\": 1, \"value\": \"0.41468\"}, \"0.137481\": {\"frequency\": 1, \"value\": \"0.137481\"}, \"0.111256\": {\"frequency\": 1, \"value\": \"0.111256\"}, \"0.359094\": {\"frequency\": 1, \"value\": \"0.359094\"}, \"0.768503\": {\"frequency\": 1, \"value\": \"0.768503\"}, \"0.380729\": {\"frequency\": 1, \"value\": \"0.380729\"}, \"0.280791\": {\"frequency\": 1, \"value\": \"0.280791\"}, \"0.531277\": {\"frequency\": 1, \"value\": \"0.531277\"}, \"0.41284\": {\"frequency\": 1, \"value\": \"0.41284\"}, \"0.315718\": {\"frequency\": 1, \"value\": \"0.315718\"}, \"0.384839\": {\"frequency\": 1, \"value\": \"0.384839\"}, \"0.623845\": {\"frequency\": 1, \"value\": \"0.623845\"}, \"0.379982\": {\"frequency\": 1, \"value\": \"0.379982\"}, \"0.485433\": {\"frequency\": 1, \"value\": \"0.485433\"}, \"0.394577\": {\"frequency\": 1, \"value\": \"0.394577\"}, \"0.487501\": {\"frequency\": 1, \"value\": \"0.487501\"}, \"0.274222\": {\"frequency\": 1, \"value\": \"0.274222\"}, \"0.606421\": {\"frequency\": 1, \"value\": \"0.606421\"}, \"0.273907\": {\"frequency\": 1, \"value\": \"0.273907\"}, \"0.433353\": {\"frequency\": 1, \"value\": \"0.433353\"}, \"0.566333\": {\"frequency\": 1, \"value\": \"0.566333\"}, \"0.379042\": {\"frequency\": 1, \"value\": \"0.379042\"}, \"0.274336\": {\"frequency\": 1, \"value\": \"0.274336\"}, \"0.202682\": {\"frequency\": 1, \"value\": \"0.202682\"}, \"0.310229\": {\"frequency\": 1, \"value\": \"0.310229\"}, \"0.3181\": {\"frequency\": 1, \"value\": \"0.3181\"}, \"0.556835\": {\"frequency\": 1, \"value\": \"0.556835\"}, \"0.366844\": {\"frequency\": 1, \"value\": \"0.366844\"}, \"0.392247\": {\"frequency\": 1, \"value\": \"0.392247\"}, \"0.229034\": {\"frequency\": 1, \"value\": \"0.229034\"}, \"0.491294\": {\"frequency\": 1, \"value\": \"0.491294\"}, \"0.552804\": {\"frequency\": 1, \"value\": \"0.552804\"}, \"0.492983\": {\"frequency\": 1, \"value\": \"0.492983\"}, \"0.627823\": {\"frequency\": 1, \"value\": \"0.627823\"}, \"0.558476\": {\"frequency\": 1, \"value\": \"0.558476\"}, \"0.480428\": {\"frequency\": 1, \"value\": \"0.480428\"}, \"0.315281\": {\"frequency\": 1, \"value\": \"0.315281\"}, \"0.521145\": {\"frequency\": 1, \"value\": \"0.521145\"}, \"0.611511\": {\"frequency\": 1, \"value\": \"0.611511\"}, \"0.0380566\": {\"frequency\": 1, \"value\": \"0.0380566\"}, \"0.384919\": {\"frequency\": 1, \"value\": \"0.384919\"}, \"0.324717\": {\"frequency\": 1, \"value\": \"0.324717\"}, \"0.292943\": {\"frequency\": 1, \"value\": \"0.292943\"}, \"0.474173\": {\"frequency\": 1, \"value\": \"0.474173\"}, \"0.721034\": {\"frequency\": 1, \"value\": \"0.721034\"}, \"0.401062\": {\"frequency\": 1, \"value\": \"0.401062\"}, \"0.501145\": {\"frequency\": 1, \"value\": \"0.501145\"}, \"0.270589\": {\"frequency\": 1, \"value\": \"0.270589\"}, \"0.209695\": {\"frequency\": 1, \"value\": \"0.209695\"}, \"0.388662\": {\"frequency\": 1, \"value\": \"0.388662\"}, \"0.500494\": {\"frequency\": 1, \"value\": \"0.500494\"}, \"0.31374\": {\"frequency\": 1, \"value\": \"0.31374\"}, \"0.451983\": {\"frequency\": 1, \"value\": \"0.451983\"}, \"0.388664\": {\"frequency\": 1, \"value\": \"0.388664\"}, \"0.259367\": {\"frequency\": 1, \"value\": \"0.259367\"}, \"0.422373\": {\"frequency\": 1, \"value\": \"0.422373\"}, \"0.487348\": {\"frequency\": 3, \"value\": \"0.487348\"}, \"0.412563\": {\"frequency\": 1, \"value\": \"0.412563\"}, \"0.232549\": {\"frequency\": 1, \"value\": \"0.232549\"}, \"0.630192\": {\"frequency\": 1, \"value\": \"0.630192\"}, \"0.530288\": {\"frequency\": 1, \"value\": \"0.530288\"}, \"0.465509\": {\"frequency\": 1, \"value\": \"0.465509\"}, \"0.387487\": {\"frequency\": 1, \"value\": \"0.387487\"}, \"0.176701\": {\"frequency\": 1, \"value\": \"0.176701\"}, \"0.360305\": {\"frequency\": 1, \"value\": \"0.360305\"}, \"0.560472\": {\"frequency\": 1, \"value\": \"0.560472\"}, \"0.540149\": {\"frequency\": 1, \"value\": \"0.540149\"}, \"0.246264\": {\"frequency\": 1, \"value\": \"0.246264\"}, \"0.494009\": {\"frequency\": 1, \"value\": \"0.494009\"}, \"0.37324\": {\"frequency\": 1, \"value\": \"0.37324\"}, \"0.516773\": {\"frequency\": 1, \"value\": \"0.516773\"}, \"0.403589\": {\"frequency\": 1, \"value\": \"0.403589\"}, \"0.49664\": {\"frequency\": 1, \"value\": \"0.49664\"}, \"0.33378\": {\"frequency\": 1, \"value\": \"0.33378\"}, \"0.198268\": {\"frequency\": 1, \"value\": \"0.198268\"}, \"0.229769\": {\"frequency\": 1, \"value\": \"0.229769\"}, \"0.0577358\": {\"frequency\": 1, \"value\": \"0.0577358\"}, \"0.39183\": {\"frequency\": 1, \"value\": \"0.39183\"}, \"0.39185\": {\"frequency\": 1, \"value\": \"0.39185\"}, \"0.588756\": {\"frequency\": 1, \"value\": \"0.588756\"}, \"0.246447\": {\"frequency\": 1, \"value\": \"0.246447\"}, \"0.573157\": {\"frequency\": 1, \"value\": \"0.573157\"}, \"0.407127\": {\"frequency\": 1, \"value\": \"0.407127\"}, \"0.406283\": {\"frequency\": 1, \"value\": \"0.406283\"}, \"0.285947\": {\"frequency\": 1, \"value\": \"0.285947\"}, \"0.679745\": {\"frequency\": 1, \"value\": \"0.679745\"}, \"0.43146\": {\"frequency\": 1, \"value\": \"0.43146\"}, \"0.669432\": {\"frequency\": 1, \"value\": \"0.669432\"}, \"0.388404\": {\"frequency\": 1, \"value\": \"0.388404\"}, \"0.404345\": {\"frequency\": 1, \"value\": \"0.404345\"}, \"0.18926\": {\"frequency\": 1, \"value\": \"0.18926\"}, \"0.425278\": {\"frequency\": 1, \"value\": \"0.425278\"}, \"0.334324\": {\"frequency\": 1, \"value\": \"0.334324\"}, \"0.404618\": {\"frequency\": 1, \"value\": \"0.404618\"}, \"0.563331\": {\"frequency\": 1, \"value\": \"0.563331\"}, \"0.429978\": {\"frequency\": 1, \"value\": \"0.429978\"}, \"0.279168\": {\"frequency\": 1, \"value\": \"0.279168\"}, \"0.370003\": {\"frequency\": 1, \"value\": \"0.370003\"}, \"0.228147\": {\"frequency\": 1, \"value\": \"0.228147\"}, \"0.511868\": {\"frequency\": 1, \"value\": \"0.511868\"}, \"0.216287\": {\"frequency\": 1, \"value\": \"0.216287\"}, \"0.598633\": {\"frequency\": 1, \"value\": \"0.598633\"}, \"0.450475\": {\"frequency\": 1, \"value\": \"0.450475\"}, \"0.279164\": {\"frequency\": 1, \"value\": \"0.279164\"}, \"0.306182\": {\"frequency\": 1, \"value\": \"0.306182\"}, \"0.51802\": {\"frequency\": 1, \"value\": \"0.51802\"}, \"0.477247\": {\"frequency\": 1, \"value\": \"0.477247\"}, \"0.38586\": {\"frequency\": 1, \"value\": \"0.38586\"}, \"0.257066\": {\"frequency\": 1, \"value\": \"0.257066\"}, \"0.477459\": {\"frequency\": 1, \"value\": \"0.477459\"}, \"0.580157\": {\"frequency\": 3, \"value\": \"0.580157\"}, \"0.641577\": {\"frequency\": 1, \"value\": \"0.641577\"}, \"0.351939\": {\"frequency\": 1, \"value\": \"0.351939\"}, \"0.59057\": {\"frequency\": 1, \"value\": \"0.59057\"}, \"0.308129\": {\"frequency\": 1, \"value\": \"0.308129\"}, \"0.263243\": {\"frequency\": 1, \"value\": \"0.263243\"}, \"0.70443\": {\"frequency\": 1, \"value\": \"0.70443\"}, \"0.462042\": {\"frequency\": 1, \"value\": \"0.462042\"}, \"0.412273\": {\"frequency\": 1, \"value\": \"0.412273\"}, \"0.215207\": {\"frequency\": 1, \"value\": \"0.215207\"}, \"0.471613\": {\"frequency\": 1, \"value\": \"0.471613\"}, \"0.461333\": {\"frequency\": 1, \"value\": \"0.461333\"}, \"0.278183\": {\"frequency\": 1, \"value\": \"0.278183\"}, \"0.470215\": {\"frequency\": 1, \"value\": \"0.470215\"}, \"0.421008\": {\"frequency\": 1, \"value\": \"0.421008\"}, \"0.269865\": {\"frequency\": 1, \"value\": \"0.269865\"}, \"0.330238\": {\"frequency\": 1, \"value\": \"0.330238\"}, \"0.194352\": {\"frequency\": 1, \"value\": \"0.194352\"}, \"0.371616\": {\"frequency\": 1, \"value\": \"0.371616\"}, \"0.383007\": {\"frequency\": 1, \"value\": \"0.383007\"}, \"0.407511\": {\"frequency\": 1, \"value\": \"0.407511\"}, \"0.379605\": {\"frequency\": 1, \"value\": \"0.379605\"}, \"0.434766\": {\"frequency\": 1, \"value\": \"0.434766\"}, \"0.365329\": {\"frequency\": 1, \"value\": \"0.365329\"}, \"0.244938\": {\"frequency\": 1, \"value\": \"0.244938\"}, \"0.149056\": {\"frequency\": 1, \"value\": \"0.149056\"}, \"0.598835\": {\"frequency\": 1, \"value\": \"0.598835\"}, \"0.10922\": {\"frequency\": 1, \"value\": \"0.10922\"}, \"0.625186\": {\"frequency\": 1, \"value\": \"0.625186\"}, \"0.454453\": {\"frequency\": 1, \"value\": \"0.454453\"}, \"0.403599\": {\"frequency\": 1, \"value\": \"0.403599\"}, \"0.544134\": {\"frequency\": 1, \"value\": \"0.544134\"}, \"0.852103\": {\"frequency\": 1, \"value\": \"0.852103\"}, \"0.549774\": {\"frequency\": 1, \"value\": \"0.549774\"}, \"0.639248\": {\"frequency\": 1, \"value\": \"0.639248\"}, \"0.451551\": {\"frequency\": 1, \"value\": \"0.451551\"}, \"0.403029\": {\"frequency\": 1, \"value\": \"0.403029\"}, \"0.390614\": {\"frequency\": 1, \"value\": \"0.390614\"}, \"0.368144\": {\"frequency\": 1, \"value\": \"0.368144\"}, \"0.167623\": {\"frequency\": 1, \"value\": \"0.167623\"}, \"0.389758\": {\"frequency\": 1, \"value\": \"0.389758\"}, \"0.398424\": {\"frequency\": 1, \"value\": \"0.398424\"}, \"0.34313\": {\"frequency\": 1, \"value\": \"0.34313\"}, \"0.310238\": {\"frequency\": 1, \"value\": \"0.310238\"}, \"0.235667\": {\"frequency\": 1, \"value\": \"0.235667\"}, \"0.359411\": {\"frequency\": 1, \"value\": \"0.359411\"}, \"0.370479\": {\"frequency\": 1, \"value\": \"0.370479\"}, \"0.566927\": {\"frequency\": 1, \"value\": \"0.566927\"}, \"0.362424\": {\"frequency\": 1, \"value\": \"0.362424\"}, \"0.434319\": {\"frequency\": 1, \"value\": \"0.434319\"}, \"0.24837\": {\"frequency\": 1, \"value\": \"0.24837\"}, \"0.60264\": {\"frequency\": 1, \"value\": \"0.60264\"}, \"0.291613\": {\"frequency\": 1, \"value\": \"0.291613\"}, \"0.425491\": {\"frequency\": 1, \"value\": \"0.425491\"}, \"0.430103\": {\"frequency\": 1, \"value\": \"0.430103\"}, \"0.448411\": {\"frequency\": 1, \"value\": \"0.448411\"}, \"0.456693\": {\"frequency\": 1, \"value\": \"0.456693\"}, \"0.163367\": {\"frequency\": 1, \"value\": \"0.163367\"}, \"0.309037\": {\"frequency\": 1, \"value\": \"0.309037\"}, \"0.20046\": {\"frequency\": 1, \"value\": \"0.20046\"}, \"0.278687\": {\"frequency\": 1, \"value\": \"0.278687\"}, \"0.456505\": {\"frequency\": 1, \"value\": \"0.456505\"}, \"0.604876\": {\"frequency\": 1, \"value\": \"0.604876\"}, \"0.329134\": {\"frequency\": 1, \"value\": \"0.329134\"}, \"0.564116\": {\"frequency\": 1, \"value\": \"0.564116\"}, \"0.477865\": {\"frequency\": 1, \"value\": \"0.477865\"}, \"0.309055\": {\"frequency\": 1, \"value\": \"0.309055\"}, \"0.719696\": {\"frequency\": 1, \"value\": \"0.719696\"}, \"0.248845\": {\"frequency\": 1, \"value\": \"0.248845\"}, \"0.476596\": {\"frequency\": 1, \"value\": \"0.476596\"}, \"0.423542\": {\"frequency\": 1, \"value\": \"0.423542\"}, \"0.224661\": {\"frequency\": 1, \"value\": \"0.224661\"}, \"0.411729\": {\"frequency\": 1, \"value\": \"0.411729\"}, \"0.351545\": {\"frequency\": 1, \"value\": \"0.351545\"}, \"0.413574\": {\"frequency\": 1, \"value\": \"0.413574\"}, \"0.443289\": {\"frequency\": 1, \"value\": \"0.443289\"}, \"0.399833\": {\"frequency\": 1, \"value\": \"0.399833\"}, \"0.391435\": {\"frequency\": 1, \"value\": \"0.391435\"}, \"0.412886\": {\"frequency\": 1, \"value\": \"0.412886\"}, \"0.108881\": {\"frequency\": 1, \"value\": \"0.108881\"}, \"0.380208\": {\"frequency\": 1, \"value\": \"0.380208\"}, \"0.655924\": {\"frequency\": 1, \"value\": \"0.655924\"}, \"0.471033\": {\"frequency\": 1, \"value\": \"0.471033\"}, \"0.506653\": {\"frequency\": 1, \"value\": \"0.506653\"}, \"0.357729\": {\"frequency\": 1, \"value\": \"0.357729\"}, \"0.413378\": {\"frequency\": 1, \"value\": \"0.413378\"}, \"0.522004\": {\"frequency\": 1, \"value\": \"0.522004\"}, \"0.645508\": {\"frequency\": 1, \"value\": \"0.645508\"}, \"0.313489\": {\"frequency\": 1, \"value\": \"0.313489\"}, \"0.233553\": {\"frequency\": 1, \"value\": \"0.233553\"}, \"0.608848\": {\"frequency\": 1, \"value\": \"0.608848\"}, \"0.447327\": {\"frequency\": 1, \"value\": \"0.447327\"}, \"0.443355\": {\"frequency\": 1, \"value\": \"0.443355\"}, \"0.431074\": {\"frequency\": 1, \"value\": \"0.431074\"}, \"0.650783\": {\"frequency\": 1, \"value\": \"0.650783\"}, \"0.418494\": {\"frequency\": 1, \"value\": \"0.418494\"}, \"0.562358\": {\"frequency\": 1, \"value\": \"0.562358\"}, \"0.401073\": {\"frequency\": 1, \"value\": \"0.401073\"}, \"0.167868\": {\"frequency\": 1, \"value\": \"0.167868\"}, \"0.645531\": {\"frequency\": 1, \"value\": \"0.645531\"}, \"0.693039\": {\"frequency\": 1, \"value\": \"0.693039\"}, \"0.301249\": {\"frequency\": 1, \"value\": \"0.301249\"}, \"0.363095\": {\"frequency\": 1, \"value\": \"0.363095\"}, \"0.484232\": {\"frequency\": 1, \"value\": \"0.484232\"}, \"0.286007\": {\"frequency\": 1, \"value\": \"0.286007\"}, \"0.312706\": {\"frequency\": 1, \"value\": \"0.312706\"}, \"0.238161\": {\"frequency\": 1, \"value\": \"0.238161\"}, \"0.36959\": {\"frequency\": 1, \"value\": \"0.36959\"}, \"0.400957\": {\"frequency\": 1, \"value\": \"0.400957\"}, \"0.543546\": {\"frequency\": 1, \"value\": \"0.543546\"}, \"0.351098\": {\"frequency\": 1, \"value\": \"0.351098\"}, \"0.248201\": {\"frequency\": 1, \"value\": \"0.248201\"}, \"0.394774\": {\"frequency\": 1, \"value\": \"0.394774\"}, \"0.361954\": {\"frequency\": 1, \"value\": \"0.361954\"}, \"0.578565\": {\"frequency\": 1, \"value\": \"0.578565\"}, \"0.322051\": {\"frequency\": 1, \"value\": \"0.322051\"}, \"0.758802\": {\"frequency\": 1, \"value\": \"0.758802\"}, \"0.476441\": {\"frequency\": 1, \"value\": \"0.476441\"}, \"0.471325\": {\"frequency\": 1, \"value\": \"0.471325\"}, \"0.183592\": {\"frequency\": 1, \"value\": \"0.183592\"}, \"0.286952\": {\"frequency\": 1, \"value\": \"0.286952\"}, \"0.650336\": {\"frequency\": 1, \"value\": \"0.650336\"}, \"0.387815\": {\"frequency\": 1, \"value\": \"0.387815\"}, \"0.165201\": {\"frequency\": 1, \"value\": \"0.165201\"}, \"0.492971\": {\"frequency\": 1, \"value\": \"0.492971\"}, \"0.472103\": {\"frequency\": 2, \"value\": \"0.472103\"}, \"0.551105\": {\"frequency\": 1, \"value\": \"0.551105\"}, \"0.110202\": {\"frequency\": 1, \"value\": \"0.110202\"}, \"0.136581\": {\"frequency\": 1, \"value\": \"0.136581\"}, \"0.157655\": {\"frequency\": 1, \"value\": \"0.157655\"}, \"0.377877\": {\"frequency\": 1, \"value\": \"0.377877\"}, \"0.199928\": {\"frequency\": 1, \"value\": \"0.199928\"}, \"0.296802\": {\"frequency\": 1, \"value\": \"0.296802\"}, \"0.322139\": {\"frequency\": 1, \"value\": \"0.322139\"}, \"0.460927\": {\"frequency\": 1, \"value\": \"0.460927\"}, \"0.449439\": {\"frequency\": 1, \"value\": \"0.449439\"}, \"0.351368\": {\"frequency\": 1, \"value\": \"0.351368\"}, \"0.493624\": {\"frequency\": 1, \"value\": \"0.493624\"}, \"0.397152\": {\"frequency\": 1, \"value\": \"0.397152\"}, \"0.425502\": {\"frequency\": 1, \"value\": \"0.425502\"}, \"0.866318\": {\"frequency\": 1, \"value\": \"0.866318\"}, \"0.491476\": {\"frequency\": 1, \"value\": \"0.491476\"}, \"0.603878\": {\"frequency\": 1, \"value\": \"0.603878\"}, \"0.645473\": {\"frequency\": 1, \"value\": \"0.645473\"}, \"0.658301\": {\"frequency\": 1, \"value\": \"0.658301\"}, \"0.0245854\": {\"frequency\": 1, \"value\": \"0.0245854\"}, \"0.31299\": {\"frequency\": 1, \"value\": \"0.31299\"}, \"0.496986\": {\"frequency\": 1, \"value\": \"0.496986\"}, \"0.311341\": {\"frequency\": 2, \"value\": \"0.311341\"}, \"0.73498\": {\"frequency\": 1, \"value\": \"0.73498\"}, \"0.556791\": {\"frequency\": 1, \"value\": \"0.556791\"}, \"0.197637\": {\"frequency\": 1, \"value\": \"0.197637\"}, \"0.591816\": {\"frequency\": 1, \"value\": \"0.591816\"}, \"0.297161\": {\"frequency\": 1, \"value\": \"0.297161\"}, \"0.365263\": {\"frequency\": 1, \"value\": \"0.365263\"}, \"0.42955\": {\"frequency\": 1, \"value\": \"0.42955\"}, \"0.427421\": {\"frequency\": 1, \"value\": \"0.427421\"}, \"0.446546\": {\"frequency\": 1, \"value\": \"0.446546\"}, \"0.65624\": {\"frequency\": 1, \"value\": \"0.65624\"}, \"0.207466\": {\"frequency\": 1, \"value\": \"0.207466\"}, \"0.529469\": {\"frequency\": 1, \"value\": \"0.529469\"}, \"0.211402\": {\"frequency\": 1, \"value\": \"0.211402\"}, \"0.35996\": {\"frequency\": 1, \"value\": \"0.35996\"}, \"0.681711\": {\"frequency\": 1, \"value\": \"0.681711\"}, \"0.335884\": {\"frequency\": 1, \"value\": \"0.335884\"}, \"0.32295\": {\"frequency\": 1, \"value\": \"0.32295\"}, \"0.280306\": {\"frequency\": 1, \"value\": \"0.280306\"}, \"0.681248\": {\"frequency\": 1, \"value\": \"0.681248\"}, \"0.305504\": {\"frequency\": 1, \"value\": \"0.305504\"}, \"0.261584\": {\"frequency\": 1, \"value\": \"0.261584\"}, \"0.646261\": {\"frequency\": 1, \"value\": \"0.646261\"}, \"0.375616\": {\"frequency\": 1, \"value\": \"0.375616\"}, \"0.497906\": {\"frequency\": 1, \"value\": \"0.497906\"}, \"0.462691\": {\"frequency\": 1, \"value\": \"0.462691\"}, \"0.306213\": {\"frequency\": 1, \"value\": \"0.306213\"}, \"0.627583\": {\"frequency\": 1, \"value\": \"0.627583\"}, \"0.376926\": {\"frequency\": 1, \"value\": \"0.376926\"}, \"0.571417\": {\"frequency\": 1, \"value\": \"0.571417\"}, \"0.52404\": {\"frequency\": 1, \"value\": \"0.52404\"}, \"0.618111\": {\"frequency\": 1, \"value\": \"0.618111\"}, \"0.686755\": {\"frequency\": 1, \"value\": \"0.686755\"}, \"0.809764\": {\"frequency\": 1, \"value\": \"0.809764\"}, \"0.393077\": {\"frequency\": 1, \"value\": \"0.393077\"}, \"0.480505\": {\"frequency\": 1, \"value\": \"0.480505\"}, \"0.250518\": {\"frequency\": 1, \"value\": \"0.250518\"}, \"0.571548\": {\"frequency\": 1, \"value\": \"0.571548\"}, \"0.15358\": {\"frequency\": 1, \"value\": \"0.15358\"}, \"0.576917\": {\"frequency\": 1, \"value\": \"0.576917\"}, \"0.189539\": {\"frequency\": 1, \"value\": \"0.189539\"}, \"0.468182\": {\"frequency\": 1, \"value\": \"0.468182\"}, \"0.41454\": {\"frequency\": 1, \"value\": \"0.41454\"}, \"0.200094\": {\"frequency\": 1, \"value\": \"0.200094\"}, \"0.397065\": {\"frequency\": 1, \"value\": \"0.397065\"}, \"0.504278\": {\"frequency\": 1, \"value\": \"0.504278\"}, \"0.457275\": {\"frequency\": 1, \"value\": \"0.457275\"}, \"0.31648\": {\"frequency\": 1, \"value\": \"0.31648\"}, \"0.458772\": {\"frequency\": 1, \"value\": \"0.458772\"}, \"0.370277\": {\"frequency\": 1, \"value\": \"0.370277\"}, \"0.441721\": {\"frequency\": 1, \"value\": \"0.441721\"}, \"0.394048\": {\"frequency\": 1, \"value\": \"0.394048\"}, \"0.494582\": {\"frequency\": 1, \"value\": \"0.494582\"}, \"0.149938\": {\"frequency\": 1, \"value\": \"0.149938\"}, \"0.550274\": {\"frequency\": 1, \"value\": \"0.550274\"}, \"0.341048\": {\"frequency\": 1, \"value\": \"0.341048\"}, \"0.446963\": {\"frequency\": 1, \"value\": \"0.446963\"}, \"0.311634\": {\"frequency\": 1, \"value\": \"0.311634\"}, \"0.360226\": {\"frequency\": 1, \"value\": \"0.360226\"}, \"0.298934\": {\"frequency\": 1, \"value\": \"0.298934\"}, \"0.73366\": {\"frequency\": 1, \"value\": \"0.73366\"}, \"0.486686\": {\"frequency\": 1, \"value\": \"0.486686\"}, \"0.764914\": {\"frequency\": 1, \"value\": \"0.764914\"}, \"0.289107\": {\"frequency\": 1, \"value\": \"0.289107\"}, \"0.364252\": {\"frequency\": 1, \"value\": \"0.364252\"}, \"0.457897\": {\"frequency\": 1, \"value\": \"0.457897\"}, \"0.322822\": {\"frequency\": 1, \"value\": \"0.322822\"}, \"0.298445\": {\"frequency\": 1, \"value\": \"0.298445\"}, \"0.382234\": {\"frequency\": 1, \"value\": \"0.382234\"}, \"0.406902\": {\"frequency\": 1, \"value\": \"0.406902\"}, \"0.431575\": {\"frequency\": 1, \"value\": \"0.431575\"}, \"0.321806\": {\"frequency\": 1, \"value\": \"0.321806\"}, \"0.374589\": {\"frequency\": 1, \"value\": \"0.374589\"}, \"0.4988\": {\"frequency\": 1, \"value\": \"0.4988\"}, \"0.455773\": {\"frequency\": 1, \"value\": \"0.455773\"}, \"0.358599\": {\"frequency\": 1, \"value\": \"0.358599\"}, \"0.351257\": {\"frequency\": 1, \"value\": \"0.351257\"}, \"0.382018\": {\"frequency\": 1, \"value\": \"0.382018\"}, \"0.417702\": {\"frequency\": 1, \"value\": \"0.417702\"}, \"0.64807\": {\"frequency\": 1, \"value\": \"0.64807\"}, \"0.323476\": {\"frequency\": 1, \"value\": \"0.323476\"}, \"0.454878\": {\"frequency\": 1, \"value\": \"0.454878\"}, \"0.0646169\": {\"frequency\": 1, \"value\": \"0.0646169\"}, \"0.521269\": {\"frequency\": 1, \"value\": \"0.521269\"}, \"0.230169\": {\"frequency\": 1, \"value\": \"0.230169\"}, \"0.634748\": {\"frequency\": 1, \"value\": \"0.634748\"}, \"0.733788\": {\"frequency\": 1, \"value\": \"0.733788\"}, \"0.561943\": {\"frequency\": 1, \"value\": \"0.561943\"}, \"0.363312\": {\"frequency\": 1, \"value\": \"0.363312\"}, \"0.466219\": {\"frequency\": 1, \"value\": \"0.466219\"}, \"0.362778\": {\"frequency\": 1, \"value\": \"0.362778\"}, \"0.693089\": {\"frequency\": 1, \"value\": \"0.693089\"}, \"0.378946\": {\"frequency\": 1, \"value\": \"0.378946\"}, \"0.372776\": {\"frequency\": 1, \"value\": \"0.372776\"}, \"0.455653\": {\"frequency\": 1, \"value\": \"0.455653\"}, \"0.534268\": {\"frequency\": 1, \"value\": \"0.534268\"}, \"0.372261\": {\"frequency\": 1, \"value\": \"0.372261\"}, \"0.495181\": {\"frequency\": 1, \"value\": \"0.495181\"}, \"0.371276\": {\"frequency\": 1, \"value\": \"0.371276\"}, \"0.353354\": {\"frequency\": 1, \"value\": \"0.353354\"}, \"0.446479\": {\"frequency\": 1, \"value\": \"0.446479\"}, \"0.363954\": {\"frequency\": 1, \"value\": \"0.363954\"}, \"0.356212\": {\"frequency\": 1, \"value\": \"0.356212\"}, \"0.295899\": {\"frequency\": 1, \"value\": \"0.295899\"}, \"0.411125\": {\"frequency\": 1, \"value\": \"0.411125\"}, \"0.565891\": {\"frequency\": 1, \"value\": \"0.565891\"}, \"0.421545\": {\"frequency\": 1, \"value\": \"0.421545\"}, \"0.767786\": {\"frequency\": 1, \"value\": \"0.767786\"}, \"0.426268\": {\"frequency\": 1, \"value\": \"0.426268\"}, \"0.606827\": {\"frequency\": 1, \"value\": \"0.606827\"}, \"0.476278\": {\"frequency\": 1, \"value\": \"0.476278\"}, \"0.420145\": {\"frequency\": 1, \"value\": \"0.420145\"}, \"0.495611\": {\"frequency\": 1, \"value\": \"0.495611\"}, \"0.541404\": {\"frequency\": 1, \"value\": \"0.541404\"}, \"0.533238\": {\"frequency\": 1, \"value\": \"0.533238\"}, \"0.723292\": {\"frequency\": 1, \"value\": \"0.723292\"}, \"0.0806264\": {\"frequency\": 1, \"value\": \"0.0806264\"}, \"0.510033\": {\"frequency\": 1, \"value\": \"0.510033\"}, \"0.450178\": {\"frequency\": 1, \"value\": \"0.450178\"}, \"0.598192\": {\"frequency\": 1, \"value\": \"0.598192\"}, \"0.371514\": {\"frequency\": 1, \"value\": \"0.371514\"}, \"0.482326\": {\"frequency\": 1, \"value\": \"0.482326\"}, \"0.37663\": {\"frequency\": 1, \"value\": \"0.37663\"}, \"0.230882\": {\"frequency\": 1, \"value\": \"0.230882\"}, \"0.525011\": {\"frequency\": 1, \"value\": \"0.525011\"}, \"0.896743\": {\"frequency\": 1, \"value\": \"0.896743\"}, \"0.410385\": {\"frequency\": 1, \"value\": \"0.410385\"}, \"0.482329\": {\"frequency\": 1, \"value\": \"0.482329\"}, \"0.370015\": {\"frequency\": 1, \"value\": \"0.370015\"}, \"0.501687\": {\"frequency\": 1, \"value\": \"0.501687\"}, \"0.55252\": {\"frequency\": 1, \"value\": \"0.55252\"}, \"0.470999\": {\"frequency\": 1, \"value\": \"0.470999\"}, \"0.349695\": {\"frequency\": 1, \"value\": \"0.349695\"}, \"0.288822\": {\"frequency\": 1, \"value\": \"0.288822\"}, \"0.168168\": {\"frequency\": 1, \"value\": \"0.168168\"}, \"0.458797\": {\"frequency\": 1, \"value\": \"0.458797\"}, \"0.0923221\": {\"frequency\": 1, \"value\": \"0.0923221\"}, \"0.623848\": {\"frequency\": 1, \"value\": \"0.623848\"}, \"0.588611\": {\"frequency\": 1, \"value\": \"0.588611\"}, \"0.605919\": {\"frequency\": 1, \"value\": \"0.605919\"}, \"0.356356\": {\"frequency\": 1, \"value\": \"0.356356\"}, \"0.517634\": {\"frequency\": 1, \"value\": \"0.517634\"}, \"0.288274\": {\"frequency\": 1, \"value\": \"0.288274\"}, \"0.388553\": {\"frequency\": 1, \"value\": \"0.388553\"}, \"0.26818\": {\"frequency\": 1, \"value\": \"0.26818\"}, \"0.22582\": {\"frequency\": 1, \"value\": \"0.22582\"}, \"0.496692\": {\"frequency\": 1, \"value\": \"0.496692\"}, \"0.778516\": {\"frequency\": 1, \"value\": \"0.778516\"}, \"0.282116\": {\"frequency\": 3, \"value\": \"0.282116\"}, \"0.325053\": {\"frequency\": 1, \"value\": \"0.325053\"}, \"0.445597\": {\"frequency\": 1, \"value\": \"0.445597\"}, \"0.572856\": {\"frequency\": 1, \"value\": \"0.572856\"}, \"0.420162\": {\"frequency\": 1, \"value\": \"0.420162\"}, \"0.292347\": {\"frequency\": 1, \"value\": \"0.292347\"}, \"0.352522\": {\"frequency\": 1, \"value\": \"0.352522\"}, \"0.357735\": {\"frequency\": 1, \"value\": \"0.357735\"}, \"0.217014\": {\"frequency\": 1, \"value\": \"0.217014\"}, \"0.421962\": {\"frequency\": 1, \"value\": \"0.421962\"}, \"0.383017\": {\"frequency\": 1, \"value\": \"0.383017\"}, \"0.270772\": {\"frequency\": 1, \"value\": \"0.270772\"}, \"0.563252\": {\"frequency\": 1, \"value\": \"0.563252\"}, \"0.423407\": {\"frequency\": 1, \"value\": \"0.423407\"}, \"0.275093\": {\"frequency\": 1, \"value\": \"0.275093\"}, \"0.0777318\": {\"frequency\": 1, \"value\": \"0.0777318\"}, \"0.278965\": {\"frequency\": 1, \"value\": \"0.278965\"}, \"0.291595\": {\"frequency\": 1, \"value\": \"0.291595\"}, \"0.370704\": {\"frequency\": 1, \"value\": \"0.370704\"}, \"0.342989\": {\"frequency\": 1, \"value\": \"0.342989\"}, \"0.242654\": {\"frequency\": 1, \"value\": \"0.242654\"}, \"0.319569\": {\"frequency\": 1, \"value\": \"0.319569\"}, \"0.61058\": {\"frequency\": 1, \"value\": \"0.61058\"}, \"0.428997\": {\"frequency\": 1, \"value\": \"0.428997\"}, \"0.416475\": {\"frequency\": 1, \"value\": \"0.416475\"}, \"0.226463\": {\"frequency\": 1, \"value\": \"0.226463\"}, \"0.24738\": {\"frequency\": 1, \"value\": \"0.24738\"}, \"0.448676\": {\"frequency\": 1, \"value\": \"0.448676\"}, \"0.434764\": {\"frequency\": 1, \"value\": \"0.434764\"}, \"0.549187\": {\"frequency\": 1, \"value\": \"0.549187\"}, \"0.342767\": {\"frequency\": 1, \"value\": \"0.342767\"}, \"0.632934\": {\"frequency\": 1, \"value\": \"0.632934\"}, \"0.541571\": {\"frequency\": 1, \"value\": \"0.541571\"}, \"0.43563\": {\"frequency\": 1, \"value\": \"0.43563\"}, \"0.539372\": {\"frequency\": 1, \"value\": \"0.539372\"}, \"0.747439\": {\"frequency\": 1, \"value\": \"0.747439\"}, \"0.371944\": {\"frequency\": 1, \"value\": \"0.371944\"}, \"0.310266\": {\"frequency\": 1, \"value\": \"0.310266\"}, \"0.480988\": {\"frequency\": 1, \"value\": \"0.480988\"}, \"0.425641\": {\"frequency\": 1, \"value\": \"0.425641\"}, \"0.716125\": {\"frequency\": 1, \"value\": \"0.716125\"}, \"0.458643\": {\"frequency\": 1, \"value\": \"0.458643\"}, \"0.310683\": {\"frequency\": 1, \"value\": \"0.310683\"}, \"0.129795\": {\"frequency\": 1, \"value\": \"0.129795\"}, \"0.553208\": {\"frequency\": 1, \"value\": \"0.553208\"}, \"0.450354\": {\"frequency\": 1, \"value\": \"0.450354\"}, \"0.76077\": {\"frequency\": 1, \"value\": \"0.76077\"}, \"0.144076\": {\"frequency\": 1, \"value\": \"0.144076\"}, \"0.320904\": {\"frequency\": 1, \"value\": \"0.320904\"}, \"0.600562\": {\"frequency\": 1, \"value\": \"0.600562\"}, \"0.306537\": {\"frequency\": 1, \"value\": \"0.306537\"}, \"0.277564\": {\"frequency\": 1, \"value\": \"0.277564\"}, \"0.40724\": {\"frequency\": 1, \"value\": \"0.40724\"}, \"0.338111\": {\"frequency\": 1, \"value\": \"0.338111\"}, \"0.456512\": {\"frequency\": 1, \"value\": \"0.456512\"}, \"0.294412\": {\"frequency\": 1, \"value\": \"0.294412\"}, \"0.482692\": {\"frequency\": 1, \"value\": \"0.482692\"}, \"0.390396\": {\"frequency\": 1, \"value\": \"0.390396\"}, \"0.578992\": {\"frequency\": 1, \"value\": \"0.578992\"}, \"0.684848\": {\"frequency\": 1, \"value\": \"0.684848\"}, \"0.477873\": {\"frequency\": 1, \"value\": \"0.477873\"}, \"0.602635\": {\"frequency\": 1, \"value\": \"0.602635\"}, \"0.244799\": {\"frequency\": 1, \"value\": \"0.244799\"}, \"0.60878\": {\"frequency\": 1, \"value\": \"0.60878\"}, \"0.371194\": {\"frequency\": 1, \"value\": \"0.371194\"}, \"0.214431\": {\"frequency\": 1, \"value\": \"0.214431\"}, \"0.424609\": {\"frequency\": 1, \"value\": \"0.424609\"}, \"0.439189\": {\"frequency\": 1, \"value\": \"0.439189\"}, \"0.403163\": {\"frequency\": 1, \"value\": \"0.403163\"}, \"0.325129\": {\"frequency\": 1, \"value\": \"0.325129\"}, \"0.177257\": {\"frequency\": 1, \"value\": \"0.177257\"}, \"0.310306\": {\"frequency\": 1, \"value\": \"0.310306\"}, \"0.377049\": {\"frequency\": 1, \"value\": \"0.377049\"}, \"0.523564\": {\"frequency\": 1, \"value\": \"0.523564\"}, \"0.342968\": {\"frequency\": 1, \"value\": \"0.342968\"}, \"0.645515\": {\"frequency\": 1, \"value\": \"0.645515\"}, \"0.475013\": {\"frequency\": 1, \"value\": \"0.475013\"}, \"0.239275\": {\"frequency\": 1, \"value\": \"0.239275\"}, \"0.444458\": {\"frequency\": 1, \"value\": \"0.444458\"}, \"0.439217\": {\"frequency\": 1, \"value\": \"0.439217\"}, \"0.498199\": {\"frequency\": 1, \"value\": \"0.498199\"}, \"0.481009\": {\"frequency\": 1, \"value\": \"0.481009\"}, \"0.435564\": {\"frequency\": 1, \"value\": \"0.435564\"}, \"0.457065\": {\"frequency\": 1, \"value\": \"0.457065\"}, \"0.565368\": {\"frequency\": 1, \"value\": \"0.565368\"}, \"0.217632\": {\"frequency\": 1, \"value\": \"0.217632\"}, \"0.448772\": {\"frequency\": 1, \"value\": \"0.448772\"}, \"0.509311\": {\"frequency\": 1, \"value\": \"0.509311\"}, \"0.244743\": {\"frequency\": 1, \"value\": \"0.244743\"}, \"0.444641\": {\"frequency\": 1, \"value\": \"0.444641\"}, \"0.239848\": {\"frequency\": 1, \"value\": \"0.239848\"}, \"0.320035\": {\"frequency\": 1, \"value\": \"0.320035\"}, \"0.457657\": {\"frequency\": 1, \"value\": \"0.457657\"}}, \"size\": 3984}, \"green\": {\"std\": 0.1320961936390992, \"complete\": true, \"min\": 0.07098508134624938, \"max\": 0.9374815538194444, \"quantile\": [0.07098508134624938, 0.14185438796936758, 0.16762346540178572, 0.1844621163523889, 0.1981743006177008, 0.20936584594075755, 0.22261242241585105, 0.23301478794642858, 0.23984848484848484, 0.24621366854822738, 0.25095654740687934, 0.2643481719234901, 0.26938510802469134, 0.2742224333820721, 0.27902857985593643, 0.2850783275365617, 0.29172007252897203, 0.2958989037508952, 0.3008149372826627, 0.3054517225977908, 0.310893411574764, 0.31373997992892216, 0.31861292225534027, 0.32294991233682496, 0.3291105053800366, 0.33335859995039685, 0.3399443601196391, 0.3442712214356682, 0.34934106222750694, 0.35298503239063805, 0.35605975223546943, 0.35851975468196473, 0.36151047207446807, 0.36458201574900795, 0.3676218632332541, 0.3716155908978175, 0.37431407786191934, 0.3778773176193692, 0.3820183899176955, 0.3853827880825354, 0.38871618822891374, 0.3916704299132948, 0.39388616345430427, 0.39820928539426526, 0.4015214223710317, 0.4049403098609041, 0.4081566691505216, 0.41248672739118325, 0.4146802036761053, 0.41653653570013865, 0.4215641047631847, 0.4244681609623016, 0.4267680389965226, 0.4299038573966087, 0.4338484700520833, 0.4371753912071535, 0.44137326130154, 0.44378770206822776, 0.4469715011510677, 0.45032149057539683, 0.45367206790123454, 0.4579850502980626, 0.46116942875544986, 0.46439074441249056, 0.46733819607530946, 0.47121465773809523, 0.47401184609222624, 0.47659564393939396, 0.4795125171655455, 0.4824345858134921, 0.4846849387276764, 0.4883208209359949, 0.49200874006458023, 0.49388769870839544, 0.4986705678177287, 0.5035788763035863, 0.5075953221316365, 0.5124453590029762, 0.515629699686774, 0.5219999224565757, 0.5260218764796402, 0.5307092958271237, 0.5366726953389325, 0.5415649838549429, 0.5478815045951316, 0.55462586934923, 0.5638806733630952, 0.5699833094335504, 0.5777355877831071, 0.5853357419227856, 0.5945656212841854, 0.6026354477148534, 0.6110126357451425, 0.6240035742894957, 0.637275366368604, 0.6534573143003399, 0.6685760744636389, 0.6927039865871834, 0.7182990709940592, 0.7659998456790124, 0.9374815538194444], \"median\": 0.4215641047631847, \"numeric\": true, \"num_unique\": 1328, \"num_undefined\": 0, \"var\": 0.017449404373938392, \"progress\": 1.0, \"size\": 1328, \"frequent_items\": {\"0.3061089515686035\": {\"frequency\": 1, \"value\": 0.3061089515686035}, \"0.2262634636202924\": {\"frequency\": 1, \"value\": 0.2262634636202924}, \"0.6734542858811019\": {\"frequency\": 1, \"value\": 0.6734542858811019}, \"0.5442774310730253\": {\"frequency\": 1, \"value\": 0.5442774310730253}, \"0.6462605032917533\": {\"frequency\": 1, \"value\": 0.6462605032917533}, \"0.6062376543209876\": {\"frequency\": 1, \"value\": 0.6062376543209876}, \"0.6070051244081722\": {\"frequency\": 1, \"value\": 0.6070051244081722}, \"0.5395684302036761\": {\"frequency\": 1, \"value\": 0.5395684302036761}, \"0.454991582397838\": {\"frequency\": 1, \"value\": 0.454991582397838}, \"0.36958992890408243\": {\"frequency\": 1, \"value\": 0.36958992890408243}, \"0.35687888102334825\": {\"frequency\": 1, \"value\": 0.35687888102334825}, \"0.41047239816194736\": {\"frequency\": 1, \"value\": 0.41047239816194736}, \"0.41849358966385386\": {\"frequency\": 1, \"value\": 0.41849358966385386}, \"0.4895770609457345\": {\"frequency\": 1, \"value\": 0.4895770609457345}, \"0.4566289992559524\": {\"frequency\": 1, \"value\": 0.4566289992559524}, \"0.4244681609623016\": {\"frequency\": 1, \"value\": 0.4244681609623016}, \"0.5491869598765432\": {\"frequency\": 1, \"value\": 0.5491869598765432}, \"0.20259035022354693\": {\"frequency\": 1, \"value\": 0.20259035022354693}, \"0.35295911772586536\": {\"frequency\": 1, \"value\": 0.35295911772586536}, \"0.5137746505940771\": {\"frequency\": 1, \"value\": 0.5137746505940771}, \"0.5227773379284649\": {\"frequency\": 1, \"value\": 0.5227773379284649}, \"0.4459642982858037\": {\"frequency\": 1, \"value\": 0.4459642982858037}, \"0.38072908925386445\": {\"frequency\": 1, \"value\": 0.38072908925386445}, \"0.39297616663515506\": {\"frequency\": 1, \"value\": 0.39297616663515506}, \"0.4117109879533035\": {\"frequency\": 1, \"value\": 0.4117109879533035}, \"0.4359676951896668\": {\"frequency\": 1, \"value\": 0.4359676951896668}, \"0.25095654740687934\": {\"frequency\": 1, \"value\": 0.25095654740687934}, \"0.3978458768007948\": {\"frequency\": 1, \"value\": 0.3978458768007948}, \"0.6410529992548435\": {\"frequency\": 1, \"value\": 0.6410529992548435}, \"0.5539913220317934\": {\"frequency\": 1, \"value\": 0.5539913220317934}, \"0.47346304622473245\": {\"frequency\": 1, \"value\": 0.47346304622473245}, \"0.4471492900545635\": {\"frequency\": 1, \"value\": 0.4471492900545635}, \"0.35605975223546943\": {\"frequency\": 1, \"value\": 0.35605975223546943}, \"0.4709351086404888\": {\"frequency\": 1, \"value\": 0.4709351086404888}, \"0.40055598331210446\": {\"frequency\": 1, \"value\": 0.40055598331210446}, \"0.21902514260912698\": {\"frequency\": 1, \"value\": 0.21902514260912698}, \"0.197267957275206\": {\"frequency\": 1, \"value\": 0.197267957275206}, \"0.7454665023561508\": {\"frequency\": 1, \"value\": 0.7454665023561508}, \"0.5738883335322671\": {\"frequency\": 1, \"value\": 0.5738883335322671}, \"0.445193942677029\": {\"frequency\": 1, \"value\": 0.445193942677029}, \"0.5961871498477491\": {\"frequency\": 1, \"value\": 0.5961871498477491}, \"0.2876930421013413\": {\"frequency\": 1, \"value\": 0.2876930421013413}, \"0.39104594684988464\": {\"frequency\": 1, \"value\": 0.39104594684988464}, \"0.27202822730654763\": {\"frequency\": 1, \"value\": 0.27202822730654763}, \"0.39184989543876264\": {\"frequency\": 1, \"value\": 0.39184989543876264}, \"0.3562429157262216\": {\"frequency\": 1, \"value\": 0.3562429157262216}, \"0.3122610065822156\": {\"frequency\": 1, \"value\": 0.3122610065822156}, \"0.5159202067057291\": {\"frequency\": 1, \"value\": 0.5159202067057291}, \"0.4071272786458333\": {\"frequency\": 1, \"value\": 0.4071272786458333}, \"0.4841053712098692\": {\"frequency\": 1, \"value\": 0.4841053712098692}, \"0.2665382385253906\": {\"frequency\": 1, \"value\": 0.2665382385253906}, \"0.14494128204491255\": {\"frequency\": 1, \"value\": 0.14494128204491255}, \"0.4155476928511722\": {\"frequency\": 1, \"value\": 0.4155476928511722}, \"0.38659241230677766\": {\"frequency\": 1, \"value\": 0.38659241230677766}, \"0.29198529776060245\": {\"frequency\": 1, \"value\": 0.29198529776060245}, \"0.3987702379293874\": {\"frequency\": 1, \"value\": 0.3987702379293874}, \"0.5958027131512956\": {\"frequency\": 1, \"value\": 0.5958027131512956}, \"0.5369928389822075\": {\"frequency\": 1, \"value\": 0.5369928389822075}, \"0.31465151475590836\": {\"frequency\": 1, \"value\": 0.31465151475590836}, \"0.23366738655804886\": {\"frequency\": 1, \"value\": 0.23366738655804886}, \"0.6418080854694901\": {\"frequency\": 1, \"value\": 0.6418080854694901}, \"0.6466336779682067\": {\"frequency\": 1, \"value\": 0.6466336779682067}, \"0.48390426912092505\": {\"frequency\": 1, \"value\": 0.48390426912092505}, \"0.4543185504736884\": {\"frequency\": 1, \"value\": 0.4543185504736884}, \"0.5108729297911961\": {\"frequency\": 1, \"value\": 0.5108729297911961}, \"0.37720182327946505\": {\"frequency\": 1, \"value\": 0.37720182327946505}, \"0.31373997992892216\": {\"frequency\": 1, \"value\": 0.31373997992892216}, \"0.3716155908978175\": {\"frequency\": 1, \"value\": 0.3716155908978175}, \"0.3596854258299168\": {\"frequency\": 1, \"value\": 0.3596854258299168}, \"0.12682945956581135\": {\"frequency\": 1, \"value\": 0.12682945956581135}, \"0.6801443672839507\": {\"frequency\": 1, \"value\": 0.6801443672839507}, \"0.5585356339164402\": {\"frequency\": 1, \"value\": 0.5585356339164402}, \"0.35117331097863885\": {\"frequency\": 1, \"value\": 0.35117331097863885}, \"0.5929773445581682\": {\"frequency\": 1, \"value\": 0.5929773445581682}, \"0.3152836861891571\": {\"frequency\": 1, \"value\": 0.3152836861891571}, \"0.2923465079706278\": {\"frequency\": 1, \"value\": 0.2923465079706278}, \"0.5431181693989071\": {\"frequency\": 1, \"value\": 0.5431181693989071}, \"0.4841754349848744\": {\"frequency\": 1, \"value\": 0.4841754349848744}, \"0.5853357419227856\": {\"frequency\": 1, \"value\": 0.5853357419227856}, \"0.48423186097517307\": {\"frequency\": 1, \"value\": 0.48423186097517307}, \"0.18219019556811422\": {\"frequency\": 1, \"value\": 0.18219019556811422}, \"0.33193662986582495\": {\"frequency\": 1, \"value\": 0.33193662986582495}, \"0.36309531585941235\": {\"frequency\": 1, \"value\": 0.36309531585941235}, \"0.5702365095628416\": {\"frequency\": 1, \"value\": 0.5702365095628416}, \"0.347896370236609\": {\"frequency\": 1, \"value\": 0.347896370236609}, \"0.31308833092126204\": {\"frequency\": 1, \"value\": 0.31308833092126204}, \"0.2668522931386948\": {\"frequency\": 1, \"value\": 0.2668522931386948}, \"0.5032776072668651\": {\"frequency\": 1, \"value\": 0.5032776072668651}, \"0.1831797530836699\": {\"frequency\": 1, \"value\": 0.1831797530836699}, \"0.5099903858535233\": {\"frequency\": 1, \"value\": 0.5099903858535233}, \"0.35547665299706444\": {\"frequency\": 1, \"value\": 0.35547665299706444}, \"0.1577876984126984\": {\"frequency\": 1, \"value\": 0.1577876984126984}, \"0.49388769870839544\": {\"frequency\": 1, \"value\": 0.49388769870839544}, \"0.5269940618285988\": {\"frequency\": 1, \"value\": 0.5269940618285988}, \"0.31336511861640726\": {\"frequency\": 1, \"value\": 0.31336511861640726}, \"0.39120689740739273\": {\"frequency\": 1, \"value\": 0.39120689740739273}, \"0.2616784953428458\": {\"frequency\": 1, \"value\": 0.2616784953428458}, \"0.48440992921013415\": {\"frequency\": 1, \"value\": 0.48440992921013415}, \"0.5496095149365123\": {\"frequency\": 1, \"value\": 0.5496095149365123}, \"0.5839813532658283\": {\"frequency\": 1, \"value\": 0.5839813532658283}, \"0.4613328371145986\": {\"frequency\": 1, \"value\": 0.4613328371145986}, \"0.3940478956041233\": {\"frequency\": 1, \"value\": 0.3940478956041233}, \"0.31413344510680574\": {\"frequency\": 1, \"value\": 0.31413344510680574}, \"0.5604070027669271\": {\"frequency\": 1, \"value\": 0.5604070027669271}, \"0.5981918181298014\": {\"frequency\": 1, \"value\": 0.5981918181298014}, \"0.44338528364318525\": {\"frequency\": 1, \"value\": 0.44338528364318525}, \"0.2850783275365617\": {\"frequency\": 1, \"value\": 0.2850783275365617}, \"0.43431941760800635\": {\"frequency\": 1, \"value\": 0.43431941760800635}, \"0.3249587962962963\": {\"frequency\": 1, \"value\": 0.3249587962962963}, \"0.27734677269345237\": {\"frequency\": 1, \"value\": 0.27734677269345237}, \"0.3659118852459016\": {\"frequency\": 1, \"value\": 0.3659118852459016}, \"0.5448494838232798\": {\"frequency\": 1, \"value\": 0.5448494838232798}, \"0.39010326524826927\": {\"frequency\": 1, \"value\": 0.39010326524826927}, \"0.7134436074513394\": {\"frequency\": 1, \"value\": 0.7134436074513394}, \"0.35193853134698017\": {\"frequency\": 1, \"value\": 0.35193853134698017}, \"0.3995802859042553\": {\"frequency\": 1, \"value\": 0.3995802859042553}, \"0.55462586934923\": {\"frequency\": 1, \"value\": 0.55462586934923}, \"0.6639703248517786\": {\"frequency\": 1, \"value\": 0.6639703248517786}, \"0.7033153521825397\": {\"frequency\": 1, \"value\": 0.7033153521825397}, \"0.43911175765235044\": {\"frequency\": 1, \"value\": 0.43911175765235044}, \"0.4578967573289416\": {\"frequency\": 1, \"value\": 0.4578967573289416}, \"0.49362366287796583\": {\"frequency\": 1, \"value\": 0.49362366287796583}, \"0.3716305982620321\": {\"frequency\": 1, \"value\": 0.3716305982620321}, \"0.2821164629036417\": {\"frequency\": 1, \"value\": 0.2821164629036417}, \"0.4424443745297775\": {\"frequency\": 1, \"value\": 0.4424443745297775}, \"0.31670050919026327\": {\"frequency\": 1, \"value\": 0.31670050919026327}, \"0.35896461333976565\": {\"frequency\": 1, \"value\": 0.35896461333976565}, \"0.3397244698660714\": {\"frequency\": 1, \"value\": 0.3397244698660714}, \"0.5366726953389325\": {\"frequency\": 1, \"value\": 0.5366726953389325}, \"0.39700334488670247\": {\"frequency\": 1, \"value\": 0.39700334488670247}, \"0.48879535242127153\": {\"frequency\": 1, \"value\": 0.48879535242127153}, \"0.32723670480713873\": {\"frequency\": 1, \"value\": 0.32723670480713873}, \"0.4384007980624156\": {\"frequency\": 1, \"value\": 0.4384007980624156}, \"0.6458606101778656\": {\"frequency\": 1, \"value\": 0.6458606101778656}, \"0.31053560323383084\": {\"frequency\": 1, \"value\": 0.31053560323383084}, \"0.3510981141083791\": {\"frequency\": 1, \"value\": 0.3510981141083791}, \"0.35476113975395224\": {\"frequency\": 1, \"value\": 0.35476113975395224}, \"0.2739760044642857\": {\"frequency\": 1, \"value\": 0.2739760044642857}, \"0.439968998015873\": {\"frequency\": 1, \"value\": 0.439968998015873}, \"0.45032149057539683\": {\"frequency\": 1, \"value\": 0.45032149057539683}, \"0.3561418608757062\": {\"frequency\": 1, \"value\": 0.3561418608757062}, \"0.28509983364168057\": {\"frequency\": 1, \"value\": 0.28509983364168057}, \"0.1765992921013413\": {\"frequency\": 1, \"value\": 0.1765992921013413}, \"0.3265067901234568\": {\"frequency\": 1, \"value\": 0.3265067901234568}, \"0.49248593765487164\": {\"frequency\": 1, \"value\": 0.49248593765487164}, \"0.48481517807387653\": {\"frequency\": 1, \"value\": 0.48481517807387653}, \"0.6531592571924603\": {\"frequency\": 1, \"value\": 0.6531592571924603}, \"0.24637719918003423\": {\"frequency\": 1, \"value\": 0.24637719918003423}, \"0.2960868464653903\": {\"frequency\": 1, \"value\": 0.2960868464653903}, \"0.45688897294960473\": {\"frequency\": 1, \"value\": 0.45688897294960473}, \"0.3391714686761229\": {\"frequency\": 1, \"value\": 0.3391714686761229}, \"0.35621189062159325\": {\"frequency\": 1, \"value\": 0.35621189062159325}, \"0.4600843789550704\": {\"frequency\": 1, \"value\": 0.4600843789550704}, \"0.4133173828125\": {\"frequency\": 1, \"value\": 0.4133173828125}, \"0.34956818950425717\": {\"frequency\": 1, \"value\": 0.34956818950425717}, \"0.31317684088286785\": {\"frequency\": 1, \"value\": 0.31317684088286785}, \"0.3201259996419193\": {\"frequency\": 1, \"value\": 0.3201259996419193}, \"0.15549716502926422\": {\"frequency\": 1, \"value\": 0.15549716502926422}, \"0.3322635323660714\": {\"frequency\": 1, \"value\": 0.3322635323660714}, \"0.3914049304520616\": {\"frequency\": 1, \"value\": 0.3914049304520616}, \"0.3349727552160954\": {\"frequency\": 1, \"value\": 0.3349727552160954}, \"0.46204203764060575\": {\"frequency\": 1, \"value\": 0.46204203764060575}, \"0.2509223865327381\": {\"frequency\": 1, \"value\": 0.2509223865327381}, \"0.48050532149796854\": {\"frequency\": 1, \"value\": 0.48050532149796854}, \"0.4807750630822981\": {\"frequency\": 1, \"value\": 0.4807750630822981}, \"0.23970434364133134\": {\"frequency\": 1, \"value\": 0.23970434364133134}, \"0.2743718094475182\": {\"frequency\": 1, \"value\": 0.2743718094475182}, \"0.4793935799774293\": {\"frequency\": 1, \"value\": 0.4793935799774293}, \"0.4344411569148936\": {\"frequency\": 1, \"value\": 0.4344411569148936}, \"0.4434620815019403\": {\"frequency\": 1, \"value\": 0.4434620815019403}, \"0.4077181135121709\": {\"frequency\": 1, \"value\": 0.4077181135121709}, \"0.37685939828614007\": {\"frequency\": 1, \"value\": 0.37685939828614007}, \"0.47047705386035515\": {\"frequency\": 1, \"value\": 0.47047705386035515}, \"0.40838387632846396\": {\"frequency\": 1, \"value\": 0.40838387632846396}, \"0.611603839367031\": {\"frequency\": 1, \"value\": 0.611603839367031}, \"0.27094228062584547\": {\"frequency\": 1, \"value\": 0.27094228062584547}, \"0.29992062855594015\": {\"frequency\": 1, \"value\": 0.29992062855594015}, \"0.5478815045951316\": {\"frequency\": 1, \"value\": 0.5478815045951316}, \"0.4661740020349879\": {\"frequency\": 1, \"value\": 0.4661740020349879}, \"0.1746804470486111\": {\"frequency\": 1, \"value\": 0.1746804470486111}, \"0.230882083953373\": {\"frequency\": 1, \"value\": 0.230882083953373}, \"0.5474184978655018\": {\"frequency\": 1, \"value\": 0.5474184978655018}, \"0.4652544970239278\": {\"frequency\": 1, \"value\": 0.4652544970239278}, \"0.38351503487451266\": {\"frequency\": 1, \"value\": 0.38351503487451266}, \"0.6531869411326379\": {\"frequency\": 1, \"value\": 0.6531869411326379}, \"0.3149994140625\": {\"frequency\": 1, \"value\": 0.3149994140625}, \"0.6207835786140089\": {\"frequency\": 1, \"value\": 0.6207835786140089}, \"0.4947676196808511\": {\"frequency\": 1, \"value\": 0.4947676196808511}, \"0.5601421440972222\": {\"frequency\": 1, \"value\": 0.5601421440972222}, \"0.33335859995039685\": {\"frequency\": 1, \"value\": 0.33335859995039685}, \"0.4836805607173297\": {\"frequency\": 1, \"value\": 0.4836805607173297}, \"0.39388616345430427\": {\"frequency\": 1, \"value\": 0.39388616345430427}, \"0.4824345858134921\": {\"frequency\": 1, \"value\": 0.4824345858134921}, \"0.6279731844325916\": {\"frequency\": 1, \"value\": 0.6279731844325916}, \"0.3178330388144841\": {\"frequency\": 1, \"value\": 0.3178330388144841}, \"0.18212628244039328\": {\"frequency\": 1, \"value\": 0.18212628244039328}, \"0.2837452468539437\": {\"frequency\": 1, \"value\": 0.2837452468539437}, \"0.13002548527393173\": {\"frequency\": 1, \"value\": 0.13002548527393173}, \"0.2457117233212594\": {\"frequency\": 1, \"value\": 0.2457117233212594}, \"0.5260218764796402\": {\"frequency\": 1, \"value\": 0.5260218764796402}, \"0.49545105253353205\": {\"frequency\": 1, \"value\": 0.49545105253353205}, \"0.7785159742921013\": {\"frequency\": 1, \"value\": 0.7785159742921013}, \"0.42981525274528526\": {\"frequency\": 1, \"value\": 0.42981525274528526}, \"0.28677841067447046\": {\"frequency\": 1, \"value\": 0.28677841067447046}, \"0.41453989426560756\": {\"frequency\": 1, \"value\": 0.41453989426560756}, \"0.47969408933415275\": {\"frequency\": 1, \"value\": 0.47969408933415275}, \"0.12636039711530847\": {\"frequency\": 1, \"value\": 0.12636039711530847}, \"0.4788744066691876\": {\"frequency\": 1, \"value\": 0.4788744066691876}, \"0.36345883377873606\": {\"frequency\": 1, \"value\": 0.36345883377873606}, \"0.4875912293597054\": {\"frequency\": 1, \"value\": 0.4875912293597054}, \"0.4979056946075309\": {\"frequency\": 1, \"value\": 0.4979056946075309}, \"0.4608342291766205\": {\"frequency\": 1, \"value\": 0.4608342291766205}, \"0.35024448642774725\": {\"frequency\": 1, \"value\": 0.35024448642774725}, \"0.5519878152020863\": {\"frequency\": 1, \"value\": 0.5519878152020863}, \"0.3463899739583333\": {\"frequency\": 1, \"value\": 0.3463899739583333}, \"0.5891833550670641\": {\"frequency\": 1, \"value\": 0.5891833550670641}, \"0.34601399739583333\": {\"frequency\": 1, \"value\": 0.34601399739583333}, \"0.23337797619047618\": {\"frequency\": 1, \"value\": 0.23337797619047618}, \"0.6282634062920726\": {\"frequency\": 1, \"value\": 0.6282634062920726}, \"0.2989344262295082\": {\"frequency\": 1, \"value\": 0.2989344262295082}, \"0.37149378345227474\": {\"frequency\": 1, \"value\": 0.37149378345227474}, \"0.36525823150413783\": {\"frequency\": 1, \"value\": 0.36525823150413783}, \"0.43720456737444463\": {\"frequency\": 1, \"value\": 0.43720456737444463}, \"0.40372845362103177\": {\"frequency\": 1, \"value\": 0.40372845362103177}, \"0.24039851065627546\": {\"frequency\": 1, \"value\": 0.24039851065627546}, \"0.48384866002225846\": {\"frequency\": 1, \"value\": 0.48384866002225846}, \"0.3541247364831349\": {\"frequency\": 1, \"value\": 0.3541247364831349}, \"0.36224850968703426\": {\"frequency\": 1, \"value\": 0.36224850968703426}, \"0.5600211024260637\": {\"frequency\": 1, \"value\": 0.5600211024260637}, \"0.5005371868799603\": {\"frequency\": 1, \"value\": 0.5005371868799603}, \"0.30510494171626984\": {\"frequency\": 1, \"value\": 0.30510494171626984}, \"0.43118009052579365\": {\"frequency\": 1, \"value\": 0.43118009052579365}, \"0.37692598530319316\": {\"frequency\": 1, \"value\": 0.37692598530319316}, \"0.3743029549116734\": {\"frequency\": 1, \"value\": 0.3743029549116734}, \"0.43395349555335966\": {\"frequency\": 1, \"value\": 0.43395349555335966}, \"0.3432535846025702\": {\"frequency\": 1, \"value\": 0.3432535846025702}, \"0.24265423186785892\": {\"frequency\": 1, \"value\": 0.24265423186785892}, \"0.2937807764212322\": {\"frequency\": 1, \"value\": 0.2937807764212322}, \"0.2936540570175439\": {\"frequency\": 1, \"value\": 0.2936540570175439}, \"0.40792864140476004\": {\"frequency\": 1, \"value\": 0.40792864140476004}, \"0.3410482146588783\": {\"frequency\": 1, \"value\": 0.3410482146588783}, \"0.32992193507304884\": {\"frequency\": 1, \"value\": 0.32992193507304884}, \"0.4823263630153999\": {\"frequency\": 1, \"value\": 0.4823263630153999}, \"0.4461137999157749\": {\"frequency\": 1, \"value\": 0.4461137999157749}, \"0.09232210490272809\": {\"frequency\": 1, \"value\": 0.09232210490272809}, \"0.43290493432111216\": {\"frequency\": 1, \"value\": 0.43290493432111216}, \"0.2600799558118485\": {\"frequency\": 1, \"value\": 0.2600799558118485}, \"0.4984191815697963\": {\"frequency\": 1, \"value\": 0.4984191815697963}, \"0.22710560581140352\": {\"frequency\": 1, \"value\": 0.22710560581140352}, \"0.37194392697466466\": {\"frequency\": 1, \"value\": 0.37194392697466466}, \"0.36451432820084345\": {\"frequency\": 1, \"value\": 0.36451432820084345}, \"0.5945656212841854\": {\"frequency\": 1, \"value\": 0.5945656212841854}, \"0.42037576068057625\": {\"frequency\": 1, \"value\": 0.42037576068057625}, \"0.2819982549783162\": {\"frequency\": 1, \"value\": 0.2819982549783162}, \"0.3929642222729438\": {\"frequency\": 1, \"value\": 0.3929642222729438}, \"0.15318305121527778\": {\"frequency\": 1, \"value\": 0.15318305121527778}, \"0.6008982240437158\": {\"frequency\": 1, \"value\": 0.6008982240437158}, \"0.4322629537674641\": {\"frequency\": 1, \"value\": 0.4322629537674641}, \"0.524750907555521\": {\"frequency\": 1, \"value\": 0.524750907555521}, \"0.16786771020011948\": {\"frequency\": 1, \"value\": 0.16786771020011948}, \"0.23984848484848484\": {\"frequency\": 1, \"value\": 0.23984848484848484}, \"0.5360161598684472\": {\"frequency\": 1, \"value\": 0.5360161598684472}, \"0.33167860998885484\": {\"frequency\": 1, \"value\": 0.33167860998885484}, \"0.5494525528151495\": {\"frequency\": 1, \"value\": 0.5494525528151495}, \"0.4683475308412604\": {\"frequency\": 1, \"value\": 0.4683475308412604}, \"0.3681340039741679\": {\"frequency\": 1, \"value\": 0.3681340039741679}, \"0.4277064627063884\": {\"frequency\": 1, \"value\": 0.4277064627063884}, \"0.5369286880608275\": {\"frequency\": 1, \"value\": 0.5369286880608275}, \"0.3603334263392857\": {\"frequency\": 1, \"value\": 0.3603334263392857}, \"0.4073570804845422\": {\"frequency\": 1, \"value\": 0.4073570804845422}, \"0.27735517814850935\": {\"frequency\": 1, \"value\": 0.27735517814850935}, \"0.5246030970982143\": {\"frequency\": 1, \"value\": 0.5246030970982143}, \"0.6848482774071493\": {\"frequency\": 1, \"value\": 0.6848482774071493}, \"0.16520088176850473\": {\"frequency\": 1, \"value\": 0.16520088176850473}, \"0.64369937829804\": {\"frequency\": 1, \"value\": 0.64369937829804}, \"0.46645196143617024\": {\"frequency\": 1, \"value\": 0.46645196143617024}, \"0.45495583395429706\": {\"frequency\": 1, \"value\": 0.45495583395429706}, \"0.3419616083538188\": {\"frequency\": 1, \"value\": 0.3419616083538188}, \"0.4495996105411376\": {\"frequency\": 1, \"value\": 0.4495996105411376}, \"0.593540794914023\": {\"frequency\": 1, \"value\": 0.593540794914023}, \"0.4829754702295695\": {\"frequency\": 1, \"value\": 0.4829754702295695}, \"0.3000397556596642\": {\"frequency\": 1, \"value\": 0.3000397556596642}, \"0.4833775636369064\": {\"frequency\": 1, \"value\": 0.4833775636369064}, \"0.24621366854822738\": {\"frequency\": 1, \"value\": 0.24621366854822738}, \"0.16389387259290206\": {\"frequency\": 1, \"value\": 0.16389387259290206}, \"0.21253293172590854\": {\"frequency\": 1, \"value\": 0.21253293172590854}, \"0.32104848710317463\": {\"frequency\": 1, \"value\": 0.32104848710317463}, \"0.284740198784515\": {\"frequency\": 1, \"value\": 0.284740198784515}, \"0.5054282927994268\": {\"frequency\": 1, \"value\": 0.5054282927994268}, \"0.39039585810543004\": {\"frequency\": 1, \"value\": 0.39039585810543004}, \"0.13547014716840536\": {\"frequency\": 1, \"value\": 0.13547014716840536}, \"0.6334187815807273\": {\"frequency\": 1, \"value\": 0.6334187815807273}, \"0.24094974578373016\": {\"frequency\": 1, \"value\": 0.24094974578373016}, \"0.4158581415168018\": {\"frequency\": 1, \"value\": 0.4158581415168018}, \"0.6827888332770874\": {\"frequency\": 1, \"value\": 0.6827888332770874}, \"0.25343548487103174\": {\"frequency\": 1, \"value\": 0.25343548487103174}, \"0.5801572668719898\": {\"frequency\": 1, \"value\": 0.5801572668719898}, \"0.18700748363770192\": {\"frequency\": 1, \"value\": 0.18700748363770192}, \"0.2810045417906746\": {\"frequency\": 1, \"value\": 0.2810045417906746}, \"0.5370455166316768\": {\"frequency\": 1, \"value\": 0.5370455166316768}, \"0.5144328963997135\": {\"frequency\": 1, \"value\": 0.5144328963997135}, \"0.310893411574764\": {\"frequency\": 1, \"value\": 0.310893411574764}, \"0.27481104860945216\": {\"frequency\": 1, \"value\": 0.27481104860945216}, \"0.33259558285734186\": {\"frequency\": 1, \"value\": 0.33259558285734186}, \"0.48476791062970187\": {\"frequency\": 1, \"value\": 0.48476791062970187}, \"0.41675343075790144\": {\"frequency\": 1, \"value\": 0.41675343075790144}, \"0.5094034620225565\": {\"frequency\": 1, \"value\": 0.5094034620225565}, \"0.5479636143698644\": {\"frequency\": 1, \"value\": 0.5479636143698644}, \"0.4866998173556664\": {\"frequency\": 1, \"value\": 0.4866998173556664}, \"0.6378178558122206\": {\"frequency\": 1, \"value\": 0.6378178558122206}, \"0.4069017154350595\": {\"frequency\": 1, \"value\": 0.4069017154350595}, \"0.47132539647184607\": {\"frequency\": 1, \"value\": 0.47132539647184607}, \"0.3563444415973411\": {\"frequency\": 1, \"value\": 0.3563444415973411}, \"0.6541988846035252\": {\"frequency\": 1, \"value\": 0.6541988846035252}, \"0.29277098191195194\": {\"frequency\": 1, \"value\": 0.29277098191195194}, \"0.41832006023348234\": {\"frequency\": 1, \"value\": 0.41832006023348234}, \"0.626795531426237\": {\"frequency\": 1, \"value\": 0.626795531426237}, \"0.4485974318851252\": {\"frequency\": 1, \"value\": 0.4485974318851252}, \"0.31287622640337803\": {\"frequency\": 1, \"value\": 0.31287622640337803}, \"0.3291105053800366\": {\"frequency\": 1, \"value\": 0.3291105053800366}, \"0.4215641047631847\": {\"frequency\": 1, \"value\": 0.4215641047631847}, \"0.29326331967213115\": {\"frequency\": 1, \"value\": 0.29326331967213115}, \"0.5144863204051383\": {\"frequency\": 1, \"value\": 0.5144863204051383}, \"0.4823653738839286\": {\"frequency\": 1, \"value\": 0.4823653738839286}, \"0.5043566313244048\": {\"frequency\": 1, \"value\": 0.5043566313244048}, \"0.4491152808779762\": {\"frequency\": 1, \"value\": 0.4491152808779762}, \"0.28221405029296875\": {\"frequency\": 1, \"value\": 0.28221405029296875}, \"0.7078363514011066\": {\"frequency\": 1, \"value\": 0.7078363514011066}, \"0.2832046798501373\": {\"frequency\": 1, \"value\": 0.2832046798501373}, \"0.4181498344370861\": {\"frequency\": 1, \"value\": 0.4181498344370861}, \"0.1981743006177008\": {\"frequency\": 1, \"value\": 0.1981743006177008}, \"0.6001722935267857\": {\"frequency\": 1, \"value\": 0.6001722935267857}, \"0.48906195794925167\": {\"frequency\": 1, \"value\": 0.48906195794925167}, \"0.34734667082238413\": {\"frequency\": 1, \"value\": 0.34734667082238413}, \"0.6280818137720757\": {\"frequency\": 1, \"value\": 0.6280818137720757}, \"0.2731903870255431\": {\"frequency\": 1, \"value\": 0.2731903870255431}, \"0.35298503239063805\": {\"frequency\": 1, \"value\": 0.35298503239063805}, \"0.22903377880826334\": {\"frequency\": 1, \"value\": 0.22903377880826334}, \"0.26938510802469134\": {\"frequency\": 1, \"value\": 0.26938510802469134}, \"0.3576874825932999\": {\"frequency\": 1, \"value\": 0.3576874825932999}, \"0.2596838572668651\": {\"frequency\": 1, \"value\": 0.2596838572668651}, \"0.07098508134624938\": {\"frequency\": 1, \"value\": 0.07098508134624938}, \"0.35493100730086735\": {\"frequency\": 1, \"value\": 0.35493100730086735}, \"0.3308564531610567\": {\"frequency\": 1, \"value\": 0.3308564531610567}, \"0.5256626823973503\": {\"frequency\": 1, \"value\": 0.5256626823973503}, \"0.4781454918032787\": {\"frequency\": 1, \"value\": 0.4781454918032787}, \"0.387487304300436\": {\"frequency\": 1, \"value\": 0.387487304300436}, \"0.2670364505712866\": {\"frequency\": 1, \"value\": 0.2670364505712866}, \"0.4740122685185185\": {\"frequency\": 1, \"value\": 0.4740122685185185}, \"0.5453518037984082\": {\"frequency\": 1, \"value\": 0.5453518037984082}, \"0.3030680552239994\": {\"frequency\": 1, \"value\": 0.3030680552239994}, \"0.5952127252666879\": {\"frequency\": 1, \"value\": 0.5952127252666879}, \"0.32630109548508096\": {\"frequency\": 1, \"value\": 0.32630109548508096}, \"0.5307092958271237\": {\"frequency\": 1, \"value\": 0.5307092958271237}, \"0.3516918567925089\": {\"frequency\": 1, \"value\": 0.3516918567925089}, \"0.6181109254965569\": {\"frequency\": 1, \"value\": 0.6181109254965569}, \"0.3009487549677099\": {\"frequency\": 1, \"value\": 0.3009487549677099}, \"0.3328114909339295\": {\"frequency\": 1, \"value\": 0.3328114909339295}, \"0.4267213510701546\": {\"frequency\": 1, \"value\": 0.4267213510701546}, \"0.39696885850694447\": {\"frequency\": 1, \"value\": 0.39696885850694447}, \"0.5089240421341609\": {\"frequency\": 1, \"value\": 0.5089240421341609}, \"0.3934804377480159\": {\"frequency\": 1, \"value\": 0.3934804377480159}, \"0.6580462810346875\": {\"frequency\": 1, \"value\": 0.6580462810346875}, \"0.7233207588176851\": {\"frequency\": 1, \"value\": 0.7233207588176851}, \"0.30903746543526694\": {\"frequency\": 1, \"value\": 0.30903746543526694}, \"0.5142236130909955\": {\"frequency\": 1, \"value\": 0.5142236130909955}, \"0.40818665738880716\": {\"frequency\": 1, \"value\": 0.40818665738880716}, \"0.6105797674568283\": {\"frequency\": 1, \"value\": 0.6105797674568283}, \"0.46648778521825396\": {\"frequency\": 1, \"value\": 0.46648778521825396}, \"0.373841068328373\": {\"frequency\": 1, \"value\": 0.373841068328373}, \"0.5653679801503992\": {\"frequency\": 1, \"value\": 0.5653679801503992}, \"0.4311868169398907\": {\"frequency\": 1, \"value\": 0.4311868169398907}, \"0.4528854073771304\": {\"frequency\": 1, \"value\": 0.4528854073771304}, \"0.3127055389965226\": {\"frequency\": 1, \"value\": 0.3127055389965226}, \"0.5002379882959861\": {\"frequency\": 1, \"value\": 0.5002379882959861}, \"0.5234888071286636\": {\"frequency\": 1, \"value\": 0.5234888071286636}, \"0.2705890178642476\": {\"frequency\": 1, \"value\": 0.2705890178642476}, \"0.2791681532576163\": {\"frequency\": 1, \"value\": 0.2791681532576163}, \"0.24614901577247889\": {\"frequency\": 1, \"value\": 0.24614901577247889}, \"0.529958774703459\": {\"frequency\": 1, \"value\": 0.529958774703459}, \"0.4785112394436165\": {\"frequency\": 1, \"value\": 0.4785112394436165}, \"0.48441722553402883\": {\"frequency\": 1, \"value\": 0.48441722553402883}, \"0.32294991233682496\": {\"frequency\": 1, \"value\": 0.32294991233682496}, \"0.5191793964232488\": {\"frequency\": 1, \"value\": 0.5191793964232488}, \"0.5679784367163555\": {\"frequency\": 1, \"value\": 0.5679784367163555}, \"0.19816370193264105\": {\"frequency\": 1, \"value\": 0.19816370193264105}, \"0.2998160329384499\": {\"frequency\": 1, \"value\": 0.2998160329384499}, \"0.5095351310233482\": {\"frequency\": 1, \"value\": 0.5095351310233482}, \"0.34376385689159733\": {\"frequency\": 1, \"value\": 0.34376385689159733}, \"0.6784772572875494\": {\"frequency\": 1, \"value\": 0.6784772572875494}, \"0.3724905499683557\": {\"frequency\": 1, \"value\": 0.3724905499683557}, \"0.27327516697998727\": {\"frequency\": 1, \"value\": 0.27327516697998727}, \"0.29695656923604014\": {\"frequency\": 1, \"value\": 0.29695656923604014}, \"0.5511046064660904\": {\"frequency\": 1, \"value\": 0.5511046064660904}, \"0.29467251972087377\": {\"frequency\": 1, \"value\": 0.29467251972087377}, \"0.4616610858675853\": {\"frequency\": 1, \"value\": 0.4616610858675853}, \"0.4605629195797251\": {\"frequency\": 1, \"value\": 0.4605629195797251}, \"0.35979989443616495\": {\"frequency\": 1, \"value\": 0.35979989443616495}, \"0.7001658137917329\": {\"frequency\": 1, \"value\": 0.7001658137917329}, \"0.19431157564148255\": {\"frequency\": 1, \"value\": 0.19431157564148255}, \"0.36245873897641695\": {\"frequency\": 1, \"value\": 0.36245873897641695}, \"0.4043447113948626\": {\"frequency\": 1, \"value\": 0.4043447113948626}, \"0.4920624831627155\": {\"frequency\": 1, \"value\": 0.4920624831627155}, \"0.5379486762152778\": {\"frequency\": 1, \"value\": 0.5379486762152778}, \"0.2687036140540915\": {\"frequency\": 1, \"value\": 0.2687036140540915}, \"0.3675358641732675\": {\"frequency\": 1, \"value\": 0.3675358641732675}, \"0.435106550980975\": {\"frequency\": 1, \"value\": 0.435106550980975}, \"0.30350462147887325\": {\"frequency\": 1, \"value\": 0.30350462147887325}, \"0.8466077559300874\": {\"frequency\": 1, \"value\": 0.8466077559300874}, \"0.603824826130154\": {\"frequency\": 1, \"value\": 0.603824826130154}, \"0.3673561692747144\": {\"frequency\": 1, \"value\": 0.3673561692747144}, \"0.6685760744636389\": {\"frequency\": 1, \"value\": 0.6685760744636389}, \"0.4963920479988457\": {\"frequency\": 1, \"value\": 0.4963920479988457}, \"0.4255730571142483\": {\"frequency\": 1, \"value\": 0.4255730571142483}, \"0.5951853538784585\": {\"frequency\": 1, \"value\": 0.5951853538784585}, \"0.38457580265070074\": {\"frequency\": 1, \"value\": 0.38457580265070074}, \"0.4340349808432922\": {\"frequency\": 1, \"value\": 0.4340349808432922}, \"0.4328445572528564\": {\"frequency\": 1, \"value\": 0.4328445572528564}, \"0.2873231668938821\": {\"frequency\": 1, \"value\": 0.2873231668938821}, \"0.4850590613018257\": {\"frequency\": 1, \"value\": 0.4850590613018257}, \"0.5401848143318431\": {\"frequency\": 1, \"value\": 0.5401848143318431}, \"0.25794605396412035\": {\"frequency\": 1, \"value\": 0.25794605396412035}, \"0.39940981058271535\": {\"frequency\": 1, \"value\": 0.39940981058271535}, \"0.5106940859493116\": {\"frequency\": 1, \"value\": 0.5106940859493116}, \"0.357544343568473\": {\"frequency\": 1, \"value\": 0.357544343568473}, \"0.43744830419146824\": {\"frequency\": 1, \"value\": 0.43744830419146824}, \"0.3831746992370892\": {\"frequency\": 1, \"value\": 0.3831746992370892}, \"0.4937357126087386\": {\"frequency\": 1, \"value\": 0.4937357126087386}, \"0.31669181569796323\": {\"frequency\": 1, \"value\": 0.31669181569796323}, \"0.4140955457432662\": {\"frequency\": 1, \"value\": 0.4140955457432662}, \"0.32288197954450853\": {\"frequency\": 1, \"value\": 0.32288197954450853}, \"0.4090115263437972\": {\"frequency\": 1, \"value\": 0.4090115263437972}, \"0.5785935796918351\": {\"frequency\": 1, \"value\": 0.5785935796918351}, \"0.39715187220566317\": {\"frequency\": 1, \"value\": 0.39715187220566317}, \"0.36453904320987657\": {\"frequency\": 1, \"value\": 0.36453904320987657}, \"0.27902857985593643\": {\"frequency\": 1, \"value\": 0.27902857985593643}, \"0.1897748935432759\": {\"frequency\": 1, \"value\": 0.1897748935432759}, \"0.3987569072795639\": {\"frequency\": 1, \"value\": 0.3987569072795639}, \"0.4713854054766452\": {\"frequency\": 1, \"value\": 0.4713854054766452}, \"0.4931032934502576\": {\"frequency\": 1, \"value\": 0.4931032934502576}, \"0.5347307652599211\": {\"frequency\": 1, \"value\": 0.5347307652599211}, \"0.4675542581125762\": {\"frequency\": 1, \"value\": 0.4675542581125762}, \"0.48485562696447043\": {\"frequency\": 1, \"value\": 0.48485562696447043}, \"0.44628958643815203\": {\"frequency\": 1, \"value\": 0.44628958643815203}, \"0.15197517866734303\": {\"frequency\": 1, \"value\": 0.15197517866734303}, \"0.3722609759980894\": {\"frequency\": 1, \"value\": 0.3722609759980894}, \"0.3674579148065476\": {\"frequency\": 1, \"value\": 0.3674579148065476}, \"0.38483874868206414\": {\"frequency\": 1, \"value\": 0.38483874868206414}, \"0.5608495265792302\": {\"frequency\": 1, \"value\": 0.5608495265792302}, \"0.4588192003134765\": {\"frequency\": 1, \"value\": 0.4588192003134765}, \"0.3140230688027819\": {\"frequency\": 1, \"value\": 0.3140230688027819}, \"0.3774221455439239\": {\"frequency\": 1, \"value\": 0.3774221455439239}, \"0.3027632751755395\": {\"frequency\": 1, \"value\": 0.3027632751755395}, \"0.5124982741163475\": {\"frequency\": 1, \"value\": 0.5124982741163475}, \"0.24715301029265874\": {\"frequency\": 1, \"value\": 0.24715301029265874}, \"0.3770232487411933\": {\"frequency\": 1, \"value\": 0.3770232487411933}, \"0.23427118482740086\": {\"frequency\": 1, \"value\": 0.23427118482740086}, \"0.42955671662389594\": {\"frequency\": 1, \"value\": 0.42955671662389594}, \"0.6558650622842861\": {\"frequency\": 1, \"value\": 0.6558650622842861}, \"0.33546412336049286\": {\"frequency\": 1, \"value\": 0.33546412336049286}, \"0.4246094914307004\": {\"frequency\": 1, \"value\": 0.4246094914307004}, \"0.5559452679526016\": {\"frequency\": 1, \"value\": 0.5559452679526016}, \"0.42902015580975433\": {\"frequency\": 1, \"value\": 0.42902015580975433}, \"0.49918881000968457\": {\"frequency\": 1, \"value\": 0.49918881000968457}, \"0.5141681367274278\": {\"frequency\": 1, \"value\": 0.5141681367274278}, \"0.5011451037243542\": {\"frequency\": 1, \"value\": 0.5011451037243542}, \"0.24436250211459618\": {\"frequency\": 1, \"value\": 0.24436250211459618}, \"0.23689386177347244\": {\"frequency\": 1, \"value\": 0.23689386177347244}, \"0.5845724318335387\": {\"frequency\": 1, \"value\": 0.5845724318335387}, \"0.2537989008941878\": {\"frequency\": 1, \"value\": 0.2537989008941878}, \"0.2477592523596622\": {\"frequency\": 1, \"value\": 0.2477592523596622}, \"0.21140173047465585\": {\"frequency\": 1, \"value\": 0.21140173047465585}, \"0.4139222498265266\": {\"frequency\": 1, \"value\": 0.4139222498265266}, \"0.5370608568948413\": {\"frequency\": 1, \"value\": 0.5370608568948413}, \"0.7210341696827657\": {\"frequency\": 1, \"value\": 0.7210341696827657}, \"0.4090865260192706\": {\"frequency\": 1, \"value\": 0.4090865260192706}, \"0.1876197759039503\": {\"frequency\": 1, \"value\": 0.1876197759039503}, \"0.19821760121708892\": {\"frequency\": 1, \"value\": 0.19821760121708892}, \"0.461511966765873\": {\"frequency\": 1, \"value\": 0.461511966765873}, \"0.4712713378595836\": {\"frequency\": 1, \"value\": 0.4712713378595836}, \"0.4922781607054148\": {\"frequency\": 1, \"value\": 0.4922781607054148}, \"0.35180816632169726\": {\"frequency\": 1, \"value\": 0.35180816632169726}, \"0.4049403098609041\": {\"frequency\": 1, \"value\": 0.4049403098609041}, \"0.07159753224206349\": {\"frequency\": 1, \"value\": 0.07159753224206349}, \"0.4164748821317737\": {\"frequency\": 1, \"value\": 0.4164748821317737}, \"0.7092565511674118\": {\"frequency\": 1, \"value\": 0.7092565511674118}, \"0.4859896341251045\": {\"frequency\": 1, \"value\": 0.4859896341251045}, \"0.5829348816029144\": {\"frequency\": 1, \"value\": 0.5829348816029144}, \"0.5431801181248516\": {\"frequency\": 1, \"value\": 0.5431801181248516}, \"0.277563994521952\": {\"frequency\": 1, \"value\": 0.277563994521952}, \"0.22444066691505216\": {\"frequency\": 1, \"value\": 0.22444066691505216}, \"0.5796422538610039\": {\"frequency\": 1, \"value\": 0.5796422538610039}, \"0.7161253817626527\": {\"frequency\": 1, \"value\": 0.7161253817626527}, \"0.39477426481184125\": {\"frequency\": 1, \"value\": 0.39477426481184125}, \"0.2779092261904762\": {\"frequency\": 1, \"value\": 0.2779092261904762}, \"0.4588444900663892\": {\"frequency\": 1, \"value\": 0.4588444900663892}, \"0.3661190941220238\": {\"frequency\": 1, \"value\": 0.3661190941220238}, \"0.3935294861376198\": {\"frequency\": 1, \"value\": 0.3935294861376198}, \"0.397753544624646\": {\"frequency\": 1, \"value\": 0.397753544624646}, \"0.4489432060368755\": {\"frequency\": 1, \"value\": 0.4489432060368755}, \"0.44696305116327667\": {\"frequency\": 1, \"value\": 0.44696305116327667}, \"0.39820928539426526\": {\"frequency\": 1, \"value\": 0.39820928539426526}, \"0.42131132823372697\": {\"frequency\": 1, \"value\": 0.42131132823372697}, \"0.534442086660509\": {\"frequency\": 1, \"value\": 0.534442086660509}, \"0.3563563328793813\": {\"frequency\": 1, \"value\": 0.3563563328793813}, \"0.6091793981481481\": {\"frequency\": 1, \"value\": 0.6091793981481481}, \"0.3008149372826627\": {\"frequency\": 1, \"value\": 0.3008149372826627}, \"0.3102658500993542\": {\"frequency\": 1, \"value\": 0.3102658500993542}, \"0.5260490406110283\": {\"frequency\": 1, \"value\": 0.5260490406110283}, \"0.4518341548859127\": {\"frequency\": 1, \"value\": 0.4518341548859127}, \"0.6026354477148534\": {\"frequency\": 1, \"value\": 0.6026354477148534}, \"0.36458201574900795\": {\"frequency\": 1, \"value\": 0.36458201574900795}, \"0.4440844793615412\": {\"frequency\": 1, \"value\": 0.4440844793615412}, \"0.37260587431693987\": {\"frequency\": 1, \"value\": 0.37260587431693987}, \"0.4931767728514655\": {\"frequency\": 1, \"value\": 0.4931767728514655}, \"0.4135585575552388\": {\"frequency\": 1, \"value\": 0.4135585575552388}, \"0.5638391082960755\": {\"frequency\": 1, \"value\": 0.5638391082960755}, \"0.3642597949339251\": {\"frequency\": 1, \"value\": 0.3642597949339251}, \"0.6093858796296296\": {\"frequency\": 1, \"value\": 0.6093858796296296}, \"0.5205492103849063\": {\"frequency\": 1, \"value\": 0.5205492103849063}, \"0.34647794208829363\": {\"frequency\": 1, \"value\": 0.34647794208829363}, \"0.32213898189484125\": {\"frequency\": 1, \"value\": 0.32213898189484125}, \"0.5699833094335504\": {\"frequency\": 1, \"value\": 0.5699833094335504}, \"0.4823873817019086\": {\"frequency\": 1, \"value\": 0.4823873817019086}, \"0.49561079178105355\": {\"frequency\": 1, \"value\": 0.49561079178105355}, \"0.6276365893425763\": {\"frequency\": 1, \"value\": 0.6276365893425763}, \"0.5521209104938272\": {\"frequency\": 1, \"value\": 0.5521209104938272}, \"0.7182990709940592\": {\"frequency\": 1, \"value\": 0.7182990709940592}, \"0.5886112719767166\": {\"frequency\": 1, \"value\": 0.5886112719767166}, \"0.38228953210382516\": {\"frequency\": 1, \"value\": 0.38228953210382516}, \"0.3113413665254237\": {\"frequency\": 1, \"value\": 0.3113413665254237}, \"0.4168685572763711\": {\"frequency\": 1, \"value\": 0.4168685572763711}, \"0.35851975468196473\": {\"frequency\": 1, \"value\": 0.35851975468196473}, \"0.5777355877831071\": {\"frequency\": 1, \"value\": 0.5777355877831071}, \"0.38123377422883503\": {\"frequency\": 1, \"value\": 0.38123377422883503}, \"0.4074173797123016\": {\"frequency\": 1, \"value\": 0.4074173797123016}, \"0.2805955042225534\": {\"frequency\": 1, \"value\": 0.2805955042225534}, \"0.42503555940160737\": {\"frequency\": 1, \"value\": 0.42503555940160737}, \"0.5036610836553705\": {\"frequency\": 1, \"value\": 0.5036610836553705}, \"0.2170136988516499\": {\"frequency\": 1, \"value\": 0.2170136988516499}, \"0.4145679118901956\": {\"frequency\": 1, \"value\": 0.4145679118901956}, \"0.637275366368604\": {\"frequency\": 1, \"value\": 0.637275366368604}, \"0.4136422525264582\": {\"frequency\": 1, \"value\": 0.4136422525264582}, \"0.3800398961319478\": {\"frequency\": 1, \"value\": 0.3800398961319478}, \"0.6170226858854436\": {\"frequency\": 1, \"value\": 0.6170226858854436}, \"0.2545700932661306\": {\"frequency\": 1, \"value\": 0.2545700932661306}, \"0.2982051043219076\": {\"frequency\": 1, \"value\": 0.2982051043219076}, \"0.3886615902881272\": {\"frequency\": 1, \"value\": 0.3886615902881272}, \"0.42362840449986067\": {\"frequency\": 1, \"value\": 0.42362840449986067}, \"0.5419008091517857\": {\"frequency\": 1, \"value\": 0.5419008091517857}, \"0.398353902757079\": {\"frequency\": 1, \"value\": 0.398353902757079}, \"0.20083914620535714\": {\"frequency\": 1, \"value\": 0.20083914620535714}, \"0.36195436507936507\": {\"frequency\": 1, \"value\": 0.36195436507936507}, \"0.16041860717834078\": {\"frequency\": 1, \"value\": 0.16041860717834078}, \"0.46859809674615005\": {\"frequency\": 1, \"value\": 0.46859809674615005}, \"0.3004594737640807\": {\"frequency\": 1, \"value\": 0.3004594737640807}, \"0.5317987793549346\": {\"frequency\": 1, \"value\": 0.5317987793549346}, \"0.475213378663686\": {\"frequency\": 1, \"value\": 0.475213378663686}, \"0.503752173373075\": {\"frequency\": 1, \"value\": 0.503752173373075}, \"0.24618516908074817\": {\"frequency\": 1, \"value\": 0.24618516908074817}, \"0.5715407754010695\": {\"frequency\": 1, \"value\": 0.5715407754010695}, \"0.3054517225977908\": {\"frequency\": 1, \"value\": 0.3054517225977908}, \"0.2652984581579783\": {\"frequency\": 1, \"value\": 0.2652984581579783}, \"0.2372428043983772\": {\"frequency\": 1, \"value\": 0.2372428043983772}, \"0.2647746360756346\": {\"frequency\": 1, \"value\": 0.2647746360756346}, \"0.45110616427277433\": {\"frequency\": 1, \"value\": 0.45110616427277433}, \"0.4357744193989071\": {\"frequency\": 1, \"value\": 0.4357744193989071}, \"0.5413495290669904\": {\"frequency\": 1, \"value\": 0.5413495290669904}, \"0.3120353577628968\": {\"frequency\": 1, \"value\": 0.3120353577628968}, \"0.6730520215539545\": {\"frequency\": 1, \"value\": 0.6730520215539545}, \"0.9374815538194444\": {\"frequency\": 1, \"value\": 0.9374815538194444}, \"0.42184624565972223\": {\"frequency\": 1, \"value\": 0.42184624565972223}, \"0.3227512591873436\": {\"frequency\": 1, \"value\": 0.3227512591873436}, \"0.4603687283737024\": {\"frequency\": 1, \"value\": 0.4603687283737024}, \"0.61632032414307\": {\"frequency\": 1, \"value\": 0.61632032414307}, \"0.23107116244411327\": {\"frequency\": 1, \"value\": 0.23107116244411327}, \"0.503817273787499\": {\"frequency\": 1, \"value\": 0.503817273787499}, \"0.3873880712866369\": {\"frequency\": 1, \"value\": 0.3873880712866369}, \"0.3117259515313708\": {\"frequency\": 1, \"value\": 0.3117259515313708}, \"0.502044394703061\": {\"frequency\": 1, \"value\": 0.502044394703061}, \"0.4015214223710317\": {\"frequency\": 1, \"value\": 0.4015214223710317}, \"0.4663631701787805\": {\"frequency\": 1, \"value\": 0.4663631701787805}, \"0.2671477583209141\": {\"frequency\": 1, \"value\": 0.2671477583209141}, \"0.3878151475178359\": {\"frequency\": 1, \"value\": 0.3878151475178359}, \"0.5475759128166915\": {\"frequency\": 1, \"value\": 0.5475759128166915}, \"0.3514450602334824\": {\"frequency\": 1, \"value\": 0.3514450602334824}, \"0.3522100269926961\": {\"frequency\": 1, \"value\": 0.3522100269926961}, \"0.41430810546875\": {\"frequency\": 1, \"value\": 0.41430810546875}, \"0.4674098318322335\": {\"frequency\": 1, \"value\": 0.4674098318322335}, \"0.39129780004177606\": {\"frequency\": 1, \"value\": 0.39129780004177606}, \"0.24423383826573258\": {\"frequency\": 1, \"value\": 0.24423383826573258}, \"0.2893729042473919\": {\"frequency\": 1, \"value\": 0.2893729042473919}, \"0.45279143588639426\": {\"frequency\": 1, \"value\": 0.45279143588639426}, \"0.3399443601196391\": {\"frequency\": 1, \"value\": 0.3399443601196391}, \"0.29585288469153403\": {\"frequency\": 1, \"value\": 0.29585288469153403}, \"0.36759708858002693\": {\"frequency\": 1, \"value\": 0.36759708858002693}, \"0.47615964977645303\": {\"frequency\": 1, \"value\": 0.47615964977645303}, \"0.5131559097039735\": {\"frequency\": 1, \"value\": 0.5131559097039735}, \"0.3975039586438152\": {\"frequency\": 1, \"value\": 0.3975039586438152}, \"0.20045983137961232\": {\"frequency\": 1, \"value\": 0.20045983137961232}, \"0.4421344866071429\": {\"frequency\": 1, \"value\": 0.4421344866071429}, \"0.3925611845508077\": {\"frequency\": 1, \"value\": 0.3925611845508077}, \"0.4673256855237154\": {\"frequency\": 1, \"value\": 0.4673256855237154}, \"0.38744233911357506\": {\"frequency\": 1, \"value\": 0.38744233911357506}, \"0.39335273591897235\": {\"frequency\": 1, \"value\": 0.39335273591897235}, \"0.7677860226059096\": {\"frequency\": 1, \"value\": 0.7677860226059096}, \"0.42734204691835115\": {\"frequency\": 1, \"value\": 0.42734204691835115}, \"0.5116863046448088\": {\"frequency\": 1, \"value\": 0.5116863046448088}, \"0.5271303468186522\": {\"frequency\": 1, \"value\": 0.5271303468186522}, \"0.42950568243792636\": {\"frequency\": 1, \"value\": 0.42950568243792636}, \"0.5163916718886767\": {\"frequency\": 1, \"value\": 0.5163916718886767}, \"0.20969509678125248\": {\"frequency\": 1, \"value\": 0.20969509678125248}, \"0.34877347156163296\": {\"frequency\": 1, \"value\": 0.34877347156163296}, \"0.7312030639878297\": {\"frequency\": 1, \"value\": 0.7312030639878297}, \"0.3743433090445011\": {\"frequency\": 1, \"value\": 0.3743433090445011}, \"0.4040057594386488\": {\"frequency\": 1, \"value\": 0.4040057594386488}, \"0.44137326130154\": {\"frequency\": 1, \"value\": 0.44137326130154}, \"0.277413959280628\": {\"frequency\": 1, \"value\": 0.277413959280628}, \"0.6297064608185932\": {\"frequency\": 1, \"value\": 0.6297064608185932}, \"0.37458931969169246\": {\"frequency\": 1, \"value\": 0.37458931969169246}, \"0.29745319485842026\": {\"frequency\": 1, \"value\": 0.29745319485842026}, \"0.540494434207647\": {\"frequency\": 1, \"value\": 0.540494434207647}, \"0.19648390830346477\": {\"frequency\": 1, \"value\": 0.19648390830346477}, \"0.26599478390461995\": {\"frequency\": 1, \"value\": 0.26599478390461995}, \"0.24486416418281173\": {\"frequency\": 1, \"value\": 0.24486416418281173}, \"0.6669681015316206\": {\"frequency\": 1, \"value\": 0.6669681015316206}, \"0.2506138061087991\": {\"frequency\": 1, \"value\": 0.2506138061087991}, \"0.42962968129960316\": {\"frequency\": 1, \"value\": 0.42962968129960316}, \"0.4127664546680333\": {\"frequency\": 1, \"value\": 0.4127664546680333}, \"0.09623029796800477\": {\"frequency\": 1, \"value\": 0.09623029796800477}, \"0.3456577460106383\": {\"frequency\": 1, \"value\": 0.3456577460106383}, \"0.3402392861760961\": {\"frequency\": 1, \"value\": 0.3402392861760961}, \"0.7025987307230631\": {\"frequency\": 1, \"value\": 0.7025987307230631}, \"0.3090549708147044\": {\"frequency\": 1, \"value\": 0.3090549708147044}, \"0.5106728078358209\": {\"frequency\": 1, \"value\": 0.5106728078358209}, \"0.5968720937027533\": {\"frequency\": 1, \"value\": 0.5968720937027533}, \"0.3603045954608455\": {\"frequency\": 1, \"value\": 0.3603045954608455}, \"0.459086062198981\": {\"frequency\": 1, \"value\": 0.459086062198981}, \"0.43432736601219823\": {\"frequency\": 1, \"value\": 0.43432736601219823}, \"0.5712580725285643\": {\"frequency\": 1, \"value\": 0.5712580725285643}, \"0.2933471227809179\": {\"frequency\": 1, \"value\": 0.2933471227809179}, \"0.451982737208147\": {\"frequency\": 1, \"value\": 0.451982737208147}, \"0.4518068301061218\": {\"frequency\": 1, \"value\": 0.4518068301061218}, \"0.4710421020136778\": {\"frequency\": 1, \"value\": 0.4710421020136778}, \"0.3019152850223547\": {\"frequency\": 1, \"value\": 0.3019152850223547}, \"0.3977142614586236\": {\"frequency\": 1, \"value\": 0.3977142614586236}, \"0.4029571069299553\": {\"frequency\": 1, \"value\": 0.4029571069299553}, \"0.3822457837301587\": {\"frequency\": 1, \"value\": 0.3822457837301587}, \"0.2951494860785521\": {\"frequency\": 1, \"value\": 0.2951494860785521}, \"0.30903173053075395\": {\"frequency\": 1, \"value\": 0.30903173053075395}, \"0.664747966524429\": {\"frequency\": 1, \"value\": 0.664747966524429}, \"0.41497092119273177\": {\"frequency\": 1, \"value\": 0.41497092119273177}, \"0.4701094699848024\": {\"frequency\": 1, \"value\": 0.4701094699848024}, \"0.4673952577409399\": {\"frequency\": 1, \"value\": 0.4673952577409399}, \"0.44378770206822776\": {\"frequency\": 1, \"value\": 0.44378770206822776}, \"0.4436913165151695\": {\"frequency\": 1, \"value\": 0.4436913165151695}, \"0.32662476003620594\": {\"frequency\": 1, \"value\": 0.32662476003620594}, \"0.5313134378856028\": {\"frequency\": 1, \"value\": 0.5313134378856028}, \"0.43476610700354257\": {\"frequency\": 1, \"value\": 0.43476610700354257}, \"0.47596527114190157\": {\"frequency\": 1, \"value\": 0.47596527114190157}, \"0.16762346540178572\": {\"frequency\": 1, \"value\": 0.16762346540178572}, \"0.16950381324404762\": {\"frequency\": 1, \"value\": 0.16950381324404762}, \"0.4641841755319149\": {\"frequency\": 1, \"value\": 0.4641841755319149}, \"0.25755532778728657\": {\"frequency\": 1, \"value\": 0.25755532778728657}, \"0.8074532390510949\": {\"frequency\": 1, \"value\": 0.8074532390510949}, \"0.32655264220069546\": {\"frequency\": 1, \"value\": 0.32655264220069546}, \"0.19681025003971248\": {\"frequency\": 1, \"value\": 0.19681025003971248}, \"0.23914373644764064\": {\"frequency\": 1, \"value\": 0.23914373644764064}, \"0.45194245872805794\": {\"frequency\": 1, \"value\": 0.45194245872805794}, \"0.49113513552008403\": {\"frequency\": 1, \"value\": 0.49113513552008403}, \"0.6240035742894957\": {\"frequency\": 1, \"value\": 0.6240035742894957}, \"0.32460881820161547\": {\"frequency\": 1, \"value\": 0.32460881820161547}, \"0.4074365060196195\": {\"frequency\": 1, \"value\": 0.4074365060196195}, \"0.45367206790123454\": {\"frequency\": 1, \"value\": 0.45367206790123454}, \"0.3853827880825354\": {\"frequency\": 1, \"value\": 0.3853827880825354}, \"0.2631017138599106\": {\"frequency\": 1, \"value\": 0.2631017138599106}, \"0.537151847718254\": {\"frequency\": 1, \"value\": 0.537151847718254}, \"0.1633665054563492\": {\"frequency\": 1, \"value\": 0.1633665054563492}, \"0.5268919827645285\": {\"frequency\": 1, \"value\": 0.5268919827645285}, \"0.356715339781746\": {\"frequency\": 1, \"value\": 0.356715339781746}, \"0.390779076626925\": {\"frequency\": 1, \"value\": 0.390779076626925}, \"0.600964584035822\": {\"frequency\": 1, \"value\": 0.600964584035822}, \"0.16816783913225114\": {\"frequency\": 1, \"value\": 0.16816783913225114}, \"0.5860357675111774\": {\"frequency\": 1, \"value\": 0.5860357675111774}, \"0.5549717342275506\": {\"frequency\": 1, \"value\": 0.5549717342275506}, \"0.337240930870119\": {\"frequency\": 1, \"value\": 0.337240930870119}, \"0.4612525903803288\": {\"frequency\": 1, \"value\": 0.4612525903803288}, \"0.270431336934923\": {\"frequency\": 1, \"value\": 0.270431336934923}, \"0.2944835637138327\": {\"frequency\": 1, \"value\": 0.2944835637138327}, \"0.14185438796936758\": {\"frequency\": 1, \"value\": 0.14185438796936758}, \"0.6797447643165453\": {\"frequency\": 1, \"value\": 0.6797447643165453}, \"0.37729430576254347\": {\"frequency\": 1, \"value\": 0.37729430576254347}, \"0.3161945571538033\": {\"frequency\": 1, \"value\": 0.3161945571538033}, \"0.4420116181133571\": {\"frequency\": 1, \"value\": 0.4420116181133571}, \"0.5147088045565816\": {\"frequency\": 1, \"value\": 0.5147088045565816}, \"0.35928907414307004\": {\"frequency\": 1, \"value\": 0.35928907414307004}, \"0.3676218632332541\": {\"frequency\": 1, \"value\": 0.3676218632332541}, \"0.5349993790362643\": {\"frequency\": 1, \"value\": 0.5349993790362643}, \"0.7149985353311706\": {\"frequency\": 1, \"value\": 0.7149985353311706}, \"0.40276625423200285\": {\"frequency\": 1, \"value\": 0.40276625423200285}, \"0.6161280210822382\": {\"frequency\": 1, \"value\": 0.6161280210822382}, \"0.3639544523099851\": {\"frequency\": 1, \"value\": 0.3639544523099851}, \"0.31990507016890213\": {\"frequency\": 1, \"value\": 0.31990507016890213}, \"0.6878576839671415\": {\"frequency\": 1, \"value\": 0.6878576839671415}, \"0.4702153488551365\": {\"frequency\": 1, \"value\": 0.4702153488551365}, \"0.3024118231495281\": {\"frequency\": 1, \"value\": 0.3024118231495281}, \"0.4227260307998013\": {\"frequency\": 1, \"value\": 0.4227260307998013}, \"0.45890322280178836\": {\"frequency\": 1, \"value\": 0.45890322280178836}, \"0.5091574783199918\": {\"frequency\": 1, \"value\": 0.5091574783199918}, \"0.23070456097863884\": {\"frequency\": 1, \"value\": 0.23070456097863884}, \"0.3574723307291667\": {\"frequency\": 1, \"value\": 0.3574723307291667}, \"0.3778773176193692\": {\"frequency\": 1, \"value\": 0.3778773176193692}, \"0.49852815039139914\": {\"frequency\": 1, \"value\": 0.49852815039139914}, \"0.342682136656746\": {\"frequency\": 1, \"value\": 0.342682136656746}, \"0.45794168258136386\": {\"frequency\": 1, \"value\": 0.45794168258136386}, \"0.4434881524725275\": {\"frequency\": 1, \"value\": 0.4434881524725275}, \"0.4421025832091406\": {\"frequency\": 1, \"value\": 0.4421025832091406}, \"0.4284601056134259\": {\"frequency\": 1, \"value\": 0.4284601056134259}, \"0.2493289872533222\": {\"frequency\": 1, \"value\": 0.2493289872533222}, \"0.5220134915031708\": {\"frequency\": 1, \"value\": 0.5220134915031708}, \"0.3543080427853013\": {\"frequency\": 1, \"value\": 0.3543080427853013}, \"0.47121465773809523\": {\"frequency\": 1, \"value\": 0.47121465773809523}, \"0.1779793670983275\": {\"frequency\": 1, \"value\": 0.1779793670983275}, \"0.7431085812628581\": {\"frequency\": 1, \"value\": 0.7431085812628581}, \"0.4081566691505216\": {\"frequency\": 1, \"value\": 0.4081566691505216}, \"0.38871618822891374\": {\"frequency\": 1, \"value\": 0.38871618822891374}, \"0.43053451849489793\": {\"frequency\": 1, \"value\": 0.43053451849489793}, \"0.27252150086934923\": {\"frequency\": 1, \"value\": 0.27252150086934923}, \"0.4473269359393579\": {\"frequency\": 1, \"value\": 0.4473269359393579}, \"0.39109024050884517\": {\"frequency\": 1, \"value\": 0.39109024050884517}, \"0.4316606898907104\": {\"frequency\": 1, \"value\": 0.4316606898907104}, \"0.3507748906629383\": {\"frequency\": 1, \"value\": 0.3507748906629383}, \"0.4240101959745763\": {\"frequency\": 1, \"value\": 0.4240101959745763}, \"0.6262186343005068\": {\"frequency\": 1, \"value\": 0.6262186343005068}, \"0.5277601066468254\": {\"frequency\": 1, \"value\": 0.5277601066468254}, \"0.5457325768849206\": {\"frequency\": 1, \"value\": 0.5457325768849206}, \"0.18781556701903168\": {\"frequency\": 1, \"value\": 0.18781556701903168}, \"0.624168466146559\": {\"frequency\": 1, \"value\": 0.624168466146559}, \"0.11489094324391455\": {\"frequency\": 1, \"value\": 0.11489094324391455}, \"0.30212191953090795\": {\"frequency\": 1, \"value\": 0.30212191953090795}, \"0.18442287162565696\": {\"frequency\": 1, \"value\": 0.18442287162565696}, \"0.48734768811376417\": {\"frequency\": 1, \"value\": 0.48734768811376417}, \"0.388483089931298\": {\"frequency\": 1, \"value\": 0.388483089931298}, \"0.40766183867362144\": {\"frequency\": 1, \"value\": 0.40766183867362144}, \"0.5219999224565757\": {\"frequency\": 1, \"value\": 0.5219999224565757}, \"0.36627368517949477\": {\"frequency\": 1, \"value\": 0.36627368517949477}, \"0.5668486048640687\": {\"frequency\": 1, \"value\": 0.5668486048640687}, \"0.5658906392152209\": {\"frequency\": 1, \"value\": 0.5658906392152209}, \"0.6329341827876984\": {\"frequency\": 1, \"value\": 0.6329341827876984}, \"0.6005621274217585\": {\"frequency\": 1, \"value\": 0.6005621274217585}, \"0.47664968729256557\": {\"frequency\": 1, \"value\": 0.47664968729256557}, \"0.4483196814118556\": {\"frequency\": 1, \"value\": 0.4483196814118556}, \"0.253410505513978\": {\"frequency\": 1, \"value\": 0.253410505513978}, \"0.27614240587259653\": {\"frequency\": 1, \"value\": 0.27614240587259653}, \"0.39211409084151055\": {\"frequency\": 1, \"value\": 0.39211409084151055}, \"0.37431407786191934\": {\"frequency\": 1, \"value\": 0.37431407786191934}, \"0.40684855826338295\": {\"frequency\": 1, \"value\": 0.40684855826338295}, \"0.5464595336382355\": {\"frequency\": 1, \"value\": 0.5464595336382355}, \"0.7263044301295059\": {\"frequency\": 1, \"value\": 0.7263044301295059}, \"0.29718833111702125\": {\"frequency\": 1, \"value\": 0.29718833111702125}, \"0.39001024590163935\": {\"frequency\": 1, \"value\": 0.39001024590163935}, \"0.5278259283407849\": {\"frequency\": 1, \"value\": 0.5278259283407849}, \"0.3045259021577381\": {\"frequency\": 1, \"value\": 0.3045259021577381}, \"0.567558627179278\": {\"frequency\": 1, \"value\": 0.567558627179278}, \"0.39224748883928573\": {\"frequency\": 1, \"value\": 0.39224748883928573}, \"0.6627439081101191\": {\"frequency\": 1, \"value\": 0.6627439081101191}, \"0.5643399777015522\": {\"frequency\": 1, \"value\": 0.5643399777015522}, \"0.23301478794642858\": {\"frequency\": 1, \"value\": 0.23301478794642858}, \"0.49277716049382714\": {\"frequency\": 1, \"value\": 0.49277716049382714}, \"0.4035802445717072\": {\"frequency\": 1, \"value\": 0.4035802445717072}, \"0.5245708005092703\": {\"frequency\": 1, \"value\": 0.5245708005092703}, \"0.5214068709637357\": {\"frequency\": 1, \"value\": 0.5214068709637357}, \"0.6110126357451425\": {\"frequency\": 1, \"value\": 0.6110126357451425}, \"0.23169615548161854\": {\"frequency\": 1, \"value\": 0.23169615548161854}, \"0.3586528835778491\": {\"frequency\": 1, \"value\": 0.3586528835778491}, \"0.5622798084077381\": {\"frequency\": 1, \"value\": 0.5622798084077381}, \"0.16041416445352907\": {\"frequency\": 1, \"value\": 0.16041416445352907}, \"0.37832194010416664\": {\"frequency\": 1, \"value\": 0.37832194010416664}, \"0.20558532826549694\": {\"frequency\": 1, \"value\": 0.20558532826549694}, \"0.490279433681073\": {\"frequency\": 1, \"value\": 0.490279433681073}, \"0.41248672739118325\": {\"frequency\": 1, \"value\": 0.41248672739118325}, \"0.3705955042225534\": {\"frequency\": 1, \"value\": 0.3705955042225534}, \"0.33717184905921416\": {\"frequency\": 1, \"value\": 0.33717184905921416}, \"0.45155067649654873\": {\"frequency\": 1, \"value\": 0.45155067649654873}, \"0.4338484700520833\": {\"frequency\": 1, \"value\": 0.4338484700520833}, \"0.4156652074018877\": {\"frequency\": 1, \"value\": 0.4156652074018877}, \"0.4778732638888889\": {\"frequency\": 1, \"value\": 0.4778732638888889}, \"0.4144952876984127\": {\"frequency\": 1, \"value\": 0.4144952876984127}, \"0.45565277220232214\": {\"frequency\": 1, \"value\": 0.45565277220232214}, \"0.38323160985451576\": {\"frequency\": 1, \"value\": 0.38323160985451576}, \"0.46654945558887884\": {\"frequency\": 1, \"value\": 0.46654945558887884}, \"0.5154911274031764\": {\"frequency\": 1, \"value\": 0.5154911274031764}, \"0.5084248777265852\": {\"frequency\": 1, \"value\": 0.5084248777265852}, \"0.4626420044630418\": {\"frequency\": 1, \"value\": 0.4626420044630418}, \"0.618820791131423\": {\"frequency\": 1, \"value\": 0.618820791131423}, \"0.5059298326008016\": {\"frequency\": 1, \"value\": 0.5059298326008016}, \"0.4085490014130478\": {\"frequency\": 1, \"value\": 0.4085490014130478}, \"0.33034785588582355\": {\"frequency\": 1, \"value\": 0.33034785588582355}, \"0.4810422100099354\": {\"frequency\": 1, \"value\": 0.4810422100099354}, \"0.6187023898408509\": {\"frequency\": 1, \"value\": 0.6187023898408509}, \"0.6767307611219144\": {\"frequency\": 1, \"value\": 0.6767307611219144}, \"0.3654047756270122\": {\"frequency\": 1, \"value\": 0.3654047756270122}, \"0.34538871647966896\": {\"frequency\": 1, \"value\": 0.34538871647966896}, \"0.4805858792846498\": {\"frequency\": 1, \"value\": 0.4805858792846498}, \"0.4552679722017673\": {\"frequency\": 1, \"value\": 0.4552679722017673}, \"0.493400283107113\": {\"frequency\": 1, \"value\": 0.493400283107113}, \"0.24837038310047563\": {\"frequency\": 1, \"value\": 0.24837038310047563}, \"0.3506631335113352\": {\"frequency\": 1, \"value\": 0.3506631335113352}, \"0.5121792722305017\": {\"frequency\": 1, \"value\": 0.5121792722305017}, \"0.42726058638199255\": {\"frequency\": 1, \"value\": 0.42726058638199255}, \"0.5412379685696374\": {\"frequency\": 1, \"value\": 0.5412379685696374}, \"0.2727710698169095\": {\"frequency\": 1, \"value\": 0.2727710698169095}, \"0.2059315195551842\": {\"frequency\": 1, \"value\": 0.2059315195551842}, \"0.4738255247143567\": {\"frequency\": 1, \"value\": 0.4738255247143567}, \"0.289106677827381\": {\"frequency\": 1, \"value\": 0.289106677827381}, \"0.46046703245692217\": {\"frequency\": 1, \"value\": 0.46046703245692217}, \"0.47210318980615373\": {\"frequency\": 1, \"value\": 0.47210318980615373}, \"0.4617657180059524\": {\"frequency\": 1, \"value\": 0.4617657180059524}, \"0.5780524248633879\": {\"frequency\": 1, \"value\": 0.5780524248633879}, \"0.5643574239740476\": {\"frequency\": 1, \"value\": 0.5643574239740476}, \"0.10115419635393862\": {\"frequency\": 1, \"value\": 0.10115419635393862}, \"0.41483051822533135\": {\"frequency\": 1, \"value\": 0.41483051822533135}, \"0.28565092523596625\": {\"frequency\": 1, \"value\": 0.28565092523596625}, \"0.43294367410676443\": {\"frequency\": 1, \"value\": 0.43294367410676443}, \"0.5753598459809625\": {\"frequency\": 1, \"value\": 0.5753598459809625}, \"0.42223818503999366\": {\"frequency\": 1, \"value\": 0.42223818503999366}, \"0.5124453590029762\": {\"frequency\": 1, \"value\": 0.5124453590029762}, \"0.5822452591608976\": {\"frequency\": 1, \"value\": 0.5822452591608976}, \"0.3478095079787234\": {\"frequency\": 1, \"value\": 0.3478095079787234}, \"0.6124104561805915\": {\"frequency\": 1, \"value\": 0.6124104561805915}, \"0.6534573143003399\": {\"frequency\": 1, \"value\": 0.6534573143003399}, \"0.5237056339061816\": {\"frequency\": 1, \"value\": 0.5237056339061816}, \"0.4026350543747523\": {\"frequency\": 1, \"value\": 0.4026350543747523}, \"0.4906306792226106\": {\"frequency\": 1, \"value\": 0.4906306792226106}, \"0.3088846129025853\": {\"frequency\": 1, \"value\": 0.3088846129025853}, \"0.3793168197384807\": {\"frequency\": 1, \"value\": 0.3793168197384807}, \"0.5212897416790859\": {\"frequency\": 1, \"value\": 0.5212897416790859}, \"0.5171988022691241\": {\"frequency\": 1, \"value\": 0.5171988022691241}, \"0.2651733937776141\": {\"frequency\": 1, \"value\": 0.2651733937776141}, \"0.43921718323543374\": {\"frequency\": 1, \"value\": 0.43921718323543374}, \"0.4560469521205668\": {\"frequency\": 1, \"value\": 0.4560469521205668}, \"0.4262385897913562\": {\"frequency\": 1, \"value\": 0.4262385897913562}, \"0.5358323257688492\": {\"frequency\": 1, \"value\": 0.5358323257688492}, \"0.4551057115112994\": {\"frequency\": 1, \"value\": 0.4551057115112994}, \"0.6388899497019374\": {\"frequency\": 1, \"value\": 0.6388899497019374}, \"0.4146802036761053\": {\"frequency\": 1, \"value\": 0.4146802036761053}, \"0.5733225343808462\": {\"frequency\": 1, \"value\": 0.5733225343808462}, \"0.3716941809275794\": {\"frequency\": 1, \"value\": 0.3716941809275794}, \"0.557718525235615\": {\"frequency\": 1, \"value\": 0.557718525235615}, \"0.40135665935889814\": {\"frequency\": 1, \"value\": 0.40135665935889814}, \"0.20269111906917964\": {\"frequency\": 1, \"value\": 0.20269111906917964}, \"0.44632831905116743\": {\"frequency\": 1, \"value\": 0.44632831905116743}, \"0.7895429486924332\": {\"frequency\": 1, \"value\": 0.7895429486924332}, \"0.22261242241585105\": {\"frequency\": 1, \"value\": 0.22261242241585105}, \"0.27896472193347194\": {\"frequency\": 1, \"value\": 0.27896472193347194}, \"0.2643481719234901\": {\"frequency\": 1, \"value\": 0.2643481719234901}, \"0.3359291851923689\": {\"frequency\": 1, \"value\": 0.3359291851923689}, \"0.34410854693841014\": {\"frequency\": 1, \"value\": 0.34410854693841014}, \"0.7799517422182078\": {\"frequency\": 1, \"value\": 0.7799517422182078}, \"0.3365336401596592\": {\"frequency\": 1, \"value\": 0.3365336401596592}, \"0.3950664657839143\": {\"frequency\": 1, \"value\": 0.3950664657839143}, \"0.7239589034450503\": {\"frequency\": 1, \"value\": 0.7239589034450503}, \"0.12659726889187575\": {\"frequency\": 1, \"value\": 0.12659726889187575}, \"0.17938117588932806\": {\"frequency\": 1, \"value\": 0.17938117588932806}, \"0.3862473648313492\": {\"frequency\": 1, \"value\": 0.3862473648313492}, \"0.33437282662692497\": {\"frequency\": 1, \"value\": 0.33437282662692497}, \"0.49112304959598774\": {\"frequency\": 1, \"value\": 0.49112304959598774}, \"0.39623829675099204\": {\"frequency\": 1, \"value\": 0.39623829675099204}, \"0.5188626644409505\": {\"frequency\": 1, \"value\": 0.5188626644409505}, \"0.4070193916855654\": {\"frequency\": 1, \"value\": 0.4070193916855654}, \"0.38666114280241215\": {\"frequency\": 1, \"value\": 0.38666114280241215}, \"0.41084847716240946\": {\"frequency\": 1, \"value\": 0.41084847716240946}, \"0.44449612593539783\": {\"frequency\": 1, \"value\": 0.44449612593539783}, \"0.45337495349702384\": {\"frequency\": 1, \"value\": 0.45337495349702384}, \"0.5344543760890309\": {\"frequency\": 1, \"value\": 0.5344543760890309}, \"0.6846908967391304\": {\"frequency\": 1, \"value\": 0.6846908967391304}, \"0.4301031951127745\": {\"frequency\": 1, \"value\": 0.4301031951127745}, \"0.1844621163523889\": {\"frequency\": 1, \"value\": 0.1844621163523889}, \"0.18266241383683457\": {\"frequency\": 1, \"value\": 0.18266241383683457}, \"0.4337384431944776\": {\"frequency\": 1, \"value\": 0.4337384431944776}, \"0.4623019431525826\": {\"frequency\": 1, \"value\": 0.4623019431525826}, \"0.5509442760368984\": {\"frequency\": 1, \"value\": 0.5509442760368984}, \"0.47914511839523544\": {\"frequency\": 1, \"value\": 0.47914511839523544}, \"0.35558197463768115\": {\"frequency\": 1, \"value\": 0.35558197463768115}, \"0.8092610327395162\": {\"frequency\": 1, \"value\": 0.8092610327395162}, \"0.3576067434799475\": {\"frequency\": 1, \"value\": 0.3576067434799475}, \"0.4666588797734594\": {\"frequency\": 1, \"value\": 0.4666588797734594}, \"0.36601624430241775\": {\"frequency\": 1, \"value\": 0.36601624430241775}, \"0.2368323087431694\": {\"frequency\": 1, \"value\": 0.2368323087431694}, \"0.2024521708961142\": {\"frequency\": 1, \"value\": 0.2024521708961142}, \"0.288821991411116\": {\"frequency\": 1, \"value\": 0.288821991411116}, \"0.44417271710683437\": {\"frequency\": 1, \"value\": 0.44417271710683437}, \"0.42196177968206655\": {\"frequency\": 1, \"value\": 0.42196177968206655}, \"0.5220040828365623\": {\"frequency\": 1, \"value\": 0.5220040828365623}, \"0.4255016121031746\": {\"frequency\": 1, \"value\": 0.4255016121031746}, \"0.4903784775152439\": {\"frequency\": 1, \"value\": 0.4903784775152439}, \"0.4565046812996032\": {\"frequency\": 1, \"value\": 0.4565046812996032}, \"0.41219184674615\": {\"frequency\": 1, \"value\": 0.41219184674615}, \"0.19763653440139095\": {\"frequency\": 1, \"value\": 0.19763653440139095}, \"0.23981891904330693\": {\"frequency\": 1, \"value\": 0.23981891904330693}, \"0.5081865407614112\": {\"frequency\": 1, \"value\": 0.5081865407614112}, \"0.49781117540724734\": {\"frequency\": 1, \"value\": 0.49781117540724734}, \"0.635558584159935\": {\"frequency\": 1, \"value\": 0.635558584159935}, \"0.2912163903378043\": {\"frequency\": 1, \"value\": 0.2912163903378043}, \"0.3261952715077715\": {\"frequency\": 1, \"value\": 0.3261952715077715}, \"0.5694265017422983\": {\"frequency\": 1, \"value\": 0.5694265017422983}, \"0.3549071381303984\": {\"frequency\": 1, \"value\": 0.3549071381303984}, \"0.41534696348733235\": {\"frequency\": 1, \"value\": 0.41534696348733235}, \"0.3155551985198376\": {\"frequency\": 1, \"value\": 0.3155551985198376}, \"0.25996444982613015\": {\"frequency\": 1, \"value\": 0.25996444982613015}, \"0.259783722380613\": {\"frequency\": 1, \"value\": 0.259783722380613}, \"0.3406503042722305\": {\"frequency\": 1, \"value\": 0.3406503042722305}, \"0.36970148912053535\": {\"frequency\": 1, \"value\": 0.36970148912053535}, \"0.4745467748397436\": {\"frequency\": 1, \"value\": 0.4745467748397436}, \"0.4407574981371088\": {\"frequency\": 1, \"value\": 0.4407574981371088}, \"0.47806133434307435\": {\"frequency\": 1, \"value\": 0.47806133434307435}, \"0.5789480529131986\": {\"frequency\": 1, \"value\": 0.5789480529131986}, \"0.6604885766858716\": {\"frequency\": 1, \"value\": 0.6604885766858716}, \"0.5379566865808824\": {\"frequency\": 1, \"value\": 0.5379566865808824}, \"0.47004674501452853\": {\"frequency\": 1, \"value\": 0.47004674501452853}, \"0.611510726686508\": {\"frequency\": 1, \"value\": 0.611510726686508}, \"0.5804372190371515\": {\"frequency\": 1, \"value\": 0.5804372190371515}, \"0.4653854247363089\": {\"frequency\": 1, \"value\": 0.4653854247363089}, \"0.5210585015473869\": {\"frequency\": 1, \"value\": 0.5210585015473869}, \"0.47417280874512613\": {\"frequency\": 1, \"value\": 0.47417280874512613}, \"0.22155720892558528\": {\"frequency\": 1, \"value\": 0.22155720892558528}, \"0.5871774929845162\": {\"frequency\": 1, \"value\": 0.5871774929845162}, \"0.5583833420035672\": {\"frequency\": 1, \"value\": 0.5583833420035672}, \"0.22466092760684606\": {\"frequency\": 1, \"value\": 0.22466092760684606}, \"0.46439074441249056\": {\"frequency\": 1, \"value\": 0.46439074441249056}, \"0.4986705678177287\": {\"frequency\": 1, \"value\": 0.4986705678177287}, \"0.47122489407678814\": {\"frequency\": 1, \"value\": 0.47122489407678814}, \"0.6734072970360825\": {\"frequency\": 1, \"value\": 0.6734072970360825}, \"0.416031232163242\": {\"frequency\": 1, \"value\": 0.416031232163242}, \"0.3141684319398559\": {\"frequency\": 1, \"value\": 0.3141684319398559}, \"0.37308751653636507\": {\"frequency\": 1, \"value\": 0.37308751653636507}, \"0.48071192856147754\": {\"frequency\": 1, \"value\": 0.48071192856147754}, \"0.46733819607530946\": {\"frequency\": 1, \"value\": 0.46733819607530946}, \"0.3718457806299603\": {\"frequency\": 1, \"value\": 0.3718457806299603}, \"0.504847748046642\": {\"frequency\": 1, \"value\": 0.504847748046642}, \"0.4264342709885743\": {\"frequency\": 1, \"value\": 0.4264342709885743}, \"0.4262680936430731\": {\"frequency\": 1, \"value\": 0.4262680936430731}, \"0.4154039815339779\": {\"frequency\": 1, \"value\": 0.4154039815339779}, \"0.6997811139691333\": {\"frequency\": 1, \"value\": 0.6997811139691333}, \"0.24967914501712057\": {\"frequency\": 1, \"value\": 0.24967914501712057}, \"0.693089473129218\": {\"frequency\": 1, \"value\": 0.693089473129218}, \"0.42084955601092894\": {\"frequency\": 1, \"value\": 0.42084955601092894}, \"0.3931907359541058\": {\"frequency\": 1, \"value\": 0.3931907359541058}, \"0.4790322730654762\": {\"frequency\": 1, \"value\": 0.4790322730654762}, \"0.10611264248627357\": {\"frequency\": 1, \"value\": 0.10611264248627357}, \"0.5715479290674603\": {\"frequency\": 1, \"value\": 0.5715479290674603}, \"0.5638806733630952\": {\"frequency\": 1, \"value\": 0.5638806733630952}, \"0.4145938120963736\": {\"frequency\": 1, \"value\": 0.4145938120963736}, \"0.44157938256279106\": {\"frequency\": 1, \"value\": 0.44157938256279106}, \"0.21628713211273462\": {\"frequency\": 1, \"value\": 0.21628713211273462}, \"0.6562395047615731\": {\"frequency\": 1, \"value\": 0.6562395047615731}, \"0.5303482969763845\": {\"frequency\": 1, \"value\": 0.5303482969763845}, \"0.49035870857205377\": {\"frequency\": 1, \"value\": 0.49035870857205377}, \"0.24934370528439126\": {\"frequency\": 1, \"value\": 0.24934370528439126}, \"0.37070417287630403\": {\"frequency\": 1, \"value\": 0.37070417287630403}, \"0.7301741836414839\": {\"frequency\": 1, \"value\": 0.7301741836414839}, \"0.3773672575422485\": {\"frequency\": 1, \"value\": 0.3773672575422485}, \"0.44347279972279974\": {\"frequency\": 1, \"value\": 0.44347279972279974}, \"0.5141327394917636\": {\"frequency\": 1, \"value\": 0.5141327394917636}, \"0.44956576901521617\": {\"frequency\": 1, \"value\": 0.44956576901521617}, \"0.36022579793840037\": {\"frequency\": 1, \"value\": 0.36022579793840037}, \"0.3712885980231867\": {\"frequency\": 1, \"value\": 0.3712885980231867}, \"0.4762778301012846\": {\"frequency\": 1, \"value\": 0.4762778301012846}, \"0.4212188741927471\": {\"frequency\": 1, \"value\": 0.4212188741927471}, \"0.20936584594075755\": {\"frequency\": 1, \"value\": 0.20936584594075755}, \"0.5712156347022649\": {\"frequency\": 1, \"value\": 0.5712156347022649}, \"0.21592182066567311\": {\"frequency\": 1, \"value\": 0.21592182066567311}, \"0.2742224333820721\": {\"frequency\": 1, \"value\": 0.2742224333820721}, \"0.47659564393939396\": {\"frequency\": 1, \"value\": 0.47659564393939396}, \"0.4267680389965226\": {\"frequency\": 1, \"value\": 0.4267680389965226}, \"0.9352386010735405\": {\"frequency\": 1, \"value\": 0.9352386010735405}, \"0.6883546858884084\": {\"frequency\": 1, \"value\": 0.6883546858884084}, \"0.3028434566452569\": {\"frequency\": 1, \"value\": 0.3028434566452569}, \"0.20637953552903535\": {\"frequency\": 1, \"value\": 0.20637953552903535}, \"0.3102285922752111\": {\"frequency\": 1, \"value\": 0.3102285922752111}, \"0.31648016626666137\": {\"frequency\": 1, \"value\": 0.31648016626666137}, \"0.5368607178340785\": {\"frequency\": 1, \"value\": 0.5368607178340785}, \"0.4579850502980626\": {\"frequency\": 1, \"value\": 0.4579850502980626}, \"0.4509850813462494\": {\"frequency\": 1, \"value\": 0.4509850813462494}, \"0.5066085017961629\": {\"frequency\": 1, \"value\": 0.5066085017961629}, \"0.36681573533216577\": {\"frequency\": 1, \"value\": 0.36681573533216577}, \"0.5415649838549429\": {\"frequency\": 1, \"value\": 0.5415649838549429}, \"0.5781024900645803\": {\"frequency\": 1, \"value\": 0.5781024900645803}, \"0.5714173497267759\": {\"frequency\": 1, \"value\": 0.5714173497267759}, \"0.34857703225132347\": {\"frequency\": 1, \"value\": 0.34857703225132347}, \"0.20118182168576432\": {\"frequency\": 1, \"value\": 0.20118182168576432}, \"0.11125558867362147\": {\"frequency\": 1, \"value\": 0.11125558867362147}, \"0.7809455603431119\": {\"frequency\": 1, \"value\": 0.7809455603431119}, \"0.5075953221316365\": {\"frequency\": 1, \"value\": 0.5075953221316365}, \"0.37868524707567436\": {\"frequency\": 1, \"value\": 0.37868524707567436}, \"0.44559740823412697\": {\"frequency\": 1, \"value\": 0.44559740823412697}, \"0.5872619380278192\": {\"frequency\": 1, \"value\": 0.5872619380278192}, \"0.2674805581538829\": {\"frequency\": 1, \"value\": 0.2674805581538829}, \"0.6059189083219362\": {\"frequency\": 1, \"value\": 0.6059189083219362}, \"0.4901802662152211\": {\"frequency\": 1, \"value\": 0.4901802662152211}, \"0.3781631116492797\": {\"frequency\": 1, \"value\": 0.3781631116492797}, \"0.47781968060661767\": {\"frequency\": 1, \"value\": 0.47781968060661767}, \"0.5056653284143519\": {\"frequency\": 1, \"value\": 0.5056653284143519}, \"0.47903098007801614\": {\"frequency\": 1, \"value\": 0.47903098007801614}, \"0.3320869342480399\": {\"frequency\": 1, \"value\": 0.3320869342480399}, \"0.39427174551208055\": {\"frequency\": 1, \"value\": 0.39427174551208055}, \"0.36138571739671477\": {\"frequency\": 1, \"value\": 0.36138571739671477}, \"0.35976268331351563\": {\"frequency\": 1, \"value\": 0.35976268331351563}, \"0.19990510503783354\": {\"frequency\": 1, \"value\": 0.19990510503783354}, \"0.3884957062251984\": {\"frequency\": 1, \"value\": 0.3884957062251984}, \"0.14538506028467488\": {\"frequency\": 1, \"value\": 0.14538506028467488}, \"0.5746898965296013\": {\"frequency\": 1, \"value\": 0.5746898965296013}, \"0.28897191691505214\": {\"frequency\": 1, \"value\": 0.28897191691505214}, \"0.4981992074374182\": {\"frequency\": 1, \"value\": 0.4981992074374182}, \"0.31149153645833333\": {\"frequency\": 1, \"value\": 0.31149153645833333}, \"0.45471233912531656\": {\"frequency\": 1, \"value\": 0.45471233912531656}, \"0.4170772013164431\": {\"frequency\": 1, \"value\": 0.4170772013164431}, \"0.40974046583927864\": {\"frequency\": 1, \"value\": 0.40974046583927864}, \"0.31134058846115736\": {\"frequency\": 1, \"value\": 0.31134058846115736}, \"0.39013304148037753\": {\"frequency\": 1, \"value\": 0.39013304148037753}, \"0.3105960082643395\": {\"frequency\": 1, \"value\": 0.3105960082643395}, \"0.24737961065573771\": {\"frequency\": 1, \"value\": 0.24737961065573771}, \"0.44657899893013536\": {\"frequency\": 1, \"value\": 0.44657899893013536}, \"0.3451345162692499\": {\"frequency\": 1, \"value\": 0.3451345162692499}, \"0.43563018731204495\": {\"frequency\": 1, \"value\": 0.43563018731204495}, \"0.42523696058759414\": {\"frequency\": 1, \"value\": 0.42523696058759414}, \"0.3452648127462883\": {\"frequency\": 1, \"value\": 0.3452648127462883}, \"0.4287392107550919\": {\"frequency\": 1, \"value\": 0.4287392107550919}, \"0.47813763330853176\": {\"frequency\": 1, \"value\": 0.47813763330853176}, \"0.28695203993055557\": {\"frequency\": 1, \"value\": 0.28695203993055557}, \"0.4876344419111816\": {\"frequency\": 1, \"value\": 0.4876344419111816}, \"0.5285940604818679\": {\"frequency\": 1, \"value\": 0.5285940604818679}, \"0.6077876534948056\": {\"frequency\": 1, \"value\": 0.6077876534948056}, \"0.5031717275211127\": {\"frequency\": 1, \"value\": 0.5031717275211127}, \"0.452413581969246\": {\"frequency\": 1, \"value\": 0.452413581969246}, \"0.5150397287254085\": {\"frequency\": 1, \"value\": 0.5150397287254085}, \"0.7720296296296296\": {\"frequency\": 1, \"value\": 0.7720296296296296}, \"0.48313703089114596\": {\"frequency\": 1, \"value\": 0.48313703089114596}, \"0.4270834368046726\": {\"frequency\": 1, \"value\": 0.4270834368046726}, \"0.608847905803447\": {\"frequency\": 1, \"value\": 0.608847905803447}, \"0.43657662971632477\": {\"frequency\": 1, \"value\": 0.43657662971632477}, \"0.4224345659463487\": {\"frequency\": 1, \"value\": 0.4224345659463487}, \"0.39344492125397457\": {\"frequency\": 1, \"value\": 0.39344492125397457}, \"0.4333528537041458\": {\"frequency\": 1, \"value\": 0.4333528537041458}, \"0.3139225502980626\": {\"frequency\": 1, \"value\": 0.3139225502980626}, \"0.332624580812403\": {\"frequency\": 1, \"value\": 0.332624580812403}, \"0.4153262639962346\": {\"frequency\": 1, \"value\": 0.4153262639962346}, \"0.3157486808208005\": {\"frequency\": 1, \"value\": 0.3157486808208005}, \"0.26939704745066445\": {\"frequency\": 1, \"value\": 0.26939704745066445}, \"0.34934106222750694\": {\"frequency\": 1, \"value\": 0.34934106222750694}, \"0.465151096113487\": {\"frequency\": 1, \"value\": 0.465151096113487}, \"0.5312307440558679\": {\"frequency\": 1, \"value\": 0.5312307440558679}, \"0.8320847134359831\": {\"frequency\": 1, \"value\": 0.8320847134359831}, \"0.5187457185512885\": {\"frequency\": 1, \"value\": 0.5187457185512885}, \"0.32465651135005974\": {\"frequency\": 1, \"value\": 0.32465651135005974}, \"0.3960795697667476\": {\"frequency\": 1, \"value\": 0.3960795697667476}, \"0.3361060916542474\": {\"frequency\": 1, \"value\": 0.3361060916542474}, \"0.7475559413580247\": {\"frequency\": 1, \"value\": 0.7475559413580247}, \"0.4131847870974804\": {\"frequency\": 1, \"value\": 0.4131847870974804}, \"0.5507162233382936\": {\"frequency\": 1, \"value\": 0.5507162233382936}, \"0.47401184609222624\": {\"frequency\": 1, \"value\": 0.47401184609222624}, \"0.30199156746031747\": {\"frequency\": 1, \"value\": 0.30199156746031747}, \"0.401457563164232\": {\"frequency\": 1, \"value\": 0.401457563164232}, \"0.49816707029309487\": {\"frequency\": 1, \"value\": 0.49816707029309487}, \"0.3775579388560158\": {\"frequency\": 1, \"value\": 0.3775579388560158}, \"0.38301672557043653\": {\"frequency\": 1, \"value\": 0.38301672557043653}, \"0.28079071969696967\": {\"frequency\": 1, \"value\": 0.28079071969696967}, \"0.21641643132364025\": {\"frequency\": 1, \"value\": 0.21641643132364025}, \"0.3753272182113999\": {\"frequency\": 1, \"value\": 0.3753272182113999}, \"0.4209686778549536\": {\"frequency\": 1, \"value\": 0.4209686778549536}, \"0.6420408465350476\": {\"frequency\": 1, \"value\": 0.6420408465350476}, \"0.48133388431388074\": {\"frequency\": 1, \"value\": 0.48133388431388074}, \"0.7659998456790124\": {\"frequency\": 1, \"value\": 0.7659998456790124}, \"0.2705533854166667\": {\"frequency\": 1, \"value\": 0.2705533854166667}, \"0.4371753912071535\": {\"frequency\": 1, \"value\": 0.4371753912071535}, \"0.4857376272975658\": {\"frequency\": 1, \"value\": 0.4857376272975658}, \"0.38332634841368646\": {\"frequency\": 1, \"value\": 0.38332634841368646}, \"0.4763338926174497\": {\"frequency\": 1, \"value\": 0.4763338926174497}, \"0.33406153952315587\": {\"frequency\": 1, \"value\": 0.33406153952315587}, \"0.4014333852445966\": {\"frequency\": 1, \"value\": 0.4014333852445966}, \"0.41787961837053395\": {\"frequency\": 1, \"value\": 0.41787961837053395}, \"0.4225889815485163\": {\"frequency\": 1, \"value\": 0.4225889815485163}, \"0.6148024353815237\": {\"frequency\": 1, \"value\": 0.6148024353815237}, \"0.4934963363139593\": {\"frequency\": 1, \"value\": 0.4934963363139593}, \"0.461595554755604\": {\"frequency\": 1, \"value\": 0.461595554755604}, \"0.5676759051792513\": {\"frequency\": 1, \"value\": 0.5676759051792513}, \"0.5066530254427909\": {\"frequency\": 1, \"value\": 0.5066530254427909}, \"0.373239980579096\": {\"frequency\": 1, \"value\": 0.373239980579096}, \"0.42055549878616727\": {\"frequency\": 1, \"value\": 0.42055549878616727}, \"0.6063961419753087\": {\"frequency\": 1, \"value\": 0.6063961419753087}, \"0.4640611804520616\": {\"frequency\": 1, \"value\": 0.4640611804520616}, \"0.4046180410395764\": {\"frequency\": 1, \"value\": 0.4046180410395764}, \"0.29172007252897203\": {\"frequency\": 1, \"value\": 0.29172007252897203}, \"0.2381605709876543\": {\"frequency\": 1, \"value\": 0.2381605709876543}, \"0.4422364866704285\": {\"frequency\": 1, \"value\": 0.4422364866704285}, \"0.6562723898419774\": {\"frequency\": 1, \"value\": 0.6562723898419774}, \"0.5958412528708323\": {\"frequency\": 1, \"value\": 0.5958412528708323}, \"0.27790193011046976\": {\"frequency\": 1, \"value\": 0.27790193011046976}, \"0.5055993453973444\": {\"frequency\": 1, \"value\": 0.5055993453973444}, \"0.23206840958227548\": {\"frequency\": 1, \"value\": 0.23206840958227548}, \"0.4601502353634519\": {\"frequency\": 1, \"value\": 0.4601502353634519}, \"0.4261540611028316\": {\"frequency\": 1, \"value\": 0.4261540611028316}, \"0.5035788763035863\": {\"frequency\": 1, \"value\": 0.5035788763035863}, \"0.515443175462303\": {\"frequency\": 1, \"value\": 0.515443175462303}, \"0.3722482174688057\": {\"frequency\": 1, \"value\": 0.3722482174688057}, \"0.3205694409860558\": {\"frequency\": 1, \"value\": 0.3205694409860558}, \"0.27433572985262616\": {\"frequency\": 1, \"value\": 0.27433572985262616}, \"0.48668627542162696\": {\"frequency\": 1, \"value\": 0.48668627542162696}, \"0.5263825196748678\": {\"frequency\": 1, \"value\": 0.5263825196748678}, \"0.4432889225220504\": {\"frequency\": 1, \"value\": 0.4432889225220504}, \"0.38250319838940017\": {\"frequency\": 1, \"value\": 0.38250319838940017}, \"0.28117268005987905\": {\"frequency\": 1, \"value\": 0.28117268005987905}, \"0.38748936599602585\": {\"frequency\": 1, \"value\": 0.38748936599602585}, \"0.21077742556926374\": {\"frequency\": 1, \"value\": 0.21077742556926374}, \"0.4401637791852956\": {\"frequency\": 1, \"value\": 0.4401637791852956}, \"0.21564414509786442\": {\"frequency\": 1, \"value\": 0.21564414509786442}, \"0.4939674624564425\": {\"frequency\": 1, \"value\": 0.4939674624564425}, \"0.43613450654491925\": {\"frequency\": 1, \"value\": 0.43613450654491925}, \"0.4961496468624368\": {\"frequency\": 1, \"value\": 0.4961496468624368}, \"0.5449008711557539\": {\"frequency\": 1, \"value\": 0.5449008711557539}, \"0.3836253191056103\": {\"frequency\": 1, \"value\": 0.3836253191056103}, \"0.47099905303030304\": {\"frequency\": 1, \"value\": 0.47099905303030304}, \"0.563908679398699\": {\"frequency\": 1, \"value\": 0.563908679398699}, \"0.3062044895364805\": {\"frequency\": 1, \"value\": 0.3062044895364805}, \"0.3777890721041361\": {\"frequency\": 1, \"value\": 0.3777890721041361}, \"0.36039143009314306\": {\"frequency\": 1, \"value\": 0.36039143009314306}, \"0.3282888454861111\": {\"frequency\": 1, \"value\": 0.3282888454861111}, \"0.577176548907671\": {\"frequency\": 1, \"value\": 0.577176548907671}, \"0.4883208209359949\": {\"frequency\": 1, \"value\": 0.4883208209359949}, \"0.49200874006458023\": {\"frequency\": 1, \"value\": 0.49200874006458023}, \"0.4103894775205987\": {\"frequency\": 1, \"value\": 0.4103894775205987}, \"0.35378258941013696\": {\"frequency\": 1, \"value\": 0.35378258941013696}, \"0.3740202744659712\": {\"frequency\": 1, \"value\": 0.3740202744659712}, \"0.5796838927476814\": {\"frequency\": 1, \"value\": 0.5796838927476814}, \"0.5235639747610513\": {\"frequency\": 1, \"value\": 0.5235639747610513}, \"0.4484753011674118\": {\"frequency\": 1, \"value\": 0.4484753011674118}, \"0.4876629408605876\": {\"frequency\": 1, \"value\": 0.4876629408605876}, \"0.19576598152281746\": {\"frequency\": 1, \"value\": 0.19576598152281746}, \"0.438199748509687\": {\"frequency\": 1, \"value\": 0.438199748509687}, \"0.48956835258320913\": {\"frequency\": 1, \"value\": 0.48956835258320913}, \"0.41347273375680943\": {\"frequency\": 1, \"value\": 0.41347273375680943}, \"0.6689296930950107\": {\"frequency\": 1, \"value\": 0.6689296930950107}, \"0.5335155721350954\": {\"frequency\": 1, \"value\": 0.5335155721350954}, \"0.40095704800064325\": {\"frequency\": 1, \"value\": 0.40095704800064325}, \"0.6064205515115632\": {\"frequency\": 1, \"value\": 0.6064205515115632}, \"0.7179268623373005\": {\"frequency\": 1, \"value\": 0.7179268623373005}, \"0.1607147166043003\": {\"frequency\": 1, \"value\": 0.1607147166043003}, \"0.5944460671235468\": {\"frequency\": 1, \"value\": 0.5944460671235468}, \"0.5148760125885211\": {\"frequency\": 1, \"value\": 0.5148760125885211}, \"0.3820183899176955\": {\"frequency\": 1, \"value\": 0.3820183899176955}, \"0.472946229550611\": {\"frequency\": 1, \"value\": 0.472946229550611}, \"0.4738916790674603\": {\"frequency\": 1, \"value\": 0.4738916790674603}, \"0.7888301697530864\": {\"frequency\": 1, \"value\": 0.7888301697530864}, \"0.4795125171655455\": {\"frequency\": 1, \"value\": 0.4795125171655455}, \"0.46266586061507936\": {\"frequency\": 1, \"value\": 0.46266586061507936}, \"0.3858599175347222\": {\"frequency\": 1, \"value\": 0.3858599175347222}, \"0.4254353695996829\": {\"frequency\": 1, \"value\": 0.4254353695996829}, \"0.4159341508528042\": {\"frequency\": 1, \"value\": 0.4159341508528042}, \"0.5669266695630586\": {\"frequency\": 1, \"value\": 0.5669266695630586}, \"0.5223697545438346\": {\"frequency\": 1, \"value\": 0.5223697545438346}, \"0.353736824156746\": {\"frequency\": 1, \"value\": 0.353736824156746}, \"0.32039355151659143\": {\"frequency\": 1, \"value\": 0.32039355151659143}, \"0.3337801167411823\": {\"frequency\": 1, \"value\": 0.3337801167411823}, \"0.46116942875544986\": {\"frequency\": 1, \"value\": 0.46116942875544986}, \"0.5542131806930694\": {\"frequency\": 1, \"value\": 0.5542131806930694}, \"0.49887372862617924\": {\"frequency\": 1, \"value\": 0.49887372862617924}, \"0.21484133998228716\": {\"frequency\": 1, \"value\": 0.21484133998228716}, \"0.3014509593889717\": {\"frequency\": 1, \"value\": 0.3014509593889717}, \"0.3619384256362119\": {\"frequency\": 1, \"value\": 0.3619384256362119}, \"0.40219766828117237\": {\"frequency\": 1, \"value\": 0.40219766828117237}, \"0.29294295078379884\": {\"frequency\": 1, \"value\": 0.29294295078379884}, \"0.42347568926974666\": {\"frequency\": 1, \"value\": 0.42347568926974666}, \"0.2638192879913663\": {\"frequency\": 1, \"value\": 0.2638192879913663}, \"0.24323121255406102\": {\"frequency\": 1, \"value\": 0.24323121255406102}, \"0.2395792438271605\": {\"frequency\": 1, \"value\": 0.2395792438271605}, \"0.4017440542722305\": {\"frequency\": 1, \"value\": 0.4017440542722305}, \"0.5891779891304347\": {\"frequency\": 1, \"value\": 0.5891779891304347}, \"0.3213774679201348\": {\"frequency\": 1, \"value\": 0.3213774679201348}, \"0.3781423093641331\": {\"frequency\": 1, \"value\": 0.3781423093641331}, \"0.3287484171625602\": {\"frequency\": 1, \"value\": 0.3287484171625602}, \"0.3505919699602043\": {\"frequency\": 1, \"value\": 0.3505919699602043}, \"0.4396534693321443\": {\"frequency\": 1, \"value\": 0.4396534693321443}, \"0.6354505091902632\": {\"frequency\": 1, \"value\": 0.6354505091902632}, \"0.5561355624653548\": {\"frequency\": 1, \"value\": 0.5561355624653548}, \"0.4299038573966087\": {\"frequency\": 1, \"value\": 0.4299038573966087}, \"0.43145951704545454\": {\"frequency\": 1, \"value\": 0.43145951704545454}, \"0.5212689926007993\": {\"frequency\": 1, \"value\": 0.5212689926007993}, \"0.5893813686920802\": {\"frequency\": 1, \"value\": 0.5893813686920802}, \"0.3783672030009921\": {\"frequency\": 1, \"value\": 0.3783672030009921}, \"0.36151047207446807\": {\"frequency\": 1, \"value\": 0.36151047207446807}, \"0.24626366133816416\": {\"frequency\": 1, \"value\": 0.24626366133816416}, \"0.3624827160493827\": {\"frequency\": 1, \"value\": 0.3624827160493827}, \"0.6927039865871834\": {\"frequency\": 1, \"value\": 0.6927039865871834}, \"0.40332456222056634\": {\"frequency\": 1, \"value\": 0.40332456222056634}, \"0.38267361421297125\": {\"frequency\": 1, \"value\": 0.38267361421297125}, \"0.36532934364133135\": {\"frequency\": 1, \"value\": 0.36532934364133135}, \"0.33284052098857425\": {\"frequency\": 1, \"value\": 0.33284052098857425}, \"0.49892171142976555\": {\"frequency\": 1, \"value\": 0.49892171142976555}, \"0.5291275266617064\": {\"frequency\": 1, \"value\": 0.5291275266617064}, \"0.3228221731519058\": {\"frequency\": 1, \"value\": 0.3228221731519058}, \"0.3627780278523763\": {\"frequency\": 1, \"value\": 0.3627780278523763}, \"0.461647917451801\": {\"frequency\": 1, \"value\": 0.461647917451801}, \"0.6965152291356185\": {\"frequency\": 1, \"value\": 0.6965152291356185}, \"0.5365947901142574\": {\"frequency\": 1, \"value\": 0.5365947901142574}, \"0.4835555167390141\": {\"frequency\": 1, \"value\": 0.4835555167390141}, \"0.4336406327620467\": {\"frequency\": 1, \"value\": 0.4336406327620467}, \"0.6568547928051002\": {\"frequency\": 1, \"value\": 0.6568547928051002}, \"0.4063092138636906\": {\"frequency\": 1, \"value\": 0.4063092138636906}, \"0.49952227618243245\": {\"frequency\": 1, \"value\": 0.49952227618243245}, \"0.5283641074975174\": {\"frequency\": 1, \"value\": 0.5283641074975174}, \"0.6602147656514215\": {\"frequency\": 1, \"value\": 0.6602147656514215}, \"0.29681154443382707\": {\"frequency\": 1, \"value\": 0.29681154443382707}, \"0.4726328495054333\": {\"frequency\": 1, \"value\": 0.4726328495054333}, \"0.4004324321636031\": {\"frequency\": 1, \"value\": 0.4004324321636031}, \"0.7586182847122589\": {\"frequency\": 1, \"value\": 0.7586182847122589}, \"0.4469715011510677\": {\"frequency\": 1, \"value\": 0.4469715011510677}, \"0.515629699686774\": {\"frequency\": 1, \"value\": 0.515629699686774}, \"0.4225955350955351\": {\"frequency\": 1, \"value\": 0.4225955350955351}, \"0.479553188788149\": {\"frequency\": 1, \"value\": 0.479553188788149}, \"0.5052484809027777\": {\"frequency\": 1, \"value\": 0.5052484809027777}, \"0.4099039182998092\": {\"frequency\": 1, \"value\": 0.4099039182998092}, \"0.4792618427579365\": {\"frequency\": 1, \"value\": 0.4792618427579365}, \"0.41653653570013865\": {\"frequency\": 1, \"value\": 0.41653653570013865}, \"0.3429891748366013\": {\"frequency\": 1, \"value\": 0.3429891748366013}, \"0.35566536079986466\": {\"frequency\": 1, \"value\": 0.35566536079986466}, \"0.4454433610845866\": {\"frequency\": 1, \"value\": 0.4454433610845866}, \"0.5160972465078512\": {\"frequency\": 1, \"value\": 0.5160972465078512}, \"0.47523053762986106\": {\"frequency\": 1, \"value\": 0.47523053762986106}, \"0.4760325850720318\": {\"frequency\": 1, \"value\": 0.4760325850720318}, \"0.5446831597222223\": {\"frequency\": 1, \"value\": 0.5446831597222223}, \"0.5008327379941905\": {\"frequency\": 1, \"value\": 0.5008327379941905}, \"0.2729791753700167\": {\"frequency\": 1, \"value\": 0.2729791753700167}, \"0.308979602209616\": {\"frequency\": 1, \"value\": 0.308979602209616}, \"0.6233915395585318\": {\"frequency\": 1, \"value\": 0.6233915395585318}, \"0.3569627732851914\": {\"frequency\": 1, \"value\": 0.3569627732851914}, \"0.608780090657591\": {\"frequency\": 1, \"value\": 0.608780090657591}, \"0.22627584761549926\": {\"frequency\": 1, \"value\": 0.22627584761549926}, \"0.5482857932721013\": {\"frequency\": 1, \"value\": 0.5482857932721013}, \"0.425804358840929\": {\"frequency\": 1, \"value\": 0.425804358840929}, \"0.319568607390873\": {\"frequency\": 1, \"value\": 0.319568607390873}, \"0.24282175084877003\": {\"frequency\": 1, \"value\": 0.24282175084877003}, \"0.37108692956349204\": {\"frequency\": 1, \"value\": 0.37108692956349204}, \"0.23307810949900792\": {\"frequency\": 1, \"value\": 0.23307810949900792}, \"0.3335242020615996\": {\"frequency\": 1, \"value\": 0.3335242020615996}, \"0.37089179841897235\": {\"frequency\": 1, \"value\": 0.37089179841897235}, \"0.4409180854241338\": {\"frequency\": 1, \"value\": 0.4409180854241338}, \"0.3933300732737208\": {\"frequency\": 1, \"value\": 0.3933300732737208}, \"0.253144618028007\": {\"frequency\": 1, \"value\": 0.253144618028007}, \"0.37024015772478885\": {\"frequency\": 1, \"value\": 0.37024015772478885}, \"0.44703767386602644\": {\"frequency\": 1, \"value\": 0.44703767386602644}, \"0.4608859791475184\": {\"frequency\": 1, \"value\": 0.4608859791475184}, \"0.49298296133025515\": {\"frequency\": 1, \"value\": 0.49298296133025515}, \"0.3544283888358399\": {\"frequency\": 1, \"value\": 0.3544283888358399}, \"0.3984058880117423\": {\"frequency\": 1, \"value\": 0.3984058880117423}, \"0.44445762898364766\": {\"frequency\": 1, \"value\": 0.44445762898364766}, \"0.613915675035669\": {\"frequency\": 1, \"value\": 0.613915675035669}, \"0.7620675028858018\": {\"frequency\": 1, \"value\": 0.7620675028858018}, \"0.5883158687282662\": {\"frequency\": 1, \"value\": 0.5883158687282662}, \"0.4716738956832385\": {\"frequency\": 1, \"value\": 0.4716738956832385}, \"0.44927106321676474\": {\"frequency\": 1, \"value\": 0.44927106321676474}, \"0.2777236667711069\": {\"frequency\": 1, \"value\": 0.2777236667711069}, \"0.4746316483955098\": {\"frequency\": 1, \"value\": 0.4746316483955098}, \"0.2413951066036047\": {\"frequency\": 1, \"value\": 0.2413951066036047}, \"0.7245075334821428\": {\"frequency\": 1, \"value\": 0.7245075334821428}, \"0.4075542508917955\": {\"frequency\": 1, \"value\": 0.4075542508917955}, \"0.6392477024341778\": {\"frequency\": 1, \"value\": 0.6392477024341778}, \"0.3901983327203324\": {\"frequency\": 1, \"value\": 0.3901983327203324}, \"0.4251651630704365\": {\"frequency\": 1, \"value\": 0.4251651630704365}, \"0.47254846833472586\": {\"frequency\": 1, \"value\": 0.47254846833472586}, \"0.5777430215262929\": {\"frequency\": 1, \"value\": 0.5777430215262929}, \"0.5864937982161272\": {\"frequency\": 1, \"value\": 0.5864937982161272}, \"0.19435202315588446\": {\"frequency\": 1, \"value\": 0.19435202315588446}, \"0.49031983294290477\": {\"frequency\": 1, \"value\": 0.49031983294290477}, \"0.3292217607460474\": {\"frequency\": 1, \"value\": 0.3292217607460474}, \"0.49247096994535516\": {\"frequency\": 1, \"value\": 0.49247096994535516}, \"0.599085779216256\": {\"frequency\": 1, \"value\": 0.599085779216256}, \"0.3893788034028813\": {\"frequency\": 1, \"value\": 0.3893788034028813}, \"0.4242502314814815\": {\"frequency\": 1, \"value\": 0.4242502314814815}, \"0.23873142876978617\": {\"frequency\": 1, \"value\": 0.23873142876978617}, \"0.40265495325498546\": {\"frequency\": 1, \"value\": 0.40265495325498546}, \"0.5243794661453168\": {\"frequency\": 1, \"value\": 0.5243794661453168}, \"0.3916704299132948\": {\"frequency\": 1, \"value\": 0.3916704299132948}, \"0.31299029541983975\": {\"frequency\": 1, \"value\": 0.31299029541983975}, \"0.20009362599206348\": {\"frequency\": 1, \"value\": 0.20009362599206348}, \"0.49047814603916023\": {\"frequency\": 1, \"value\": 0.49047814603916023}, \"0.33091520077385217\": {\"frequency\": 1, \"value\": 0.33091520077385217}, \"0.2848738317276021\": {\"frequency\": 1, \"value\": 0.2848738317276021}, \"0.3796559155766944\": {\"frequency\": 1, \"value\": 0.3796559155766944}, \"0.3712616883213415\": {\"frequency\": 1, \"value\": 0.3712616883213415}, \"0.31861292225534027\": {\"frequency\": 1, \"value\": 0.31861292225534027}, \"0.2958989037508952\": {\"frequency\": 1, \"value\": 0.2958989037508952}, \"0.18831610158966716\": {\"frequency\": 1, \"value\": 0.18831610158966716}, \"0.3558621305265772\": {\"frequency\": 1, \"value\": 0.3558621305265772}, \"0.4408638381768505\": {\"frequency\": 1, \"value\": 0.4408638381768505}, \"0.4943125155240934\": {\"frequency\": 1, \"value\": 0.4943125155240934}, \"0.24876971930452774\": {\"frequency\": 1, \"value\": 0.24876971930452774}, \"0.40852176264156176\": {\"frequency\": 1, \"value\": 0.40852176264156176}, \"0.38163887609453623\": {\"frequency\": 1, \"value\": 0.38163887609453623}, \"0.29680183708521424\": {\"frequency\": 1, \"value\": 0.29680183708521424}, \"0.45336102625084584\": {\"frequency\": 1, \"value\": 0.45336102625084584}, \"0.38676809488640884\": {\"frequency\": 1, \"value\": 0.38676809488640884}, \"0.3442712214356682\": {\"frequency\": 1, \"value\": 0.3442712214356682}, \"0.3103061841987422\": {\"frequency\": 1, \"value\": 0.3103061841987422}, \"0.5329251147073413\": {\"frequency\": 1, \"value\": 0.5329251147073413}, \"0.3635140589577616\": {\"frequency\": 1, \"value\": 0.3635140589577616}, \"0.4234065824468085\": {\"frequency\": 1, \"value\": 0.4234065824468085}, \"0.3420185978638848\": {\"frequency\": 1, \"value\": 0.3420185978638848}, \"0.5629994750494071\": {\"frequency\": 1, \"value\": 0.5629994750494071}, \"0.4663156488824981\": {\"frequency\": 1, \"value\": 0.4663156488824981}, \"0.4846849387276764\": {\"frequency\": 1, \"value\": 0.4846849387276764}, \"0.48112298387096775\": {\"frequency\": 1, \"value\": 0.48112298387096775}, \"0.47577726355761246\": {\"frequency\": 1, \"value\": 0.47577726355761246}, \"0.22646319642432883\": {\"frequency\": 1, \"value\": 0.22646319642432883}, \"0.32347593461546115\": {\"frequency\": 1, \"value\": 0.32347593461546115}, \"0.35926127019654996\": {\"frequency\": 1, \"value\": 0.35926127019654996}, \"0.2883704359165425\": {\"frequency\": 1, \"value\": 0.2883704359165425}, \"0.3776516879562044\": {\"frequency\": 1, \"value\": 0.3776516879562044}, \"0.4494581191786411\": {\"frequency\": 1, \"value\": 0.4494581191786411}, \"0.281433780561192\": {\"frequency\": 1, \"value\": 0.281433780561192}, \"0.3702769675237812\": {\"frequency\": 1, \"value\": 0.3702769675237812}, \"0.5639549510160012\": {\"frequency\": 1, \"value\": 0.5639549510160012}, \"0.5006949869791667\": {\"frequency\": 1, \"value\": 0.5006949869791667}, \"0.4601964937693468\": {\"frequency\": 1, \"value\": 0.4601964937693468}, \"0.2978051890946543\": {\"frequency\": 1, \"value\": 0.2978051890946543}, \"0.34290875507827984\": {\"frequency\": 1, \"value\": 0.34290875507827984}, \"0.5714614381520119\": {\"frequency\": 1, \"value\": 0.5714614381520119}, \"0.26724219123000714\": {\"frequency\": 1, \"value\": 0.26724219123000714}, \"0.4705408763881702\": {\"frequency\": 1, \"value\": 0.4705408763881702}}, \"mean\": 0.42331994120806044}, \"path\": {\"complete\": true, \"numeric\": false, \"num_unique\": 1324, \"num_undefined\": 0, \"progress\": 1.0, \"frequent_items\": {\"/data/coursera/images/sunsets/ANd9GcQ4xQ4yZJruTBDxeUh-LiXY_jYACdG89W-mgxzr9j2KgSIO-tikVg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT4vXBq1qg5TjzD-_ErJAtxrjoaWhY0CUV2w4--JYGkCb6_R-Xc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRR_z4ZZghtNlcOMSVXHspdDJC-G5vSLcCfCkzsDC2EBowQ0Z8z.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQXtN_PXmBq_Es-OJCsSyXo9TSK4xGqg9lkFD1BcQGvi5AXIoNL8g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSNT5_Cary0HdL3bU9CAsbGCePYDFlXpcbPDwpNriXNJFLgwAq4zQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR1UN0P6GLGyIPqAvAbvXs_rMO8FFu6qR8_3oMPO4GACRol95xK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR1JGV3uLonrDCQBkoAlWNx3hGBB628J18u0G92EqJDcRCepCWM7g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSIQ_UIrGapUQBa-OEsIn0K7FXEuGKMzWB27slb2OBX-BlxUbCu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT7324w-qNvWmStkp8UYp0WYqX9aYmlUXIoC9aacTvEfylMT3jQCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR1VpkRDw_05P_-INAk9QxD7sNBKsmjH3GOx4yAnUKCfmI03PLx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTlOl2S_wTLwSi9yO8vJijOW6smUdcORZtOmI3LHMkRi4tK0YkQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ1O55e0PJcYuSLDZMyl0sP2fja4OJWp09Z2l4mUK4s4LbZlx3F.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRc_X7W0liYW_rSzBWSgD4r7f5EDAhvCxyx-z1ydkxSbTJzzuql8Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRBgpE0OoNVIpp-BUCff3pbzFwOk-XFTUXgyOMazPGqMKY6jsm6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRKffIBraoZOoC5UJdse8bNB2DmqyiG5pLIedP7tL8fEXAFDC4mCQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT-Pl8GaellPqfbRD0IgQiUfzOCbAvoiaB9ZxdrK8QLvZyuiBXW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQkUsy-_l5xFnT0lvU3UkML74uC90uHytfsv7vUQwSpXgNsRyMF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRqciloLaaMlz4BD3NE4ECuHF1AsQMASVwGk3op3kpuoNFNkWKS8w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRY_5EabJ_ldLD7_KAD7L3wicsSIWOEr2FnOJUkbDN4fHQlNolWUQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS-NqLZD5PgFXWdjCd_oh07nEL1QQzJSqI6Rmw_nIkSHPBR7QWU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT64JvuOrtwaH6zF_kWoNhfV3lXS85A9fANobbt0p6SrDMThKFClg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRuMhfwZLezC2TkRwtwh2onoAZeqm6PI77iLiLfgLNFAfsHK3w4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSnlypoEVQ1ze0da-VOZLYGrcNkCbZZV_IW_7OWQgqyMkNRxIPm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRTkOlBV5VS5Tz8Fpq7ALoqmaSfb2JM3DsQXzBAmXrhZu6XBHsj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT-xwT3Hq4lO_2yTYTwIFKkdyQNK8WXa2O9CPzpPQjcq9yyFU1Upw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT8JlzLyo03Pp97H2B2qQMiFVGQ3tNCNxK3Wq28cUZvMx8A9sCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSdVzDcPgSvQHuu7yj81IEunID17xdWskc0jhxQblWXOdzLcHTivQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcST5lihs2QYKw_qrO7AWfHXjcJjiACgsx8O1nikK7uZmi_cYatc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTSmPPWIkUDmp-BTWq8Id8HrkMVBYHXBQ9WoAgckVJ9e77zCGWJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRNxOyKLOBSs75zwEEKlcJ2YG6cZQM5DhFAlmTtCB3dOfyq6LZB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRLyviWM4QHzGg8DyoEjOaKLRQayECrNU4de27xnjOX7sA_R4PW5Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRm-t0PkztEycv-bvgC074deR5luJjLMEcgMX05d7UsSxdbGVoQeg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRn1a0FRSODbYAlzwMTd0VfIzbftWztX1-M38i-lwZ3hK4E2AYJ-Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT0r9PtZmoIND6a4_fXyHMjPx5Zij0UTmVcYhZu8bybskF26c73.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRistxZ06R89j62g3LvqXh0wEVDSR5kvGI0FVZkp0K2C-nNso3hEg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRAE39pX-kqM3Bkru9sqoUJy-iVKFkgEFzKj6_B0zzvwpCHb3dtRg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSr79ZDpuBOGQVQfYNWEAqF9NJ_g8r4RBJGbhxQw2lemardEIoj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ-Y4lf0VySCfoago7CrpHOCl1LHcbHaB2BMf6UvUSkeV4dtoIKlA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQjpKa2FnH-xBsTtCBl0s3VCW0KL3L14kq65czEpf9g-WHETwqY3g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSKElB-04bh4dpM1nCtbyvAfZIeEvdx0QJWr0eQ-zOG5Jxopx-d.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS9UhyOVi-qgUd8nAvq5dE43nCGYrfopTo2Q2G8zfriuh2cHQB-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRuYR6GfC0lbwnbE--xE0xrIYwFIrY5O95ER95aDB65FW9PxyrOvg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR2Br797HCBU2t3D45BjoXhyia3Ix6p0gydlrUte4EXpBPlO9fwlA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQboq1Gg0Q7aTErq9oKiwSq2-X2Hu8lFbelvk6SX25N6SuJ5eG1cg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT792TYFlrT3R-m9qwIjjpJkrLfeBKzCGNr_Vz1t3lo6RM3JXKQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSFW7RpLRBSjtSGS4jlLTzwsow898_wMTXGLG-3AFUKpkhMzUAnIg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTEkVsYqRoEJAFeEaKwcDbtjMDwRUaGw6DWgF6E26nfTOQc_QkZ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQGbFoZJnts-CnU_98Q_QgKj7LBYJMekUryZs9tZjPaQJac9E2t.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSQ68dNzfp47djqV0jYxezx2buJjpA7KXbTdyWPxMWf3CYH0H5u.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTyB-TGHClM8D3sKtzee19i1Y4EJ8CnVgIN4s4svDQniUlrYOTT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSYDlAfzXXON-s8pHk9C2nxxwOm_a0tmonevseyOF80SfrCQXeESg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTDJP7O0DswEDcK3bvB794CWEa3CK5RQ7CQ7Jy5wgIKV-l9O8Gb.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRngY_ccyx-WyzxfA4LH3F_Z66xh7FZ0EsxKZIqUUTZrN6HiaCRCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ88hel4_MLyc_zJjbxGX3tDkb1GCF6aGNx0KEll3c9Cpxuk7-p.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTSVC8EaDGtOLszLH6HHmDDhGAStb3X4ksmXl9p0RkRgYuZxYMP8g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRzUIq8aZe8UvrxIuCZj9PWePG64cllcxjlUZ6_QGrHFvq2XZTcDw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS9yS9sheiBz9Z9LA4cNja35lemyqJFWk_5aw8cO6GCHqT9ebOMfg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQLk343TNtdKIm2Cez0FCNQRoaAvT4ErPHsfbvpo3b4oI7r2TJR.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRdXca4H54CdRDnOKdDE8QP3hUxwz_hMsRhLdpq7wA9ug0LXKHCnw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRX4Inf0Bs1b6tKTjxfbjB17lVF0bMxZuPQHY529g5Sk_o_wmUm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRHJf0o8Xdyd6NQiiHMSEEY38xiVSTKZNL2PAt36BTeHxhbbmRv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQgoESCyh78mLx-hZcuIXYI6n_Vz_BUWgrgT8QCAyIrkI0q4-GP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTQmQg2ZygzDwWmvTDvroE6S0gMYAIPmFIAAQ6Eu4TbDRv6NZKO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQSynaKOEEaZKSa-BJCsy29KzJ_Q778btizpxrE-MOhDb5-l2rxcg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQf_j9m1Ml9rNy-wO0VI5fjq08FyptF-qTc3xgZc_6DUJP7YNMF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS_Apxg4WbRr_Uj3A9oexEYVuXpjOEAdAj7KZ_syk2PuZjUjTpujQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR9gBJFKLDSbaYQfHp7dKMxAToEA4OK7zrI-AADSzFNuhgxZff1.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTWecHiLn_mRLV3uPwlF_oHzAdLlxiPcAK9T01UF1vuaKC34fnm2g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSMn56D5jPJhdQigfYG93O2TZc499EG7CrJSOXohw8s3N4Ms1Df.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTWQ40J2_uxlMIYDYmwPnBOqRRxjmNtQLX-AO1RjFFsFrhcfD4p.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT_f1HE3zt-4oWqAmqBjUIx79lgEXq1WKPTdLemDtSQaEEtUBIK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR6-yF7ns3thAykuqLPccK0KssYvtIHn1FpH9I1OvK5F5C9MK7tSg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQtFjZzNBLOpzTLyt7eWW7hTIvZQni8UbHZfJjiRXohldnMmgsN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT0shDIioVJO9-VH7VvwB-h6raUNYztF8e6BTmCuVG-v2MvEsz_Xg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQUqgBcG0dTb1Tv56U9ElCzLi4PoKgL8fi-Ls8orEVWUIchWGNxnw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR3I747ED1yQr0vRQLbgoR2XYmu9fQQk2fNi2hiscvWzsl6CkGxCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSbD1ML5xGdFxeehQn1IyrxGn7YZ1pi31TOnhZEZoT9jT2n0Yuf.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS-g9IWMWVdBys_Z-QiZqfXgvZopIDZRHQmxd1z2-aD9R0St93O.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTHCmUbHr_3s2fTmBHkFcJ3bfCZVBE82ZSEwNxFOR1kDkdPZMIu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQT9yhx9qwcA4xre40-Cd0tqHd8Zf9NYPlLhGLT5lSCfhC9KrH0MQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRk05mYkqARwt87BQNGJ20BNbd4fb_eaAFd1_hval70sa7P_KomMQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRJrwYqYKJaeSokzbHnmfYMKh_QLcd6Aj-Bjj15bDYIs2Ec2GCO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRIbGO4ChyMvGCZQw3kGZAkycfwnCdO7r9zDvVx9g_iodFCoYBFdQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQzqfPWK-w79rJCAmjfrg9dxh6XxH27jmXJKkrH5qCKjpPWqCLb.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS5YMnc8VJAry7zy9j3AuS6ZuM4sB5Z3KBPOX2_Y93AwU2RcnrIdg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTNhR7eZrrYlIoIG4gX7HynFvlDmviY6_qeh_0m4n7o1t-O0HXW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRsIg2TZl6pjcNPuv2GCitt_8xOri7sS__TPDeQDIhoUTDtLg-u.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRD94TAbd4Pw_uLY2nleDbKnjOAoRrDpt5VxTma-XF0nZcykJJ5pg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRva6jwlq1JGNWDrFy1TNybcAdxtlqHPi6xJe69sY1mSTplhlge.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ1D4YUCLe5MCG4xd5iNJGh2f84w-oayS1Gwo4x_hWGthcKB3X9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTYEThlvd6-SWvTKwHd8ACG57RWCuXzv2a_lVrwjuNoBWkKNlvWMg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQfhua9-COIt17xG2p6f47J4dgNjyZul2peHrstsAK-QmPXwP6QlA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRzPSrZb2y5Y7OPNSUiXP4VQOc9wTkKrDcNI6W_5aKZ7QyPJqmr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS8_4qyvPC67OSdHEm8pLvsET5wqzI7h4NRMvEjkbUpgHox-AZ8Ug.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS1D7EEjiyG9RiPxzzEiQSrE18nKwA4vhRfGO-DOHJ5J0XsRH3jYQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRhikISkbNNtw16ZtAlYh_lZWVh49RCXPxMhd82Z9rnZnwKUWv_iA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQY8AoUx82g1jiYIRYazL3BU7DhLsR0Ydy7V1Y__rQfGyu_OcRJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS6UV30PMi6vrUMsUt80oW_24U0V3ss_z-qeHj1G4RDjEOntSwW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRw5gbjJzEa740rMLMVCZ3fHsOF1yiLFh9ww_Ur3CFiH1t5g6ljbg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT1ktC1wdvX2WXzzV6NCXNR6r4YNh10p7_YUZjtSa_985xvrVT-GQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTQFZ1JVDSbkR5mbEvg8GVjQUhq4QgpmGsfRE18aFWykSucxhTL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRgdPQQJVrj2fpuNjivTrJ6AIEXuQjnCFGR23NA792KbD43deji.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTHTqTQW79cZrRGJqk0NYVXA5BKyg_CenyIuZN90LHrBJtQnHHo.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRaRe67DRoSNEmVUKdLB1WKOuYoB8f0vcexRasG6-Wc7xS6NXOf.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSRG5D5x-DGFv3xtsHuVGIz3GW_xY-si0ifWGTsU5YQ5xPp_QY7rg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSHuWfZw3ed0lL0CM3QhFukEgheIVT6MU4BfFowqxFScd1cRVh2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTgrsLfSciVZ1Aec7QzIzViKPaimxcEg7oeELGKlQomHzGJ7qMYGA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRyPn8zQuDdeVjclYTpPddPBY5Zq8rTRwsLrnUsRgjYaHt8_4AvcA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTTJCZQiwRIC553pVEM4yE4E0kbJZmnqACBEJCi2EcFFeYnE9-INg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSMa-JWx5ShOhIz56NFZqFaMtmhkzQ77fe3xXebLYTiQ2R7kk6b.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR2FCtkUDDAJSQHmIGWbf5qbmcu_gvpPfGg3oN0JOvhScZm9YqidA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ_1pq_ShKuY-P_MT9KaYP0iI5bAo3N8nEV3h87O7-16ykdX803nA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTuwXY-zWAJOdNM9bA5dX67GByAziqDu6xcZyYuxsa58B3o5QCL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSHqs6YPZMW0vVCzRYF36puO5LExI8nvfMqfgpL8IcWQmyQPaT2kw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSDbcpFoMkCOl58fgtIpgfb7JWrNreMW1WygqjrU8xGAoZ9SINbAg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSLRv7bDAb-8uT8vTrEo_AiqWCEQJIsxrHD-hzzraFIFwVNB7bh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRz6-JTUK3KZN0NO36XDooxSuDohUuH_lXBPbfDzk3ctGQzXYWQSA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRlJQOU9l0SJld0sw2foxqfpVaXf9xAvLLxIJ1yT0cUMQequxdp.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQhtgoJuP0f8V9HiZBcOSvMpOnR199auPN3hHpb0i3cYwFkR7Bu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT4C0Vno57l7iFR44mRQ96611FnbaJ49EUDaUFG-xMQ_kxp1hrv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTu3s5CzjmPcZm3qx76nWohsuKq-Bw_cm-mQb9hjaUMJJgzldiO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTcqS33I_uZJHE3D1rusxuWF4bD-jnlUFpN-hRteRoGAr3LcOhk.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSdSxLgfQ2PAk9iuaxwf3WH1NccvJviNVM9cmtGfb-ithLJSsqtRw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSCmWcmt3shlLZXuDJykAz8STRCb0djUm-ME5SN7crkFiSuU21I.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSQlj1oluWyvYkElkZQGpnX2XIwaHRFkEXI6qugdN-PwIV0ukIo0A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQVCkSN-bkBMccPCTTriTuXTURUVZmFeHpvsuU3BS6rDH2hyIYE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRudGwvwxv1UF0MyGZtdWxQ1B0lskqvG8mePsJ8pDy55q_6q0lP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSkeodf3uQeny1qseez6Z8d6VRKudGn5gb18LDGNjk87MNZdOroeg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQwEHHS9sncprX2iQCC3iDf8JGb2fDU36PsrNqYEfcAasVIA97s.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR2xvU0J9rTDVrcFAgtfar2iSk0ENuCgsH7KRmN9Uf6BR-S-GZujw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQuLuliiB-Udqt59YVeF5SvK3lTS-MxAgDFw05EPa4lPtRPwKx8.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSrUnRDuNbT1EKRLgsEokiQtuVFrRECuWQ5RRPeeKutpEP-Imqx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSB7m_Hs3M7ULbD8yPOVa2hzrcdn4BXKAXSTGwRCfBjcsUtR_a5Uw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQC9j1fmFEHdPQUSHgBmUbr_NXDGBHYrbvkkbMTSF4KRq70dqMCyw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSOkZvLfZ7-JLWl-pBHXQdT0qtxyVtgMm9O1-azCLUZb6mALg_4hg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR7_yIhfDd8-75PogDaIQl5o_IyCjjdtK-_k9Nleamfj_owoaYFaw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQQGE7WjywcbKvbEpw-Vt_UAoBRMQqdeAh-iQ20BK149ZhlKplKlQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTMCHX5Rmt8vwZg9Bm8PMZAeCDhaysa1u6Gxkh0bg8rrSB46j9Qjg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSnFHSajFqRUpbInqfk0VDBufL9TsAgQ-SQJvzVtJ69Ywwq2nWdUA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSyQq_eXK_HFVEHuUDe8Vz1s1JwLX8p7Ot1eMwjVM7ohlzEI_ZGVg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTT_Sim1rVl9Md12FPvh6OWmzwoNCVNDk5erW2Lz8hEQFALF_XM6g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSdNeOBQTNbqPuEk5U-TVs8Dln66ujCasf11N1ieUHiEPV2TRVBpw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQwgaehr0E0BHaMthdfrvzNFB2SYelLMFXdm53dxC8gQW8XY0Rw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSgyeHOcKfdo_cdDD9c47Irno1sWvPpp0I6-W_9KMIV4JUy8U-iQQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRvMpbcH6PsDqWeOExS7sT5FMDjICptm0hiljrly-L0TwNeCTkh7Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRhF0P5E1Y-F8FHhHkHJa0ec1y4fa78ywBE7Mu68NJWXMP9RbqXRg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQUsf6AbJhY_H_lU05PyzqbAH669tFNdimaoRRATbstYnhBSi4U.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ6cVDXvUc7jyi9jm328NsCpE4rzieF9ODQl2BF0c3LgTF0Wq7zEA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTzYdwl9Bw3DgkhLfAQSf2z889kTrI0HNL3_E2xbB_19TNP3pqy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTtVWAbD00rzgtOBjp9tm5odGrMlh4l5pEHTtlAPzL8gqDWaia9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRPQowxaXHVSyfep_8onh-Gjg6P1J5Pux6rEUe3Xuq25aeWwn82.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQikmr2viXcTbVck9sUMN4TdxdBYUgT-Dmo3x1ywRTCjPiGllz_SA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSzRSJPYL2agiGFcgon1F-ONbwMbCQh2RtxPODhDybW7hwSAxJA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT_Ou4W1TjRO8y5C2EYhHHYXN8PSWeu5ib8mnsJ6MmNyvx_3SQkxA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR3yHbYMjAcGANRu4ep_KkNYeLnQ1KTeo6Y8TTcYamC0yPmxIbr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRgJhp5m-mUwX02FOIDM6Et00grHg3iU6ADYinBYtB0Hq5moz9h.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSN4oTPrQN20VzmIj-D2KNIYmVw5WFUsxptM7FMrQZODoCg22PJhQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTvEhZMJ8ZR35eySqUdbd5ykZVMHI8wVFBMrIe6ElIen4uG_O8S.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQoc-K2MrYf5JnQ5FhPwtCvYk8EjbYtUtmdshiFi2l6Ds5wLBmUqg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQsj-BdubYPClYe0UPxEJNxZaB0PHV0TsYbJVp-YSyO2TXgd0tD.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRaeznx0MYpw2G7wjxH--CR6zizI1JHEdVwzVnEFZxyJKIvB02c.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQX-WqxXP22kPMu6y7cL59s_AUxY9qXZzrKp6r3u1Zg_U5FlBlr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSUSUcOWTFI60URDQdGPLcL6jE-X3elJpETOucV0HMQdbkcw-t0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS4mRt24mljxTx0eaVGZ5D2mMcKFSBiCJ2wr3kZrHBrgcbuLMC3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRN08p5G0LxBCpNKAbg6DC2AEYDoh0vhm6tPUzTcGNUlfOIx3Xu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRvDqFjrTSGklmx4fAZU0wSkpKim85xSP3847LSZo2SQ9O6DxQx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTfrsNgHkQQB_X7nl8nQRweB7u3AsG8ayjvAssk_5jdpm_dcIec.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSG9DKMefcwHuNuRaSK98nowiOahpPMX5C1LW9SuY8FXj7HLmKN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTZ37HB-ZC2mc1ak1zNwDu0uC6bPWzGswOn6JqGhtjzTthdIViv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTtUbQ7FRfFRLZ6I9bQElBVx7MYfx6a3rPLcrUrGSPwzY40wP9tiA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSE-l2ZDNgl-wT6pSxS5_R9-0-8CwHl-t7MGJqWLxC4_tkkfGW7IA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQCCik_LEJruiEgOtArU2u32BeoQAK29sSEtQC4VW9Km7maIWQWzQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSFrBqxT3v_IaLYGNfcO6zkSiMbmaEIcQIoO5PzozqdihNVI4ejKA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT_Kb4PWm1cxQAmiTVFk84_4id-DUO-y48qsoOq8cxbK2YJN9naYA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTMx2o9t5X0HE48kM1FhlEv-7gWC0WdU47zJZTRqk3wkDcE_6nrcA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS7i2pyRqUqOrA05QkoLLsk0X0Fw0zqx0VGXESNgB9r247-ZlpU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTvEtYMVzjsJiprVGckqV0i2FJZf_ZgxXFetzltvt_1iJSXhU3ywQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQnWPitCRAiuKZ-FXAq29ip3rU4-Nf4SgLFfAK-ncbsNj0lfE1Tbg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSObtswrGM-aiq54fhmvz9GAg8_a1aaErMOfKStL7oYE7WFty9RpQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQe3JTRLlmBK2bobjkG2S2fPFERWhCdsixliYq9irzDnZDQ35X2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSfnN43LgS-ZV2CGROXIbgpd5L1gzVT6BcsS7SxMhPCjy4MoLYI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT7j2yq4-7D0-2yNOaK1EwGXuHCWEnB32UBXqTEhfuD6vCb0uopGA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRjPqRdP0p0ImNoS9Ey2yvUsxBVHjV4FF4KjF5vIDd1ffyDFEjgBQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR_uIdd1kLusskSmpBcKiKZaKDbV5ZmsS1VGqbz8ioNsxj8wSyE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRdRsJaRC6KENpR367ZsQS1SUA6UgAxy2dB8cERdQyRRTrVjUko.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTfhAU8fwffT3Js82RsDeqId0ysM2hUlulyuI2z76GmFd4kGIEv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTz4m-bJFb9KU3iSf2hrQ2-TXBe_F_3WlHrqir0VmD2Gn4-ue2p.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS7blhRNsSJqYK0djsqhdoGstGOnVMId4O8u7xFg3b25dHQJ_wPsQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ-9q7fjHdCPVLZHzTvLPvtklacP7xAO82eCTM2EuOxEL4Sl3qpzg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRWSReylooLl2AR_j9b1JQN48JpaMWqY4lAOe0avHpGyUoUzjuL2g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTHKNLFASu1f6o6TaSwo4_giJjpz-eCENIYfVg4gDCbud1hxVUbgw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSL4gS88i17M6QNE8aJLCaxRL1jQEGfBuXCjxow0LN5_gzcOAkw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTLILH7alPgpjDpYBEd3k7j-D4lMN70quyOkqcTw4QotRj32F7a.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRuxZOEZio9nFDcfasA4HjEdeKPbAuLo99mBfue-qoa_lCcUUKP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS0Kr4CGdiokj2vKhZUp2VT7mTnGrpxdc4qjy5Oz_ca4nFaoSUT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRSDnabysbXffxD4zqQlX70doRpAKqNAgZORnvUZ7L8qMV1BeX8gA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQouo2VICwSfdtLYfPudCwPgUbt5glJ5yxLiyUz5RiyeBnPyEf9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQNiGQ5n9agpOwOAH3GLiKzKBOxbJJJqXZVrNergPCebkm0kfeUDg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQExPxKiafUCJYDkd3CeugMR3vtazHcpc7JiBbQKmUIGsWLsSrA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQpnbZgrtKqtPwGIicxvlxQ8b42efKooxo3sWxrUUPEm-82Rkv6Xw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTOcKasQcJDhGviFz3NdMnC089ZdS6xGEabz6p97KrTRZdfrxME.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcToWP8Aumn9N2xrae8ULQdeIU6q447i_3aPD8_vX_AcRBDZw1e-jQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS3T8g84Ia8QUyryaSkgTVUv8m7Ewd7tjwiBPAfKIZqe-tQu1zs.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRZN8blCOZ3zFKr6pTsrb5k6coVp2CAxEnFydRNyG9iBgYgiNm9bA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS-a-3H6Am33WBrwsTdpKIAciGVVCcpx27dZFxGpkeVE0m3ttDB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR3kr3fEREIme9ZCsVxtMpmx77e1dwT3Se2aGxVj39da9hC54BC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRtdrxnZOg3VSjjaZA4J4UR3eDPU_q70X-GSh4vZKdl4CzYmX1QHA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSPckO-sz2VxzcPUH3uYMEWiLH_yryn-nyR6pCmmIFfQ0U5dTvA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQjPvS_LSPKiiwiczvZbbXNCqlpQK1nAbU5e_Nl1VFgb2fo7pqM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTeaax2ZdxlBMrK6gwr7Gxhg72GMpR1BHKuVkO9b9vYuOtpKk67.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQJ_sQE2fknT5fM8OgP0pBbfVazEfnKsFT6FNQXwgKyPnc76a7r.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRNQDDlRRerbyCVEm1-ixzePxl1WoyDlyDmCPUHjZ1IHis-L44R_Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS4iIkYhCtoEBrtUsmF0aGLBq8WvKcgTsYZA_3sC4XDvlISrlRiKQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSrdRbZclZCqefveeOY-2c0oAapznyC99-SBSG99D33SX_PrsDI-w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQxft4u1BetHXVluPbror5PxaDFwvuAS1uipQ5qMWp8mXUQ7AtG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTI1Daqyo3Nwab_NRukpxh6uHnmHfZ8jJN2XFFGX-GiAjT2Pl6S.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRDmts_La47BKRph6jZvhUOjJ_6fSk_YTknr1UsgrO1-ITh5lDc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTn8Z9n40aoLlay5keUW6y_sfZwGfDZvJdMkg52BQMlKYwFnxLqFQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ2UGVOoL5duqauU4YBT4vfO1Abudb5PAWCf7V1Lc041JVWyBHY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRAhWi0jhErjBGuPtiW8ZPe1eGK63vV9OJPERGO4NkZgxvw4sxYEQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTdQZKqbtRrwT_Z4Tm0mSg4S9EtCIw-C_2yviXZUdLkTsyb4ZER.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS7aD0Pi2tmydeeDL-oYk3kWlrh7hMoXmguvtND2VNdQ5LKntHcww.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRWV1mOycY_Iu6iSwaoFaBcvb1Vpmn2GqmSJl0DVPb5kmzq2lZkIA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQN40nY6Okwg3d6q61keJGFbQXJEdP0ycZrnLYhaNUC8znmVlQj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQKjYb0kFxdKisOvq9WWrpyBgVwCOCVsapzCuLHquSMDZWTadJc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTi7AUTtQu0eJ5396pIDGBk7y78BL0R-RCX5LqiLfzBs52bWvBMwg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSe81J9HiRw_02Hlgf3Wg5cjEPKPJLC7zYU5ofEwPkuJ4oqRRS9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ-yIJezGGCylI2cGGcg9bwTOiVh9iz0mmqI6KVfsdZZqvzBSfQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRetEFfEBk9l66ncFP5wRTocK7O6rgCahshBUrhd7qI_zLi_M-XBA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQgQ-VQAuMOUKMf0EjIdR8zSrgr9pTWUkJdx5-YoD7p4UAm24Us.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRwjKze2v_vvUiAFVmCwByzP4MDpA8iKbVzwifo0Lj2X7PP82mxXA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSmJf46Ko3nRIUKv_o9tY204dv9WDwGs659D8l8tFffkNBsLHpw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQP4Tq8XpBf1phnEOcac76ex5s9AAKbm5dSHiQecNtEr4gfn7bp.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ0W4zSfC1L5XbzSup3sflvvu10z4CDiheIA39HHvAd6ZgcOmaTkQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTk_Y-Gwpbse6DT0TDV4dYWLZaybJkGT8F8az_xmuZ-Vc83Y6Oz4A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT6CTbpKuZDAb0tYZf4niYjJ4NivV2sI5EULVf_qmdwlkWm97WC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTCLvJZnrO_3C6HwxZ7w2F9hQFPLYtqZhMx9qrUlCDtFXZAfwjm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQCpmJHNl41fvMwqPjlEm6X-pHhneT6heju6H9DRz9rBMeSfIwkpQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSFH2iS-YkE5YJkSwdGoSkJemhsqDdTskIdtqx5-TizBVJuzlgQpw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTAC2Eb-Aq_weA9-P17L26UZgQ0wZoatyJFQIDqKNlSN3Zph9jG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR0VcQuJwGzndY5vEXZRocuzdW-qv9KT73qC8KF8oWNgS_GaBJv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTHLgoEDl-1y6QL5T2wxUbrtI32hww3GjFA3oIKNkHtyCjyJPtk.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTAWSpR2wWrdEnbKy9chbDIeKhLUk-CmfaWznIwFHlWCbVTDC0ESQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSz8IpEN9SWDAzga2Qqa3fktA9IBdQSMhnWNhG9GkzCghw0isjy4g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTBp6p8P5IIIkk6EMJtoWlZwAcbYQLL4KQUhI2ni33N4sc4JKkZEQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQEHNCfr8JIHAil_oyHxXXj97VRu5IGMg_cya2sv_QosZ3L0zM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTz0nIoFoXbkh6fWvzqQpPWVev_Wlm8ADjqbQ229WayaRPDZF-M.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTKVZWpW-e_9D33UHtqpOoPH5KhFTtQBFbP92__sizxsGhb5-E2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTyLVfobsMaccxFbympHb9lXS4eZx6YOYMZZ1IsjjaLCfh6mae8LA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTfVUDaZ86wB5mcyeBrB2eB2VXaamA6G60OJXA-8KpiMCix9KmA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT2CvPyKzAP2D_wM8bptjuvwQPcUIjsF7naOayDE-ealJ1P7eIuDA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQbM19ibVFi7quH_Jcn0f1j-FuQteanv_cmL7Cnc2YKAlV3Jjj6qw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT5ZbeeyXJUo75tCSNidy_1HLm8f8F976rsvvau-fvpyxRCxdFwPg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTr8CwCGOs40rWyVDaauY0s1BhDx6_iiY3YTX6QQJ4a0WgU1IIQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQXhO4WLHnzFBjrrXA0pCegOE6_XDXPxpcBKDJv0XeqaHPDoITxsQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQvythiqIChLPcZn79ZBEcgDXXfzrd7piTGqEIAKl5RBxRNDaO9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSEiSDSgl_aVQKr1aECkinki-4Be45Sts2jXLke3c7ddHWpXh6t.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQiMjgo7-6x1D5Jheta1ulJs1XsU7W1UcayFwL3uQw6CjP-5lO0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSrM6CKr68Gh5BufWnPhGeZBxCZiwRRRtQ662Hs8v_Y3u_mPzIH.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTwXuk73vUKQiOdmAiXeh5-snFiHTLRrrEDQw_esvgJYhaN5PiWpQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTqLXRiH2qIM3FaKi9fAzdABWHIeu0VnAfQQPgXAyXurC_nyTPE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTOPdNvrCeailkrwyMwqee3Xt-3soBv-UuJDYg61XI7xP3mEcBP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRPUoI5U9i-gV3zCSgZcvXAC7sMvp6t8v4_X7-GV-qZ03puuBMVNQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ0VAnOVSM7Jt0rWfQAbKAzpmjhY_NRc4Wnsf8VsOG8HSB-dgYi.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQPvoPaOHF02HBVeafeQPeMdqzUG6Ry1t-WX9RklAKwvBPAPdCmhg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRUHLh6TC9j49aZTK_w_WF1UR7Fl_puYAPNBFnp8ygdnlnR0PpQ9Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ3G3vcXYRM3wDt31_Uc5M7aZYoNkR6oz1K3qWfXriPQTml3H7J.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQUPrLjuU9UhZ-CgnGu9lW7Id-uhD4XUZ1Je62MWFBgBzWZjSUc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTLy-Xie5fbgGS4Fu4jgu5z0XndFvVFAjiWUB48aJzPtpTPk4SrDg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSnUN4FdeFFTa5lP1J1_cMl4sERVs5ropLWiuGPD2N6MtSk36wNCw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTqz8Zjk7Q2rKtiynGHuWasam6PNJFkrKhHGXAX07rQYp1TdsdF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS97_PhVMp6bDW3-VBEv0_dRP1804uXcZa4oPGmc2MGHKO23DkKAg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ_MYLHdE6eNM6DwFHygumkXbQc2rymDitibdBJaEUPsJUFg39gUQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSKyeqjnK_KmQfzCTZuIoXreVKIL4W55NGEgvABwPJJYV9HzUczhA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQSOY8p2xvEExee70w66OHQSRbeq23fOzSP89uUgXJtYVt_QMmZzg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRx1ni6aLKtRQikl76R3lgVKGJ_IzvdPw_eTbdyVuh2ZoP_9aAalg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQKdXI1yshDXXRTsCK0nD4dLfoSs5W1XVor9ACDDEZEVOtRjmYTsw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTiNMAW42M_mKmklGLAyakPGe_q8Q2wCLdXz4qRDRAeIfzN0qFP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSZXFaQ0XfR_awa90qZM0a59C9fzWj53y2jJuJXhpRVYe6ZIqJs.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT2HDDzDhmU6VKjahA2yMjwH8rD6LnvHSYkRZUwSMiJFvyohIaX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQWI0-i2RVTI5VcmTrFPTCa4Gz467ceHDQ_lgLPAgLyyvm1ltFvRA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQiFtxzAVVZt6GLVFkuHodHKeiooASlYpv-fgSqnqar6AvWX3KAEg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTNuGI-fXTqx0rMMu9M-WPdEgJVOR5lSvslvfTslTjJQS76i3aMSQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRGhufKgBZb9mFZR-FAd6CHm4TaKH4hfE1Ur-iptzEOHl4s4MjH.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT2xDk-EAeMMyLvt3ubWM1Xlb0GKceohXUaMTxRU7vC7gcrxm-F.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR04DFOem_nOZbkjwX_3BDAXtiPmF3mag5mwdlwAnZH5ceFmGoh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR9ICU23d-92vQ8b2wSRw7PML4oUNP-we8i6Vru_TfqJQ1-GaXO2A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTqUrEA73oNmmbzNMcGAnF10qoJg4Z2RCD3uTfJKUlWAbF72oV57g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSduy5-khNjUhyiOpayhnWVgjR_okAn6tGMgosDETafIhp_T6KeQw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ-QkSjvhAO2PUo4kqHvKKshorQFRMekpYD06BGTtdeCmejp6LZ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRnlrFLqJ6PqoTEHTtTSgFe2PPt3iPfT9fPBm2dxY_EVubFSbHL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSx1q83ETzHI_sOpNAJrhk7Lia6Mio4Gfwy_2sRoXy9mMNA81KA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRiXSh4NU0wV_IJpO5drgYU3fmxUf7tPin5HVtXpGNETgBEZc2COg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcToaQgerrUTncM7JdxNdf0xFUo5Qrjk1Rmacc5_0xhX8qXZC9xjAg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRAW9Y2ZRUvbKqc1QKy1YBq7LfChUB_05oOPAZnBb4G1dKwXsuV.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRPXfXW-2UPoWI-XxpE56S3hI7xrPRr_D4RLEwWeyeH8y6b7nDE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcREZ8Qu_AFmSsVXdHPRPfmj6IHsR2SvUSB1OtPiHvDT0rX9KQ3i.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRfSHu5VJSRdw-FJt0SvftyXF_adph4d8sKhYamjqlwkEzzHVCCAg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRpplyVeK11B8IclQUnMfNPY83GDb1soOmhAfpnzXL2PtpnnifS.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSOIUoSRSLV6kxF2c5x0I8PYodFqN-QRqEr6-oKPh2K5x2gFWk4qg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSju23BqxSF2HopaabMPolqtUqu-SiYkn3Rdhl09c4l8K75bpsQ1w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSN4TPL6_XoTvZeg3-15UhGnWAwjhbxQLjTNiCpWIqMyzq27xIdlg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQpsfbMhUgOBDJUq4iVUQ-Wivtc61X6ohPG4jAXS37YTN1O2c4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRXUbT8iXVa8gEtmHRMzwQoPRxoVX6oYZ9vFxJnBHmBVNVPpVLXDg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRsMdT6CYcBWSX8YhxEPPLH__On0LhTeFIUe5eQUaUHXPZ5c6x2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT18WmY4Dz3h1NMXrYDuQv4qcFDve27R3AaFrB5DvsdptOzQ8uM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTaKg_d8TIonWxRWZ26SMOXPc0cNPcyDZECpHZItz_bBVqDqTlTZg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQki0Rg3JNQ2Qtv4FUGub5YCsk7TFBDMRJZECbBSKKjrQSr-F2S6Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTfaQL2gqBCmF5I_toT4OyHpj2gytvZV9lkAyfk_I_MsHZGX4BO4Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSmOnk0i1UDbGOAzVQ5OUSz2MgHBwHVzMnEyehM06dFMMnZTrRM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQhJdJuTXjLtL2kX1DssvoyqX3NOAUeDryhvokO-w1jJl_0SCJ7aQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSBAjw_xZrRu8mCsEPbHeb9yX81Tp29ouEvTzJv-_fYRw74yNlm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRsY5hQwQf0XE26jJvP8bsYvziBa0IbV4HnshYy-UNhxP3-LEX_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRHWdFeoQcQT5A4iWGdiNyKw9_WLEn6Yvjz0yjh2-4tuw6Yd9Bh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTPYzJN9zOqVMBBBeWRNX5yWG2AyrsPDOnYuSAAkyLu0POGq0o2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRiVGX2-ar-hH2D8GAXCxLT_uW2pQSTLut9T-sF9ITJ6y9u3S0Vcw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQF_DtnDG6kDB3JsWN2sTcKFYB6SKXeC1AZ4gx7e6WfLLBu7R5ItA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRveQvhBeHG-ykC2x12jRPyNYgiDTpqSVXUMVmtXQc87x4AD-Mr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRScYWqbMMB9bj6yLEDc9sVBhKuLpkGX6XDlXUIDvVKeARTMG5V.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRt_BMhge5PoBgMtU67r_8yJdthZqrph3pw59NElnxxaUz4TS_SfQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSTYuNFd36csaxm9nSjRGWmNRc7Xr7in-H-2sK9MbhQsANrtDZ_pQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSDa4NQVdcle7gAw53O1SuSrZ75_jf_BFJ_a5uhOKmzE5lGR0xHTg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRFHSKSdDzATojnUJjjHQ0TMyRmoQH5pNYQZZ-EOykBGr-A9ZEg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRBaacedfTfxlzjyPY2HK0HOJKXVMWRMzlbYt1QcyI1xoWXkpXeMQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRoKWQl2yL_IZzfkdOpSaBL2WTv7Xczpv6gq2U3z4z5Yh7Cl4GU-A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTLfBCSX8kxdTjCAsjYDpm_uJfJJmzBGCNc6mpp7MR3WADDf6a7Vg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTmj8TqS3aLK5dLq8SViJDxSEvYDoSLnVlEX-ql2U5JZ9Szys0u.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRXzeZm9Fvt3_K9JO4w0DKmLEi_V5F05Q11J2tQYklDY1vRmvZ9WA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRMDGzn7Q6CASpoYJyFmR6Lkv-VvnaP_j6RTGdkNpwSg1Zd7Zhz1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSSoLcfatJCURaFfXuIQDvTHpVu2G2eyhbX5K4v5IQ0IzrYA1yp-g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR4IWQcW1SjjK8fesj117_DCqwU6VXTy1-lBJ_kwiVV68Q4m9mm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTiLXn3LPeVYjyJQV639zqgQDS3iRd_3C6Yyv3tGlac7yrhe22Ibw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ8n7XwIJxEZuJkxpWSqAsSxoR4itQBY3-Uq8B7Wdl3p4jvp4Tw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSTvvCIVw8II9PxO0ZGUIc9EE6zuo8UBZXlv3hkLSm2InDjXXZ7hA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQgnAASYgfLOgX7h-lpdM1zHT02V3km28el7IgY3PEw2iHsoes5_Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTIgLXqihO0YWzoDADiCAXv4VYcxcXUDPEKsHsfbf_VmQzAnY8R.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTKjUGHM-l28KKOs3iOEU0nGlwzjdlMPBSMaaFm6lpWliFicGBJjA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTOu3gAq-pRegXOYdA8l1vdn0q--tScnHJk4xSDxkbC4m0tWAMc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTJZsD0mq8nBPsYySvv2yRMDShQ5qBVQ1WJJlbiS2yLmdseFfsc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQd6rdmNd95ZOG0LMAK3osxA_tHAvRE1PPbSNUU3OTiYLpvb8e4UQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQlrygVtbatEwplSAUdifUPKViCYiYA93z9YAGMhSUJynAxyDaK_w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTHYp-5B-A7-fRnv9wXVPuqVRDe874MC664ghfzk4k0_SoEx7PNVg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSEiJCN2Qx2j0hIaRb8nRV7bEqn5Nm9CcALlPdcykgFHSt2P78d.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQV2VuOnacUOwUZ8vqvSL4uaLLntgTRqnPo8bjV-npkgItZXaRK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT3klVYgt9LmkeRD7Xh7zYoTL1ODi6V15Bec8UDDVsmGbLiOzl5FA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQrH-zRM9kZGSjV4dNHPSKdDNMzVC0Uc0G5Xm4nG489N4lhLk1P.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTOzAs3QAq_Qoc4fNV0bj5yxg2UpDoT2BqcSsmj5y4I35UKDiaW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQw-bn0VuKmsAoNMZDIg8Riej90cxMyyu9n7xPgPScu4ciwUyWL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQjScigGm_U88xxwdEXfFdzCxDIDcpTL5FJKg72T6mI8Cta8s-J_A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQrQP3vgcw4ge3kgvcI0cPewZTu-b1jYaI0dpOHd5zLzhWl26L9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQT-YJ3hICQNXOy8uOK7Y9lm0aObuhrfnCAHGsIVz217ZcwSn12.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT6pJk_lN9-qULD2OPNNEovL9uPde7fX6ui_MOuhIg-pihEIsrSRw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSzlib8a-TDBSlQRjw_zRQ8xwDLra_Y0Wr0Xg3k0QdDUc31KpnO-A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTjRHFoo-a--Je9WEjWv4kZCcQiEGUsqGmHF9tYlvTvFm3pQgWcmg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTn9AwS9Spqxp1FrBD9Z0KPDGmOWlG8cbxOmdwqoPBQtqwi-K99.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ9Be07dZXIkJDxc3gxs--0y1lkhBu8B1Lxl8BewN7vK1h7TfYr4A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSGSZkZfF9lbhhkaPatRV7M72psTFqkOgu3br8FIQ7v0RvWCvNTgA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQnxvEJ5AWcEGKUHWBzGq9liE4hyLGsqeiri7qdGxUcKws7U63R.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQqRess069PPw970xOn56aqtqj_1J-Cc1JQ9mR_CzLkwd99hJoz.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS4FBdR6wsb0_za72S0GFppHZfQiJNMDR_Yq1gZLMFZROLw79O9jA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ95I9SmXC9IFFx2H6pbyuMcUuNhtFOBEYaaUvHGxyF0spef8qU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRdcIVau51HxpZ8QzJPdd3-GWw7jh3YROr469VCa4kRt2RHZ3Z5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTcBQtibSlmrtsxXj7nDqV3NN3v58adIb6b-_1EuvPsBiOriLwz0Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTvvulnjWt_KnqyVZ6pDzQZBMDvJru-TToxBKM0IQPDwnlUbN7Z9Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTeUlueEoyAZkLhw2N54kYIZF6YERdtkzEJMfbwQG0p74N5809-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSP6XalW4F-Vc8C1sNbG9Rf-Am74I3Oe428Ykxnzj9RktFNSn0tiQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS_wexCvZmpISLh4XQHK3A4fahgiqd6yW-xQIppzpsKrakyZdNPFg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSDg9qY-NcRkeU-COmnzU9xUltPkE8zTmzpS94e0qL06tfJUEYT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSP7DNfO0b5Qrqw3X7YPZ3MSZx-OruaVUnbttCK2FIDUe2QRxIdXw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSOaFxAOBvJCNg4YU3jX88FMUWFaQq2fat3hsdW1Swm7CNL-1uA2Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS0mhJ2Dmcy5XxDnGRrh9QkrxB1owbKBMu1ZgSvQCItPUjztyqM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRia7CnAZAreMp2vebaxSdcqEReDA_gdlF1Ssd34PXBIGYCpsVFwA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSMxH6xPVAig4cMZvh0907Ot7TPsy_zY3J4wA6R4Y5uuV-Aokh_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSDR121Z4liUIql9P3ost0e7zVae73RUVhpyeiPgXpIhGoY9ZDc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSMhtDdu38vScAAn-_pLWgUsgA0GMx4JDwyfZmBk0FkzgFZq-kQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQBrvTM9C7sj7UndKDmJz4UZUdMe5ZpoHIIEfUg0iRPW1ycM9gsRw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRIO5XaGGaSsupcms5jLapQtaKJMFleQ3rQAspO8-zStUz7oVN3lw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTBel3tGAhEYkS67wnCyJ2iXMD4eTQXqm63uJ0CaBPatWQr6XrQbA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSXpJd9q6pN017Yrgmg5mDARPyjil9hrgNVFCBqf0hhiRrE5IGL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQqgNnAoeWrEqpZLf4yCWmcdrJVs9phLC9me95vy7H8w-OSnUMlDQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQZLP_oAqN3rH2q2BqEGMMz866Foz8A6DW7F8FvWEh3dAv1oga4Zg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTIIpd0qDRpnGpffSCoHgc6iS4q5SgNDoXtAuXna-1WgB7qSbb-TA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSkFIMfFYgdxykOR5_68PpdvMaedMu5PQToEN_yOgodlXhj9lSc-A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRVIfduo2MPVZ_Of2Lw_pv0C1ZhmdfprIX5Eo8cFLi5L0GM_DMZ7g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSIwSxnH9lgwALUwird1I1n-tCMr1LiNTjCfPqt6avDPazRAAo7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTCHXOqA0ZdJGkRtk3J3Jf0HEEvfEXWA_kfRfAVlfvymt8VdFfA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTrV45oOB5At7wMRjY9R8U3dpAC3lc-SIpg33RTXYXJBT1jJMKw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcScNyrHeWLvH7am0TpltiEEJ9CosecsRC1wSlVBTqz9iswJOLjJDw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQVPT03Y6zK6j7ieoWduXIgqiFADBg5Ip1rU4IUJsH5WhoEMWV8.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRs4-CSokZQJFe9vodGC6fK7ouonFopisgxltdHeLmmR85ny4hA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQU7uznQJcsAkO31uom7h_CRvOH5QaL_5vWhdaogGMO2a9KaO4o.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS76jI7qbcacMaAiXHX1R5vISqpzg5jl20ZyDg2xzyV0LjWlDV2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQQTi1KRIWMrxOwyL9rpMRkV8kj0Tp4x_OONaDvaPSgF_smjSNl.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQbo-L9LD8o1IRMgf96ExpiQJrpmX8Vu3v-Ngjf6NbDZjD6xnuYIQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSxE9pCRPDTAaDj68djaUxg_FMSuAPUnjkGvYVZIX2Wa5_3f0Fo7g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRdqKcAMLjhMNaoXf9r1CZlAi3TQ7BBPapdzVVAx6j9dfcTTzEEJw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTG2yNHIlNQ27u-C7NLpgv6Y5SbhP4d3y2j7fsI6NPV9psP3vGG6A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQvVu3Dh3dVBsYc-W2Gcxt-3nBQ5DNkT3OWf3m0wmuTABpbJZWhFw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRJYlbjfn3TkSIIFJZu-V73dNGTjJr56LXyj4jwm3sobVibLkxL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTy7WCGMa9wMJdwS6uIOEJNJpmAJFFU3Et7sw8mnwJ-hDHC6t2r.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSHlm5RONeKRY2wDXDkAxeWQDecuyneYhOSQPIlXHJoNQ3ef_THxA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTVAzoGhPOjBRWyDsaJQDBwAWqwNW9L4Tois0ich9li-WQAL3kh5A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTiEczPjaH_YaVy13meF1zYm7iAivrpGpMLF2Fdzj_nhzeYRjmWDA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS7atSXHWW034EtjjqEjZcbe07-JakiELgsRfqcNFXrI0KAz8I6NA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRMS1329FcoYWKYFFptwpOwqeEcYHp6ZyjJ71VfBrpFjFz4TEIB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT_tcAQPcarZ1UMDICzOI8NcHOAyy4bsk8P6wnqjfuVFoU9nPGq3g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRCm9wT51slz6thEtX4pluaKB-hfTJ1rA2zPPOzs_zC5fy3U9lASA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSt3fo2fcpVj_p2YNvch6kjYEtaA70BnkvVi5VHigute1QPiePj6g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTvMVOx6-_wYBKR6UtJ_J54sii0oUSI9Hn-_s9P58bUgkK2mjkxiA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR_AgfgQdXQkYq4S9yal-xsuvrmU69cXm5nAXV4ygIYFypT9vVG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ-HRsM6J42Mc2BJaSFXbxIidQEep8bjhaHdn-xUCfw91f0MHtE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT7oMN0WlsNdO3uPxTd4L_DBFw99l0WPtv_TM1oyUoGa7YaTN0sZQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR5kTfbURotlgKnQufnlV3JzXcU6DfP7yRmIoTjZNq2DfKLmGEpkw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQnubWNfrZSMTAXzRcO-sVpv8grl5WSVZ_-HcTZ-O8bzc4-5ddp6Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTkE_YCtY2vqJnCmGjEPFOwSi8SvAWZIQ8JA4NdTe92pS95iB1jAA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS7BUM69BjIZYeHl08l618814Q9cPvKrBG31-TVtDQU0voC5aMt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQeLQsxHSSmyUAj-zntq6-Puq6rgxIIABo-qA6i44WdzHBEYZD5kw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSePcE1-787NrrWyn213hYhfBL3Tzfq5ZCafJ_Y7SjSeyqzq-kV4g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQvfKjhROG__B70sgDT-cdDULrvy0a0EEW_DQW78xDsWcWZ6azQIQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRO3L81NK3mTOAs0Z3X4ZCdIag_qhDPKA4CTR5NLpZ465HCnaCRlSHduoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRpGf0YIlkLuwMSZP7_TARa3haJcbuv63SvHLbFelqNoLuRfzqY3w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRKh9cBXVQIqAthqNJG7OGYI_3cdKHfbp-4Ft3iOJNXtTvJrzee-w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQov2JpsVI0UO50J4NiyhsuxMNw90ffXe6U7PCHVJeQFIUKLZ4qdA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTVQKECFc8A4Ueteqjoo2BizGsWmpFbvdLT2iq0VBMc1mahdq8c.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSL1kq5zUHjlrKgr_MU1kVm4k3huzMPR3ifCMgWlswTQIBGPJPOXg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSDevGLPlyOTnLwSlFULki30H2UgG7JDo73ZJKvkJ3BL_HvdQ_V.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT23Os5u_Nm5DMZ6yW0YsYDIMsx720OrxuzF_oGvPbGRo3nXc1u.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ_-V8iCfffr1zv6QqnrmuZfgwmaji37Wg86mHrmBX06OTXgJjp9g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSV1KUlzVP-mrwoT4xLXzNnYh2oaSwma1oQhbwaFTxDJzKLnMc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQIA8sGpTnIG2mQOeFxgwhKLOjYR-chqllD0gryM2CZXRyRSN4jXA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT5RDKdt6F9cdDU6Tiy8uD5vV6NjO7mmK_qlL2qpmAnei_0tsBBsQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR3lAOyj12x1dIz84FNPos5q1lZTz1WodIl5AmyiXxdETj04V5ung.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT4ZPLXq1CV5sLpNR2JRGjczUOM0XAtlysTolk5JftUdZ8TTsr-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT-xEDjTS7Ql7KQXcdH0TsryrgtaUEM9CtTJz9uqfsF3ZsNNAWz.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRREX2zf3MNJrYI-5ZbZQ_TPGKxLchDRhJted7KV5qkXE4HN_hPqw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQd2sLf5mOFuTbkG0CYtw_F6nxXpKUinaiVFbFlmPWNXc9x4BWKug.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ7o765xVKBRmxQV86d_tNQDLYtQDdqTVEkq7NCQaOaNwgKDmjC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRtzO5SYtgYtDyk8Uib5Bws0rR-3E3ZygnFCNgDKWBCNXCqkMrFcQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSgx8rNDq8i6vN1LZJFdDBumHD6XgQyyZOhzCr2cl9Rcq59bZPd.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTHq57PL5KvIcXl6_vjFHO4s-Vyh6rIPNMx9gZxdz1aZleh6Ssa.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTQik9qsmkHwzWe8vIaRicMkXMr5QEhjc42l4RJU8RZYtyjoNjh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT-igiUQ4GwMUXkbkmkB5oAmaG9NXAr0QGpG8ZYMU4izw3-fu13gg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTls-YfRxAXiNTUgktqPd0EHlwuu0TLDPjUUpofidQD-KASBkBH.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSNaSYsUrXXMbI6a36o5s4tzb8NoMOvOsr44-w3G2L4T4YO2wfC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTjRi-M3VmkYXuxYVeTV0gNHaW0zzxp3uzWYgIKnV8qkzq9K_-k.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSM9V2bjoE09QiIsoB23J_W6QuUAqPN8yordVOS9VdrUlhkAfLj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSwW8uc3BYjrq0UX_RYh5KN_WjTTYvCvp7r9JwX_Zzm9YvR9NGENQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTd95IegG1WaYvWsZtF0YpWaAunOSHRbhZafkEXKujKdSQVNo2q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRt8xMt6eG7CaEpSqYj7cXhqOyOl69wd7gH-I1zSNwwWc4sMIwcrQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSQVT-rqk3KPTR7_Ixv94JTElYnXzNsIL4TELisIvK69F_kjC8nUw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ8wY8bTOiMbLlC3qstrkoWFjNkVMnyVUStMt4XdTp8QKAhtAwh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS5GoLBrGPiuLfcmfx7f6G2bylIILMEZ4gEGoBH2Gg7aywsvdjyXA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRupsMunpBTMlCf_kbwy9UFj81SpVUBkgLRK6-AUrSUYkDUa1RMlA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRctsS1SN9Kvcp1j5iMjih4jv9JrbL5xCHMSWSW0na76Q7bQovw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQDqkIaGATpjrQtDahjItrY47WJ_eMiC5IQXhowlHg64UvunTrnVw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQkOr7i4WJFlKnj2ya8i3qMyl2i2OU89mFmDzJnwhG3kST4G3lCOg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSAoxSexQWAkH1UQVG8XZDpZtEetRQ7lI1Jy5VthSLtGrT8yWukwA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQubE2twZZ5ti1N-yG0bg094XrjmBy6vlnFul9SGe6e7b1IaMIpPA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSJDh40W9E0j7O8QUb7B_8aRkDRQ4hl0YSyPUwpfy6hSY3jnf6mGg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQDNJchDVh5pfEMu0TT8RCOIJxvxbiVsVaQ_8btYQ37rwg1boJ-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR1g8-5TPtS8-xtdhgISnq2CzRmZ8-KXvpYNDFXMk1EZOLWmgI7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQQliE4bXzbhUCew8zDMsCMslTL5GCj7dyUZnludWdvlBX4ZnWxgw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQsEAE3mlJ42KwN995HE3d6ZX6O_NFuq25BaPMESm0qiHk5WrwfTQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRrk6pdCQqcCIXSKqSFEtbx_4lo-KEdLpGtwt6jx2mz0AACmS3Jgg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSeY8c9Jwfk8RjsNyf_WsXY3F0msqLF9_MkF3mrS0Aw_WSNfCW6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR7b1E00mp4hxZ-ytqFSUHhDPfiQVpNpj90WRD0T3X3Xc2tPNNI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT9WhnNmdPtNcytlssFw90iB40sfdpPKZOYCYgnWlAys5DglOF1vA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTohz4jLZMHwLOnwnUFl5wLgEPd89_DincOcBDGmKMNx8Und-JTgQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRBsG6zxNj636qTC6HdtTQEMDTOmwa2SaYJfsa-izefJJGC8DGcbA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS7V7oOfy88GYNHRYLO3cBksPcFptEHtNfatxvCVX7Jn2owekgcaw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTF9ARH-rpsMLCFuqS1gnHPVGbEC7sFWSgzQpiy3bX9arvtjfA6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRdZd6pv8D7DBPRZAO9tXy-HAyGSKcZg6Ebbs7l3i5xCfgu-YSC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS10UFYiOANLrUfvmyxoExSSskebKlKgxluRlMmvwbv6zxMhSIdDw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRd8MNs_p8ZWZZKbl76PGzgfucHleKXSqrYiYSKOCuK-T57XnClmQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRbEIlpTp-nSMEbe5X7viJUfjs3F6SC7UH2x--vthamCgTrL43Pcg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTZ6t4jFAnM_q0iUw_rtq6Br1x_kuryPZ8ywiNsZ5YFj5XOlofG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSsbBnYRQuk9NYWznOd74TaTOusHK0gATv27oOeytC-cqP1eUdN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRWyJLYWOBqHNjXB47kNQr9tQtdj60trf8dGmKs0oMYMSfyuQ6v.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTNyNdOG-uznPgIz_Li2B2Ujt9TwEo_GoR6ibh4LAt4huJyvQWK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSXFKPkN-4YqhhBqvOMyENBo4U7jfERlfJWrw4VQV1fpnr1tN5Gnw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQo-vUqELyjz6eyuhbu-8x-uXTRtIipFv3pYlOnnzta5F32Sh6s.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSSc65H4c06aDU9_NWRdHbMDHn69gMyPqnvx5vH76_GFyJ7XRdw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTJUqQ500ELxyNJX1FGPzn6MlKk_s72YATpZR9h0sJ9Wry9se_o.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS4hp--I2GMLfr7vtBTvJYfmfD0IDTbZmWF49Li4wyLo2HdecsyfQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTFXlmnK97L5qPrhHqTTu1hqfJ2cEM-moVn3MjU-IEAHOY5vKBCSw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQwbJ1hVSQxWoEv1yS8zJEnL2ZTHJ60CVPrrtHL-_j5zwgOEw8I.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTc5baxh24bUZquZqPNHya5mZPyfWBLxINMxDl4gJECMyqP_cvUdA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRrY2THnOf9ZG-w6xwOBLS2HkW3svO45XnxDB03Aer4uXS9NFIn.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQrap4YDEaWobDwwjBX4hBrHFMgflYeGi1rtJaGMNWo8mwHGfxjwg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRb8NpM-WDNu3Y9jxvbruIdbG0cO2k00D7R0qeWOtRj5uMinpyi.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQr2cOUBuZ38erUDRLZMTPsEN_lmuIxzFNAJzQX4n7HYpJg-GDG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSy6hceyYQGfeK_rdIisfmhtKVdgUdQpj4Ut-k6j_hEk-ExAeNO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRYHRwMJaKjesS1MNbhNX3XTWnXRstMpSyX9Sqj5iPt7EQbMXNe.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTJuWdGfnuIaugvacc4BkRFjvmdMWhmQhxHaznXgu9INdeX0fAA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRwt8Iwkhcj3ieRMRYPQx8Hzu5y3jgqfTh-Gn_ndxGcMWTwsAVc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQGuNARgogEzk3ijLHZS9WrkXg8AkDuXVLtaJUMM4FrlINsI6-d.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRk7I5V1FOKTUnlGyjPUGYcmnWjMHPlcXcj1YHYQiluikZ8khty.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRAosbhIzOChT3qbnf6jxsnPOz1bJUzqpZZeHnToQ-d-JN6ikTP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTw57oLn0-wQxlhqDZeVhYaDHvX5XQc_JUY-bt9aCJTsLFj0ZpYWQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTbo9kPQwPtXIK8RiLoDrEvvMBa0GSi_v2RHEH-pkkmo0BYpbaM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRdTIRkBm387QhxYiLkyg4JpfuduJxGbIbQUSG-5uA4dnKp906ytQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQyMqF8IpoU6tJBBdmj6Y-Ue4155iY8etszSZDxfUaTXEm_Vu5v.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSSimRraWZAci1YTbOys6Qf2DOJn1v2yW3iBa-fLT-AB3ksqADhWw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQvZ63gsA15CmBL8z3kOP7_haK0lI50-66alxPCSMucuyfT0GRG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSj_93PyGNdgKELgUCWOeyYuM4fhlP-TzgRKPQ564AG5I2CV__RKg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQtEAQ5WEY6aiaaPCPHFZk4z0NGd6oZ5Te_nZHDckoqsLlr4QKz.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRQ_GTqzfPTHNVAcQgik2PQJZSM2fSvGCBwtXBli_hIcicDr6g4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTWXsYFNN0fYA2QetcrF1Irx330m11oMNQOS8Qai34ArGDUROO0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSOCmHpNDLcslEWQtXlz42JgEeAxbxHc8y0n-iGo3OFxLVtmLCOhA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQJ7Zh5SXGgX1bxuhDfJQYRnd-cqU96i8lvWm5GEKxM-5YX9FSIjw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSyiMOZnlbIhCKM8H3R4GJO_QE6HP1QphEG8_q17q4K6zstinT1ZQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTdMpW8nlRg9z0yutmeksirSKvuhAjXTRYOMttAyesbZstIXchO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTyg3kmSMn-sS-EnQwt0R0yO0JvS1aK8Z6gEuQ2x7yEYqcV-vL4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR_5Xnb2dhogi5uACykRMWT9fOgBfLV6-DkQLGjmikPj2qY0FTVWA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcShP0oYROsgoGymL1rVJ08SFOY4VwLamyyaDXraCvTzP8orGm22.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRbLtSBv5a54bV21_ECK_YGtS-ByKBhnbSWxHqkzIezyCsEj4aR.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQZ5eZbzXBjzQakISNtmI8ZeDj8fEtttElUnsK5dBEWrXIOetP_hQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTSZfy56sspDlJKKDfuOOMt42ji_gFMg-3NZeGFeFrcSOOpADrjqA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT3WUeAjR47cYewzzIAr92IvgpMvxM3AZFFjWlqTlDmRGpo9IpTqQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQhkPQhWJ84zGDQm3zFaAgrjWNi75qA7vhqMriM9ghii_3RG6Yv6Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ8aVsiop_6jvwv9gAjF-tM33K00W2nR8o-taJIjEKcjt0OmwlmQQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRya6gAV0-5EdRAbgwPHSkXe8gJBVcInO5FKVTC8IeZloyjhB2aCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRLtyA25Mx1V_GyHmikjCxTPknDSVM2GAe4ix-nw19kSIgbUXtj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTGZtksbDh1hLGGRcLASoAXeRl4Ipisb28wlyRHGxmQ8_THbHZ4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRxPZuvJDhHDukaUG7v6jI_lTVLyfOWW70FPAkEbcLu3CYXozZ2Ug.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQwCy8g7u_D2mpAQlB3YgZCEH4SrXC3prCQy1ZS-z0GaCOax1zJWQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR1Kj3j52NhIyOUgPG22jjCeTHpC-WVEwMXWJZMpablYh8DUO_R.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRQxyP9gryh1o9QPDrDu90z7W8SliPKOESuhUv59bOjigwuMHRWdQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQY71eLp6Z3qb-m8QiW-urhxVeKhGpC_JFqgWDwtuM27BeMyW-w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSwvryAsJHKKwo0Mr4o35iqI-heh6RjtPY0IbiYjwP9gp4csSt_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR-TQIxtn3ateoDJ-pRJEAM5aPFZDSj9CBaYzC7vrSlCNeA_UI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSB33ZBKEQhT7tZCua7rhuHepu2i0tgPIKYpDsuF8rJOHs-9b4MBA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQoM53rcZqmgRIhe4pAUYFCqpvLwlfZ-8TLVkE0Q-sn315dvrt0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQPJ0iuiQ8qo-lR2KspwEG9LZLuJEdW1oWcLiDbOxo5Ik9OB54kew.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTbaHCJ9EQZiSdqlN9qJ7Y1WqB2sVakw9rL3jFOS08rBKwWf3F61w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSO1N3EzBmkWq-WzZzT1ZhlKwnrhAbcLtwDUp3BLVMiQqVRDfSp9Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSEMNyKsPy85BbhqZ8Rhv0-hyHQnOyg9j51b3eVvxPOUywjAvMK7A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTwqIRCj2HdDugOjXQtqJaKyd-NvFIA_GVRUSopPjn0ZgXbft5j.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT64GsHYdpOAp8C6Nbs1xkwERtQrkJvNBFErKbNTST64v6x6oLBDw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQIS2RU_PZq42U_GTFHX_1xiGrnivKj8cmSs3veQRqZd2eibWFZIw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSiBjQ2kECFhcnbmNvYxANJOavo694iE4FxW-AFunvt7B3z_sgc1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ44Rr7AMWW8pt_rVDDlyrvaOZvKxTS4MYbDxdanNe8I_mZavPQ-w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT8TKLkSe9y1KQ4NLNc70Bt6nA92lGdMft1dtckji3fqbVJpNXW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRafWJBBnQ-t2fB3bc3TRUlBgd-wl1cHM0jVPxDkyBoOMBQaHIhSA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRP9YApifU4NkShTN_1tKaigNsjKqVWmr5S7wcTRlZOMk1apVlXZw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTyMBxgcxYrSutKkK-OhVhet3BZxZEq1Uqh_tq_EUSZq8JfhzOf4w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSH2HgdUsSkJFkvdPwzw2dZWjI_6spJPDhZt-8GdgLTV4KEfO54.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQwd7IxedqNJgL_XAfVMmljq8M0-bb_6K49SHK2bn8lbpjfocJ1FA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQndGVJcrDZM8cBi69myoXRvpUdKgHyJ3RHqcsVwIU6jBroqkHB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSfgH0w3HIR0J7yhFdTrWai5f3K2dM7gJJWp79vl6gylwCwXYZXng.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSCyu0TuwbwaCFAG-HJl2-DyPOWS_RP6xCU7of53ofEmsE7oWSwWA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQTnYY5oVmftLKjFp0CQUWrNAG1hZwVFK1-CalaNMKXwxgmSTzt-g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQO3YqxAxRhmweSA-P7cG65l1ks-7FI796UhK2q6oFy8mCOo3tK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSq31mDKAlsS-JfPdtgQeu6WA03m9W9p2ZokTU2bKADt2hfINCW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS4ZL__Cf8843CbWSYvNqElFDBckgLlLwSWff_VoySGPQkWSLSxew.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR2YdeFWljyAemRcTTs5xhnn5ksn5miy_EWfy74GsX3WWEmrqpVVA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRZY5x07-GUlyC9JOYmwnkwXa4LbP9jKiquDZX-7eNfCgQPusNfUg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTlr2C5MS8_xwhpGYPhsgHr9gkiMPYXaxouwU0dhOk9kKvVIFDA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRKx8R5eTCE0V-_ML7tk0A4NtFf44rTP1qphSJg_QhmytkwtORn8Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR2BZ0snngDw86HEsaNEqGgL0Jn9iKyN0Y8KS3esqjuTME32kuCGg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRQbE12EgjEuvVx66QnSlux4dVTv7NcfBOb3jpUt0ba96onmi2stQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQy4uqZufq4TT9jM4tTHCQb47MU6PK44gaL3h-WYjvxq4HQU1yUPQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ4ARLxql3H0gL2HfnORyt5CORfwUcBGyYm6QbZ3LoQD2mM8p0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRrsYudn9XNsCnicZV11qlO6SpUqXteM9_gSoUVphdJ46puoVKBGA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRUzIv1WgVl8Z3Osprgg9cYGKOuTdH5zI2ohrSwHFGQsITp_fR1cw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRZTqtm6b1WF3g9JZQvk5ZUlJXR_KHTxmR3O4bQSGZY0KQR-MWX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTOaKEB9qV4rD_N6dPCphObmo7ZI-SO_rwqlXBdff0by_2x4WNl1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS3IELU1SG7zEDqSMFOaugxBfwBr4TculkMTS2Xt5HxOTYpPTzu4Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRK60zs63HEp4FdoYxIx6mp-ApbN4XWEn4liy-VBVoH400LO_ao0g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRYhTjJMJ8KXvKiqCST3iRUn6pP2tTm7fYBWbJ0Gqk4KLJoesxL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS9ossXh9RVcWDE1Z79wb5M9y2zMgUwVf5TByVjR7c8Qjy4cqYuQg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTqE0FQDwxjWwBI2zRAmjX-7JWiYXuAC06YhYMydN4dTBaDSPDx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSdtvgt-kczCFL5g6TJaJITuq7x8SWOezJdynd_v5dPRoRlMu2b.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRZLdhJJZCu54826soWFnpsnPGbKByH2rlWapAtjwnr4qUJ2X9O.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRpxih1jC_P7wwqld3Bu5AOhLKadXMOctLMczdghrpZjthXXXMe8Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTwXncEHnoQOSQI_MjSkmlvnGTwlFt91eS3KsxjYC36xtIZIqA9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQHnV55FGsCXu1KyVOwBF91xKt7tcSmFDAtF26sDNBxtAqDpwKh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQiwXUivlncq-lw1R93qyNzqdaXNp6StkDzqxfdJ2UkZMuXmlZZBg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR1ZoGvVPetGeDhINF9g8ycjdvPYWiGSduJNTFLakwsET9Y9CJR.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSh92mi4dV7nLmhuLeCJ2WPFdMWE68GvhV-lPoW9gvZ_sCMu-uu0g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRTlBkCs6ILmDyfytCztisiE9r459O9SbJYxvNoX95wO6lwCJdKhA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSaBuhXc3WUNbaIybmFyQuOOkEi1_umwAXQQJxUW-BRkjB9rERY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTrpoKksCGyesTLC9x70iRFm-k6J_3qDErchUql61WO0jJrfwov.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQVSV4PiEMenWys7kH1QVPmpbV43zbfTdu9-hWbVfpeAxbq8XVQEw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR4QsQWoWCMRiZcN1gl5M6pJpCDTJWK7OjPw5eg1p9uDNnci3ZJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSIZz2mYtQ3EjbDNQT8rHDT_mJpB0mgcbSqC76j6p1QtG5FgtsV.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSPzH24lQ6COOFqiRVH9-bPPHnJ9TNKxRbAkfgO0i04MppOlYpXcw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRcuf5UX7wSdZVdbeIWx_MO6GMI4Hb0MWzjk0ToNkF_RrbumXgJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSoY6UmKlE2a0UecZlWYOufFbnnEiuWiySWntEw3OWMKLhCiUj9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTHczGw7zjMiMhDkP4Zfc2w2-659tJrIBzBMSxELfJwPyD8g91yNg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQRrtET-55F7Wa9n_NGyHnK04gALPx95nJjz7gQP5OCEAvNq-BG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRt2-lSaF3IVpPxHyptyAJQ4XgGh-yrrUucX7gWo1dKafo5604W.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRnL5jGGaGX7Dka7rBiS0HB__vIdktwTv69P1FOB2a3eZ_A7-E1.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTFFfav7_seUSXdLVgHizIPUy6glnJXQHDshv_f3QxD4EkVzYhq.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcScT9H_kU8l4mUKBlO4s3OyLEWVjQt_nAoORdMMtWbLlb502rfE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTt0raVVCU2WC6sIG15BdlijyyJhKdVehsPGj9J7tIz5EQ28Ry62g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQy38SM7FPIdFOgJx-lxE6jYOZ8v9mlBvOkkCzwi37uQOFk_ECWIw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRmGhuHn7UQfIpL0Q8mdNb_L1pNH1NgSIKnT-3ypcTGvAfvlB7C.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ0XNnCueBMO1yMQbMIEjA9yy0dnDGTCa1N1LQ-eyscY_louA-HuQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTFjwHeoGNSY2FfJg07ze3JeoBwF-bMZs45KLbUoGvLSfCqCZEc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQYXnPhvKwOXyzG0U0XULdrnt0enuJADhuDuo1UWMFA2jV4lUu6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR4JQUjD9Xc0Ff-ur2ndc5B6t2OUubT__vroUH4mNulqx8Gw9WF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTH1zkmVL-2T9BScz0rSBmpdT1vNrfX4yPmFpe8_I7BGjNUot5BLA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTUvZ85G1tWhTmRY4AL_H-GOaCNJ9OkOF4DLu4pcj9HVFdnEnIBew.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQDQ1Pvj82zVMLL0-fImRm3XV_NpctgXMkKGgrvKORUeuocfkopjw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQk2r6zXi0yhW9Prl2Mm1kXaw_TicQ-V4cLaVfEbLv9HbSvZOIW3Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRL7W04upsKt4IWesvk7fok69t8eCeG7lP-hDWkruqmNY8IvM2Dig.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSOY3BdlsjwxzX2e-i8mOEjpw3vrAmaZsaL7lACw6u1_JhL1cYC7A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTLupkjbhuH_S-Af9Z9c60emTcK1TWw2D4GLYjuLIEpU-kX5Emxkg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRc5T40gaTFXFPajGTERo8yP3KDa9lNo1i7isFxkU12Rn6cdiw_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS3jzoIsv2p_HUHs73YnXUPLV7Mt2TPFz1y0sMga1R78Do0300w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSgfb6vdXkmMFFSlGOc8VCmyfjrucLa_KcYvM3dIwFwgYxscZsR.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQQrhgUMog-BNhgTpdOft_jW6Ji5SoVCTphvbXjCIyHkf6qydfS.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSkdFZOFyQXaOuq1mX98ngT_yxgeGCSwT46sVEuMXA1Dhbem_R1Yw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRx8MBzZDR3qOzBhS8uTO3hQAsIulithQhpQtFt7DTBbtDKFQk5GA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRRGeS3amgQVKRXfqXQJ4RnDnUNTBapZiTIn_7yg6QOQASWSXl5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ-6pQo9fg5S5QMcV8N8J54yYqrubYCWw-bq4-Da1Ku1hkEJEO3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSvFSM-pfrRtxXkUiyDbkfgBgIi5nRIwCcsYXyoAtWSLGK5vEEs.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQA3y12z2JUN3_1BvTjEYYIMU4VrWowaufHSfp-K8r2vwOUpQ2JIg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR3BbPwCp6S8KfumE0k55OaqOc0aWfn_aHEp38tswI1PMwLrk6o.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSZHjVYNhqBkLqiVWP-a66uZjnZQ2l55z8JvGBar3Zr72LVEFwn.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRhctwqFlTW4SXNqKE8VoVHGjKMOE2HoFFtGC05hNzoVnShgeHNlw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSoNon1-0agRd81zDH-MOIirACdGOqK0mFojeyzb3_f8-KISlbF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQslwfto_62zMFGjxv03059kgdQLmjbij-4NvJqYvYXDzcG_NplpQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTEJBsn4QGxxowhbRcYpARm3bXLCQmaxukEbfswDQ1JUieggjJ0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTqS1HzDXNgvl4rD9G1PfRTtHxrhTASGJqdMPF12rZXQYw_qWJV.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSofQT7QhkY4TYmt4AS4F6xapxwV_BJRYRtCGkP5jetoh_MhrrQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRB4_bqmD7pcTZ4BuTVUFdSLFHms-kc7FZCJcJnw9eDFcHrqq5tjg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRK5H9TMSepTf7PMyj5hkGia4ysBRH2yhe00OqWJroN4C6npPVr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRPinvcLyKfPxfFFXFVfY_R_06U0a-vlF_MVeDthlH2G_CX_lk3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTtCyhhJuVSf_54aEwZFezjnFzIQ4AiwGWEKfkKC3qQqq4zSHaB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQnv0pUXS5Xl3ky7Ku1rCSQZrV6LvuoDwxdWXXc2wk8eNT28i0C.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQtJeBbVmmnq6My_Z22NC-bKpmkzEX46FUOmrVG-S4rqwK0gpD3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQnZHVefsHYMTQ0GyJSCnmQ5hCQUHpz9a42Mo3c31GuZeppOPKHow.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ94dpmqwIQQyYMSOl1k7vjsIQpiYMCtquwrc5eHCFUSlZgI3Eu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQl7FBWMWiijWpjI2sQ6BGcRwdQAD6VOxlpYJ47SZljOtDCum86.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTPik6LVXSEPS4xuajsIibwNGf9XAvx2nDc10s4ZA4AmhTOlRWb.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRBD-xPxUwT4AbDd6tvoiYwfndzkweqH6bkkAVwU563D4AL_9zWQg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR3HX9zNOg_leVURJluUFFG7rc0hs9XD8EQ4B38ZhUR895lq6qv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTcFueHS7VPx0S_80dKogvj_0cFO9F7Mgr10g5QoWV9CkhrHiyNAw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRB5srqV9w9xebsPVXqCA0_-8WtMkJZGKvtJelI-bCvMFxSNy7-Zg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSzuuuX4HVsno6mhTTz080KUdvaOLnVwZtSlBblzui0DpTIEJud.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQhbVM8cF4KBa_JbNfaoHB2FsHlr1jTzvuoY5HPqrDD9FPC5_aTEw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSjatyAEIjNl_n6jki7T_MZEbpX9dDbSl7LyHGT1cuUkzWDRBSh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQltg7ksBMOTINiXB448-nTTSeBwZWzzQLUaI53Xtewd_WDqk0G.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRom0Q3KUY_NAuaVJmpsoGHkBC7xhQWSbhMYgpbkP_yeBd71NQ8.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSuvdGMcRTENjdCg0Bz1bBTQDuqEtwZrL6KeJDBBIQxtFNx6Kx8cA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRgY4kA8zyjMezKG7Fhh8jwYO7R8YqaMEu6fORGUhIXE4dT6UCx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSF6g-GHeOdxrHAVsAMN1xAcTBjWeMNDUVDQFb62IzBDGGSdRlX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS5RMMQsu9ognNCUVV-eROtdtRFWB_2r0NcIS5Z9Qee7v9dha2n.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQKjLqmbb_xkNt3KNgpl7KVztn8YYDRsfZvlVDGCkusx3NFH6xyCg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRw4TDxB7GKkYu7KnzXa3a4WPQ_DsuZWX_6o3fpgwGE13CSW_i3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQnLG3qS2zzZIqacY5IlCixrjjrGUbTbJ10WPnGcLqAIgfvER5j.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQm3Dvfoztf_kp79I9Lr487O3KOFJeo9q0E2TmbrBr9hz9MgKcB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT3u6dOcAjxdAOnztCDRIqO1oyDZGaF9vvzqA3YXPdwvuN2xjsU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSC-Nvc83AM7j8HTRFzNaZ96BSW2fV2krOC3Uexm68xsRbJYkXkPQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTMop9vIbHspJagFfcOHs3tE-4HWrCGPwjgSQ7_1Rgf8dQVcU9N2A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQJDQ0mAGwOOV5vY2WyJ5LsbX3wpBFx0VsDW5_xFCCC-GXU016Lqg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRzwEYpXZO8ODQv0-3S9bUk-EqvjDwbIQtNmpHb_v889nXFPFM6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRkvq_jSrRFA3ZIDA2Nd_zP9VgetqlJyACwdyF8UdIVRmoPTreFZg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSAcmPvwZA4Di8dVW3QN6u0CmH0A04NXLEHUyq4OfV0vHScRhOGeA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS_DbJtdEdKBAt-u9YvnuZARgNkZmI18Kg6KEfqGkH7TRHkRxig.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRZt-NP2Cdsy1aXO_RU-BKheQhrraY-qxtS2Yfy90RWGAoiEcXL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS8Qgl5zQWKn7ZuH-fbdiP-ETzBAQa-NqBeBoSU-N3ltarwBEri.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQPPblWWxrx4M2D5LjUqOCcs_8J7CBgnHv36Bpw3HT91ParVXSt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRt-EtR7nBhP8sQ-ns7QovkTbYV8fY08yhjVicOPXzcG-c9EfYpWA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQISE2C1lVHBv5TgZeqxBOmUFPjAfHbi2ISgqNwPoUGUOHVs9SJXw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTjL4GhUYW-8KE1n8-Dyki_PRaBjBti3xC0uHC3fbtzEwphWwB3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSRb3OXTt69DIbG0ZDr9WhjwE9LBrZsgE5eqcOzlzJ0-0zDoQpw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR3sUSFf72NfRaihSn1s8iIUHIFjISWVl6FFISgexWXThKw0N6nPA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSO6yOHCDXtlz5sweMw98Uo-expaLI7n8fr9XsK7Vf1FB_am294_A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRHVHvmMxZT82zcHItbj0yjK--9JhmO_1_2FE6VV1QW4OMwSi1Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ0LcwKTh6gamDdTTGWPMDR6IITl-Ryw0DSNbwY0oDMmeUzjm0g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRQrSkTuTrV3QJPvG2zpovMFVFmdFNo4vILMXHDSajFAmD4Leuk.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTDLJF7GDF852X4DMQFXYk7iizSTGTKklKWnRvspJ9VeFKIzSdt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRA2IsxQfsCnxOVDxmounLG9W2Cw3luicVlW77huch6off1qAW0JA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSuGE3HAQQ5AhLZo-pVBX4snB0VO0UfBbNPYQxJW3LyFgmWxPZL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ42LTPJRt5lRQc6SDm-jXxBRtqLFEN1hQTNfpeviZQ3s7JUemI1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ202oYoqyMIVhVfSsFu-jmY2KfNQYx5MZuJ8NmwE_DebUmfi7Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQmtbzAniQuL3GzHmFiU9HqkqypbvpckUT4EHGCMckDF9ioqsY_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR-YX1KgguWCg0MNxzSDxogqGBxOVyTFN2SseQWX-8gK62MN83xVg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR-ItBmuGUW0V_RN1QOc5R1SQg1FnAjwMsZGZFFiRe4T4vnju2k.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSP8rBGLP_BjO2ev0A7J_9e5sqWDVJ9xwsiS87099NsqeV0PxTiig.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRl01YbQMEeEWdccPqD6xddxaUA4RFV9hjwbYwb5fjMT-kD5TNM-Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRRqNkTYB2IQ7B2WYBZM7wnISJO3LtlsI_q9BjfPNHaQS6sRh68.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRotFD-RtZl9EY6YZex3oLJQF1PFGMC-tGXFfQJqfLR8ofJdiFP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQD8mhFLRE7B4gNQVSYZX0fkZTQWAnHKy373A8jrGj7wO_S3Ep6nw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSbuojaXrWeftQQ-vvSRu_ges0JFoSlHTipX86ciC70CK2L-0YkoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRt9zdvXMmhN-fEkWeEgx0r0Vxcmc5M-1KvmL9iQR9wBJYKgMIQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTh44MvCWgTAlQ6gnR2zDY235w0JLp2Napyg-5sdEt_FIW7NuOs.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQdpiUBzFbkgMETcOsZjsAdwf8eIGMTUGqzskpvug9hFJr-iIuO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRv0MEfgqjgkU8Btu37GgDK9b9XcckaWls0v2bE7pZkaq3suc_3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSd_EOzriPnK-ouZPNhd2pBdydF50U3XQJlApdz9HsE5JzUSqlF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRDQ1sSlFRscSSD155-hJL3HqKSUG6UF_r_f09CNbU_plgL8LIXKQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQkM2nQvq8FPmcA-T6DchVkGohw-sp6KbqMaTtFds61p_0-rLgzQQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTNtY8HhoerC9jsrguNnLEpSzcqRHgP6dLTcZE0eNxhCEKojtKr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ03vCKUO0WH8yUmU3Pt8RFSXpREVrUva_vN7dZnRo5OIt6xoJw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQimnYyaYcQELr1XxKZTNzbuX_nVu7dNwk28XqEIUBva5olw47x.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQIRMBSTZZhuMak4d3Oh_qd93cLRlwwXjEf3ozWEOCFv2EH4wBa.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSxbZuqGH82pxzN2pU5FCDHx-l8-AqfvpvOCLDR6ZFCWHA_uUM_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS6HLb34C7C8LfVkQaALIQJQrdrB3A3nbbuNRuJt9uvaJU2oZliPg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS3vY8dM8rT32CaE-5nDC7vMnFYZOJ3z4v3ixAfUB7-C0aaxMwZ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTQJb_OhSOq2n1-NkjnprVp6lc8wUnRJnKS6XlcJljAV57ZV7BeaA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS82iczDjgijy969pDA4xpl-VBQW3-k2QEsZA2a-AjTcWvPvoZDZQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRPEWJeFuvmWeXlnDoWhtAa1oMSIIBkCLBNaYO2jJY3n0P1rHR6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTpYydRLKp_K3aHCrjIeCh7PN-VDr8aKRJB9OwMRSlBirylXWiMHA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRUegvhuBSU4Zw5xwafsCI5Cn9x1bRlw5FXGEC03nWnzCITGzGP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRDg9NtZddQ4uKkdvGXBL76T_JeBqoovwKqyC_t2-xcWji5_ugK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQSaxQN9ClX1CpXF0fj-ATB6t7cNg78XnkuvqpyijD9eWY1mD8h_A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS5nuDP6CHsCXWWahz0UqKC5JdZtMgeo1iJ89pC2URGLr4IvVOH.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTTRKloykuPvG4iSQMCLBzqKucJZ1E8q7_6Dna6fsDxDNL3pjVE2w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR_cXp2OoLPxX7XsdB4OQjNA9xEb_QyF0FZjkEpg_uLvEq4bcBQRw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQypC6rhosIl4n97Gtm0Jm0G76eUP9GnW3oOf5t1YqIWrMIc5dCEQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRoiTdeKWZawX58aVdis_jclewv1VERkbbPhAQ0jUcjH_Uj2FFbww.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR85WCguS08Hdgo2wM8BJUTfNR3m8aNIQnz3Bk5n-yfzq-oSxWK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQXFtqStFxzwh0FEAGFmptE35z_b8kJfdxnNnrkh6k5BCMpALAFwg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTtgGoYXlVdghwDrm20Z_XcW0P_bnqeJQtU7TsOpZlFYC1RA8wU7g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQa3PvIHC-YnpMcLzK0cVpbKlIjHHSL0kz29phpQRX6Xax-rE0IPw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTHndsUHJHc03mGWbCfZeXjOkDIY2kLmyOSGDAQamV7aQJ-Nqy0jQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSb-mxB6dtQfcqeOfa-6saa63XbPBt0x1nLwq6qCJvRtn1B-kc_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTnYq7Z-BmFTRzj9seFbOtL1rcS_3l8XJViyoUAtYGNaTUto8yOEg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSAVbg2fK42ql_1bDreCuP_dMwv-VLSYegeVdvh8FNZ5v8DpLmRQA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSko10mSXv4fiZAZ7RO2ZpJ8DgjfOG66wBmxvdnHGPDp3rrAaIQ-w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcScj81Z5hZTG1IOjN6e7HjbAm8l0y8s8biNFDUdn2cwthi9UBNl1Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQZ6ZKxfRN7ixcj1cwdMHJP1cSKmtpa090W8cikckkYiZAeFl8Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRpRkdLD1XKK4IJxPnvkQ_Gl_TrqYVpNE1NbGb8ZuY4nBhItrIX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRYuAfEwuy3FTuzkpw81dx16lRO-hKb1pIsoUtWyuwZ2ojgVu0P.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ3QBC1wd4-PmfN7eiSNnXF_CB_WZMSb_qNF55MTmqxSoALUXyl.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ9bmfqW1TlE0a5trMTW86tzYJoPLR7HPOWh-Pg2wXmvApSQADj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR9rxu13EgmIrz9cBvHkyLiyFiJ0VNDIGfPEpsM1SfZ34jXB-XD.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQpwuBPfHNGbMWppmRMbtaZlxmwv4D9j_K_RDbAgLGIcMMPM2RX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQQOGZIvf8lzPV2Rt_q7YXgp0ZOpRzk6ggDssStsL0qCmr9L9DY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSlNNPCS9vLqxCRgXy463nwwSgr26t-qWUzUsk8azFHErCG8Irl.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRbDRc8--YoYoMPOLK8q_TasAAeJjfF0dq4iSoylAmuQJSwgBqG5g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT7KVQJXL4k-UhMK_1V9m218g6QK3ZTg5n7yWD3jDiVV-IDu4cT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSdOYviWDEVOGLytEDRP_GxIegE1a9i9-1-4p6GDK1NOOfJyYqb9Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQkiNrf5h7C6b51IRHp6l2ph_iOheb37huKzNw9r4BxFE0hwGi9Cg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSQl7YQZItiY4q6ETbsT9cfw2Fl2y0Skj60asc2OKy6_5HuAbQ8.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS-6FB3XaYBeHvXb5PMJxcA2B9FoDSOaQgkCbJA2jiH9MUqtd3n.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRAdOJMLDpXrq6Rrv0kkp2pvAUlehYoKXAH9S0o2G4FWReGyR2B.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRdFgs9STdx6jCxCDy5G8FJoM5940zawU7-gjEMYkboThkzodNfSw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSdV3Mcivd-eSQmeOIfNJdlP2LJ9qrp4--XmuF03A_yGpEKCaf4lw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTKk_AmTERngmNxEUsuR6ownH4rUOKi2TvSRNuX0u_6fst023pj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQM4l8aL1ZUPs5cnFI1274zF0K-LkRiYzRZCBX89thjYlTadkTxMg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQxWZRF3Jk-YhHi8V-3dmryaSx-8JGpn0_UEcxvp-hQwCBvcxwX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQrNbHEQmpbA-TdI4tCGQLtExOy7vAvmhvAV0QE00ApVCH7y0ZBBA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQjP_siJFh6XOr4X_Kw5UMv4VyfSmixaKP-ZKLG0lIDGb4EA_mA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQPtkSzAaqQJIoHlwwmjZeFef_RukkLkxfaJzTkNtMXfuYYU3hl.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRb46AFTCDUDU1mySwVje5VGeEW6WerxOFltY8tsdtX1ExKvleXKw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT-BM0EPdz8MEB0RiD4PgcFIenCh5Ks4Y82xPqZ1sLTG7rQkk5M.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTrRP_8QOzL8SuTRpY_S1S7RLJay1RE0lS7yIBqN0O2A9NwUktYpg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTZGhDE1yRBjAbbqkomxT__7q-f2GpqnNv3XYs9TmOTg3ZKfMOX6A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ4JP-7ZLgGwC2qrsx_Z5a-plNug0qhp3N9IRDo6sshcLyfxzWO6w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSBMFmh63QrpamHduLDBMzmkh9s0G8bvZsMwHxuJNq3I4D9dzC9Nw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTIiRpA1i4CfDCbKPMZaWu1XU3dx_uX-JmStRjdyu2er2hM-3_3dA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTQzGGZof26eVo7vhIliFJknXgrSChLtDwIzZwwNsBqNWTR7qHQFQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQuYG6atLonJr65opBbOkSwLNWsCXq1Aq4NUEPiDtHS-p62Dcichg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRaZp0STfVLa68EhvtfYj_AWEXgA1rcmXsveFMamYizm3lgPFWr9g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTnB9LZJ6OBHBWdvERC6256G4-1lDEBFbjXzW0t7Yg8rswI-vVU5g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR9f6FJ3Mz5Jc-Yqcphv5EAJJLwpi-eT2bp5HoxNf3V3XGk430W.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSuEBi95SuwXVuNlI2UQFul7TFu7fN5eKAxkaiVS4L-2qxNdAqyDQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT852qrQI1RcoAd9-3xnqMPC37O-2cfwHHZiRKSd8ek0PoZ5fA0dg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS5h7OTIatlcULw6ItT6I3CMw6D30P6BB_9oxzWBd3XuSXr473f2A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSL84wJN-ELgHqHdC3OCdo6I5DNw6RPfR0TKnsiCmeKXwHW62NS.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQM38N2aXAH-RQz2UmlHUTLouR6mHWiDvIPVsbdJew5J8h-u38F.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSYhWwY-sXem8YVU3PknNC4UCRRMuLmgOlfSptznw2Hk9CY1AOT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSZsuEI250NpGqPIJ3OXaQ7OGmm6amctvbl_zk0VcVA9Lde89xxoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTfkD3VpteA2XWCCowvsTGz1cRkyXj9p9lTF5uO-fqb4f47Gb5c.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR9VoCOrcM-2NA5dVlcn--RfTbyUW9NZb-CR4SKqHxnaDzyuGJI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRo4jysKRdSVPkIKnRgUaqOoUNSRF54JG9NBiCFJODwNNG41oDirA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTaJrKy2K5sEh6ZF2u2OkH-fW91RP7-21qLacww-tx-jpntPPvH.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTPV9Ybox40SXw4rpACDUZ1EBynvRVJnunalJNcDijCI0FavvPy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT0h3OgOmM2VmgsV3vz1fmSJY3teWY5lYXWcHfo-Qm05vrFchuVdw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRdVCZBhQCdCEvojM4dff0BM-HSWCxb2usRTmt2rYt4rAc8o9YylA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTgpQh_yKxGBI05EI9DvfOz0FqW98O3HFPImTd3834DfFJ_x2G0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRk013RPmhGjm1L1PsCMtVYYjpX5mmBfXVstITIv1syWwxGkviRxg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSrBFfB-vfl1-tMOumSkcjOq4x3ohIl09l8JQUjyEXfd-8sBit2WQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSN4bnXXRj5RN49o34qw2-srr_Genbr3K-RwRUbvdX2MqSMRNfC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSkjtG5zr5c3BjuFtfleNhNbAzfPg-1jEyvL-biXdxm5F7JHTXM1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTrg2t_XvhY266-2xpUKB2RiOOao9IkZ5OGJFaEzPWPnpIdGoIJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSjLxqBXihLKdl2J-va8JDtW8AUgTeZSih9ViXuO0D2I4SEr4FN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQqpU0IVJ6Pd6IDnA9ky_BBqpAcvuvhsA6iKtvq6KlenBFKcTgr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR6UFLAnCaCTg3TljQCleldSDDqZMxBQDvFYrPnAXNAPNxaqATY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRJ6z8T7h9qPqIAPH0nTuN-0qsOmYDnAKunm1ThqsLZHh62KIai.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSk8gxjhdXEEloP3whWEh4VYYK7VeoKEQNKDXmsllelDLViy3pB8A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQk0hXpCb8kt50MFM-Yb5IbmotGwec0b99uUDHMX2J8hRUO4v24fA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ36m9IkUgJyixD-5UKPTE2FOA3EmG4jnC1_Gk2tAbVyB8DgyOw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSCz63LbtV5fpCyJAlVplpRGn8YA4iVnwgVore4X6P0Ao1VwbK7Cw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSAyt5fmWFutU78UjgENTje0bcag8ITmf86y1X-7IkCObcvmteg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSb4Lf8vkFFt0cyuupyalcKtdS9e06usEr23I3pNLqUtZ8dLBMp.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ1hvqTjojWKvUcifxEkFYwd20YJ370RpChBgdKQkZQoZdwf7B1dw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQkvgbtAHAcAQuR_Cx1Cka0X8e0_ExvoAArQQHrBX6drd9WlLP1HA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTILefI6iGt4Nzlq8xlje1CnnAFUIqj36NPN45FcQsqbdcM7uSY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQITCvs5-C0CmthmZqFivvB_IM2ueTvQhuOwUzATAO9JgIJA4n_mA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQTyA2gMDH7HRgybvfEwM3ODRvsoPn8e2Br2-5QbvXxc--16VyFsg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT8795DsEJHjGfl9NgJhXK71PeaJgBa1_A8YpsIBiEDWUmf15fa5A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR9ntkMXdRFM9xKmfyL8KR4cLV250JBYDvg3GKRlEebvHOMSJgL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSqWpnaDvDEQao5dKCdX5xWFZDAquiB4CThHScm8ISFR0UciiiM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTIqZK15AgrFYovisFTd-z7H6qeioUTcUkf6SWushtz48lZjntJoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTBlsVnr4RXW-8aWEQsTErxhJqnGHf20eDrm2BgdwBc9ttDDIT3kA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSa_yeHf76SX2pKWD-iv7HuurqTQJ3-s1ATIqBR5YDdWPdxpbAfdA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS8BIsnTJ2_3QV7p3IIzn9rLKX6iv0irRrwL1g9A3TPnxPyxSYV.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQylnuigLTMUYnXCJ2eDCzc-62oGzZycBMEYu03OcqsyhFAevIjKQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRwK79vbsGc2I2ytx_RUT1yUITPWncgjvkDjB-UyE3lWvCFoLzSng.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR_09vZLKNYUkOFtc1y_rkzMOpO0e6VS0QaSqDNnz0O1i5QVi3t.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRQgpJHwlt5gbz8BH68oPoNxhVm9qBK7Rh8eE2OIJqFyKMvGeigVg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSiCA_c1JqBXCagwi-7HLT_8Zqr8onHYhl7sTa6kPTCqZ8K3CpQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSlo6r4Qa6Xnfj6t0gXLugxCbGQEz8dhq8kWFchwLZTlrR_JBJGFQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRiVlVzoV7i-Qt7Wi5Rn1LoMXaEEnnkTK91erJhNbDOUUf6-7D9cg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS9KnlefU_7ACh51Ti2e99GOdeEmHRDXOaEWsqeYvhzJ0lq8Pf4Cw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSD8ZJ1D8_FnSrQjAVe-YfvJNlcuFqReNrw4UWwYAZ_hObA3czqig.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRuqqiH6x8JnhYCBGmOXoQ1SSvAfN_HlDCqhihjZ7G1Q_rCGAM6.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQFCFLbKjNda3iUiiwOrZa-Uk7-voxpxFCZ_IpRqsLstBJbTNDE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT2rGV4FcYy3CBX4IOAIgoiV7_eANKqFTi-fP7_SBGkHRWcxhg-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTZ_TW2uDnyBfL_9gkss-9BwWnM82dbFCi_omn-SeA7NkNYcxX6mQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQktrEKdCuyfZuAMfxs4EWvWrsOUjKFxqy7BHdVieu-5NSuetVRBg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQwJC007HVv01rNsCW48UdnUvvk2O9AzvyYrJaVQod06P8ll-Sv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQz1S4MFhnHjb74W9CaCBB4FNiwQlDVYssedl0l6R_3eByqhFs2TQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSlxw0Rw2x2Mn-pqXpoZlWku6fiUxyigWlrsmPjqJgqRtrCQfhErg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSsXHPlt3CWhxK6vdHRz4iAbOPC8KYOUNgKGqFj1se5elcSB0m8dw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTlADpzfN8JMMqIH_CD4Sh4hnwTon34h8Sxn39viPVKlIEGxsU7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ255khjGEkc4VnLgj9Z24jIy8mATtDo3B37v1lWyZu10w_TvmW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSAb2GMlHYIvV8eXZuUskgqHA-Oo2LfLjw3FsyeSDF0-5z1rzyk.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRzSKm3g_XKLmXkm57o1iZFQzId6E2OmKcUo2e7KMX8S2k2seOYaw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQlt4qW_ijd2-JdjjI617P80tav1GU-CrF3RqCSNSZRWNu9bI9A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRe1Q5IB20Ma_cYJLshlZTysKVqvD4L3DLq2eBza-LUlXfZg3K_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSzeXthxtaN9plSJFOKddJQI5E4WB4Rzzsu-BD0CY5DdBwh96ngQg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSCVz9LEuy-llDDGpt4NtTFEmSDfPI5ryK5bGK9iYxbt6KryGiS_w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTZA8fKJXot-_isHQUkzrXZNbULHAAJFdOgVyOBS8Vvp6HkKgCu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQEUIzEWx-HFx1_qZLX4Jx9GIpOdNPIVb7DnoLjND_5NlWG_ys7AA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTl9_AmDErViGL2iYSAHeUtS0AY2u0LVdYRLV5fn_kM5U653b0EwA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTT72mxSmAPjQiyIU7zLwqhO4hWSc5EQHUijwrRPsRsgLtHZsjx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTgs2ovYxaFSNVS5DHhtYrWKI_yUk5nBpyC_h-lOc_vqW5R33jP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRtZIpBKtHGFL09r5VSPe3kuGep0KKUoKnMyUcFFiF8sNct40SOzw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTHrIew_C5bT8tV2eo8wtyiHVo5ppCNd5_HqhcG_Kc1Fi9n4U__Gg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSAmu71Shmsk3fWPLmTh6E02pPhruBpQu-KEfnMK3h1j9o-PSi-5g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT1OwEvDwzyt6U73nUOkI7vzCxMwRf2FDncvoYwLbwe5G4jDZJZ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ1Oc2K6e09gniWmIv3VCGK4nIgr950y3F4uYpyWvqHZrqvB-hC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQytuYFuMEGWjl8q2dBNlfxecBZ5wyOPNMMfqmVffrNfE1iqzmYSg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQO2tk65UiRmtsdIEtr69urhDbjohFboozxLBHm8TaMT-JXbl2t.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQNqBA9TaMBWaislhYerZBbcusu2DYC6UH-fFU5KOs9R8rXIF7e.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRwia-pOPFLf9dEKBEU88Rlf6s9UfwGNpGnZLlbuqX-nJNfbxBFKw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS59y5m6MmNqym00PBKNjDPqmpMy8obOLBuOcUAVTanZZOJxt9W.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQxl-BnvY0FcPOh6JcZTbyPFRkw0YVv6RoCGIfVAAq2XG2EBBEAUQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQPpSzkX5_LfitE4KqfMBxrDqzgedwMI8lcIbQPrDOFfu6GJLB1.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSr317EUFTT1DbbwNkXv8hqSTOG4NmsxMVlkfutJLjgCaYbJmlU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTQblbJdCvEmYnaGQbBfyTPqC4vgO-qaXxNGltGeJG0pBVujZcp.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTqBRgzjR3BRz1k7AZr2QHv_QskiCbQuK-fz6YptlKXluUdIL_5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTUzNlEn6NaPDRFF64Wg-YfSo8b9NHwHS2sa3E7By66Lf4z7JRGJg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQUauskGV2h3m9YH2CX0VC0OvHF4jL1GdUxZ_uM5YSySjl8oWytZA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcREw-ilf7J6V1BFMXz6HbS7oaxVjf_VPJQOiC22Ttlzhba30Xehyg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ5CqYkr1Cb2Ya8TEOSlgmOSXTHXjl2DMuevAxNgj7HaLoWvJvPKw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSoYsn7hmDmh0UZ1a4MyAuvpYNnZ2snLdnP_Fdvm1_Ek1oiKCjj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQQTWsm_sYmfgzkJON27THSP0TztjVLEEbVSlcIe7lZUUajvwHRxA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSJ2i_cBY2yyNcPgH2v86zRmRoruZuI1uBL5P2nV7KV-Wjef8fkpQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQd79AVr70cCXHbFN5GTStxxyiLYstdCUfhi8eadj_Npb6VEYQY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSLW_pBPLroKH6g_hPQ7STEDZ2LyOibTEnX3uLszaccC-2OHxpQpA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQEglyvZZi7ZDFViCyIbaKTRYt-3Pj-_hJzGiYifLUY8iksy8Ii.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTRyvZ-41QehA0RNZn2qPrfOIdxeKltcAmViCbi_OVdbIT9vSh4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQDGSZ9N43B3iWlHPTDfWmshtZTMZh2Nqno3ebfOemfLsqaZ5Pjpw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcStWOGC6iI56iDJon3GrX-J_DNPvwaxBCFnCSN4GIjslQp3qcbi4Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS4RBEvrIjGQvpmp6G3UHqskV44zCv8yY6kSf2U7iNOwGD7fbhYqg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRjv7l4U_iDwyaGwcdLfxwWO7FaiFNeqbPN-5vHYG-oiP74nrY7vA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRPimWd7Rh16tT5QVgBaio0tuEs3ksuAzii3YOIos7leFG537PI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQgmqJQRrMjUgnv9Pq_IOyUuD-a02d_mvGV_g2NnulB9IcAc9gz.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT97HyNAR5Bs4EYTqTeU57r_Pxnk9RtPYKPI3ajNw9GWeeHNc4H.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSoMvi1L0rREM1oVk3TNgQTWNilPKHb4gtWX7pqi9tAMNb0HJdnuw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTkvX6vyBavJZiyUgna3FShuPwe7RAOkvwIt4WZaiNvAM2Hoo8HwQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTbL96A8CM3BmIIrV7AmFSRCib_ovCiESousoYvqX3xwrmLuGsX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSbEfY4fUCKZR0jV-RXOwq4oGlDEvEpidnLV3rSOniMCNImi-iE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQRnAtUWToiZybbhuddZEnXND7aJO6qvCj6BAAHbCPldTMSj4WB2w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRaQsFVb7kRdSTdS9i_83rMTGCXcnipy3WBWBa-1UsA_JYPYExhHw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRsiWgVkOjYa-g7CR5oDNClXbb3Lxs-d6bSqCXHAsMc5KVVAOypBA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSJdE8k979oM7kGPasjMqngygu2j1hqtR9FtB1c4xl-wvk2B6eu.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRsRtXC99VgtFADfjxR7IRX9N5kLKBNO2T2hryOrOFiDM9ZIQeg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQBQVSSR6g0Yyi_I94Wu4uc0Q9uTIDm6nx_yFyNJJh4DK_b46Z7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSSjA8y-h5hLfBpNlC-_on7euqhBY2QhdUXlRa447IhPPgkAYhelw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSn6UONqJfDFWPmWpby2OyZNigS7iKPpJCbaN2pbNfS-0kTz-4s.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTw2Te9eTAT0j95vc5ucYz4Sa-jJKvulmAaGEPl_MB2UKgkITZK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQYJei-mpS8JRZTpEkj5HBB8pdSuCsNNNzNJ3g0uvY0aoz8ez_lZw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRXnsg3-d_trpg6BsLVzlgX_0qqRSOcbzHTlnrTXSBDSXfnKohSJQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTPMAgd9JCw3zWa1BylgJ5YmfO7L4Z0xuYVexxnXTisicsD4Boe.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQnoD2vheoLFeC5qR_u9lcApv4Rlz8A_mHe1Jlpf_sfGHbzporW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTQ_i5Wg-U3NBfngle7bJ88HTuFzL86RnngXJZRDhz-E9wWjIZI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS07dZp1JPX9GJaiJ50lTZz0COTqY8ydq4oo5aOYAwH-BtF8Uqn9A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTSIxcLjKomsTgVx4sM43a8HxfjgyWNKOl1zbbRob4p7fPQj4qs9w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRhL1IJeKEURBZpbP2shUQ41xrIYryPtDFsg2yKno4FawMshPGRkQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRejX_N7i5o12tOlCZsfIfEV6E3vz0iyVc2IHiDEeOogwUYU229dA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSiEOnPfewPIU56_zDE3HwhC4BRGIqnsf251QsnWn-oQxWU0h2wPw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRt1n6OZtYqj_POsgvInxBWxw6ItzPNy9yIoD5RGPcGFebaBuHg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTL7Q3nIC5sjhLQv7ymJbfzm1BqKohT2YG8QZKuy6fJIgwGOksq.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSyChNQM18CBI9RzRWNIbvQp0uU1UZbWp92C71PyhVa2gd59vUpHw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRsuJncfBCjKX0jLT-3SxsDkLbEcuS8Iql9rgiS2WdaMW9kIEPb7g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRJgXOdMFRUkRirqPlnm07Q9SVokA4iormAac1gAt9pSi9_solC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRuVzYvkHAVB9rgmBVU4cNjUxTTVqm5g-aAgB5aNTmJmNrBpJDkCQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSy6C9YMOST6c46ihVum5VKFRWa6CwRJPqXtsSId-SmzYE980Yh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTqsD3IOJb1ZEUagC9KhDQHh11hLM-J3_uAkN1ahXwBcowZpGis.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQScY61Ha44xcQ6t0l5VCdRWACJrlk6n4lx3DVCUxASJQjAzY6Z.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTSnJXwwmy8Uqrs6PXIuwHNY9VSFV3EzRfVcizeF9g07pN7HSV7Tw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSLbazJoP_1IR9tHkREp0Ra90pgk9B3Czt12NUN0cSofkk0nJaf.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQaoOxrMFowXI7eQDHr6d8Uzw5fOgUAKwZt3LpuPYAOCwk4yOwCxg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSWifXIvSCE-cLz_QukFSzBWNprEol7iKu7UoeGPnmnFuiLI-tG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRuFKg3GpamabvtGK-nCloi2Y05VvAITURdJbs6LXMG_Wubp3tg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSK3j_K6ot3SoduIvUy3sS0GvrzcWIVElfcTy2ocAhEj0iY4wud.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQL_1nrlxymSF09n8ilgnqCn6SijOauuoDMh2JiAsSeU5zhhagJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTkg9Xa7Euojk91iPp_BRBbDJx4Z_LdqntI9CDgIK5boDE0aSWP.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQByP1-p5okUsTrNnKELK9u9H1nNQzyj_DFlXxA6PIUfuQu-WVB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQWUxwnpXgEtlWq99z_yo7ANyeKPEUPR0-EpBEgFDN5sihIE4c7Bg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTQ7YGA7bxVaKGsWpLEst1JnIeNiQywA0N7OdnVNTvRVarDtG-P.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ1gxwA2R1cuEk3UGRu9KsEAak-byI_5fPo_ZiIeh2fvK2L442u.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR_3XRLsBq4Pmn_cQMbNzSgl5ndRftnWbNTSliHLbryDGw5_3zBhw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQCV8_89q_UtP6v7HpojrNvIlDKIFcGVltUayatuPhAAal19B7t.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSt0nS86zqcNIITHKGrOVZ9_pGdXnGAq6zI32FNkpTxyxqCyb7K.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRpCzdH_pBlgP5s8yr10IDSVme2gYJe1m3S58h7vbiiEHuIsDkKug.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTBF3OnwLQqysLVuITCyzY9hi1V2l0an5rRe46OyyJHND6mt3a4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR80GWyP3KFXsLuhad5ty5-d7Vl4YbsvepoGq5fFu9LA8xw0FFXCQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSM4FJcxaAYZ-sY-uLf3g2xXS-_bQX_p09cJ-7Rdy_ZQzEWbZod.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQUC7bjm67c0EAub42zr2BiqBQ5osakxoFZiDibqoYWUehVML52.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTudVR2orqVdRahad-vIKMrTNOG3LXafKJQggdN8o4YAuCRoPi1cg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTKjP9lFbXPFv95XFzfACdgq-Z2BfOeYsI3V5gb2ksIDKy0V6s5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQQg-BuqfCHiHsPFYmZlyF51GOK6JbeIubFLQOIYfoMdl83jXbB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcScTYNg1DHBnqe1ksRi5_2Xzy5PHhN2IO7ekgJkb5G1O3vlHEzW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRuM9jj0NZmoAvB5jMOtCg01f-Ng27IjKjCMX_1cqa9rKk4gqOt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRzbtav3rSO3S_yWoSgeYRpWL_A4H1c0uP1B7mlgbaW9R5n3q47.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSppY5MxsjnBV5c1CbGOwxIU6yVohVsZZ28Er9LuROX5OGRSc4B.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR3CInzE63yFCPsWUdE_8AYmt32gpUxKhiforVu1HdBLjMXkjTOvA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ7GxZrY7hGRmi8BJRu9o3W481eNLRX9cvRrUFQUyH20dcIWEdXxg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSMxeIbybPD1g_0s6R9pkRaPXLPPCGAOJCFd6LAeENj8qwZxZqg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRSIwpOkGd6oGPDdm6ZHxpgOdbXxFys_077vvBBIXjpCLCpGIIyhw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSXkIBknWQCUz-5vCM1YLcOYstOLGmSvC65cv3gqt32X1T_QjXn.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSGHsjuLAM2OH4TnXVxi4cwLlyjHlRxJXoUiUJtZFfuhneYf8Pz.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT-h2jUcU8VNVmN-US_QbnL9FtHq1JINlBUD_t-L59YC2u3bNes.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT7jovl7CmHSRhz2-qpHYCgeyDyQu-jX5iumlY2k8gXzxvVIXCx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTX5X9PZ2f1sDudW9vPLXoKL5ckSNrJS7fu0uui1Y9EhA7v-vC2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRvWK8hHZZt1qaYYrnYZ1q3FldRSVvt-b5gE0Iqw25v4w2YjHW2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQDDNcWydnlaWszUgPNTmi9KP6p4Qf3ztL2q6oQkH5UL8WIJzzh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTtvgbSp0PvYTze66Febw8YkvNZzTqm61dZkWsoC_Ygm6uP5k79.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQsd2zlwcqaM8khRxlOr3MWwnKFdZWV74tamImxMkKJGM81_NEK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSHnEuQVIA8JxsVb_d09QJOt3bKqK75jZFyJVjp_RNi0YOx8Wv_og.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTjssafo7MH_dj96AGMGT1BTg-HepjXLJ2pCb7yulj7hwKkcoN8.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSpziXwGzSFA2xKE5d_s7UzOFPPdc6V8YQyCuBUsQPs9RgArHpo6Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ8flX7rfBV2lAuV0MlAwKTdxnL8JCbCWsSKm43JQfegqcgOJDY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQT-z3CA-ipfbzfd9HlQJYRxjQkUvZ0U4BMtltd3HvhvW1lrotE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTIozvbWNOTPiQ6c4VRIZ7t9u-I9EXD1l1eAAaO1iCTlG4nrdIBlA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTj3rY4ACP3qBVs-V_jf0Yz8xonFCogWBdE45i23Ij6dQsx3jKgIA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTYXH07tA59nAfNdsImhF0nwHp_q_nNWSGJUjoe46NbYbn-WDPX.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRcTIVnBszGeQc-FObGLRjxkJRVW_ZmkaSakWwUP4gZ9sME3Yy5JA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRfpo4o4xe_hPkK0WdwlzCJOsoTovRhM3-bNPAe1asg6JFRaFHZvA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTupwOPjhWCnHEOSfhrqcl1yxYO-69Ls8rjEugZgOaNJE3cWs0eaw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT3wW-VmkLw05AN6tbcEH8O2NDvDZ-oZuLFIwlGBG5lMPypB5RT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQj3sU9Gf4MfBQaOnrpAFByyMZqWuhONdRfC-TNPTofV8S21BgtYA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRWOcNaDLoalwuqhYwEJXuK6lhXhAMDD1uHDg0WhpMDI-rBnIpN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcThHh1geCkK2rkZcTehR877fth_ybnTB0nXf6EHPJNRA1AiswkS9A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT0jq6tV1f4IjX2P-Ku7vR5pLZuxJbv2ljtI7FxFOr6Q6tz6kKT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRZrm1NcPNfbhAfaSwPKDZTOXBptle-yLbfq8TCIolWNXqgwIpWEQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSHqMcWFGC1WZHKu1yXGmGl6r9uo3zx5c59ZUPoqdWeH63GK6HV_A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTxG_ADDB5a-AK7AQwjcEp2e43hv-pQpAx9ZdR4ji47F5YayLuU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQrYzrWr39lOdYPGHPcJnlNpY2-9i4myv1BQKjE5c4VYP3rnmSC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT_slK-v-jy8ZMFCcVacSID9dJ3qxpg0mVGSwe91PsB8XkDHhep.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTQWsxnS9X1jWem-2kiIiblrqm1HogkmlBgV4tXksBmkc8lzWzDFg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTEKh1NBPi7dhdlncfHp-EKUnhKviNvfjZSDX30TvhKQuyM8ooa.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTcSSCJyErTPE8poy_J-EfNJ5VeMIf28J7AwGUSQA_9XdFArzVu5g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQf1VrdXdHtv7rpjiatXhN7lqLyvrggTks-LOHPonkqPwVywmG2lA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS-1YDpYDmkNtVsegbpHAsJV9ELaFGefcIxXv_DrYC37_VUecK8Aw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT4s46kGuykbXtoGWeRKkE9hwug2zzl4u5R-QWX2SaY0yhKJAz1.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSbNcfzKq9ZgKwiFPszSsQ7QvSm4dhwWyydaGdve6EyROOfRtcKsQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQj6dnATgWgvI_5ajMhFMNi-YQ5F6gBETGanX53pf9arW08czGT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQIVjs94krEQ8_R7iTkS4j15d0yc5xow7YY-RlxKpRTPQwvRWf3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSGKsKjdUi2GlxYB_X06r-d8haa05B5W2b5lk1q2okJ6bQBtuk9CQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS5uZcDlPsuTq5Fhp1RokMeT1Ixb8LZezYOKdKfaOb3tTOfQsovEw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSTqhVGRcF9mGinGnNOWbyLFlbvWFz2YQ_lgyOhAfljf3GOOcD8eA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSYwP0AyFwerjwJpQ_9BniAimdQU9QhMQbQ7JSEJxCjH4r1kW1l4Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSDPXlKMheHH_5EAp9AenKTgg1-d4WvXP7xXORH8Wg_oYavXCmc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSZCRPlGhHi9uV_UTduPr07KFxzJoqA-U6Ejs0j7TBB-q9yCxatHA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQilXJ9A-FWTxa6tYmOY-tVuPI3gy5JbwjlsIkUyeltauQ8hFej.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQwg1qJP00NRZgDot_aghowWx1Mpy0xAkoYPtbc0SkF5tZC3xJttg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT9shQ26F79jJrwP0F9v_cof2MbRHKhWlcURzdd9FlJl6pXQAiuXQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSexekyvYZ9G19MghViZPP2oP1856UON64V6b21K9nYv6fXqYMC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQkdQ3a5F38NhP_AnCK7juFo2tIQ4RhfPLTJP2u83lxS2OwpTQv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQsrr5LReQWOppF5LTwkOyjC1k33p8HG1Bn58lDv3AmYRoSsTp1.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTMDbORGQqtfUEIu4zYFBIV42PTSQ6KTkedF3AfzZw60Ft0oP_oZw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRFOoCJNb_8BKAScANNsdSUfvr8dsweZF4dDTPAd0O5wmh8oCk3Ig.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTj2rEQ5_f_uUANjWlKRTYCW4W3k3zNbKdAlKPvzeKyQdzAVSof.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRM6wBNLAu2fGcNtwhZWER9HSV5VObogHInADnPYCOAjMIkmFfWvA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT1o6unhpSabeNwCJGD9J1nE8OubUbAyzLOu6uQt3UOukuaxF6R.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcROAWDsg_3Sxz2hR6fPSX39Kvbqt-skVrrvdlXUEsj2mOiVJSG7BQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQFn22ol1aQZXQ-1nOUCxtxW10CcLhtE70_1Qro-ofW_7sTKOYq.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTrfOSUz5VzN_Iv1ZEoxrnJ_TNxRFSjNFcyL2ATVWbvgraQ4UD77w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT2wrG5WfyZp87nqbNLErH6LbKJNWy1vOR2hbd5Bu_iojMIDofI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSCnJIOPNktYuWqVi0tsn4nHXSjprBLd1FTAbLBvZQu5Hd6wFz5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRzzpMP5qknK_R4EyWBP17eQVAdtsn-aa6n6SUgyR4gfs3PAr6-eA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQD4GqFNJm5hcYrHpy-xiQsr2j1SCI77moYWxXnQtgr2XyxB7q5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRuuTIRSeeMYml-_jjnlGjVdryoxN2-y46xgp5tsIJDMnD1WIlmWw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSWCyANHQjkwLmHUPbZzUuMQPFe7hqe79G1R0dCcqcZkPL_yOg3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTVHux6o8QLvSowbjlzVshkyvzgFRkdIdeQnIjubPgj1pgrviAi.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSX1i8GqUw4Fn6sM46w0-rCyEhyRI0O2txOtzifLfUyi7sxBjZg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRiRMryUEO2v6-fny98HCqNViGiSKvY_oll2q3YdIj5bkZ0sHnA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT2TJ3hEoUE5v43M2Ul_nji83kXYNIjj6Rs_9hxVzaqFd1hkTWerw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTlwJLc6ZNjKBvgO_qAF0hkRq3_7zozkzBH75O5dTc06hDJh2M_zw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS6PDULjgeSPbg5sD9-R2Bl5tjBU6f4qviPbZHZTjZ3Y_6iKLefWw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQJP3_kfFC9MPAgotTuv1aIQAXu0t78hsWWUjznxmkilhgnQzcv7w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTxBqYL6oeS9SgNF8FZmN_QBOzsA_38Qf9rn4tNXDWRM6cKXSRHdA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQwt1PA5RMe_id68Y4FG9Dx_Ykh6MNjDvMu6VtZz6FpkOjtMl-Urw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSbpe_nCVA_QeLFWoHSy3LzbD3bfkpeC1Ez8WbT29jQF0bd1iU0gg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQKdYzzKwYZJHBYg8RfpGYMpHpVsn-S2C-B70_toPpJJu6zayNv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTfpwOtPZJ8aqbHY1m91H0gSnPB2GZROK4OW5ilTX148q4Ya-4LyA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR-W79pLTWmk8fK4MOagNdQ1rfgBx49Es9_N4ryyPJgQC3djRhZ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTjjto7bKTduKIvTLJLHaoWIpG4INso_e-eM5dgGONehqsrJBVJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRObtPifNQmDMlNJIO9H3esYEdLPYKso-oeHrhG9K_B-GS5GRk9.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR5KCzelXbbMG4AHVmmVf7CnGI2Xb0exYFC-uQKXnwo4mSNny4Aew.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRzuL2JmhiVuxOY_vcXSlhIUoDnrhSZ7e8BcnTxdD2Ws5pUWsmq.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRRf0d8e7GZfwKAl8BiMqwj74Z24gerEfmTML_Kz8s2_PyMMGXADg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQb2QZyGykdlIDjj1iBZ6TCF_Vy7zCbZoYJAAgWkUXsbSQlCQXZZQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQgCTRJROBCiF-kcOxAmwiKnb0UkY3aqtQOCPvuvoLOVwKXZqkw9A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRh-zPIgmE1LEpBCVmxXcMe_25nnpd84SYQv3Sq5uN20_nsgJBikQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTrU5JUhhRQQ3Uc3FQELCCNaMjEYT8__iol-CCwuR6-VdNdN-5v1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSo6l5a9PEDX1fWvW1TkwLXT6RCJMKaUCv8i-r-UAAyr06WHeWsjA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRreUd_tzoJ3tOH9TeLWpWJ3Ws1xOilv_aJ8rvLptkJc7Bff-DUSQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR54UmzVsyHEnil-jh0EulldAYKVpkK1OmK-YU5RrZP64MJuK4lkA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTTlcG9eGywxYyuRJYXUaZ6Bzih-lBIvAcE8oogN_BeKj1ALDSy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQhEuPWjen8rU1cxXFSxxghb-nnnPQ5aPRo-1nnsOt8VRE5pGCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQRx2vZQKPRMPa7j6LSLPsAKAgLOnoHuosl2LP8Jc0Y3MQJFJv7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRH9mmmfnwq02SVlwerMudrDxhnwofzMwbS_3IYr2wxtEyVMP6pfA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTeymg_Fj630g0oZaQTRtywwy5wQQq6cLsdA3T9soKzBPPxuHRWxw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSujqdVXMb7SCjfuafalhudsUBJmiQdaxCoZF9J30Aa16tcavNgfw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcReodbdyoPHeKQ45JKuvYy2FET9FQrOfNFL5nDTyT-dMnpE0LwN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQWa02JP_-LQNysjkhufzln-sL3QPj_ka__scvNWd0ibnt1EPSb6w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT6LiJXpydUKXGmYgDS_X-qEP1-wc1qfL6LXj940bBL4PTjeOFB.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRk42vFH08TygmvldqZ1IEDPcHIxR_Ilcn88iTXx9PEhjGxfAre.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRyNyPaaWPp65jF-ZB-z2Zs1I2tOTk4DkftnbbNvQwqrNsPcPSQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTi_xqhKxHngomZxpQOSqzLUMhy1S1qfPEWTcbN3aXL7HK7SMQNrw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRHGdeJnvFvnXkH2PmzkbDzoHzdSbMuO2ks8nqmjtJVCCCF9Xl1FA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSW4_hIA1Uftubd8Yamulz88sr5155m6Lb6y7bgWEhJj5DaT7Nw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQrt7PhgzX6S7TUBbSr076yA4q3DNkvThriETgMR4aMJ32hvTn_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ34EpqQbnJHZIzsaWOFUJmvFSl88oolAQlaBUoHtVV4M3Nw0IDJw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS95WZBPIeMGiZYW1bzicGv-bEmQpiRdfenWxza8xMqUpWDrE6Z.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTSCpS0aj-zTwtzUK0SOCPiKzgxmX4xsNsoS3XzmYkpRLGImm7x.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTozj5w4fk4g6fVgDzJNOCb-FmGM_S9F6k2VqEbN4WKEz-13_9iiw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQcqqIUMeERnExCExHSX403_vl1wR823izA-Ef_m4UudQzeBp7i.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRi0IXuqH77uRcrHa6-wP2nxxRs5ZSATMfnimazqJQE-W3dz6w-Xg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRtXCCfxlThksfROeK0B6OG5NcNEfNMcZuJIrJT1jxMC1b2ywl8Cg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTshOURjjYTSsoFYkj-E_LaekbXpBXy4tbeLYLb0XaqkixBBY5uww.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRD-LKS0dvt7rUKKFncchBMulsh3ZtW1bnc1_2k4G9MkRS0HpqNbQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRAGtsFhxZzkw1mh17OVnGj4Dq5h65XrtkCAQ0pm2s19bhIygv-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSgPBPsE_IlxUZvpdUYaeHZImmqbXcyPz4OXjAZGR471f7-DkhL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTAhTLz0l1lp9NPnqilGXlOCuB7e1V19EIkjQzr80ptR2e2TH-uMg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQaMTGizr08BdDihGFW22sxHyZUFZazT0-DhlYUjZLceKYUv87Jvw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTDxuEtv81Wnw9hTCHEBZzPw29UmTOpTK2M8d28uB_jOPupHn3VIw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTjzu_EqTTfdptUUBIuddb418wOhWl8AmaYqWzrvZ4rLdeODc3yMA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ0sa93MklyNXW_oukodvV0P1-Wyl_bpOLmibpxxbYEkkl4_2Mc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQdO8fq0bjkTkbki3pvNinXBfPie8i1BLOT3XAXIlb_RsYiyK1Tdw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQrtO368YabMWhlZg8yPGK-XA-k5ZI2Tt2Bq4sgMtbMfsPwGJK8.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ4HmanLwwYpoDvuMV2gZ-hPHUKe_pEfASta1XhcQsdwAvYzEN-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSn7xh8NQ95nLShi_wkshZY2xWcuXdx57sDXnCWIcUrNOAp2U2Isg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTyxYsXOTvd7OQ3bglhFAS20F5YlZA8La1J8OOB3ZsT0Opc3nwlww.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQooF458yErkA79PNj14NblHu8sFOQnFbrACJ8XhLsKHUtXBb_-ew.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSf592lwYAy4_fgd6zP_GgLKvI0DoXtF5cRa_XT-RADgdXi1Oz2ag.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQMLiOIwamPqz4FKFXyUH_hf2bstJvVft__uyvyFNzb5b9lyA5A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRBpqh7TsGGWQoxlanO5sc2p7S2-UtRI7ux-Toupfe71klzQ3g-.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRDafbJYEPQelYfrAFPNO-LW-rfuuTEf_gXlJOUCK6yco5PdX8R.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRhVFm43G7c9h5odpF7o_SK0QeGES0AbtzymuyoDJiz0AgoZdwd.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQJ4MB9qjweZTs3qvix7YQGo1yZ7fwbAHxzncVffcEXlS-yVpiG.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQHM_BeBTmDWzZLdByJREnsx2sG_I36mTZ2a13p7KyxVwReV5qfnw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQHd24C1XCc_Yk0g2Co75Il2vnze29GXLZEj8x9ut76iFEb3SvIpw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQyMvH219WcFQKV0Jm6Zw1LxliP9crL_QsG5g8AK79kVmZ1XbbQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR9IwC4NBnabxJQncvYeCiwlTwJik1QrS8untHgVJKN3D4p192m.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQBLStj7Fn48YKX_-y1Iv6IjTCvrtDVwGMzS-OyqPiNuONj1_O55w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRXLeOcV5_w52ifTfuIfQoMIDqWXHcETQ5CPBn7tAxz8EDW59depQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRFcGKznPsuC9pQ54KjgeeIMQRFnV4_CsZoISu3Txza8d06LTud.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTTzFGdD-FQZIPmgvqBfnIGg41wV4fNbi84838vLM0AK7BQi3Qx7A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRfig6mcoh1MeJ6o7g2dUufbqYG8d92gZ996m429o6tQyl3T8IZ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQyKo4Wzs8V_gMkAwxxHuElI_eu1g6EZ_eML6Gf5uXtb6i5A-fScA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQpRCbPjhEM5A-gHOs4MxNXV-p8UJ4frkHBwpgGk6qmbPLIGX9q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT889WKtcPkOgYvZuv-YF2waXw-T-jqDiewpUdjaEbVO-Qck9Q9RA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSCRFiWjLkDR-9a7a03XqakGlzOi4Iz1Qmc8c7xF5YqyfMtmA6Z6A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTsZE9QS5UdyBkjRbNxCULrzAhaPn4-cA6Pq6xedv8CFpxdOBjt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSbjP_Tbvl7tKYoC0ZI3c2q3pZsrtpDtPElbHfW2NVxT2V5RUE3GQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQyjcRGJits5hRypGoCs9BLBScDCm34YsPINciwlNnDod7lWuSJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQSo1V6sulSmfrse07EmrAeLEsbsHQuMZm2VVpntRZINtiTgd2t.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR_MxfxEZtxFdJWAS_m20a05XbtmCajSZ6V0rnHSAv1U5VeNstOKQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTrhY6R9cqBa8KTQwb0iVQuHWtQF6fNwDAx5464k8qusvcFvkou.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSG97fTqJXE-qGzgXihoP_wrV3Uo9cq71LCETi3vqSoC6geKpPvDg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRrLwimW9yDEXJ7V0ijgSp8VnmjsSH6aBKFIE7rRQL6LmMjA3PQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQgV4dJZnzDr6JHCRWDEwBe3a9cp_hoo9fbeZXNJLjzC5RePl4Fuw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTdfvddm2GhBAFSaMET8h5N6-ukFvCxx4e6ifqDro96XAVlGX2s.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRUAOFWD_-MHyndeY__UjLitKWs4edfOX5dJ9iio4Ypj5Y-UnME.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR11qchLftFSnnxKvInArYrU7hNntDpChiGMx1crgEred9K4pdW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRkpkXCZQDntGrtJmiTN0dAnFEpgfLHtXGrbJfFoz3HjyZrsvRF3g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQI2nttVJzHEK2dI6QAhhvffszcrElUVqNUqBWE4-ujlDPG4kaR.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQxn1nBFqvijvZZKAtrMrzlzSPCMW-3OXSmAR6o5B4AgjlJXrFdRw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT1Aq8Lu2fExZt7HpjlYuOp7ZVn5DtxbGhIv3MRPoiNIA646gUWSg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQoyVwycL-7X1y0rwCOV7lFP3rnvK0eU26TsD3mJHn0wUGlYNt3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRUjrI5osuyps5PNBzUJ4jS4DK50xbc-LL7RUTaHNvdJpsPgbEx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT4gK4Rv_Tl3w22N5px0ssC8Eu6vj1nXJ-_-7KHpFC4CiEqwAGH1g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSjLfSp1Sqe5WDfwxskCjC9wn8HIeTt8Sq2QQDID9l9e76M1fCx0A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQDp3treJcAK40io_glROJ38Y1HYU5EJWu67xis78uQl1M8Ks9B.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTnhaTLJHC2MIqoYtsth0TljYyYBjcLEgZE0s47-sA452d_bKWk.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR7O4b_2_w8qPXbDEgZqpto6DQTil3B83iHTLRSt4RTsBxLKJFnPA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTjcblLiCWz9FAwMKyqcFHs52eo2-tx12eXlaSNpXbjsTlBaeljng.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTWo4twM7UurLWReHI0h-oeju8Q-UAn_30qZF30YNww7HcAW5SE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTCaO2qoZveB_UDbtBh8eit0Z3kThjh-sxKlVMsEM1_T58N7r5J.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT5FKr2UIn9Cz9nsjR1VLE4s6JoPKD1I_ScXWi83_1WSnBUvH-ZbA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQQu3ojtg_WSsdPM6X4iNaoejKW58tJmz8gEwBegOmmTAwQ8CXmaA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSijwoq9BAQJ1Cp45URpggfjZiv7fQVpxEVZVl0Lw7-6tztVWIy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSPlpaY73dbjqL-8ffbmalAS0tiQRogAlMbMdIDUnpaW1YIPhIK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTyEtwj6VO5nGoS7aW4ciVgFf3Nd1MrVNnPZRlqAmTmZKOK6Opt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQls9Ygofmq1jYpH5AMlnc3Tojs2NIIhOLzRm6SDZYDrtuVmXKwLg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQRGgfn4bVYXEnpl1-RrFp2QzOoUyBZwRMX3Hwj8WNIPmmMQVoF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSFHxKSKDa8tm5lyVKuEdn-E6x5zAIc3qtZEvU6bXN_VWfH2kah.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT7qOtqW0IZHgio61Ry38HhRpHBazHk1FSvtTOmTM_qMtR8nE_PyQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSk-6fU0nzk6adzij1IOfxp7qq7q38IntVCc0e8jJFWn8N_aHBgHw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSpREyDkLmp9RdS4NGvO5nR5FBhTcULj0Y6OSK7aY8IjROxQPy3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTydCQYyIQo5RmsBGX3Jr0Cku8oxXBC7aWao3HsawpaRObecUXc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRqHeQQ1fb6xaYTVcsLOLGiyZqjicMzKCUzA8R9vHP0fCVetD_K.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSDBekUfT0HUBMFSDDvdYrBCpfJRNgAbzOzX9mnqbTIiTieJAVDuw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS4r7-TEabtgEUXfu0jnM22ssv0I5T36NbJy2BokpVGOEOTe9Eb.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRuO3b4nk6LV75AvziyCBXB0kySrMvSc9Zf6XOk6IPkSI9POVoy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT01POejDGx0gn_sd0Gws_a4Dl3y-eIwJU4QziFisMXkch4YwEw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT4nyUx29T95YmiERw4IpmQ1Cb7FqScnTfsx13eslISfR9QGFoc.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRxJ5k9YdWKZ6dzKB6zJ5yIXl8rlCEp7zL31-RFb_gwn2_xW9uj.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSSTHQIhY4Mza_LPipmD0cC3VD192kPxf07sJhqae51xKlzkc3d.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ-LMF6HugDQXa53SIoj6Vy-hc27j4ZGBnzYwO4gsCJIVSIPnXM.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRKloBblC2BRcxI-nWl4ItxOAoRS-dYhEFxTy-MG8KuupePi_BB3A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRGcjtVNlncptuL9GMdVqaxhYmksU5o2OwN_IGiUsHXMbVK6HkHAQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRGL7zNNs1QzDR3OsEagGyKf6mFRXjPLYhPclYlUO4Monq27i66.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRYEzwV-DS89oATmmsPaP0xH4yWM5KHBYIJbGlUabmokEwLWowa.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRZIg6Nosmg1XXZbvppBrpqfLLD6sV6_X1PBFZ5Ysw6btgETbsl.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRZ6t5IILMj0_bEoTaT8TOnR-0nRMvsdBab7KjEIqwokBxRH23BJQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRIMwT4qTXrvOWamM4B7dC1TVtMusuV54k3AkzddRkJZ0SsuMCoyA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTECqXKoMTVcE84T5WP2a5zFjpdIATxI5uOFKWupX4s3qf9753AEg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTtF-CeFcKx8WIujQnRjxytg6cyejnwkdGS0NxJ0yvztrECd6Xy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTF6v0lPeZjLmjFrg07x2WSf-JX5Jm4p_EW2kAxnGAKFmBYf1r3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTMFpkw2oZb8YTX30YJrLiytbq1chidl2zCcJlXvofpAbu1X_As.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQWToN3pzlE3BK9z45iRDwVT25eI92JbSrActsJThEHW16sLExxfw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSfhRsAebRlIcp3wbxBHW4PZ_jmoA-Q4gCJKIGZPdlVHQHPZXEp.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR9QpLdrv6SIg2aotDtfbX8mY8lPDXxLb3k2Lr-R4oQ-xem-6Nb.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTJTix4z5Q3eiqZAkpzYIMvjPk5fL9Xv5PsRo_lCIWaw5hur1V23A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTpv1GoGEC6n0DBYdJavt99lKiEXEv9SE4DoedkF-LGBncy8v3G.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ155gIdV-BHQ1aUxoTX32O2VFtJhHrYB-h5X1x4LjsMiqJR53LGQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQYubbIKdP7-sidOoi0HlkrTXlyjRVoUJrpbSG4cPc4qeVAx4Sv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTjQ-1VgbtSTcA2vX_-x45FWuGarEDA35SrMHgvpvYcOHUygcp1.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSDEFQ_-wH3RCUKLylXnAIruTB9FArzxn68LD0_yuTQApnNBC20.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRVJ4E7UMNi_hN5lYyv9GiBFS6dtdKy7XGCPt4cP8nz-rPPLx08.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSZif961ZZC-CNdVh3wiHC-mGtcIcIrX5YYiJB8euyxhgUgwxEq.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRoC6BLv7BLL_HZhdO0ZU2axU_AuCEH5sjgLizn8WT4dqlqbl1W1A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT99lManI0IVm6yDSb1jugD2M_SRtx9f7YkNIf6-7iT6D9dsJby_g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQMz3JJJ1i5sjH4dsVykz3AfHJ2ydIwrMhOi2jMjSzAVjFHpYKC.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQeme67tTCcvFbjg3xtvKPls3300iLBXVDEUfy8mx7yWaCAIqEWAw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS4dFI2UwC-lrsyubk2gj7n09MAtUKgiie4-IQ660IhEJVeoz1U.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSBN0licW70W1FkNQVL1alNy3aTKEPegRjZiT1fpvxJV1Ih4Kw7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR0mDbuzswoRDFaDUKQQ8NSHVGXI9qpwOL935KvfdXa79PZPjlW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRNqNFV9XD8qS8ed-r0a61AUeDqZXSDL93sRqNzOWecjAVBI0czoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRQK8SkQW6ggqdPkeEW9WOzI2DQQefetCz6DgXeM_9ELiDnYquF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSN9qKisQg1zwxzwfgdgejsGlWoKK8T3yKH-N3XXX88FW2AL1Nw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRCp1c4zkgi-OOchW-u-f8rL40FbwIk4sWTwhux8lJCLXMk800OIw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRZXyVsl-m6pWA4vU8ILjEsOCMwyXiPw361j1utgxb2WoSoha1mVQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRpEwztZBDgHIZI7F5cola85hK7CTjOP_1beHL2HFXgHYP3OwA5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRU-NkTtKnCYXCTRPsgoyQIsqQxIj4q2OMTx2aGEz-KU2LYzAOBjA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTqGDiyKybA1IQIPQCGFvsb8sClfluayfi7hsM_RzObqmqFqEhoTQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSOBwVrU-cVKExiQEgNWziiFSF5MU8MsWXdcC_jAgTpwsBiRpWU.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS8I7ECuOaE3qs9p5_GMNfdMp5FL4PYpsEwaCJGOEBEtZ-8GC_hLw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR5ryGyqbmf8WkJ6PRC4bQuJAkNtnEgclJWK5uZLgzZYMIWjcb9EA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQwpC0u43nlE58ZQQxHy9OprjmXoIUCfMRiZbMh9NyWQmRe7_vroA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRJIMgw9eENi6VKn8TRw3HWJLG5m-ukyTtaH01i8wDmnPFuvm1L6w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQK6VlNG9yem4C3SdssiD8H4rEUzJJNzaLvBTuYdiMT0Ey3MYv1XQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSpZAcwjLCsurlCMADDtgTDkxJLiyZaKKj1GhPzJpU4prd-YyR4Mg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRe2r2vvDw9mMmABVmzGADVcONhZ9t1kAsAu5HK_bVCDETzkgAd.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRrKFdh53X21eFpOLDu8xxaJfg1YE294ohXmub5ri9ArhwXX126.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRMFD96UFm95tw8XcPaBVarT_ziEsx12bvKROYCMeMH8wthOy3oow.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQkw3xgi-0fpgQbp6IVDxy3fpYcTYkeMnaUuhBnzkYgrTAQHksLtg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTvEm1XUSOAH_kGSoTOMgc6lLkKFzoxm1bfIAegGxfMODBn1kV7Fw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSoIB-6d3E-U0YIluN-R1rSIKFvafmY-AyALPv7yom31QOvyQXD3A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTYfTPcR0ExdkVMx0qMgwRFswSWbC2ytMHWjDKhv4aE4xnUrkQzkw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRrD4tJeF40-kFDCwthROLvIISDtX2JjIJRFDSTMZFb6c3s8d4l.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSSjmfw5STWlhFcJxtW6kgHeJbw-knAeDQYO4X9p9ZZNGbfEcwkPA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ5bxI1StZT-Skc7GLImMqAxU7f6R3YCS96MJuPYtmfGcu7nYoE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSqKJsMLusKrmSOXfj6hBdw4EmHFga7nuIuno5pn4BZ-iq--eD54A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQ4aRrWRi7PaKSC55a-GHGqEnKoWe9WIcGPI-1ra_2vAJveUEPaZw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSH_QcDJkq6_f4zivVqcpqYKrck2JPIkR2359RAxSkltb1jWkxvtg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRVFOBX9-IMu_nG1p0IdcOXa9faX6cgb7fy8pQJdeW52Ydhuxnw7g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRSWR65AeWYVIKHCkLl8mpm4SGUzgumv76hUTk0fKBE9si499_n.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTrr2h2GgteDZGKVP4T5Qa9bPJ6Ho9RQE4fEdvLiCX9QwyCPerK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSbDH-v2sixFCrooV_mAyRK2_Qsrv1YlktNaPnC4U58ZDv9xmyvew.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQlCTsTGBIJjgs5Zr3dQbCtIGBVs3FHthCi91bueP1Uf7-mnJu5.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcS97fKA5kAVyvGvJBTusm3Yomb7UZqYKlObR3PxHLnVcjA9HdgisA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTli3IjJZo4zlHUk7KXJrzcHzLlMXW4fUa6q-p_s3bAMnJbkL6aog.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ3-U1iFeTeromrkQz-Wl_oCKdNZX_JE_57_wDHEcy2fVCPpPwuMg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTxo1_ky231Z-60ue6CQw2wfw9dgwoVjMpcQuK_d6alQZWtw2YWdQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ5EUHDl9-SF9BaYEhvQubvdzWwTDN-PnPDfez32vy9eIFMuwl3.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSNmvS9vJx9FpXwQgvydTQTGJ_8_OpF6KXviqKD2T3injpJtj7COQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTcWMIGJKj-62xKjrTU1eth2ErZtgyvzSNWRczVMyWt1YMk5WGYcQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcT92lOlIavilAhZkEcFdjnybYdotMhKve9JNP0l4v2B0k2Srn3h.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTy48p2d7FPdVcoLB4djQIN2ynWsYkeMf3v0sOpnceNYFfgjPZY.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTQylYtnXNtf_ixVDA1c10DuEOk9edPaZG3Ng_ZTlvKpGZwsLphuw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTGWO6pnQzfs0rffCsdiz7puprjB5hTm--LYws1ju7VuyBvyqDB_g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSaQMKqgmhTU519CRBtl8mDWyaCxWl7S1vzW82D0NypMHQgCW0X.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSMZ0InIDnY_sShCi5n9mSA66JK684n8jhPyrNz72d9b_Xvfd8GBQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRV92WS4U6jfUyHc9e20OUWJPU4k6njMybdMolWk0QKoyFG5NyrQA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRcedu6k-_CbdlOp7v5HTuYn0YZ58Wv4PrujnC_BCDb0i4gw7N6Vw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTeCyHvSJs4YthkRyyO9Jg9y2odaqZSWRuf1ctCHVsC5FwkvosxyA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTv3bteuUCcHa8reH6MdRf8ElX-GeNPv-Ld0jiUe5uivq-Fkh359w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQelVb2it2eod9HF62Rteyb7lMmIXd12IwFrf5RUWZag3UB1jzLoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS-uAzr3Vn1g-3J-fOzMlmUhUexNJlGhptP3iskrzstkZcep2wXng.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTxpvwWkloTTcYATMySKASKW1ei_e5BR0BegQJC2PqdaQdIt2cy.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT6gIWGvncz1Ze90dKuB2rfSEi9XYM34XEkmY_4I8hQtmAdj0TL.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRUx3FIiAu23D4zH2gGMPmdmqCNcI8cYppESICvB0Ji1gJP1Gl-8w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ65q43sQs6EJ4mKQsxKfMBGWP4D_i0MJiMu0qta5fK7QNeuWDKFA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTWweuuKTDL3sGXG1Eud9f4D9k4pw_DhJ5uZRq6RS8N4zSg27D7Bw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQzD-gmBj5AmxyL61MDiCLXJRIfdod4FaIhHJajiy-uAxAWmJ9V.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRyhsc_sltK2eCRalb4z-S3kcbVQVa7mu1ZronTu6CF0tjpfS4u.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRe5eLLC9D7Nzj9AiOa5_4cY32jt_uHqPZFipwqoluEJRH19MhMoA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTCSKZeNja8LuYXU763eaZWj6NZkpDFZ-U9J6wM7uMxVq2nm2Lj3w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRIDofyx6s0uPMUj0VWDmCLN24HUl1rvSx0knXqEIJCTjeww4Qm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ0p0VhR7dXlGVaCDrmjPiWolZXDzA9882JcLja6au0zCpRZLdv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSnpNvskfnlVMhtq4muGkg1iRUol47_T5DizYComjWjW1iUz5MI1w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQk-WeL6N3tb6a79QiUQs-dDp-PI_Ye7dHviKjJAoj-IvN69rQiDg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRmMeb2V-u6PQYXC_JrUIXPr-z1FAmOZQqopzc7plbiqHvEaiP-0w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRCL03eBNwRmlIVdBs6HLeZW1Yw2-GQ3_F7zjUuMHLaCxQEZr3_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSow2UrudFqPSE6A1zxl-tfJVOxwuKOPPHaSsMlHUH36Dla_U6I.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT9nuk1r3VPTbD4fuO59YCJArp62yYhS1y6oCaApJB0-k11M1xs.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQgSTKxIMOWR8yPks47kYoRH3qnrOfCeicoBqpb-N6lhj4iU76jAA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTRtNU9etPs-CBOABEu-T-I6reBJMWSCDamPLUQ2V93ROzQgcpr.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTS4uo4YDjTuZ77NAsBZW94QyDhZoKU91UE7t-GFVljHezk6YiwvQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQArho3P1-HKCO0CaxP2b-rdOM9GWOBCny0ZkhZV_-Xxn6iZZX2.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTZDSAPAzAR5DHMToO8zgAOipwTGvUL2qdffWirM0FkqeGj-M40hg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS0-PnIzpLwlZs75OAUhDkpL5kx6x1thWZY-48gVXpN-tp6SGK-Ig.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSWOaVBhS5ZPNydImCko0I1Evr4oJhqYJlWRAqARFz7MSrZuFg-qg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR7i0JXQsYtSXLGSz4HZLqy1oa7IgRyHQFVVuzGslA4PKLe1L5OaA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRkeA3mg5g4XmmRqA35ueoLV56NJr7KLoiyhB63VQv9VKtQA0kN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQNGv5T6vc79K6gdEcENjpADS-pcO5KRByONc0aYPr-TA0EQJBXlw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQHVL5tsNxB2QUi6iSp-3rM2npU2TrgmtI3vXdSHCRv7EUVZRV6uQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR4BJZoY3kwsdFLwvLYBFprlUy7fc8BILfUP3DQ4rcfifRtGncFsg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTNZX-Cf-HAv9SwzUbrXOyYp9PZ6yMHYqQtFkDZNRTaPQ0fgsrnPA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSiGz_eTPp9jT77WK0J26eKooG7XQrrqYZChU0HG4SwWNaqvlvJ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcS2uF2PxJDFvk4aoRNYhIiSZZQy-gDlsRl_yR9zE4IVt_4toI6VfA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRBc2YhsqJtDGHRz2lJwuF2AiSCpdHNqJ4GGftX0gR9_7oD41Jm.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRVPDByXHkienB4LbA5CZMabGeQiyKBuPTiHA_rHFm7Guvns5fS.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSPqX8EjpZkOMjt4hUXeRV0rENFbSxSAXBYv4deCUiqHTwgLn_o.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSKnnkXK4kvjY-zhAHOrR-HOibwqznvTXsDE0nV-jV1FrybhAfb0A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQLdZUsZYNj61o5I17ZWWqSYDTzQtp1wrXevShk6HfrG8mT_zJW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQrz1UgrU3pCv2kvoQ8GyFTTX9zM0bYCGyqQRmSS3IOn18KQAJe.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT1lcYtmDTsCb-WwpofjsIne3AWkAd8WDz1328UOGizlxjdKIFq.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRKdqeAuVVK7jz7dNNdvOOlU9ZBw5VFrqidP1wmn0o_110O_J2H.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSSF8U7px6Xcxr7YeJIzb-xovqtTGCjrpWUlSU57WDUhBsUSDtw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTXWy4_B-2Swx25m6eqRjPd8-rUI-2WVbbisEPe7hnHaT3n5HVlAA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTzsXM4iSFUhBnsO2oE4isTbWNdLY71LQjO_E5yZ3OBEMdH5S_pRQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQbNXkgKUKGShZfqCxT0ID87NtJ31c_DWfy8yDpb6nBY6YzaLUn.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQuUCd0sA19K8NA2LjOuofcZMDDoS6PDr7OAeJyzMaVAQTa2-Jp.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcT8-j0uCodKHPpU912VmgXKkUXO916w6URKzNBXiMM0xlmfxq_fFw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSwzvgOZ9ubcb221BikVqLxZjIdUSRZZ0p-evaPs1E3iCmYqvEFVg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcS-3mxwBdqwymDjxPXYvkSNf5OFiWs0HVzYguAbZqStO2Iyls-W.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ4ngCd7aNf4Uezdx0Y0auIPqxkNiH4GoNliFw5g6Z0Xfa89NxDCw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRwCU34NOJGTJjTSMZeQIBN13NuMiKtXrrugMuJzy3sG43qW6nx.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTXR7uNP1EqTeJ0NPJqdu25AhYMAwVGKuBTECU6wFp5BGSqlG1c.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQMAVmx5-HIQ_nyIXU88jmbN1LRb6Qq88VM2VFSyCcVKuifFNcE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcR1detf0u2Rfm-3nBZ1czpM8xDddNf4YPYu1YL86i8hEhJeMMS0Sw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTowaURCFu5UAygb_drpygsYa25GmGGZ4WVTyAcEEaphezUT0Aoog.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSF9YE3TCilxGBHKSjckDEBPZa8_paEymiuqsyhegj-zluIu14I.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQ3whYfUGrHELoCiurYMmOps_dNp0p2mIMPcV7PVMJM2Vl9zkvodw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTP9kXLkkK3pmcLgxziLyUicIZlquQoGi3BTqcN8XYORkQwn5iVPg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRxnxto2pe9QUpTNrw2Q9j6pejg100MbNEkvk1PQi1zXsrYCprE.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ3I4AqnWqa22WJ5cS_nxRsdKxvVgQBdxtHDGtk2jgenWo6lgp0eA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcR5f2ITjjlXqjM7esu52w3uNorU7Hfh8lfi4fnpiS2aGO48rX430A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTDfqfk3jTI1ZH2HaBbyGnGVJFUWK62t_Ng3JtqEcSG8xGxSHpk.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT5ijDC2wC4WYghc1HKr4AGD3kUfiCb9wu1y7-fvCh8lqztZD7nYA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTFLrlLf0JvVnd0Lk0fw9DI2NT3UTNBBIE82PC23hV0Qa2T8Vll9A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTUdkJaPT2ssltB7ij7TbUR0XDmU6SmrNLXahnaoYxvjX45iRbUCA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ3UX4TVOnUTI83wm1MFi60JOzyJzYUsJVyKJ8Q6yHi4LEZoUE4dA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQBmz9VBm4Okn1pjl7lqfdP47hq0PxOHtnNtjhFOhSoE0doLQzW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTFLKKcnJBHbwHyc7LZQoTj0mmsTfEuZY_b6RdGeNQdvE1kyOR7.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQO4WVZK_WIGJMEFOMm0M-B20kUbY0b23QzeQO-K1BDsUXRLBQQ2Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRXQYJeMTkySOFt9e4-E-PLninohDK5nTDEAMUT202t7mF0cdYDfA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRxKfaAh_MBF8lujRSrUdDfrNkk7UnJn5yBrTCxkBmgfoI4Jbg5SA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTuDju_po9KSSMo4X7k8BjrmbxRVfwAJVTAxm1-O4nSnrfVx5k8HQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcT3LrcEVUR9uawyaVbmp0Lutr5zjmlR1JBX6FywZ5u3BoxUfuA_.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTKA-UyN-BKV6DUsU6C4cB_wngCC9i1jR8Q2yvWg9aHyYhe0-c4BQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcSDLGmWkKtr830I_5u8EgakQA2eHio4UnYkHRIRzVyxeuWPzgp0Uw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTnj3ZQw2D_DIPmZnNovrWKZUs36wAgTU-ssiiMDz8XpaRmV44wvQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcRTfbVGwktWj1ihfzPlG-4R7Q-IVUIyyIZRhoYJNzLwyQysQ54y9Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTwsVKDWuGCBhme5UUVHOUQXtZ-eLitpb2NEXDfhBisYzX_qWr32Q.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcTRWULbhEgAiSXF0FJd4pVKG0ElB5MDkhCYFSUOW4aIn9vufIge.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSHDai4ce0T1ZVm6-XjGTVaSQhrM-o--FE7-R_xXHsIh1x9gjEH.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR_TUSVeoHQ6bFBq3K0JecGiFiAcDd5wdx792K1lWsoyRguioRv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSStZ17hZgoM_7FI8EWF5FouK1lgYKy5wSttt9Bx7ariFl3C6Ub.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQ0AS3ipXjOLQLuepakrKNUkyjUPNFVaQAkw0Pr_etYlw7lQRo3Lg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTEobBb_9ZJN5BuCeX9vXGrIjxZvWV9LeyJU-ZWnG2m53ZgXA-4.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSkhRJdHUKdIaoDNbn6ff4pCDP77NylZ4iltSKr_rzFeUtbyOqh.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcSZL2R0yDH1zFAMPxfFzuyWs4X__a_6YOJQUNz-ZoLzCh4IUBs-cg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcS1b7jIZHalUoyRIMhs2ppkZrcp8-6t-Z2BCW-OzHb7C1EqXH0geg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQBQJncxQKcm335M26pQvhSqS9tPq9BMQFzrn8tOXKhpOrqYi071w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcR-9uJBhzFQV_v2VwDyyXDSV41agFJtPEzSmh-n7eFCNO2Sc3rv.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTryPaiBQu_7rxT-mfP8IrtqFpR4VERl0yue5RI_R0yVBwwe7CHoQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQjKdI8HMvod2TuVkA7TAJZrtpYArEoYpnMrRIcDLX45mPnKG74.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTt40kf_UbV74id8b4Hy9uxtpYlAiU0VIpDqN2LPp6tG5om5Idz4g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTTt1MvDQ6vj4828rf1PgdWyerL4Gd1hZgNWUqHJAySZ3jFUGZYrw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSk6DvfcykdtIDtydjI4a2NEs3UIe_V2MfvC--cwKDNku3xGdWt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRs2IQBEdkR4WsbKMo7OUCVnxBNqHIlV7wIOJ0SsC4F1duYpbEaUw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR-49EKnWR4zyEqtMUS4ceZrnCPzsLcKk-9XWKmWf2PcvR-Wcwt.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcTx0s2REAARHNDICg7nB-X1HkRF2oNxkqiYwwfBvPNbnJI5rsokwA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQYEtPaO6uZnrUMvYrhplutoRXO_uPI_Q4ZstVpcccOfzKh4PT0.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcSoj2JK-dp-_S8P_GS2QPtsjvK_wDtJ1A4b42Eh2P8vxNSZ5YIGXQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQXh_q7diyH2JUHppCMxL1BkHyNIOPkRNedXPXI0UyqNYWSGIAbNg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTAwErfF8yQCVxR5nGn6414mv02opKXSFZfaRS6Qs69td0NXAnI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQXlNshRcQ7WX_PrDXQw9esYY8MKy7Wmacg39HEEDp4N2FSsUWw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcTXadcfZfV6GdKLs_sU7RVJw_um3qyN_dkqw5-1Hm6146WtpRBmHw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRUt8jKL8-IyyrSsXu59U9ADwOya0H6YVANHqhWHvhrKTX7NZ2r.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRdsHi_PwhUF3-9lVHHCy5COZoLwJAOYU80b1FWhC6IkwDNMbNB0A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQa35xTzYNjAQNDmtLwFeDlzmWaIo8FCdO2s5vDLJg0UEMyb7DN.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcTs0Wkz0LFlPJDvu-vp_l0h_LRsR_VdPPECVwRMnARscIOPVQGX9g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcQv-LbTERdjHNvfgRT2CA3W-9HHmKmWrKR-kjNBnW8IqZ9B45I-DQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcRN0bCmWeVn_IknigwMXNVl7wxUv8YTQnd6-3t4DTFPWVNJq186.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRp6X9oclsADwUMxHUdzOFsTxHz2-PJM0qoy9CcTEjiTGzD3E-a4g.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcSa8X98QaDzdTvj6dyF44VU3LMwsAK2GtZI8knydvmPctbvlh3EbQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQAPBORQYPq7vAkwjr6MFiu0BAwrn6OzEMgSzSl8Yi-Sp8izacE_w.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT_uxwmzIRDJiYZVSWcYkI-KXqREvoW84yTHfNSAjfS_N1T7QFK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRu95j9inkWXCQGEkfpyBG7Gf5fTFGRyhCoDZCyW76CIQtijqRopg.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQurG9OonPUzm6tJNxv5EhpRIty81O8lstxyIEvGyFtwbzzLUMMgA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/cloudy_sky/ANd9GcQOw3R6Yx9e8KsywpmhKGish-UWoPaZ11_Xyfh44IciTlvXluPO.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQ3h7vo9eOf3BsUxnSEJ1BhGHyIZDpaTbiv-zKS94KVz_m56wbK.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcRk4hPxkcgok41sjVCGgyoscE_bYn8Pb2S6-8_Ppy7TWl9sDLHI.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcR9S6R7tyDek8BDsEoW9pLDLWjuD8udLKlkWLQU9uHaargmDJIF.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQpuOL6GaG-INJsfa9We7sMydXjclepWfhg0E1f0_W-Zd8XM0isUw.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQFAUn8o8vCg5JdN8_TMDE3D4kCHKuO851PjujeSQojyh2x12CT.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQctqQc75qFFokozjwtQnPheUnCIZEmkMi1ECUtVJKsteyp9tmw6A.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcRtk89HaQdb2w0xnlw5RvxHpOqTwdiYvJE-XpsoofT5OdXKAO4Y.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/rivers/ANd9GcQxeO-JhNR5ZkkMdnXCTWydlaxOfyhwfvUfbbxPFm0CnzjhXuDQ.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/sunsets/ANd9GcT812u5BIrfg-SxJL-uCi1u52Kko77yTmzXOFi3w5YJzODtcPZelA.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}, \"/data/coursera/images/trees_and_forest/ANd9GcQxQuoHOq7myFEOBYjbC5BxfsAgujMdb2_2UjZrmSzrqMLCbtOW.jpg\": {\"frequency\": 1, \"value\": \"/data/coursera/ima ...\"}}, \"size\": 1328}, \"folder\": {\"complete\": true, \"numeric\": false, \"num_unique\": 4, \"num_undefined\": 0, \"progress\": 1.0, \"frequent_items\": {\"cloudy_sky\": {\"frequency\": 288, \"value\": \"cloudy_sky\"}, \"sunsets\": {\"frequency\": 362, \"value\": \"sunsets\"}, \"trees_and_forest\": {\"frequency\": 319, \"value\": \"trees_and_forest\"}, \"rivers\": {\"frequency\": 359, \"value\": \"rivers\"}}, \"size\": 1328}, \"red\": {\"std\": 0.1264962265763447, \"complete\": true, \"min\": 0.08265617249503968, \"max\": 0.8639978686698814, \"quantile\": [0.08265617249503968, 0.16590502989625405, 0.19772340682629388, 0.2137652136115251, 0.23362540674879592, 0.24493822486472508, 0.2527581541814421, 0.25821905559467606, 0.2645935792349727, 0.2715038106267166, 0.27854026949826133, 0.28489055514157974, 0.2880224633631396, 0.2914337238526845, 0.29740512615432074, 0.30024451572028193, 0.3044143178104575, 0.3079020652697495, 0.3120389918379086, 0.31397190347098436, 0.31788458944622633, 0.3226942729078731, 0.327473531420765, 0.3312670647827644, 0.3342578125, 0.3408988543159739, 0.3476479446100348, 0.34974416294088423, 0.35331395709325397, 0.356921184177844, 0.3612139989999204, 0.3649261831582717, 0.36814401258422513, 0.37253267821659214, 0.377048792225534, 0.3794658358134921, 0.3822340205368466, 0.3853619442374565, 0.38855347316204275, 0.3908471497764531, 0.3947202845982143, 0.39838262648809525, 0.4011859631147541, 0.40409955242281304, 0.4074953884548611, 0.4100654864924007, 0.41275460379464285, 0.4147704232675238, 0.4163849796501214, 0.41851709759424605, 0.42179056204730647, 0.42453451347290544, 0.4285571273541799, 0.429991939484127, 0.4330794367858917, 0.43721686178999325, 0.43985156869302416, 0.4424470814029461, 0.4445430234959787, 0.4482819398659618, 0.45151247127894484, 0.4534963544241226, 0.4563094429347826, 0.4598693969075754, 0.4635706535218254, 0.4671593639868932, 0.47103290860615077, 0.4750133250656769, 0.47823846674534853, 0.48087658719102017, 0.4854986124517375, 0.49032875440333556, 0.4951813395503953, 0.49879747714920947, 0.5025168436413313, 0.5087436351217088, 0.5138105418647201, 0.5167727885779798, 0.526437669093658, 0.5302000874447718, 0.5346531080163044, 0.5413257575757576, 0.5454959075604758, 0.5531699212573135, 0.5584757535593389, 0.5631172755045177, 0.5696352714414255, 0.5785647631448413, 0.5821505271741285, 0.5920925154320987, 0.5990535160759065, 0.607083020604205, 0.624500079195375, 0.6336502576999503, 0.6470531233836636, 0.6589399094655097, 0.6757779070722048, 0.6976848036449671, 0.7232917172511245, 0.7607696845504223, 0.8639978686698814], \"median\": 0.42179056204730647, \"numeric\": true, \"num_unique\": 1321, \"num_undefined\": 0, \"var\": 0.01600129533805394, \"progress\": 1.0, \"size\": 1328, \"frequent_items\": {\"0.3209042549133301\": {\"frequency\": 1, \"value\": 0.3209042549133301}, \"0.3159414535306179\": {\"frequency\": 1, \"value\": 0.3159414535306179}, \"0.5010328311011905\": {\"frequency\": 1, \"value\": 0.5010328311011905}, \"0.5435462017337074\": {\"frequency\": 1, \"value\": 0.5435462017337074}, \"0.31561982790232107\": {\"frequency\": 1, \"value\": 0.31561982790232107}, \"0.4136464616678611\": {\"frequency\": 1, \"value\": 0.4136464616678611}, \"0.29740512615432074\": {\"frequency\": 1, \"value\": 0.29740512615432074}, \"0.5589649729929044\": {\"frequency\": 1, \"value\": 0.5589649729929044}, \"0.35804295902085925\": {\"frequency\": 1, \"value\": 0.35804295902085925}, \"0.4848915382667824\": {\"frequency\": 1, \"value\": 0.4848915382667824}, \"0.5143158451947561\": {\"frequency\": 1, \"value\": 0.5143158451947561}, \"0.4267358830028667\": {\"frequency\": 1, \"value\": 0.4267358830028667}, \"0.40028882575757574\": {\"frequency\": 1, \"value\": 0.40028882575757574}, \"0.4159455790013135\": {\"frequency\": 1, \"value\": 0.4159455790013135}, \"0.65078264398295\": {\"frequency\": 1, \"value\": 0.65078264398295}, \"0.4236272634981402\": {\"frequency\": 1, \"value\": 0.4236272634981402}, \"0.3185505930203676\": {\"frequency\": 1, \"value\": 0.3185505930203676}, \"0.3006019660439909\": {\"frequency\": 1, \"value\": 0.3006019660439909}, \"0.6371276201127559\": {\"frequency\": 1, \"value\": 0.6371276201127559}, \"0.5752103484623016\": {\"frequency\": 1, \"value\": 0.5752103484623016}, \"0.4215454993152588\": {\"frequency\": 1, \"value\": 0.4215454993152588}, \"0.23823583572224877\": {\"frequency\": 1, \"value\": 0.23823583572224877}, \"0.3798798736091312\": {\"frequency\": 1, \"value\": 0.3798798736091312}, \"0.18653548231479272\": {\"frequency\": 1, \"value\": 0.18653548231479272}, \"0.44004763168705946\": {\"frequency\": 1, \"value\": 0.44004763168705946}, \"0.5584757535593389\": {\"frequency\": 1, \"value\": 0.5584757535593389}, \"0.5818912226775956\": {\"frequency\": 1, \"value\": 0.5818912226775956}, \"0.5291822181786566\": {\"frequency\": 1, \"value\": 0.5291822181786566}, \"0.5278747313218962\": {\"frequency\": 1, \"value\": 0.5278747313218962}, \"0.5663333178323413\": {\"frequency\": 1, \"value\": 0.5663333178323413}, \"0.5051512962474625\": {\"frequency\": 1, \"value\": 0.5051512962474625}, \"0.4645377526383911\": {\"frequency\": 1, \"value\": 0.4645377526383911}, \"0.34892846475507766\": {\"frequency\": 1, \"value\": 0.34892846475507766}, \"0.6167503242341897\": {\"frequency\": 1, \"value\": 0.6167503242341897}, \"0.2903522276846105\": {\"frequency\": 1, \"value\": 0.2903522276846105}, \"0.20268178713363139\": {\"frequency\": 1, \"value\": 0.20268178713363139}, \"0.47757340964927986\": {\"frequency\": 1, \"value\": 0.47757340964927986}, \"0.374113813164232\": {\"frequency\": 1, \"value\": 0.374113813164232}, \"0.45151247127894484\": {\"frequency\": 1, \"value\": 0.45151247127894484}, \"0.38885845306656325\": {\"frequency\": 1, \"value\": 0.38885845306656325}, \"0.41086424957318407\": {\"frequency\": 1, \"value\": 0.41086424957318407}, \"0.37972242363200825\": {\"frequency\": 1, \"value\": 0.37972242363200825}, \"0.20720340948446467\": {\"frequency\": 1, \"value\": 0.20720340948446467}, \"0.4241321250743163\": {\"frequency\": 1, \"value\": 0.4241321250743163}, \"0.3164982961386309\": {\"frequency\": 1, \"value\": 0.3164982961386309}, \"0.26818024071567886\": {\"frequency\": 1, \"value\": 0.26818024071567886}, \"0.4969056478507905\": {\"frequency\": 1, \"value\": 0.4969056478507905}, \"0.2876930421013413\": {\"frequency\": 1, \"value\": 0.2876930421013413}, \"0.611103837867691\": {\"frequency\": 1, \"value\": 0.611103837867691}, \"0.2878551912568306\": {\"frequency\": 1, \"value\": 0.2878551912568306}, \"0.2137652136115251\": {\"frequency\": 1, \"value\": 0.2137652136115251}, \"0.5790906343005953\": {\"frequency\": 1, \"value\": 0.5790906343005953}, \"0.39907040174839786\": {\"frequency\": 1, \"value\": 0.39907040174839786}, \"0.2623462875154241\": {\"frequency\": 1, \"value\": 0.2623462875154241}, \"0.14880724920742755\": {\"frequency\": 1, \"value\": 0.14880724920742755}, \"0.4289972988077496\": {\"frequency\": 1, \"value\": 0.4289972988077496}, \"0.47819245218579237\": {\"frequency\": 1, \"value\": 0.47819245218579237}, \"0.36018945946681713\": {\"frequency\": 1, \"value\": 0.36018945946681713}, \"0.3239664058618977\": {\"frequency\": 1, \"value\": 0.3239664058618977}, \"0.4745673163037854\": {\"frequency\": 1, \"value\": 0.4745673163037854}, \"0.41281893115401447\": {\"frequency\": 1, \"value\": 0.41281893115401447}, \"0.6332865217434551\": {\"frequency\": 1, \"value\": 0.6332865217434551}, \"0.3652008399480121\": {\"frequency\": 1, \"value\": 0.3652008399480121}, \"0.418101831297869\": {\"frequency\": 1, \"value\": 0.418101831297869}, \"0.30542447554185725\": {\"frequency\": 1, \"value\": 0.30542447554185725}, \"0.3571931363525504\": {\"frequency\": 1, \"value\": 0.3571931363525504}, \"0.48824026639344265\": {\"frequency\": 1, \"value\": 0.48824026639344265}, \"0.2551310753567182\": {\"frequency\": 1, \"value\": 0.2551310753567182}, \"0.4285923490994565\": {\"frequency\": 1, \"value\": 0.4285923490994565}, \"0.5351141001178031\": {\"frequency\": 1, \"value\": 0.5351141001178031}, \"0.457275177469442\": {\"frequency\": 1, \"value\": 0.457275177469442}, \"0.553009799382716\": {\"frequency\": 1, \"value\": 0.553009799382716}, \"0.3325387500494971\": {\"frequency\": 1, \"value\": 0.3325387500494971}, \"0.3709761170260157\": {\"frequency\": 1, \"value\": 0.3709761170260157}, \"0.3990217492548435\": {\"frequency\": 1, \"value\": 0.3990217492548435}, \"0.4655490365244919\": {\"frequency\": 1, \"value\": 0.4655490365244919}, \"0.745877798127039\": {\"frequency\": 1, \"value\": 0.745877798127039}, \"0.4165805855688028\": {\"frequency\": 1, \"value\": 0.4165805855688028}, \"0.7096551029265873\": {\"frequency\": 1, \"value\": 0.7096551029265873}, \"0.635764179000557\": {\"frequency\": 1, \"value\": 0.635764179000557}, \"0.5867918124079529\": {\"frequency\": 1, \"value\": 0.5867918124079529}, \"0.524684488019217\": {\"frequency\": 1, \"value\": 0.524684488019217}, \"0.3624241648037755\": {\"frequency\": 1, \"value\": 0.3624241648037755}, \"0.35393364645941966\": {\"frequency\": 1, \"value\": 0.35393364645941966}, \"0.4210659337310433\": {\"frequency\": 1, \"value\": 0.4210659337310433}, \"0.6081169274714356\": {\"frequency\": 1, \"value\": 0.6081169274714356}, \"0.4664658625186289\": {\"frequency\": 1, \"value\": 0.4664658625186289}, \"0.696041171077411\": {\"frequency\": 1, \"value\": 0.696041171077411}, \"0.5093949487272619\": {\"frequency\": 1, \"value\": 0.5093949487272619}, \"0.777403896365481\": {\"frequency\": 1, \"value\": 0.777403896365481}, \"0.31180551929159706\": {\"frequency\": 1, \"value\": 0.31180551929159706}, \"0.5983488228349965\": {\"frequency\": 1, \"value\": 0.5983488228349965}, \"0.4736259322881423\": {\"frequency\": 1, \"value\": 0.4736259322881423}, \"0.626425095861184\": {\"frequency\": 1, \"value\": 0.626425095861184}, \"0.383045827123696\": {\"frequency\": 1, \"value\": 0.383045827123696}, \"0.48734768811376417\": {\"frequency\": 1, \"value\": 0.48734768811376417}, \"0.3459496847750694\": {\"frequency\": 1, \"value\": 0.3459496847750694}, \"0.25633624753711737\": {\"frequency\": 1, \"value\": 0.25633624753711737}, \"0.3715135214853453\": {\"frequency\": 1, \"value\": 0.3715135214853453}, \"0.40517619846000996\": {\"frequency\": 1, \"value\": 0.40517619846000996}, \"0.41116110181051585\": {\"frequency\": 1, \"value\": 0.41116110181051585}, \"0.5646248607463993\": {\"frequency\": 1, \"value\": 0.5646248607463993}, \"0.3783430718638526\": {\"frequency\": 1, \"value\": 0.3783430718638526}, \"0.38161814856150794\": {\"frequency\": 1, \"value\": 0.38161814856150794}, \"0.23686428837555887\": {\"frequency\": 1, \"value\": 0.23686428837555887}, \"0.7188607053297775\": {\"frequency\": 1, \"value\": 0.7188607053297775}, \"0.5650485356648763\": {\"frequency\": 1, \"value\": 0.5650485356648763}, \"0.4045579838245795\": {\"frequency\": 1, \"value\": 0.4045579838245795}, \"0.6181465008693492\": {\"frequency\": 1, \"value\": 0.6181465008693492}, \"0.465761344808542\": {\"frequency\": 1, \"value\": 0.465761344808542}, \"0.28461397332045185\": {\"frequency\": 1, \"value\": 0.28461397332045185}, \"0.22660853547468796\": {\"frequency\": 1, \"value\": 0.22660853547468796}, \"0.4003726664809139\": {\"frequency\": 1, \"value\": 0.4003726664809139}, \"0.34841684800128947\": {\"frequency\": 1, \"value\": 0.34841684800128947}, \"0.6283844375397868\": {\"frequency\": 1, \"value\": 0.6283844375397868}, \"0.5138843936011904\": {\"frequency\": 1, \"value\": 0.5138843936011904}, \"0.37774948708620415\": {\"frequency\": 1, \"value\": 0.37774948708620415}, \"0.6213901926877471\": {\"frequency\": 1, \"value\": 0.6213901926877471}, \"0.7134436074513394\": {\"frequency\": 1, \"value\": 0.7134436074513394}, \"0.4534963544241226\": {\"frequency\": 1, \"value\": 0.4534963544241226}, \"0.5195513916983976\": {\"frequency\": 1, \"value\": 0.5195513916983976}, \"0.44686655865880254\": {\"frequency\": 1, \"value\": 0.44686655865880254}, \"0.3526047937895554\": {\"frequency\": 1, \"value\": 0.3526047937895554}, \"0.2657811722636816\": {\"frequency\": 1, \"value\": 0.2657811722636816}, \"0.4571307663690476\": {\"frequency\": 1, \"value\": 0.4571307663690476}, \"0.3998331318204365\": {\"frequency\": 1, \"value\": 0.3998331318204365}, \"0.19177540612599206\": {\"frequency\": 1, \"value\": 0.19177540612599206}, \"0.3779845731767737\": {\"frequency\": 1, \"value\": 0.3779845731767737}, \"0.2821164629036417\": {\"frequency\": 1, \"value\": 0.2821164629036417}, \"0.5413326589430004\": {\"frequency\": 1, \"value\": 0.5413326589430004}, \"0.5393870883315429\": {\"frequency\": 1, \"value\": 0.5393870883315429}, \"0.41524677579365077\": {\"frequency\": 1, \"value\": 0.41524677579365077}, \"0.388958147542608\": {\"frequency\": 1, \"value\": 0.388958147542608}, \"0.29950673828125\": {\"frequency\": 1, \"value\": 0.29950673828125}, \"0.4053462433576802\": {\"frequency\": 1, \"value\": 0.4053462433576802}, \"0.25821905559467606\": {\"frequency\": 1, \"value\": 0.25821905559467606}, \"0.28932695829044264\": {\"frequency\": 1, \"value\": 0.28932695829044264}, \"0.41801868521583163\": {\"frequency\": 1, \"value\": 0.41801868521583163}, \"0.3818773561211904\": {\"frequency\": 1, \"value\": 0.3818773561211904}, \"0.371850782414307\": {\"frequency\": 1, \"value\": 0.371850782414307}, \"0.33057540052160955\": {\"frequency\": 1, \"value\": 0.33057540052160955}, \"0.5312770492311508\": {\"frequency\": 1, \"value\": 0.5312770492311508}, \"0.35117393194237456\": {\"frequency\": 1, \"value\": 0.35117393194237456}, \"0.49147611333412966\": {\"frequency\": 1, \"value\": 0.49147611333412966}, \"0.38660078745039683\": {\"frequency\": 1, \"value\": 0.38660078745039683}, \"0.5087436351217088\": {\"frequency\": 1, \"value\": 0.5087436351217088}, \"0.4482819398659618\": {\"frequency\": 1, \"value\": 0.4482819398659618}, \"0.46858614319423747\": {\"frequency\": 1, \"value\": 0.46858614319423747}, \"0.578919523099851\": {\"frequency\": 1, \"value\": 0.578919523099851}, \"0.4575160863803012\": {\"frequency\": 1, \"value\": 0.4575160863803012}, \"0.4428845021081349\": {\"frequency\": 1, \"value\": 0.4428845021081349}, \"0.19400325298422977\": {\"frequency\": 1, \"value\": 0.19400325298422977}, \"0.2599593980185439\": {\"frequency\": 1, \"value\": 0.2599593980185439}, \"0.3401652276488809\": {\"frequency\": 1, \"value\": 0.3401652276488809}, \"0.2786504129408843\": {\"frequency\": 1, \"value\": 0.2786504129408843}, \"0.24611082650273225\": {\"frequency\": 1, \"value\": 0.24611082650273225}, \"0.27916449329359166\": {\"frequency\": 1, \"value\": 0.27916449329359166}, \"0.4028556947582803\": {\"frequency\": 1, \"value\": 0.4028556947582803}, \"0.46818165612599205\": {\"frequency\": 1, \"value\": 0.46818165612599205}, \"0.327473531420765\": {\"frequency\": 1, \"value\": 0.327473531420765}, \"0.4416835915741625\": {\"frequency\": 1, \"value\": 0.4416835915741625}, \"0.6640507016890214\": {\"frequency\": 1, \"value\": 0.6640507016890214}, \"0.3333246630994847\": {\"frequency\": 1, \"value\": 0.3333246630994847}, \"0.2532085284135949\": {\"frequency\": 1, \"value\": 0.2532085284135949}, \"0.377255859375\": {\"frequency\": 1, \"value\": 0.377255859375}, \"0.5623999891829792\": {\"frequency\": 1, \"value\": 0.5623999891829792}, \"0.40878826689021364\": {\"frequency\": 1, \"value\": 0.40878826689021364}, \"0.518019801980198\": {\"frequency\": 1, \"value\": 0.518019801980198}, \"0.48058551924531306\": {\"frequency\": 1, \"value\": 0.48058551924531306}, \"0.44341832820184834\": {\"frequency\": 1, \"value\": 0.44341832820184834}, \"0.4559250518698006\": {\"frequency\": 1, \"value\": 0.4559250518698006}, \"0.42182772197420637\": {\"frequency\": 1, \"value\": 0.42182772197420637}, \"0.4854986124517375\": {\"frequency\": 1, \"value\": 0.4854986124517375}, \"0.4124780208506483\": {\"frequency\": 1, \"value\": 0.4124780208506483}, \"0.32115895119225035\": {\"frequency\": 1, \"value\": 0.32115895119225035}, \"0.3312670647827644\": {\"frequency\": 1, \"value\": 0.3312670647827644}, \"0.37745005510388885\": {\"frequency\": 1, \"value\": 0.37745005510388885}, \"0.5990535160759065\": {\"frequency\": 1, \"value\": 0.5990535160759065}, \"0.5002826605902778\": {\"frequency\": 1, \"value\": 0.5002826605902778}, \"0.2973583426477894\": {\"frequency\": 1, \"value\": 0.2973583426477894}, \"0.33398778116329764\": {\"frequency\": 1, \"value\": 0.33398778116329764}, \"0.28792310916542474\": {\"frequency\": 1, \"value\": 0.28792310916542474}, \"0.32157023873869406\": {\"frequency\": 1, \"value\": 0.32157023873869406}, \"0.29093034146996777\": {\"frequency\": 1, \"value\": 0.29093034146996777}, \"0.41007263567279384\": {\"frequency\": 1, \"value\": 0.41007263567279384}, \"0.6011799801516592\": {\"frequency\": 1, \"value\": 0.6011799801516592}, \"0.4309427781917536\": {\"frequency\": 1, \"value\": 0.4309427781917536}, \"0.4382634879776217\": {\"frequency\": 1, \"value\": 0.4382634879776217}, \"0.22013715536512668\": {\"frequency\": 1, \"value\": 0.22013715536512668}, \"0.3992472417735804\": {\"frequency\": 1, \"value\": 0.3992472417735804}, \"0.32255406510107015\": {\"frequency\": 1, \"value\": 0.32255406510107015}, \"0.23941112181203394\": {\"frequency\": 1, \"value\": 0.23941112181203394}, \"0.44226069610034774\": {\"frequency\": 1, \"value\": 0.44226069610034774}, \"0.42453451347290544\": {\"frequency\": 1, \"value\": 0.42453451347290544}, \"0.42354197714853453\": {\"frequency\": 1, \"value\": 0.42354197714853453}, \"0.526437669093658\": {\"frequency\": 1, \"value\": 0.526437669093658}, \"0.29434771825396827\": {\"frequency\": 1, \"value\": 0.29434771825396827}, \"0.5952044580853174\": {\"frequency\": 1, \"value\": 0.5952044580853174}, \"0.5307127887481371\": {\"frequency\": 1, \"value\": 0.5307127887481371}, \"0.3511859939759036\": {\"frequency\": 1, \"value\": 0.3511859939759036}, \"0.4100654864924007\": {\"frequency\": 1, \"value\": 0.4100654864924007}, \"0.46971936728395064\": {\"frequency\": 1, \"value\": 0.46971936728395064}, \"0.17725709945436507\": {\"frequency\": 1, \"value\": 0.17725709945436507}, \"0.38694580174891\": {\"frequency\": 1, \"value\": 0.38694580174891}, \"0.3086454452309985\": {\"frequency\": 1, \"value\": 0.3086454452309985}, \"0.4764408657206088\": {\"frequency\": 1, \"value\": 0.4764408657206088}, \"0.4256408345752608\": {\"frequency\": 1, \"value\": 0.4256408345752608}, \"0.264179163561848\": {\"frequency\": 1, \"value\": 0.264179163561848}, \"0.3858629067312469\": {\"frequency\": 1, \"value\": 0.3858629067312469}, \"0.39016820329828106\": {\"frequency\": 1, \"value\": 0.39016820329828106}, \"0.573019280923994\": {\"frequency\": 1, \"value\": 0.573019280923994}, \"0.49736483998726266\": {\"frequency\": 1, \"value\": 0.49736483998726266}, \"0.46848078703703705\": {\"frequency\": 1, \"value\": 0.46848078703703705}, \"0.45469542540994995\": {\"frequency\": 1, \"value\": 0.45469542540994995}, \"0.44693585444610034\": {\"frequency\": 1, \"value\": 0.44693585444610034}, \"0.39838262648809525\": {\"frequency\": 1, \"value\": 0.39838262648809525}, \"0.39680560730253356\": {\"frequency\": 1, \"value\": 0.39680560730253356}, \"0.4155655736277515\": {\"frequency\": 1, \"value\": 0.4155655736277515}, \"0.3671445486166243\": {\"frequency\": 1, \"value\": 0.3671445486166243}, \"0.3785649181547619\": {\"frequency\": 1, \"value\": 0.3785649181547619}, \"0.3120389918379086\": {\"frequency\": 1, \"value\": 0.3120389918379086}, \"0.446754777918153\": {\"frequency\": 1, \"value\": 0.446754777918153}, \"0.2984449515648286\": {\"frequency\": 1, \"value\": 0.2984449515648286}, \"0.5542942784002707\": {\"frequency\": 1, \"value\": 0.5542942784002707}, \"0.6477085866167129\": {\"frequency\": 1, \"value\": 0.6477085866167129}, \"0.5072762297556823\": {\"frequency\": 1, \"value\": 0.5072762297556823}, \"0.6663252648788276\": {\"frequency\": 1, \"value\": 0.6663252648788276}, \"0.49828871783088236\": {\"frequency\": 1, \"value\": 0.49828871783088236}, \"0.5158613901289683\": {\"frequency\": 1, \"value\": 0.5158613901289683}, \"0.3797416367980884\": {\"frequency\": 1, \"value\": 0.3797416367980884}, \"0.47074505518353177\": {\"frequency\": 1, \"value\": 0.47074505518353177}, \"0.40409955242281304\": {\"frequency\": 1, \"value\": 0.40409955242281304}, \"0.4145120071747005\": {\"frequency\": 1, \"value\": 0.4145120071747005}, \"0.607083020604205\": {\"frequency\": 1, \"value\": 0.607083020604205}, \"0.604876457093254\": {\"frequency\": 1, \"value\": 0.604876457093254}, \"0.4032234842076981\": {\"frequency\": 1, \"value\": 0.4032234842076981}, \"0.4285571273541799\": {\"frequency\": 1, \"value\": 0.4285571273541799}, \"0.412885993574441\": {\"frequency\": 1, \"value\": 0.412885993574441}, \"0.5633310673983999\": {\"frequency\": 1, \"value\": 0.5633310673983999}, \"0.34795162140376984\": {\"frequency\": 1, \"value\": 0.34795162140376984}, \"0.6270872968942822\": {\"frequency\": 1, \"value\": 0.6270872968942822}, \"0.35674652584285316\": {\"frequency\": 1, \"value\": 0.35674652584285316}, \"0.5310973576288333\": {\"frequency\": 1, \"value\": 0.5310973576288333}, \"0.41503347504767957\": {\"frequency\": 1, \"value\": 0.41503347504767957}, \"0.4671593639868932\": {\"frequency\": 1, \"value\": 0.4671593639868932}, \"0.60682666015625\": {\"frequency\": 1, \"value\": 0.60682666015625}, \"0.4330794367858917\": {\"frequency\": 1, \"value\": 0.4330794367858917}, \"0.45154425949742777\": {\"frequency\": 1, \"value\": 0.45154425949742777}, \"0.48630425805039207\": {\"frequency\": 1, \"value\": 0.48630425805039207}, \"0.5154683107131544\": {\"frequency\": 1, \"value\": 0.5154683107131544}, \"0.30453953774454423\": {\"frequency\": 1, \"value\": 0.30453953774454423}, \"0.39752659850914707\": {\"frequency\": 1, \"value\": 0.39752659850914707}, \"0.3612139989999204\": {\"frequency\": 1, \"value\": 0.3612139989999204}, \"0.3821341765873016\": {\"frequency\": 1, \"value\": 0.3821341765873016}, \"0.49716204048683554\": {\"frequency\": 1, \"value\": 0.49716204048683554}, \"0.5734402664219782\": {\"frequency\": 1, \"value\": 0.5734402664219782}, \"0.3914787555563039\": {\"frequency\": 1, \"value\": 0.3914787555563039}, \"0.3190619735929449\": {\"frequency\": 1, \"value\": 0.3190619735929449}, \"0.31571815381558027\": {\"frequency\": 1, \"value\": 0.31571815381558027}, \"0.47250948405267224\": {\"frequency\": 1, \"value\": 0.47250948405267224}, \"0.3794498256080086\": {\"frequency\": 1, \"value\": 0.3794498256080086}, \"0.5204863436259921\": {\"frequency\": 1, \"value\": 0.5204863436259921}, \"0.3476479446100348\": {\"frequency\": 1, \"value\": 0.3476479446100348}, \"0.42328606246895184\": {\"frequency\": 1, \"value\": 0.42328606246895184}, \"0.560070479384004\": {\"frequency\": 1, \"value\": 0.560070479384004}, \"0.3494152850223547\": {\"frequency\": 1, \"value\": 0.3494152850223547}, \"0.3905044625173302\": {\"frequency\": 1, \"value\": 0.3905044625173302}, \"0.551850285594215\": {\"frequency\": 1, \"value\": 0.551850285594215}, \"0.31356821925782796\": {\"frequency\": 1, \"value\": 0.31356821925782796}, \"0.5296145629882812\": {\"frequency\": 1, \"value\": 0.5296145629882812}, \"0.49847780171555944\": {\"frequency\": 1, \"value\": 0.49847780171555944}, \"0.3908471497764531\": {\"frequency\": 1, \"value\": 0.3908471497764531}, \"0.3396568873131373\": {\"frequency\": 1, \"value\": 0.3396568873131373}, \"0.4680846796262389\": {\"frequency\": 1, \"value\": 0.4680846796262389}, \"0.2902993936975375\": {\"frequency\": 1, \"value\": 0.2902993936975375}, \"0.40656708431428795\": {\"frequency\": 1, \"value\": 0.40656708431428795}, \"0.24621366854822738\": {\"frequency\": 1, \"value\": 0.24621366854822738}, \"0.40858815310029645\": {\"frequency\": 1, \"value\": 0.40858815310029645}, \"0.337040412808642\": {\"frequency\": 1, \"value\": 0.337040412808642}, \"0.4337790103938622\": {\"frequency\": 1, \"value\": 0.4337790103938622}, \"0.477123011284515\": {\"frequency\": 1, \"value\": 0.477123011284515}, \"0.4041616622403915\": {\"frequency\": 1, \"value\": 0.4041616622403915}, \"0.4003660583678303\": {\"frequency\": 1, \"value\": 0.4003660583678303}, \"0.42207073242654086\": {\"frequency\": 1, \"value\": 0.42207073242654086}, \"0.46386479434288536\": {\"frequency\": 1, \"value\": 0.46386479434288536}, \"0.5182228722795814\": {\"frequency\": 1, \"value\": 0.5182228722795814}, \"0.7363447971671894\": {\"frequency\": 1, \"value\": 0.7363447971671894}, \"0.5532076196586297\": {\"frequency\": 1, \"value\": 0.5532076196586297}, \"0.46305369543650793\": {\"frequency\": 1, \"value\": 0.46305369543650793}, \"0.48639630517852167\": {\"frequency\": 1, \"value\": 0.48639630517852167}, \"0.5617530438713833\": {\"frequency\": 1, \"value\": 0.5617530438713833}, \"0.4310738970368823\": {\"frequency\": 1, \"value\": 0.4310738970368823}, \"0.5801572668719898\": {\"frequency\": 1, \"value\": 0.5801572668719898}, \"0.37620293443612896\": {\"frequency\": 1, \"value\": 0.37620293443612896}, \"0.7315647476438492\": {\"frequency\": 1, \"value\": 0.7315647476438492}, \"0.5859629995422522\": {\"frequency\": 1, \"value\": 0.5859629995422522}, \"0.48252551304309116\": {\"frequency\": 1, \"value\": 0.48252551304309116}, \"0.38737666107799307\": {\"frequency\": 1, \"value\": 0.38737666107799307}, \"0.3095446783407849\": {\"frequency\": 1, \"value\": 0.3095446783407849}, \"0.7730481557377049\": {\"frequency\": 1, \"value\": 0.7730481557377049}, \"0.5414040023561508\": {\"frequency\": 1, \"value\": 0.5414040023561508}, \"0.5044367255243367\": {\"frequency\": 1, \"value\": 0.5044367255243367}, \"0.7037832685555423\": {\"frequency\": 1, \"value\": 0.7037832685555423}, \"0.39307701345786583\": {\"frequency\": 1, \"value\": 0.39307701345786583}, \"0.3555991448336914\": {\"frequency\": 1, \"value\": 0.3555991448336914}, \"0.4566741584656399\": {\"frequency\": 1, \"value\": 0.4566741584656399}, \"0.4090923062593145\": {\"frequency\": 1, \"value\": 0.4090923062593145}, \"0.44968998385494285\": {\"frequency\": 1, \"value\": 0.44968998385494285}, \"0.46846079787445766\": {\"frequency\": 1, \"value\": 0.46846079787445766}, \"0.29800558071238165\": {\"frequency\": 1, \"value\": 0.29800558071238165}, \"0.29936128866792927\": {\"frequency\": 1, \"value\": 0.29936128866792927}, \"0.4473954452309985\": {\"frequency\": 1, \"value\": 0.4473954452309985}, \"0.42510020879677446\": {\"frequency\": 1, \"value\": 0.42510020879677446}, \"0.28119468862476765\": {\"frequency\": 1, \"value\": 0.28119468862476765}, \"0.5160996953032104\": {\"frequency\": 1, \"value\": 0.5160996953032104}, \"0.46442187064832496\": {\"frequency\": 1, \"value\": 0.46442187064832496}, \"0.24105870863970588\": {\"frequency\": 1, \"value\": 0.24105870863970588}, \"0.417406205220316\": {\"frequency\": 1, \"value\": 0.417406205220316}, \"0.5497739403385344\": {\"frequency\": 1, \"value\": 0.5497739403385344}, \"0.2715038106267166\": {\"frequency\": 1, \"value\": 0.2715038106267166}, \"0.5428369140625\": {\"frequency\": 1, \"value\": 0.5428369140625}, \"0.33789039248511904\": {\"frequency\": 1, \"value\": 0.33789039248511904}, \"0.39355266707945413\": {\"frequency\": 1, \"value\": 0.39355266707945413}, \"0.32111979166666665\": {\"frequency\": 1, \"value\": 0.32111979166666665}, \"0.38577271174863387\": {\"frequency\": 1, \"value\": 0.38577271174863387}, \"0.3104183743169399\": {\"frequency\": 1, \"value\": 0.3104183743169399}, \"0.12979537609011627\": {\"frequency\": 1, \"value\": 0.12979537609011627}, \"0.4287707878592015\": {\"frequency\": 1, \"value\": 0.4287707878592015}, \"0.40482271485345256\": {\"frequency\": 1, \"value\": 0.40482271485345256}, \"0.5976421987410072\": {\"frequency\": 1, \"value\": 0.5976421987410072}, \"0.44464137300531914\": {\"frequency\": 1, \"value\": 0.44464137300531914}, \"0.30636263762856913\": {\"frequency\": 1, \"value\": 0.30636263762856913}, \"0.2527581541814421\": {\"frequency\": 1, \"value\": 0.2527581541814421}, \"0.6335599850968704\": {\"frequency\": 1, \"value\": 0.6335599850968704}, \"0.40106004659000793\": {\"frequency\": 1, \"value\": 0.40106004659000793}, \"0.3125883443797448\": {\"frequency\": 1, \"value\": 0.3125883443797448}, \"0.5349946233282251\": {\"frequency\": 1, \"value\": 0.5349946233282251}, \"0.251436304298057\": {\"frequency\": 1, \"value\": 0.251436304298057}, \"0.3102767619680851\": {\"frequency\": 1, \"value\": 0.3102767619680851}, \"0.3769071215783401\": {\"frequency\": 1, \"value\": 0.3769071215783401}, \"0.4940093873517787\": {\"frequency\": 1, \"value\": 0.4940093873517787}, \"0.30852497826626923\": {\"frequency\": 1, \"value\": 0.30852497826626923}, \"0.4598693969075754\": {\"frequency\": 1, \"value\": 0.4598693969075754}, \"0.4222345571486831\": {\"frequency\": 1, \"value\": 0.4222345571486831}, \"0.42955042223681067\": {\"frequency\": 1, \"value\": 0.42955042223681067}, \"0.4269275490561351\": {\"frequency\": 1, \"value\": 0.4269275490561351}, \"0.393406762295082\": {\"frequency\": 1, \"value\": 0.393406762295082}, \"0.45557917545675275\": {\"frequency\": 1, \"value\": 0.45557917545675275}, \"0.4613653561548072\": {\"frequency\": 1, \"value\": 0.4613653561548072}, \"0.44529105665378516\": {\"frequency\": 1, \"value\": 0.44529105665378516}, \"0.4230494326636905\": {\"frequency\": 1, \"value\": 0.4230494326636905}, \"0.4424470814029461\": {\"frequency\": 1, \"value\": 0.4424470814029461}, \"0.49071659215101837\": {\"frequency\": 1, \"value\": 0.49071659215101837}, \"0.43026794585196226\": {\"frequency\": 1, \"value\": 0.43026794585196226}, \"0.5641160334902281\": {\"frequency\": 1, \"value\": 0.5641160334902281}, \"0.3546335622487362\": {\"frequency\": 1, \"value\": 0.3546335622487362}, \"0.38470568552720613\": {\"frequency\": 1, \"value\": 0.38470568552720613}, \"0.38106562388388426\": {\"frequency\": 1, \"value\": 0.38106562388388426}, \"0.42016238275344153\": {\"frequency\": 1, \"value\": 0.42016238275344153}, \"0.3794658358134921\": {\"frequency\": 1, \"value\": 0.3794658358134921}, \"0.24768341461539986\": {\"frequency\": 1, \"value\": 0.24768341461539986}, \"0.3076526847718254\": {\"frequency\": 1, \"value\": 0.3076526847718254}, \"0.6817109946025661\": {\"frequency\": 1, \"value\": 0.6817109946025661}, \"0.3473001764062811\": {\"frequency\": 1, \"value\": 0.3473001764062811}, \"0.40795530796848856\": {\"frequency\": 1, \"value\": 0.40795530796848856}, \"0.5926235110755085\": {\"frequency\": 1, \"value\": 0.5926235110755085}, \"0.5568352144946861\": {\"frequency\": 1, \"value\": 0.5568352144946861}, \"0.5165458131669775\": {\"frequency\": 1, \"value\": 0.5165458131669775}, \"0.2916126457093254\": {\"frequency\": 1, \"value\": 0.2916126457093254}, \"0.20268959980237153\": {\"frequency\": 1, \"value\": 0.20268959980237153}, \"0.48815526692914946\": {\"frequency\": 1, \"value\": 0.48815526692914946}, \"0.5358281563163535\": {\"frequency\": 1, \"value\": 0.5358281563163535}, \"0.6263013318224336\": {\"frequency\": 1, \"value\": 0.6263013318224336}, \"0.6997628647947004\": {\"frequency\": 1, \"value\": 0.6997628647947004}, \"0.27809681711585754\": {\"frequency\": 1, \"value\": 0.27809681711585754}, \"0.5938122717479999\": {\"frequency\": 1, \"value\": 0.5938122717479999}, \"0.44741578784119107\": {\"frequency\": 1, \"value\": 0.44741578784119107}, \"0.29716107080853177\": {\"frequency\": 1, \"value\": 0.29716107080853177}, \"0.41445032989930825\": {\"frequency\": 1, \"value\": 0.41445032989930825}, \"0.3767579212918755\": {\"frequency\": 1, \"value\": 0.3767579212918755}, \"0.44029276515377574\": {\"frequency\": 1, \"value\": 0.44029276515377574}, \"0.38886811755952383\": {\"frequency\": 1, \"value\": 0.38886811755952383}, \"0.37220230132778437\": {\"frequency\": 1, \"value\": 0.37220230132778437}, \"0.31702795221462543\": {\"frequency\": 1, \"value\": 0.31702795221462543}, \"0.26245596652775577\": {\"frequency\": 1, \"value\": 0.26245596652775577}, \"0.31397190347098436\": {\"frequency\": 1, \"value\": 0.31397190347098436}, \"0.3954503996586793\": {\"frequency\": 1, \"value\": 0.3954503996586793}, \"0.7128213734567901\": {\"frequency\": 1, \"value\": 0.7128213734567901}, \"0.5042775217994451\": {\"frequency\": 1, \"value\": 0.5042775217994451}, \"0.4385397282868288\": {\"frequency\": 1, \"value\": 0.4385397282868288}, \"0.3826127327601568\": {\"frequency\": 1, \"value\": 0.3826127327601568}, \"0.407239703479431\": {\"frequency\": 1, \"value\": 0.407239703479431}, \"0.35269489735501336\": {\"frequency\": 1, \"value\": 0.35269489735501336}, \"0.3138712431693989\": {\"frequency\": 1, \"value\": 0.3138712431693989}, \"0.7735419859292282\": {\"frequency\": 1, \"value\": 0.7735419859292282}, \"0.3770852709573413\": {\"frequency\": 1, \"value\": 0.3770852709573413}, \"0.2770799696742029\": {\"frequency\": 1, \"value\": 0.2770799696742029}, \"0.2756330818965517\": {\"frequency\": 1, \"value\": 0.2756330818965517}, \"0.4417884657118056\": {\"frequency\": 1, \"value\": 0.4417884657118056}, \"0.28968218085106384\": {\"frequency\": 1, \"value\": 0.28968218085106384}, \"0.4098369193989071\": {\"frequency\": 1, \"value\": 0.4098369193989071}, \"0.4627372340152138\": {\"frequency\": 1, \"value\": 0.4627372340152138}, \"0.4501779395231586\": {\"frequency\": 1, \"value\": 0.4501779395231586}, \"0.4804283699156746\": {\"frequency\": 1, \"value\": 0.4804283699156746}, \"0.29415622585581835\": {\"frequency\": 1, \"value\": 0.29415622585581835}, \"0.4436203565955499\": {\"frequency\": 1, \"value\": 0.4436203565955499}, \"0.4729475109300477\": {\"frequency\": 1, \"value\": 0.4729475109300477}, \"0.5126989552331349\": {\"frequency\": 1, \"value\": 0.5126989552331349}, \"0.39284208776595747\": {\"frequency\": 1, \"value\": 0.39284208776595747}, \"0.38866392174681685\": {\"frequency\": 1, \"value\": 0.38866392174681685}, \"0.41111346308784913\": {\"frequency\": 1, \"value\": 0.41111346308784913}, \"0.553953717251951\": {\"frequency\": 1, \"value\": 0.553953717251951}, \"0.3030643815088699\": {\"frequency\": 1, \"value\": 0.3030643815088699}, \"0.3042502761413844\": {\"frequency\": 1, \"value\": 0.3042502761413844}, \"0.19772340682629388\": {\"frequency\": 1, \"value\": 0.19772340682629388}, \"0.3247172005415342\": {\"frequency\": 1, \"value\": 0.3247172005415342}, \"0.32483327123695976\": {\"frequency\": 1, \"value\": 0.32483327123695976}, \"0.4494393968264967\": {\"frequency\": 1, \"value\": 0.4494393968264967}, \"0.44375077620466963\": {\"frequency\": 1, \"value\": 0.44375077620466963}, \"0.693152502189229\": {\"frequency\": 1, \"value\": 0.693152502189229}, \"0.5320325648450649\": {\"frequency\": 1, \"value\": 0.5320325648450649}, \"0.44353071666238186\": {\"frequency\": 1, \"value\": 0.44353071666238186}, \"0.39677816393344745\": {\"frequency\": 1, \"value\": 0.39677816393344745}, \"0.42305819072420636\": {\"frequency\": 1, \"value\": 0.42305819072420636}, \"0.4087334066393345\": {\"frequency\": 1, \"value\": 0.4087334066393345}, \"0.6521867101361303\": {\"frequency\": 1, \"value\": 0.6521867101361303}, \"0.41112534153005464\": {\"frequency\": 1, \"value\": 0.41112534153005464}, \"0.6517469618055556\": {\"frequency\": 1, \"value\": 0.6517469618055556}, \"0.3978768987829877\": {\"frequency\": 1, \"value\": 0.3978768987829877}, \"0.4569479632389468\": {\"frequency\": 1, \"value\": 0.4569479632389468}, \"0.5566231215846994\": {\"frequency\": 1, \"value\": 0.5566231215846994}, \"0.5334080085906374\": {\"frequency\": 1, \"value\": 0.5334080085906374}, \"0.3548876459676136\": {\"frequency\": 1, \"value\": 0.3548876459676136}, \"0.18854703608247422\": {\"frequency\": 1, \"value\": 0.18854703608247422}, \"0.5789924508916132\": {\"frequency\": 1, \"value\": 0.5789924508916132}, \"0.6292923342026826\": {\"frequency\": 1, \"value\": 0.6292923342026826}, \"0.5605948832588177\": {\"frequency\": 1, \"value\": 0.5605948832588177}, \"0.6902585895455452\": {\"frequency\": 1, \"value\": 0.6902585895455452}, \"0.501668063835072\": {\"frequency\": 1, \"value\": 0.501668063835072}, \"0.2177721199156746\": {\"frequency\": 1, \"value\": 0.2177721199156746}, \"0.5915654591390149\": {\"frequency\": 1, \"value\": 0.5915654591390149}, \"0.29524650930851065\": {\"frequency\": 1, \"value\": 0.29524650930851065}, \"0.4137444945865399\": {\"frequency\": 1, \"value\": 0.4137444945865399}, \"0.41357402567714513\": {\"frequency\": 1, \"value\": 0.41357402567714513}, \"0.3044143178104575\": {\"frequency\": 1, \"value\": 0.3044143178104575}, \"0.3577146805621867\": {\"frequency\": 1, \"value\": 0.3577146805621867}, \"0.43985156869302416\": {\"frequency\": 1, \"value\": 0.43985156869302416}, \"0.3065394042560602\": {\"frequency\": 1, \"value\": 0.3065394042560602}, \"0.33190610804793497\": {\"frequency\": 1, \"value\": 0.33190610804793497}, \"0.3856827496274218\": {\"frequency\": 1, \"value\": 0.3856827496274218}, \"0.4138746741034112\": {\"frequency\": 1, \"value\": 0.4138746741034112}, \"0.6550625334105489\": {\"frequency\": 1, \"value\": 0.6550625334105489}, \"0.3408988543159739\": {\"frequency\": 1, \"value\": 0.3408988543159739}, \"0.7571607607886904\": {\"frequency\": 1, \"value\": 0.7571607607886904}, \"0.34737534153005467\": {\"frequency\": 1, \"value\": 0.34737534153005467}, \"0.38501112649804903\": {\"frequency\": 1, \"value\": 0.38501112649804903}, \"0.35475461689952437\": {\"frequency\": 1, \"value\": 0.35475461689952437}, \"0.41981584223936236\": {\"frequency\": 1, \"value\": 0.41981584223936236}, \"0.4958762436046743\": {\"frequency\": 1, \"value\": 0.4958762436046743}, \"0.2576957000248016\": {\"frequency\": 1, \"value\": 0.2576957000248016}, \"0.5209449197448554\": {\"frequency\": 1, \"value\": 0.5209449197448554}, \"0.2645283031171748\": {\"frequency\": 1, \"value\": 0.2645283031171748}, \"0.5035222615499255\": {\"frequency\": 1, \"value\": 0.5035222615499255}, \"0.3809778025793651\": {\"frequency\": 1, \"value\": 0.3809778025793651}, \"0.5810171543029362\": {\"frequency\": 1, \"value\": 0.5810171543029362}, \"0.7550006985842027\": {\"frequency\": 1, \"value\": 0.7550006985842027}, \"0.3133402415548932\": {\"frequency\": 1, \"value\": 0.3133402415548932}, \"0.6556309364178243\": {\"frequency\": 1, \"value\": 0.6556309364178243}, \"0.4877033785258063\": {\"frequency\": 1, \"value\": 0.4877033785258063}, \"0.304086502596085\": {\"frequency\": 1, \"value\": 0.304086502596085}, \"0.5859128166915052\": {\"frequency\": 1, \"value\": 0.5859128166915052}, \"0.5158932446676587\": {\"frequency\": 1, \"value\": 0.5158932446676587}, \"0.4086701242387454\": {\"frequency\": 1, \"value\": 0.4086701242387454}, \"0.5870035826718787\": {\"frequency\": 1, \"value\": 0.5870035826718787}, \"0.38694447031793344\": {\"frequency\": 1, \"value\": 0.38694447031793344}, \"0.4408786871120793\": {\"frequency\": 1, \"value\": 0.4408786871120793}, \"0.5304492672627918\": {\"frequency\": 1, \"value\": 0.5304492672627918}, \"0.40837064630400316\": {\"frequency\": 1, \"value\": 0.40837064630400316}, \"0.558843014349212\": {\"frequency\": 1, \"value\": 0.558843014349212}, \"0.4635706535218254\": {\"frequency\": 1, \"value\": 0.4635706535218254}, \"0.3319727876348366\": {\"frequency\": 1, \"value\": 0.3319727876348366}, \"0.5696352714414255\": {\"frequency\": 1, \"value\": 0.5696352714414255}, \"0.2808986799504655\": {\"frequency\": 1, \"value\": 0.2808986799504655}, \"0.5785647631448413\": {\"frequency\": 1, \"value\": 0.5785647631448413}, \"0.45170570976154995\": {\"frequency\": 1, \"value\": 0.45170570976154995}, \"0.49879747714920947\": {\"frequency\": 1, \"value\": 0.49879747714920947}, \"0.08265617249503968\": {\"frequency\": 1, \"value\": 0.08265617249503968}, \"0.4430970566318927\": {\"frequency\": 1, \"value\": 0.4430970566318927}, \"0.22558632604241266\": {\"frequency\": 1, \"value\": 0.22558632604241266}, \"0.22751984126984126\": {\"frequency\": 1, \"value\": 0.22751984126984126}, \"0.40318259438648785\": {\"frequency\": 1, \"value\": 0.40318259438648785}, \"0.5164548215032251\": {\"frequency\": 1, \"value\": 0.5164548215032251}, \"0.25790006246018476\": {\"frequency\": 1, \"value\": 0.25790006246018476}, \"0.20816257766812865\": {\"frequency\": 1, \"value\": 0.20816257766812865}, \"0.4422725347540103\": {\"frequency\": 1, \"value\": 0.4422725347540103}, \"0.388172690363412\": {\"frequency\": 1, \"value\": 0.388172690363412}, \"0.4537189653124258\": {\"frequency\": 1, \"value\": 0.4537189653124258}, \"0.517930637225786\": {\"frequency\": 1, \"value\": 0.517930637225786}, \"0.4783601221211521\": {\"frequency\": 1, \"value\": 0.4783601221211521}, \"0.263242906622529\": {\"frequency\": 1, \"value\": 0.263242906622529}, \"0.3645385018210405\": {\"frequency\": 1, \"value\": 0.3645385018210405}, \"0.4120414919969512\": {\"frequency\": 1, \"value\": 0.4120414919969512}, \"0.3577348663326434\": {\"frequency\": 1, \"value\": 0.3577348663326434}, \"0.41275460379464285\": {\"frequency\": 1, \"value\": 0.41275460379464285}, \"0.27064127604166666\": {\"frequency\": 1, \"value\": 0.27064127604166666}, \"0.28673107328869046\": {\"frequency\": 1, \"value\": 0.28673107328869046}, \"0.41616628997830674\": {\"frequency\": 1, \"value\": 0.41616628997830674}, \"0.6595779854910714\": {\"frequency\": 1, \"value\": 0.6595779854910714}, \"0.6356822456412706\": {\"frequency\": 1, \"value\": 0.6356822456412706}, \"0.21297571578837432\": {\"frequency\": 1, \"value\": 0.21297571578837432}, \"0.6832803699548222\": {\"frequency\": 1, \"value\": 0.6832803699548222}, \"0.43958504098360657\": {\"frequency\": 1, \"value\": 0.43958504098360657}, \"0.6022571545856814\": {\"frequency\": 1, \"value\": 0.6022571545856814}, \"0.4530781824789368\": {\"frequency\": 1, \"value\": 0.4530781824789368}, \"0.35116655799801294\": {\"frequency\": 1, \"value\": 0.35116655799801294}, \"0.2997540952520691\": {\"frequency\": 1, \"value\": 0.2997540952520691}, \"0.29262955247374073\": {\"frequency\": 1, \"value\": 0.29262955247374073}, \"0.3632761967370537\": {\"frequency\": 1, \"value\": 0.3632761967370537}, \"0.4158581415168018\": {\"frequency\": 1, \"value\": 0.4158581415168018}, \"0.42859771286231885\": {\"frequency\": 1, \"value\": 0.42859771286231885}, \"0.4973748687706484\": {\"frequency\": 1, \"value\": 0.4973748687706484}, \"0.4037813271604938\": {\"frequency\": 1, \"value\": 0.4037813271604938}, \"0.45230276639344263\": {\"frequency\": 1, \"value\": 0.45230276639344263}, \"0.8639978686698814\": {\"frequency\": 1, \"value\": 0.8639978686698814}, \"0.09474979733627756\": {\"frequency\": 1, \"value\": 0.09474979733627756}, \"0.5855616657459388\": {\"frequency\": 1, \"value\": 0.5855616657459388}, \"0.38979923023897056\": {\"frequency\": 1, \"value\": 0.38979923023897056}, \"0.5423373325401022\": {\"frequency\": 1, \"value\": 0.5423373325401022}, \"0.47683067871336315\": {\"frequency\": 1, \"value\": 0.47683067871336315}, \"0.40842373938191295\": {\"frequency\": 1, \"value\": 0.40842373938191295}, \"0.5843941339831956\": {\"frequency\": 1, \"value\": 0.5843941339831956}, \"0.38249476637443774\": {\"frequency\": 1, \"value\": 0.38249476637443774}, \"0.5138105418647201\": {\"frequency\": 1, \"value\": 0.5138105418647201}, \"0.540612378237111\": {\"frequency\": 1, \"value\": 0.540612378237111}, \"0.40268870144669044\": {\"frequency\": 1, \"value\": 0.40268870144669044}, \"0.48434181997697867\": {\"frequency\": 1, \"value\": 0.48434181997697867}, \"0.4544533096706593\": {\"frequency\": 1, \"value\": 0.4544533096706593}, \"0.46756287467796276\": {\"frequency\": 1, \"value\": 0.46756287467796276}, \"0.3381111235008425\": {\"frequency\": 1, \"value\": 0.3381111235008425}, \"0.28499635183805266\": {\"frequency\": 1, \"value\": 0.28499635183805266}, \"0.3789461469200199\": {\"frequency\": 1, \"value\": 0.3789461469200199}, \"0.21061668882978724\": {\"frequency\": 1, \"value\": 0.21061668882978724}, \"0.21472964791356186\": {\"frequency\": 1, \"value\": 0.21472964791356186}, \"0.21281735223364281\": {\"frequency\": 1, \"value\": 0.21281735223364281}, \"0.8123182508680555\": {\"frequency\": 1, \"value\": 0.8123182508680555}, \"0.5964321352649105\": {\"frequency\": 1, \"value\": 0.5964321352649105}, \"0.35658034045509385\": {\"frequency\": 1, \"value\": 0.35658034045509385}, \"0.3649261831582717\": {\"frequency\": 1, \"value\": 0.3649261831582717}, \"0.5821505271741285\": {\"frequency\": 1, \"value\": 0.5821505271741285}, \"0.26775710339873166\": {\"frequency\": 1, \"value\": 0.26775710339873166}, \"0.49929013835263836\": {\"frequency\": 1, \"value\": 0.49929013835263836}, \"0.49032875440333556\": {\"frequency\": 1, \"value\": 0.49032875440333556}, \"0.35331395709325397\": {\"frequency\": 1, \"value\": 0.35331395709325397}, \"0.30397960134128166\": {\"frequency\": 1, \"value\": 0.30397960134128166}, \"0.325230922389021\": {\"frequency\": 1, \"value\": 0.325230922389021}, \"0.41907807849702383\": {\"frequency\": 1, \"value\": 0.41907807849702383}, \"0.4829606681034483\": {\"frequency\": 1, \"value\": 0.4829606681034483}, \"0.3079020652697495\": {\"frequency\": 1, \"value\": 0.3079020652697495}, \"0.45240518212892566\": {\"frequency\": 1, \"value\": 0.45240518212892566}, \"0.30550437876154957\": {\"frequency\": 1, \"value\": 0.30550437876154957}, \"0.45598053410553413\": {\"frequency\": 1, \"value\": 0.45598053410553413}, \"0.43889778936910084\": {\"frequency\": 1, \"value\": 0.43889778936910084}, \"0.3947202845982143\": {\"frequency\": 1, \"value\": 0.3947202845982143}, \"0.5350055072791864\": {\"frequency\": 1, \"value\": 0.5350055072791864}, \"0.25668878849975163\": {\"frequency\": 1, \"value\": 0.25668878849975163}, \"0.6668631417410714\": {\"frequency\": 1, \"value\": 0.6668631417410714}, \"0.2666529114257851\": {\"frequency\": 1, \"value\": 0.2666529114257851}, \"0.47994551043219075\": {\"frequency\": 1, \"value\": 0.47994551043219075}, \"0.49880048643867925\": {\"frequency\": 1, \"value\": 0.49880048643867925}, \"0.5516380673363095\": {\"frequency\": 1, \"value\": 0.5516380673363095}, \"0.3850005817819149\": {\"frequency\": 1, \"value\": 0.3850005817819149}, \"0.3226942729078731\": {\"frequency\": 1, \"value\": 0.3226942729078731}, \"0.3342578125\": {\"frequency\": 1, \"value\": 0.3342578125}, \"0.4401042181324111\": {\"frequency\": 1, \"value\": 0.4401042181324111}, \"0.4938955028758508\": {\"frequency\": 1, \"value\": 0.4938955028758508}, \"0.5532059123059714\": {\"frequency\": 1, \"value\": 0.5532059123059714}, \"0.4302864428507729\": {\"frequency\": 1, \"value\": 0.4302864428507729}, \"0.2681725948913822\": {\"frequency\": 1, \"value\": 0.2681725948913822}, \"0.7620675028858018\": {\"frequency\": 1, \"value\": 0.7620675028858018}, \"0.3477954606200998\": {\"frequency\": 1, \"value\": 0.3477954606200998}, \"0.20738682935916541\": {\"frequency\": 1, \"value\": 0.20738682935916541}, \"0.6172968842895362\": {\"frequency\": 1, \"value\": 0.6172968842895362}, \"0.45097694304445507\": {\"frequency\": 1, \"value\": 0.45097694304445507}, \"0.44376001304023843\": {\"frequency\": 1, \"value\": 0.44376001304023843}, \"0.4026751277361379\": {\"frequency\": 1, \"value\": 0.4026751277361379}, \"0.42690131670028875\": {\"frequency\": 1, \"value\": 0.42690131670028875}, \"0.3560315135168651\": {\"frequency\": 1, \"value\": 0.3560315135168651}, \"0.25381753498393367\": {\"frequency\": 1, \"value\": 0.25381753498393367}, \"0.4081085689484127\": {\"frequency\": 1, \"value\": 0.4081085689484127}, \"0.41337797722704295\": {\"frequency\": 1, \"value\": 0.41337797722704295}, \"0.36814401258422513\": {\"frequency\": 1, \"value\": 0.36814401258422513}, \"0.5531699212573135\": {\"frequency\": 1, \"value\": 0.5531699212573135}, \"0.4015214223710317\": {\"frequency\": 1, \"value\": 0.4015214223710317}, \"0.43118129015974377\": {\"frequency\": 1, \"value\": 0.43118129015974377}, \"0.5208139236207857\": {\"frequency\": 1, \"value\": 0.5208139236207857}, \"0.48209650958363176\": {\"frequency\": 1, \"value\": 0.48209650958363176}, \"0.3337021857923497\": {\"frequency\": 1, \"value\": 0.3337021857923497}, \"0.5286559657733949\": {\"frequency\": 1, \"value\": 0.5286559657733949}, \"0.2914337238526845\": {\"frequency\": 1, \"value\": 0.2914337238526845}, \"0.5318488215664041\": {\"frequency\": 1, \"value\": 0.5318488215664041}, \"0.3316207929706905\": {\"frequency\": 1, \"value\": 0.3316207929706905}, \"0.2700398969200199\": {\"frequency\": 1, \"value\": 0.2700398969200199}, \"0.6035947668719898\": {\"frequency\": 1, \"value\": 0.6035947668719898}, \"0.5637120834245513\": {\"frequency\": 1, \"value\": 0.5637120834245513}, \"0.42910895412666616\": {\"frequency\": 1, \"value\": 0.42910895412666616}, \"0.4576339546457987\": {\"frequency\": 1, \"value\": 0.4576339546457987}, \"0.5445402405753968\": {\"frequency\": 1, \"value\": 0.5445402405753968}, \"0.43721686178999325\": {\"frequency\": 1, \"value\": 0.43721686178999325}, \"0.4405354600987718\": {\"frequency\": 1, \"value\": 0.4405354600987718}, \"0.3994672131147541\": {\"frequency\": 1, \"value\": 0.3994672131147541}, \"0.4487308184381714\": {\"frequency\": 1, \"value\": 0.4487308184381714}, \"0.37651465726127453\": {\"frequency\": 1, \"value\": 0.37651465726127453}, \"0.5112282913531215\": {\"frequency\": 1, \"value\": 0.5112282913531215}, \"0.4802429520615996\": {\"frequency\": 1, \"value\": 0.4802429520615996}, \"0.3192608202930949\": {\"frequency\": 1, \"value\": 0.3192608202930949}, \"0.4342069476356728\": {\"frequency\": 1, \"value\": 0.4342069476356728}, \"0.47144190228174604\": {\"frequency\": 1, \"value\": 0.47144190228174604}, \"0.25243638521360223\": {\"frequency\": 1, \"value\": 0.25243638521360223}, \"0.43450962086305983\": {\"frequency\": 1, \"value\": 0.43450962086305983}, \"0.4644267391931696\": {\"frequency\": 1, \"value\": 0.4644267391931696}, \"0.23865168633623776\": {\"frequency\": 1, \"value\": 0.23865168633623776}, \"0.4772471068939574\": {\"frequency\": 1, \"value\": 0.4772471068939574}, \"0.356921184177844\": {\"frequency\": 1, \"value\": 0.356921184177844}, \"0.635070479384004\": {\"frequency\": 1, \"value\": 0.635070479384004}, \"0.4565116968266131\": {\"frequency\": 1, \"value\": 0.4565116968266131}, \"0.7064363739072822\": {\"frequency\": 1, \"value\": 0.7064363739072822}, \"0.511873700714172\": {\"frequency\": 1, \"value\": 0.511873700714172}, \"0.3951557461372584\": {\"frequency\": 1, \"value\": 0.3951557461372584}, \"0.4097952747699257\": {\"frequency\": 1, \"value\": 0.4097952747699257}, \"0.5271303468186522\": {\"frequency\": 1, \"value\": 0.5271303468186522}, \"0.4768680245535714\": {\"frequency\": 1, \"value\": 0.4768680245535714}, \"0.6062185591479669\": {\"frequency\": 1, \"value\": 0.6062185591479669}, \"0.24465284160539216\": {\"frequency\": 1, \"value\": 0.24465284160539216}, \"0.3291335030344613\": {\"frequency\": 1, \"value\": 0.3291335030344613}, \"0.3652582092449187\": {\"frequency\": 1, \"value\": 0.3652582092449187}, \"0.45160217977550454\": {\"frequency\": 1, \"value\": 0.45160217977550454}, \"0.30695199275362317\": {\"frequency\": 1, \"value\": 0.30695199275362317}, \"0.2356672255340288\": {\"frequency\": 1, \"value\": 0.2356672255340288}, \"0.33235823498387934\": {\"frequency\": 1, \"value\": 0.33235823498387934}, \"0.1895389527275803\": {\"frequency\": 1, \"value\": 0.1895389527275803}, \"0.4627927135305298\": {\"frequency\": 1, \"value\": 0.4627927135305298}, \"0.3742685264318272\": {\"frequency\": 1, \"value\": 0.3742685264318272}, \"0.3658407919290013\": {\"frequency\": 1, \"value\": 0.3658407919290013}, \"0.31023776068537184\": {\"frequency\": 1, \"value\": 0.31023776068537184}, \"0.41061468861474437\": {\"frequency\": 1, \"value\": 0.41061468861474437}, \"0.5055788866930171\": {\"frequency\": 1, \"value\": 0.5055788866930171}, \"0.30346862433309446\": {\"frequency\": 1, \"value\": 0.30346862433309446}, \"0.4853578404017857\": {\"frequency\": 1, \"value\": 0.4853578404017857}, \"0.26266626499146184\": {\"frequency\": 1, \"value\": 0.26266626499146184}, \"0.46169728112599207\": {\"frequency\": 1, \"value\": 0.46169728112599207}, \"0.3502056321864805\": {\"frequency\": 1, \"value\": 0.3502056321864805}, \"0.39815902634040523\": {\"frequency\": 1, \"value\": 0.39815902634040523}, \"0.2881176465856894\": {\"frequency\": 1, \"value\": 0.2881176465856894}, \"0.5282770792643229\": {\"frequency\": 1, \"value\": 0.5282770792643229}, \"0.6578736305236816\": {\"frequency\": 1, \"value\": 0.6578736305236816}, \"0.48650825031210365\": {\"frequency\": 1, \"value\": 0.48650825031210365}, \"0.4278646714415078\": {\"frequency\": 1, \"value\": 0.4278646714415078}, \"0.3819794112964216\": {\"frequency\": 1, \"value\": 0.3819794112964216}, \"0.43776774519364725\": {\"frequency\": 1, \"value\": 0.43776774519364725}, \"0.5346531080163044\": {\"frequency\": 1, \"value\": 0.5346531080163044}, \"0.43730509500745157\": {\"frequency\": 1, \"value\": 0.43730509500745157}, \"0.2571637660289825\": {\"frequency\": 1, \"value\": 0.2571637660289825}, \"0.3130573065157995\": {\"frequency\": 1, \"value\": 0.3130573065157995}, \"0.3012571367470359\": {\"frequency\": 1, \"value\": 0.3012571367470359}, \"0.4274205006388922\": {\"frequency\": 1, \"value\": 0.4274205006388922}, \"0.3078812399245711\": {\"frequency\": 1, \"value\": 0.3078812399245711}, \"0.20396214932223747\": {\"frequency\": 1, \"value\": 0.20396214932223747}, \"0.348628883099443\": {\"frequency\": 1, \"value\": 0.348628883099443}, \"0.49861717755331425\": {\"frequency\": 1, \"value\": 0.49861717755331425}, \"0.46928704332278987\": {\"frequency\": 1, \"value\": 0.46928704332278987}, \"0.6723903304811508\": {\"frequency\": 1, \"value\": 0.6723903304811508}, \"0.18929416232638888\": {\"frequency\": 1, \"value\": 0.18929416232638888}, \"0.6027017455590542\": {\"frequency\": 1, \"value\": 0.6027017455590542}, \"0.26512659278848066\": {\"frequency\": 1, \"value\": 0.26512659278848066}, \"0.38371096547505373\": {\"frequency\": 1, \"value\": 0.38371096547505373}, \"0.43292928479381443\": {\"frequency\": 1, \"value\": 0.43292928479381443}, \"0.5286309876417751\": {\"frequency\": 1, \"value\": 0.5286309876417751}, \"0.6301920572916667\": {\"frequency\": 1, \"value\": 0.6301920572916667}, \"0.2899326171875\": {\"frequency\": 1, \"value\": 0.2899326171875}, \"0.30658233315992867\": {\"frequency\": 1, \"value\": 0.30658233315992867}, \"0.28489055514157974\": {\"frequency\": 1, \"value\": 0.28489055514157974}, \"0.13538661067193675\": {\"frequency\": 1, \"value\": 0.13538661067193675}, \"0.2985438206523902\": {\"frequency\": 1, \"value\": 0.2985438206523902}, \"0.4315754275831543\": {\"frequency\": 1, \"value\": 0.4315754275831543}, \"0.5160703868218366\": {\"frequency\": 1, \"value\": 0.5160703868218366}, \"0.45408268132141083\": {\"frequency\": 1, \"value\": 0.45408268132141083}, \"0.5693841198424012\": {\"frequency\": 1, \"value\": 0.5693841198424012}, \"0.42179056204730647\": {\"frequency\": 1, \"value\": 0.42179056204730647}, \"0.38237072172619047\": {\"frequency\": 1, \"value\": 0.38237072172619047}, \"0.6251855129160457\": {\"frequency\": 1, \"value\": 0.6251855129160457}, \"0.5040350198235923\": {\"frequency\": 1, \"value\": 0.5040350198235923}, \"0.23276311783401651\": {\"frequency\": 1, \"value\": 0.23276311783401651}, \"0.20467073397913563\": {\"frequency\": 1, \"value\": 0.20467073397913563}, \"0.31916369401506145\": {\"frequency\": 1, \"value\": 0.31916369401506145}, \"0.44205104880136986\": {\"frequency\": 1, \"value\": 0.44205104880136986}, \"0.22581982737208148\": {\"frequency\": 1, \"value\": 0.22581982737208148}, \"0.5540094669408806\": {\"frequency\": 1, \"value\": 0.5540094669408806}, \"0.3799552296451459\": {\"frequency\": 1, \"value\": 0.3799552296451459}, \"0.27854026949826133\": {\"frequency\": 1, \"value\": 0.27854026949826133}, \"0.3106832929706905\": {\"frequency\": 1, \"value\": 0.3106832929706905}, \"0.27787925484066556\": {\"frequency\": 1, \"value\": 0.27787925484066556}, \"0.34064103866122386\": {\"frequency\": 1, \"value\": 0.34064103866122386}, \"0.2977650246505772\": {\"frequency\": 1, \"value\": 0.2977650246505772}, \"0.12612506200396825\": {\"frequency\": 1, \"value\": 0.12612506200396825}, \"0.30368604073522104\": {\"frequency\": 1, \"value\": 0.30368604073522104}, \"0.43209959912572526\": {\"frequency\": 1, \"value\": 0.43209959912572526}, \"0.2803056427574835\": {\"frequency\": 1, \"value\": 0.2803056427574835}, \"0.4860432577818298\": {\"frequency\": 1, \"value\": 0.4860432577818298}, \"0.42893960039151\": {\"frequency\": 1, \"value\": 0.42893960039151}, \"0.3536589345994694\": {\"frequency\": 1, \"value\": 0.3536589345994694}, \"0.5167727885779798\": {\"frequency\": 1, \"value\": 0.5167727885779798}, \"0.295208356137802\": {\"frequency\": 1, \"value\": 0.295208356137802}, \"0.44496037746415773\": {\"frequency\": 1, \"value\": 0.44496037746415773}, \"0.45669283686761136\": {\"frequency\": 1, \"value\": 0.45669283686761136}, \"0.48087658719102017\": {\"frequency\": 1, \"value\": 0.48087658719102017}, \"0.4221501576211558\": {\"frequency\": 1, \"value\": 0.4221501576211558}, \"0.28610289473422457\": {\"frequency\": 1, \"value\": 0.28610289473422457}, \"0.3758030132602756\": {\"frequency\": 1, \"value\": 0.3758030132602756}, \"0.3159711594451744\": {\"frequency\": 1, \"value\": 0.3159711594451744}, \"0.4765281917536016\": {\"frequency\": 1, \"value\": 0.4765281917536016}, \"0.31014623695976157\": {\"frequency\": 1, \"value\": 0.31014623695976157}, \"0.38975779623847756\": {\"frequency\": 1, \"value\": 0.38975779623847756}, \"0.6667311692747143\": {\"frequency\": 1, \"value\": 0.6667311692747143}, \"0.5616915729933872\": {\"frequency\": 1, \"value\": 0.5616915729933872}, \"0.4502756851438492\": {\"frequency\": 1, \"value\": 0.4502756851438492}, \"0.32435527040026974\": {\"frequency\": 1, \"value\": 0.32435527040026974}, \"0.4248044931437328\": {\"frequency\": 1, \"value\": 0.4248044931437328}, \"0.6040952731311945\": {\"frequency\": 1, \"value\": 0.6040952731311945}, \"0.4515054489567809\": {\"frequency\": 1, \"value\": 0.4515054489567809}, \"0.4467325256642512\": {\"frequency\": 1, \"value\": 0.4467325256642512}, \"0.4297372547193244\": {\"frequency\": 1, \"value\": 0.4297372547193244}, \"0.42838147079236244\": {\"frequency\": 1, \"value\": 0.42838147079236244}, \"0.4539430421013413\": {\"frequency\": 1, \"value\": 0.4539430421013413}, \"0.2659267956142956\": {\"frequency\": 1, \"value\": 0.2659267956142956}, \"0.39474609375\": {\"frequency\": 1, \"value\": 0.39474609375}, \"0.45243993302949487\": {\"frequency\": 1, \"value\": 0.45243993302949487}, \"0.23626448175280496\": {\"frequency\": 1, \"value\": 0.23626448175280496}, \"0.4425482096833579\": {\"frequency\": 1, \"value\": 0.4425482096833579}, \"0.5279985812891027\": {\"frequency\": 1, \"value\": 0.5279985812891027}, \"0.27970054769319264\": {\"frequency\": 1, \"value\": 0.27970054769319264}, \"0.7239976538254953\": {\"frequency\": 1, \"value\": 0.7239976538254953}, \"0.2570656193112864\": {\"frequency\": 1, \"value\": 0.2570656193112864}, \"0.3849185858985967\": {\"frequency\": 1, \"value\": 0.3849185858985967}, \"0.511867824074074\": {\"frequency\": 1, \"value\": 0.511867824074074}, \"0.3079701978501131\": {\"frequency\": 1, \"value\": 0.3079701978501131}, \"0.5002084411834979\": {\"frequency\": 1, \"value\": 0.5002084411834979}, \"0.35250023251488094\": {\"frequency\": 1, \"value\": 0.35250023251488094}, \"0.36427060047193244\": {\"frequency\": 1, \"value\": 0.36427060047193244}, \"0.45741668628568594\": {\"frequency\": 1, \"value\": 0.45741668628568594}, \"0.30263808681073023\": {\"frequency\": 1, \"value\": 0.30263808681073023}, \"0.5905702775707898\": {\"frequency\": 1, \"value\": 0.5905702775707898}, \"0.4827601568068425\": {\"frequency\": 1, \"value\": 0.4827601568068425}, \"0.28372291140090755\": {\"frequency\": 1, \"value\": 0.28372291140090755}, \"0.2508904043359251\": {\"frequency\": 1, \"value\": 0.2508904043359251}, \"0.3853619442374565\": {\"frequency\": 1, \"value\": 0.3853619442374565}, \"0.7153143525702236\": {\"frequency\": 1, \"value\": 0.7153143525702236}, \"0.6589399094655097\": {\"frequency\": 1, \"value\": 0.6589399094655097}, \"0.49536077325994315\": {\"frequency\": 1, \"value\": 0.49536077325994315}, \"0.38774950347567033\": {\"frequency\": 1, \"value\": 0.38774950347567033}, \"0.4652632843501984\": {\"frequency\": 1, \"value\": 0.4652632843501984}, \"0.7948809413580247\": {\"frequency\": 1, \"value\": 0.7948809413580247}, \"0.32441917816057636\": {\"frequency\": 1, \"value\": 0.32441917816057636}, \"0.5878325260804769\": {\"frequency\": 1, \"value\": 0.5878325260804769}, \"0.23933609250992063\": {\"frequency\": 1, \"value\": 0.23933609250992063}, \"0.3280438723442349\": {\"frequency\": 1, \"value\": 0.3280438723442349}, \"0.4281866939484127\": {\"frequency\": 1, \"value\": 0.4281866939484127}, \"0.5211091830955126\": {\"frequency\": 1, \"value\": 0.5211091830955126}, \"0.7561577160493828\": {\"frequency\": 1, \"value\": 0.7561577160493828}, \"0.4724183484595176\": {\"frequency\": 1, \"value\": 0.4724183484595176}, \"0.26976052989130433\": {\"frequency\": 1, \"value\": 0.26976052989130433}, \"0.43802849538971117\": {\"frequency\": 1, \"value\": 0.43802849538971117}, \"0.7232917172511245\": {\"frequency\": 1, \"value\": 0.7232917172511245}, \"0.34328440969468677\": {\"frequency\": 1, \"value\": 0.34328440969468677}, \"0.3704790759031591\": {\"frequency\": 1, \"value\": 0.3704790759031591}, \"0.1522629470938897\": {\"frequency\": 1, \"value\": 0.1522629470938897}, \"0.3910515731351749\": {\"frequency\": 1, \"value\": 0.3910515731351749}, \"0.3000752159249303\": {\"frequency\": 1, \"value\": 0.3000752159249303}, \"0.3822340205368466\": {\"frequency\": 1, \"value\": 0.3822340205368466}, \"0.4384480955101285\": {\"frequency\": 1, \"value\": 0.4384480955101285}, \"0.6637297556712551\": {\"frequency\": 1, \"value\": 0.6637297556712551}, \"0.5668486048640687\": {\"frequency\": 1, \"value\": 0.5668486048640687}, \"0.5462070398163377\": {\"frequency\": 1, \"value\": 0.5462070398163377}, \"0.5936517070977103\": {\"frequency\": 1, \"value\": 0.5936517070977103}, \"0.2830408179012346\": {\"frequency\": 1, \"value\": 0.2830408179012346}, \"0.5731570870535714\": {\"frequency\": 1, \"value\": 0.5731570870535714}, \"0.5663593719108343\": {\"frequency\": 1, \"value\": 0.5663593719108343}, \"0.32744591049382715\": {\"frequency\": 1, \"value\": 0.32744591049382715}, \"0.603877636304115\": {\"frequency\": 1, \"value\": 0.603877636304115}, \"0.5420682585429686\": {\"frequency\": 1, \"value\": 0.5420682585429686}, \"0.6460448246465551\": {\"frequency\": 1, \"value\": 0.6460448246465551}, \"0.5769167885135673\": {\"frequency\": 1, \"value\": 0.5769167885135673}, \"0.3616548059218342\": {\"frequency\": 1, \"value\": 0.3616548059218342}, \"0.30688408740277007\": {\"frequency\": 1, \"value\": 0.30688408740277007}, \"0.3276608472338267\": {\"frequency\": 1, \"value\": 0.3276608472338267}, \"0.25279276515377574\": {\"frequency\": 1, \"value\": 0.25279276515377574}, \"0.4748421231734751\": {\"frequency\": 1, \"value\": 0.4748421231734751}, \"0.5730570399628253\": {\"frequency\": 1, \"value\": 0.5730570399628253}, \"0.44968944051167414\": {\"frequency\": 1, \"value\": 0.44968944051167414}, \"0.4701754088633921\": {\"frequency\": 1, \"value\": 0.4701754088633921}, \"0.3495086960565476\": {\"frequency\": 1, \"value\": 0.3495086960565476}, \"0.3918302546131306\": {\"frequency\": 1, \"value\": 0.3918302546131306}, \"0.396718471313912\": {\"frequency\": 1, \"value\": 0.396718471313912}, \"0.31998091452078636\": {\"frequency\": 1, \"value\": 0.31998091452078636}, \"0.32402950089589766\": {\"frequency\": 1, \"value\": 0.32402950089589766}, \"0.39310532391300024\": {\"frequency\": 1, \"value\": 0.39310532391300024}, \"0.7334378881023348\": {\"frequency\": 1, \"value\": 0.7334378881023348}, \"0.7377308535838115\": {\"frequency\": 1, \"value\": 0.7377308535838115}, \"0.3141774500706524\": {\"frequency\": 1, \"value\": 0.3141774500706524}, \"0.35711699412456555\": {\"frequency\": 1, \"value\": 0.35711699412456555}, \"0.5715535821745444\": {\"frequency\": 1, \"value\": 0.5715535821745444}, \"0.2539026115982957\": {\"frequency\": 1, \"value\": 0.2539026115982957}, \"0.3773583747364128\": {\"frequency\": 1, \"value\": 0.3773583747364128}, \"0.4767871479743083\": {\"frequency\": 1, \"value\": 0.4767871479743083}, \"0.39400189112103173\": {\"frequency\": 1, \"value\": 0.39400189112103173}, \"0.5532247423000497\": {\"frequency\": 1, \"value\": 0.5532247423000497}, \"0.3984462810585263\": {\"frequency\": 1, \"value\": 0.3984462810585263}, \"0.5356079339648927\": {\"frequency\": 1, \"value\": 0.5356079339648927}, \"0.45093959575260806\": {\"frequency\": 1, \"value\": 0.45093959575260806}, \"0.39257198602987986\": {\"frequency\": 1, \"value\": 0.39257198602987986}, \"0.4331898099980182\": {\"frequency\": 1, \"value\": 0.4331898099980182}, \"0.7224544304521753\": {\"frequency\": 1, \"value\": 0.7224544304521753}, \"0.49409264450449913\": {\"frequency\": 1, \"value\": 0.49409264450449913}, \"0.41006404320987655\": {\"frequency\": 1, \"value\": 0.41006404320987655}, \"0.5780273708907373\": {\"frequency\": 1, \"value\": 0.5780273708907373}, \"0.3288907137784091\": {\"frequency\": 1, \"value\": 0.3288907137784091}, \"0.19290899367559525\": {\"frequency\": 1, \"value\": 0.19290899367559525}, \"0.49354154124208893\": {\"frequency\": 1, \"value\": 0.49354154124208893}, \"0.16590502989625405\": {\"frequency\": 1, \"value\": 0.16590502989625405}, \"0.4178362518628912\": {\"frequency\": 1, \"value\": 0.4178362518628912}, \"0.48645919886657646\": {\"frequency\": 1, \"value\": 0.48645919886657646}, \"0.4443120396768829\": {\"frequency\": 1, \"value\": 0.4443120396768829}, \"0.4355641044702151\": {\"frequency\": 1, \"value\": 0.4355641044702151}, \"0.4353565613431915\": {\"frequency\": 1, \"value\": 0.4353565613431915}, \"0.2880224633631396\": {\"frequency\": 1, \"value\": 0.2880224633631396}, \"0.396132533813912\": {\"frequency\": 1, \"value\": 0.396132533813912}, \"0.5347539008149473\": {\"frequency\": 1, \"value\": 0.5347539008149473}, \"0.8446136829359165\": {\"frequency\": 1, \"value\": 0.8446136829359165}, \"0.5041586278373962\": {\"frequency\": 1, \"value\": 0.5041586278373962}, \"0.595363033234127\": {\"frequency\": 1, \"value\": 0.595363033234127}, \"0.5462437996031746\": {\"frequency\": 1, \"value\": 0.5462437996031746}, \"0.31331009334988064\": {\"frequency\": 1, \"value\": 0.31331009334988064}, \"0.33378893816642796\": {\"frequency\": 1, \"value\": 0.33378893816642796}, \"0.3113157227261876\": {\"frequency\": 1, \"value\": 0.3113157227261876}, \"0.43202442719523354\": {\"frequency\": 1, \"value\": 0.43202442719523354}, \"0.5121792722305017\": {\"frequency\": 1, \"value\": 0.5121792722305017}, \"0.36332534981714104\": {\"frequency\": 1, \"value\": 0.36332534981714104}, \"0.579844135993083\": {\"frequency\": 1, \"value\": 0.579844135993083}, \"0.14993843934013687\": {\"frequency\": 1, \"value\": 0.14993843934013687}, \"0.3677359324713928\": {\"frequency\": 1, \"value\": 0.3677359324713928}, \"0.4792879328269104\": {\"frequency\": 1, \"value\": 0.4792879328269104}, \"0.319790195386064\": {\"frequency\": 1, \"value\": 0.319790195386064}, \"0.41892690576245345\": {\"frequency\": 1, \"value\": 0.41892690576245345}, \"0.5248073566547832\": {\"frequency\": 1, \"value\": 0.5248073566547832}, \"0.40635594928075397\": {\"frequency\": 1, \"value\": 0.40635594928075397}, \"0.5429344417536016\": {\"frequency\": 1, \"value\": 0.5429344417536016}, \"0.4339829210224123\": {\"frequency\": 1, \"value\": 0.4339829210224123}, \"0.46106927803853753\": {\"frequency\": 1, \"value\": 0.46106927803853753}, \"0.5573455352707402\": {\"frequency\": 1, \"value\": 0.5573455352707402}, \"0.5025133600750913\": {\"frequency\": 1, \"value\": 0.5025133600750913}, \"0.4934473159433214\": {\"frequency\": 1, \"value\": 0.4934473159433214}, \"0.33393914866316543\": {\"frequency\": 1, \"value\": 0.33393914866316543}, \"0.28394932935916545\": {\"frequency\": 1, \"value\": 0.28394932935916545}, \"0.6919166494668471\": {\"frequency\": 1, \"value\": 0.6919166494668471}, \"0.4347035435267857\": {\"frequency\": 1, \"value\": 0.4347035435267857}, \"0.5462681361607142\": {\"frequency\": 1, \"value\": 0.5462681361607142}, \"0.43974897540983604\": {\"frequency\": 1, \"value\": 0.43974897540983604}, \"0.34631749190568883\": {\"frequency\": 1, \"value\": 0.34631749190568883}, \"0.5115930176752606\": {\"frequency\": 1, \"value\": 0.5115930176752606}, \"0.4350684612518629\": {\"frequency\": 1, \"value\": 0.4350684612518629}, \"0.3315318399155489\": {\"frequency\": 1, \"value\": 0.3315318399155489}, \"0.39052649111002796\": {\"frequency\": 1, \"value\": 0.39052649111002796}, \"0.3312011932541894\": {\"frequency\": 1, \"value\": 0.3312011932541894}, \"0.34091970629502844\": {\"frequency\": 1, \"value\": 0.34091970629502844}, \"0.40207148917459373\": {\"frequency\": 1, \"value\": 0.40207148917459373}, \"0.40696056651275725\": {\"frequency\": 1, \"value\": 0.40696056651275725}, \"0.44867595007451566\": {\"frequency\": 1, \"value\": 0.44867595007451566}, \"0.5454959075604758\": {\"frequency\": 1, \"value\": 0.5454959075604758}, \"0.4806613530519223\": {\"frequency\": 1, \"value\": 0.4806613530519223}, \"0.3524316163686041\": {\"frequency\": 1, \"value\": 0.3524316163686041}, \"0.3250529503567182\": {\"frequency\": 1, \"value\": 0.3250529503567182}, \"0.501408024691358\": {\"frequency\": 1, \"value\": 0.501408024691358}, \"0.4950960507927509\": {\"frequency\": 1, \"value\": 0.4950960507927509}, \"0.5155214542970691\": {\"frequency\": 1, \"value\": 0.5155214542970691}, \"0.3306489918030339\": {\"frequency\": 1, \"value\": 0.3306489918030339}, \"0.5029241958519622\": {\"frequency\": 1, \"value\": 0.5029241958519622}, \"0.2485265559296652\": {\"frequency\": 1, \"value\": 0.2485265559296652}, \"0.3110427517361111\": {\"frequency\": 1, \"value\": 0.3110427517361111}, \"0.37214929808925606\": {\"frequency\": 1, \"value\": 0.37214929808925606}, \"0.5240398489431994\": {\"frequency\": 1, \"value\": 0.5240398489431994}, \"0.4809659387620109\": {\"frequency\": 1, \"value\": 0.4809659387620109}, \"0.5322484320665674\": {\"frequency\": 1, \"value\": 0.5322484320665674}, \"0.41074999441254767\": {\"frequency\": 1, \"value\": 0.41074999441254767}, \"0.3130026407579656\": {\"frequency\": 1, \"value\": 0.3130026407579656}, \"0.27598354072173154\": {\"frequency\": 1, \"value\": 0.27598354072173154}, \"0.7196961158718331\": {\"frequency\": 1, \"value\": 0.7196961158718331}, \"0.41540750745156485\": {\"frequency\": 1, \"value\": 0.41540750745156485}, \"0.3656456163194444\": {\"frequency\": 1, \"value\": 0.3656456163194444}, \"0.29031082937332936\": {\"frequency\": 1, \"value\": 0.29031082937332936}, \"0.2741109700443494\": {\"frequency\": 1, \"value\": 0.2741109700443494}, \"0.3873701025005968\": {\"frequency\": 1, \"value\": 0.3873701025005968}, \"0.38591739629905614\": {\"frequency\": 1, \"value\": 0.38591739629905614}, \"0.47103290860615077\": {\"frequency\": 1, \"value\": 0.47103290860615077}, \"0.6336502576999503\": {\"frequency\": 1, \"value\": 0.6336502576999503}, \"0.4802084881589378\": {\"frequency\": 1, \"value\": 0.4802084881589378}, \"0.5594263963903477\": {\"frequency\": 1, \"value\": 0.5594263963903477}, \"0.5533477707401888\": {\"frequency\": 1, \"value\": 0.5533477707401888}, \"0.28299469733909166\": {\"frequency\": 1, \"value\": 0.28299469733909166}, \"0.4154365988088604\": {\"frequency\": 1, \"value\": 0.4154365988088604}, \"0.5370536958512502\": {\"frequency\": 1, \"value\": 0.5370536958512502}, \"0.2720333077206175\": {\"frequency\": 1, \"value\": 0.2720333077206175}, \"0.4598728160808069\": {\"frequency\": 1, \"value\": 0.4598728160808069}, \"0.2584424000854565\": {\"frequency\": 1, \"value\": 0.2584424000854565}, \"0.32975790361421803\": {\"frequency\": 1, \"value\": 0.32975790361421803}, \"0.62852783203125\": {\"frequency\": 1, \"value\": 0.62852783203125}, \"0.5585952194454343\": {\"frequency\": 1, \"value\": 0.5585952194454343}, \"0.46725378086419755\": {\"frequency\": 1, \"value\": 0.46725378086419755}, \"0.7607696845504223\": {\"frequency\": 1, \"value\": 0.7607696845504223}, \"0.5498773596621958\": {\"frequency\": 1, \"value\": 0.5498773596621958}, \"0.443956875522201\": {\"frequency\": 1, \"value\": 0.443956875522201}, \"0.2645935792349727\": {\"frequency\": 1, \"value\": 0.2645935792349727}, \"0.25998006076131075\": {\"frequency\": 1, \"value\": 0.25998006076131075}, \"0.5139811197916667\": {\"frequency\": 1, \"value\": 0.5139811197916667}, \"0.2022941005831482\": {\"frequency\": 1, \"value\": 0.2022941005831482}, \"0.30098057935916545\": {\"frequency\": 1, \"value\": 0.30098057935916545}, \"0.4641666974487786\": {\"frequency\": 1, \"value\": 0.4641666974487786}, \"0.3918422256704066\": {\"frequency\": 1, \"value\": 0.3918422256704066}, \"0.4765455521335032\": {\"frequency\": 1, \"value\": 0.4765455521335032}, \"0.2894921103013834\": {\"frequency\": 1, \"value\": 0.2894921103013834}, \"0.42580093625992066\": {\"frequency\": 1, \"value\": 0.42580093625992066}, \"0.4816565829273847\": {\"frequency\": 1, \"value\": 0.4816565829273847}, \"0.6389001543209877\": {\"frequency\": 1, \"value\": 0.6389001543209877}, \"0.4314701374692363\": {\"frequency\": 1, \"value\": 0.4314701374692363}, \"0.352838021310154\": {\"frequency\": 1, \"value\": 0.352838021310154}, \"0.4140742391185368\": {\"frequency\": 1, \"value\": 0.4140742391185368}, \"0.45624004028426635\": {\"frequency\": 1, \"value\": 0.45624004028426635}, \"0.1768813019531405\": {\"frequency\": 1, \"value\": 0.1768813019531405}, \"0.6486141338045635\": {\"frequency\": 1, \"value\": 0.6486141338045635}, \"0.4068151546199702\": {\"frequency\": 1, \"value\": 0.4068151546199702}, \"0.49168990414784136\": {\"frequency\": 1, \"value\": 0.49168990414784136}, \"0.39292178961748636\": {\"frequency\": 1, \"value\": 0.39292178961748636}, \"0.6011938352052865\": {\"frequency\": 1, \"value\": 0.6011938352052865}, \"0.4609265178288588\": {\"frequency\": 1, \"value\": 0.4609265178288588}, \"0.3549400421295471\": {\"frequency\": 1, \"value\": 0.3549400421295471}, \"0.4636825101749393\": {\"frequency\": 1, \"value\": 0.4636825101749393}, \"0.5268339823545795\": {\"frequency\": 1, \"value\": 0.5268339823545795}, \"0.6030729166666666\": {\"frequency\": 1, \"value\": 0.6030729166666666}, \"0.43031405009920637\": {\"frequency\": 1, \"value\": 0.43031405009920637}, \"0.20387595221606647\": {\"frequency\": 1, \"value\": 0.20387595221606647}, \"0.34296797379533034\": {\"frequency\": 1, \"value\": 0.34296797379533034}, \"0.42014490265169613\": {\"frequency\": 1, \"value\": 0.42014490265169613}, \"0.4161117254916196\": {\"frequency\": 1, \"value\": 0.4161117254916196}, \"0.8271469821162444\": {\"frequency\": 1, \"value\": 0.8271469821162444}, \"0.503356194141013\": {\"frequency\": 1, \"value\": 0.503356194141013}, \"0.4647507551000198\": {\"frequency\": 1, \"value\": 0.4647507551000198}, \"0.3156746806795635\": {\"frequency\": 1, \"value\": 0.3156746806795635}, \"0.23362540674879592\": {\"frequency\": 1, \"value\": 0.23362540674879592}, \"0.6954009331597222\": {\"frequency\": 1, \"value\": 0.6954009331597222}, \"0.4288903378042722\": {\"frequency\": 1, \"value\": 0.4288903378042722}, \"0.5832630363343254\": {\"frequency\": 1, \"value\": 0.5832630363343254}, \"0.3152805979880775\": {\"frequency\": 1, \"value\": 0.3152805979880775}, \"0.4915754332434423\": {\"frequency\": 1, \"value\": 0.4915754332434423}, \"0.474422248785973\": {\"frequency\": 1, \"value\": 0.474422248785973}, \"0.41998111479023204\": {\"frequency\": 1, \"value\": 0.41998111479023204}, \"0.4521000427894758\": {\"frequency\": 1, \"value\": 0.4521000427894758}, \"0.4147704232675238\": {\"frequency\": 1, \"value\": 0.4147704232675238}, \"0.4193211732645751\": {\"frequency\": 1, \"value\": 0.4193211732645751}, \"0.4210077465226031\": {\"frequency\": 1, \"value\": 0.4210077465226031}, \"0.31287622640337803\": {\"frequency\": 1, \"value\": 0.31287622640337803}, \"0.31354999029773517\": {\"frequency\": 1, \"value\": 0.31354999029773517}, \"0.23737472056631892\": {\"frequency\": 1, \"value\": 0.23737472056631892}, \"0.35610663499751616\": {\"frequency\": 1, \"value\": 0.35610663499751616}, \"0.49929483024691357\": {\"frequency\": 1, \"value\": 0.49929483024691357}, \"0.3496952027275803\": {\"frequency\": 1, \"value\": 0.3496952027275803}, \"0.6455080456254476\": {\"frequency\": 1, \"value\": 0.6455080456254476}, \"0.45845067269036344\": {\"frequency\": 1, \"value\": 0.45845067269036344}, \"0.6867546918471781\": {\"frequency\": 1, \"value\": 0.6867546918471781}, \"0.4040495373820169\": {\"frequency\": 1, \"value\": 0.4040495373820169}, \"0.5502354938271605\": {\"frequency\": 1, \"value\": 0.5502354938271605}, \"0.23358865532893303\": {\"frequency\": 1, \"value\": 0.23358865532893303}, \"0.2156146764778937\": {\"frequency\": 1, \"value\": 0.2156146764778937}, \"0.4269033076016001\": {\"frequency\": 1, \"value\": 0.4269033076016001}, \"0.5920925154320987\": {\"frequency\": 1, \"value\": 0.5920925154320987}, \"0.5118310759760206\": {\"frequency\": 1, \"value\": 0.5118310759760206}, \"0.5513684776858114\": {\"frequency\": 1, \"value\": 0.5513684776858114}, \"0.6503355532786885\": {\"frequency\": 1, \"value\": 0.6503355532786885}, \"0.4153291586643713\": {\"frequency\": 1, \"value\": 0.4153291586643713}, \"0.4782798314361206\": {\"frequency\": 1, \"value\": 0.4782798314361206}, \"0.5443097211872827\": {\"frequency\": 1, \"value\": 0.5443097211872827}, \"0.7745595038499752\": {\"frequency\": 1, \"value\": 0.7745595038499752}, \"0.3393939764905982\": {\"frequency\": 1, \"value\": 0.3393939764905982}, \"0.47823846674534853\": {\"frequency\": 1, \"value\": 0.47823846674534853}, \"0.4752837456597222\": {\"frequency\": 1, \"value\": 0.4752837456597222}, \"0.4146413841619149\": {\"frequency\": 1, \"value\": 0.4146413841619149}, \"0.43094945355191255\": {\"frequency\": 1, \"value\": 0.43094945355191255}, \"0.2721018059895315\": {\"frequency\": 1, \"value\": 0.2721018059895315}, \"0.5631172755045177\": {\"frequency\": 1, \"value\": 0.5631172755045177}, \"0.4563094429347826\": {\"frequency\": 1, \"value\": 0.4563094429347826}, \"0.3836793954670547\": {\"frequency\": 1, \"value\": 0.3836793954670547}, \"0.5970130080232466\": {\"frequency\": 1, \"value\": 0.5970130080232466}, \"0.24884507840368608\": {\"frequency\": 1, \"value\": 0.24884507840368608}, \"0.5419364104890528\": {\"frequency\": 1, \"value\": 0.5419364104890528}, \"0.21617633431019384\": {\"frequency\": 1, \"value\": 0.21617633431019384}, \"0.282776615203373\": {\"frequency\": 1, \"value\": 0.282776615203373}, \"0.3683410953800298\": {\"frequency\": 1, \"value\": 0.3683410953800298}, \"0.2672079217892098\": {\"frequency\": 1, \"value\": 0.2672079217892098}, \"0.44048722367113763\": {\"frequency\": 1, \"value\": 0.44048722367113763}, \"0.5475535559275794\": {\"frequency\": 1, \"value\": 0.5475535559275794}, \"0.3599264705882353\": {\"frequency\": 1, \"value\": 0.3599264705882353}, \"0.39457703515803483\": {\"frequency\": 1, \"value\": 0.39457703515803483}, \"0.4074953884548611\": {\"frequency\": 1, \"value\": 0.4074953884548611}, \"0.4574771019622454\": {\"frequency\": 1, \"value\": 0.4574771019622454}, \"0.3799823617800422\": {\"frequency\": 1, \"value\": 0.3799823617800422}, \"0.24493822486472508\": {\"frequency\": 1, \"value\": 0.24493822486472508}, \"0.377048792225534\": {\"frequency\": 1, \"value\": 0.377048792225534}, \"0.45233739459325395\": {\"frequency\": 1, \"value\": 0.45233739459325395}, \"0.3612124457525622\": {\"frequency\": 1, \"value\": 0.3612124457525622}, \"0.45706526995258595\": {\"frequency\": 1, \"value\": 0.45706526995258595}, \"0.2982451339410102\": {\"frequency\": 1, \"value\": 0.2982451339410102}, \"0.2886434695719443\": {\"frequency\": 1, \"value\": 0.2886434695719443}, \"0.6724851377110208\": {\"frequency\": 1, \"value\": 0.6724851377110208}, \"0.5468845623283446\": {\"frequency\": 1, \"value\": 0.5468845623283446}, \"0.696982886904762\": {\"frequency\": 1, \"value\": 0.696982886904762}, \"0.29559446721094346\": {\"frequency\": 1, \"value\": 0.29559446721094346}, \"0.5802960669596896\": {\"frequency\": 1, \"value\": 0.5802960669596896}, \"0.49944796407349257\": {\"frequency\": 1, \"value\": 0.49944796407349257}, \"0.3392628571211014\": {\"frequency\": 1, \"value\": 0.3392628571211014}, \"0.346982421875\": {\"frequency\": 1, \"value\": 0.346982421875}, \"0.5712663779185295\": {\"frequency\": 1, \"value\": 0.5712663779185295}, \"0.45310119369615276\": {\"frequency\": 1, \"value\": 0.45310119369615276}, \"0.3062129172622238\": {\"frequency\": 1, \"value\": 0.3062129172622238}, \"0.29340831470442125\": {\"frequency\": 1, \"value\": 0.29340831470442125}, \"0.41688431977172313\": {\"frequency\": 1, \"value\": 0.41688431977172313}, \"0.3702671696472926\": {\"frequency\": 1, \"value\": 0.3702671696472926}, \"0.26271249564589966\": {\"frequency\": 1, \"value\": 0.26271249564589966}, \"0.4951813395503953\": {\"frequency\": 1, \"value\": 0.4951813395503953}, \"0.6230137698708396\": {\"frequency\": 1, \"value\": 0.6230137698708396}, \"0.6812911388474913\": {\"frequency\": 1, \"value\": 0.6812911388474913}, \"0.16724999876117422\": {\"frequency\": 1, \"value\": 0.16724999876117422}, \"0.384980101320447\": {\"frequency\": 1, \"value\": 0.384980101320447}, \"0.5695894225700247\": {\"frequency\": 1, \"value\": 0.5695894225700247}, \"0.6544611855158731\": {\"frequency\": 1, \"value\": 0.6544611855158731}, \"0.4474445789865872\": {\"frequency\": 1, \"value\": 0.4474445789865872}, \"0.624500079195375\": {\"frequency\": 1, \"value\": 0.624500079195375}, \"0.26373090536512667\": {\"frequency\": 1, \"value\": 0.26373090536512667}, \"0.3457316794590643\": {\"frequency\": 1, \"value\": 0.3457316794590643}, \"0.4716129533035271\": {\"frequency\": 1, \"value\": 0.4716129533035271}, \"0.31504677128462977\": {\"frequency\": 1, \"value\": 0.31504677128462977}, \"0.46550943809869233\": {\"frequency\": 1, \"value\": 0.46550943809869233}, \"0.6598072530864197\": {\"frequency\": 1, \"value\": 0.6598072530864197}, \"0.5678630357922089\": {\"frequency\": 1, \"value\": 0.5678630357922089}, \"0.2399013164438609\": {\"frequency\": 1, \"value\": 0.2399013164438609}, \"0.47904341045050963\": {\"frequency\": 1, \"value\": 0.47904341045050963}, \"0.31271145961867614\": {\"frequency\": 1, \"value\": 0.31271145961867614}, \"0.2615838216145833\": {\"frequency\": 1, \"value\": 0.2615838216145833}, \"0.4129834429498613\": {\"frequency\": 1, \"value\": 0.4129834429498613}, \"0.31384354848710316\": {\"frequency\": 1, \"value\": 0.31384354848710316}, \"0.2559744659778627\": {\"frequency\": 1, \"value\": 0.2559744659778627}, \"0.30404200819672134\": {\"frequency\": 1, \"value\": 0.30404200819672134}, \"0.3906139404896254\": {\"frequency\": 1, \"value\": 0.3906139404896254}, \"0.32955887691971036\": {\"frequency\": 1, \"value\": 0.32955887691971036}, \"0.6071641936719185\": {\"frequency\": 1, \"value\": 0.6071641936719185}, \"0.8099279978918651\": {\"frequency\": 1, \"value\": 0.8099279978918651}, \"0.5125116050207962\": {\"frequency\": 1, \"value\": 0.5125116050207962}, \"0.28732159686579933\": {\"frequency\": 1, \"value\": 0.28732159686579933}, \"0.33081403349135197\": {\"frequency\": 1, \"value\": 0.33081403349135197}, \"0.4912938524508634\": {\"frequency\": 1, \"value\": 0.4912938524508634}, \"0.48710110842026827\": {\"frequency\": 1, \"value\": 0.48710110842026827}, \"0.31788458944622633\": {\"frequency\": 1, \"value\": 0.31788458944622633}, \"0.4295236181644492\": {\"frequency\": 1, \"value\": 0.4295236181644492}, \"0.371693079914784\": {\"frequency\": 1, \"value\": 0.371693079914784}, \"0.35772851267207767\": {\"frequency\": 1, \"value\": 0.35772851267207767}, \"0.6603916325644841\": {\"frequency\": 1, \"value\": 0.6603916325644841}, \"0.6606293231225296\": {\"frequency\": 1, \"value\": 0.6606293231225296}, \"0.30024451572028193\": {\"frequency\": 1, \"value\": 0.30024451572028193}, \"0.32512866007728897\": {\"frequency\": 1, \"value\": 0.32512866007728897}, \"0.4164531566119883\": {\"frequency\": 1, \"value\": 0.4164531566119883}, \"0.350867098236463\": {\"frequency\": 1, \"value\": 0.350867098236463}, \"0.25215784143518516\": {\"frequency\": 1, \"value\": 0.25215784143518516}, \"0.3660123697916667\": {\"frequency\": 1, \"value\": 0.3660123697916667}, \"0.3676297286346747\": {\"frequency\": 1, \"value\": 0.3676297286346747}, \"0.5604809046339194\": {\"frequency\": 1, \"value\": 0.5604809046339194}, \"0.5590017700195312\": {\"frequency\": 1, \"value\": 0.5590017700195312}, \"0.36471334761549923\": {\"frequency\": 1, \"value\": 0.36471334761549923}, \"0.49503341994885164\": {\"frequency\": 1, \"value\": 0.49503341994885164}, \"0.42134562841530054\": {\"frequency\": 1, \"value\": 0.42134562841530054}, \"0.26796899866714413\": {\"frequency\": 1, \"value\": 0.26796899866714413}, \"0.4470999616032501\": {\"frequency\": 1, \"value\": 0.4470999616032501}, \"0.5732110305059523\": {\"frequency\": 1, \"value\": 0.5732110305059523}, \"0.4002008817685047\": {\"frequency\": 1, \"value\": 0.4002008817685047}, \"0.3229355003720238\": {\"frequency\": 1, \"value\": 0.3229355003720238}, \"0.4347750156200413\": {\"frequency\": 1, \"value\": 0.4347750156200413}, \"0.4173993262543467\": {\"frequency\": 1, \"value\": 0.4173993262543467}, \"0.39012503793834336\": {\"frequency\": 1, \"value\": 0.39012503793834336}, \"0.3689236111111111\": {\"frequency\": 1, \"value\": 0.3689236111111111}, \"0.5887561638913669\": {\"frequency\": 1, \"value\": 0.5887561638913669}, \"0.35136822879366597\": {\"frequency\": 1, \"value\": 0.35136822879366597}, \"0.5242629699379056\": {\"frequency\": 1, \"value\": 0.5242629699379056}, \"0.5632515765250997\": {\"frequency\": 1, \"value\": 0.5632515765250997}, \"0.367672603546627\": {\"frequency\": 1, \"value\": 0.367672603546627}, \"0.28522269075256623\": {\"frequency\": 1, \"value\": 0.28522269075256623}, \"0.37428411910669973\": {\"frequency\": 1, \"value\": 0.37428411910669973}, \"0.29028086131840797\": {\"frequency\": 1, \"value\": 0.29028086131840797}, \"0.4726221987819926\": {\"frequency\": 1, \"value\": 0.4726221987819926}, \"0.5292525617710863\": {\"frequency\": 1, \"value\": 0.5292525617710863}, \"0.5808525958534013\": {\"frequency\": 1, \"value\": 0.5808525958534013}, \"0.6792705939912071\": {\"frequency\": 1, \"value\": 0.6792705939912071}, \"0.4163849796501214\": {\"frequency\": 1, \"value\": 0.4163849796501214}, \"0.44057647882350603\": {\"frequency\": 1, \"value\": 0.44057647882350603}, \"0.39588944692460315\": {\"frequency\": 1, \"value\": 0.39588944692460315}, \"0.7438753570541481\": {\"frequency\": 1, \"value\": 0.7438753570541481}, \"0.47229461515324217\": {\"frequency\": 1, \"value\": 0.47229461515324217}, \"0.6562672588365243\": {\"frequency\": 1, \"value\": 0.6562672588365243}, \"0.38016210245591686\": {\"frequency\": 1, \"value\": 0.38016210245591686}, \"0.429991939484127\": {\"frequency\": 1, \"value\": 0.429991939484127}, \"0.36261954697986576\": {\"frequency\": 1, \"value\": 0.36261954697986576}, \"0.5720573431324111\": {\"frequency\": 1, \"value\": 0.5720573431324111}, \"0.5025168436413313\": {\"frequency\": 1, \"value\": 0.5025168436413313}, \"0.41808657786885245\": {\"frequency\": 1, \"value\": 0.41808657786885245}, \"0.44394726383692235\": {\"frequency\": 1, \"value\": 0.44394726383692235}, \"0.42111548373075014\": {\"frequency\": 1, \"value\": 0.42111548373075014}, \"0.13029897491486497\": {\"frequency\": 1, \"value\": 0.13029897491486497}, \"0.28940587347162866\": {\"frequency\": 1, \"value\": 0.28940587347162866}, \"0.35640018297476417\": {\"frequency\": 1, \"value\": 0.35640018297476417}, \"0.2997783935668157\": {\"frequency\": 1, \"value\": 0.2997783935668157}, \"0.4500177422853478\": {\"frequency\": 1, \"value\": 0.4500177422853478}, \"0.5524669343248996\": {\"frequency\": 1, \"value\": 0.5524669343248996}, \"0.2593671603328366\": {\"frequency\": 1, \"value\": 0.2593671603328366}, \"0.6215222925981123\": {\"frequency\": 1, \"value\": 0.6215222925981123}, \"0.31480055365636145\": {\"frequency\": 1, \"value\": 0.31480055365636145}, \"0.4132759859294491\": {\"frequency\": 1, \"value\": 0.4132759859294491}, \"0.6805141549790314\": {\"frequency\": 1, \"value\": 0.6805141549790314}, \"0.16178798745653253\": {\"frequency\": 1, \"value\": 0.16178798745653253}, \"0.6255806587837838\": {\"frequency\": 1, \"value\": 0.6255806587837838}, \"0.4527795209026457\": {\"frequency\": 1, \"value\": 0.4527795209026457}, \"0.36753236576045856\": {\"frequency\": 1, \"value\": 0.36753236576045856}, \"0.4360523782911078\": {\"frequency\": 1, \"value\": 0.4360523782911078}, \"0.42306297686286165\": {\"frequency\": 1, \"value\": 0.42306297686286165}, \"0.543047845255837\": {\"frequency\": 1, \"value\": 0.543047845255837}, \"0.5092896174863388\": {\"frequency\": 1, \"value\": 0.5092896174863388}, \"0.34554165381323887\": {\"frequency\": 1, \"value\": 0.34554165381323887}, \"0.4778650757025435\": {\"frequency\": 1, \"value\": 0.4778650757025435}, \"0.44301920983837945\": {\"frequency\": 1, \"value\": 0.44301920983837945}, \"0.5104423735222704\": {\"frequency\": 1, \"value\": 0.5104423735222704}, \"0.15357954799773216\": {\"frequency\": 1, \"value\": 0.15357954799773216}, \"0.2716826789463933\": {\"frequency\": 1, \"value\": 0.2716826789463933}, \"0.468780815325385\": {\"frequency\": 1, \"value\": 0.468780815325385}, \"0.4756634830388307\": {\"frequency\": 1, \"value\": 0.4756634830388307}, \"0.3525224328847378\": {\"frequency\": 1, \"value\": 0.3525224328847378}, \"0.6470531233836636\": {\"frequency\": 1, \"value\": 0.6470531233836636}, \"0.4997439161823827\": {\"frequency\": 1, \"value\": 0.4997439161823827}, \"0.4534650457250328\": {\"frequency\": 1, \"value\": 0.4534650457250328}, \"0.48497028007939336\": {\"frequency\": 1, \"value\": 0.48497028007939336}, \"0.3230741817607623\": {\"frequency\": 1, \"value\": 0.3230741817607623}, \"0.4310842177946081\": {\"frequency\": 1, \"value\": 0.4310842177946081}, \"0.3700030337391581\": {\"frequency\": 1, \"value\": 0.3700030337391581}, \"0.5604716590750697\": {\"frequency\": 1, \"value\": 0.5604716590750697}, \"0.4149273076463798\": {\"frequency\": 1, \"value\": 0.4149273076463798}, \"0.6976848036449671\": {\"frequency\": 1, \"value\": 0.6976848036449671}, \"0.5794314236111111\": {\"frequency\": 1, \"value\": 0.5794314236111111}, \"0.331125210562822\": {\"frequency\": 1, \"value\": 0.331125210562822}, \"0.3749853282740461\": {\"frequency\": 1, \"value\": 0.3749853282740461}, \"0.5043604990354298\": {\"frequency\": 1, \"value\": 0.5043604990354298}, \"0.37586552526595746\": {\"frequency\": 1, \"value\": 0.37586552526595746}, \"0.5646783241823824\": {\"frequency\": 1, \"value\": 0.5646783241823824}, \"0.4576566884677387\": {\"frequency\": 1, \"value\": 0.4576566884677387}, \"0.63111363715485\": {\"frequency\": 1, \"value\": 0.63111363715485}, \"0.4244372325338376\": {\"frequency\": 1, \"value\": 0.4244372325338376}, \"0.27609211997019373\": {\"frequency\": 1, \"value\": 0.27609211997019373}, \"0.478391238201689\": {\"frequency\": 1, \"value\": 0.478391238201689}, \"0.32725937004558064\": {\"frequency\": 1, \"value\": 0.32725937004558064}, \"0.3181904045241593\": {\"frequency\": 1, \"value\": 0.3181904045241593}, \"0.5918160860655738\": {\"frequency\": 1, \"value\": 0.5918160860655738}, \"0.4750133250656769\": {\"frequency\": 1, \"value\": 0.4750133250656769}, \"0.3351016739744352\": {\"frequency\": 1, \"value\": 0.3351016739744352}, \"0.5316471063089916\": {\"frequency\": 1, \"value\": 0.5316471063089916}, \"0.7187208147044213\": {\"frequency\": 1, \"value\": 0.7187208147044213}, \"0.36182017251097665\": {\"frequency\": 1, \"value\": 0.36182017251097665}, \"0.48809376550099204\": {\"frequency\": 1, \"value\": 0.48809376550099204}, \"0.4031633445106806\": {\"frequency\": 1, \"value\": 0.4031633445106806}, \"0.36218495392342986\": {\"frequency\": 1, \"value\": 0.36218495392342986}, \"0.37253267821659214\": {\"frequency\": 1, \"value\": 0.37253267821659214}, \"0.43918891059027776\": {\"frequency\": 1, \"value\": 0.43918891059027776}, \"0.7297381101733577\": {\"frequency\": 1, \"value\": 0.7297381101733577}, \"0.6354505091902632\": {\"frequency\": 1, \"value\": 0.6354505091902632}, \"0.5004939111003326\": {\"frequency\": 1, \"value\": 0.5004939111003326}, \"0.40741919709388974\": {\"frequency\": 1, \"value\": 0.40741919709388974}, \"0.6338044119473423\": {\"frequency\": 1, \"value\": 0.6338044119473423}, \"0.28645856619473425\": {\"frequency\": 1, \"value\": 0.28645856619473425}, \"0.5972711833003953\": {\"frequency\": 1, \"value\": 0.5972711833003953}, \"0.2516909365799316\": {\"frequency\": 1, \"value\": 0.2516909365799316}, \"0.41800365638558296\": {\"frequency\": 1, \"value\": 0.41800365638558296}, \"0.28513939731699073\": {\"frequency\": 1, \"value\": 0.28513939731699073}, \"0.5979422646827608\": {\"frequency\": 1, \"value\": 0.5979422646827608}, \"0.4390623134179835\": {\"frequency\": 1, \"value\": 0.4390623134179835}, \"0.5788268178893179\": {\"frequency\": 1, \"value\": 0.5788268178893179}, \"0.33330977182539684\": {\"frequency\": 1, \"value\": 0.33330977182539684}, \"0.5356127359662196\": {\"frequency\": 1, \"value\": 0.5356127359662196}, \"0.383006992769045\": {\"frequency\": 1, \"value\": 0.383006992769045}, \"0.5704022702379767\": {\"frequency\": 1, \"value\": 0.5704022702379767}, \"0.27169224519077745\": {\"frequency\": 1, \"value\": 0.27169224519077745}, \"0.4832924107142857\": {\"frequency\": 1, \"value\": 0.4832924107142857}, \"0.4299107380319149\": {\"frequency\": 1, \"value\": 0.4299107380319149}, \"0.3734682393872149\": {\"frequency\": 1, \"value\": 0.3734682393872149}, \"0.6718417796467703\": {\"frequency\": 1, \"value\": 0.6718417796467703}, \"0.3682447273204245\": {\"frequency\": 1, \"value\": 0.3682447273204245}, \"0.33559783299763996\": {\"frequency\": 1, \"value\": 0.33559783299763996}, \"0.34083457825000996\": {\"frequency\": 1, \"value\": 0.34083457825000996}, \"0.2863882420516642\": {\"frequency\": 1, \"value\": 0.2863882420516642}, \"0.4353533451140873\": {\"frequency\": 1, \"value\": 0.4353533451140873}, \"0.5302000874447718\": {\"frequency\": 1, \"value\": 0.5302000874447718}, \"0.45487841376895655\": {\"frequency\": 1, \"value\": 0.45487841376895655}, \"0.38924534489172824\": {\"frequency\": 1, \"value\": 0.38924534489172824}, \"0.48312779433681075\": {\"frequency\": 1, \"value\": 0.48312779433681075}, \"0.34974416294088423\": {\"frequency\": 1, \"value\": 0.34974416294088423}, \"0.27834576644945963\": {\"frequency\": 1, \"value\": 0.27834576644945963}, \"0.6812476366277913\": {\"frequency\": 1, \"value\": 0.6812476366277913}, \"0.4625658162434896\": {\"frequency\": 1, \"value\": 0.4625658162434896}, \"0.5814409722222222\": {\"frequency\": 1, \"value\": 0.5814409722222222}, \"0.40328272478887234\": {\"frequency\": 1, \"value\": 0.40328272478887234}, \"0.36223431092232045\": {\"frequency\": 1, \"value\": 0.36223431092232045}, \"0.4159942405613512\": {\"frequency\": 1, \"value\": 0.4159942405613512}, \"0.4193638503869261\": {\"frequency\": 1, \"value\": 0.4193638503869261}, \"0.36476823092883015\": {\"frequency\": 1, \"value\": 0.36476823092883015}, \"0.29788287913278594\": {\"frequency\": 1, \"value\": 0.29788287913278594}, \"0.29211189766517637\": {\"frequency\": 1, \"value\": 0.29211189766517637}, \"0.3358842965949821\": {\"frequency\": 1, \"value\": 0.3358842965949821}, \"0.3448531281001984\": {\"frequency\": 1, \"value\": 0.3448531281001984}, \"0.46379307087570115\": {\"frequency\": 1, \"value\": 0.46379307087570115}, \"0.29441234048002707\": {\"frequency\": 1, \"value\": 0.29441234048002707}, \"0.44353755890376984\": {\"frequency\": 1, \"value\": 0.44353755890376984}, \"0.3151498168054288\": {\"frequency\": 1, \"value\": 0.3151498168054288}, \"0.18708940338202604\": {\"frequency\": 1, \"value\": 0.18708940338202604}, \"0.46083542408848466\": {\"frequency\": 1, \"value\": 0.46083542408848466}, \"0.24644742146440515\": {\"frequency\": 1, \"value\": 0.24644742146440515}, \"0.6209327380241904\": {\"frequency\": 1, \"value\": 0.6209327380241904}, \"0.528193940150055\": {\"frequency\": 1, \"value\": 0.528193940150055}, \"0.17670077447382032\": {\"frequency\": 1, \"value\": 0.17670077447382032}, \"0.16449807511388392\": {\"frequency\": 1, \"value\": 0.16449807511388392}, \"0.5911812160326086\": {\"frequency\": 1, \"value\": 0.5911812160326086}, \"0.4804540566662023\": {\"frequency\": 1, \"value\": 0.4804540566662023}, \"0.2839255030536325\": {\"frequency\": 1, \"value\": 0.2839255030536325}, \"0.643364737654321\": {\"frequency\": 1, \"value\": 0.643364737654321}, \"0.34901593873263165\": {\"frequency\": 1, \"value\": 0.34901593873263165}, \"0.5346125966494846\": {\"frequency\": 1, \"value\": 0.5346125966494846}, \"0.45613774715197425\": {\"frequency\": 1, \"value\": 0.45613774715197425}, \"0.6026402222172725\": {\"frequency\": 1, \"value\": 0.6026402222172725}, \"0.3116336779682067\": {\"frequency\": 1, \"value\": 0.3116336779682067}, \"0.44647893518518517\": {\"frequency\": 1, \"value\": 0.44647893518518517}, \"0.45512935731202486\": {\"frequency\": 1, \"value\": 0.45512935731202486}, \"0.30191520220515067\": {\"frequency\": 1, \"value\": 0.30191520220515067}, \"0.4112903800843254\": {\"frequency\": 1, \"value\": 0.4112903800843254}, \"0.5237619336931457\": {\"frequency\": 1, \"value\": 0.5237619336931457}, \"0.7036412879880986\": {\"frequency\": 1, \"value\": 0.7036412879880986}, \"0.40159890399900644\": {\"frequency\": 1, \"value\": 0.40159890399900644}, \"0.4011859631147541\": {\"frequency\": 1, \"value\": 0.4011859631147541}, \"0.2505280092592593\": {\"frequency\": 1, \"value\": 0.2505280092592593}, \"0.6192816225782414\": {\"frequency\": 1, \"value\": 0.6192816225782414}, \"0.40302893504785636\": {\"frequency\": 1, \"value\": 0.40302893504785636}, \"0.450263671875\": {\"frequency\": 1, \"value\": 0.450263671875}, \"0.7452783088454802\": {\"frequency\": 1, \"value\": 0.7452783088454802}, \"0.3966397323646299\": {\"frequency\": 1, \"value\": 0.3966397323646299}, \"0.3778379914906103\": {\"frequency\": 1, \"value\": 0.3778379914906103}, \"0.3416163686040735\": {\"frequency\": 1, \"value\": 0.3416163686040735}, \"0.5358800678852855\": {\"frequency\": 1, \"value\": 0.5358800678852855}, \"0.3553787241770489\": {\"frequency\": 1, \"value\": 0.3553787241770489}, \"0.41479799903388825\": {\"frequency\": 1, \"value\": 0.41479799903388825}, \"0.3122278234834614\": {\"frequency\": 1, \"value\": 0.3122278234834614}, \"0.3677729730231867\": {\"frequency\": 1, \"value\": 0.3677729730231867}, \"0.6199280788520479\": {\"frequency\": 1, \"value\": 0.6199280788520479}, \"0.3851578024093393\": {\"frequency\": 1, \"value\": 0.3851578024093393}, \"0.4534243143066173\": {\"frequency\": 1, \"value\": 0.4534243143066173}, \"0.49734182820523026\": {\"frequency\": 1, \"value\": 0.49734182820523026}, \"0.4103854349102416\": {\"frequency\": 1, \"value\": 0.4103854349102416}, \"0.2981676228841146\": {\"frequency\": 1, \"value\": 0.2981676228841146}, \"0.5147275555357567\": {\"frequency\": 1, \"value\": 0.5147275555357567}, \"0.5415713420063316\": {\"frequency\": 1, \"value\": 0.5415713420063316}, \"0.30589542970690514\": {\"frequency\": 1, \"value\": 0.30589542970690514}, \"0.40628321323675826\": {\"frequency\": 1, \"value\": 0.40628321323675826}, \"0.3590940061271584\": {\"frequency\": 1, \"value\": 0.3590940061271584}, \"0.5563606867858917\": {\"frequency\": 1, \"value\": 0.5563606867858917}, \"0.36740505487792813\": {\"frequency\": 1, \"value\": 0.36740505487792813}, \"0.5267973019125683\": {\"frequency\": 1, \"value\": 0.5267973019125683}, \"0.4876612103174603\": {\"frequency\": 1, \"value\": 0.4876612103174603}, \"0.493707759796627\": {\"frequency\": 1, \"value\": 0.493707759796627}, \"0.7943856956845238\": {\"frequency\": 1, \"value\": 0.7943856956845238}, \"0.24479865250869348\": {\"frequency\": 1, \"value\": 0.24479865250869348}, \"0.41851709759424605\": {\"frequency\": 1, \"value\": 0.41851709759424605}, \"0.42735075702382297\": {\"frequency\": 1, \"value\": 0.42735075702382297}, \"0.5346193514996632\": {\"frequency\": 1, \"value\": 0.5346193514996632}, \"0.5393722832836563\": {\"frequency\": 1, \"value\": 0.5393722832836563}, \"0.5071675297405548\": {\"frequency\": 1, \"value\": 0.5071675297405548}, \"0.5329661096245182\": {\"frequency\": 1, \"value\": 0.5329661096245182}, \"0.35921274276654774\": {\"frequency\": 1, \"value\": 0.35921274276654774}, \"0.5965826259801775\": {\"frequency\": 1, \"value\": 0.5965826259801775}, \"0.34556877404990477\": {\"frequency\": 1, \"value\": 0.34556877404990477}, \"0.5557468641331347\": {\"frequency\": 1, \"value\": 0.5557468641331347}, \"0.1443597863884749\": {\"frequency\": 1, \"value\": 0.1443597863884749}, \"0.49821268297762616\": {\"frequency\": 1, \"value\": 0.49821268297762616}, \"0.4719148761087352\": {\"frequency\": 1, \"value\": 0.4719148761087352}, \"0.3806999813710879\": {\"frequency\": 1, \"value\": 0.3806999813710879}, \"0.49881206895272207\": {\"frequency\": 1, \"value\": 0.49881206895272207}, \"0.39985655737704917\": {\"frequency\": 1, \"value\": 0.39985655737704917}, \"0.4445430234959787\": {\"frequency\": 1, \"value\": 0.4445430234959787}, \"0.3785916260747124\": {\"frequency\": 1, \"value\": 0.3785916260747124}, \"0.3586060916542474\": {\"frequency\": 1, \"value\": 0.3586060916542474}, \"0.3766297022956951\": {\"frequency\": 1, \"value\": 0.3766297022956951}, \"0.37110983565588446\": {\"frequency\": 1, \"value\": 0.37110983565588446}, \"0.6454734653507201\": {\"frequency\": 1, \"value\": 0.6454734653507201}, \"0.38855347316204275\": {\"frequency\": 1, \"value\": 0.38855347316204275}, \"0.4633894614361702\": {\"frequency\": 1, \"value\": 0.4633894614361702}, \"0.7875207246646796\": {\"frequency\": 1, \"value\": 0.7875207246646796}, \"0.6275830875398247\": {\"frequency\": 1, \"value\": 0.6275830875398247}, \"0.34790372295905225\": {\"frequency\": 1, \"value\": 0.34790372295905225}, \"0.4977723309312087\": {\"frequency\": 1, \"value\": 0.4977723309312087}, \"0.5134673900669201\": {\"frequency\": 1, \"value\": 0.5134673900669201}, \"0.32430461787319964\": {\"frequency\": 1, \"value\": 0.32430461787319964}, \"0.4165913748137109\": {\"frequency\": 1, \"value\": 0.4165913748137109}, \"0.6478419146548979\": {\"frequency\": 1, \"value\": 0.6478419146548979}, \"0.33726791480377544\": {\"frequency\": 1, \"value\": 0.33726791480377544}, \"0.43875289386388955\": {\"frequency\": 1, \"value\": 0.43875289386388955}, \"0.4123380157126936\": {\"frequency\": 1, \"value\": 0.4123380157126936}, \"0.6757779070722048\": {\"frequency\": 1, \"value\": 0.6757779070722048}, \"0.3483406701095072\": {\"frequency\": 1, \"value\": 0.3483406701095072}, \"0.6369226655505953\": {\"frequency\": 1, \"value\": 0.6369226655505953}, \"0.29960286458333335\": {\"frequency\": 1, \"value\": 0.29960286458333335}, \"0.2232441901687789\": {\"frequency\": 1, \"value\": 0.2232441901687789}, \"0.5413257575757576\": {\"frequency\": 1, \"value\": 0.5413257575757576}, \"0.2301623820168902\": {\"frequency\": 1, \"value\": 0.2301623820168902}}, \"mean\": 0.4310387558222442}}, \"selected_variable\": {\"name\": [\"images\"], \"descriptives\": {\"rows\": 1328, \"columns\": 7}, \"view_component\": \"Summary\", \"view_file\": \"sframe\", \"view_params\": {\"y\": null, \"x\": null, \"columns\": [\"path\", \"image\", \"folder\", \"red\", \"green\", \"blue\", \"rgb\"], \"view\": null}, \"view_components\": [\"Summary\", \"Table\", \"Bar Chart\", \"BoxWhisker Plot\", \"Line Chart\", \"Scatter Plot\", \"Heat Map\", \"Plots\"], \"type\": \"SFrame\", \"columns\": [{\"dtype\": \"str\", \"name\": \"path\"}, {\"dtype\": \"Image\", \"name\": \"image\"}, {\"dtype\": \"str\", \"name\": \"folder\"}, {\"dtype\": \"float\", \"name\": \"red\"}, {\"dtype\": \"float\", \"name\": \"green\"}, {\"dtype\": \"float\", \"name\": \"blue\"}, {\"dtype\": \"list\", \"name\": \"rgb\"}], \"column_identifiers\": [\"blue\", \"image\", \"rgb\", \"green\", \"path\", \"folder\", \"red\"]}, \"columns\": [{\"dtype\": \"str\", \"name\": \"path\"}, {\"dtype\": \"Image\", \"name\": \"image\"}, {\"dtype\": \"str\", \"name\": \"folder\"}, {\"dtype\": \"float\", \"name\": \"red\"}, {\"dtype\": \"float\", \"name\": \"green\"}, {\"dtype\": \"float\", \"name\": \"blue\"}, {\"dtype\": \"list\", \"name\": \"rgb\"}]}, e);\n", + " });\n", + " })();\n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "images = gl.SFrame('images.sf')\n", "gl.canvas.set_target('ipynb')\n", @@ -581,6 +763,99 @@ "images.show()" ] }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
pathimagefolderredgreenblue
/data/coursera/images/sun
sets/ANd9GcSN4TPL6_Xo ...
Height: 194 Width: 259sunsets0.4032234842080.2545700932660.297391832186
/data/coursera/images/sun
sets/ANd9GcQeme67tTCc ...
Height: 194 Width: 259sunsets0.5568352144950.246377199180.0395407719022
\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
rgb
[0.403223484208,
0.254570093266, ...
[0.556835214495,
0.24637719918, ...
\n", + "[2 rows x 7 columns]
\n", + "
" + ], + "text/plain": [ + "Columns:\n", + "\tpath\tstr\n", + "\timage\tImage\n", + "\tfolder\tstr\n", + "\tred\tfloat\n", + "\tgreen\tfloat\n", + "\tblue\tfloat\n", + "\trgb\tlist\n", + "\n", + "Rows: 2\n", + "\n", + "Data:\n", + "+-------------------------------+------------------------+---------+\n", + "| path | image | folder |\n", + "+-------------------------------+------------------------+---------+\n", + "| /data/coursera/images/suns... | Height: 194 Width: 259 | sunsets |\n", + "| /data/coursera/images/suns... | Height: 194 Width: 259 | sunsets |\n", + "+-------------------------------+------------------------+---------+\n", + "+----------------+----------------+-----------------+\n", + "| red | green | blue |\n", + "+----------------+----------------+-----------------+\n", + "| 0.403223484208 | 0.254570093266 | 0.297391832186 |\n", + "| 0.556835214495 | 0.24637719918 | 0.0395407719022 |\n", + "+----------------+----------------+-----------------+\n", + "+-------------------------------+\n", + "| rgb |\n", + "+-------------------------------+\n", + "| [0.403223484208, 0.2545700... |\n", + "| [0.556835214495, 0.2463771... |\n", + "+-------------------------------+\n", + "[2 rows x 7 columns]" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "images.head(2)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -592,11 +867,43 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n", + "Iteration 5\n", + "Iteration 10\n", + "Iteration 15\n", + "Iteration 20\n", + "Iteration 25\n", + "Iteration 30\n", + "Iteration 35\n", + "Iteration 40\n", + "Iteration 45\n", + "Iteration 50\n", + "Iteration 55\n", + "Iteration 60\n", + "Iteration 65\n", + "Iteration 70\n", + "Iteration 75\n", + "Iteration 80\n", + "Iteration 85\n", + "Iteration 90\n", + "Iteration 95\n", + "Iteration 100\n", + "Iteration 105\n", + "Iteration 110\n", + "Iteration 115\n", + "Iteration 118\n" + ] + } + ], "source": [ "np.random.seed(1)\n", "\n", @@ -636,11 +943,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEICAYAAABmqDIrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xu8VVW99/HPV0RIPYikZfKIStoFL9idMmwrJaiJ6BHz\ngoX6lKU9HU90VCwNUTkWZR4zu+oxD14ptbQjCOZWU0oK0SChULxChoAXAgHh9/wx5pLJZO2911rs\nzVp7+32/Xuu19hpzzDHH8LJ+a8wx5hiKCMzMzDrKVvWugJmZdW0ONGZm1qEcaMzMrEM50JiZWYdy\noDEzsw7lQGNmZh1qiwcaSYdKukfSYkmvSXpW0s2S3lsm7yBJd0laLmmFpEclHVfI00PSREmLJK2U\n9JCkwWXKkqSxkhZKWiVptqRjOrKtZmZWnx5NH+CPwJnAp4BzgX2AGZJ2K2WSdARwH7AIOAEYDvwU\n6Fko7xrgNOAbwBHAYmCqpP0L+S4GLgCuAIYBM4DJkoa1Z+PMzGxjaoQHNiW9C5gHjImI70naHngC\nmBQRY1o5byDwCDA6Iq7L0roBc4F5ETEiS9sZeBaYEBHjc+dPB3aKiAM6qGlmZm96jTJGsyx7X5u9\nHwfsBFzWxnnDgTXALaWEiFgH3AQMldQ9Sx4GdAeuL5w/CdhP0u61V93MzFpTt0AjaStJ3SXtDfyY\ndIvspuzwgaTgs7+kxyStlfSMpAsk5es8AFgYEa8Vip8LbAPslcu3OiKeKJNP2XEzM+sAW9fx2n8A\nPpD9/TdgSES8mH3eFdiO1AMZD8wCPgmcD+wAlG6n9QGWlyl7We546f2lCvKZmVk7q2egGQX0AvoD\nXwOmSzowIp4h9bR6AGMj4r+y/PdL2gk4U9K4iHi1LrU2M7Oq1C3QRMT87M+ZkqYAT5FmoJ0BLM2O\nTS+cdjdwOulW1x9IvZl+ZYov9VBKPZblQO8K8m1CUv1nS5iZbSERofYusyEmA0TEy8ACNoypzK3w\n1LnAnpKKU573IU0SWJDL10NS/zL5AvhLG/XrMq9vfvObda+D2+Q2dYVXV2tPRMf9pm6IQCPp7cB7\n2BAYbicN0g8tZD0MeA34c/b5DtKg/8hcWd1Is9amRkRpFtsU4HXgpEJ5o4A5EfF0+7TEzMyKtvit\nM0m3kgb3HwNeAd4NnEXqgVwGEBFzJV0LjM8CxyzSw52nAuMjYmWWb7akm4HLJW0DLCTdetuD9JAn\nWb4lki4DxkpakZV3PNAEHNnBTTYze1OrxxjNDFKP46uk3sizwL3ApZEmApR8AXgO+DLwdtIYzr9H\nxJWF8kYDlwAXkcZhHgWGRsSjhXznAa8CXwF2AeYDIyPirvZqWGfQ1NRU7yq0O7epc+hqbepq7elI\nDbEyQCOTFP5nZGZvBpKIrjoZwMzMui4HGjMz61AONGZm1qEcaMzMrEM50JiZWYdyoDEzsw5Vz0U1\nbQtZswZWroRVq+C119LnNWtg7Vp4/fX0Wrduw2v9+g3vEZu+l17Fzy0day1f6VXSUlr+vfh3ubS2\njpdTyzm15t2cc+pRplWmM/+z37+4J3E7cqDppFatgiefhKeeSq/nn4fFi+Hvf4elS2HZMnjpJXj1\n1RRUzMxac+qpHVe2A02DW78eFiyA2bPT67HH4PHHYeHCzv3ryczePBxoGswrr8Dvfw+/+x3MmAF/\n/GPqmZiZdVZbfAkaSYcC55D2lNkRWAI8BIyLiMdbOOdHpLXPJkXEZwvHegAXk1Zm7g3MBs6JiAcK\n+UTa7+YLbFjrbHxE3NpGfTt0CZq1a+GBB2DaNLjnHvjTn1Ivpj116wbbbgtveQv07Ak9eqTX1ltD\n9+7p+NZbp/etttrwLm1479YtvedfpWOtpbeUp9yrpKW0/Hvx73JpbR0vp5Zzas27OefUo0yrTGf9\nZ//BD8LIkR2zBE09ejR9gD8CPyAFmX7AWGCGpP0i4tl8ZkkHkoLIyy2Udw1p+4CvkVZv/jIwVdKg\niHgsl+9i0kKe57Fh9ebJko6IiCnt1bhKrF4Nd94Jv/gF3HUXvNxSy1ohQb9+0L8/7Lkn7LYb7Lor\n7LIL7Lwz9OkDvXtDr14puHTW//jNrPNriEU1Jb0LmAeMiYjv5dK3Bh4BJgFfBB7I92gkDcyOj46I\n67K0bqSNzuZFxIgsbWfSKtETImJ87vzpwE4RcUArdWu3Hs2cOfCTn8D116fB+krtsAN84APwvvfB\nwIGw337wrnelXoqZWXvpqEU1G2WMpvS1+3oh/WzSsz7fIQWaouGkfWxuKSVExDpJNwHnSOqebX42\nDOgOXF84fxJwtaTdO2rzs3Xr4Pbb4corobm5snPe8x4YPBgOPBA++lHYa690C8rMrDOqW6CRtBXQ\njbRJ2aXAIuDG3PG9gK8Dh2XBo1wxA4CFEfFaIX0uaa+bvYDHs3yrI+KJMvmUHW/XQPP663DjjTBh\nAsyb13renXeGww+HQw+FQw5Jt7/MzLqKevZo/gB8IPv7b8CQiHgxd/yHwC8i4v5WyugDLC+Tvix3\nvPRebu5WMV+7ePhhOOUU+MtfWs7Tpw+ceCIcfzwMGpQG283MuqJ6BppRQC+gP2kgf7qkAyPiGUmj\nSEHohNYKaDSrV8O4cfDtb7c8c+wTn4AzzoCjjkozv8zMurq6BZqImJ/9OVPSFNJWzedK+g/gu8C3\ngLWSdiDd3toK6J59/mdEvE7qzfQrU3yph1LqsSwnTX1uK19Z48aNe+Pvpqamslu4rlwJhx0G95fp\nf3XrBiedBF/7WhrINzNrBM3NzTRXOni8GRpi1hmApJmkgPB50jTlIAWYktLnAI6OiF9LOp80jtM7\nP04jaRzpWZ1eEbFW0snAtcDeEfFkLt9o4Gqgf0uTASqZdbZmDYwYkaYqF518curl9O/fahFmZnXX\npbdylvR24D3AAmAx0AQcnL2XXv8ApmV//y479Q7SoP/IXFndgOOAqdmMM4AppBltJxUuPQqYszkz\nztatg89+dtMg07cv/O//wnXXOciY2ZvbFr91JulW0gOTjwGvAO8GziJNU74sItYAm9yAkvQa8EL+\nif+ImC3pZuBySduQekJnkGaynZDLt0TSZcBYSSvY8MBmE3Dk5rTnkkvg5ps3Ths4EH772zTgb2b2\nZlePMZoZpB7HV0m9kWeBe4FLI+KZVs6L7FU0GrgEuIg0DvMoMDQiHi3kOw94FfgKG5agGRkRZW54\nVWbhwjR9OW/vvWHqVAcZM7OShhmjaVStjdEcfXR6GLPkbW9LU5t3330LVc7MrB116TGazujuuzcO\nMgATJzrImJkVuUfThnI9mrVr0zjM47m1pgcNggcf9FIxZtZ5uUfTQG65ZeMgI8H3v+8gY2ZWjr8a\na3DNNRt/PuWUtJeDmZltyrfO2lC8dfb007DHHhvnmTsXBgzYsvUyM2tvvnXWIH7+840/f/jDDjJm\nZq1xoKnC+vVw7bUbp40eXY+amJl1Hr511ob8rbPmZjj44A3HevSAxYthxx3rUzczs/bkW2cNoNib\nOfpoBxkzs7Y40FRozRr45S83TjvllPrUxcysM9nigUbSoZLukbRY0muSnpV0s6T35vIMkXS9pCcl\nrZS0QNJVknYuU14PSRMlLcryPiRpcJl8kjRW0kJJqyTNlnRMpfWeNQtWrNjweZddYMiQ6ttvZvZm\nU48eTR/gj8CZwKeAc4F9gN9L2i3LczqwE3AxMBSYAAwHZkjatlDeNcBpwDeAI0jbDEyVtH8h38XA\nBcAVwDDS4p6TJQ2rpNIPPLDx5098wtsvm5lVoiEmA0h6FzAPGBMR35P01ohYWsgzGLgPODUirs3S\nBgKPAKMj4rosrRswF5gXESOytJ1Jq0RPiIjxuTKnAztFxAGt1C0iguHD4Y47NqRfeSWceebmt93M\nrFF09ckApa2UXwcoBpnMzOy9by5tOGkfm1tKCRGxDrgJGCqpe5Y8DOgOXF8ocxKwn6RWl8Jcvz6t\nY5Y3eJObc2ZmVk7dAo2krSR1l7Q38GNgEXBjK6c0Ze+5VcYYACzMb+OcmUva62avXL7VEfFEmXzK\njrfo8cdh2bINn3fYAfbdt7UzzMyspB4bn5X8AfhA9vffgCER8WK5jJK2By4nBYb84vx9gOVlTlmW\nO156f6mCfGUVx2cOPNALaJqZVaqegWYU0AvoD3wNmC7pwOIum9mYy03AO4CPRcT6LV3RH/xgXO5T\nE4MHN23pKpiZtbvm5maam5s7/DqNMhlgB+Ap4MaIOCOXLtI4ytHA4RHRXDjvJmBgRLy3kD6SFJz2\njYjHJV0KfCUiti3k+xCpZ3VES1s6S4rddguefXZD2u9+l3o1ZmZdSZeeDBARLwML2DCmUvJjYCTw\nmWKQycwF9pTUs5C+D2mSwIJcvh6S+pfJF8BfWqtfPsj06OEtAczMqtEQgUbS24H3sCEwIOm7wKmk\nqct3tHDqHaRB/5G587oBxwFTI2JtljyFNKPtpML5o4A5EfF0pXX98IdTsDEzs8ps8TEaSbcCs4DH\ngFeAdwNnAWuB72Z5zgH+HbgaeELSR3JFLImIJwEiYrakm4HLJW0DLATOAPYATiidEBFLJF0GjJW0\nIrv+8aSZbEdWU39PazYzq049JgPMIPU4vkrqjTwL3AtcmpsIMIx0S+vU7JX380LaaOAS4CKgN/Ao\nMDQiHi2cdx7wKvAVYBdgPjCypbGZluxfXG/AzMxa1eZkAEmfrabA0hP6XYWkSDEvuf12OOqoOlbI\nzKyDdNRkgEp6NNcWPpe+dVUmDaBLBZqires5IdzMrBOq5Gtzz9zf/we4AfgNafrwC8DbSeMhh5Eb\nF+mqundvO4+ZmW1Q1XM0km4H5kfEOWWOfRvYOyKObsf61V3x1tk998Ahh9SxQmZmHaRRnqMZAkxr\n4djd2fEuzT0aM7PqVBtoVgMtPa74IdJDkl2ax2jMzKpT7dfmLcA4SeuAyWwYozkO+CbpuZcuzT0a\nM7PqVBtoxgD/AvwncGkuPUiTBMa0U70alns0ZmbVqWlRzWxHzEGkBx8XA3+IiL+2c90aQnEywJw5\nsM8+dayQmVkHqedzNJvIgkqXDCxtcY/GzKw6VS+qKWlbSV+WNFnSPdn7GZLeUuH5h2bnLZb0mqRn\nJd0sqbjUf29JP5O0RNIKSdMkbbKvpaQekiZKWiRppaSHJG2yIpmSsZIWSlolabakY6ptvwONmVl1\nqgo0knYhLUh5BWn22bbZ+5XArGwV5rb0Af4InAl8CjiXtFz/DEm75fLdCRya5TsG6A7cK2nXQnnX\nAKcB3wCOIN3KmyqpuCrZxcAFWd2HkdZcmyxpWAV1foMnA5iZVafaBzavA4YCx0TEg7n0jwG/JC3N\nP7rqSqQxn3nAmIj4nqSjgFuBgyPi/ixPL9LqzP8TEWdlaQOBR0hbCVyXpXUj7T8zLyJGZGk7kxbv\nnBAR43PXnQ7sFBEHtFK3jcZonn8edi2GOjOzLqBRHtg8DBibDzIAEfEQG3oUtViWvZf2jxkOLCoF\nmewar5D2n8kvaTmc9OzOLbl860jL4wyVVOp/DCP1iK4vXHcSsJ+k3SutqHs0ZmbVqTbQbA8sauHY\nc9nxikjaSlJ3SXuTdtJcRAoQAAOAOWVOmwv0k7RtLt/CiHitTL5t2LBj5wBgdUQ8USafsuMV8RiN\nmVl1qg0084GTWzg2inT7q1J/IK00MB/YFxgSES9mx/oAy8ucU+r57Fhhvj6595cqyNcm92jMzKpT\n7e/z7wDXZYP+N5AG3nch7Vb5SVoOQuWMAnoB/YGvAdMlHZjb/KwhuUdjZladqr42I2JSdttqPPCz\n3KEXgC9GxA1VlDU/+3OmpCnAU6QZaGeQeik7ljmt1PNYnnvv10q+Zbl8vSvI14Jxb/z14INNDBnS\n1Hp2M7NOoLm5mebm5g6/Tq0rA2wFvJv0Rb2MtHXA+s2qiDQTWB4Rh0q6GvhURPQr5PlvoCki9sw+\nnw98HeidH6eRNA44B+gVEWslnUzawG3viHgyl280aX22/hHxdAv12mjW2fr1oHafk2FmVn+NMusM\ngIhYHxGPR8SD2fvmBpm3A+8BFmRJvwb65h+8zKY3Hwn8KnfqHaRB/5G5fN1Ii3xOjYjSLLYpwOvA\nSYVLjwLmtBRkirp3d5AxM6tW1SMOkvYjrdT8CdLtreXAvcBFEfHnCs6/lfTQ52PAK6Se0VmkacqX\nZdl+DfwemCTpbNJA/tjs2MRSWRExW9LNwOWStiE9Z3MGsAe53T4jYomky4CxklZk1z8eaCIFr4p4\nfMbMrHrVPrD5IeA+YBUpGPydNBngSOAtwEER8ac2yvgPUo/jnaTeyLOkQHVpfiKApN6kyQcjgJ7A\nQ8BXI2JOobwewCXAiaRxmEeBsyPigUI+kYLV57M6zwcujIjb2qjvG7fOevWCl19uLbeZWefVUbfO\nqg0000kzxYZExKu59H8BpgMvR8Sh7V3JesoHmj59YOnSOlfIzKyDNMoYzSDgP/NBBiD7/C3go+1V\nsUbkZ2jMzKpXbaBpq/tT/RS2TsRjNGZm1as20PwBOC+7VfYGSduRphP/vr0q1ojcozEzq161v9HP\nA5qBpyXdyYaVAQ4nbRnQ1J6VazTu0ZiZVa/alQEeljSItK/LUDY8sFnx9ObOzD0aM7PqVf0bPSIe\nA47tgLo0PPdozMyqV9PKAG9W7tGYmVWvlpUBPkF66r4f6UHKvIiIIe1RsUbkHo2ZWfWq+uqUdDrw\nQ9K4zF9J+8lslKWd6tWQ3KMxM6tetb/Rx5D2oTk1ItZ0QH0amns0ZmbVq3aMpi/w35sTZCQdK+k2\nSc9IWilpnqQJkrYv5Bsg6VZJz0taIWmOpDHZ6sz5fD0kTZS0KCvvofyqz7l8kjRW0kJJqyTNlnRM\nNXV3j8bMrHrVBpo/kXbE3BxjSEv2nwsMA64CvgTcXcog6R2k53X2AL4CfBq4Dfg2cHGhvGuA04Bv\nAEeQnu2ZKmn/Qr6LSdOyr8iuOwOYLGlYpRV3j8bMrHrVLqp5AHA98KWIuL+mC0pvjYilhbTSxmRD\nIqJZ0hdIY0HvjogFuXw3klaI7pt9Hgg8AoyOiOuytG7AXGBeRIzI0nYmrRI9ISLG58qbDuwUEQe0\nUt83FtX89KfhjjtqabWZWePrqEU12/yNLulZNl7DbAfgXkkr2bClcklExO6tlVcMMpmZpIkEfbPP\npZtUxUX5X2bjXthw0j42t+TKXyfpJuAcSd2zzc+GZWVeXyhvEnC1pN0r2fzMt87MzKpXyc2ge+j4\nxTKbsms8nn2eTLrN9YNs47OlwCdJO2SOy503AFiY38Y5M5e0181eWZkDgNUR8USZfMqOtxlofOvM\nzKx6bX51RsTojqyApL7AhcC0iJiVXfMfkj5G2rb5ySzremBcRHw3d3ofNu1VQZp+XTpeen+pgnyt\nco/GzKx6df2Nnq36/CvS7a9Tc+k7kQb/VwDHkALCIcD5ktZExLfrUF33aMzMalDJGM1ngd9ExNLs\n71aVBuUrKLcncCdpZtlBEbEod/gc0soD/SLilSztfklbA+Ml/SwilpF6M/3KFF/qoZR6LMtJ2zy3\nla8F4wD485+hubmJpqam1rObmXUCzc3NNDc3d/h12px1Jmk9MChbuXl9G+VFRHRrIw9ZwPgV8HHg\nkxExs3D8LuBtEfGBQvpwUk/no1l9zge+DvTOj9NIGkcKVr0iYm1uVtveEfFkLt9o4Gqgf0uTAfKz\nzk4/HX70o7ZaZ2bWOdVzK+c9gdm5v1t7tfmMjSSRVhdoAo4qBpnM34F3StqhkD4oe38+e7+DNOg/\nMld+N+A4YGo24wxgCunZnZMK5Y0C5lQy4ww8RmNmVotKJgM8Xe7vzXAVaZuBi4FVkj6SO/ZcRDwP\n/Ag4EZgmaSJp1tnBpIc9b83yEBGzJd0MXC5pG2AhcAbpdtwJuXovkXQZMFbSCmAWcDwp2B1ZacU9\nRmNmVr16fHUOI92L+nr2yrsQGB8Rf8iWkbkAuBzoBTxFGiy5rHDOaOAS4CLSOMyjwNCIeLSQ7zzg\nVdJKA7sA84GREXFXpRV3j8bMrHqVjNEspPLnaCIi3rnZtWog+TGasWNhwoQ6V8jMrIPUbWUA4D46\n/oHNTsE9GjOz6tX9gc3OxGM0ZmbV81bOVXCPxsyselUHGknvy/aJeVHS65Len6VPqGbJ/c7IPRoz\ns+pVFWgkfZy0j8t7SM/C5M9fD3yx/arWeNyjMTOrXrU9mkuBqcA+wFcLx2YB72+PSjUq92jMzKpX\n7Vfn+4FjIiLStN+NvAjs3D7Vakzu0ZiZVa/aHs1rwLYtHHsHm25U1qW4R2NmVr1qA83vgLOy9cRK\nSj2b04DftkutGpR7NGZm1av2N/r5wIOkZV5+QQoyn8vWEfsA8KH2rV5jcY/GzKx6VfVosvXDDgJe\nIK1TJuDL2eFPRMT8tsqQdKyk2yQ9I2mlpHnZ1Ojty+QdJOkuScslrZD0qKTjCnl6SJooaVFW3kPZ\nOmnFsiRprKSFklZJmi3pmGra7x6NmVn1qv6Nnm23PCTbuKwP8FJErKyiiDHAc8C52fsBpMU0m4CP\nlTJJOgK4FZhEWol5DTAA6Fko7xrgMOBrpNWbvwxMlTQoIh7L5buYNFPuPDas3jxZ0hERMaWSirtH\nY2ZWvTYX1dwos3RIRLQ4DiPpaxHxnTbKeGtELC2klTYmGxIRzVnv5glgUkSMaaWsgcAjwOjSzp7Z\n+NFcYF5EjMjSdgaeBSZExPjc+dOBnSLigFau8caimnfeCUcc0VrrzMw6r3pufJZ3a/blvglJXyU9\nZ9OqYpDJzCTdhuubfT4O2IlNtwQoGk7q6dySK38dcBMwVFLpZtcwoDtwfeH8ScB+knZvq97gHo2Z\nWS2qDTS3AFMk7ZFPlHQWMJG010stmkjdhr9knw8ElgH7S3pM0tpsTOcCSfk6DwAW5rdxzswl7by5\nVy7f6oh4okw+Zcfb5EBjZla9agPNF4E/kHa+3AlA0ldIPY9/j4irqq2ApL6kMZppEfFIlrwrsB2p\nB3INMIR0a+18UkAr6QMsL1Psstzx0vtLFeRrlScDmJlVr6rf6BGxXtLxwHRSz+Zm0u2yMRFxRbUX\nl7Qd8CvS7a9Tc4e2AnoAYyPiv7K0+7PgdqakcRHxarXXq904AH7+c1i/vommpqYtd2kzsw7S3NxM\nc3Nzh1+nqskAb5wk9SY9vPle4OyI+G4NZfQE7gL2Aw6KiL/kjt0AfAbYPyLm5tJHAL8EPpZt93wT\nMDAi3lsoeyRpnGbfiHhc0qXAVyJi20K+D5F6aEe0tKVzfjLAww/Dh7r0k0Jm9mZWtx02JV3XwqEX\ngLcBA3N5IiI+V0GZW5MCxvuBT+aDTGbupmeVNRcYIalnYZxmH1IvaUEuXw9J/SPiyUK+/NhQqzxG\nY2ZWvUq+Og+i5a2c/wnkH45ss3skSaQtBppIPYmZZbLdDlwEDGXjoHMYab21P2ef7yCN74wE/icr\nvxtp1trUiFib5ZsCvA6clJVbMgqYExFPt1Vv8BiNmVktKtnKeY92vuZVwLGkByhXSfpI7thzEfF8\nRMyVdC0wPgscs4BPkcZxxpceEI2I2dk40eWStiE9sHkGsAfpIc9SG5Zky+SMlbSCDQ9sNgFHVlpx\n92jMzKpX0xjNZl1QWgj0a+HwhaUHKrPbaxcAnwPeDjwFXBkRVxbK6wFcApwI9Catw3Z2RDxQyCdg\nLPB5YBdgfna929qo7xtjNAsWwDvfWXFTzcw6lY4ao2kz0EjqByyOiLXZ362KiGfaq3KNIB9onnoK\ndq/o0U4zs86nbpMBSLejPgo8TOpVtNUF6tbG8U7LYzRmZtWrJNCcSlp3rPT3lr3X1kA8RmNmVr0t\nPkbT2eRvnS1bBjvuWOcKmZl1kEZZVPNNzT0aM7PqVfLA5jVVlBcRcdpm1KeheYzGzKx6lfxGP4TK\nx2W69H0492jMzKrnMZo25Mdo1q8HtfvdSzOzxuAxmjrbemsHGTOzWtQcaCRtJelJSfu0Z4Ualcdn\nzMxqszk9GpHWFOtR1UnSsZJuy3bMXClpnqQJkrZv5ZwfSVpfbiVpST0kTZS0KCvvIUmDy+STpLGS\nFkpaJWm2pGMqrbfHZ8zMalOPW2djSCspnwsMIy2y+SXg7nKZJR1IWnX55RbKuwY4DfgGcASwGJgq\naf9CvotJa6ddkV13BjBZ0rBKKu0ejZlZbWqeDJCtqrwW+GBEzKrivLdGxNJC2smkrZqHRERzLn1r\n4BFgEmkb6Qci4rO54wOz46Mj4rpcveYC8yJiRJa2M/AsMKG0aGeWPh3YKSIOaKW+AcHb3gYvvFBp\nK83MOp+GmwwQEeuAU0hroVVz3tIyyTNJt+L6FtLPJtXxOy0UN5y0wdkthXrdBAyVVOqHDAO6A9cX\nzp8E7CepzaUy3aMxM6vNZt06i4ifR8TydqhHE2kO8eOlBEl7AV8HvpQFj3IGAAsLu2tC6tFsA+yV\ny7c6Ip4ok0/Z8VZ5jMbMrDZVfX1K+mwrh9eTxlEeiYjnqiizL2mXzGmFW3A/BH4REfe3cnofoFyg\nW5Y7Xnp/qYJ8LXKgMTOrTbVfn9ey4en//H28fNr6bNfLUyJiTWuFSdoO+BXp9tepufRRwAfI7ZJZ\nb751ZmZWm2oDzYGkcY47gF8AL5B2vzwO+DRpG+V9gPHA08B5LRUkqSdwJ2mK9EERsShL3w74LvAt\nYK2kHUgBbCuge/b5nxHxOqk3U24ztlIPpdRjWU7afbOtfC0Yx9KlMG4cNDU10dTU1Hp2M7NOoLm5\nmebm5g6/TlWzziT9EpgfEZsEEEkTgPdGxNGSLgJOioj+LZSzNakn83HgkxExM3dsd9IEg2DTXpOy\n96Mj4teSzieN4/TOj9NIGgecA/TKdgYtzWrbOyKezOUbDVwN9I+Ip1uoa0DwvvfBrIrn1pmZdT6N\nMuvsUOCeFo79FhiS/X0/m84gA9KDk8ANpAkAR+WDTObv2bGDs/fS6x/AtOzv32V57yAN+o/Mld+N\n1MOaGhFrs+QppGd3TipcaxQwp6Ugk+cxGjOz2lT79bmaNHZSLth8gDTWAimA/bOFMq4CjiU9QLlK\n0kdyx57518E7AAAVgklEQVSLiOdJgWojkl4DXoiIB0ppETE7Gw+6XNI2pJ7QGaTbcSfk8i2RdBkw\nVtIKYBZwPCloHdlGmwGP0ZiZ1araQDMZuFDSOtIYzT+At5F6FONIT+kDHADMb6GMYaTbX1/PXnkX\nksZ3ygnKb0MwGrgEuIg0DvMoMDQiHi3kOw94FfgKsEtWv5ERcVcL19uIezRmZrWpdozmLcBPKT8b\n7Abg8xHxmqQjgFfbmJrcKZTGaIYMgenT610bM7OO01FjNFX9To+IVcAoSeOBQaSewWLg4YiYn8v3\nm3atZQNwj8bMrDY1fX1GxF+Bv7ZzXRqax2jMzGpTdaCRtC3p4cpPkJ5DWQbcC/x31uPpktyjMTOr\nTVXTmyXtQpqxdQXwQWDb7P1KYJakt7d7DRuEezRmZrWp9jmabwM7AoMjYs+I+GhE7El68LI36Wn+\nLsk9GjOz2lQbaA4DxkbEg/nEiHiIDRuPdUnu0ZiZ1abaQLM9sKiFY89lx7sk92jMzGpTbaCZD5zc\nwrFRwLzNq07jco/GzKw21f5O/w5wXTbofwPpGZpdSMu5fJKWg1Cn5x6NmVltqn1gc1I2vXk88LPc\noReA0yPihvasXCNxj8bMrDZVb+UcET8BdiXtOzM4e+8LPCXpsbbOl3SspNskPSNppaR5kiZI2j6X\nZ4ik6yU9meVZIOkqSTuXKa+HpImSFmV5H5I0uEw+SRoraaGkVZJmSzqm0na7R2NmVpuqAw1ARKyP\niMcj4sHsfT2wAynotGUMacn+c0kLbF4FfAm4O5fndGAn0grPQ4EJwHBgRtajyrsGOI0Ns94WA1Ml\n7V/IdzFwAekZoGHADGCypGGVtNk9GjOz2tTjd/qnI2Jp7vP9kpYD10pqiohm4EuFPA9I+htwH2mv\nmWsBJA0kLfA5OiKuy9LuB+aSbu+NyNJ2JgW4CRHxvazM+yTtDVxK2q+mVe7RmJnVpqYezeYoBJCS\nmaTdM/u2kQc23lBtOGkPnFty5a8DbgKGSir1Q4YB3UnbUOdNAvbLdvVslXs0Zma12eKBpgVNpL1m\nHm8jD4U8A4CF+W2cM3NJO2/ulcu3OiKeKJNP2fFWuUdjZlabNr8+JfWvsKxdaqmApL6kDc+mRcSs\nFvJsD1xOCgy35w71AZaXOWVZ7njp/aUK8rXIPRozs9pU8jt9AeV3tixShfk2nCBtB/yKdPvr1Bby\ndCPdCnsH8LFs4sEWNo7p02HFCmhqaqKpqWnLV8HMrJ01NzfT3Nzc4depJNCc0hEXltQTuBPYAzgo\nIjZZ2kaSgOuAQ4DDI2JuIctyoF+Z4ks9lGW5fL0ryNeCcXz60/DlL7eey8ysMyn+cL7wwgs75Dpt\nBpqI+Hl7X1TS1sAvgfcDn4yIv7SQ9cfASOBfs9loRXOBEZJ6FsZp9iH1khbk8vWQ1D8inizkC6Cl\n67/Bt87MzGqzxScDZL2UG0iD+0dFxMwW8n2XdDttdETc0UJxd5AG/UfmzutGmgI9NSLWZslTSM/u\nnFQ4fxQwJyKebqvengxgZlabenx9XgUcS3qAcpWkj+SOPRcRz0s6B/h34GrgiUKeJaVeSUTMlnQz\ncLmkbYCFwBmk23EnlE6IiCWSLgPGSlpB2rzteFKwO7KSSrtHY2ZWG0VUNX6/+ReUFlJ+XAXgwogY\nL+le4KAW8vw8It6YOCCpB3AJcCJpHOZR4OyIeKBwXQFjgc+TZsjNz653Wxv1DQiuvx5OPLHt9pmZ\ndVaSiAi1e7lbOtB0NqVAc8stMHJk2/nNzDqrjgo0jfLAZsPzGI2ZWW0caCrkMRozs9o40FTIPRoz\ns9o40FTIPRozs9o40FTIPRozs9o40FTIPRozs9o40FTIPRozs9o40FTIPRozs9o40FTIPRozs9rU\nY1HNYyXdJukZSSslzZM0IdvcLJ+vt6SfSVoiaYWkaZL2LVNeD0kTJS3KyntI0uAy+SRprKSFklZJ\nmi3pmErr7R6NmVlt6tGjGUNaSflcYBhpkc0vAXcX8t0JHAqcCRwDdAfulbRrId81wGnAN4AjgMXA\nVEn7F/JdDFwAXJFddwYwWdKwSirtHo2ZWW3qsajmWyNiaSHtZOBaYEhENEs6CrgVODgi7s/y9CKt\nzvw/EXFWljYQeIS0lcB1WVo30v4z8yJiRJa2M/AsMCEixueuOx3YKSIOaKW+AcFTT8Huu7fLPwIz\ns4bUZdY6KwaZzEzSVtB9s89HAotKQSY77xXS/jNH5c4bTtrg7JZcvnWkrZ+HSird8BpG6hFdX7ju\nJGA/SW2GEPdozMxq0yiTAZrYeKfLfYA5ZfLNBfpJ2jb7PABYWNhds5RvG2CvXL7VEfFEmXzKjrfK\nYzRmZrWpe6CR1Be4EJgWEY9kyX2A5WWyL8ved6wwX5/c+0sV5GuRezRmZrWpa6CRtB3wK9Ltr1Pb\nyF5X7tGYmdWmbr/TJfUkzSzbAzgoIhblDi9nQ68lr0/ueOm93G6dpXzLcvl6V5CvBeO49NIUbJqa\nmmhqamo9u5lZJ9Dc3Exzc3OHX6cuO2xK2prUk/k48MmImFk4fjXwqYjoV0j/b6ApIvbMPp8PfB3o\nnR+nkTQOOAfoFRFrc7Pa9o6IJ3P5RgNXA/0j4ukW6hoQrF3r22dm1rV1mVlnkgTcQJoAcFQxyGR+\nDfTNP3iZTW8+khSgSu4gDfqPzOXrBhwHTI2ItVnyFNKzOycVrjMKmNNSkMnr1q2tHGZmVk49fqNf\nBRxLeoBylaSP5I49FxHPkwLN74FJks4mDeSPzfJMLGWOiNmSbgYul7QN6TmbM0i3407I5Vsi6TJg\nrKQVwCzgeFKwO7KtCnfrBmr3GG9m9uZQjwc2F1J+XAXgwtIDlZJ6A98BRgA9gYeAr0bERtOeJfUA\nLgFOJI3DPAqcHREPFPKJFKw+D+wCzM+ud1sb9Y2ePYNVq6pqpplZp9NRt87qMkbTmUiK7bcPXn21\n3jUxM+tYXWaMpjPy1GYzs9o50FTAs83MzGrnQFMB92jMzGrnQFMB92jMzGrnQFMB92jMzGrnQFMB\n92jMzGrnQFMB92jMzGrnQFMB92jMzGrnQFMB92jMzGrnQFMB92jMzGpXl0Ajqa+k70t6SNI/Ja2X\ntMn6Z5IGSLpV0vOSVkiaI2lMtkJzPl8PSRMlLZK0Mit3cJnyJGmspIWSVkmaLemYturrHo2ZWe3q\n1aPZi7SC8zLgfmCTBdckvQNoJq3E/BXg08BtwLdJKz/nXQOcBnwDOAJYDEyVtH8h38XABcAVwDBg\nBjBZ0rDWKusejZlZ7eq+qKak04CfAHtGxDO59C8APwTeHRELcuk3knbk7Jt9Hgg8AoyOiOuytG7A\nXGBeRIzI0nYGngUmlFaIztKnAztFxAEt1C+GDg2mTGnPVpuZNZ4346KapRtWLxfSX2bjeg8H1gC3\nlBIiYh1wEzBUUqmcYVmZ1xfKmwTsJ2n3lirSlXo0W2Lb1i3Nbeoculqbulp7OlIjB5rJwIvADyTt\nIelfJB1N2iXzO7l8A4CF+a2cM3NJu2/ulcu3OiKeKJNP2fGyutIYTVf8n8Nt6hy6Wpu6Wns6UsP+\nVo+If0j6GGnr5iez5PXAuIj4bi5rH2B5mSKW5Y6X3l+qIN8m9i+O9JiZWcUaNtBI2ok0+L8COIYU\nEA4Bzpe0JiK+vaXqcuGFW+pKZmZdUETU9UWaLbYO6FdIn0jqgfQqpF8MvAb0yT7fBDxeptyRWbnv\nzT5fCqwsk+9DpJ7SYS3UL/zyyy+/3iyvjvieb9geDbAv8EREvFJIf5g0qL9X9vdcYISknoVxmn1I\nkwRKM9bmAj0k9Y+IJwv5AvhLuUp0xAwMM7M3k0aeDPB34J2SdiikD8ren8/e7yAN+o8sZcimNx8H\nTI2ItVnyFOB10mSCvFHAnIh4uh3rbmZmmbr1aCT9a/bnB0mzvg6XtARYEhH3Az8CTgSmSZoILAUO\nBsYAt0bE8wARMVvSzcDlkrYBFgJnkB70PKF0vYhYIukyYKykFcAs4HigCTiyg5trZvamVbcHNiWt\nJ92yKrovIg7J8nyY9CT/+4BewFPADcBlEbE6V1YP4BJSYOoNPAqcHREPFK4pYCzweWAXYD5wYUTc\n1q6NMzOzDeo9GaARX8D/AX5BmozwMvBLYLd616uCeh9Lmqn3DLASmAdMALYv5OsN/AxYQprVNw3Y\nt971r6KdU0gTOMZ35nYBhwP3Aa9m/509DDR14vYcCEwFXgBeAf4EnNIZ/h0BfYHvAw8B/8z+++pX\nJl9F9Qd6kCY0Lcr+X3wIGNxobQKGkB5ifzKr5wLgKmDn9mxTI4/R1IWktwD3Au8CTiaN4ewN/DY7\n1sjGkMahziWthHAV8CXg7kK+O4FDgTNJU8e7A/dK2nXLVbU2kk4A9qd8b7jTtEvS6cDtwExgBOlH\nwmRg21y2ztSe/UhfulsD/xc4mhQ4r87aWtKobWpz/cVMpfWvdP3FjlRJm04HdiLN5h1K+mE6HJgh\nadtC3trbVO9fEo32Av4NWEtae62UtkeWdla969dG3d9aJu1k0jTvpuzzUdnng3J5epHGwC6vdxva\naN+O2X/cn6HQo+lM7QJ2J/0i/H+t5Ok07cnqNoH02MFbCukPAQ92pjbR8iMXFdUfGJj99/nZXFo3\n0h2G2xusTeW+MwZn9R/dXm1yj2ZTRwK/j4iFpYSIeAp4kPQfWsOKiKVlkmeSJlv0zT4fCSyKNOGi\ndN4rpNl7Dd0+4FvAYxFxc5ljnaldpf/pf9xKns7UHki/7NdExKpCen5twuF0rjYVVfrvpNL1F+uu\nle8M2PCdAZvZJgeaTe0DzCmTPpdW1kNrYE1s/JxQa+3rV6a73BAkfZx0G/PMFrJ0pnYdSPoleIKk\nBZLWSvqbpDNyeTpTewCuJc23uULSOyTtIOnzpNU8LsvyDKBztamo0n8nla6/2KiasvfHc2mb1SYH\nmk21tnbajlu4LptFUl/gQmBaRDySJbe1NlzDtTH7tfQjYGLktowo6Ezt2pU0Bvht0i2nT5HG0a6U\n9P+yPJ2pPUTEXNLjB0eTnnFbThqI/mJETM6ydao2lVFp/Stdf7HhSNoeuJwUQG7PHdqsNjXyygC2\nGSRtR1qQdA1wap2rs7nOAXqSvpS7gq2A7Un3u3+VpTVL2pM0/f77datZjSTtRZqd+WfgC6TxmqOA\nH0t6LSJurGf9rG3Zg+43Ae8APhYR69urbAeaTS2n/C+rliJ6w5HUkzQ7Zg/SwOWi3OHW2lc63jAk\n7QacRxrX6Jm1rbQsUI9s5YhX6VztWkq61TC9kH436X732+lc7QH4T9KPmuER8XqWdm+2OO5/ATfS\n+dpUVGn9lwObbE2fy7eszLG6yp4xvI50q/PwrIeat1lt8q2zTc0l3YstGkAL66E1Eklbk35Zvp+0\nUGixzq2175mIWNnBVaxWf9L8/Umk/9iXk/6jDuA/sr/3pXO1q/g/cUt5Okt7IP07eCwXZEoeBt4q\n6W10vjYVVVr/ucCe2Y+ivOL6i43kx6RlvD4TEc1ljm9WmxxoNvVrYJCkPUoJ2d8Hkm5FNazsV8kN\npMG8oyJiZplsvwb6ShqcO68XaUZNI7bvEdK9/4NJ7Sq9BPxP9vcCOle7SitRDC2kHwY8FxEv0Lna\nA2ltwv2zHzp5g0i30ZbR+dpUVGn9K11/sSFI+i7p9vroiLijhWyb16Z6zOlu5Bfpgbm/kpaxGZ69\nZgN/A7atd/3aqPsPyZ4vAT5SePXN8og0Vftp0vMoQ4Fm0m6mfevdhiraWnyOplO1C7iH9HT56aTJ\nAD8lTXk+uZO251+z+k/J/p/5FHBlljaxM7Qpa8O/5v4/+mL2+aBq60+6VbiUdMv3ENJKIyuBgQ3W\npnOy9J+W+c7o315tqvt/oI34Ii1BM5mNl6DZZDmKRnuRFhRd18Lrgly+0jIaL5KW0bibBlgGpMq2\nriOtU5dP6zTtIk0G+D7pAdTXSD9mPtNZ25PVdyjwW9ISNC+TFq49nWxNxUZvU/aFW+7/nd9WW3/S\n7d7vsGG5lhls4SVoKmkTaRWUlr4zrmmvNtVtUU0zM3tz8BiNmZl1KAcaMzPrUA40ZmbWoRxozMys\nQznQmJlZh3KgMTOzDuVAY2ZmHcqBxqxA0uckrZfUP/v8b5KOrmN9dpD0TUkHlDl2r6Tf1qNeZpXy\n6s1m5eWfZD4LeIANa5Rtab2BbwLPklYQyPvSlq+OWXUcaMzqQNI2EbGm0uwtHYiIee1UJbMO41tn\nZq2QtBDYHRiV3U5bL+ma3PGBkn4taZmklZJ+l207nS/jWknPShok6UFJK4FvZcc+I+keSf+Q9Kqk\nWZI+mzt3d+BJUg/rZ9n115XySGou3jqT9C5Jt0lantVphqShhTzjsrL2knRndu2nJJ3fvv8EzRxo\nzNoygrQE/hTSiraDgIsAJL2ftJpvb+D/AseQVredLul9uTIC2IG0+u0NwLDsHeCdpFtyo0g7Uv4a\n+KmkL2THF2flCrgku/5Hgd/kyn6DpHdkddoPOIO0rPty4DeFYFM671bSStJHZfW4UNLnqvjnY9Ym\n3zoza0VEPCppNfBibLq/z0TgKeDgiFgHIGkqaZOo80kBomQ74MSIuLNQ/hvbU2f7Cd0H7Eoae/lJ\nRKyR9EiWZWFEPNxGlceQgtqHI2JhVu5dpE37LgGm5i8PfCcirss+/1bSEOAE4OdtXMesYu7RmNUg\n22nwINKeHEjqlm0E1Y20RfNBhVPWsqEXki9nL0k3Snouy7OW1Dt6d41VGwz8vhRkACLt/X4jcICk\n7Qv5/7fweQ7lt+w1q5kDjVlt+pCCyvlsCBBrSdvafpl0Oy1vSRT25JC0HSko7QecDXwc+CBwDWnv\nj1rrtbhM+t9Jt9+Ke94X93pfDRS36zXbLL51Zlabl0ibSl1Jus3U4sywTLmNnz4K7AZ8PCJmlBIl\ndd+Mei0DdimT/o6sDss3o2yzmjjQmLVtNfCWfEJErJT0AGkb20fKn9ambbP310sJknYkbYVcvD7F\nOrTgPuDfJPWLiGeyMrcibT08KyJW1FhXs5o50JiVl++h/AUYLOkI0i2oFyPiaeCrwH2S7gauJt2y\n2gl4P7BVRJzXxjUeAl4FfiBpHGl7568DS4BeuXwvkGazHS/pz8A/SRMDire9AL4HfA6YlpX5Kmn2\n2V7A4ZU13ax9eYzGrLz8ra6xwHzgZuBh0lP6ZD2ZD5H2j/8v0oyuy4F9gftbKY/s/BdJ06e7AZNJ\ns8J+ClxfyBfAaaTxlWlZHT5druyIWEwa65kLXAXcQhovOjwiprVVpzbSzWqiwvikmZlZu3KPxszM\nOpQDjZmZdSgHGjMz61AONGZm1qEcaMzMrEM50JiZWYdyoDEzsw7lQGNmZh3q/wOumonE2vLc1AAA\nAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ll = out['loglik']\n", "plt.plot(range(len(ll)),ll,linewidth=4)\n", @@ -659,11 +977,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 31, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEICAYAAABmqDIrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcFNW5//HPFxhRVECCinFBEUVQrsYlwRjNRCIiXHMT\no0YjGqMxbonxukUwCy5BTBQTs6gxUUNwQbzm/pJwxQg6rgTBJQQU3NgURJRddub5/XGqmeqa7p7u\nme7pnpnn/Xr1q7tOnao+h2WeOXU2mRnOOedcqbQrdwGcc861bh5onHPOlZQHGueccyXlgcY551xJ\neaBxzjlXUh5onHPOlVSzBxpJgyRNkbRE0gZJiySNl9Q3xzV3SaqVNDbDub0l/UnSAknrJM2VdKOk\nTol8kjRc0jxJ6yW9JumUUtTROedcnQ5l+M5uwAzgt8AyYB9gODBVUn8zWxTPLOkY4CxgVfJGUTCZ\nArQHrgMWAUcBNwC9gTNj2W8CrgBGAK8AZwATJA01s0nFrKBzzrk6qoQJm5IOBOYAV5rZ7bH0DsCr\nwDjgIuA5Mzsndv4EYBJwoplNjqXfDFwJdDazDZJ2JQShUWZ2QyzfZKC7mR1W0go651wbVil9NMuj\n9y2J9GsIZbw1y3XbRe/J1s6q6DpFx4OBKuCBRL5xQH9JPQstsHPOufyULdBIaiepStIBwN3AYuCh\n2PnehMdhF5vZ1iy3mQy8BfxcUl9JO0o6HrgMuNPM1kf5+gEbzeydxPWzCcGoX9Eq5pxzLk05WzTT\ngI3AXOAQYKCZfRQ7fyfwqJk9m+0GZrYROJbQRzMbWAM8CfzNzL4fy9oNWJnhFstj551zzpVAOQYD\npAwDOgO9gKuAyZKOMbOFkoYBR5DemV+PpI7AI8BuhAEDi4DPAj+VtNXMLillBZxzzjWsbIHGzOZG\nH6dLmgTMB66VdDVwG3ALsFlSF8LjrXZAVXT8iZltAb4DHAf0NrN50f2el7Qa+L2kO83s38AKoGuG\nYqRaMssznANAUvlHSzjnXDMxMzWcqzAVMRjAzFYBbxOGJHcHdgVGEQLECkIg2Av4RvR5SHTpIcDK\nWJBJeSl6T83NmQ10lNQrke9gwIDXGyhfq3n99Kc/LXsZvE5ep9bwam31MSvd79QVEWgk7Q4cRAg2\nS4Bq4EvRe+r1IaH/pRp4Prr0A6BrhgAygBBA3o+OJxFGtJ2VyDcMmGVmC4pUFeeccwnN/uhM0mOE\nCZMzgdVAH+ByYBMwxsw2AfUGAEjaACw1s+diyfcD/w38n6RRwELChM0fATPM7AUAM1smaQwwXNJa\n6iZsVgMnl6CazjnnIuXoo5kKnE6Ypb8doQP/aWC0mS3McZ1Fr7oEswWSBgAjgRsJj90WAXcRHr3F\njSCMSrsM6EEY7XaamT3exPq0KNXV1eUuQtF5nVqG1lan1lafUqqIlQEqmSTzPyPnXFsgCWutgwGc\nc861Xh5onHPOlVQ5J2w61yRmsHVreNXW1r2nPsePc73M0t8zpZllftXW1pUl2yt5PtNxrrTk5+R7\ntvO5Pue6JtP5bEp9vljXlPI+xVTOMvXuXbp7e6BxTbJpE3zySXitXVv3nnqtWZN+vHYtrFsX8m3Y\nUPfatAk2bgzvmzeH15Yt4RX/vGVLCCBbtlTmDwrnWqrzzivdvT3QOGprYdkyWLQIFi+GDz8Mr48/\nhhUrYOVKWL06vFKBY82aECy2JNfbds65BA80bcz69TB9OrzwAsycCa+/Dm++GVoVzjlXCh5o2oAV\nK+Avf4GHH4aamvAoqrVo1w7atw+v1OdkmhQ+p95Tae3apX/OlSZlf7WLhtTkypM8n+k4V1ryc/I9\n2/lcn3Ndk+l8NqU+X6xrSnmfYipXmT7/ebj33tLc2+fRNKAlz6OZPx9+9jMYOzb0fZRC+/aw446w\n007hfccdYeed69J23jn9PZVnhx2gUyfYfvvw6tgRttsOqqrq3quqoEOH8KqqCt/VoUNdEEkFD+dc\ncZRqHo23aFqhjz+GESPCbyf59qF07gz77AN77QW77w677Qbdu8Muu0DXrtClS8iz887pQWO77fyH\nvXMuNw80rcxTT8E558D772fPs99+8IUvwNFHwyGHQN++Iag451wpNPuETUmDJE2RtETSBkmLJI2X\n1DfHNXdJqpU0Nsv5vpIekbRM0jpJcyR9P5FHkoZLmidpvaTXJJ1S7PqVS21taMV8+cuZg8x++8FP\nfhI6/999NzxOu/hiOPZYDzLOudIqR4umGzAD+C2wDNgHGA5MldTfzBbFM0s6hrC8/6pMN5N0JDCF\nsDDn+VG+A4CdEllvIizkOYK61ZsnSBpqZpOKU7Xy2LoVLrgA7ruv/rn99w8B5pvfDP0bzjnX3Cpi\nMICkA4E5wJVmdnssvQPwKjAOuAh4zszOiZ0XMAt4w8xOzXH/XQmrOo8ysxti6ZOB7mZ2WI5rK3ow\nwJYt8O1vw7hx6ekS/PCHcP31oR/FOeca0toX1UxtpZzsur6GUMZbs1z3JcKGaWMauP9goAp4IJE+\nDugvqWf+Ra0cZnD++fWDTI8eoa/m5ps9yDjnyq9sgUZSO0lVkg4A7gYWAw/FzvcGrgMuNrOtWW5z\nTPTeSdJUSZskLZX0K0nbx/L1Azaa2TuJ62cDis63OHfcEfpa4vbaC559FnyrDOdcpShni2YasJGw\nAdkhwEAz+yh2/k7gUTOrt9tmzKcJgeJhwnbNXwZuAb5DeuulG7Ayw/XLY+dblOefh6uuSk/bZx94\n5hk44IDylMk55zIpZ/fwMKAz0Au4Cpgs6RgzWyhpGHAEcGYD92hH2HXzz2Z2fZT2bNS3c7OkPmY2\nt0TlL5sPPoDTT0+fI9O5Mzz5JPTqVb5yOedcJmULNLEAMF3SJGA+cK2kq4HbCC2TzZK6EFot7YCq\n6PgTM9sCfBzdY3Li9v8ARgOHEVpMK4CuGYqRasksz3Bum5EjR277XF1dXdYtXM3gu9+FJUvS08eO\nhQMPLE+ZnHMtU01NDTU1NSX/nooYdQYgaTohIFwAzCO0VOKjH1LHBnzNzP4q6SxgLPAVM5sYu9dh\nhCHMZ5rZeElnA/cDB5jZu7F85wJ/BHqZ2YIs5aqoUWePPQZf/3p62rXXho5/55xrilY96kzS7oTR\nY28DS4Bqwoiy6tjrQ+DJ6PPz0aWPA5uAExO3PIkQkKZHx5MII9rOSuQbBszKFmQqzapV8P3vp6cN\nGAA33lie8jjnXD6a/dGZpMcIrY2ZwGqgD3A5IWCMMbNNQL0BAJI2AEvN7LlUmpktl3Qz8CNJa4Cn\ngKOAHwP3p1ovZrZM0hhguKS11E3YrAZOLlVdi+2668J+MSkdOsA99/hETOdcZSvHj6ipwOmEWfrb\nESZSPg2MNrOFOa6z6JWeaHaDpNXAJcCVhBbRLYSVAOJGAGuAy4AehL6b08zs8SbVppm88gr87nfp\naVdfHdYqc865SlYxfTSVqlL6aAYNCqPKUvbfH/7977DcvnPOFUOr7qNxuU2enB5kAH79aw8yzrmW\nwVs0DSh3i6a2Fj77WXj55bq0L30JpkzxfWCcc8XlLZo26tFH04MMwC23eJBxzrUc3qJpQDlbNFu3\nhk3J3nqrLu3UU2HChLIUxznXynmLpg2aMCE9yLRvDz/7WfnK45xzjeGBpkKZwahR6WnnnOPLzDjn\nWh5/dNaAcj06+/vf4eTYVFIJ5szxQOOcKx1/dNaGmNV/RHbaaR5knHMtk7doGlCOFs3TT8Pxx6en\nvfYaHHposxbDOdfGeIumDbnttvTjoUM9yDjnWq5mDzSSBkmaImmJpA2SFkkaL6lvjmvuklQraWy2\nPFG+a6N8mRbllKThkuZJWi/pNUmnFKNOxfTWWzBxYnra8OHlKYtzzhVDOVo03YAZwKXACcC1wMHA\nVEl7JzNLOoawvP+qXDeV1Au4DliaJctNwE+AO4DBhMU9J0ga3LhqlMZvf5t+fNRR8PnPl6cszjlX\nDBXRRyPpQGAOcKWZ3R5L7wC8CowDLgKeM7NzstxjEmHDtIOA9mZ2XOzcroRVokeZ2Q2x9MlAdzM7\nLEfZmq2PZs0a2GsvWL26Lm3sWDj77Gb5eudcG9fa+2hSWylvSaRfQyjjrbkulvRN4DNAtodMg4Eq\n4IFE+jigv6SeBZW2RMaOTQ8yu+0Gp59evvI451wxlC3QSGonqUrSAcDdwGLgodj53oRHYReb2dYc\n9+kKjAGuNrOVWbL1Azaa2TuJ9NmE7aH7Nb4mxVFbG1ZkjrvoIujYsTzlcc65Yinn3ozTgCOiz28B\nA83so9j5O4FHzaxex37CrcBcM8s1UKAbkCkILY+dL6uaGpg7t+64Qwe48MKyFcc554qmnIFmGNAZ\n6AVcBUyWdIyZLZQ0jBCEzsx1A0nHRvf5TCkLOnLkyG2fq6urqa6uLvp33Htv+vGpp8KnP130r3HO\nuW1qamqoqakp+fdUymCALsB8wqOzq4F3CY/D7kplAf4FvEgYFPCJmW2R9DphG+gRsXx/IzwSHAKs\nN7NNkkYDl5lZp8T3HkVoWQ3NtqVzcwwGWLkS9tgDNmyoS5sypf6kTeecK6VWPRjAzFYBbwO9ge7A\nrsAoYEX0Wg7sBXwj+jwkuvQgQuCJ5zsGODr6fFGUbzbQMRoCHXcwYMDrpahXvsaPTw8y++4LJWg0\nOedcWZTz0dk2knYnBI0/A0uA6gzZxgMzCfNhZkdpmfL9ihBAvwekOv8nEUa0nQXcGMs7DJhlZgua\nVIEmuu++9ONzz4V2FfErgHPONV2zBxpJjwGvEILGaqAPcDmwCRhjZpuATDP7NwBLzey5VFqmgQKS\nVhLm0cTzLZM0BhguaW30/WcQAtXJyXs0p9dfh2nT0tO+9a3ylMU550qhHC2aqcDpwBXAdoSJlE8D\no81sYY7rLHrlI1O+EcAa4DKgBzAXOC1b30xzSbZmBg4Mj86cc661aHAwgKSMM/GzaWCYcYtTysEA\ntbVhJYAlS+rSxo2Ds84qydc551xOpRoMkE+gqU0kpS5QhjTMrH1xilYZShlonn8ejj227njnneGD\nD6BTp+zXOOdcqZQq0OTz6Gy/2Oe9gAeBicDDhAUsdyfMdzmJBua9uHSPPpp+fPLJHmScc61PQfNo\nJP0vYRb+DzOc+zlwgJl9rYjlK7tStWhqa6FnT3jvvbq0xx6Dr7WqPz3nXEtSKfNoBgJPZjn3j+i8\ny8NLL6UHmU6d4MQTy1ce55wrlUIDzUbgyCznjiIMUXZ5+J//ST8eOtQfmznnWqdChzc/AoyUtBWY\nQF0fzenAT4E/Frd4rZNZ/f6ZU08tT1mcc67UCu2j2QH4PaHTPznq7EHgu2a2IdO1LVUp+mhefhmO\njLULt98eli2DnXYq6tc451xByjnqbBszWw+cLelGYABh4uMSYJqZvVnswrVWf/lL+vHgwR5knHOt\nV6NWBoiCigeWRpo8Of3YR5o551qzgpdulNRJ0vckTZA0JXq/JHqsls/1g6LrlkjaIGmRpPGS+ua4\n5i5JtZLGJtKPlPQHSW9K+kTSAknjJO2b4R6SNFzSPEnrJb0m6ZRC699UK1bA9OnpaYMGNXcpnHOu\n+RQUaCT1ICxIeQdh9Fmn6P03wCvRKswN6QbMAC4FTgCuJSzXP1XS3hm+8xjCqsurMtzrG4RtmH9J\nmDD6Q+BwYIakPRN5bwJ+EpV9MGHNtQmSBudR5qKpqQlzaFIOOQR69GjOEjjnXPMq9NHZz4FdgGPN\n7IVUoqTPA/8D3AKcm+sGZvYwYVWBbSRNB+YApwK3x9I7EDY/u4m6vWXibkls/4ykF4F5wAXAyCht\nV+BKYJSZpe7/jKQDgNGEbQSaRfKx2Ze/3Fzf7Jxz5VHoo7OTgOHxIANgZi8CPwKGNrIcy6P3LYn0\nawhlvDXTRckgE6UtBJYB8RbNYKAKeCCRfRzQX1LPRpS5UTzQOOfamkIDzU7A4izn3ovO50VSO0lV\nUavi7ui+D8XO9wauAy42s60F3LcvsBvpu2b2Azaa2TuJ7LMJw7T75Xv/pli4EN6MDaHo0AGOO645\nvtk558qn0EAzFzg7y7lhhMdf+ZpGWGlgLnAIMDDRQrkTeDTT5mbZSGpPeNT2IXBv7FQ3YGWGS5bH\nzpfclCnpx0cfHVZsds651qzQPppbgbFRp/+DhDk0PQi7VX6Z7EEok2FAZ6AXcBUwWdIxZrZQ0jDg\nCApfDfq3hPk9Q8ws0+CBsvLHZs65tqjQCZvjJHUCbgD+EDu1FLjIzB4s4F5zo4/TJU0C5gPXSroa\nuI0wsGCzpC6Ex1vtgKro+BMzS+vPkTQa+A5wjpkl2g6sALpmKEaqJbM8w7ltRo4cue1zdXU11dXV\nDVWvHjMPNM65ylJTU0NNTU3Jv6egJWi2XSS1A/oQflAvJ2wdkNwgrdB7TicEhAsIo8aM+svcKHr/\nmpn9NXbtdYTg9z0zuzPDvc8G7idsY/BuLP1cwvpsvcxsQZZyFWUJmlmzoH//uuOdd4aPP4aqqibf\n2jnniqIilqBJiYLKG8UqRPQo7iDgz4THcdUZso0HZhKGOs+OXXsZcCNhNFy9IBOZRBjRdlaUN2UY\nMCtbkCmm555LPz7uOA8yzrm2oeBAI6k/YaXmLxLm1KwAngZuNLN/53H9Y4RJnzOB1YSW0eWELQbG\nmNkmoN4AAEkbgKVm9lws7QzCvJvHgRpJn4tdstrM3gAws2WSxgDDJa2Nvv8MQkA7uaA/gEZKBpr4\nFs7OOdeaFRRoJB0FPAOsB/4KfEAYDHAyMFTScWb2cgO3mUrYVuAKYDtgESFQjY7mwGRj0SsutVXY\n4OgV9wxwfOx4BLAGuCwq81zgNDN7vIHyNpmZBxrnXNtV6DYBkwkjxQaa2ZpY+s7AZGCVmbWqlbuK\n0Uczfz7st1/d8fbbw8qV0LFj08rmnHPFVClbOQ8Abo4HGYDo+Bbg6GIVrDVJtmY++1kPMs65tqPQ\nQNPQr/bF3SGslXj++fRjf2zmnGtLCg0004AR0aOybSTtSFg5+Z/FKlhr4v0zzrm2rNA+ms8CNcAG\n4O/UrQwwhLBlQLWZTc96gxaoqX00H30Eu+5ad9yuXdiTpnPnIhTOOeeKqCLm0ZjZS5IGEPZ1OZG6\nCZt5D29ua5KPzQ491IOMc65tKXgejZnNJOwb4/Lg/TPOubau4K2cXWE80Djn2rqC1zqT9EXCqsr7\nANsnTpuZDSxS2SpCU/poNm0Ka5pt2lSXtngx7LFHkQrnnHNFVBF9NJIuJOwTsxx4k7CfTFqWIpWr\nVZg1Kz3I7LmnBxnnXNtTaB/NlYR9aM6L1iRzOcyYkX581FHlKYdzzpVToX00ewL3NSXISBokaYqk\nJZI2SFokaXy0BXO2a+6SVCtpbIZzHSX9QtJiSeskvSipXk+IguGS5klaL+k1Sac0th75mJ4Y6H3k\nkaX8Nuecq0yFBpqXCTtiNkU3YAZwKXACcC1wMDBV0t7JzJKOISzvn23HzHuB84EfAUMJc3uekPQf\niXw3EYZl30FYgHMqMEFScjHOovEWjXPOFT5h8zDgAeBiM6u3lH+jCyEdCMwBrjSz22PpHYBXgXHA\nRcBzZnZO7Pyh0flzzWxslNaesF/NHDP7apS2K2GV6FFmdkPs+slAdzM7LEfZGjUYYP36MF9mS2wf\n0I8+gk99quBbOedcsyjbYABJi0hfw6wL8LSkdYS9aOLMzHo2ohyprZS3JNKvIbS6biUEmqSvEPax\neSRWgK2SHgZ+KKnKzDYTWjBVhCAZNw74o6Sexd787F//Sg8y++3nQcY51zblMxhgCiVYLDPaDro9\nsC8wGlgMPBQ73xu4DjgpCh6ZbtMPmGdmGxLpswl73fQm7ATaD9hoZu9kyKfofFEDjT82c865oMFA\nY2bnlui7pwFHRJ/fIuxx81Hs/J3Aow08outG/VYV1LWQusXeV+aRr2iSgcYHAjjn2qpyrgwwDPgc\nYfLnamCypH0AJA0jBKEry1e8pvEWjXPOBfn00ZwDTDSzj6PPOaU65fPINzf6OF3SJGA+cK2kq4Hb\nCBupbZbUhfB4qx1QFR1/YmZbCK2ZfTLcPtVCSbVYVgBd88iX0ciRI7d9rq6uprq6Old21q6FN95I\nTzv88JyXOOdcs6upqaGmpqbk39PgqDNJtcCAaOXm2gbuZ2bWvlEFkaYTAsIFwDxCv1C8YyZ1bMDX\nzOyvkn5M6MfpGu+nkTSSsD9OZzPbLOls4H7gADN7N5bvXOCPQK9sgwEaM+rsuefguOPqjvv0gTlz\nCrqFc841u3IuQbMfYW5K6nPRSdodOAj4c/Rd1RmyjQdmEubDzI7S/gZcD5wWXZsa3nw68EQ04gxg\nEmFE21nAjbF7DgNmFXvE2csvpx/7YzPnXFuWz2CABZk+N5akx4BXCEFjNdAHuJwwTHlMtOpAvQEA\nkjYAS81s236VZvaapPHALyVtR2gJXUIYyXZmLN8ySWOA4ZLWRt9/BiGgndzUOiUlWy+HHlrsb3DO\nuZaj4P1oimAqocVxBWEI8iLCxmmjzWxhjuuMzMOszwV+RmipdAX+BZxoZv9K5BsBrAEuI+wKOhc4\nzcweb3RNsnjzzfTjPn2K/Q3OOddy5NNHk+ovyYeZ2f5NLlUFaUwfzV57wfvv1x3PmePBxjlX+crZ\nR/MMJZiw2VqtXZseZNq3D6sCOOdcW1XOCZut0ltvpR/36gXbbVeesjjnXCXwrZyLLNk/c+CB5SmH\nc85VioIDjaTPSHpM0keStkg6PEofVcol91sKDzTOOZeuoEAj6QuEUWMHEXbajF9fS+YVltsUDzTO\nOZeu0BbNaOAJwkZlVyTOvQK0+YVWPNA451y6QufRHA6cYmYmKTkS7SNg1+IUq2Uyg7lz09M80Djn\n2rpCWzQbgE5Zzu1B9u2W24Rly2BV7E+gUyfYc8/ylcc55ypBoYHmeeDyaD2xlFTL5nzgqaKUqoXK\n9Ngs835tzjnXdhT66OzHwAuEZV4eJQSZb0XriB0BtOnlI71/xjnn6iuoRROtH3YcsJSwPL+A70Wn\nvxjbYyYrSYMkTZG0RNIGSYskjZfUN5bncEmPS3pP0voo70RJAzLcb29Jf5K0QNI6SXMl3SipUyKf\nJA2XNC+652uSTimk/g3x/hnnnKuv4EU1zewVYKCk7Ym2SDazdQXcohswA/gtsIywcdlwYKqk/ma2\niLA45lvAfYRtA3YjjHJ7RtIxZjYDIAomU4D2hMC3iNCqugHoTWwFZ8L2AlcQFtdMrd48QdJQM5tU\n6J9DJt6icc65+hpcVDMts3S8mWXth5F0lZndWnAhpAOBOcCVZnZ7ljw7EUa23W1mP4jSTiDsNXOi\nmU2O5b2ZsA10ZzPbIGlXQhAaZWY3xPJNBrqb2WE5ypb3opoHHwyvv153/M9/wuc+l9elzjlXdqVa\nVLPQwQCPScq4u4qkKwjzbBojtZXylhx51gEbE3lSq4glR7utItQt9Qc2GKgCHkjkGwf0l9Sz0AIn\nbd0Kb7+dnuYtGuecKzzQPAJMkrRvPFHS5cAvCHu95EVSO0lVkg4A7gYWAw8l8khSB0n7AL8hDD64\nJ5ZlMuER288l9ZW0o6Tjo3LcaWbro3z9gI1m9k6iGLMJwahfvuXO5v33YdOmuuPu3WGXXZp6V+ec\na/kKDTQXAdOAJyV1B5B0GTAG+G8z+10B95pGaKHMBQ4BBprZR4k8jxB23pwPfA0YYmbb9q80s43A\nsYQ+mtmEjc2eBP5mZt+P3acbsDJDGZbHzjfJBx+kH++9d1Pv6JxzrUNBgwHMrFbSGYSWxKRoG+XR\nhL6VOwr87mFAZ6AXcBUwOeroj++yeXV0/72BS4GJkgZGAxKQ1JEQjHYDziL0w3wW+KmkrWZ2SYFl\nymjkyJHbPldXV1NdXV0vTzLQ7L57Mb7ZOedKp6amhpqampJ/T0GDAbZdJHUlTN7sC1xjZrc1qRBS\nF0Kr5aFswUFSFTALeMfMhkRplwJ3AL3NbF4s73eA3wOHmtm/JY0GLjOz5JDnowgtq6HZtnTOdzDA\n738PF15Yd3zuuXDffQ1e5pxzFaNsO2xKGpvl1FJCS+LQWB4zs28VWggzWyXpbcKQ5Gx5NkuaCcQH\nIxxCGF49L5H9pei9L/BvwmO1jpJ6mdm7sXwHE/p9XqeJki2aHj2aekfnnGsd8nl0dhzZt3L+hNBH\nktKoLZ8l7U7YeuDPOfJ0Ao4E3oglfwB0zRBABkRlSW2qPIkwWu0s4MZYvmHALDNb0Jhyx3mgcc65\nzPLZynnfYn6hpMcIEyZnAquBPsDlwGbgtijPXYSO+hmEuTM9CSsQ9CAEi5T7gf8G/k/SKGAhYcLm\nj4AZZvZCVIdl0TI5wyWtpW7CZjVwcjHqtXRp+rEHGuecCwpeGaAIpgKnE2bpb0fowH8aGB0bCDCN\nsEjnBcCOhJbJNOA8M5udupGZLYiWpRlJaKl0j+53FzAq8b0jCKPSLiMErLnAadn6ZgrlLRrnnMus\nwcEA0RyWJVEfyT4N3TAxaqzFy3cwwP77w7uxh3dz5kCfPiUsmHPOFVmpBgPkE2i2Akeb2UuSammg\nH8bM2uc639LkE2jMYKedYF1sxbcVK6Br1xIXzjnniqhso86A84B3Yp8b1eHfmq1dmx5kOnaELl3K\nVx7nnKskjZpH05bk06J56630dc169oT580tbLuecK7ZKWVTTZeAjzpxzLrt8JmzeW8D9zMzOb0J5\nWiQfceacc9nl00dzPPn3y7TJ53AeaJxzLrtmn7DZGvmCms45l5330RSBt2iccy67RgeaaOOydyUd\nXMwCtUQeaJxzLrumtGgE7At0LOgiaZCkKZKWSNogaZGk8ZL6xvIcLulxSe9JWh/lnRgtN5Ppnn0l\nPSJpmaR1kuZI+n4ijyQNlzQvuudrkk5pRL3r8VFnzjmXXTkenXUjLJZ5KXACcC1huf6pklL7UnYl\nbNF8BTCIsKBmV+AZSUfGbxYd/5Owbtr5wEnArYRdN+NuAn5C2L9mMGHNtQmSBje1Qt6icc657Bo9\nYVNSe8KKy0emdrxsdCGkA4E5hJ06b8+SZyfCSs53m9kPojQRNkN7w8xOzXH/XQmLbY4ysxti6ZOB\n7mZ2WI41G7urAAAYkElEQVRrc07YrK2F7beHzZvr0j75BDp1ynqJc85VpIqbsGlmW4FvA8lNxxpj\nefS+JUeedcDGRJ4vEfaxGdPA/QcDVcADifRxQH9JPfMvaroVK9KDTOfOHmSccy6uSY/OzOxPZrai\nMddGgwmqJB0A3A0sBh5K5JGkDtGq0b8hzNO5J5blmOi9k6SpkjZJWirpV5K2j+XrB2w0s3dIN5vQ\n19SvMXUAH9rsnHMNKWg/Gknn5DhdC6wCXjWz9/K43TTgiOjzW8BAM/sokecR4OvR56XAEDObEzv/\naUKgeBj4NfBDwi6cNwJ7xa7tBqzMUIblsfON4v0zzjmXW6Ebn91P3ez/+HO8eFqtpPHAt81sU457\nDQM6A72Aq4DJko5J7GdzNTAa2JsweGCipIGxPqF20Xf/2cyuj9KeldQBuFlSHzObW2AdC+Ijzpxz\nLrdCA80xhH6OvwGPEloZuxN2zPxP4BLCCLIbgAWEXS0zigWA6ZImAfMJI9AuieWZH6W/LGkioeP/\nJmBIlOXj6H1y4vb/IASowwg7aa4gjFpLSrVklmc4t83IkSO3fa6urqa6unrbsbdonHMtVU1NDTU1\nNSX/nkIDzVXAw2YWDyBvAs9JWgN818y+JqkLcBY5Ak2cma2S9DbQO0eezZJmAofGkmdny58wG+go\nqZeZxfbB5GBCi+j1XBfHA02SBxrnXEuV/MX5+uuvz565CQodDDAImJLl3FPAwOjzs8Ce+d5U0u6E\n0WNv58jTidD/Es/zOLAJODGR/SRCAJkeHU8ijFY7K5FvGDDLzBbkW9YkDzTOOZdboS2ajYQO/EzB\n5gjCD30IAeyTTDeQ9BjwCjATWA30AS4nzMm5LcpzF+Fx1gzC3JmehEmbPYgFCzNbLulm4EdRi+op\n4Cjgx8D9qdaLmS2TNAYYLmlt9P1nANXAyQX+GaTxUWfOOZdboYFmAnC9pK2EPpoPgd2A04CRQGrv\nmlTfSCZTCX06VxBm8y8CngZGxwYCTCPM8r8A2BF4P0o7z8zSHpeZ2Q2SVhP6dq4ElgC3EPpy4kYA\na4DLCAFrLnCamT1e0J9AworE4O5Pfaopd3POudanoJUBJO1AmMdyZobTDwIXmNkGSUOBNWb2bHGK\nWT4NrQxw4IFhK+eUN96Agw5qhoI551yRlWplgEYtQRMtGTOA0DJYArxU6mHE5dJQoNl9d/jww7rj\nxYthjz2aoWDOOVdkFRVo2pKGAs3228PGjXXHvs6Zc66lKlWgKbSPJjX66zzgi4R5KMsJfSz3mdn6\n4havsm3cmB5kOnSAHXYoX3mcc64SFTS8WVIPwoitOwhDjVNDjn8DvBINU24zVq1KP+7SBVT03wWc\nc65lK3Qezc+BXYBjzWw/MzvazPYDvkCYeX9LsQtYyTIFGuecc+kKDTQnAcPN7IV4opm9CPwIGFqs\ngrUEHmicc65hhQaanQjL+WfyXnS+zfBA45xzDSs00MwFzs5ybhhhl8w2wwONc841rNBRZ7cCY6NO\n/wcJc2h6EJZz+TLZg1Cr5IHGOecaVlCgMbNx0fDmG4A/xE4tBS40sweLWbhK54HGOecaVvBWzmb2\ne8LOlgcDx0bvewLzo2X8c5I0SNIUSUskbZC0SNJ4SX1jeQ6X9Lik9yStj/JOlDSggXtfK6lWUr2l\nb6JtoYdLmhfd8zVJpxRa/zgPNM4517CCJ2wCmFkt8EY8LdqD5uA8Lu9GWJX5t8AyYB9gODBVUn8z\nW0QYKv0WcB/h8dxuhEU4n4l24ZyRvKmkXsB1hNZVJjdF9xhB3erNEyQNNbNJeZS7Hg80zjnXsEYF\nmqYws4eBh+NpkqYTBhKcCtxuZk8RlvyP53mCsGXA2YRAlfQ7YBxhX5v2iWt3JazsPMrMbo+Sn5F0\nAGEnTg80zjlXIgU/OiuR1FbKW3LkWUfYD6deHknfBD5DaBllMhioImxDHTcO6C+pZ0GljaxcmX7s\ngcY55+orW6CR1E5SVdSquJswP+ehRB5J6iBpH8IyN0bYpiCepyswBrjazBI/+rfpB2w0s3cS6bMB\nRecL5i0a55xrWIOPzqK+j3wUuonxNMKunBD6Ywaa2UeJPI8AX48+LwWGmFlyrs6twFwzG5vju7oB\nmYLQ8tj5gnmgcc65huXTR/M2oSXREOWZL2UY0BnoBVwFTI46+hfG8lxN6EPZG7gUmChpoJm9AiDp\n2Og+nyngews2cuTIbZ+rq6uprq4GPNA451q2mpoaampqSv49De5HI+lbhdzQzP5UcCHCiLX5wENm\ndkmWPFXALOAdMxsSpc0GaggjySAEu78RHgkOAdab2SZJo4HLzKxT4p5HEVpWQ7Nt6ZxrP5rkpmfv\nvw+f/nQeFXbOuQpUtv1oGhM4CmVmqyS9DfTOkWdzNE/n0FhyX8Ios4szXLIc+G/ClgazgY6SepnZ\nu7E8BxNaYa83ptzeonHOuYY1+/DmTKIlbQ4C/pwjT2rvm/j8neoMWX9FaNF8D0h1/k8ijFY7C7gx\nlncYMMvMFhRa5uSmZ+3b+86azjmXSbMHGkmPESZMzgRWA32Ay4HNwG1RnrsILZIZhLkzPQmBowch\nWABgZplWAFgJtDez52L5lkkaAwyXtJa6CZvVwMmNqYdveuacc/kpR4tmKnA6YZb+dsAiwlbQo2MD\nAaYB5wMXADsC70dp55nZ7Dy+I1OnyghgDXAZIWDNBU7L1jfTEH9s5pxz+WlwMEBbl20wwIwZcNRR\ndceHHQavvtqMBXPOuSIr1WCASlkZoMXxFo1zzuXHA00jeaBxzrn8eKBpJA80zjmXHw80jeSBxjnn\n8uOBppE80DjnXH480DSSBxrnnMuPB5pGSgaarl3LUw7nnKt0HmgayVs0zjmXHw80jeSBxjnn8tPs\ngUbSIElTJC2RtEHSIknjJfWN5Tlc0uOS3pO0Pso7UdKAxL2OlPQHSW9K+kTSAknjJO2b4Xslabik\nedE9X5N0SmPr4YHGOefyU44WTTfCYpmXAicA1xKW658qae8oT1fCrptXAIMIC2p2BZ6RdGTsXt8g\nbMP8S+Ak4IfA4cAMSXsmvvcm4CeEbQMGE9ZcmyBpcGMq4YHGOefyUxFrnUk6EJgDXGlmt2fJsxNh\nJee7zewHUVr35PbPkvYB5gE3mtnIKG1XwuKdo8zshljeyUB3MzssR9kyrnXWowcsXVp37JueOeda\nuta+1tny6H1LjjzrgI3xPMkgE6UtBJYB8RbNYKAKeCCRfRzQX1LPQgvsLRrnnMtP2QKNpHaSqiQd\nANwNLAYeSuSRpA5RK+U3hOX/72ngvn2B3UjfNbMfsNHM3klkn03Y/rlfIWXftAk2bKg79k3PnHMu\nu3LusDkNOCL6/BYwMEML5RHg69HnpcAQM5uT7YaS2gN3AR8C98ZOdQNWZrhkeex83nzTM+ecy185\nH50NAz4HnEnYaXNy1HKJuxo4CjgFmAVMlHR4jnv+FhgAnGVmq3LkaxJ/bOacc/krW4vGzOZGH6dL\nmgTMJ4xAuySWZ36U/rKkiYRgcxMwJHk/SaOB7wDnmNmUxOkVhFFrSamWzPIM57YZOXLkts/V1dXs\nvHN12nkPNM65lqimpoaampqSf09FjDoDkDQdWGFmg3LkmQAcamYHJtKvA24Avmdmd2a47mzgfuAA\nM3s3ln4u8Eegl5ktyPKd9UadPfUUDBxYd/zFL0Iz/F0551xJtepRZ5J2Bw4C3s6RpxNwZDKPpMuA\nG4ERmYJMZBJhtNpZifRhwKxsQSYbf3TmnHP5a/ZHZ5IeA14BZhL6ZvoAlwObgduiPHcRHmfNIMyd\n6UmYtNmDWLCQdAZwO/A4UCPpc7GvWm1mbwCY2TJJY4DhktZG338GUA2cXGgdPNA451z+ytFHMxU4\nnTDrfzvCRMqngdHRHBgII9LOBy4AdgTej9LOM7PZsXudGL0Pjl5xzwDHx45HAGuAywgBay5wmpk9\nXmgFPNA451z+KqaPplJl6qN59FG4554QcFatgm9/G665pkwFdM65IilVH40HmgZkW4LGOedam1Y9\nGMA551zr5YHGOedcSXmgcc45V1IeaJxzzpWUBxrnnHMl5YHGOedcSXmgcc45V1IeaJxzzpWUBxrn\nnHMl1eyBRtIgSVMkLZG0QdIiSeOjLZhTeQ6X9Lik9yStj/JOlDQgw/06SvqFpMWS1kl6UdKxGfJJ\n0nBJ86J7vibplFLX1znn2rpytGi6EVZlvhQ4gbDZ2cHAVEl7R3m6ErZ3vgIYRFi5uSvwjKQjE/e7\nl7AA54+AocAS4AlJ/5HIdxPwE+AOwgKcU4EJkpKLcTrnnCuiiljrTNKBwBzgSjO7PUuenQhbBtxt\nZj+I0g4FXgXONbOxUVp7YDYwx8y+GqXtSlglepSZ3RC752Sgu5kdlqNsvtaZc65NaO1rnaW2Ut6S\nI886YGMiz1eATcAjqQQz2wo8DJwoqSpKHgxUAQ8k7jkO6C+pZ+OL3rI0x7atzc3r1DK0tjq1tvqU\nUtkCjaR2kqokHQDcDSwGHkrkkaQOkvYBfgMYcE8sSz9gnpltSNx+NmGvm96xfBvN7J0M+RSdbxNa\n438Or1PL0Nrq1NrqU0rl2PgsZRpwRPT5LWCgmX2UyPMI8PXo81JgiJnNiZ3vBqzIcO/lsfOp95V5\n5HPOOVdk5Xx0Ngz4HHAmYUvnyVHLJe5q4CjgFGAWMFHS4c1aSuecc01jZmV/AV0ILZPf5chTRdh+\n+f9iaQ8Db2TIexqwFegbHY8G1mXIdxRQC5yU43vNX/7yl7/ayqsUP+PL+ehsGzNbJelt6vpUMuXZ\nLGkmcGgseTbwVUnbJ/ppDiYMEng7lq+jpF5m9m4inwGv5/jeoo/AcM65tqQiRp1J2h04iLrAkClP\nJ+DIRJ6/ETr9T4vlaw+cDjxhZpuj5EmE0WpnJW47DJhlZguaWgfnnHOZNXuLRtJjwCvATELfTB/g\ncmAzcFuU5y5CR/0MwtyZnoRJmz2IBQsze03SeOCXkrYD5gGXAPsS+n5S+ZZJGgMMl7Q2+v4zgGrg\n5NLV1jnnXLNP2JR0NaHFsT+hNbIIeBoYbWYLozzfJsz27wPsCLxPGKV2s5nNTtyvI/Az4JuE1QP+\nBVxjZs8l8gkYDlxACFhzgevN7C+lqalzzjmAsg8EqMQXsBfwKGFI9Crgf4C9y12uPMp9KvAXYCFh\nguscYBSwUyJfV+APwDJgLfAkcEi5y19APScRBnHc0JLrBQwBngHWRP/OXgKqW3B9jgGeIExFWA28\nDHy7JfwdAXsCvwZeBD6J/n3tkyFfXuUHOgK/IMwPXBfd99hKqxMwkDCR/d2onG8DvwN2LWadKqKP\nppJI2oHQwjoQOJvQj3MA8FR0rpJdSeiLupawGsLvgIuBfyTy/Z2whtylhKHjVcDTkj7dfEVtHEln\nAv9BGMSR1GLqJelC4H+B6cBXCb8kTAA6xbK1pPr0J/zQ7QB8B/gaIXD+MaprSqXWqTfh72A58CyZ\n/31B/uXPdw3GUsqnThcC3QlrQZ5I+MX0K4S1Jzsl8ja+TuX+TaLSXsAPCP1F+8XS9o3SLi93+Roo\n+6cypJ1NGOpdHR3/V3R8XCxPZ+Bj4JflrkMD9dsl+sf9DRItmpZUL0Kf4zrg+znytJj6RGUbBWwA\ndkikvwi80JLqFP0w3Ur93/7zKj9hZGwtcE4srT3hCcP/VlidMv3MODYq/7nFqpO3aOo7Gfinmc1L\nJZjZfOAFwj+0imVmH2dInk5YZmfP6PhkYLGZPRu7bjVhBF9F1w+4BZhpZuMznGtJ9Ur9p787R56W\nVB8Iv9lvMrP1ifRV1I1u/Qotq05J+f6d5LsGY9nl+JkBdT8zoIl18kBT38GEVQiSZtMy10SrJn2u\nUK767ZOhuVwRJH2B8Bjz0ixZWlK9jiH8JnimpLclbZb0lqRLYnlaUn0A7ieMublD0h6Suki6ADge\nGBPl6UfLqlNSvn8n+a7BWKmqo/c3YmlNqpMHmvpyrZ+2SzOXpUkk7QlcDzxpZq9GyQ2tD1dxdYx+\nW7oL+IWZZZtr1ZLq9WlCH+DPCY+cTiD0o/1G0vejPC2pPlgYDfolQt/M+4Sy/xq4yMwmRNlaVJ0y\nyLf8+a7BWHGi7Vh+SQgg/xs71aQ6VcTKAK74JO0I/D9Cc/e8MhenqX4IbE/4odwatAN2Ijzv/n9R\nWo2k/QhD8H9dtpI1kqTehNGZ/wa+S+iv+S/gbkkbzOyhXNe78osmuz8M7AF83sxqi3VvDzT1rSDz\nb1bZInrFkbQ9YXTMvoSOy8Wx07nqlzpfMaJdV0cQ+jW2j+qWWhaoo6QuhOHBLaleHxMeNUxOpP+D\n8Lx7d1pWfQBuJvxS8xUzS+0Z9bSk7sCvCFuAtLQ6JeVb/hVAcoHgeL7lGc6VVTTPcCzhUecQS8xX\npIl18kdn9c0mPItN6keONdEqhaQOhN8sDycsFposc676LTSzdSUuYqF6EcbvjyP8Y19B+EdthNW9\nlwOH0LLqlfxPnC1PS6kPhL+DmbEgk/IS8ClJu9Hy6pSUb/lnA/tFvxTFJddgrCR3E5by+oaZ1WQ4\n36Q6eaCp76/AAEn7phKiz8cQHkVVrOi3kgcJnXn/ZWbTM2T7K7CnpGNj13UmjKipxPq9Snj2/yVC\nvVIvAX+OPr9Ny6pXajWKExPpJwHvmdlSWlZ9AD4A/iP6RSduAOEx2nJaXp2S8i1/vmswVgRJtxEe\nr59rZn/Lkq1pdSrHmO5KfhEmzL1JWMrmK9HrNcLmbJ3KXb4Gyn4n0fwSwl4/8deeUR4RhmovIMxH\nORGoIawpt2e561BAXZPzaFpUvYAphNnlFxIGA9xDGPJ8dgutz9ej8k+K/s+cQNgVdythEEfF1ymq\nw9dj/48uio6PK7T8hEeFHxMe+R5PWGlkHXBohdXph1H6PRl+ZvQqVp3K/g+0El+EJWgmkL4ETb3l\nKCrtRVhUdGuW109i+VLLaHxEWEbjH1TAMiAF1nUrYa26eFqLqRdhMMCvCRNQNxB+mflGS61PVN4T\ngacIS9CsIixeeyHRmoqVXqfoB26m/ztPFVp+wuPeW6lbrmUqzbwETT51IqyCku1nxr3FqlOzL6rp\nnHOubfE+GueccyXlgcY551xJeaBxzjlXUh5onHPOlZQHGueccyXlgcY551xJeaBxzjlXUh5onEuQ\n9C1JtZJ6Rcc/kPS1Mpani6SfSjosw7mnJT1VjnI5ly9fvdm5zOIzmS8HnqNujbLm1hX4KbCIsIJA\n3MXNXxznCuOBxrkykLSdmW3KN3u2E2Y2p0hFcq5k/NGZczlImgf0BIZFj9NqJd0bO3+opL9KWi5p\nnaTno22n4/e4X9IiSQMkvSBpHXBLdO4bkqZI+lDSGkmvSDondm1P4F1CC+sP0fdvTeWRVJN8dCbp\nQEl/kbQiKtNUSScm8oyM7tVb0t+j754v6cfF/RN0zgONcw35KmEJ/EmEFW0HADcCSDqcsJpvV+A7\nwCmE1W0nS/pM7B4GdCGsfvsgMDh6B9if8EhuGGFHyr8C90j6bnR+SXRfAT+Lvv9oYGLs3ttI2iMq\nU3/gEsKy7iuAiYlgk7ruMcJK0v8VleN6Sd8q4M/HuQb5ozPncjCzf0naCHxk9ff3+QUwH/iSmW0F\nkPQEYZOoHxMCRMqOwDfN7O+J+2/bnjraT+gZ4NOEvpffm9kmSa9GWeaZ2UsNFPlKQlD7rJnNi+77\nOGHTvp8BT8S/HrjVzMZGx09JGgicCfypge9xLm/eonGuEaKdBo8j7MmBpPbRRlDtCVs0H5e4ZDN1\nrZD4fXpLekjSe1GezYTWUZ9GFu1Y4J+pIANgYe/3h4DDJO2UyP9/ieNZZN6y17lG80DjXON0IwSV\nH1MXIDYTtrX9HuFxWtwyS+zJIWlHQlDqD1wDfAE4EriXsPdHY8u1JEP6B4THb8k975N7vW8Ektv1\nOtck/ujMucZZSdhU6jeEx0xZR4ZFMm38dDSwN/AFM5uaSpRU1YRyLQd6ZEjfIyrDiibc27lG8UDj\nXMM2AjvEE8xsnaTnCNvYvpr5sgZ1it63pBIk7ULYCjn5/STLkMUzwA8k7WNmC6N7tiNsPfyKma1t\nZFmdazQPNM5lFm+hvA4cK2ko4RHUR2a2ALgCeEbSP4A/Eh5ZdQcOB9qZ2YgGvuNFYA3wW0kjCds7\nXwcsAzrH8i0ljGY7Q9K/gU8IAwOSj70Abge+BTwZ3XMNYfRZb2BIflV3rri8j8a5zOKPuoYDc4Hx\nwEuEWfpELZmjCPvH/4owouuXwCHAsznuR3T9R4Th0+2BCYRRYfcADyTyGXA+oX/lyagM/5np3ma2\nhNDXMxv4HfAIob9oiJk92VCZGkh3rlGU6J90zjnnispbNM4550rKA41zzrmS8kDjnHOupDzQOOec\nKykPNM4550rKA41zzrmS8kDjnHOupDzQOOecK6n/Dz23Kz4bBlKgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.figure()\n", "plt.plot(range(3,len(ll)),ll[3:],linewidth=4)\n", @@ -686,7 +1015,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": { "collapsed": false }, @@ -723,11 +1052,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEKCAYAAAArYJMgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FNXawH+Hsi0BLFRBGfTqtYLlWgEBERFQRIqIBVBq\nGiEJaRRDKCEhIb2DfmK7KIiAgGIBEaz32q7tWhm9gigWIMnOzFLm+2M2m93sJiSQEILze5486Nkz\n57wzszvvvOW8R+i6jomJiYmJSWPRoqkFMDExMTE5vTEVjYmJiYlJo2IqGhMTExOTRsVUNCYmJiYm\njYqpaExMTExMGhVT0ZiYmJiYNCqmojFpdIQQ3YUQR4UQjzW1LCYNhxCin/u+PlKt/agQYms9xnnc\nfcx5dRhbFkJ8X085632MScNiKppmiNeD2/tPE0L8IIRYKYS4qKllNPnLoLv/TtYYfn0DKaoTGN+k\nEWjV1AKYnBBfA8+4/7stcBPwIHCXEOJ6Xde/ajLJTP4KvAdcAvx2guMkAEuA3XXoe0uAtmMpkkDH\nmJxETEXTvPla1/UF3g1CiHwgBEgEJjaFUCZ/DXRdVzFedk50nF+AX+rYd1eAZnEcx5icREzX2enH\n4xg/vGuqfyCEuFsIsUoI8Z0QwimE+EMI8aoQYmCAvh4fuRDiGne/g0KI/UKItUKI7oEmF0KECiG+\nEEIo7nlmAy1rEtY9zxa3LE4hxKdCiFghRKsA/Srl6S2EeEMIUSaE2COEWCKEEO5+Dwkh/uMe6zsh\nxMN1vXBCiPnuOW4WQjwshPjQPc5arz4Wt3wfCyEq3NfjVSHEzQHG6yKEyBdCfON1vT8VQuQKIVp6\n9at0/fQQQswRQnwrhFCFEF8JIWbWIGuQEGKxEOJrd99fhRBrhBA9A/R9QwhxRAjRyn2O33uNHxKg\nv1UIEee+jgfd1/k7IcSTQogege5JDTKeJ4RYLYT4XQhRLoR4XQhxbYB+x3J9eff1ibcIIXYB493/\nK3u5krfWdIxXexshxCIhxJfu7+tvQogXariGFwohnhBC7HJfu9+EEB8IIeYfS2YT06I5nTkUoG0x\noAJvAHuBLsAIYIsQYrSu6+sCHHMdEA9sBYqBq9zHXC6EuFzXdVdlRyHEAmAu8BNQhPEiEwHcGEhA\nIcS9wFNAOfAs8CcwDEgD+gB3BTjsBrc8m9zyDAHijOHEPgxLbr37HO8FlgshvtN1fXsgGapR6YJJ\ncM//IvAyUOaW1wq8CvQG/gWUAEFuOV8XQoypvIZCCAfwDtDZLetqd98LgSnuOZzV5s0FrgWeA1zA\nSCBTCNFd1/Uor+tmA7YDVwPvusc+F7gHGCKEGKzr+s5q5wXwT/f4LwFH3P0LhBAuXdcf9er/FDAK\n2AmUAkeB7sDt7jHqYiGcCezAcIcVA92AscB2IcQtuq6/W02++sRovMkCHgJ6AtnAfne7XMsxCCHO\ndsv3d2AbsBE4G+O8BwkhBuq6/p677zkY97slxndLdp/fxcA0YH4dZf/rouu6+dfM/jB+9EeBDQE+\nK3R/lhPouABtHYD/YbjhvNv7ucc5Aoyu9tlKd/s9Xm1/w1Bu3wLtvNo7YSi1I8BjXu1tgQMYD/GL\nvNpbYjzMjwAP1iDPYK92B7AHqAB+BLp5fXZ1Tdephuua5O6/H7g4wOdL3PPHVms/G+Ph+wtgdbfd\n6R4rPMA47ar9//+5++4BOnq1BwGfuee82qt9vrt/abVxBrjbq9/Lbe72t4Egr/aLMBTaF9XuyxFg\nTQC5W1U7vvKePFKtX+V9eqxa+y3uzz4OcP5HgPPqMPYu4PtjHV+HY/5Z/Tvsbj/fff8/8WqLcPe9\nI8DYZzbEb/p0/zNdZ82bi4QQSe6/DCHEO8B04CsM68UHXdd/CNC2D1gLXFCD62K7rutrqrU9huGe\n83aD3IdhwSzTdf2A1/i/ADn4+9FHAG2A5bquf+3V/wjG274AJgSQ53Vd17d49XdiWAw2oFjX9Z+8\nPvsQ+A64IsA4tVGi6/p/vRvcrrlpGA/ldO/PdF3/HcgA2gPV3ZBq9cG9r493M8bLwa9e/Sow7qPA\nSPKoZDygYViP3uNuw7gWFwgh+gQYP8E9ZmX/r4G3gL8LIYK8+oka5D7sffwxOALMq3b8VoyXiCuE\nEL3qOE6D47ZmxgAv6br+nPdnuq5/DyzHsNgvrXZooGvyZ6MJehphus6aNxcC1f3j3wB9dV33ywQS\nQnQCZmO4QM7FeDhXomO40n6sdtiHAeatfJif4dVW6dd+K0D/nQHaernnfLP6B7qufyCEKHf3qc5/\nArT9XMtnezHcf3VFBz4I0P53jPP9QQiRFODzCzEe0BcDmzFcW3uBQiHEIAwX3Ju6rn9Xy9yBrlNl\nWy8w4gqABPzHWyl58QYw1N2/+njHupcVuq6XCSFeBsYJIc4F1rnP5WNd14/WInt1ftB1PVAW2U7g\nVrd8n9RjvIbkWoyXoqAa7uUl7n8vBr7AcKEuAdYJIZ7DUJZv1nB+JgEwFU3zZpOu68MBhBAdMKyZ\nZGCN2w/ueTAIIc7E8DOfg/Fj34zhujqK4XK5GbAGmONggLbD7n+9g/zt3P/uC9A/UEZR21o+q2wP\nZGEFkudILZ8dpv7f80AyneX+tydVSrU6Ooa7C13XDwohbgAWYLjRRmMYRl8Dybqu/zPA8YEUR6Us\nldf3WNdtL4bCa1v9A13XywP0D3QvR2FYS+MwLDUB/C6EKAQW6rp+mGMT6Fwq5RZUnU9TUHkvb3b/\n1UTlvZTd93I+hiU0AeNefggk6rr+aiPKelpgus5OE3Rd36fr+kKMwGtfDL+yN5OBrsAcXdf767oe\npev6fN1Ij/6yAUSodAd1CPBZpwBtB2v5rLI9kOI4GQQKTFfK8qyu6y1r+VvoGUTXf9R1fSKGS+0f\nwBwMy+EpIUT/AHN0DNBWeX0qr29drpvOCVw7XdcVXdfn6Lp+PoalNhXD8pmHcQ51IdC5eMsXyH14\nsqi8NmnHuJdPVh6g6/pnuq6PxkgC6AOkYMS41gtzgfQxMRXN6cc8jMD4HC+/OxhBTjDcANW5qQHm\n/QTjTbV6bAAMxVedj939A6UFXw0EAx81gFwNxZcYiQv/cMdr6oxu8JGu60sw4jwCw8qpTqDrVNn2\niXusMozg9kVuK7Y6/d3/flwfGWtC1/XvdV1fQVUgf3gdD+0uhOgaoN3nfBqISou2xjT6avwLQ9nd\nUN+J3HGqd3Rdn4vxW7MCg+s7zl8NU9GcZrgD0wUYmVAzvD76EeMB19u7vxAiippdQfVhFcYPPsbt\npqscv4tbjupWwnqMN8vJQogLvfq3BFLd/Z9oALkaBHeSQjFGdl2qEMLvtyOEuM6deowQ4pIaFEFn\n97/VA8sCmCGE6OxpMOIxczCuxZNefZ/AiK8t9BnAsJKGAd/quh4oVnZMhBDtAwTBwbBEWgBKHYdq\nCSyqNvZAjPjMp7quN6Si+cP977l16exOUFkD9BNChAfqI7zWRQkhrnLfi+rUdC9NqtEkMRr3m04C\nxqLCXoAdkHRdrx6IDnSsFeMLfD+GG+JjIF7X9R2NJ3GzYxkQjvHQz3P75p/EWH9SIIQYgLG+4R/A\n9RhrCIadyIS6rn8jhEjB8O3/RwixGuP7dQ/wPnBHtf4HhRDT3XL9SwjhvY7mUuBFXdefOhGZGoFH\nML6zs4DhQogdGA+5bu72izASKlTgNmCpEGInRoLGH+7P73T/94pqY+vAv4FP3NfiEMY6mvMwstG8\nA/lpGNdzihDiCoxg/bkY8QMFqPMi1QB0BT4SQnwEfIo75RojS/AokFnHcf4DDBBCvI2RoOAt37QT\nkC8QWzHuyXIhxPMYFv0Px/j+hGAkeOQIIR7CKKdTjnG9b8A4Z4e773iMa70DI4uxDOPl7HbgB4x1\nTya10FQWzd8wgqN/YGQd1afg3WPAJIwH2jCMjKMtgVbznubUuMjNnXFWhOFPjnK3/YSxNmEbhqk/\nGeNH35fAWVa1zhHoM13Xk4AwjB9iCMb9yQZm1tB/FUY68DsYD6FKCyweIyBdH3lqo0EKKuq6rmEo\nkHAMpXgPRizsBgzX2niq6n5twbAs22GcSyTGw2kFcI0euCxKJMb1GgqEYqxxidZ1PbqaHCqGi2wJ\nRkwsGuOh9yJwYw3WTG3XwPszGWM90UFgEMb3ZxDG77SvrutrAxxbfWwd47fdFyO2MxW4G2OBZD/d\nvRCyDvLVdL+rf49eBmLd7dEYCRjVlW31Y/7AWEhcGXN6ECOZ5iqMzMlxXt2fwXgh6oqRxh+Okfm3\nFLiuhnR1Ey+ErjdtUVMhxCSM1cc9jmXRuHPvPwIm6rr+hLutJfA58F9d10c0trwmJg2NEOL/MJTU\nMX8DJibNkeYWoxmO8ZbnMVXdvvNVwGAhROumEszExMTEJDDNTdFcCuxyuw68+RywYLjkTExMTExO\nIZqbojkLwzdenT+8PjcxaY6YG3OZnLY0N0VjYnLaoev6Q7qutzLjMyanK82tBM2fBC5LUmnJ/BHg\nM4QQ5tuiiYmJST3Rdb1ei5NrorlZNJ8DPSoXxXlxGUaSwLc1HRiodHVT/iUlJTW5DKZMpkx/NZlO\nVblORZkakuamaF7ECPqPqWxwpzffA2zRdT3QZl8mJiYmJk1Ik7nOhBCVC/L+gVF+Y6h7h8R9uq6/\n6d4b5Xtgvq7riwB0Xf/YvWo6Wwhhwaj5FIqxeGpc9TlMTExMTJqepozRrKYq00bHWEUNRjmNWzCU\nT+WfNxMxNoNaiFGC5hOMHRebam+L46J///5NLYIfpkx1w5SpbpyKMsGpKdepKFND0uSVAU4GQgj9\nr3CeJiYmJg2FEAK9gZIBmlvWmYmJiYlJHZBlmYKiHJxKOQ57MGEhkUiS1CSymBaNiYnJKYEsy+QV\nFOJ0KjgcdiLCQpvswdjckWWZ2UnRDL+nLza7FVXR2PDcDlKSM+t8TRvSojEVjYmJSZMjyzLxc+Yx\nePgobDYbqqqyZcPzpC1eaCqb4yA2Poprbj4Pm71qd3ZV0fjgzR9JT8uq0xgNqWiaW3qziYnJaUhe\nQaFHyQDYbDYGDx9FXkFhE0vWPHEq5T5KBsBmt+JUy5tEHlPRmJiYNDlOp+JRMpXYbDaczrpu6Gni\njcMejKpoPm2qouGwBTeJPKaiMTExaXIcDjuq6luUXVVVHA57E0nUvAkLiWTDczs8yqYyRhMWEtkk\n8pgxGhOTeiDLMjklxZRpKm2sNiKnTTdjCA2AGaNpeDxZZ2o5Dlv9s87MZIB6Yioak4ZAlmWiFiZz\n04T7sdrtaIrC2yufJmte0mnzMJRlmfy8IpzlCo5gO+ERISft3Myss1MLU9HUE1PRmDQEUYkJnDPk\nVqz2KneOpijseek1spakNqFkDYMsyyTGJTFs4BhsVjuqprDp9dUsWZpsPvD/gphZZyYmTUCZpvoo\nGQCr3c7P+34lNmEm4ZGTiE2YiSzLTSPgCZKfV+RRMgA2q51hA8eQn1fUxJKZNHfMygAmJnWkjdWG\npig+ymbvrl38+cvXjBozFJu9G6riYs78SBbPz2l2VoCzXPEomUpsVjvO8r9e5pcsy+QUllKuuAi2\nW4gMndrs7uephGnRmJjUkchp03l75dNoivHg1RSF1wvymBw+FJvdAoDNbmHEuOspKM5uSlGPC0ew\n4S7zRtWMWE1TI8syM2PnMjk8jpmxcxvVapRlmah5KXTtfTc973iIrr3vJmpeSrO1VE8FzBiNiUk9\nqMw6K9dUgq02yv74H3fdf5Vfvy1rvyQ/+9EGmS8/pxhnhYojyEZ4ZONluZ2qMRpZlomam8aNI8Kw\n2hxoqpN31hWQtSi+UeSKiptN1953Y7U5PG2a6mT3Wy+QtTSlwec7VTFjNCYmTYQkSWQtSWV5ZjZZ\nS1I588wOqIrLp4+quLDb2pzwXLIskxiTzJXdb+WWq8ZwZfdbSYxJbrQ3a0mSWLI0mY+/3sHWd9bz\n8dc7mlzJAGQXrPAoGQCrzcGNI8LILljRKPOVKy4fJVM5Z3m1+2xSd8wYjYnJCRA2fSZz5kcyYtz1\n2OwWVMXFun++x+L5OSc8dn5OMcP63u8bnO97P/k5xWRkNU6WmyRJZCxLa5Sxj5eGePDLu2SKMwv4\n89c/2bV7F53P70ynTp0JC4vwU6TBdgua6vSzaILd7tHGQpZlcvKXU+E8RJCjNZHhU5pcyTcUpkVj\nYnICSJLE4vk5vL/tV7as/ZL3t/1a50QAWZaJj4kicvoU4mOi/CwVZ4UaODhf4buC/mQgyzIJkTHM\nfHg6CZExJzVeUfng96Y+D355l8z8sDncYr+WBy4czqybpqH+UEb3czsyZ3ac37lEhk7lrTXLPXNq\nqpO31iwnMnRqg5xPQBllmZjEVLpfeQ9X3TKF7lfeQ0xi6mkTFzJjNCYmTYAsyyTFRzH2tt7YbVYU\nVePZV94iOS3Lo6RmRSVwZfdbfZSNqil8/MNrjWbR1CRr8ow47rv2NuwWK4pL45l/vUJS7tKT8sZ9\nojGahIhYbrFfi91SVUtNcak88fVz3Hnv7fz7gy9JT1/mN+fJzDqLmjWH7lfe42dF/fDxc2RlLG60\neWvD3PjMxKSZU5SX41EyAHablbG39aYoL4e0ZUYZ9/DI6STGJHPdpbfy9gdvcviIzp5937EsN/mk\nylqcledRMgB2i5X7rr2N4qw8UnOWHePoE0eSJLIWxZNdsMLz4K9PIoB6UMHezrdgp91iAxfYbFac\nzorAc57EwH+F81BA92CF89BJk6ExMRWNiUkToFaUe5RMJXabFdVZVcZdkiTCoiaRlJDLuGHzsVod\naJqT3Iw8unXrdtL892pZBfZzqslqsaKW+T+gGwtJkshOX3Rcx9ra2lFcqp9FgwVUVcPhCGooMY+b\nIEfrgHGhIEfrJpSq4TBjNCYmTYAtKBhF9S3jrqgaNodvGfcX1rzsUTIAVquD266PIC+7cTKuAsra\nJgjFVU1Wl4atTdM/oOvC9OgwnvlsvaFcMJTMivee4oZbrmXDhlcIC4toYgkhMnwKOzYV+cSFdmwq\nIjJ8ShNL1jCYMRoTkyagLjEagOmT4ul9WYjf8W99UUTxipOTHdZYMRp5l8zyzEwOHThI63ZtmRId\njdTj+Mc71lzFmQXs//VPvj9G1lndx9zFisxMDh04QOt27ZgcHY3Uo8fxy3iKZZ2ZRTXrialoTBoT\nWZYpyslDLXNia+MgJLJuDy9ZlinKy0F1lmNzBBMS4V/GPWbmXC7pdJ/HogHQNCdf/vIMy7KPz5V0\nPMiyTHFWHmpZBbY2QUyPOv4HNBgP/tSwcMIu7YXDYsHpclHwxSckFOQ3mrJpSORdu1gaFkrEpZd6\n5M/74gviCgpPSNmcSpiKpp6YisaksZBlmaSoeMbeNBi71YaiqTz79haSs9Ia5G1UlmWiwxcztHeU\nJ0az+a0sMvPnNOs1FnMiZnCvtQ0OS1WKstPlYpVWxuK83CaUrG7MjYjgfqvFT/6nNReL8vKaULKG\nw8w6MzE5RSjKyfMoGQC71cbYmwZTlJNHWlbDZGQdCfqRlz6dDYcd0MrJkaDmX+Ty0IGDOLqd7dPm\nsFg4tO9gE0lUPw4dOICjW1efNkP+35pIolMbU9GYmJwAapnTo2QqsVttqOXOGo6oHwUl2YwN7Y/N\nXpX1pSoaBSXZpC858cKdsixTlJ+NWlGGLagNIeEzT4ql1LpdW5wul59F0Lpt20afuyFo3a5ds5b/\nZNMkWWdCiG5CiDVCiP1CiANCiOeFEOfW8dhzhRArhRA/CCGcQoivhBALhRCOYx9tYtKw2No4UDTf\nlfqKpmILbpivo1Mt81EyADa7FadWXsMRdUeWZZISZtLvik6M6H8Z/a7oRNJJ2k9nSnQ0BV98gtNl\nlJGpjNFMiY5u9Lnrg7xLJj4ijsgJEcRHxCHvkgGYHB1N3hdf+Mif98UXTD7F5D9VOOmKRghhB7YB\nFwEPAg8AFwJb3Z/VdqwDeB3oA8wBhgDLgRjgxEvlmpjUk5DICJ59e4tH2VTGaEIiGyZl1mFrg6r4\nphariobDGlzDEXWnKD+bsUOu9100OuR6ivIbf4sDqYdEQkE+q7QySnbvYpVWdsolAhila+YxwH4j\nI88dygD7jcwPm4e8S0bq0YO4gkKe1lwU7t7D05rrtEoEaGhOejKAECISyAAu0nV9l7tNAr4BYnVd\nr/FbLoQYBLwMDNZ1/TWv9iUYyqatrut+haDMZACTxsSTdVbuxBZc96yzuo49e+FM7hh/PTa7FVXR\n2PjEe6TMyz7hOSJDJjGi/2V+7eu2f0FO4clbp9NUGG7DHJSKcuxBwYSE+2b9xUfEMcB+o99Cz23K\nO6TlLW0CiU8uzT0Z4E7g3UolA6DruiyEeAu4C6jtdarSIXqgWvsBDOusQS6KiUl9kCSpwQL/gcZO\nmZdNQUk2Tq0chzWYlHnGTyQ2LgpFLcduCyYs1HhIyrJM1opiylwabSxWoibXvH+NLagNiqr5VCgI\ntGj0dMRwG0YxZnDVOqakhCiSU6vWMdVUukb9pfknY5xsmsKi+RlYp+t6SLX2AmC0ruudajnWCnwC\n/AyEAj8C1wNPAc/ruh7QX2FaNCanE7IsM+eRaO4a3ddj5axfs4OQqdEsffoxrgl/EIvDjsup8EH+\nk+TGPxJQ2VTGaCrdZ4qq8exL75GceuLWUlNgbBJXQkW5RlCwlfDIaTWeR/ysKPpe1tVPye74fDdp\nGUatOdOiad4bn50F/Bmg/Q/gzNoO1HVdA/oCLYHPgTLgVeDFmpSMicnpRkFhjkfJgJEccNfoviSm\nJHuUDIDFYeea8AfJWlEccBxJkkhOzWb7p7+wbvsXbP/0Fz8lI8syMbOjmR4zlZjZ0ads2XpZlkmI\nWsQVXe+gf88HuKLrHSRELapRXqWGWnNKRVWSRUh0KKs+W+tTumbVZ2sJiQ5ttPM4XWlW6c1ui+Y5\noCNwP/A/4DogSQhxRNd18xtgUi9kWSY/rwhnuYIj2E54RMgp/zavqOUBM9F0a2uPkqnE4rBTdsg3\nmcAbSZJIywjsrZZlmfjFMdw2qZ/HcopfHEPanGUNfo1kWaYoNxe1vAJbcBAhM2bUa478nBKG9H7I\nZ5O4Ib0fIj+nhIysJX797e5ac9UtGntQldtQ6iExv2AhRZmFqL8o2NramV+w8JRKWGguNIWi+ZPA\nlktNlo43k4Gbgb95xXh2CiEOAiVCiCJd1z9tOFFNTldkWWbJ0mV8/sU3dDijA4P6DKFtm7YkxiWd\n9O2LZVmmILsYZ7mGI9hK2Mya4yoAdlswqqL5ra0R2iFcTsVH2bicCm1aWwMNc0zySnO5ZsgVvFy8\nDaG2QLcd5drhvcgrzWVZSuZxjRkIWZZJiollbL+B2K1WFE0jKSaW5GXpdb4PFeVa4E3iygMr2ZDw\nSL8YTdHTG0ic77s1gNRD+ku4yRqbplA0nwP+qS5wKfDFMY69HNjvnUjg5n2MRIBLgICKZv78+Z7/\n7t+/P/3796+btCanBbIsk1Ow3Nj+9+ghdu/Zw53jQrh+sB1NVdjwVCl39ruTYQPHkJ9XVO/tjOVd\nMsuzvApERtWtQKQsy8yOWsAdNz6AzWpH1RRmRy0gNOZhNqx9AaWiAntQEKEzDM9wTmkh+yoqyMh8\nlvEPDOK87l08MZols5NYmh84RnM87N33M9+t+Jbx/R/CZrWhaipPrPg/grs2bNXmotxcj5IBsFut\njO03kKLcXNIy66bQgoKtqJrit0mcIziwkpUkiSnhMcTPiqJbly60aNWa24aNorCg8KRuwXAq8cYb\nb/DGG280ythNoWg2AOlCCEnXdRk86c29gbhjHLsXOEMIcb6u6997td8A6MDumg70VjQmfy1kWSZ6\nTiq9R0z37ND4/VNZlB3cj9Vmx2qzM/yBqbz+7BPcO/wBnOX1yyqSd8mkhocTcnkvHO3OxulykRoe\nTkL+sdeFFGQXe5QMGG/h1198Kynzkpg29l5sViuqphEVGsbhTu3oN/1eznfYudJ5B8+lFSO1bUun\njl1YvCATSZLo1q0bi7KX8fVPuzhcXsHl0vnHedVg7ze/EjY0HJu78oHNamN8/4co2Jx/3GMGQi2v\n8CiZSuxWK2q57343siyTn1/IH3/8ifzDLs45rzOdO3YmPCSc8MhpJEQt8rjPVE3hpbf+j9SsuTXO\nu27dekLDorHZqoL97dt3JD+/gIyM9AY9x+ZA9Rfw5OSG22CvKZIBlgMysF4IMVwIMRxYB/wAlFZ2\nEkKcJ4Q4LITw/qY8jpEAsFkIMV4I0V8IEQukA//Wdf2tk3USJs2HnILlHiUDxs6FQx+IYufWlz19\nrDY7R4Xufguudd2wH8uzMg0l4y5H4rBYCLm8F8uzjv027gzg8nn3P1s8SgbAZrXSMshKv+n3YnW7\nxawOO8Pjp3P2OeeRvtR3a4F9u7/hrLaCDt3P5FfXr0TGTj+uIP753c73KJlKbFYb53c7fuUVCFtw\nEIpWbb8bTcMWXGU5ybJMYuJceva8gdtvv5uJE0LZ/2c5nS7pREJSAgCpWXP5dPdGtv/nKT7dvZHU\nrLm1WiZOp9NHyQDYbDYUp2/5IFmWiY2KJ3zyDGKj4k/ZhIhTmZNu0ei67hRC3AJkAU9guLxeA6J0\nXfe+w8Lrr/LYH4QQNwDzgYVAe4yEgGLg5O27atKsKFdcAbfJPeqV8a6pCvqRI2x6fTVLltbvTe7Q\ngYM42vkXiPzt2z3MiovBqThx2B2Eh/ov5Dx0VGX52gz2H9yL3WKlXXAHDlTs4/mXN6LrRxCiJbf2\nvpmjllYeJeM5B4edcpfv+uSU1IWUB1kYGDsZq8OG5lR5PW0FKakLKS02imfIskx+cS5OtRyHLZjw\n6YED72e2PxNVU32UjaqpnNm+1uTQehMyY4ZfjObZ7a+TvKzKqsjPL2TIkJEexWCz2bhn5HgK89Lp\n1r0LKakplBaXegL/siyTX5qF03UQh6Ut4VOj/M7R4XCgqqqPslFVFbuj6rsiyzJzox5hxE1jPJbS\n3KhHWJS14C/pXjtemqTWma7rP+m6PkbX9TN0XW+n6/ooXdd/rNbnB13XW+q6vrBa+391Xb9X1/Xu\nuq4H6bpo5tB7AAAgAElEQVR+sa7r8bquV1/EaWICQLDd4tm5sBJNdaIfPeL+b4VnH82iQ4eg40oE\ncApIe3snKf9+n4x33+an/fv5Zt8+ZOef9LrpMgYM60uvmy4jcZ7v27Asy/y0ew+21odImDCd+Ikh\nDO19PS1blDNuWB8mjbqNccP6sHHrSyh/HkRz+rr0NKdCsMX3jfwz+VsGxhtKBsDqsDEwfjIff/Ol\nZ87E5Fn0HHgB/UdfR8+BF5CYPCvgW3rozFDWvrMW1V1eR9VU1r6zltCZDZfcKe+SKcwswdKqPVnP\nruWJN15lu/y1XyKA06kEtD56dJR4+PKx/PSJ7DkHWZaZnRLBVXefwcCH/sZVd5/B7JQIv3MMDw9j\n0+YXUVX3+akqmza/SHh4mKdPQU6RR8mA4doccdMYCnKKfM9DlomePYupMaFEzw58Pf/KmFs5mzQJ\nsiwTE53I9KnRxEQnNuoPMzJsCm+tK/bZJveNNXl0OaM1773yLN/8ewuPl+ZSury43kpGlmV+qXDS\n/+GHGTZ5Mn0nTiT/6y9Y+P4OHph2v88b+NBRg8kvrNqrJD+vkKDWdibeMcZjNez4aCfRD43xCYw/\nNHIw+/fuZXvxKo+y0ZwKb61YQ+RU34d+62CHR8lUYnXYONLC4rFkhtw3wGcNzpD7BpBf7L8HjCRJ\nLMpayLt73uGlTzfz7p53WJS1sNZrJMsyMbPimR4aScys2t1M8i6ZeeELuNE+mJEXTSS0z2wOH7QR\nEuFvYTkcdo9CqERVVVodEdgtNsIHT6Ioq8C4rqVZDJtyNTaH4cq0OSwMm3I1+aVZfueXsiSFjz75\nkK3bXuOjTz4kZUmKz9xKmRIwm03xiuPJssysxYlcMLwX100YwAXDezFrceN+p5sbzWodjcnpgSzL\nxMcu4rYBEz3uiPjYRaSl1+5TP14kSSJzcYIn6yzYbiEvbV6DzJWfX8BdI+72USh3j5/I408sD/gG\n7lSqLCtnuUpLIXxcUzqHAwbGe/a8nMSkReSUFlLuUgm22Mia4+++ufDc89Gcqo+y0Zwq3dpI5GeX\n4CTwGhynaixUlGWZ9NRUvv/+W5yHNC689BLmxs6u846h8YlJDBp2LzabHVVViE9MIm1JYCuxMKuE\nkZePx2ZxWwsWOyMvH09hVglLc33XvoSHh5KYONfjPlNVlbVPP8nYnkONa2SxoZYZ19bpOojN0dH3\nHB0WFJf/XjeSJHkC/7Isk7s8j3JXBcGWIGZMicDexh4wm83uFcfLLc1nwKShPlbkgElDyS3NJzMl\n45jX7a+AqWhMTjp5uSUeJQPGG+JtAyaSl1vCskz/xXWyLJNXVECF6iTI5iAiJKzeSkKSJLLSFzeE\n+D7UFFB2uQ4H9P877FX+f0ewjX267hMHEbRC0TQfZaNoGmec3cE4h5Ta13TMjYxlXEwIdy4K8cRo\nti58ipFX3M9nu7ej20TANTgOW7DhVouOZuyQIdhuuglV03hs41pCEiMoWpJX4zWXZZnirHw++/BT\nbGeeTfnB/dhsdmw2O4OG3UtefhHLMvzTxZUDKrZ21awFix1lr19dXCRJYsmSReTnF/Lxhx/TsdWZ\njO01lM5nGgpFcanY2hjX1mFpi+p0eSwaANXpwm6pea8YWZaZlRrHgGm3YXVY0Zwas1LjmPnADIqX\nlfrEaNa9vZpFWQs8x5ZrzoBWZLlW855EsiyTvbyIskMKbVrbmTnl1F8ofCKYrjOTk06Ni+sq/BfX\nybJMXNJsLul/Fb3vHsgl/a8iLmn2KeOWqAwoe6OqKhdfeDGbn9/i4//f/PwWwkOrKiWFR4Ti0l08\nvnG1Jw7S96o+5Dy51pOFpWgaq159m5CIyDrJI0kSV7TrwXtz1rJ99jP8e94GRl54P22DzuTwUZWf\n9v3Ic4+u82w9oCoaG1a+Svj0GRTm5RlKxivb7eE7RmK1tiS3NHBKsyzLzI9I5JYzehJ/+ySmXnU7\nO9c8y2+//myMYbNT4fRXHAD2djZUl2/cSXX5F7L0PreMjKWseKyU1tZWtAsyFIfiUnn2gw2ERBmx\nlfCpUWxa/iGq09grRnW62LT8Q8KnRtV43XKX53mUDIDVYWXAtNtY+9ILLMpawHt7dvLypxt4b89O\nv0SAYKsDrdo5ak6VYGvgPYlkWWZmahKdxvblsql30WlsX2amJp0y3+nG4KQX1WwKzKKapxYx0Ylc\n+rdhfu6IL77d5GfRxMTHckn/q7DavVxBisqXb3zEsrSmX+sgyzKJs2czbNidHpfOpk0vsiTFSILM\nL8yrNetMlmVSFi/hm8+/wm610uPC8xk3/n5efOF51IpybEHBhERUla+XZZnM0hUcdLloa7EQPXVy\nwDEToxYy7MYJnrfwTe+s5IxuLblh9OWU/VnO9k3voB/VOXr0KO3t51BauIKI6dMZdtNNfue44tV1\nBLU7gw5t2+LUynBY2xA+1diJMyFyFrec0dOv8GTuOy9gO8uOflRl17ffkptbSJ8+fXzldMdoKt1n\nqkth7WdPsDD/kRrXH8nyLkpyM/nt5z38+L/fkc69gDM6nkVIlK+VW5l19utve/j5+5/pcW53zjy7\nQ407iE6Nnc51k3v7tb+/4i1K0wPXivOea9biRI/7THOqbHt0MxlzlgSca+aceDqN7euTRag5FX55\ndgfZi+u3ULgxae7bBJj8xYmYMc0vRvPKtsdJS/dfXFehOn2UDIDVbqNCbZitkqsjyzIl2Tmo5WXY\ngtswbWZkrS4NSZJYkpJCfn6BR6EsSakKKGcsrX37AEmSKF1e4tde/aFcKVt4Shq9poRxtsOBy+kk\nPCWN/NnxPjJKksSSrHlGTMZd1mZJ1jzSclKw2a3Y7FZGT7nD03/7qg8AsAcFoWqax6IBUDWNwy2P\n8uWX/+HK8P7sfOUXDh38lTEP30PWgkzUg07sHX3vz/6Kg6hHf2XiuJHYbFZUtTfJyXEkJS2lT58+\n7JJlslYs54DrEC3Pd/DqvudpeaQV9nY2PyUjyzJFhZko6kGOHGnBb9/vInLYP7BfcjGK5uKxNz4n\nJGqujyLOKyykQlE44nJx5A+FqAeGeW0FMDNgdepgSxCaU/NYNACaUyPYUnsVBFmWyS0upPURC88l\nP450fnfObndWjUoGoOyQwnmBUtUPnb7bD5gWjUmTIMsyebklOCs0HEFWImYELul+Mi0aWZZZMDOK\n8Tfc5FnP8cS7b/NItrEgUpZlCnMKcZapONrYCI0MPal+9Rmz59Lm7nuxeK3zcDmdlL2wityURcc8\nflZiNFfcLvnFZz59WSZjSaZvjMZdkeCxjWvZ5zrIrSMu4/239zAk5GGsdhuaovLC0lIubXced5/X\nx8eiKd3xNHeF3IzNq2ClqmoU525g+aMrCU9L5fLwUCxuZflZfiH58Qn0qHYtd+7cSXxMDOee05HW\n1iP0H3g+WzZ+wIQbr+Gcs9sBoGguXvxeZUlmnpGMMHceg0YaCQMvrFzBpCH/8Cucuf2zX/wKiQaK\n0WwreYWMhKW1xqZik+cx4L6Rnmuy7Zm1pCfVnpn3V7RoTEVjckpTGaO57d47PD/mV1ZtZGlySoM/\n5BNnRjG48zl+gfgF61/kgssup+yXPxlz8zhP3a8X3l5zUhfuTZwVR4+Hpvu07d/9E1vnzOScs8/g\n/B4XEBs/p9YHY8LCGIaMr6rG/NIT20mdt8zHIqiedaa5DuBsVUHfCQ/7KfwvnnkN164/ue/qIdgt\nNhSXyqJXc4lLmug3f17Gc/z9+r7Yx431U5bKP58ld1FVsoYsy0ybEM7Eu8I9Vu9zrxRyx6jzePel\n/xA6pK+n71P/+ollpSuJiYvjkhtu9CRgbFxZyrS7q/pVsm77F+QU+e8gGijrrLZ7G50Qx98G3uh3\nTb59/R0yU2tO2qiM0VwfOgarw47mVHivcDXZCfVfw9WYmK4zk78MkiSxNDnFJ+vseJWMLMvkFxRQ\n4VQIctgJD/P166vlZQFTizuf2YXf9yjcP2CcT92vu28aTWFOIUuzTk5137YWCy6n0/OQ3r/7J74p\nTmNR5L0e11Bc1HSCu/ZA2K20sdiYOaWqErQkSaTOW0Z+Sa5nt05vJVNJkCOYv0kXYg8OInRGOPml\n2Xy977uALkxat2R+3hKKs/JRDzrROMyBAzqPF+2gtfUwtw7tRafOZ6GqGkeOCg64DtHO4Rsktzgc\n7D10yKetIKfIo2TASBa557ZQNr+eS2uvFCZFc2EJNpICKhTfRZ1HW7QOvIOo11YAsiyTtbykakfS\nYygXb8pVpQa3bu0uMEmSyE5IJnt5EeWHFIJb2085JdPQmIrG5JRHkqQTdpPJssysuHjuGDXaE7Sf\nFRdPxtI0zw/cFtwmYGqx3sJKK52Adb+c5YEzqhqD6KmTPTEai8PBF6v+j/CR/TwPUrvNyoOjbqF4\n64fcEhaO5lSYuSSZ7MQkH2WTsSRwDTZZlpk3K4FR/Yd4rLZ5sxKYNjOcqEei0RTV7+39s88+I6ek\niMiocAASolKY+VARNqsDVXOy9pllDBn1N15YvY35yUt57uWXfJQlGBZNu9atfWRxlqsBMxMPaS1p\nrR8F8MRo5mYYCzWD7HaflPKbbhvK8jVPM2X0LVU7iL5s7CBaeb4zUhfxj2kT6OKudj0jdRG5CXVb\nzxVsswe8JkG2Y9fKkyTplHKTNTam68zkL8H00FBu6DfAb13Lu9u3UVxYCASO0RS+uo3eg6az860N\n3HvzcL+6X+/t2dkoFs3OnTuZm5xMi5YtOHrkKIuSkujTp48n6+z9L77EUraPR0JG+R1bsHEnfeKN\ndGjNqfDr2tfJXpx6zDnjomdx0/lX+JzjDz//j+fe3Ej7Dmfzw8E/uXdeuMeF+VxKEe1atKJ122Bc\n2lGktt24/u/3Y/NK61U1Jzkrw8gvyqJPnz7s2LmT6NkJdOjRnSN2Bz1GjuR/L6z3i9HERsVz9bkD\n/DITc/85j6t6XYq9BViC2zJtRjSS1APAL0ajqirrnngCqXN7WgodW1Awd44Yzbq1m6goV/nsx/8y\naMlsv/17fl+zmZzF/uu5qnO8MZrmguk6MzGpJ9/t2kX/wUN82mw2G9/tqtraSJIkHsnOoiQ7h88+\n+gRbUBf6DJpOh/bn0Kf3cFa+9CQThjzoF6NpaHbu3MmcBclMCJnqeWDOWZDM4kcMZZObsoiZCbP5\nZndQQNfQYUvVQkWrw06ZK7DVJcsy+UX57P11L7vl3zh6qAX/+/ZnBt90I53P7sDe33/lpY9e5+GZ\nY7HZrfzvhz08k5BOK4cDdf9+IkYMQuraGUXVKNnwOl/9/D39evq6xWxWBzfe0M+jJEsKckiccp87\nG02jdFk6c+Yt8EsECIsMYXb0fO7sc68nRvP4+nzSs7ICZuSBe7fQRQs9WWdBdjv52VWVrWVZJmHW\nAgYPGI/NakcuLwm8I6mr5h1Jq8+XnrSQ3OJCKlSFIJv9tFEyDY1p0Zj8Jeg7YACTpof6WTSPFhex\nY9tWv/47d+4kPnYhkx6YW/WgW7eM1mdYafV7Ob16XdZoWWf9Bw1ivFvJeMv6RFEpb7z6KmA8NKfE\nJWJz7Wfq6AEe11Dp2tfpGTqZs7p2AQJbNLIsk7wslR92fcuQUbez9fkPuXtoFFarA01zsmF9Fv2v\nvJgXXttE1+5daGkV9LvjRjp0bo+qaCxLKmJR6P1+Ci4h8zmi3G4zj9yak893ryMjK4W4WdHc0Otv\nftlo737yLUsz/N15sixTkFOEs1zFEWwjLPLEVs/Pik7ksgsGe6ykVa+u4JqE8cdt0ZzumBaNiUk9\nuejii1m16hnuvfc+j5WwatUzXHTx3wP23/jCaoI6weqPnkBoOrpVcFPCRM7s1oWvVqxiafqJuctk\nWaYwLw/FWY7dEUxoRFUQukXLFgHL2oiWVVFwSZJYvnQJC9LSSX90I0HWVnTu1AXN1haXorIzvYCW\n5RX8/L+fSUvP8pk3Mi0JVT/Eg6EPsPHpVz1KBsBqddC7z1he2ZxL3AMzPNbbyqf+yW0P3EyHzu2x\ntmjho2TAiA9ZrS62vLWCwb0ne2I0W95aQWrWbAAUZ7mPkjHOy4ri9N3gzPsc07MaLo5RUS3uc8vV\nw1ifXkL/2GmeHUn/XbKS3ISaN0szOT5MRWPyl2BefDwhsbNYvXE9rYDDgGjVknnx8QH7qxVltHdY\nuSTsfr833jaWwCVS6oosy8yLj2Pk4IEeF9K8+DgWphlrNo4eORqwTpp+5KjPOJIk8VhRgU/bzp07\nWTY7lvihA3BYLTivdvFoRirduuUhST3IWlHEteH38k7OE9jsNo4eaulRMpV88P5Gwu552CfDbsJt\n41i1cQ133H8bTlUJnM1ls5KaNZv8nFIqyl0EBVtIzaoqyGl3BKO6+1Wdl4bd0bBbQ9dEULDNp0Bm\nx7O7cPsld/BiYgoXXnEJbSzWOicCmNQPs9aZyV8CSZIoSs/goq7d6HR2ey7q2o2i9IwaHyq2oDbc\n3utCdqTn4nKX5nc5FV5enEnUlGknJEthXp5HyYDxVj9y8EAK84wtBBYlJbGyuNSnTtrK4lIWJSUd\nc+zNa57zKBkAh9XCpBt6UpptWDVlLhWLw87R1q1QFZUWrY+gVS/+eEQNmGF3RNPZtHorl/a8ktLn\nN6Oo7npsqkbp85u5pOeVRlZbVgpFyzPIyPJNQw8Nn8HazdtQ3cepqsbazdsIDZ/hdx6yLBMXE0PE\ntOnExcQ0SB2w8BnT2LLtCVTNuJ+qpvDhJ6/wZHERj4TNwHJYJT0zhdj4qNO67lhTYMZoTEwCIMsy\n8+NncMvVF/LyJ9/gbNGSPT/uJTMlvcZgdOVx+TklnrhCeKR/xYOIkGkM7XujT9sv+35jxdNrCQ4+\nA+dhjTO7tOeXPXuwBznQvbLOjkXM5IlMuEzya1/5ucyyFY8TOTeeDuP6U/HHfj4sWsWtg/r6xWiW\nl0Qyd2IY+8vLeOmTNzjUGoR2hJ9/3s3T/3wGgBmzQrBZBK10OCxAdenkZhQd0xqQZZnC/FwUZwV2\nRxCh4f57z8iyzLy4eEbeOsjjulv72qss9EpFP15kWSY/t4SKcpWgYBvhM4yXhtlJMQy/p69nIeuG\n53aQkuy/xuivhFkZoJ6YisbkeJBlmeK8LPb/sY9vf9zNWef/nS4d2hM1dWrAB5BRwmUBQ/uO9yQQ\nPLEui6TFsT5KIi4mhhsvu8hj0fyy7zdeWLeVh4ZO9DxYV2x9Fq1tK5an1e/hOnvmDIZ3DvZYNABO\nzcWGveWkZOd6YjTXht9rKJunX+T3L3dhOxpEC91G+/bncMVlV/Pum+ugi43BsyZ4CkW+sKSYJTHz\nPBlk+UVe20GHBN4O+niIi4nhxr9f4pdK/s5XX7J0We21446H2Pgorrm5u19png/e/IH0tKxajqwf\nsiyTW1REuaoQbLMzI+TU3hqgIRWN6TozMakBSZKYHhHFnpZB9Fu0lGvCImh/513MWLQ4oGslP6fE\no2TAWGA4fkQUs2J8d1sMjYhg7ZbXPS6kLa/t9CgZ4zgbk28ZS+tWDrJLSusl89SZUZTs/ACnZpTI\nd2ouSnZ+wNSZUZ5zyolPZt8/3+DXje9ycftzWbPyn+zc8RrXXn85dwy9l79f1IsWZ5/pUTJg7K9y\nd+J0omYnIMuy4SJLy6Qwp5SMtMwGfWAq5RUcKCvn8ZfXs/y19Tz+8noOlJWjVAROGjhRnEpFDZvB\nNdx8siwzKymJC/rdzHUjRnBBv5uZlXR6bw3gjaloTE5ZZFkmPjKWGQ+HER8Z22A/SlmWiY2OJXxa\nOLHRtY+bVVrKtZMmY3FvWGaxO7h20mSySv0VwB+/7Q+4mr1L1/PI8wraS5LEwrSlvPP512ze8Q4H\nygLHRCyHdcq0uq3pqEKwt+UZpL8jk7rtM9Lfkdnb8gyg6sVUkiT69PoHH7y6nX+9uYMRI0ewevVq\nIiKms+W1p1A1hdbBloCbeXU67zzy84v8ZpVlmbgZCUQ8NJO4GQkndK9cR4/wzL+3cm3sOAbMeYhr\nY8fxzL+34jpy5LjHrA2HPcizP08lxmZwDZekkFtUxICx92C1G98Pq93OgLH3kFvkfy1PR8ysM5NT\nElmWSYqcw5hrh2PvahRrTIqcQ3LOYqTKSsp5eSgV5diDfNODjzXunNg53HXLXR431ZzYOYREhrB+\n/VoUpRy7PZiwMMMVVKa5OMderTaX3UGZ22LwjLtL5stPv2TA1f7b/rawCb9tDSRJ8riB4qJifXbZ\nNI5TcbUSiMOHiI2L8sQ0wkJr37YgN7+UO+6ZidWrDIqmKuTml5KZYeyRs3r1avJK8ohKCffEJPIy\n8ogggrSlj5CXV8zve38KuCV0a1pR4fSt5SXLMvPCkxl51X3YOhj7ykQ9HMs5F51NC4ztB2q6P7Is\nk5dfTIVTJchhIyJ8OkcdrbktZKKPNXVb7ES+Wvlajed9IoSFRNYYo2kojLpo1bYGsNspV09eCaOm\nxFQ0Jg2KLMsUZBehlBv7qofNDAEgL6+YigqNoCArERHTj6kUirIKDCXjTiW2W2yMuXY4RVkFhESF\nMS8ujtGDbvWUs58XF8fCpb4l3WVZpig/G9VZhs3RhpDwmRTkFniUDBiWw1233EVczCyiZj3gSTee\nM2cWixdn0MZqwaU4PRYNgEtx0sYrBgJQmFXChBtDWbN+OaPvmuKJ0Ty2JoPbJ93Gr1/9z0eunOIS\nylWVYJuNUaPuoiAtj7E3j/KJ0agOwW8/7mXwg7dXyTU3hsWLag5Slzs1HyUDYLXZKfd6Y1+8ZLFH\nyYDhJpo0azyLZy/m4w8/ZtmyVGRZZnx0KCMSpnhiNGsWFdOv50AOqb/7nntmsaFkLMa8B5z7OUIF\nt14z2HM+CdHRpGZm+t2fuMRkBg19AKvNjqYqxCUmY2nfKqA1haVlwHM+USRJIiV5GQVFOTjVChy2\noAZPBDDqovkqG01RCLadWKp8c8FUNCbHRJZlSrOy0crKsLZpw9SowLsUyrLM3KhHGHFD1f7q8eGz\nOXhYYfToCE9bTPQ8lmXWXqpDKXNi7+r7I7RbbCjlTgrz8jxKBowth0cPupXCvDyPlSDLMkmJkYwd\ndh12W1cU1UVSYiStLR2wXe7vpup2TmefdOMRI/pTUJBLVNgMZixa7HGfuRQn/3p0Bblz5/jKe0Dj\nvO49GNH6Hl568RmOtDhKy6MtsFlb8eH2d0lLTvHIFZW8kN73jcdqNx4+yx79P2LiI/jnymf4+utv\n+a1sPwRbaa3CqLG3+Mp1980UFOaQvjRwkDrYYUVTFT+LJtgrBuEIdgSMSdiDq5SpJElE3PcQ8yOW\ncO7Fl9ASC7cOmcbrzz9O2vy4avdKxdahar4XP3iWh+4f6aPMxw4ZSnpqKgXFVbtVLk5Jg4Mq258u\n5YjFwrWDRzBo6APk5Mdx5UND/KypYMuxi1UeL5IkNWjgvzozQkKYlZTkcZ9pisK2Z58jIzm50eY8\nlTBjNM0UWZaJSkhgStRMohJOzCd+rHkWz4hk+FkdGX/hJQw/qyOLZ0QGnK8gu8ijZMCIT4zpOw57\nq7Y+bUOHPkRqau1uCXsbB0q1Gl2KS8Ue7ECpKPfZBdIY1+oTLC7Kz3YrGcPysNssjB12HfIP36Nq\nvuOqmkori29yjc1mRVHKkSSJ3Llz+O3F9Xz15Ep+e3E9uXP993yxt7OiuhQ6nXEOD/SZwoSbpjH6\nugdwHVI8SiYmNoH7Hp7iUTJguE963zee5zduInZOHI6LuzF6eSr3lSzlroxkXtj5Gb/8+ruvXDWs\npAeYET6VbZseRXOXqtdUhW2bHmVG+FRPn7KD5QFjEkq5r3vv7fc+YkpsLneNieaOMeF0OfcCxkyf\nzfPrN/ueexsbqqvKnbZf3Rcw5rTrm+88/y/vkvntw8+ZdeH1JPTsT9T51/CvVY9RdnA/55x9LquT\nCtCcxn3SnCpvlawlckpojed9qiNJEhnJyXy3/U3eX7ee77a/SUZy8imdddaQ1EvRCCFaCCEuF0L0\nE0KcnOW8Jn7Iskz0gmS6DR5Ir7Gj6TZ4INELkhtF2ZRmZTPpmuuxuws12i0WJl1zPaVZ2X59lXIl\nYDC8JcKv7bvvdlEbIVFhrP7XBo+yUVwqq/+1gZCoMOxBwajVguSqpmEPqvpKqs4yj5KpxG6zcO65\nHVi/db1H2aiaymOrH6XPzVf5jqdq2O3GviWSJJGTksJjyzLISQm8F05o1DTWfrrS88BVXQprP13J\no08Y2zTHzZ7PxVcN4Kwu51Kx/09eWV7Ma4UFvLK8mIr9f1KuamQvL+a6qQ94KhFYHHYGRIXx8vYP\nfeWqZSW9JElkpMzlu49e5P2tT/LdRy+SkWKUVIlOjGV86GSOtmzNM8UveJSNqmisSH+cOYm+VlqF\nEtgNV1FNSYVGT2ftR894zl1R1YDKvHKBJ0DpshwS+4zEYTFeGBwWK1HXDOLdzWto0zaYMYNH8ui0\n+byZuYoNcwoI1o6SX5jbrLO0JEkiMy2N0pwcMuuZtt7cqbPrTAgRBiQBZ7ubrgU+FEKsA7bqup7b\nCPKZBCCnuJjeD97n+1b84H3kFBeTlXrscvD1QSsrw965m0+b3WJBKyvz62sPtvuU+AAjGH4E3zVM\nqqbgcpXXOq8kSSTnLKYoqwCl3Ik92MGU2BAKinP4o/w30h7fzsQ7R9L9nK6omsaaV19j4dKq+mM2\nRxsU1eWjbBTVRcdOXTyxGqVCwR5kZ+6CeRQVZTOi41meWMi6dW+weHFGna+T1ENiUf48CrNKUPZq\n2NtaWZQ/D6mHRExsAoPuGGfEISoqePepJ7l/5DhPzbWnn3qSc87pRFlrna4BqglrbkWtqhrrXniT\nxYuWGetYspbzx68H2fXTd5wjdaJzp05EhBvxr8rAP7hTaxfNpd+EEVxst3HtuNt5Lu0xVpW8htXe\niqOHW9L+jK6MGTPGZ+4ge2A3XFA1t5skSSzMT6IwsxilTMWlH2bJ8jw6djyLP/aV06l9J3b//DN/\nuxdZMM0AACAASURBVPAizzGugxU4OvuO47BY+XP3DwwPfZiOnTrS/dwOHNj9P6aFjPUE6Wc/EkvK\ngvS/1EP6dKBOFo0QYgqQA6wDxoLPK+oOwH9TjNrH6yaEWCOE2C+EOCCEeF4IcW49jr9ECPGcEGKf\nEMIphPivECKiPjI0Z8o1NXAGi9bwGSzWNm1QXL4ZVorLhbVNG7++YTNDWPfuap8SH8s3FLDfuden\n7YV1eVx8SY9jzi1JEmk56eQ+aiQAFK7I4qoB3Rl2/02EP/IAz+/cwjNbXuGt/37llwgQEj6TZze9\nj6Iasiuqi2c3vU9IuBFfSs9MJ78kn/RMY6X/4sUZvP/+92zZ8i+2bfsPLQ63YMLk+xk4aiBTo6bV\n6U1a6iERGj0NW0dBxdE/WJq+hIgJE/jPBx96HtaWo3iUDBjFMu8fOY7DTidff/qFp9xNJS6nwu+7\nf2fLSx/y/nsyixcZLscZk+bw42d7UH/7kw6WTvz83UE6druUuNnz/WTNLSmg34QRng26rHYb98Q/\nTGtHMHfePYu7xkTRsZPvywRAZNhUdqzzdcPtWPcokWFT/fpKksTS3FRikmZyfs8uPBh5O61a2ZkR\nEsmEBycSPSMKVVM9slnaBuGsVo7f6dJo2/lsOnbqiKqq/Pn7n0yYNtYnaWHY6IHkF5rvtM2Nulo0\n0cAyXdfjhRDVUz/+C8TWdUIhhB3YBijAg+7mxcBWIURPXddr3QdVCPEP4HX3GJOAA8CFQHBtx51O\nBFttgTNYrA2fwTI1aiaLZ0R63GeKy8WjH7zHnNwcv76SJLEoa4FP1tm8tLksy0zmldcy0XUrQmi0\ntmgkJtQv8FpQnMMd4/r6PHQmRNzNR9t+YGmAeI8kSSQvyfHJOkteklPjm7AkSaSnZxprd6ZNo/ys\no4zKn4DVYUVzakSmRJEz25A5rziPCrWCIFsQEdOr0nZlWWb23DiG311VLPP5Fc/S0XXYYxlYrZaA\nlZm//ep7Rg6ZzuaMFdwya7KnmvAbaYV0aRHMrFlVxSmnPhSO5chBptwxyLNBW8nGV3njpc2MGv8Q\nefnFLMuosmzLtcBbDuviMOC2Uhy+1kXlNVm2aA45BaVUKBpHXCrtz2pNSm464rAOqobF0gK7PZjQ\nMCPtuqA4m5ET+7D+iZ3cO+I+H4V6z4hRLE1No7C4iKkxkaSExDD54r44LFacLo2sf7/EgPGjUVWV\n1WtW0qnrWQGTFpQGXEhpcnKoq6LpAWyp4bMK4Ix6zDkVkICLdF3fBSCE+BT4BpgG+Dv/3QghBLAS\neFXX9dFeH22vx/zNnsjp04lekOxxn2mKwltPPkPmI8cuulgfjP1AijnargvzXtuK1OX/2TvvsCiu\nto3/hrI7u0uzYTdrEhNjeo+GxK5RLKhgj10UARG7YI2KFRHpIPaOvYvGqOnF1Dfd6FiiIlgQ2J1d\nynx/LA5uFo0mxuRLuK+LK2Z2zpwzM7tzz9PupwrVatYkcsnvPLAX20u716mTRmJSjFqjMiIo/K5d\nH3+kettoNDJv4S2/TuUiZfFiXHUCbacFoC19+Gr1WlqObses6Nnk5V+nTZ82iDoR2SwzYcYE5k2z\n+dsTEuNUkgFb4L7bkB7sj1/DvpXxtOsfAk5O5SozV69mpG5NI100/rw9bx0W5yKypROMbtkDT4M7\nSYvjmbfY5so78f3/mOTfVW05rdNqGdahNWOXLuX69VwKzPaWrZu2/JbDguJiSxbYm86COeVL4xuN\nRsKCA5kzexa/ZJ0mYNxgtZvk7vhV9Gj9Mp4eBiZOCKWqvgonLvzEq50CKCkqv9XByV9O2o5b30hE\nUjSp0bFYrxTw8fHjXHe1YHlvJ85ahRZ9GrFh3kFks8VBGkZ3DwspK3B/cKfJADnYyKE8PAr8ehdz\ndgQ+ukEyAIqiSMD7QOffGdscaAiU3/T8PwKj0ciiqdM4d+Btvtq4mXMH3mbR1Gl3/fC+HSRJImL0\nDJ6t2xLfV/oysMsECor0t0xt/r31zp8XS9ySdObPuzVJ3Q7lVW+fPXWeE998Q/iIfkwaG4ok3T7B\n4GZIksSY0REMDxzDmNERqkvHkpdPkd5ZJZkb0Oq1/PDTDyrJAIg6kTZ92hCXbFNdNt2i34qzTmR0\ng7ocX76IX3/5iaXLk+2UmZcuS6FlE9tX37tKDXq1GsSA5oE87FWPGpWrodOKyPllhKp1QSUZgAtX\nLrPy/SPo63izcuUSrl3JsVvDyGHBHF25HUspAVnMMlui03FzEjjx1S4WzClfGl+SJIYGDSVoUH+u\nXstWSQZsFlGHkH7sP3ocUdTSo1tT5IsS9TS2WIqTS4l6jjcgyzLyTSRorG8kKj6GhatSebVFC8a9\nOBz3HC2aHGe+Sj1F7we6sippk13Swp7NbxMywlHtuQL/bNypRbMbmCoIwhHgdOk2RRCEqkA4ttjN\nneLxW+z/LeBfzvab8Wrpf/WCIHwIPA9cBTYAExRF+W+U2WJ7eN/rwP/NSIhNpoNPb7u05A4+vUmI\nTWZBzF83760QPDyMiOljVPfZ2VPnObhqFxH9m6MTNZhlKzMnjWDKnERu9JC/FSRJYsKY2bRpOris\n3mfMbOZFR6J1d8PlcjEWk8WObCwmC6IoqiRzA6JOxFRa9a+/Rb8VbVExdTw9GfnME8w+cZrLRbB5\n2y6cnRQQXLhyNQ93N3ungGwx41KaRGG2yIhuBnXtF69dxmyxoNNquXDlMsu++ZRWo4bxSql1uz06\nXtUjg9JMtMmzWJKSQL7FjJtWx4rFZUrLkiQRPi6CArMVg05DWHAg586dY9r86Xi6Gwjq1YPV7xwq\n1/1WJNjCtaKoRXF1pvvjjUhYspsW3V9lQ8Y61X1mazS3kUcfLb/R3PDRwcwYEcmbjbrb6qWsMinH\n11GjrpGVS3YjWwto+NhDFYkA/09xR+rNpYTyPlAX+Bh4HfgAm3VxCWiiKEruHU0oCBZs8Z6I32yf\niY0sNOWPBEEQkrC5164AcdjiNC8AM4H9iqKUm5RQod589wgeOoqWzzjy/ttfbiYh7e7cUfcKkiSR\nkGyr3j7xzTdE9H/FIats/9dFzFkYd9vjjBkdQSNjJ4fsuO+knYSODFRjNDfcZxaThbcX7aOmtjov\ndn7Rjmxks8x3h74jem70LWM0YQ81pLJOx5xPjvP8m4M4euAw3ToHqcdYuXEhmhJnerxRpiiweXsS\nvRo3RbZYWJq5k4aPPYXW4My5Xy9gEorwEGSCWrzByveP8OyoQId43bn97xAz5/e7U0qSxJjIKF7z\nG4JW1GORTRzenMS5E18yYkEomUt3MvSNjizfu5tXg3s4uN/eTV1H/4DWyLKF/Sv3EvDU48S88z3O\nnnqycs/gVORKrWq10Ti5IhdbiUm+tUUrnZJIXpSAfN2MBSvZ1010bFumhL3v7XXMXTC9gmjuE+57\nK2dFUXJKg/CjgLbAL6Vj44EYRVGu34vF3AGcAAVYrSjKjZLaY4IguABzBEF4VFGUH+/TWv7V0P+m\nGyHYHsZ6t79PMsNoNLJgri0gHz6iX7l1MhbT5fKG2qEg31JuvY8p32KL66SkMGXCeNL6x6GrZMBV\ncWXelDnUqVOHMVPG0L5/ezVGs2bRWhrUfFS1IKJmzSchMQ6TKR+lBGp41yUjO4cvf/6F9oOHU7V6\nDUqUYmTZjFiaieam9+CZ9j5sObgGwapgKZIp1llJO5SBK1UJ7bAQUaNHtppY92Mcrm7wZL+uTIlN\nR3Az8Eo5GYhffPstA4YGcvrUSerUrk716jUIGeGoNxabkKqSDIBW1NPCP4hVC8NsCQOuTpgtFtq9\n1JgNcWtpH9rHIUYjyxbWr9hJ4NNPk3H8BP07j0fU6rh05QKHP9tDcXEh2fmXWLp66W1JwljfyNy4\nBQCMHT2RVxr721nU7Vr2Jn5JMgsX3X+LugJ/DndcR6MoSh42y2Hmn5zzKlCpnO2VSz+7HW48RX6r\nrpcJzAWeAcolmunTp6v/btasGc2aNfv9lf6HERw2nIjRM1T3mWwxs/u9dUQturcJB38Uot6z3DoZ\nrd7zd8ca3LS3INGbXGVaDaGRM9SH6pLUZEYGDqfwaglbl+zkWt4VanjUpUfjYXgavAjsG8xDj9Rk\nwtTJLJjvmAUnSRJxCYmc+v4bvCvr2bt3Ge3bD0IUdbz8XCt2rF1O7zFhanLH0fWb8K5en9dr9EHU\n2EhA1Ojp3TSUhdvGcmjlFtqGDWFzTFr5GYjuXjT364FFNrMmOY6rF7Lx7+zHhMmRdvUyBWarSjI3\noBX1IGiwmGWadG7K8hU7GdixEz1feY1dS9ZzIfcaxnr1qedZk+NfnqOkBFwKXahk0FOouJa1Sq5c\nk55thgCQ+d2Wu7JECgrk8l8GCuy94zY9u5ib9OzuPtGkAjYcOXKEI0eO/CXHvu+NzwRBeBtwVRTl\n9d9sfwdAUZTmtxnbB1gFdFIUZc9N258BPgd6KYqysZxxFa6zP4AbWWc3ukUGh91aDFM6JZESswRL\nbj5aTzeGhY/EWL/8fe90bps6c0G56r+SdIqZk0bQr11DNUazat8PDjEaSZKIT4jHZDKh1+sJCQ4B\ncIjRZB5NZ160TVpmzPjxPOrzioObaMPiJAb2DWb3rq34vdbHgaj27kvBRe/MtNjy4wiSJBEfl4ip\nwIxCMUXF4OysxWAQ6dLFl627d6lCmyOHB7Fgejyt6w9wOM7qI0to3tifnR+lY879Frf6D9IqdIRK\nUrvjUvH19aead3Xb2mUzR1etptfrbYnZmM7wcaP4+L0vMOVZ+PKnr+keNtuObCyyiXfSZqG4F9Ep\n2J+8a3m8u+UwZ74/hVjFkwcbNkB01kKeE85OOgxuGvy6tWNfRgYfffwlXV4fwoFvMriQn41GZ8BL\nqEyd2lVJXWYviS+p3Tbz0end7Lptjh09kScfaeFwjVevm8fSVUsxGuuX6tmNpKfvC+p3YMOez5gx\nZ0kF2dwD3PcOm4IgHP6dXRRFUVre0YSCEAYswJbeLJVuMwI/AeMVRbldenNlbBluaYqijLxp+yRg\nFtBAUZST5Yz71xKN7ccaq77RjQi5vYz8X7KGUxKzQsYy8Mlm6DRazFYLy785wuT4hXdNNtIpiXkz\nojh1+gSBfXupsY6tmQeZNe+36synSIlfhMWUi1bvybCQ0Q4kMykiAt9OvmpAes/OPcyJslXNxy1J\nxZRvQe+mJXRkWdfMYSNDadKxncPaVs1bwvBBo9i0YS292w51+HzLzgQGvN6cQ9k/MXexfWKkJElE\nTJiMb5uu6lo2bV9FjYe9QaNgcHVj5BD7ezduZATPu/upFg2AbDWxeFsED9R8lEIlm7Buj3E1v4Ct\nn32PxdkVZ6uF61ZnAoLC7ebfuzSNwJadMFtkJqcvpMEDz/NM/RYc+G4nrp7udOwbosZoNiVMZ2QL\n2/veni8+oNBFwZJnJltrpfuMgaqa8+652/BtNBwPQyUOvL+UuYsiOHfuHONmBuPuXZf2Q4ep5JeZ\nvJrEqLL7J0kSUyaNo2u75mX3eN87zJxjI2lJkpg4bjrtWpZZ1Du3xDPgqVrs/vksk5bEkxS/mGbP\nVHGwao98eZl5Cx3rvCpwd/g7iOYI8Nsdq2BLbc4GflIUpcUdTSgIeuBLbAWbU0o3vwUYgKcVRTGV\n7lcPOAlMVxRl1k3jpwKTsZHVYWxSOFOB9YqiDL7FnP9KopEkiakR4fj7NkEnajHLFjbv+YC3omLu\nK9lMGjmaDvoH0WnKXE9mq4XdppPMWWIrgkxIii3r9RJUPhlKpySmh0SQn3ed3v07O2RvffTdD3fV\nynfsuLE88/yzDjUrxw4fxeBZlQKTFYPelmV183r+qEVz4MBShrZqT8YPH7E4PcV+LWPG82yjV9S1\nXMrJYsenG/CLbFuWcBD3HgvGL7J7GEeERNHp6SFqjGb94QQ6PN8HT10lUt8JJWp4R4fzXrTnY9oN\nCStbe6lFM6i1LYV67pp4qtX25NuTlxkyfgl516/y4ZGdlJQoKCUlXPzpM6L6BdqlUCcd3k6Tqd0c\nFJXfmXWM7s1GIVtMfHtuOxjy+fnKjzTvGeLgzju97z1i5sxDkiQGDx5ISP8Ah3v84dcnmL9wkXr+\nQ/oNpqZOjygU0eOZh6ldyQuT1crWHDP5hfl0aVEma3MD2w7/RGziMoftFbg73PdWzoqiNFMUpflv\n/p4CGmGLq0T9ziFuPpYJaIHNglkFrMaWXNDyBsmUQrjp7+bxbwHjgQBgD7YstHnYCkH/U0iMj1VJ\nBkAnavH3bUJi/P19m7Pk5tuRDIBOo8VyPR9JkoicOpoXferQptPTvOhTh8ipo8uVdEmOSaD5A43J\nLrpabj3K7VSLy4PJZHIoGrx+PY8fpGyMz/vxXOsBGJ/3Y0xElLoeSZIwXbvEhqRku7qTjclLCQoK\nZO+BLbzS2If1+9PtZHUydqfS4fmXMFstiO6OBYWmAjN5+blkbF3Npq0rWLkhmdcGvKimUOddzkcx\n5zNyYD8mjQpTkwtGTOxH2jtTid4aTuzWiTRp0IrqnrURNXq83R7G/JsGbGaLFUmS7GRjdq5YRvvn\nm5R+LlOvUlWGvPQGbnp3tKKOqt616Nh9OD4tOuGiURCruDN1QxqnLpwH4NSF8/x47ddye8SUaApt\n90erpyDfSkHhdUBbrkRSgcWMJEmMmzYFr6qVfvceG41Gnn24DhEtnmF08xeoXcmWAq7XaLDm5ap6\ndnbnL1sR9Y7ySBX4e/Gn+tEoivKLIAhzsVkXz/7e/jeNO4eNKG63z2mg3E5Hpe61vyfH9h8Em0Lx\nbx7wohbZfHvBynsNracbZqvFwaKRKWFw4JsMC/Wzk47pHPAqCUmxDv0/zNdNHLr4AVXq1iq3HuV2\nqsXlQa/XO1ThZx48RrdBk+yyrF7vNITYhFTCggMZFzoIneJKJRPEj5lOTeNDOJdoMMieJM9ZRr1H\napGxfTXunpWIXjMDUXClfuUq9H6lMV4Gd2L3ZhC3Nh1JklgSl0ZBvhWDm4ar1y6zL3MLfXt0UV1n\nq5MzeKLH4xzf8Q2uJ3OZ1LEjuic1mC1WZo0Ko23fviyMjaFmvdqIhS60bNCY/R/soIpHdbw9a9Pi\niX7MWR3BpDd90Wlt4xK2vY/oVJm30+L4OecqsjmXhvXrs//zIzR7vDGZH75DDx8fdFotD3h6qtI4\nly/9ypFDK+gypCdaXRcsZpll0fHk/pqFWMkDQSOU23HTyepquz8WEwY3Dbh6ABfKTVAwaHUsSUqk\nZc+uHFy38Y7uscbdE5PVil5T5h4zWa1o3D0ZGhJ+yxhNBf5Z+NPJAIIgtAG2KYryj9WF+Le6zsaP\nDcfn2Vp2ZGOWLbz3xXnmL/zrmjj9FuXFaJZ8sgfqKCgU0rdfF4cxmTu/In5Jmt22iSPHcfKX0zQO\naMfRLVvo59dZ9d+nrFtPSvqyu3IJ3hyjuZ6bx6HMI5y5kMOQ8Y7vKJ8fXIHpikTOT1cJbROmFg3G\nZ6agcTUw+LXhiBpbm+L1Xy0n2/kyPQcNIz/3Gu/t2cPls+cwFRYRnbCIOnXqMG78HFq0CkSr1WOx\nmFiRNpKxoYMc3Hgz50ZTr9YDTGr5KrqbunaevHiJBT8cxz9qhBoTOTR7Lf4PtODIx9/Qo8koZKuJ\n6APh1K9VFxenQhREfF4KwN1Qia27ZmByK2bA8G7k5uZzaM+H/Ho6G0uBicqVPbDm5lPD3YufLl/F\nL3Aqxz/ZR/t+7RzchQeWbaR3QB/OnjvL5iMZ9Jw+6LYxGoDQKYOwoLeL0RxOX8+SGVHMiYnmlS7t\nybmQxXsbMxjQ1bfcGE3ZPTzFnJEhBL74BHqNBpPVSsKHX+Bctz7OGg2UFEOhGa2LgKh3p6NfAHu2\nZKhN+oaFVWSh/VHc9xjNbRZSBVgL1Cp1pf0j8W8lmvJiNBu2H8NQqTbOGg0GnY7Q4KD78kNTs86u\n56P1cCNXyaWFfy22rvoQP792DnpVn753zsGikU5J9O7em0GRY8m7lsv7mZkIRUUUC1DFqzJpKSm/\nnbZsrCSRHB+DXJCHaHBneGmaqyRJREVFceLEBfr0Dmf3vg00CxjikGX17bG1fHX0HaZ2mqW2jwZY\ndng13V8ZqLYpBluvmWn7InHRumJwESkokpFdnWj0SE08alTm249+4M2+89Fqy+bYtW02g3o7Jhhs\nXLmeS1mXcKuqx0sj0vWpZ6lVuRKx7x/liRkDHCyI49O24nRVi9/zwez4Ng0n9xI6vzqMS1cusOvd\njWQVXECj13Mt6wTBo3pxaO+nXL5oprp3dVq1aInVIrN/6xom+HVTBTnnbMmgoJIHgyeHO6xvV/Jq\nenXtBcDZc2dZu2sltR6tQ/aJLJ6q+4yadRYSZvNcx8cmk3XxEr9c/AbFxRXR4EmDug8SMWYcRqOR\n0RPG80izxmh1IjkXsvho734Uq5XcnKukpy+/RbbeKWJmzeTMTz9w3WLhWlER3YcHUatePSyyTObm\nrcyfaQvjzgofSf8mL6oW3soPPmVyzL83C02SJBLi4jEXmNAZ9ASHhtyzc73vBZuCIJzCMRlAA1Qv\n/fddtQmowL2B0WjkragYW9aZOZ/iEsgt1NC8dceyHuyR05g/e8Zf/kMz1jcyZ0lZplVI+EBEnYaW\nHZ9m/Zpd9OrbUe0psiPjfWa/5ShXZ6xvZP6i+UyLmk2vYUPp3O9N24Nky1YiJ0265dySJDF94kh6\nt30enVgDs2xl+sSRTJ9re8C4u1emT++eiFodTX3eYO/aeNr3KcuyOrZzKd5uhTxS9wE7kgEQBCc7\nkgEQNTo8ndwY3TEUUSMiW2XS3l3LhSIzT/g+ybfv/aSSTE7Or3z40XrOX/ylXDFNV5yY1LU3ad+8\nQ/M327MsZTODnnwBk6tQbkxEdi0it+ASRy6vobCqmW9P/sx3uyMouJKLwd2LGg8+gIsCxZZLZG7/\nGv8Oo8rUBnak4lySr5IM2DTTJnUL4K1D+8oV3nS6KURat05d6tWtR5tBbfl56w8siipLzJAkiYgx\n0/F9vTfio7b59hxbR1S0fSX/yKARjBgTjpObDpycMJnM5J87zTNPNiIpIYag4PIsEIEr5mv0D+6m\nWj8rNmyjqV9PqtaoThv/rsQlJqIptKgkYzs3Df2bvEhKbAxzYv59WWiSJBE5YRKdW5dlVUZOmMTs\neXP+ccR6p6KaR8v524Uta6yhoig7/5rlVeD3YDQamb8whiUJaYhulfHrM0jtfaIVdbT2605cQtLv\nHOXeQye6I5utVK/lRYdez7N9+z7WrNpGStx2Zr+16JY/BJ/XfJgRGcm6uHhWRS9iVXQMIlZioqcx\nYfzIcoUzk+NjSkmmrG1z77bPkxxvs5gKCsqUAKpVrUm7Fn4cyVjK+vhIpOPbiY6KQOMCLtpipOwz\nLPtgDQnvL2Xyjrf4KesHuzbFYLNoaleqgVhKSqJGZOhrfTCfvMzxtYeoW9UDi8VETs6vHHt/CQED\nnmXgyM6s2ZxhJ6a5cX0GHZ95CZ1Wi2ApQdRp6TLMn4wvj3Py9EW1lfENWEwyF379lZnRM/jZfIGL\nQiF9Yt+id+xU+qXMwtnNiRbPvkqfTr0RrK74dwiyq6z37xxIVs5Vu2wysJFN/SrVeHv9VrsEiO2p\nq2n+WlkyqSzLFDsVczj1ICMD7ds/xccm20jmpvl8X+9NfGyyw/1yMehpObAvL3fyxV0pYOrorvTo\n+BSvvVCFaZEjHRJFEhNi6dbpVTtV7AE92/DBwf0AaEWRArPZ1qRP+xu1CK0GS75jk77fgyRJjBk/\njqDQEMaMH1du8srfjYS4eJVkwKaO3bm1Lwlx8X/zyhxxpxI0A/7idVTgHqDAbL5F6937rzUaPGw0\nk2eG4NfvWarX8qJrv8ZsX/UF6anpt33bkiSJpIR4hg3oVybGuGkt7VrUwMtTz7TJIcyYFW9XL3P1\n8iV0Yg274+hEDXKB7QFjMNgrAVSrWpMO7Xry3feZRC+wJUzq9B488BSsPrKRAYNGIoo6ZNnM6lUJ\npL8Xx2CfUDVGs3j/PAa27Ws3n6gREU1w6fgZerRtxp6tC3HWa2nd8QW2ZBylSHGhSK9hTkwMjWoZ\nKbIUIlgFtn/6FZRYydfb7pGo0/JLgYmXOwaz861ldJpaFhPZNSOd6Dnz2bx3D4qHgTcCe6Et7cip\n1evwmz6at6PSGeA/hBre9cqtrNeIBlWQ8wbMFgveNWsyZVQYS5IT+eLLr3BzcafIZMLD3QOwkUza\n0kQKisxsWbNRdUvGpiaRZ5H5/utveajqc3Zzilod5t9U8semJNF8UB+0Oh37E5Pw0mpYuetzXCnC\nt+njBHR6gaSEGOYtKLNAzDepYl+8dIX9R76gUHDmjPQr2VmX8PD0gJJiW5M+i9WObMwWK1q3u8tC\nkySJCVMiadu1s/odnDAlknkzZ/+jLAVzgWNWpSiKmAtMtxjx9+FOLZoK/D+AQadT01pvwNZ69/7r\nkxmNRmZNiefj/bns33CSj/fnMmtK/O/+UBPi4+nU/g27t7Se3fuw7+D36EQNPbs+SVJiWWxHkiT+\n993J8tNcDbYHTGjocDIz19ilI2dmriE0dLi6//CQcLYc/E4lGdvcOt7sFwzuhWz4Opk5h6aw7FI8\nV5XLeLrZS93IVpkGXnWZ9fpoPjjyHc895MGZ05+zZ///aNwrjFaDx9J84HgqPfQoP52UsFr1BLwx\nGv+2I+nQIpjiAgPZF3Ns/Vcq1eHC9x8zZ2Qk5zd8wjfJBzi/4RNWLUjGx8eHPKuM4CSoJHMDWr2O\nnNzLZF/KQqvVqOcLkJ1zgW2bF6O1XmXSyjROXbxgu04WC6s+ep9ho2y1TYvmzueFRk/T5403CWjT\nmz2bd5KxdgM7Nm5D1HnRrHEzlWTCZ0+jVqdmPNWvC36zx7Dlq81cunyh7JpYzOgM9t+9fNnWHfby\n+Yvk51t4ddAIWg0P5ZX+w1l78HtyrxdgNtlbILpSVeyLl66wMfMLGvcLonVgGH2nzGDfrj2sP1ge\n2wAAIABJREFUS0zk4rnT+HYLYOUHn6op3zdiNMPCHGNPt0NcYoJKMrbvgUjbrp2JS0y4q+P81dAZ\n9OW2YtAZ9LcY8ffhlskApYWRdwpFUZQ/q4H2l+HfmgzwW0iSxPjIabT2667GaA5u33RfYjT3CsEj\ngmjTvKnD9jXrlqJ3dqXE6sqvOddYtm6VTS5mTARVq73AZ++mMMy/iZrmGrc2k7ila+2KH+Piksm6\nmE326V94qE4dPL2rMWx0WfHooIGBtG3T3WHurRuXMrCjH0uPbeCNtzqwKXw7hssiA5v3U2M0azJX\n0POpN6jp6Y3ZKjM5cwFWTy1th4Xz9aEDOBUVUeLiwlOt2rI5eg4ze851KPjc9EUKhcW5ZJ++SPjE\naXaaZDdjSFgokpxPi8BeFFzN5au1+3Eyl1DoWkLxxQK8DAZeb96afXt30t0vkLy8a7y3P5Hwti+j\n12owWazMyNiL4uFBds41Nu/cpZJHQnwcWVkXuHjmCoMCghC1ImcvnGblzjR0bhqeePwJJoybRGxq\nErU6NXNIYT48cxmVnVxRik2cvXSeOYsX4ePjo+4TPmkC9do25dCaTbTt4e8w/v1liRjrNLCzaCRJ\nYkrkaOSSInwGOBaCHkqJp59/Bz754keCg0NJiY3Bkp+H1u2PZZ0FhYbwWvs2Dtvf3ZtJ0j/ILVVe\njGbHwT33LEZzv5IBpt/FcRT+vNhmBf4kjEYj82fPIC4hiQKzjEEn/r8iGQC93lBu0PyMdI1JHWep\n7qspodOZGTed/AILTz39IE1ajiRt10acFTPFgg6t10OkRMcj55oQPfUMGx1CaOhwZoWEM615BzUN\nO7xXP8YsiMLHx4fKVSpx9txp3vv8A4qcBFxKFHyea4IzCrJFpkS09aVxF71o7tuJmK2xKJYiiguL\nqFWlBrt+PELHR5tR09MbN40es0HPF1s20adzT/VBsHbLBkSDO6JWx3envmb7h+sRRQ2ybKVQLmDC\nsDZ4uRuITlxMQECATR8tMR6TqQC93oBfJz9yzvyMSYGNE6Ko7VKD/q8FqtdltZTMNctV3D08yL5+\nicVp09BjYVGP1uhLXUp6rYZpAe0JWr2FJcnLVJKZPGk8fr4tEcUnOXv2PItXzsHZyRUXQwmjI4eq\ngfiIKeNx8qhE/XKKMnMKzjMuoJ2a9bVs8QLq1Kmjfge7te/IpKiZuFWvVm5R56+XzcybY2+BGI1G\nZs5exKCQ4HLHuOr0arGn0Wj804F/vU5X7ndQ/5u5/24YjUZmz5tjl3X2T0wEgL9BVPPvwH/Fovk3\nQJIkIidNVN1nsiyTtmwZ3Z8cRD3vsriMbDXzQe47FLs482jDjmhvsg4sFjMrEicQ1WwIV815ZJw+\nzBkuo7leyKwWXRwKS0O3pvNi0xbk5uXz9Q8/8sboKXg/+DBWs4md86bj1+gJPvnlC14IacyxZe/T\n6dlBeLh7kbLiLbRoCOozktz8axz8dBdZV89SjcooipUfs7OZNHq6wwNr9qKZ9Hy1H0e+30NQ70BE\nrYhskUlYk4xesFDVsyo/SKdZlJJAQnI8vl3aqddiReoquvo3RqPVsmDaRt4assQx9XrpSAo1xbjq\ndIyaNJ931yUwsblj9cG49TtJ3rgNo9HIuLFjePmZRxwKKKMTlxE6brDD9pSUDDpMH+1gXXy+IJ6R\n7cosUrPFSuYv2cxdZHv4R4SM5qUCD+Z9e4BesyMdxv9vxz5S48t3UYVPnIixeQtHK2hlGgEdWvPJ\nFz+yYMGdSxTdCuXFaA5s3fGPi9H81bjvEjQVqMD9gtFoJCg4hLTlK0lITiUhdSnW69iRDNhSjM3X\nZUJDAzl0MB1LaTzCYjGzcf18Qp/z46o5j9SrB3g2xp/uKWFUqV3FQSrnqqkAfdWavNCiLe179CF8\nQgTfbFnN1fPn0Oj0dJownWUHdvH92ZNsjdiDmFeJw+/tJjk9iqqelVWS2f35WrqMeo5R8wPoNuM1\ncnV56MQSdh1cyeady8nOybKtWxQRtRrWv7tMJRkAUSsS3Hc4V0wKfZsOZ3KvaURNmM3Lr76oElVe\nbh6V3D3ZsvIIe7e+RyVD5XJTrx995FEeffIhHnjsEbSijmJXEdNvpGpMFiveNSuTmGArXjWX04b6\npHQGBedypWIeqO7NB+kbsJhLr7vZzLZZMQS8ZE9otqyvMqUKa24+D1etyfRnOnJwyVK78UfXZRAx\ndtwtvxthw4dzbP06uzH7lqbQ9OXn2L77EMHBobccezcwGo3Mmzmbbz/8lHf3ZvLth5/+50jmXuNP\nSdBUoAL3GpIkkRK/hOA3y5Sbo+NWIlvNDm/uOg/R5i6cP5m4uFQKCiwYDFqMXm48WLUO8f/bTIvo\nXmo9SrGHq4NUzsZvPqN/6Ci0pQ9zrSjSvWdvNu/aTPNho9Do9HhVr45YWMLAoNFqNtqq1FislkJE\nrci2o3voObIZos7mmrp+NR93d5GQkA6IOg2y2crK9LW0bdoHdzdPaj/0OLlZZ1SSuQFRW9YqWtSI\nDG83lPVvb6TOwDpkZ2WTuXk//dsHqBbQlP/FlH9d3F3p3tOXRbHLschmnm/TjZjNSYS3fEmN0cQd\nepe23Vrw6Tc2PTNdOW2oM3Yco07NR8qViqlevQZvjQglNjWJfIvM9198TS3BGS83e4EQs8XK/37+\nhcGjxuEuaigUSjBZLdT2rEIIL7FxwTJMrpAlX2d5+u80RjMaiZ4+ndjkZC5fvcaZU79Qr4Y30rkc\nZkfNv6dEYDQaiZ6/4J4d77+OO7ZoBEEIFAThC0EQTIIgFP/2769cZAX+O0iMj6Nr21Z2NRNv9uxA\n6sF4tZ5FtprZ8sUGRoTb2iEbjUaio6NITo4mOjoK79rVMVtlLDrFrujxqYGtifk0E7PVAtjcZqcK\nclWSuQGtKOJUZBOLtJpNKGZZJRnbmnT0CwzjbPZ5W+zGpVAlGYAjuz6jf/9W6jZRp6H/4Nd5+9gu\nlq5K4ZU3/DFbC5Etv8kYsshYZYv6/6JGpNhSAsDRA0dVkgEbKfXq6Evy1vl212XdO0k0a9cYURTx\nrKRnW0Ya7p5ePO8fxMKPTjB63W4WH/uQtt1a4Onhxvc//oAkSQSHhLJ9z9vIpfOfPXuekhItTV/q\nw/rle9XtsmwhJW4NwaXdOmOi5pEWHcurTz9H+yatSN1x2C7ra+6a7Tw9aBwN/YdSrWUAUolCzJf7\nVLIZ/lgzPIoFli+9PcncgNFoJGbuXFalJHMk8yCrVq1lwYLoCmvjH447VQboB8QBK4GngWWAK9AJ\nW5uAtX/VAivw34K5wN6Fk3Uph6Mff04u+cQfjqF+XSOVvL2YGefYO97WbTGWq/nZTP3qKEVOznZC\nkJXrVqfBWF/CRyXzeK1anMi+hlc9IxZZtiMbiyxT4uKK1WziSPwCanpWUknmBkRRR21jfRLWLqF6\nrUrIZmsZ2RQrdsQDNrK5fPVXtG61qVK9Nk27DiBpfSpBvcpiNEnrUvF/uas6RrbKnDh1wpbCWqQ4\nWEDPNXqKzHcOMn3ZSB5v9AQuWmjXy4dq1ashyzK51/Lxm9CbnZtXkHPyIpbcHEIGtuOBujWQZQsr\nM/bSzPcR+vTtymOPPolHpUpkHvsM2VxAzqnLOJUU4eZWiZYvBbNl5UZwslBS5IzF7Oxw7YPCQhkz\nPIQiZ5HpWw5iLShAzs3jpcAJVK/fAACNTk+T/qGc2rGC7cUS1qx8NB5uRCRF/6kmeRX45+NOXWej\ngDnYMsuGAImKonwuCEIl4AhlLZYrUIE/BZ2hzIWTdSmHrfs/oGuXQFVGZf+h9USGB5Wl48YlYMo3\no1DCr2d+ZEjPdujEBzE3e4ZFyevYOzaV9gsD1aLHL9MOYDbJBPZpRtyOT3j+9VasTIrD178HH374\nLoVKCae+/55KVSqzPTKUkC49yPzgfWTZbEc2smzmwumzuAglWH7OY0HIjwyIfIO6D1anGMWeeADZ\nbMXD4Mmv185yYMtMlBIdD7/alrdSF1JUXIioN2C+no+73s22v1Umbkcirh5upG/fQfbJH1mWuQ5L\nvhXXEmdEjYaSEoXLpuvUedjImUuncFJK2LftCi3at2LbtgMUFWv5dOMecnPz6TJ4GJ/u286mXe9S\ntZoWZ40TL7d+hA8PnWRUSKDqpkxfsZHKHjUY7juYT344zvKNMxjYYxpd2o5GtphYvnEGY0YHl3vv\nSqoZeKO/v9r+en1MGlXrGe320ej0KC6uRC2ucEv9l3Cnjc/ygM7AO0Ah4KMoykeln3UHZiuK0uCv\nXOifQUXW2T8PkiSRFBeLXJCPaHAjKDRMJY8pE8fTtW0rMnYfpE3bIQ71Jv/78R1CQocTMX4ynVr6\nqRbBhm0r8Pd9kRrelQGbkvWmZXtx8TAg65wQzSX0ND7HgqM7iAzpyKzVh/CuY+QHSUJbpTJdJ4xR\n1Ya3zJuH9cJ5pgSOITcvj5V7d9N3aJliwLq0JNwLnRjSrneZ0vOuFFzrFeIkCGAtZtDgtmqMZlnq\nIXLyrjBqbgdEvQbZZGV59EdcuiAwYFykOu/G+Bg8cUHv5c4LrXxYn7SU6o/VoM9AX/Ku5XNo+dsM\nauevCmIuXruC9r17UadePWRZZsvqleRmXaTQozr1vDzp26IpqTt38EK33lw78S1Waxbt/G0/1XVL\nj+L3RheH+EvUogTC24zk7eMHeOYxbzYe+xoXjTtF1jx6vP4UWWiYu2ix3b0cOHQw3ScMd9BK27b6\nAK2Hjle3Wc0mst/OYPHc2X/4exOfkECByYxBryMkOLjCbfYX4b6LamLrhumiKIoiCMJF4EHgo9LP\n8oFa92IxFfhvQJIkpo0fTY/Wr6oPzGnjRzNjvk0Dbebc+STGx3HpSn65MioFBTIJcQkqydi2i/Ts\nMoA9mavo3701YOvN4yK6MOaZVur4E9kXuZRnInLJboore5B94QJOGleVZMBWm9FtwgT2x88hcV06\nI3oPxl3QcWDDVkqEYpwUZzwFNwa181NFOHUakZCOw9jw7Wq6hzTj0oUrzJq7Db1eh2wqwlwkM2zC\na2xZ+hXFha44uxbi2+sxMrddtpu3R0g46QtnU8etCq46LRpXgT4DfRF1WvauPKCSDNg0ykb1GcDa\no4eo07cPoijS7c3+ZK5bxeff/UhtzcOsP7gfN40r25Ni2LptK4nJMaq1VVIklJtR9mDDeuz5Zh9a\nSnjxsUd58bFH7fbZ/Ok39vdy9HiqeHjakYztfETys05jNZvQ6PRYzSY+WZdM7LSJf/h7MzEykjc6\n+alpxxMjI5k7uyIj7J+OOyWab4BHgEzgXSCiVNG5CFth5w9/yeoq8K+AJEnEpS+moDAPg6s7BRfz\nVJK5mHOFPZ9+hNW1hEHD+7EseVWpUGg0Y8dMtNMoA5tFYzCImPLz7WIWl7KzOPLeIS5lXWXVxkza\nNH8BTw8D3549g+kZC3qNlhPZF0n65F1GdxvOeukTmo62VZnvj08ovyPkNQv+HWsxe+k8TLjgocmj\nisabDi8E8O772xyUnnUaEcViy6/x8HLD86EG4F4FF6WE4h8+Y9+6c/h1D1ZVG7asSuLC6Sz2pqaj\nuAi80r4dVWrUpOojDWkUGsbWhXPQ6FzKWixYKVcQk+KyXBxRFMm3WKlVswbduweoD+SE5SuYNG0q\nzrIT8VO/w7uuFkuJudyMMkF04mJWFnUVb8wWC9fyC9jx5XGsrk44y0V4eZbpyiXFxtHDpxVr3z1Q\nrvrzkw0akP12BnmyFXdRQ+y0iX+YFOITElSSuXGub3TyIz4hgYULKlxx/2TcKdGkAg+V/nsKcAh4\nr/T/8wC/e7yuCvxLIEkS4xeE0XrUS2j1tbGYrKyP/JjcvHrk5hWw/tOjdBrTAVGvRTZZmBA1mnkR\nizh37hwffXyITz7+jEH9xtnFaObOn05CXAKyRUbUilzKzuJA5g76+3ZDpxUxW2RW7lpPLjLXlWIG\nbU5Eo9fgotfQoOaDbP3qGE1njFXJxcnVpdyOkN5eThw6egavRg0IGDtYjfNsnrUS0axgtsp2ZGO2\nygjaEmSzlaSFu7lwuYR2s7vh3aA+Gf3/h1/3YXbK2t16B7F3TQY92w1CtpjZuGEZL/t1oMTVFY1e\nT5Oxk9j+Zjeb/plOCxrKFcTEuawRrSzL/CKdxs3LnYTVS7GYC2n2YhNqeXmRdeIEeWYrnV8cwYO1\nHiN9XxRz5ifwkPERBFxRKOSanEOr4c049fYFlDyYs3oT2oeq0jayt3r+h2N3qmrGn334GRe+PU1R\nkYWMhSkEjB2mxmgOr93Ogml3Zm1IkkRiTCJZFy5x/vIv1H+oDl6VvBkRVCYhU2AylysiWWAyl3PE\nCvyT8IeUAQRBMACNAT3wgaIoOfd6YfcSFTGavw9jpoyiYb9qaPVlgXGLycrhqUdxxoVmY1oj6m96\nozZZOJZynKyzPxAS2obcXBO7d37PGSmfhxs8ylszbRJ8UVGzkX4+w6CeQ9m5dws9m7+B7iYLx2yR\nmbZyCRERE0lZHk1gWGe1H05KzE5eCY2gci2bx/fK+fN8sH497YYNUWMlm2bNpq6HmRL3ajQOH+TQ\ngGxd0FyqF+oY2TlQjdHE7Ujmqss1ajzwBC+36oObRyV2ZiTyfGhXvkjZRL8egxyuz/YVq+nhO8R2\n7hYzMctn8tq8OXjWqQvAe+Mnoi3Kps/IrncUo0mNXYyLoYShE3uo55s2dxNdH32eFxs2xGyxsHDz\nNvxem4Sl0MLWT9IZ2GusSuTp6+eSX3SeJdFJ+Pj4EDgqiEaDGzuc/zcp71F4xkTAC37q+S8/uIIS\nfTEubjouX89ledrtlbpvQJIkpoycyusPv8aBExt5M9BHjW1tzjjOzBlxGI1Gxo4bxxMvvOSgtPC/\nzz6psGj+Avwdjc+cFUVR7XNFUQqwWTUVqMBtUVCYh1Zf226bVq/hfN41qntWtiMZAFGv5adT3xMZ\n3hadToNOp2FIYGPMZitLFh8FIDJiAp06tib3ucfZemAt58+dtyMZAJ1WxNvDi0+Ov6+SDNhk+IeF\nd2L5pg20ChkNQOVatXiha1fSwsehczMguhu4duocrjU8qFbJtdwGZLUefZCnn3iFWasWUKNyJXJM\nOTjrnalRw0YyVbxt59wpYAR71i2j2NmmpH1zGweLbEZQykrZRK2OqsaHVZKxmkwoZjPFZ7M5Mn8b\nJTpnXK8XMH3JQmobH0ZxduGSnMvmbRlcu5yLpkSgSLEwaeZQu/MdOrE7SRFreLFhQ3RaLWP9u7Bs\nfwb5hSUqydyYf3CviWzZP5/k5BhQ4BfpF57VN3c4/xNf/8TYViF2MaqBrQew8b21OCsuLLxDkgFI\njEnE/wV/Nn+yhjeH+9jVH/kHPE9iUgzz58USEhzsEKPZv3M7c2f/scSCCtw/3Knr7LwgCOuB1Yqi\nHP8rF1SBfxcMru5YTFYHi+axBk/x0/c/IZssDhaNpcCM7jd1KDqdBrMln8EjQvF0E8m9nk/16lXp\n82Y31q/ajNkiO1g01uJCzOY8RF09u2OJOi150i+qu8xiNnNk5UoMlT0pzLmMS7GWiZGJ7Nu3gqKi\n63a1OLb1y5z639eYfz1BgavMdZdcRk/1V9/CVyyL5eV2YVTxro1W1CMUglIis23tUrr0GaLGaLau\nXEX718sUmmWLmZJSWX2rycRH8+ZRdPY0Me390Ws0nMu9ypqiH6hftRZf/vQdxkcaMnR2DFqdjgun\nT7EtPhp3g86ubfaN89XcdP11Wi2CYCG34Eq5yRZ5Vyz0G9SWiPBw6lWpXe75G5x05caorprNJKTG\n3FUcxpwnI9bUobhYy60/MpttbQOMRiNzZ8+2yzq7n4kAkiQRvzgVU54FvbuWkFGBFUkId4g7JZot\nQF8gVBCEH4FVwFpFUc7+ZSurwL8CoYNH3RSj0WAxWTm4+BPmj7OJLE6IGk3rwNfUGM2GqO2U5BVi\nNlvtyMZstlK1TkNeadOT9w9uYUXGFqp5euDbpjUt2zYjfvVyQgIGqjGa5fs20aBRQ3Q6fVmMoxSy\n2YKcW8imsVPRemi5ln2R4qsmateuSrUHG/BGxyC0og4fHz927Ung4MJ0Wt8Uo9kSEcOYoGY8YKzG\nyvTDdOttrwIwYJAPS9OXoXHxgiKZS+dPUrmOF106vcqhbcspVpwotJixFhTj4e5lW5PFzIZtKaBT\n2DViGN6GSvR43Zc9P3yvksyC86d4aeoMNHo9V2MX0qmrTWb/8sULHN+zjslT+7J16+Fyz9dqKtM6\nM1ssFBW7cD03q9xki0Jznk3PrGp1utdrTspbm2g1tbt6/u8m7KP+w/XLjVE98dyTd/3w1bmLyFYz\nQpGm3Pojna6scZnRaPxb3GSSJDEpbBa+Lw9GrGNTyp4UNos5sZMryOYOcMcxGkEQXAFf4E2gPTZl\ngHexqQVsURTl7vul3idUxGj+Xvw26yx08Cj7PjGpsVy5nsOPX/zA0Fe7I2q0bPl6M/2H+dgsGbOV\npcs/puErAXz96T4ChnZE1InIZpmtqVtp69OUFSvW87DxQZwUJ0qEEuTiQmJj4wCInD6Kzr1eVmMW\nCQu38kCjXlw6/TnF2hyUs05Yrmej83DlfI6Fhg2eRXER8GnVjitXs9i9Iw2LUyEuBh0lZisjg17j\nAWM1AFYtP0LvgW84nHPUlA2EDBxPbt51Mt89xLmsX/Gu5k7nTq9T3bsKAGfOXGD18kxq16rH6dOn\nqGIwUN3di0JngZ/OSfTtGUT6mniefOBBTuZk0TY2EY3e1tTq3dgFdOvTD4B9K5Lo0+1ZRJ2WrKwr\n7Np9jIChHW4Zo5m/aTNOhpoI1lxEFzc6+49SYzQ7Ni/GWcylR6Af+xKPMOLZAM7n5rD53DGsOvj1\nSjarlq8CYOrIyXYxmozPtvPWkll3/eC90xjN34mxoyJ4xrujg67cl5d2sXBx1N+4sr8O9zJG80eT\nATyBHtisnCaArCiK271Y0F+BCqL552PCqLE0rf6E6v66eOUSe744wOncs5isEDBiBkf2rKf7sDaq\n8CSAbJZJnZHGwjnR7NixHZPJhF6vJzg4RH04ZWRkELVgOvUerEH2uctU01Xm3IVLVHqgFoLGharZ\nxbzWyMiWz88x1Hey2tslLXMeusoWBvTtgChqOXvmAmlp6/By11OoFNKl10t8/uVJunRv4fAWvjH9\nM1q81p6dx/bReXBfNRNrx7IVdOnQGE8PN9at3kNb345U8/ZGlmUOpW0krIkvZquFiJ2rMdWoRo9x\nk9HqdGxbmUqz8DJl42Pxi+nY2Q+tTseB5bEMfPN19bOsrCu8fehjTp28iNZJT0hIGMff/wBLfj5a\nNzd+vXSVju37kJ19kV2pC6hTrRbFriLOhTJX5Su0GtiWjA2ZBNXvyoNV66jHNVtl9hR/x7CxocTH\npJF1PocL50/x4AP1cNVrKHQqwtXFxXb9Q0LuihzuJOvs78SIwWNo8dibDtsPf7+axPQ/35rg9yBJ\nErFL48kvNOHmqidsyN1d3z+Cv6Ng0w6KouQKgrAPqIKteLPmvVhMBf67kPMK0NUrI5Aalb0Z3PJN\ntn93FOfKXlgtMnnXztqRDICoE3ns8Ub4+PjYdXK8GUlpifQL6clHq99jTsuhatOzWTtXcbXQzLTe\nvZi4cQchfjHqG6uo0VHF3YPufV9GFLVcysrh8P53mTVihJrxFbtuHS+2rEfyku0MH+mnvoUnxe4i\noN0gDn3wjkoyYCtg7DxoAPFTZ9LwkYd44ZVXOXr4HZSSYgQnZ6zFNveWTqOlTp16PBteVkTq6uTM\npRM/88uubbhYZZTiEtYnxdMrKIQSQWPnLqtevTJdu7Zg7dovcHUWefGFFwnwL4sFjR0zHlk2U61a\nDbS166MUWUG+zsncHLxqVuODnV9isBrY9sMxRrzUVbVYVvyYyYDIUCaFzqXd80GI1fXIj5vY/O58\nxMrX6OLXSQ3SR0RMIirqzptwGY1G5sfOv6N9/w7o3bXlKmXr3bW3GXVvIEkS4fMjeDXUV3Vfhs+P\nIGZ81D+ChO8Ed9WPRhAEd0EQBgmC8A5wCpiMzX3W8S6PU0cQhM2CIFwTBCFXEIQtgiDUvZtjlB5n\noiAIJYIgHLvbsRX4Z0CSJAKHD+HY8XdJPbqO5e9s4uKVS4AtoC+6GRg5Yhh71yymVk0PZPNvFI/N\nMlrX2//YBRf4dN+njGjSSW0RoNNomdypHyXFVpZ/fARnZ71DbxcnTZFazHj47Q8Y2LGjXVV+WO/e\nHNr9DRfOXiV69iaiZ29i9bKj6LSV8HD3pERQVJLJuXiJXSkbOZi2g6I8qF6jJvt37IASM05OhVBi\nJlu+wvlrNtnA3JIi3luZztHYRbydHE+duka+i5lL0EvPMrJlM8Kavor+6mV2LIzBdKmA+NhNyOZS\nhWWzhdUrDtOkeXdadOjPkoQUu/MKCR3BvszNyLKZNr7+XBOc6OXbkxkDxzC8eQ+uXsvDpZIbed6u\nhBxLIOmXfewp/o7JSfPYvnmfjWQ0NheeqNHj6iKqJAO22paOvu1IiL9922NJkhg3aRTBowczbtIo\ntTbnn4iQUYHs+TjdTil7z8fphIwK/Mvnjl0ar5IM2LL+Xg31JXbpP6et9O/hTtObO2Bzk3UEROAY\nEAhk3G1sRhAEHTbNNDO2eA/AbOCwIAhPKYpyR9VXgiA8CEQCWXczfwXKoOpGmU0YdPr7rhslSRJh\nY4JQKGLCW0GqsOO6lO045TtxvVim4RONAHii0cM0bm5k29IMugwJUGM0KxetxtnqTsjgIJxLnBA9\n9ASF25+HUgSYih2anuk0WqoZKlMgunBVvujwxlpidSmrnC9Wyq3K1ziJRE3rWyZKufoArzR9lfVb\n1+Ai6rGYZfJyr3MsfT9v+gyzueWeNhO3fTb66iLderVWx65dsZtVX7xDv2ebU3I1l5DXOqrWV+TW\nFCKHD7GXn+nbmw17j9G9Uz/OXjjD7GkJPNSwEQpafNoMo6q3rU6owGSxW7fRaCQ4NJDkiDf0AAAg\nAElEQVTJ095CcHJBlvNY/kkmV369iF6no9DbkzYjy2qKjq7JYPJYW1sA0/VCxOp6u+M5uZSUW0hp\nMptue+8jZo6iQ/+XEXX1kM0WImaOImrK4n/kW7rRaGRO7GS7rLP7lQiQX2gqN8U+v/D/T6HqnbrO\ndgI/YiOENYqinPkTcwYCRuARRVFOAQiC8A3wMzAMWHzroXZIBNYADQHn39m3Ar+BJElMnBxBO78O\nZbpRkyOYO+vOzXFJkkiJiUXOK0B0NzAsPKwsyH9KIj5mKabrheg9XAkJHwICJCTFYpLz0Ivu5Obm\n4aoT8O/uZ9d/pvcwP7auOkiY/2BkWSZy4iQMXjo8PQ281qQBadMT0WhFLLIZBHdqurjSofbrXDPl\nsuvrtxn05gAefeIxJkyYAIB3lVr8+M1XmJ+xOLRxruVmpFv93sSfjSVxx3RGdJ6uxmh+vXyWhLSf\n6e7XnpPnL5CyezeugkD7V16hRpUqmC0W6taryrXcAjK3vk+xIqDX6cjcfQjRVcSSl8uK6DiqV6qt\nkgzY3HKhfpFs/nqJ3Xn3GdCBmVNTmP/1ASp56Eg9tBdXVwMuQjE1PSqVS3QKRQBoNVqccaXE6oTg\nUvZzsMhmDL+pVZIkifkrV9F89mxVg+x4ehpTxoxi8ozpdC0lGbBJ8TTtG8CS5CQWzZ2H3sMV2WpS\nLRqAkiInZFl2KKTU6/SlCtuJmPLN6N10BIeOwGg0kpCyuJRkyup9OvR/mYSUxSyYc6ePgPsLo9H4\ntwT+3Vz15aaYu7nqbjPqn4U7JZqXFEX57B7N2RH46AbJACiKIgmC8D42hejf/ZYJgtAbeBboCWy7\nR+v6TyE+IUElGbC9gbbz63DHulGSJDEzbAz9XnwNXW3bW/fMsDFMiY0GBSaFzKP9U6GIlfTIVhPj\nhs+m0O0svYa0VLOh0hN2YDAYyhV2FJwFdV2d3mjH0Y8+ZM3SI7jmCkxvE6bGDaZtiMevZXPSD67j\nisbEoMDBKnGOGzeey9fyqCa64SV6MGvHSiZ37q9aCcmH9tLx+d7oNDpCXg9jQsYYZqweSrXKNci5\nfpGaLxjJz3dh0653GDE6TD3uxtUb6PzSS6zZu5cOfi+ydfdxuvfopX6enJSK5XoeD9T4P/bOOjyK\nc23jv42sxUOcAEuF0q9KS1uKHay4BJrgViRABAgS3J1AQlxwCA4JBIJTHNpSqrQFKgwaSID47sxG\n9vtjYcN2lyo957SH+7q4LnYy887szOzc8z7P/dyPF8U5tykstkP5hmXLZZsKucX3fva1Orwb2J4T\nCR/So0W4ifRSMuYi3LyFpnqVf61OkpBhR+69O+w5voMJY8JMx7B+62readWLLz8+SNT8aWb7iUlL\n483BQ5GrjGQhV6l5c/BQtmVlUufl/7Pq+1byoFV2WMTQqhyN3Hhty8pFMndmmeVodmfvIyQklMmR\nU+nUqpvJYXty5FTmL56LViqmKN+R3WtOYCgDmT38q8ubaKUSnsIco4aEWeRoTsdnExP591G7/Sai\neYIkA/ASsNPK8m+AwF/bWCaTuQLRwHiDwVAgkz0RUcT/HEp12t8d7ngUqTGxRpJ5JOfR/60mpMbE\nUmZwMJLMI3H8zm9EkHV5qtkb7ODQLsTM22jV2NHmkfShUqlEJpPh7/YsnV5rYFaN7uvswb5Pj6BQ\nKxk0qJcZcQYEBJCwOIrx7d8n/5nnWHnuBOM3JaCwU+DvWptO9Xvj7erzYCwVNbxrcbuoCNFGT4Wz\nLe3GDmZTxGIGh4WYjRvYrycLZs5DppDxyWc/mEjm4d+HjwgmYWksZWIZGncvDEonq4nkStuq2paH\n31smt+fstpP0aRpuNgMa3m0qSzdG8FxdPwz2tsjKKijIK+L9jgM4dHofrVs1JTszk9KiQu4UlODl\n5U3myvnEJiVazFCLJT0+KvPwl1ylpljS46pQWfV9c3xQa6PRaFgQP5GEmOVoi8tQO9kTt9JYmZ+Y\nkIBWp0WtUjN//gIS45NMJANGh+1OrbqRGJ9EmWjgwJqzDHi/iyl0uHbNLjx9a/3arfc/B41GQ0zk\n/AeqMx2O9qq/lRAA/qDq7E/CHci3svw+4PYbtl8CXDIYDOue6FH9j8FBpX5suOO3QCwuRVXdMuch\nlZRSUFKJsq75OEq5Gln5z97qVQpkMti4die9BwRU5WhWZdGxZZW+RBRF1A5qim7dN5FMTn4ee788\nzuVbP1Kv7kvc1N2xSpzP+/qRry1l9YWP+KB/gEkxtnKruYOSTq/jRu5NHDU+9B03hn07NqFQK1Ep\nFFbHffHF/+OLy5e4cbvY6t8rbWzp3uBfgIy4w3tI2R3F8E7jTTOUpKzFiMpcE8mKosT6Dftp3DeA\nj9afsRAmKOUqbO1U1Atojl/tGkg6kVWLUzn5xTFy83M4s2833d98kc3nS5kwaIjpey6PjcXf39/s\noeSkkJus+x9Cr9PipJAzMjiYsbOn86++QVW9eaKTeMnDH+GKgKa2xhhCirW0fYlassTss7ZEZ9EV\nVKlQoi3VYS+zM5GM8ZwpGPB+Fw6dvmAx7pOAsV4rnlKpFAeFA+HB4X+rB7VGoyFm7pJfX/G/FL9L\ndfafhkwma4JRlDD8P30sf3eEhYayb+ceY5tgjA/zfTv3EBZqvXviz6F0ckCnN08y6/QSZTK4dPEL\nRL35zEjUazHYmScvRZ1Evdfq4+NZi5RlG0mJ3cj+zI+wqVDg4uRsOq6s/fvoEhDAN99eRqcXycnP\nY8tnB3m7WWN86nrQfmxTvGq7mr6LaXxRRFlpIOOb8wwIam+WSB/cvRX7Lux8cNw6lh2IofrLNeg7\nbgwKlQqZwcZoteLjbnVcextbnGzk3C0osfr3wqJC3Bwc8XNzp5rSna6te5JxNp0NR9PIOJvO+216\nUVpqy/QpKSxauI4FURt4O7AdHn5eGJSVJnVT1fnT8ay/Bx9v3c/dnFwUKiWDIofhWcsTpayS0a3e\nYd9XP9Cnq3m/mqDmzZk1zTx0FhEczPmVy9E/mL0+zNFEBBstVZZOn82FzP2kT1nAx4tXE/FsK3r4\nvsWcsEiEK8Ljb4qfQe2o4vqta2zLXMe2HavYlrmO67euoXZQYSPDasjU5i8IUAiCQOTcSOp2qkvD\nfg2p26kukXMj/6tVbv80/KGCzT+1Q2PjtEyDwTDiZ8sTgUCDweD9C9t+g7F19OSHi4DdGAmzPaAz\nGAx6K9s9Ldi0goeqs4fhjt+jOjPL0TzIeaw7dxK5hxvvemnIPHmRbk0mm+L4aw9PR1G9gP7D2phy\nNDvST7B4nmXVtyAIxjBMqRaDoRJDpcjFCwJNX3mfw2dW4qi2p5q3HyUVenqObI1SpSA35x57N39E\nj8A+pjzBitTl9K71PKu+/gxNbQ12lNOx4ev4ehg7cM5MTcfHU8PVW9foPqwTx05+SfshxneYu7dv\nczg7gwZBrTgdu4UhwYNM427dsJU2jZqTuH4dztVcUdvJGDJ4YFUOZ8sWfrp6jQocUUsizkpnRg2c\nY3EO1x5bQ/P+/dm1cTm16r3IpVMf0mfiEIrzizmR8KEpfCbqdWw9Ekf3dq/j4uTImjMn6BTcyzjG\nouVUFJfxrLM9kqRnYI++FvuZFp9ExJSJBAUFIQgCMctTyLmbx83rt6hV+1k8XZxNJPMQk0aOpa3D\nCxbiif2llxg2JpzUuBikkiIUjs4MG2m9qPLUqVNMGTMG3xo+VCpssJEqybl+m3nR0WTtzKDh6xoT\n2dzJu8vBIycoLCnlpVfeYETomCc24xg7eSx1O9VF8Ygtj6STuLj7Ikvn//XFln9X/McLNv8kvsGY\np/k5/g/49le2fRGjymyElb/dByKAOGsbzpw50/T/Zs2a0axZs18/0n84fq9vlCAIxKYmUyLpkJVV\nIiltmbtnC2q5gpp16jAtdinL5i6gtq8fvVrKyT47h/IKe+xsy/CuDvdt3Niw4Tx2NhWUV9pSdK+C\nqLmLsa2UoXKqkiVrNBqilixBEK4wa2I4fdu8SvwPOXz3027mjghApZCjk/Qs2ZRNUUEJSpUCL99q\ntO/ZgKzszVy7fIdyvYReV0a6wZ4hEfNMLZg3bE2hT7PXcHVyQF9RQWBYezavz6RGLT9sT31uyk94\n+PjQqkM3TmZkcys/j6h5S3j+uWext7GlTaPmZO7dhcxegWeN52jXyJ/duzOorAQbG2jT9m12f+rP\nWwNHcTwuisIL31r1FCvVazmxeTnVyko4n76BXu3bc3DJBm7pSlC6VSN6xwTq+NTE1rac7u3q4eNh\ntK6RlRmN1CWdiINjNQKHDEUSdaxYNNVqv5ra1Z4nZcFyfH19WZy+iuc7v4d2yxGqKXz48dwFQqIt\nbWPEohJUbpah0Y8PnOa7r84w5v33UCk80Ul65owLZ9oSyxeG5Ph4DF5q/jXufZMzwp6YLaSvWcPE\nqVOZNmks73f4F4XFxezZt5/BfZqiUsrRiXpmTglj5ryEJ0I2pVKpGckAKFQKSqXSPz32PwnHjh3j\n2LFjf8nY/4kZzSggCqO8WXiwTANcBiINBsNjVWcymayplcWxGGc0YcCPBoPhlpXtns5oHoEgCMQn\nJ1Gi0+GoUhE+IuRXf9CCIDBmzgyaDOhe1d9+xgLKRD32zk4U5t1j9uSpnD99hhZ+z1s87GZvX4/7\nczWxs6nAIJNTp15DLmUfZkizHlVeWeeymBVbleScOG4k773kiEopZ9KSDGYO7oZK8YjRpqQn9eQZ\nuo+o6rsn6iSWTkrD368mOblFDAudifIRa35R1HFkRwIVWj2lyBg0vidb03fSObAtRYXF7Nxzho6D\nqmpIdq9OJeenq+iKtNR94XkK8u5SZqjA2d+bezkFvDdwKhf2pTCgbytTriUpdQfPdw/lp49PYijT\nc/urr1FL4OXlwf2iXBQKJfcLCqnuJmd6YDMTcSZkn6F9644YZDL2nPuEq8JVpg3sa3Eu15w5Qet+\nXdmeto02rXvi4WUUNNy6JnBs6wpCe/cx5WjW7thLp9f74KJ2JfZEDPUmfMDlpbsZ+kowKrkKnV5H\nypllJG1ZhqZ21T3wuBnN9ANJzPmgs8V12HelkAXRsWb3S+ee3RgRM8qi6+amKSs48eFJo+1MQhzn\nz51mfEgrVMpHxhT1HP20mEVRVt8bfxeezmj+GJ7kjOYXczQPnADayGSyjjKZzPHBshdkMtkmmUz2\njUwmOyaTybr9zn0uBwRgl0wm6yyTyTpjVKFdxdjJ8+G+a8pksnKZTDb14TKDwXDi5/+AAqDQYDCc\ntEYyT2EOQRCInDGVOk0b8G5AO+o0bUDkjKm/Gq+OTU02kQzAjUs/UOHkRLe4xbwfPZ++qctYvGYF\nbzZqyMYzHxo7P2J8MKYd3o3CFfr2qs/AgU3p1b0en+7fSKfXm5spyILe6kxyTKJpn2JpEQXFWtKy\nTmCvkJk93ABUCjl3r941q4hPidqEwc4BG0dnvKv7m5EMgFKp4uZdHa1f7cKt2zmIokSz9xqxaW0m\nkijhpC1hz/SZpISEkZG4gOL7N6nlXxt/lxrkXs2lwtuTFimr8O/WD0ks5/DGJF5uN5wVGz9i0dKN\nzJq3ikJbV77K2kKboB50GRxMl9ERyBz02KkrGRUazuiwcCaPG4fa0ZX7JVrTdwnr0JC0TZvYdfAM\nV3+4iZ2DE9Hpm83O5ZK1G7gm5LBqXqoZyQD41dRwTzKwYMVa4rfuYUFqOp1e74O3q69RTFBpz6Ut\nR0wkYzzvKoY3HE3SUnP3gGER4az76rApD6fTS6ScycDPp5rV6yCVFJkti0tOxvfZWmYkA0YbHrmT\ncZmxZXc0L7/8ohnJAKiUckSt+Zh/FOHB4RxaeQjpwX0i6SQOrTxEeHD4Exn/KX4djw2dyWSyOhib\nm1XHmAu5LZPJOgH7Hnz+CXgZ2CaTydoYDIbf1AjNYDBoZTJZCyAGY7sB2YP9RBgMhkczyLJH/v3q\nsL9l308B8clJtOzezcx/q2X3bsQnJ7F0kbnXlCAIxCcmUaoVufDdBdwbvGYimiObdhC0aDZytfGz\nXK0iYMZE4qfPZ11yGimxcYglpSgdHXD0c6P7+y3Mm4+Fd2VT9D7Ujq6U2RuwL5PR/qXm6EqqbgGp\nAtL2ncLN3Q2ZnZyUzCN0bvoGftWM4kSdpOd+aRnzJyxHqbKnvMxA7yEhVH/QbTJpYRSiqLOY0bgq\nnMm+cIAG3d5l9sRoXN3duF9YQuW1LGa27YhaLker1zNh13Z0BjlqPzUurs78q04zdl46yA/Hj5Ob\nsZtx4dMoKi5iy4Z48gvvUrvu/+FSw55X2rTiTGYmJYX5KFQqLhzei6aGP906BJnJoIN69Cczcw1h\n7RoAxgd2Lc/q9GgbiijpWHMsnZpdGjJ5+Wpquntyt7AQJw9fDAX3ee6F53FydjG7XpKow7/GS3R4\nbwCZ25MIbjXSJN8W9TpKy4q490Mh6z1WYi/Z0a5WZ3xc/FDJVYj3zQUNmtoapiUsJjUmnq+Pnaea\npytturXk6PHj6CQ9KoWcW/cKyDr7NfpKGbdLRARBMM1Gc3LvkHf1OpJOtJjRPFvrObN9KdXOXLmW\nx4dHr1JepsDOXqJF81oo1c6/5Zb+VWg0GhZPXWymOls8dfHfSnX2d8cv5WjmACLQGigG5mOceXwO\ndDEYDKJMJlMDe4CJ/I6OmwaD4QYQ9CvrXOU3VPwbDIbmv7bOU1ShRKez+pZZIpqrnARBYMKU6bzX\nORClUkX9pq3YtnYdjQd0o5qfD/YqpYlkHkKuVlFpb2dsUBUTbVrerl1zlKoGZusWFpVyT6Gn9ahu\npvj9hvh0im7nERIRjFrhQF5hPo62zgxo3MEUClqduYuererj5uhAwt4TyKq50rxRI05mHiF89iSz\nB3mPQQNYuXwxg4dGmnI0WzNWcVeWT+OmLyOcvc7sEQtRKpRszVjOqLdeRy03vlnna0tx9a7JoJ5D\nTEn+7VvSCXihPbHL4xg3bg7FRYXs2r4OQ0U540bPqtrH1nU07N6VkxnbCAgZhU2FHhuZrVUZdElZ\n1WedpEdm86D2SKFiYLO+rP10J32il5I+aTrDJs03NU1bH7eQkowNtO/Wx7Rs0+okfKv5sP9IMvfv\n3MBVbSQiUa9jzZkVuD/rSbuQINP53rwknZ70xUXlhtLZ/NjASDYL4pYSOW4M775UB6VSQfN/NSV5\nTzYBDV9j+9lL9AzsaSrGnBo5kbmLF6LRaLh94xp9BwaRlbCNzmFV+1w/ZyUbk8wrEzp16c6MsYsZ\n2H6mSTyyJn0Ws5ZGWr2H/wg0Go0pTCYIAsnL4k0vQiNG/72kzn9H/BLRNAImGgyGIwAymSwcYyI/\nxGAwiGCancQDyX/5kT7FE4GjSmX1LdPxZyGmhYujTCQDxpBTUI/+ZGZspUPYIPRaHXqtzoxs9Fod\n5aU6xo0fb+afJpXqLZpx7d93jl7jhpvNrDqF92X38hW83KQGRzNP8+N3V5g/YoSZXPeDrl2YlpSC\n5o1XqD+kP83cXFkzKYrnarxo8SCvXrMmzq5yEhNn4FXrWewclDQc0AMHV1c2zZzGhMBxpjoPg15n\nIhmAbRcu0K3nUPNCzR592b81Aye1I8VFhezdtppCsZCQsNlm56l7QH92HMig5K7RILNEp+fOtWtW\n65aEnLvcvFuAu5Oa+N2f8F7DQaa/KxUqbKQKFCoVfs8+R0lRAQez1mCw0eNRwxN9USnrlydgsJEj\nq9Qzb9Zkk4O1IAgkRSejKxaptKkgV3aH3iGhZue7/bhAds/KRGljx+zk6Y+9Z0LCRjJt4ni6tWmJ\nt5cnzVq+x/zV6UwfO8GsGLNr6zYkxSeweOkSateuSY1afnRs15IjabsoLtVyP6cAexsFA4cE4+tX\nE18fT0aGDGPntn0MbD/DrMB3YPsZ7NyW8VhH7j8KQRCYOXoCPRu8Z2qSN3P0BGYuW/SUbP5C/FKO\nxgf48ZHPD///8zxIDuD5JA/qKYwQBIHx48cSGjaC8ePHPhHdf/iIEI5szUB64IIs6USObM0gfESI\n2X6//eZ7q/kNKTefzzftopa7JztnLUSvNc6E9Fodu+Yswk2l5pW36tOsdWteeas+E6dMwc+7JptS\n9pvlUnJuFVidWeXna1m1dAdt6r2Jp4uLVX8vBxcXWocOppqfDwqVEhtbW+zL5VbrWVycHYkcOxS5\nox1thg3B3dcXhUqFvUJlekjm3r3D1dwctPoqZXyZjZ3VGUhpuZZibTHHD+/B3U1FrWdqWj1P+cI1\nSvPucz/nFooSHYM6BrFi9UqzuqUtWzcR3LEnC7Z+RGhqJk3r98bLvSrnIko6KhW2SDodFfoyjh5e\nRaewenQf15TGQc9wt6icroPm0Wv4IroOmsfkWUs5deok8CBcFLeIsTMiyLe5hqfGxer5zrXLYXby\ndDMhwM+h0WiYszCKwx9/zpKUFRz99CzP1XnGajHm5198RnBwMDeF22xemYHMAM1bNMGuXMWw0ZMZ\nETmFviPCyC8pwuWZeoybOpf7uYVm3mlgJBttsUWlwp9G8rJ4E8kAqBRKejZ4j+Rl8U98X09RhV+a\n0dgAFY98fvj/n+dDnuZH/gIIgsDkKRPo2KVNVY+PKROYP+/PvXlpNBoWz5prVJ2JOhyVKhbPMpe3\nJsSm4OHkazW/8drLLxEeGkJsciqy69dZM3QUSmc5hrIKnvOpRde+Pc3907p05qNjxxEvlZKVcBIU\nBpBklBXqrc6svDS+tB0whJ1xm1EplVblupJWx71btwE4m7EPmajjcvFXXF78DSGR403na0NqCq52\n9uzemE3urVv89OWXfH34EIU3bmEoK2fFjlQavtaI7EPb8HT3ZN6+PUxpZ8zR2JTrrc5ALt26SKFU\nyp2bAjVre2KnqLR6nryreUC5yI7ZE5kXPBalQomTnT3ZGRlUysDGAEENW+Lj7oGNnZxGA1qQuWsH\nwR1CTN0u1xxL55UBXdgyfxEuDkp6RLZE+cAg8+yeS/QcMgeF0viAVijVdBs4nYgJI9i2YRMaTW0A\nEtNi6Di4PhlrP7J6vnW6wt+UBdVoNCSmpBprnJLi+PSjTxAl0YxsRElEXdOJayU3COj8Ps5OLmza\nuh6ZQkbXPkNQPDiXCqWSwD59ycrI4r1uA8hYtgCxrrlRp6jXonaSWxzHn4VYUmoimYdQKZSIJU+l\nzn8lHitvlslklcD7wJcPFtlidHDugjGE9hD1gK0Gg+G/1kH57yhvHj9+LPXeesniQff5uW+Iivpr\nJZkhQyN4pUYT9nyyma79+ppyDxtXpDB7xmSiV6ymcc/+Jgnw3nVJNO7dgAOpO+ndpQ9eXuY1t8cP\nHiRy3HhSYhIQi7QondV0DAogdmUyLfoGmOL3O1em07LPe3j4eSLpRPYvXod0t5RRfXpW5Wh27aZ9\ni/psP/8dSAbaNW7G6dPnKNcb+OnGFe6V3KNe/XroRS32xRUMa9XdFCJZunMNlY4KBvUbjlKp5Mb1\na+zbnk5k1x6oFAqEnFskZ2fi7ODET8V3cfPywtvTn1ZN2uLs6MrGjNXk3L9O49avcGjNad58vS7v\ndHuNgzu/oVvXYNN5WrcmlveDeuHs7ExKwjxqV3+GMhsZ169dI/i9rmh8zY0xk/ccxta/nCtffYus\n0g5N7ZrczruLQw037t+8zxvPNOabWycZGdfftN2WxWdo12mGxbU7mDGJ52tWJ2TYWJLi4/ji0kcM\nn9eZ3Jv57Nr0FR2H96+qaUlOp22HV7jxpUjUwt/nmCwIAlMjJ9K1dRtTjmZt9nYah7bE0d2JD6MP\n06tTH0RRJC4tjrDJlqG5bRs20bFPKEe3pECBLe3fDDblaPaeT2NB3KQnHs6aMHoszX1eNCMbnSRy\n9PZ3LFr275M6G4U2KZRoRRzVSsJDh//Xhe7+nQWb260s+7khpoyns5onDu2fNL38M1A7KnB2cKXj\n2z05sGEnlTaVGMoNPFezFjt2Z5tIBozOvu37h/DhrlR6zRrC4egsenevqk5/6J+m0WhYGGvp1TR6\n4gTsHeR4aTxNJGMcV4nCyQFbqZwthw5gqDQgs5HRtV1DfDzdyd92gN49+nF4/xl6txpimgUk71zG\n7es3qOnlw8BWncxCJGMDBrL67H6KiwvZnb2DnFvXKK/QE3s8G1e5ii6vvs3wjt1I/OQQ42dMNfW8\nWRe3GpdyWwxKO2QGuLz7Iv/n/TwFeSIf7vyY1gHvcOBIGuWSDVevXKdz5+54eXmRm5cLjk40HdrL\n9HBfE53IwLdbo/H1QydJxG1Lp22HKWzfu4iXPF1pO6ebWS5L1EnsXvYFHk41ELWSaUZjI9cjiVrT\njAZAErXIFRL5hblMjxxPYKvm3Lp5CVGnx6u6G116vcrh9PWUl8m49dNtBoV3wMvXncufGP3FBEEg\nNS4asbQYpYMTw0ZaVucbi3ZTKBZFFB5uxKxbjrfGG4NCRuPQllTz9wCg0tYYAFEqlSjs7ZFE0TSj\nMR6rCDJbJFFnzNXMHvbAqFOP2kn+m0lGEAQSHmlDEBb+yzVhI0aHW+RoNn90iJnLFv3qvn7pGGJT\nkyiVdDgoVIwa9svHIAgCkZNn0bJzb5OQI3LyLBbPn/FfRzZPCr+Uo/kAGPSzf7+07CmeINQPTC8f\nxe8xvfwzCBs1nOzT6Tg7uNKz9VC6NelPaVE+/T/oQ4koWrWRN5TboFAruZN3x9w/bVfWY/3T1m/c\nzJDR0/HyrkHbAR1MJAPGsI5dpQG1SkH3jv9iYPc2DAhsjY+nOzpRQqfTc/r0ORPJgDF5PiJgNKVF\nZVz/6Yb1EElpKfsP7uT9Dm0YFx7O6LAwUMj5v64tWPv1GXZ++TFDxg03tYxWqpT0H/kBzi4OiPcL\nqOnizdSOfbG3BXt7F65fLyAtehffffM9N24KeNdw4sLFj8jLu8ORYwcYMG6kWQK+95hQoneuJy1z\nM5sPZGGn8sbJyY3a9jYonFVmJGPcv4IKmY7WjXuxY8khxAdNzN7t+AKbV0xDEvc35TUAACAASURB\nVI0vHpKoZf+O+TRvW53PPvmKwFbNUSkUtHmrKduWfWgim24DGmCQihkU3h4vX3dEnUSZWMmQYSMI\nH9iLts+70OudZ2j7vAtzxoeZ5QUFQSBiziz82r7Hq726U7dHIKIdtBzdng5jA0wkI2klbCpsTfdA\n3TrPczBzu5FcMJLM9g3pvNmkNccz1zIyZJjJqDNpVRRLYuf9ZpKZHDmNei80omXDjtR7oRGTI6f9\nYi5To9Ewc9kijt7+joxvTnH09nd/SgggCAJj506jVodG1OvTkVodGjF27i8fQ3xiiolkABRKFS07\n9yY+MeUPHcPfAY+d0RgMhrX/zgN5CnOEhoZb5Gj27DrA/Hl//M3rt0Kj0RAyZhCRoyfi7+WPvR10\na92Y1Nh4VN5eVm3kZXaVSFqRavZ+ZK8/yD3dDerVe5WF8x7/0Pjh6hUaKFU0ataBnQmbCAjranrz\n3zR/FR5lNsiQsXLLPgb3aIdKqUAnSsSm76SiUk653mBm6wJGsnFUOCLpC9FJokWIJLfoHmP6jTDL\nI/UNCGTLh3vpNKw36xcnm0jGNKZKiSQzkF9Ugqi34eLt6+icofuAwCpftVUpBI2si0Il50j612Ss\nT+J+sY7igtZmeRGFSsnzzz7LgCYdWLFvL02b9CF710LC67/A5svfWKjzRJ3EV59/zg+XrmKrtGPp\nsDW4ezjyTM1nMdgWsWrZEBwd3CkTS/HxsWV98nf4utYy5bV8PDzo9lY79i47QU7RPbQ6kZ7BbfDy\nrYaok9iS/CHYemNTXsq4Hq1MxZgqhZz+LeqRGhfNgmhjdX5sagoN+/c1XfvS/ALc3P1IH7Uaz+e9\naNS7KY7uTmQtyaRLw66Iokj2vl3MX2h0eo5PSuJefgHCFQFfv5oU/vQ5S+b+8S6VCfFJdGgVaKZ8\n69AqkCEDhvDSs8+jN1SAXI4MW9SOSsLCR5gsjp5UmCw2NYkmAwPNXiaaDAwkNjWJmAWLrW5TohVN\nJPMQCqWKEq1odf1/Av4TXmdP8Rug0WiYP28RiYnxVT0+/qQQ4JcgCAKJKbFoxRLUSkeK7pYQOWSQ\nWbLX28ODfZ+e5dTmdVZzNNmLM+ny5kD0epF9pxKpzL9HamwMw0ZZN12UpFIkUYenly8tW/Vif0o2\nFQY9Vy5cYGxQIBo/XwDu3L3Lxp3HuVGQh1ZmQF3Lj4ri21y5esWqh5hvLS9adnyf5Rt3MLTF+6YQ\nSXTGGmztbayGJGXllShVSvILixB1ohnZiDqRn65fQ+WjomubMNI2L2PUuAgzshoyaDhbNyWiLJEz\nuEUgqneMOaXUNVt4d2APPHyNeStJJ3Ljzk1mb0lDlOTYfxhH+Nsv4u/qSs86L5EQlUWX8Z25+t0N\n9iedQl9iwKN6TfpNGmMi4WMbtjN7ymxu3LjBrMlzGRoQYsqTrMtaiY1tpZmIwsfDg+4tOnDq0g+E\nhI8kMWUZlz+5gFrhiJODP+906cvpDfFWK/4/+/xTRk2eTERwsDFc9oBk7t/K4dyadAZ3qSLblQtX\n41nDm5qO/lz49ktUahUhYSNISIkz3Vczp0x+Yvfw49oQeCrdaOj5IhvPH+P97lVh1UmRM1iweNYT\n/Q2VStbr0kqlx7dZdlQbu8M+SjaSqMPxZ+2a/0n4W7UJ+F+DRqMhKmopiQnJREUt/UtJZvKsMdRr\n5U/LoNeo18qfn25fpKC42Gw9pUKJ3NaO6JnTuH50Px9tXM32qNnk37zOFyu+oMsLRpI5fCyGaZ1b\n0efVF+jg58HciJEWoQRBEJDKK0lfvsxENu0690HKlagshS37DpusV5ydnMjTl1BZuwZd4hbSYdoE\neq2YT4WHI8nblyE++FGLko70I8tp2bEpnt5etOrdltWf7mHupjTWHzqCaLAlv6DAakhSLNMj6kR8\nPDxYE7sS8YH8W9SJrIlfg42TK91GdODjz/fhr3nOKlndE0oY3KKbWd3PsNYdOZuZDRhJJj0+kUr7\nckR5BWpfFySdFne1MRzqrlajv1NG4szdnIi/wPh283numVdNJAPGh1izPoHEpSSxa0cWQ7uFmL3R\n9+88GBuZgjWZ2WbWNdsPHyUkfKTxnlq4jMSYFYQOH82Pt26iUKoot1Oik8zlxDpJj8zHl2pdOzFy\n/lxk5RVIOuO5Pr9zN/0ekMzD7z+4zwe4KpxJS0sjMSmBsLBQElfG8HpLDS0C3+T1lhomzXoyMn0w\ntiEQpZ9dS0nEXmZD9penTSRjPDcq2rXqQUL8ky35c1CoTKUCDyHpRCivZMzkcQSPDWHM5HFm3zk8\ndDhHsjYaW5FjJJkjWRsJD/3ndj/5t5tq/ifwd1Sd/TsxfmIE9Vr5W4RsspKPM7Bjz6plksiZy9+w\nONo87CAIAgnLUtGWSPx46TzTOrfi56aL2bfusiAm1rT+qNnzeaf/EErz8/l05zZyvv0WB1FHbQ9f\n9BU2fCZ8i0plR506z3Hjbg5OdavzRlAPLmYcxk4sp1xpR91urdg9PR77YpEXa9Tg8vUb+Gs0ODqr\naNauEZ7enuTdyWVFQhoOSgWFxSUEdOrLZ5+dpX+P7lW2/ps2IpUUoXVxoE+7zsSuXkvNF1/CxsYA\nMjvebdkZRxc3PsxOQHtP5Ob315kwaZIZ2dy4cZ0d69Ywb5ClsfiklSk4vVYDe0c7GvRqiGM1J3Yv\n2k/boYM5MSMdV6mceyUC1es8Q5FCzjenP2N2r2iUchXJHyfSaaJlCvTctj3ItdC6XkeLv23Yu5bm\nzd7j+Kn9VFbouV+Uz/I1qwFj+OqhmWq+rogbei2d2n1ASUE+5zbFMyqgscnkM23rMQoke16eORYH\nN3eurEmnQNTSsH9fTi1fzQcdulrsO3p5EvNnz2Jn5m7OfXaGoZODLO6rL44ILFkYbbHt78XDHM3D\n8JkoiWzftoaebzRn11dnCOg5zGKbY2d3kpQSa2W0P34MY+dOM4XPJJ3Ih8s3Uy6V0nF01bKjK/cR\nNWWB6WXxqersKf7noBVLrCah7xTmmWolRElkx5EDzImyzBFpNBqWLFuAIAgMCXqf9YeOIrOR0fGd\n+hhkMjI+vsi1Qj3jIiYTNiqYZalpvNN/CHKVGrlKTf2AIC7dWcLYli1MD7m4QyXcLCvmvlZH0IBB\nrF6/hsvJGQQ372oKhcUvWI3KXqRSqadYW8akwVGmMMmmLWm81fJlzp85wYzJvVEq5YiinjXrj1Kh\nrWD/pg1U2tljX1lJ8Ouv4ubgwJIzH+Hi5Ihc6UDnfuYChrt3crhy+Q4VBgMGpT0JCfGEhYUbZdI3\nrpOZuY3qtWpYrfuxqTBQ8d0Niqng9PVilJ4OVJSXoVCpuFr0Ezmlxbzy8vNU8/NicngEI3oNRylX\ncacgh5w73z/GyUGJrQyrtSyVGPDy9KZT+x7sOZTB8jjjQz1y2jRaBQaiUCqRRJGNqSm8NLAdO7ek\nEdAjGMnGlQ2bPwJ7sK2wZcALrXBTOTJ3/TbenTgamUpJzPjxxKamcP/mTat1RnZeHsyasZABPYZx\n9eZPVu8rrVjyB+5SS2g0GuYvnkNCfBK6Uh2XvvuOfm+2wdfNEzuDwWpYVe3w+PCUIAjEpSRSKupw\nUKoYOfzX+zNpNBqWTp1jpjrzcnTijRHtzGahzQe3Iy4tgej5S6q2i1r450/C3wRPZzRP8dgZzcld\nF3Gyd0ZXqkXloCZk5OM9oQRBYP6oMIY88Av7ITePpfuPYKdwxMOzLk3e7YuTgxsHTi+nRF5MuYsT\nGMpBZkdl3j1mNXzRYha06XIOd3VFfP7ZN1BpYFHwJIvk/uqTGwka1pbNKQfo8NoHeLsb8zqipGNh\n+mier+FOSUEpJWXlVKvuQYfW9clcfYyorgEW32Hc9p1cKy7h5erVaTJyiimGfvdODof2bqPtsBGm\nvNS+hDhUUhlqBxXXrwuMigimqLCIIzv2MqRNJ1Pdz7ItGxjauBHPeHmh0+tJPHSUVu+0ZePpvdTp\n344fN25hYt82JoJdue88wrViIjrMJOOT1bTs4MW2kz/SLjjY9Ha8Iy6Z1XHGENCUsdPp0qTqjX7H\nh5tw8XbG3laO2kFF6AO579jISF5o1MhCYrxj7zbe7NuRzzYdpOLTyyxr3tPivMz64TQvTxzJvczd\nxM6fb7reQ4YEM6TPANPMcN3uDLT29gxp2QelQsW27JV0GvruH57RCIJAbEoKJZKIo0LJqOG//NYv\nCAIzR06kV/02FJQWW+Ro9h3e8tgcjSAIjJ81hZa9u5jO85GNu4ia8dsUcI8ieGwI7/RvZrH8k3XH\nSF2a9LvG+k/iSc5onhLN/xgEQWBZSholooSjUsHo4cEAjBo/HJmzPQZbe2QVZRiKyoiNSvnNP7LJ\no0YS4OmMWi7nZn4BScc/wsnBF0OlCpmNjpv3c3D0qA22eoTc7+k6aTj2SiUHN2Rx7/vv8XJUUF2p\novc7b1Hd3RWA9V9fIXzKDCZFzObWje+ZOtDS1n3B2li6j2mHs6sjWcmf0rOFMVySez+HzL1zmNGz\nPWqFHK2kJ+bQGe7byii9do/YwEAzbzOtXk/yqQt8e/smlWoblI7OdA+bgEKpIjM9jWaDPrBQ2h1N\nTEStkJN3+yqjRxvj67l3cjlx8Diyikq+vXyZYQ0b0+C5KrdinV7PipOfEtgsgInr5xIX0d2CYOOy\nPqPwVjnePg4MDX6bnNx89pz4ljLssKccuY0Dq9dtM13PxNgkdKUiKgcloaOs13AMCw+nYUfLMFvy\n4oV0iotErlZxcnoy0zzeRv1IDxqtXmL2nS+QOSqIm1ylEBMEgR69B1BuqEClVKD08+LND/rw9ept\nDGrdD4C8u7fZd3Yj3Ye1NXVVzd54nNDBEezathdtkYTaWUFoRLDFMQuCwJjZs2jUt4+J3E+nbyB6\n+i/XmgiCYCwMLi5Feqg6k9midqhSnVnDmInjqdPyLYuZ4+Uj54he+NubAwKMmTyO5zq/ajHWD1lf\nmWY0fwc8DZ09xR+CIAiMnjWXBn0Gm368o2fNZdzggVQ4u9E0tBcKtRJJK3IicdPvGltfXIS6ugc3\n8wuYuusITvJn6f7uXFOl94ojk3iv42vUqOmPKIosX7mRQqUaL0UZI2f2NT2IVqTsYcibb+HuoEbh\n6ERCbCodGvVn+75kq3JlvSiRGbcLT40nJfqq38Txs1tNJAOgVsiJeK8hY7Yc5LZYwvSMXczu1sXU\nEiDu8CmavfM+91zO0CEkmJyrAslzIlHJFRSX67FZtxZZWSUGexve7NwZd18/7hbdZ+CYURzevMkU\nRvLy9iKwXxCiKKLbuZtzOTfMiEYll0NlOSq5EjcHtVWlV96dW7Rp1o3t+zejE1/H18uNoYGNjN9Z\n1HPsfIFpfY1GQ1SMdRnto3BUqawWTYq5JRwMXoDSToFYJrHg+91MercTarkCrV5i7smdeLz9KjMi\nx5uRTOSEOQwdNMdUcLg1O40ynUTeVcEUsvL08KHdu73JTMmiWLrHqy+/RujgCJIWraHTm4NRehvb\nVE8On8v8eHOZc2xKiolkwFir1ahvH2JTUohZ+PiQ0+MKg38NpeJj1GPi49Vjj8PI4DDGz5tE88Ht\nLHI0vwZBEEhMiDdFEULD/hnO0k9VZ/9DWJaSZiIZMP54G/QZzMS5c00kA6BQK2ka2osBIYMJGz2Y\n8RNHP1Yp9ND488uLF/khN4/UT3+kRs23GNxynpkb75CWCzhz5CvjZ6USx2rVqObpwqC+zcz61PQe\n3pHt5z8n9cQ5gkeN4U5OLlnH11EoFhG7aTm6ByojnSSSuHUFYZ2aM6d3D4a+2RhDwT1y7+cgSjry\n7gkmknkItUKOv++zuFd/hTy7ckI2bGVIxi7GHD9BodqJzR9l0aBbJwB8a2kYPmcu/q6OuCscCWzW\nlT6d+hLYrCsfr9/I7Ss/4ennYzyH7dqzYvlas0LVlavWU1FagZBbQuLh49zMzzcet14PNnbo9CKF\nOtGq0qscO15/8XVG9o9gVfpJdKJxHZ2oZ3PWZ4wIjfjd1z48JIQtKWlmRZObY5dT29GHSW2HMrl9\nMJPaDUXl7sma+9+yOudLMstvELttPauTEs0edvHxqbR+b4BZwWH3DsGcX7acmIXzyD68zaQEdHJy\nQW6rJC1hJUsWRrNr214jyTxovKaUq+j05mASY9LMjrdEsl4YXCL9NbUmDkrr6jGHn9W7/BZoNBqi\npizgh6yv+GTdMX7I+spMCPA4CILAlIkTePuVl2jTrAlvv/ISUyZOeGIqvf8kns5o/oEQBIGYlOUU\nS3qcFHIihg9Fo9FQIkrWq/rt5SaSMS1XK3HxdaBNYF1EnZ4ps0Yxb0YsGo3GqDKLTeV+XgHfXf6a\n3gM68vwLQSyM38CIEYvYvWMHxbp7ZH8eA7Y6qFDRtG5/KvXG2y03N4+c/AK8Ve5Wk8U/5pdSoShj\nRvR0Prv0Kf4e1cFQQqG2lLVZW1ArVVy9fZWQDs145kF9ikohJzKwM1PWRuPv9RoujrXQSnozstFK\nesrlTvQIncHGBcGon3Wkx6QQ01tn+vw4NibMR11ug7+PHzJHZ67n3ic8fIZZG4CeXfoRtWQm/SLH\nAFDNxwc7Fze279yNjcwGrU6LQ7kDg5r1q6pv2b+GHvXrknHuc1q905bojOWUywwsyzjF6G5VSq/4\nrLO4e9QEwKuaN+0b92DjlgPcLb7Dq/XqM2t+/B96w9VoNFR38ONIcjYV9uXYltmhKLLFwUVB+ol9\n2MoMtHujCf3e7czRu1+y6BdmBaWlktWCQwX2ZKxYh6eTkhPnsrF7kCdasHi26Zi1RRJK758V2cpV\naIsls2WOCqVFYXDOFYHLF74jOHwUjiolI0MeHwr7vRg5PPSxOZo/Ao1G87vDZIkJ8QS0a2MmGQ9o\n14bEhHiilvy9W04/JZp/GIzS4YW81W8Y1VVq9Doto2YvJHb6RByVCutV/WV6JK1oRjaSVkRhUwmA\nUiUnoPfbJKYsI3T4aCZFzKF9owEon1HR/HUd27IS6BDUAJ9atVEqVGjLizh0cSFDerQwJcVXbFmI\n3s6O3Nw8DmTvpoabIyUyO6uV8HklRfSd0hOFyp7CmzcY1LUNhcWl7Dl8nqu38vG2s8PbxdlEMg+h\nUsip5VWDwOYhXM/9kZmbZjCzV1WOJvrg57waNAWFUo3c0ZMekz4w78/yQQ8+SVzFxKCOpgf/pB+u\nWW0D4CRX4uRS1QGyZWAQx3ZsoXv/ruzfsIferYLM6lt6tx3I9NUzUMttsL+YTdiAl3FzVjEtcT9R\n2V/iqLRHL7PjtlZGv2YtTeN6VfMmoGV3Dn7xIWV2cubHReGoUDNy2K8ron4Obz9P6jt2RilXk1tw\nk82nY+ncergpWb5530q6N2hBQd79XxzHwUFhteDQBzv6at5Ap5dY/dUJIuOXWrQfUDsrEPU604wG\njI3Z1E7mLxyjhg83y9HkXBE4vnYDvcMiTOG68dNmEjVn5hMhG41GQ9SMeWaqsz8iBPgz0JVa9zfU\naf96f8O/Gk/FAP8wjJo4Bc82gcgf8UTT67TkHdhOxPChFjmajzasZNzggSxdn8a7wwJNOZrDscvp\n3ukVvH3cTOMkLdxNSR4EB821kI1mf5yIwcZA++ZDydyZwrCujSxkvqlZB1A5q+jZ9V0KikpJ2n0O\ndzWm8Jmok0iO2UHt94fx40eHUZXnMqJdOwqLS9my70s69wyhqKiAY6d2civ3CrUUSga81QA/96rW\nzhGp6fj51ya/5DYGmR5tkUidOq9RLnfi1TYDcff2RxK1rF8cRo03a2DAgAwZDdu34vPt2Yys9wr5\nJaVkffIV5djy/c07BIfPtGgDkLBsJh61atNp+ADTudwanUTezSv4OHoxodc4i2uzaHsUM4fVQ6V8\nJPkv6hkbc5D/e7sJ1dxc6dapEynLkujarLNpNrQ+exN4KWg9uKob6dG1WURNMyrAElJi0YqlqJUO\nhA0f9Xhl4BWBKeHz6PzqYHZ+tJqubQIsrmPWwdXcke5x6NSRx95jD3M0D8Nnkqgja3McwS/Xw8+1\nmvF76SX2lAgsiIux2HZy+FxT+EzU69h9fqVFjubhug9VZ5cvfEePByTzEJKo44fTR4le/NfbMj16\nTEkxyeiKdaicVIREPLlZ1fhxY3n7FUvH9k++/uY/MqN5KgZ4iseiWNJT/WfGm3KVmhJJj0ajYdmM\nqWaqs2UzjD9wf39/li1PokQv8v0339C9dz0zkhF1etwVKtw8Xa36i1WW29KyQ3227UjBwR6rDcvy\nC4vIu5+LUtkMH6UCf72IpFOwZP42HBS2eNs7MbReWzaePUPzYePZNSUMlVLB5t2n6dwzlKKiAvad\n3Uib6VWEmDJrPcNfeAM3BweS932Im7cbSgeJyIEDUCoVXL2Rw+rsz+g2fAwKpRpJ1LJv1RLsXGX8\na0TVOAeWrUd5r4D8klLST31Jj/f7olQouXbrBqtWxjBocISpDcCOrSuwrbAn8OUgDiXvoNyuErty\nG/q9PZD1hxMw2Bis1reIZaVmJHMrt5CsYz/gonTjp3NfMTQuisaNG+Pv709SXCLaEi1qRzXez1Xn\ntaCm5nUZAzqzYOliiovv0KF3ExNRT545lvkzrbtIaGprmBc/hcSYNO5JN6xexxsFd6lRp/Yv3mMa\njYbFi6YRH59KaanExa++YNzbLU0kA6CSK5CKLHu8aDQa5sdPJTEmDW2xhNpJYZVkHq77MPEfHD7K\nariuVPfv8wcTBIFpI6cTWD8Ipa+RJKeNnM6cuNlPhGxCw8KZMnGCKXwmiiI79x1g3sJ/H5H+VXhK\nNP8wOCnk6HVaixmN44NchUajYdnC+RbbaTQals0zqpcEQWDKrFF49XZDqZIj6vRsTD5I94Yt2Xvi\nC6uFcDZ2Fbi4OFFaWcztnCKrhYv5BUUYKEcUJZRKBY5yJZFNOlsci/3VH5Gr1MiUanSiRHmlHQql\nihMH0mkzJdBMtNBiRj/m9F9IWamEfy0NN3Ny6dG1D0qlcd+1/H35oMMbrIgdil8tfy5+eQV/3+fo\nuWS02ThtRvdj1aCpZJz9gh7v9zORRE0/f3p26MiiRRNwdnJBpy1BEvUo7FS4OLjSt6mxaj/3fg5H\nP9qOi00ltV+qS2xGPKO6hZtmJauPb8Ctljs6UY9KKedWbiHpe6/QM2CgaZ05U2eSunaF8UEeXSWp\nDR4TalUR9cO1HxkU2s5MTNGhdxMSUmJZstB8JmG6zrU1RMXNZ/zoCVavo6OLJ96+v94wV6PRsHSp\nUUU1aWQEbmpHs7/r9BIKZ4fHbhsVa3kP/hIcVdb9wRxUjy/AfNJIikk2kswjQobA+kEkxSSzOPbP\nk4FGo2HewkVG1ZlWi0qtZt7Cf0aL6aeqs38YIoYP5dz6VPQP+tbodVrOrU8lYvjQ3zGKAWfXaixP\ny2bJvK1Ez9hO94Yt8fWoRvsm9dixP87MX2z51nnIVXacOHoee0dP3ug5jGXp28y8tmLWbcbZ0QkP\nn1rEJmxHFCWwMz6QHoVOL1GmVKLXaSnTaVmVuRdZpYQk6qi0K7cqWrDzcGJsdAQDJvZk0rKx7Dl7\nltt590zrKOX2VBQWknfxe/zcFeRX3rY6js+LNbhWUGRh1FjTz59GDd7m43OnycrexZtv1mfwgBFs\nOLICUa8j934OR44vZ2SD15nftit9vJ/BwSAybeM8Zm5YxNzMGF4MaMC773dm/qqj6EQ9Wcd+oGdA\nP7M8TnDvASxeYP7AEgSBS99eRNKJ3Lt1h31xGzm4eD3Z0espupdvVUyhE3+9W2To6BHsOJlu7hO3\nfzUVtnrCRv6655YgCIwbM5ERwyK4pxVJO/+h6Vo+zNEMixj1q+P8VowMGcHR7ZtN/mC3rl1h7ZLZ\nFBTcYdyEJ+ef9kvQFZvnlsBINrri3y+Bfhw0Gg1RS5aSkJRM1JK/zt/w342nOZp/EARBICEpgTu5\ntxFy7lHjmedQ29mAVI6NnRJHtYKRYZbFcaZtY9LIzyvkW+Ezgua8jn8dT0StnvTpR+n9Wis0fsbO\nkDl599l9/Dy3c4vwd1Pj6O9J5LQZxKckcK/gPl9//AljerViz/HPuVcgUqovw8PdhSu379IzejVH\n4pfiI0mUlpVQXlTKuIAgVHIFOr1E7IkjaIYM48vtWyi58j3a0nw8nKtTZmeHW00vmk5vbyFaOLV4\nC30GVlX6izqJg6uy6d+1I3dy77I76yhDOlZV649Zu4IBq+ZYjLNq8HTspQpmhE+yCHt9fOkLopYu\nYdzYSOq90AilQkle3h2OHT/CzSvfsrRzN4tCx/nfXqRF8BQkUcu2xGloC2+hMNjgprSBCjsiho82\nuwZ37uYRs3UdL79Vn1vff08NtYqfbt2gYZ/OfHL0FB5aO0KaBpjO1bLsjbw3oin+tX3NvvvnH159\n7IzmUZw6dYrxIaNRyZ0o1BaBGuQujrz80itMGTPuF10gRoZEojaAwlCGJLPnnljKi89Ux64CFM4O\nDIsYZSEE+LMQBIG4pGRu38kl7951+ob0NDWn27flEAtn/bVv/5GjJtCoWmMLIcPpe6eeyIzmvw1P\nnQF+J/4XiEYQBCZNn0i7wLam+G7Wpj1oS+3oGDjalLQ9um8lUQummP0gBUFg8qh5dHhrsKnAcsvZ\nKNpMqY5nDVdErZ6U4H1M6z3A9LBem7GHRs8/R/rnF/B/8UWEHy8TNLgr1TX+7IlfTVDDl1l75Hs6\n9gkx7Ts9bSlNQ4xJ8q/TljOkaRBFpYWk7EnFydUJoTgflZcnBlGifdPWHDywDW+NO4GNZ7F2xzLK\nbSsQnQsIWhxsyq1sn5BCvz6d8PLxMDsfSTNSqeXqSVFxCSM6BpiF8a7k5JD85Vm6zQwxjbN1ShwD\n/Fri5ezO1i/30SuouymktW3fLhbFRKHRaAgZFk7LhuYV9lkbUxj/bhOLazL3/Kc0HDETMDYmO70h\nmc6te5GRlcSdKz8wcVSEidDu3M0j/ZOT/GvMGOQP1IKno6P44LlnyPj8AvEwRgAAIABJREFUM4pl\nNoxr2A3VI2Sm00vMylrO8Ll9Hqm8P2mWoxEEgcS0GLRSEWqFM6HBVS0bJo0eRSdfd/JLS0n69iIt\nIoZVVeGv3kr0VOt2LcFDRlBy+RLjm79lKniNOnoOxzovkLbiybojW8O4CWN55V8vWrRy+Pr4dyxZ\n9Nclzc1yNA+EDNs/3fbEcjT/bXhKNL8T/ySiEa4IpEbHIRWVGt8cx4xEU1vDuMhxvNr4ZQvFyvZ1\nx+jSvarATxJ1/PBVFtFLqmLk40ZNpp5nZ1OBJYCo17Lz6hyCpr8JwP4ll/C086Pg3l2EKwKuzi7c\nsrOlXeQ45CoVep2OI4kJdAhoysdZh7At1vOvnqMtYupbMzfQbuQE8nNu8umGdeiEn7hfUoiqTk26\nTjNaoei1OnbOWYyjrIAeoQ3YNO8ycoUalHLKKaNcVUCJtgivZ30oL9TRr2+AhUT6UNpeerZsQ8za\n9Ti7OKFwcsS+opKO9d/Gt1o1IpKSkdwc8Xv+GWxt5NRr1orzWzIZ9FwLwEDGp/u5q82noKSIF//v\nRRz9HZDJDVz8+nsCmvbF36+WaX87Nqcxul59S+uWL7+idegs07JDq5bSq+MgRElHfNpEqqkdGNHX\nmKNZkZ3B62PHWOTWvpw7i5H/asK8HbuZ2c0y/Dk3azWa1+tgYweqn6nOBEFg8rxwOg2uh1ItR9Tq\n2b3yc+ZPMdbijB0yiL4vP8+y46d4dVyIhez9xp4TxCywfFN/r0FDFrdpYmHhE3ngJIc+OmOx/pPG\niFHDaRbQ2GL58Z2nSIr9a7tU/pWqs/82PFWd/Y9CuCIwN3Q8A15uicrFGD6ZGzqeqYlRaMVSqxp8\nW7tKs2UKpYpSrXleRFssoaxurlRTytWgNT44Ra0edydvFs2tCseMnjyJ1zq1R/7g4SRXqWgZGsax\nlck079SKrcs209qaSijvDgBuvtWxVdkxOuQD5q5ZayIZALlaRcC0SP6fvfMOj6Ls2vhvE7I7Wwid\n0FkQrAhiBaUjvWMA6b2lkIQESOglpJLeE0A6SK/SREBRwV5fOwxI75DNzuym7PfHhgnLbii+qJ++\n3NfFpbvZ6TPPPc8597nPykn22Y+2qplrF6207dyDbRuXUbZKObzq1eDVAa1QYePtzK0MGNZbeavf\nnLmF/s3sNTxBw4ey9PABuk4cai/KzFqNd+MX8EDDm3MWOgyurwf4sDk2k1Y1G3Hy+inq1a5Deb2B\nq5yj3ZgOCDo1L5nr89b0HLybj6VWjbrIFpkTF8+x6N2dhLzeXbFuSTm8l4JyJXU+FtmMe/G7jqDR\n8swTz3DFbGL5u+9SxlbE76abvOxCLXhasnItLw8pX0ayWpxmNNetufx+6Qyp0WlOA15adoJCMgCC\nTk2P0U1Jy04gNiIJtaEsksWKxcPjgarwy3q4OZAMgE6txuDx16R89YLeZXM6neBafPBHYbfyTydP\nktFrBfx97T5y/8Yw2Z+NR0TzD0JWfLKdZIoHG61aw/BG7Rk/dDj1mzzl0ra9sMDx4bfIEnqdYwJZ\nV1aDbDU7zWjQWZDNVnYnfYvvoDDCJgcgm24iGDy5ZMmn1h2DU97Va5z49gcufHecIhm2Ls+hRefu\nVPaqrmz7Vo97q2Qm74yIILRHbdAqJHMLap0WQ8WKrIz9AsEDLl8+y6EPdjI6ebYS7tqZugT3okJU\nFjXRUzJw16gQVO4MadeBapXtUlutRkOZ4gFeoxXoOX4waTPiqORVz+Xg+tuVU5yXjxMQOQxBq2HV\nim14T+7gMFiPjOhNzsR06lWuh7uqkHEDWrFnz1GWfHoYW5ENlZsK77atWfntT8XHbWbf8kS6t7Tn\nkWSLhFf1qoT7zyI5PQuT2cLFX6+4VAvWLFeFrUc/w7N2FdLf3+qQo8k+tIVBw/qz9+BBFsYsJCc9\nx+F4zJabCDpHBZmgU2O23ARgfGAQ4UGTKFOU77KQ9+f/fI8oik4EVvvxxzFbrU4zmjqPP85fAb+J\n/oTOmUaXAR2ccjQPC6IoMm3GbDr08lZk7dNmzCZ64b8zTPZn428hGpVKVQtIBF4HVMC7QKDNZvv9\nHsu9CEwAWgE1gcvAB8BMm80m/pn7/P8Blpt5aMvdUZ+i1uDlqeXCmd/YvvYyPQd2d8jRFFjLKLLQ\n23M0t8MvaJxTjmb5nmi8ntVyJPU8aktFZs2dQu2yevq+/BwVDHqmvr2PZyRJmdFcO3OWI5mJ1KtQ\nh8GdRyvV5is3raDNG/0pW648m9flIOVeY0d4CBQUUK9ObWRZRm3N53BECoLFRr7eg2cG90JfoQLS\n1ZvUrN6Qn374FmPjp+gyZYiDJLm732gOJ6xnYL9RyLLEus2radx7CNu3rKByhQpUq1wJyWLBVsZd\nOVaNVkCt1XLz/O/89MlRTn39BW6FVorc1Tz7emeEIgsTpgzhxnUTqxfv5sL1iwrJ3IKgU1O3flXG\ndmpd8p2gZnSHrspnyWLhxvULfLIlhR+/+57+PcZRpXJ1ZIvE3gMriI6ZDYCKAtxVFp6qW4vdEQvp\nMn2GkqN5PyGRwS+1ZtnGpVSuoKOMXEDwW4t45qkncdO48/qADlT1qsKQAd6kZy5zul90Gk9ks9Vh\n/2WzlaJ8N6YEhyCZ81B71cRy9TLbolPpNc1PydHsTVtCL++OhM2eRuT8aMV6KCUtnRuqMvjtOsD0\n116kQdUqmK1WUj/5klkZWXZRSWo6eWYzep0OPz/XbtKuIIoiKRlp5Elm9Fod/hNdux8YjUai5kWT\nmpGiFKo+bCFASlq6QjJgd4Po0MublLR04mLvbWL6CI74y4lGpVJpgYOABAwt/noh8J5KpWpss9nu\nphUcADyNnaS+A2oAs4HPVCpVE5vNdubP2/O/HxpPvcvwiZugYsTgtuza9yvfHPlOefgWRdq9lpJT\ns8kzW9DrNE5CACguokuaQWpCNpLJgtagIXuVPUwWOm8KXQa1R9C2Q5YsLM/cyPAXnyOow8skR8XQ\nPXQqaq2WLzavp4rOk37NRzm0zx3aZRhzEmZS1VgdWcpjSGAAao2GD9at4cS3nxJ+7EOqaaoT2rgN\nWrWAZJWJj36L8+Ws1PasxqB2k5Ffk0jdN9ulJJnicI0gaHmz72A27N9J+wlhxC2cxGPVKnHz2lU6\njRuoLGORZOpXqEynZs+Ts+1txgUOVUJuOSnpVNIJ3LhuYv3KQ2ioSo2KVV0O1vl5+SXXQLbw69lz\nSu2QZLEQv2sH1eoZ8SovMCF2Plu27OLEyWPoDALRMbM5ffo0gWEz8KpdFw93eLXly3ye8RZfxSRS\nqPFAXVDE4OdbU87gyXXTDZo8Vg9Pr6pcVH9B/3H9HM6DIGhQuzs/yr7jgpxyNFuyPsF6yYPBfVsh\nCAKnTv/Oqu8+p5axNssmz6Jm/broNGp6dWlNVa/KVPGuRGp6Cr179iFg+nS86tbFQ+VOj9ETSNi6\nmfpnL1GlRk1mZWQBKkKnz6RLtz7Ky07o9JlERYTfl6HktDnT6dC/hzJLmTZnOtHzIkolmz8z8Z8n\nyS6th/7KAtF/E/6OGc04wAg8brPZTgCoVKpvgV+A8dhJpDRE22y2y7d/oVKpPgJOAGOBuX/C/v6/\nwfjJk0pyNMXhk4xPNtFl2MsIghqNh4pFMc5Gfrcn/kuD0Whk0R1FdCGhk4tJpqQgsPcEb7ZlbqbX\ni41xv3KNY8np2DzKYDorUrZCdZfV5g2aNOHMjXO81LwFH+zYhccFkZn92qHTPEfK5qOMaDQYrdpO\nIlq1wOQmPUk4/jaqcoKyjur6Oi792NyLSnKVgqDFrbAAjVZH5See5MUx/dm4MBZLsUOyRZLZkbGa\n4c+2ZMc3Hyokc+vYxvoPImNeNvt3fYKnoRrd2/hjMl1lU2Qyb4S1VAbrjZEH8ci1b1eSLSzbsB/v\nTn1468iHWC0yP539naHjxlGreMaWlp5OZETJgCmKItOj4hkQGoNGq8Mimdm3LIlO/Xvx5d4PGfvG\nSEXxlrP5LWaFz+fYR19w1WTl+uWbSsHrLciyhQJLCfHdfk0jZqQ4qM401sr069sBQRC4cOkiez57\nl/ELRihkuzFrO+3b20nGfk4FLly8QNiiWPpHzFVmPPvSsunQuy/it19yKd/E8DFDyL0uERA0w8EU\nsku3PqSmprNo0d1nASkZaQrJ2K+HQIf+PUjJSCMu+sH6wTwM6LUCsiw5WQ/9lQWi/yb8HUTTAzh6\ni2QAbDabqFKpPgR6cReiuZNkir87pVKpLmEPpf2rYaxnZGZaLOOHDsfLU4uboKLLsJfx8qqALFsR\ndGUf6vby5DyXBYH57m5s/ugbJkz0UQaV9ZvWUFiY77La3KbzoF/IdFb7h/Js9WoE9munuCq7FXko\nJHMLWrWAm6zi5NXjvP1xJG5WgReMbdkYno73zBJJ8u6EFfRo0bdkW7JEkXsZLJIZN3d7zsV7xhTW\nBYVj0KioptWiNtvY8tmXnJWvuDy2GhUrcfb3q1SuWglBo0XQ1KRDk0nsDH8bm4fMGVFkWH8fNqxb\nycLUDXhVqkiPNt3xqlSFZxo+wVvbNxI003Gw7dajO9HR0WRk2KW/SRnZ9Jg4DU1xPkaj1dFxRAAf\nrkujcl0vjp34nGuXr3L89xOUreJJVuoaBveegqDRUr/aq2RnJDFu4jAEQYMsW9iwcj2P1azl8hoa\njUZiI5LsHVDjY/jxzAms+3fRoVkr3v34EG9M7OlAtt7je5I+exm1ajbAzb2IV9s8z8nzF+k+M9Sh\nvURH33F8lL2CC+KvVK6mZUzQCLat3udSkGKWSjeFvNWo7OsfvqZpp1fvuB4CefLfYyjp7+vjlKPZ\nv20j0Qvn/y3780/H3+EM8Az2sNed+B57WOyBoFKpngKqAv/5L/frHwFjPSNZq5ZDRQ19B7dUSGbj\nlmP4+ATec/kHgV3d46hQkyULbvkFnL4pOQwqzz7dlNNnz7B6zxKl2vz3cyLxyxdgOXeGLX5z0FsF\nfhcvcM1UEh11K1OIZHUMR0hWmV9+P4V3WGs89Lm4qS+y68MkTFfN7F++jR1pa9ieupobJy/iWbac\nfb+KczTPtO/OvhUJvNSrE2AfFGvVfJIK+dXIt2jp3XsqvXsGUqGc0eWxnTTdQDLJ2FT5ynFUrlST\nvh0m0615EHWqPIVn2fJULW+k7+uhXLqaRzmDneBPnT3Nrz//xP7V69i6YhWXLlwE7IPtT9/9R6le\nz5WsCsncgkarI78QvLy88Jnky003E4PDBuPuoVVIBqBW9fp0aRFASmwmm5atY+/aTbzxUhOqVK9O\naRBFkZDwGTTu15Zxi0Jp6dOPTR/tRy6UXZNtLSO9+0yiU8fxbFt7mKo1a7kUTuTbCsm9eYMBw/sj\naDWo3G1KTx7lnMoyujuO9fb9musfRrtyTahRpiLyHWEpWZLRC66XfdgQRZHgkFAmTAwgOCQUgOiF\n8/nh0yMc2beDHz498kgI8F/gL6+jUalUFiDOZrNNv+P7BcA0m82mdr2ky3W5A+8BTwBP2Gy2G6X8\n7l9TR3MLoiiSnp6IbM5F0JXFxyfwoT8EoijelqOxh1ZWJa2lYbX62DwEWrRoqZDNunWbef6Fvhx+\nfy0nT/xI9QYN8Lh2hUFt27Pto6/p37nEjn7D7hTGtK1NzUrlOHPlBit2/IDfq4OVHE3yZ1u4oDOh\nLSwkoPsgJe8R+/YKms2bQsWa1bl65hw7pkdQRuWGzeaGJd+KTdBS69mnaNa3K5VqVgPs6qkPwzdh\nM1kZ0GsIgkbLpatneef9VeSpLjHGf5BybMuyNtBqUF/UgsA7SzaitVXgje4Byn5v3JJIx47t2b5z\nI4JOj0FTnusXr+GhhnOXz1DTw8acbr2VIsbED9+j5YB+lC3nyb5la6n5ZEMik+IJmjadGq16OZCN\nRTKzYt4kWr7yLL+d/AV9hbI8+/LzvLf2E3wGOXdm3LBlLlP6t0SyWFl16BizFyWVev0nh02hfteX\nnVoLr5wew8T5I51qkLZnH6V3bx/772SJlWui6DZrmpMqbe3UmWjcLITMt1vNXDx/md0bDtPPe5iS\no9m9a0upOZrQgBDalWuCVi1w7volVv28h57jByo5mv3rdyg5mluuF3lSHnqtHj8fv4d2v4uiyLTQ\nuXTsMlCZvezbvZboqIfTguCfin90weZDJppMYCTQ1Wazlepr/m8kmj8KURTt4oA8C3q9syWNKIok\nJ+dgysvHoPegb98ubN25+TYb+kkYjUaOHDnC1MlTqVm9Ju4e7lzLlRk0eC4Ay5aEce3GOaKHj2bN\n/kN0aTveKZy290AsQT1fxGyx4rtkFw2NjfAoVFGkduPVLq9T1rMce9asZnzXEtNNyWIh/dujPDug\nF19lrGBkD3vSecWWdXQb04WbN3LZtuMoHXwnKLmEg2lLuPr1FWp5GRnUZxSXrp5l37GlDBnWiRs3\nTex99whnzl3i2UZNGTxwKElLM2g3pBenfj7O3sw1FFjcUAue5OdbqVKpAhdzLzAweDg16tXCIsks\nnZeNW5GemuXLM+W5Z5wkvwnffIIlv5BhjV7j/SsniF+ajSiKBM1ZyKv9xyg5mg1xc6hVzUb/Ma0V\n4suK3Y6HtQ4Duwc6nb+UxcE0bVyHKtWrM2HS3V8yxk32o36b5/hk2x7cCvIpKuPBy706syF2CWUN\nHoyY+qayzQ0Zu2nfaiSVq9RQlt++KZUL1pt0DwlUzuvWqEV0a9SEHR/uwS/URyGri+cvc2DnB5iu\nSDR+tvFdVWeBI31447G2yudz1y+x8z+HOVtwlSZNn1NUZ6IoEjorlC7eXUoIbONuohZEPRQiCA4J\n5eln2zrlY/7z7UHiFpXeNvrfjn96weY1oIKL7ysW/+2+oFKpooAxwLC7kcwtzJ07V/n/Nm3a0KZN\nm/vd1L8GoigyJXQhTV7swvEvtmO7ITFg6CDiImNo0aJFcVvmKNq2n4hGo8NiMZOUlEFsbKgTGWUm\nZjB5WICStE5Zmc7Zs8dRqzXkXrlJw0pGtBoNhTZ3lwKBX6/kE7BkJ4VuKjwM5ek7apjT/uZZrax4\nZxM2WyEqlTsdX2lNGdnKl2u3MKqYZAA6tWzHhuwt9BvXh149mrE/K4Mzpy/jYXOnQLIwYOww1i1Z\niWyROPzZVoYM64QgaBAEDcMG9UKWLRz79IRi0R8eHcGF734gfuBQZTaVsfcAuRoBv9nBDnb9VevU\noGsHXz54O8llEePN02cZ274vFfQGNFa7w7HRaCR47HDmzgrDHRWF2HiiThW6DW/ikC8ZP6UnOVHv\nk74sGGONekiWAgrcNFw3XaVG1bqU0ZYnKv5u2hk7imQrH61Yx+iB7ZS8zpIV66hU1guNmztHN3+N\nqgx8dOQYA9+c5kAyFlni8tVLRM6dxeTQUKrXroXaBsNbtuHQsWN4ljPw9vL1SvjMs1xZ3FGRnZVZ\nqqdeeloSkjmPH8WfeL5sA+pVrQ1A9fJVGPJid9678TVRtwkAUtNTFZKBYpGBdxdS01Ndil8eFHl5\nkkuFmdn8v6UwO3ToEIcOHfpT1v13EM332PM0d+Jp7jPPolKpZgBTAD+bzbbmfpa5nWj+V5Gcmk2T\nF7vw0WdL6e9fEg6bu2gmcwlnxtxwDBVqsufdLF57pR+VK9eibfuJJCfnEB9f0tI2LTmN3sWNucDu\nPOw/1IeI7EjqGCvSsI4XZSwGJIsFd1WhS4HAFclEt6kR/PLeTjzM1zn9+yk+PvYBNgpR4c4TDZ+h\nMO8iI3p1Vrpdpm/ZyYmzV6lYoQJCh5IwkFflqvRp3ZXUBW9RvUF9pDwV7jYN/abO5PDKpWg0Gqrp\ny7BpRyplPN0dFFtglwebJRNgJ4EqGj1DuvdU/NG0Gg0TO7Vnxvr1Tnb9Kpu9hcE1SXJZxKjz0FJB\nb2DF54eZlWIfFEVRJCcxicl9vRUiS1i7kpvXGziEsW5ez8NNkpk5dhzXTbmsO3SU7v2DlL46G1Yt\ndFlQeScKzXkKydw63tED2xGftIPZEbFs27ERSTah06vZvX81QwYGK3VXm7ZlUr2+Fy1atGD9qlWk\np6Qg5Zk5fvECUfF2eXFEzHwWJyxDIwg8ZmxIbER8qSQza3owfXu2QhA0tGv5DJnZGxjcqC/1qtZG\nssqs+fId5qY4hgrzJNeuF3cTGTwI9HqtS4WZTve/pTC78wV83rx5pf/4AfF3EM12IFalUhlvFVmq\nVCoj8Bow9V4Lq1SqScACIMxms/35Dn5/A+wutVmYZBmDIDDJZ/xDCRHk5Vk4/sV2+vu3J/eaiXeW\n74OiIjzURYTMncPg4BAlNLIjJ4f2zcdSuXIt8vIcpbOSyexkpS9oBDz1akYNa82GNcd4zdiFJdtW\n063lS6zfk+mQo8naloTOWJNq9RpA++7sz4jh4q71jJlUUtOSHb8U/87N0Rar07QaNT59WjE9czN1\ntWWdXBDKGTypUe8pWvcfxero2QyaMQ+NVovN3Z0j7+xkauc+XMszEffuFpfyYJ22pJ+KbMp12bhN\nV8YDiyQ7kI1NVYBFlrhw5TQph/fh37qjkqNJObyPn66dZc+1E8xKWaRcw4zkZAa0butAZIM7dmXx\nwk0YjTVBsNHqjaYc2Pg5fgOGI2gE9ux/l279Q9AUJ8c1go5+Q2aQnJJDfFzpfe1FUeR38TiC8Lzj\n9RI0GI11yFgcR683myNoNbTq8jhvLdnD2+8kodOUBbWNZkNbcPPTU0Bxw7O4OKf1l1NX4VljWbQG\nAd/A0r2/0tOSFJK5tQ8TxvUjPWszzxifQfDUMTcl0ml5vVbv0vWiNJHBg8Lfb0KpOZpHeDj4O4gm\nB/AFtqlUqlnF380HTgLZt36kUqnqAMeBuTabLbz4uzeBBGA3cEilUr1y23pv2my2H/6C/f9TIYoi\nwbMX0Np7mPJWGTx7AXHzZ/3XZKPXa7Bevk7uNRPvrjnAkJGvI2jVLMs5TNdgPwf5ao+xQ9m/ZAOd\nXx+PXu+h7FtqRgrf/fgtbRq3crLStxZYEAQ1Hbo1YtuqDXR4ejDvfrSbIslCeGYItevVR1+hLF0G\nd2fr+vXsjJvHtSsXqV2vLv0HtnYIG42bPIo9b63H57YmXFqNGr1ewFxUxIZ3dtKva4kLwuK1qylf\nuy6/v/8OTz/1pHIsL3XtyeFF0Wiba9CqNQS/3ofVy7fz5vCeShgpe8kG6j7WQJkdFKhULhu3eXgY\nWBKeThVjbWxuHqiK8jFfvcLeHTlUMAj06diGxR9+AIVF4O5Gn45tuHrgAJFJ8Q7XQTaZHNZ9/vIV\n9hz8iHk9/JT6qMz09Zy8cgGhrf0c5+OukMwtaAQdJrP1rtc8PSmdKobqLsn1zPmzjJvcw+G8jxzd\nmVUbP6ZbwBtYzDKHF28nbkZEyfVPzsRsktEZBHr37U7Gohx6N3tTeYmYETiHhYmuXZ8lc57L2eST\nTz9BYlp6qcfg5+NXao7mYcBoNBIdNZeU1EzMZhmdTvifFwI8bPzlRGOz2cwqlaoddsJYQYkFTZDN\nZrt9Lqy67d8tdCr+b+fif7fjMNDuT9npvxDJ6VkKyYDdiLK19zCS07OIj3FWHz0IJvmNo3uf7hza\nIikkA2BTqV3KVwtVFg4esOdoRFEkbM5UuvVrz2ONq7Ny1UqGdhuq5GjW7FyFV1VPZNlKNa8K9Bry\nFPt3raNA487PosiIED9q1amtrH+Mny87Nu1AL9TG3S3fpczWgmMeUrJYuWqWyFyXBUBaSiqSOQ+t\nTk/m4hxlYAgKDVO8uypWr4FQs6biqFCjQiUGN2rDlqW7+eX6eWo+UYU+E1vjWUHP9AWBRMxKxFro\nRsbu/Uzs0qEkR7N7Pxdzr1H5mYa0HFFip//BkiUEjxtLwMRxlDcYGNnT0YZGKih0ug6CweBAZPuO\nfMjYtm84eNhNaNGf+TuXKC2hPSjEIpsdyMYimzHo1PYZcEoOJlM+BoMHk/zHKudCyjXT6cXurFi2\nlmEj2irkmpm9C2O9eq7P+4VrfL58Pwa1jrgZJaqvsJB5dG09SCGV+TNj6P1KXwcniN7N3iQtMYPY\nRGffMa1O75LwimwQGBaGySJj0AgEjnecwRuNRqIWRJGanopZMqPT6h6aEOD2bfwvJ/7/bPwtXmc2\nm+000O8evzkJuN/x3UjsKrN/LUyy7LI3ukm2lLKEI0q8pmT0OsFB9WM0GnmmQSPOnfpFIRmAMm4F\nLk0VTx3/lowke7w9ZFow3frZ8zqCVkPnIW1Yt30tN86bMEsmur/+Gl989T3xMZvJtxVQqXpF9Do1\npy9epFrD2g4kA/YYO0WFuLupKSwqRJYsTjLbH377HcliVXI0Eat3Ua2mkYzkZCZOmoSvvx/x2Yu5\nbLESn72YyePGYDQaCZgwnslzF/DawOFotFqe6+NNTEYqU7t6o1VrqKA3cD03jwGBHahdv5qyze7D\nmpGWlYjaTU3XlgN56+BusOWDyoOuLQeSc2Q1bcePd5j5tRw9mo27dvHEs42I3biBKd79SuTYGzdQ\nra7R6RpNnDSJOSFTlPBZYX6Rg60Q2Mmmfh0jGw/txbtNJzo3f4V16xcp4TOLbObQ3iwGeHfgzX7D\nqe5VD9y11GrWi5CpUSyKsQs4tGV1lNOXo8cLA9mwfDc2t3yKCtyoU6sRnuW1Ls9746efIzbaUWSQ\nmpypkAwU2wu94c8776xhULWSYxQ0WiST6yS6j2+AQ45Gli28vfk9rqoE2g0crJB3YPgCEmfOciKb\neyX+xRMi6fGZyDdkhHICPpMnPFDzNVEUSc1KxGwxodMY8Bt/dzWfKIokZ2RikmQMWoFJEyc8mgWV\ngkfuzf/PYBBc90Y33BFycAVRFAkNm02nbiXVzKFhs4mKLCk0q12nDmb5JrJkVcimY5dGbHwrg24j\nJyoP+67FSxnbfxjpKRnUqlULs2RyGJCqVKvMm+N68962jxnUfyhRM2fh07e/Msgu3b2dV1q14/ru\n98Bd4zLGjps7Ldt2Yu3KLNYu287AET1vk9mup8/jL+OfvJaK5co5bpIEAAAgAElEQVRx9eYNBnXv\nxYvPPIVksRDs48ONil409w2hSrEJ5YCAEJ7SCnhVr8bkMSPZtHMXJtmCQdAQtiiSXRs2YcnNQ1NW\nT7knqzmQDNjf5s0WE3pDRWSrhfwyGgrcNJQpAtlqoYxB53Lmd/n6dS6dPImHWyEhi7OpWM4TS2EB\nPfu34pTobN1nNBqZtyiWRRGR/PCf/yDlWV162P166jciE+PZvnkrkimPOrUMfPPJclCpMejUBPoP\nJXxmOFOG+Sgzy+U7l/Jim1Ekp+QwyX8sN/NNJOxOpZq+Kl1f6EI5fTk2f7SFsFlhAMyYG6TkaGTJ\nwrZ1H7NwrnN3TrNJdqkeLChynLHJFgmtwXUS3Wg0siAiTlGdaXV6dJVr8tzAAQ7k3Wz4MBKzskiM\nvP8ZvHhCZLbvPLyfHoJQy96UbLbvPOanzbkvshFFkenhQXQb3kw5F9PDg4iYmVCqsCF4zjxa9x+k\nPDPBc+YRN2/OI7JxgUeNz/6fwVWO5vDGFfeVowkJmcozz7VwUs98/9URxWtKFEUC/AJBk8uQCW0R\ntGpkyUpW/HauXimkjvFxPFRuvN68DV6VqyLLMp//8Bm2MkU81/Jxp7ffrz74Gfd8G62NDZ1yGis/\nfJdu/Xqwbu1WbDYVbwwerMTYN65aS/uu/cAGu99exeXz57DYzBjK6XArhNqGigx/oRUV9Hr812QR\nPtnPYf1pu/bzdPBcJ1v9ryLmMK5tdzYc2cO4yX5s3LkLk8WKQaMmcEJJSGZKWCBNO1dzOp4v95yn\nVzdvZs5ayJDRAQphr1qSRLU6VWk6apTTzG9raCiJ3TooIoDkwwfpMKQNnuUNHP3wHDExpUuQRVFk\nYUQUpz7/lqk9RqJVaxAvniH9wGpq1qrMdbOVrOWrXV77qZOn8Eq9F51yZavePYRgKKKwTC4d+/dE\noxWwSDJrUpfSsEY9wmaFOfiupWUkIskmtIIB34mu3+JDJofSpF57hWwuXTnHe0e2c+b8b9SpXI8O\nL3ennL48W4+uKzVH4wpjJgfxzKCBTt8fzcymVrnKmE0WdAYN/v53ny1M9Q+lhaaDU5vlI5b9xKTc\nOyQWEhZI067Vne+Hd86xKNL5+k2eFoqxVXune0F8/wDx0f+OENw/vY7mEe4Co9FI3PziPiXFb+P3\nKwTIM5fiOHtbPYDRaCQpNZGIhZGkRe7GQ6PCKudTuaIXly5cQlWkwUbRbcsLmPPMTAmdouRolLbB\nGw4QOS+GiNlz0D7RyGG7Wo0GVUERgiCgUatp1bEzuzZvobCggJ9++IEe3sPYu2MzRZeu49t7gvJG\n/tZ7K2k5sidly3uSk7GMsY+/TDmNlps3c9FWKRkECtWCA8mAvVHYRYsZrUag1dMvEhYTR7fAKSUh\nmfnhJM6eidFoxHd8INMXBNJ9WMkb7M4VR4mYlUhKaoZCMrfO4ZDRAXz24U6OrlhBs2HDSmZ+cXFM\nfe0lRdasU6uZ1Lotqds/wqYrS/gC59nBndc7JzuTYcMG8da3O8m7nkeBdI3okb2VkGH4ZD9mxqc6\n3QPmUtR/FEqcu3CGIUGjHWp+BvmN4of3P3cKSd0eJhNFkeBpIVy9fhXx+ElqVDFSrXpV+vTtTlri\nErq2HkSu6Tp7Dq5hyBsDleu2ZO0S6tav90AkA2DQCE5h2/PHT3D5xCU6DRis5INGj/BDyj1P+fIV\nMDZowNSwaQ7bkW/ICLXuuPfVWuRL9xdyNltMLvNVksXk8vcmSXbdLE7+36q9uV88Ipr/hzAajX8o\n8a/XleI4e0c9gNFoJDsnS/ksiiLBMyIYGTqrpEZjRTxCoYxa0HLtht3LNHJejL0HiGRCpzUQOS+m\nOFF8CulFZ5WWrYwbsixTZIPKVb3o2rcvG1eto23nN/no/cNUKluREb3fdKjHGdluKKu2b6L7+EF0\nnTiC9UnLqO9Vna17DtC7c3u8qthdhd2tsstGYQV5uZy/eomsA9t4Y2G0MhjkXb+GuUDFSJ9Anmv0\nFAE+44mYlUjabTH5iFmJGI3GUgkblTsJs2aRmJWFyWLBoNHwpKChQdWqDr/VqdXkXpZJXL74vgdd\nL69qvPRSQ3Zu2Mn45l0cZN0jWzQlKymeyIRkx+0YdIpYQLneFplzF07wZNMGTjU/mnuYVIqiyLS5\noXR8s4tiA7M5ZytNKncgJfkt/ANHs3XzTj499gm+wyY4XLfRA0fz6c+fPnDYKHD8eALDF9BseAl5\nH0jKwGf4HId80OBBwWzdlMT4N4cgW2RCg6YQlWAv6kzJTuKb377m9ao9nGY0gue9Q84AOo3BZb5K\nqzG4/L1B60yQFknCUBweFkWRzJR4LHk30eg9meA/+X86pPYodPYPhiiKZCSmIpnMaA06enj3JjUt\n2yFHs3fXRoccjSsETZlO3Zd6Oyma3lufzoABI5BliXe2ryIudqHL9QwfMAzp8hVG9OrukKNp0aMd\nHx4+RvnylSgoKuL773+k50AfPv3oPTr2GcLBNUsZ3WaA0/qWHFlFN//BACydFUlQ606UN5Rl2fv7\nGOHdG8liIXr5MvIq1aTrjEilUdiR5IUI58/j7ulJoacnL/YZwDfb12K9foXrJjfe9AlTwpHvrc8h\nKark7VsURRIzs8mVrfz23bcMGRHkRNg/fHWQuEWOaqrpAQG85GFj5zci+TYBD5VM98ZGPs1XEZGU\n9EDXcsaMKbiZbhDUsaXT3xcf/Q/amjXJk83oBR3+E/wAmBkygz6te5a0Fdj0FjPDZ7JlxzaeavWC\nk7/ZD+9/XqrtfvC0EKo+XZ2PjnxKoQrcbfBqi5f4ZOd3dO0wgv/8tIe4uEj8xvvRsXlHp+X3fbyP\n1KzU+z7m24/9dvK+ce46HdoOd/pd2uIwRvfsZw/pWmQOfPkhV4ou0nF0K0zXTByM/ZxRz/vaZzJW\niY3/WfVf5Wh2LT/6QDmaw+vXEDdvDgDzp/kxpGMTtIIaSbayat/XzI52npX+f8aj0NkjIIoic4LC\n6NesK1qNgGSRyYlLwy/Yl61btyuqs3uRDECeZHVZo4Gb/fYQBC1dew4hKnoRmRnOA4lX9Wo0rNuc\ndbsPY8k3c+bqBcpVqMiOjbtZsnQpAClZKTz93GO8u3MxBflqNIKWojJlXL6R29T2e9siyVTTlaV6\nJfss5tz1K2Tu38zJE2fo6t+CdxZ/zDdpcykqI+BWIKO+eBGNR1m6jhnG+uWr+XZlPH79XiJz/QU6\n+8xxkIy36z+WmXPDqVy9KucuXebMxSt08wuljlZHped/ZcVbyQwbOanEIn7XOqIj5zode9d+/Zgd\nEsOQPvMQNDpki5mULXOYv+ietccOMBqNLFwYy/jhgxWl3S1IFivf/PIzI4Z2U/ItU+eGETM3kvBF\nC0lPTsNsMqMz6MhcZrd+qVWrFlPnTHfI0exbv52YeaX3Jjp/8TxfnT/O68Gj0Oi0WMwS++KW4iEX\nIWi0mPPsYSitQevyumkN2tJWfc9jT4yMtKu+FidwJvd7NuxOoPFjbfn168OUKZCwuHngWU3F/s/3\nM6TTYASNwPHjv9FvQTcEnQZBp6HtlBdYviIF6fcCGjVtdN8kcwsVy1RiTfguJKuVBk89XSrJ3Nrn\nuHlz7Kqz4sLqW0KA0OBJCskAaAU1Qzo2ITMlnqi4ZJfr+7fjEdH8Q5GRmKqQDIBWI9CvWVd2bNzK\nosR7+z+JokhqWhpms5mffvyNp1s512i4qUpmgYKg5bffRJfr8gn0YVbgTLxb9VPerDce28KCxHAA\npoZP4/URHZQBLydsGRZZ4pVOPVi2YTUj2g90ytFYJJldmcsY+fJrgD0Ul4dMuUpFDBnTDc+Kep5v\n/CIGtSeSZKKoUEuRpgI/nxbRaAV0yPj2ewmtoObi9SKXkvEffvqVvqPG8Z+Vy+nmF6q4KVer14Bm\nw8ezalkCTz7+JHqdQHSkcwGf3VJlIUP7RCBo7MsKGh1D+sxjy8aNtGjRotRzn56WiCSZ0GoN+Pja\nE/BGo5Gs5asJn+zHyBZNS3I0b++ih+9Qh3xLx0HdSMlMJS5qETHxzjMUo9FIzLwIe2vk4llQTCnd\nKm/h1IULdI0KQKMrJmSdlteDR7HBLwbZIqHT28NKvv6+zJg6g17teynXbduBbSyMcXQoEEWRtPQk\nJCkXrbYsvj4BpW5fFEVCo/3p4teUl3Qdkc1WloVlM7XeizSsWg+z1UrkR6cwlbW/hMgWGSlfQtCV\nhLoq16xE37DOHFn+BTFx95+QF0WROaEBvNn5FbRtnkSSrazbc+yeyxmNRpeJf0veTbRCJYfvtIIa\ni/nmfe/Tvw2PiOYfCslkVkjmFrQaAcl0b/8nURQJmz6dbj3tlfUNn3ycDdkL6TduhpKj2bUqmW6d\nuyvLyLKERXbdZdtoNLIgMZz0xHQljLcg0W4NHxwWrJAM2AfJvpN6sHFJPN6jJvNqv8Ese2cLl08d\np0IVd1Rl3TiydQPnfjtPYPvuVK9YCcliYdH2t3lj+uvUamhvrbw781OiQpOdBq7gaVOxSDI6tUp5\noyzIM7mUjFNYhFqrw1ZU5NQfplq9BjRo9CyZpZC2KIqEzZxO+fJVFJK5BUGjw2wqqdgXT9ibe1lu\n5iFTyHXpLG96l9SSzJoRxIKFCQrZzIxPJT5iAT9/8x2Vy9VAVbEmNeo51iHdK99y67rcrTulKIpk\nJSRizTWhLmvAq1YNhWSU7ei0VKpeg33vriA6Zpay3oUxC0lLSUMySWgNWhbGOIZVRVFk5qwgenu/\nqhznzFlBhC9wPUtIXZxAF7+mSstsQadmRGR3tk4/xJSqLdCp1YS92hLf7XtYtWkNF69cAvcizvx6\njpoNSnrxyGYLOo3+ruflTmSkJtpJ5rYZyJudXyEjNZHoRfc2Lb0TGr0nkmxV1gcgyVY0Os8HXte/\nBY+I5h8KrUGHZJEdyEayyGgN9/Z/Sk1LU0gGoHbt2nj3asfiKF/qNnma33/8lUracpS9ranYpnVL\nefKJhqWu02g0EpPo3K7XZMlDoxW4dPYyH2w7RlGBO25lCilXTsVvn+7hzPkL/Pbb1xh07ugqV6FL\n1+fxqlaBi+evsWvLx1w4JOFZtT6Stgq/7r/Bb4euoVOXJSrUHoIIDQpCzstD0OuZEBCA/0Qfps6e\nSaGtjPKw16mgZm9OMp3GTlJyNHtzkqlQwz5AqdzcsEhmp/4wBqH0jhWpaal06d2N7W/vQbaYHchG\ntpjRGezLiidE5vuFMqRxJ7QVBDI/WsOb4xz9vrx7N2fEsGG88GIL/CfZ2zYIukqM6xuKoBFYeXCl\nk8ea5b9sCiaKIuGTAhn1YjO01e22N5P3HcVilhzIxmKWkG9eJTrDsRLfaDQSG1c6iaWlJykkc+s4\ne3u/Slp6ErExzkq8POtNBF0Vh+8EnRrrbe9SOrUaTaGNgR26K+HitMTltA9sQ80G1ZHNFvYteZ/o\nGXE8COS8XLSCY4dSraBGzst9oPXcwgT/yUz1G4XBZsPNVoYiVQEmlYqY1KV/aH3/Bjwimr8IotK4\nyYxeq/uvGzdNDPRzytFsOPoO8xLurVYzm81Obri1a9emhldFOk/oiOlac/YlbGPnpjW4ubtRVFiE\nu6qI6TNCH3g/DRo9Z46f4dCGL+k6KEAZ6Ldkx9C3VzdSstMJWjhVUTltWr6SN/o2pVw5PaaiMnQc\nPItKVWpikc38+t1WJvmOIyUxh3kz4vjph6+Y0K0t9R5/HMliYW5wMHPj4oiZH87CqEiSlr3HgG4v\nYNWUQRZP8klGEoVqNe5WKzdPH6fZXPsb+ovde7H3rTQ6jfRV+sMcW5ND4tzppR6XWbKfwzadX2Pz\n23H0bR+s5Gj2Hs0iOsF+rjITUu0kc6tdtRqXfl9Vq9Tkycd6MzUkgphF05FMkpID6dikI5syNtB7\nYr+SfMuaXcTMLf1ai6JIemoSstmEoDPg4+cYtspKSLSTzG22N1Nebk3i/Ay6zp6o5GiOpW9gZUa2\ny7BhWkoqZrMZnU6Hr7/j/SxJuS6PUyp2yRZFkcScdEz5EgYPLVjdkM1WZUYDIJutqG9TC5utVmrV\nqOsQLvZ9YzjJKSto+Pzj6DR6omfE3ddzJYoiqSnpmPNkfvpJpOljFTHW8irZf9mKoP/jrdG1hQZG\nvdxW8a7L+eTgH17XvwGPVGd/AURRJHRWGF28u95mCvgOUQucnWofdL23q84mBt4feYVMmcJzLzR1\nqtT/8P0PuJR/g9ZjumG6lstH6w5y/eQVGj3xJNNCQ0pV36Qll4TMfCf5OIVQvIcNZcjkGKfQ1Za0\neQybNAzhtjd1WZJJmRdN/QZNafbaQCpVqan87cDOZCzXiuj2mr8yqG/bH83gdk9TvbI9xPbeyZNE\nJdjfmI8c+YBZ4Yt4Y3QwphvX+GTHRm6cOkFNnY5XGzzBsgsn6DF9NmqtjgsnfuOdhFiaNnmOKuU9\nCZww7q7nMmRKCI1fsZ/DixcucWjPhxRaVJw48SOpGXG0aGFXjgWNmEj/uq2U5XKOvk2vMa9yp9/X\nyjU/0LNbMBaLmR9/24qUe4PXG76ukM2Fqxd454s9XC+6RuNnn8V/QunXWhRFZodNxrvba0rYauOu\nD5kfWWLfHzxqDEMed+7Wkf7FUfQNjQoBBI51dmMWRZEZ08Lo2ambcj9v37uLhdEl9/OUqUG88loN\np+M89uFZfH0CCIqaRfOJb6DRCVjMMgdillNWJ9Ej8GUEnRrZbGXFjHcIqf08DatWxmy1Mn/fIXr3\nGIpXZceZz44vPiA5+/6N3EVRJGzabLp0LFFnLluZwrDuz2Gs5aXkaOZFld619G4ICwiiW/k6Tk4P\nu66fIjLp7nVV/5/wj+6w+Xfg7yaakKkhPPtaE6eB/dsPv34ojZseFHfmaGRZZtf2nfj6+LB6xWK+\nP/ELHnodj9VtwPSgaXcd0GaEzKRXmz4lSeFDW1i4yLF179Cxvrz6xlin5dcmzmJ8iLN1XeLsWEaO\nS8J08xofH9yCqrCQAuDs6R/x8U51ClMdOhLO2B52P9VNX35JYrbdBHzylDDqv9zFieA+W5JIwKvt\nOX7pHNGfv0f1x+rhUVSAzt2dFSsc2xuJokhKTjJ5VhN6tQH/sZOKa4fsOZouvUsG281rVtCre10O\nHT7NvHlpGI31CJ0UQkf9M8qM5tz1i6z5eTtDR3VSSOCtFYdp1WISlSvZSfW99zORTv9GYYEHg7qP\nVM7t+vffJio1Stl+dmICFtNNNAZPxgUGKed8akgQLZ6r5TTIH/nqND5+ASRmLObrIx+wsFMXp8Fw\nx5XzRCbdPS8xJTiEF595zul+/uz7r4iNK+m5c2eOZuvGjwhfkEBiTjo1+r+K5rb6LotZ5sec3VQs\nL2DOv4nOw5Penb3ZvX49+bk38SjryeU8mW6NmzuFi4+I3xOTcP/hspDgqTR+2tlBY/mqJBo9aUTQ\nl2Wi3x9vjT555FgGN2jq9P3qX78k/q2cP7TOvwOP5M3/MORJzqGqh9m46UFhNBqJjIhQVGc6nQ5f\nHx8Wp0cxsMdzDOxSH0m2snbHV3ddT1pyukIyYC/c69WmD2nJ6cTGl+RrKlco5zIZryrMR5ZkpxlN\nDb0XK3PmUFFbnsFdRinV4dlvx5Gbd9WBaASNjoIie7hFslgQ9CWJYJNkcak2s5ax3/b1q1Tn6QoV\n6de7PbJsYd/hz5kyeapig9+rb0+SVybQYVxrNDoNFrOFqZHBxITZwzOR4RGMHjOCylU0qD0KGfDG\nE1SrVo4B/TzJyIgnOjqFCUF+JTkatUB5nSduFh37Dv7C8eO/odXUdCAZi8XMKfEX5rXoyTWziW17\nVlKoUkFhARWNVRSSCQ/yZ3Tzpmg1VezKtCB/ZiakYDQa7eEyF2Gr61cvEzAnmlf6+/Jqk47ELYki\nuHUrJbyz9LOjzEy+d/L7woULbBF3UgS4Ae1atcarShXM5pL72Wg0Er4goVh1ZlfX3RICmPIlB5IB\n0OgE3HRqFoU71h7dmhlC8UwteBrerTop4eKN7+9lfpyzU/TdYM5zXZD7xJPPkJTx38uPNZ4Gl951\nGk/XxZ//C3D7u3fgfwF6rc5uInkbHmbjpj8Co9HIothY0tPSWBQby85t6xnY4zkH5c3AHs+RmRbv\ntKwoioQGB/L9Fx+zfd86Ll65oPxNcKF8C/AZxwebliiqNYss8cGmJSycM5M1aW8hS/ZzI0syW3PW\n0/fl3rhZ8hSSsa9Xy7gBwRz6ZJ3DumWLmTJuViSLhTUffMCEgADlbwatxkkpZ5El1AUFgP3ht3m4\n2UNX63dw7WIezzdoweuvdOf5Bi0IDgtRSAZAo9PQYVxrUnKSlXPY6Ok6TBjzAqOGv0y1anbxhFar\nRpbsUlZjPSOzU6PYl/c960++z76874lZkkJaeg4ZmUsp46GlrMHe2dxiMbP/4GLqV61ob2lQvhIT\nW3XFr2UX/Nr0QCh+XLMTE4pJpsQ9YHTzpmQn2sMygs6AfIfbtyxb+O3kaV7p70vejat8vWcVUsWy\nBL6zjSlbNrDjynlmJife8y1eFEXOXbhM154D8O4/nK49B7Bz/z5+P30anc7xfjYajcTGJJCakkNs\nTInazOChxXJHm2SLWbbnau4Co9HI/Lhojojfs+OLDzgifs/8uOgHnnno9HYHjdvxMDtqjg8KYNkX\nHyBZ7ddAslpY9sUHjA8KuMeS/148mtH8BbA3bnKdo/mzIYoiaWkltjG+vv4uH0zJfBOtUNnhO62g\nRjY7Km9EUWTe1EAGtX+Z7s/aq/RzNq+lY9uBVK3kVVy45zzgxC2YSVJ6NnmSBb1WQ9wCu+dYgxr1\n2Ze5HdTgXuCOd+PelNeXo6yhnEu34MtXTygqL9liZsXWObi7X+S9kyeZG+eYCJ7kO56QGQto03u4\nIkLYszSJiU83RbJaiD2wlbINa3Hsy1+oXq0erZp0cpid1ahdQyGZW9DoNORZS/yvBG05JMmK9ra2\nC5JkxWKFkICZ5N3MR+/pgd9keyV/amoG0THx6PVa/PwmErNoOinJ2eSZrJilG5y6/D0F10xIj7co\n9Y3YYrqJVuOYp9Bq1FhMdnLz8QtwmaOpXPtx8m5c5atNcYwY2EH5W07OJsYH3V+oKDU1naFDxikz\ndEEQ8O43jIz0WNa+fV9d1Qkc6+OUo/k4YxMJoQvuuazRaHQZJhNFkczEFCRTHlqDngmBru9zAD9/\nH6ccze59G4mMnn/XbYuiSFpiJmaThM6gxTfQtdGn0WhkZko8WQlJWG6a0HgamJniur31/woe5Wj+\nBIiiSEZyyU0/cZI/gEPjpvtRnYmiSEpqFiazjEEn4O/3YC2dRVFk+oyp9Oz1ujKobN/2LhELY5zW\nEzplEm2f93TS/h/84iZRsSXhhNDgQNo/XtXJ12z5ri/p2fFNlzma0vYtNSuRqzcu8eNXvzDitVHU\n9aqLbJXZeGwzhqrlaPlkLweykS0SiStmU8+rAag8wJaPVZVLQlbpb+KiKJKcloVJskBRPmXMZrQq\nN9RlDYyfXKLE8h03iddf6e6w7Np9b9FhanMHsrGYLfy4WSRuYXzx+k8wZ44vA/o9jVarRpKsLHnr\nC1Tmx+j+chCCWodsNbPzkwQsZa7R13tkiT3Q7vVEFdvgHDlyhLDYWQwMG47p2k0+jdvFpJd7KmGt\n5d8cZGbKIoz1jEwPDKBHjXJO7gE7zt4gIjFJOe47VWeJGYv5+fRZRvZ53il/88mx48TGOs9e74TP\nRH/atOnq9P2evZtZuvT+8w93qs4Cx/r84YFYFEXmBk5lYLOSRnVrj+5nbuItLz6RtNQ0zHlmdHod\nvn6+AHbVWXFHTT//u29fFEVmBM2lZ/OBSih3+8drWZjw7+3E+UgM8ID4K4lGFEVmh0ylX+uSm37D\n4f3MX+Q8uN9rPVPD5vN6l5J2Ae/uXkFM5Oz7Xs+UKcG88NITToPK55/+RGysc+/3udP9lPDZrRzN\n3AhHf6bA8aPxbv6007Yilm3lmeebO6nOSju2sPBAuo4q8ZVaGbOL6pr6eFX3wifQB4Dpk+fR/bWS\njo47P1yDz+TRbN+0TSkU9AnwfSgP+pTJU3m+QQsHW5VTZ0+y/avVvDm9r5Kj2Z99WMnRlBzPCTIy\n4pGlmwhaT25cdqdZrXEI6ttEC1Yz2z6Ppf/QoSXfyRLff/s+ixZF06ZLO/rPGabkLq6cucixlQe4\n+sM5mrVswfigSYqdimOOxu4esOTjL5Uczd3O+7BRw5gyeajT3/bu+ZTU1GwXSzkiJGQqjZ9trsxo\nLl28wIGDezGZbtC4cSOHRnt/FUIDg2lb7Umnl5+D539kQqA/Af4BaFXuuKtsFNpUSLZCklIeTFE2\nJTCUF2u0dXrx+ezsQWIT/x1tAe7EIzHA/2NkJKcoJAN2u/x+rTuQkZxCdPz9K2NSUrMUkrl88Swf\nHdyBrcDK6BFjWbIs574ekqvXrrhMCl+9dsXpt0ajkbkRqWSmxSObcxF0ZZ1IBkAwlHVoQwz2h7rx\nCy8QFedcsOkKqVmJCsmA3Y596NRufL3jPDGRJeuIiJ9DWlJJj/qIeLuXVGnWLv8NfCf5MH3KbHq0\n9VZUXse++YB5QeFs2bxZUZ3dSTIARmM9oqNTlM8TR05zIBkAQa3Dzebh+J2g5crVa/YPapVDgrxS\nzap0DR3Iypk5RCY7zjSMRiMzE1KIX7iAk7/+hKkgn/rPPlvqsYnFhqGXrt/gyqUrLtsp//jDjwRM\nGG1XXPmXHkbz8/MhLHQWXbr0JffmDXbv2caAfsOUkHBY6Cwioxb8pWQjmfIc7kewP3eyKY+IiAg8\nZJlR3booL37Zu3YTERFBdva9ifUWzCbJZSjXXEo30UdwxCOiecgo7aaXTHkPtB6TWVZI5vDO1Qzt\n0V8ZAGeEzGDhItdOyrfj+MlTLgeV4ydPufy90Wh0CJO5wgT/QCVHc+vBXXPgE+bcpbnXnTBbXff+\nMFsde38YjUZiE/7ct0V7CCeDXKuMvoYnB7/YhYe7Bp1eIEE9WT8AABuoSURBVCJ2/h8iNr2nB7LV\n7DSjKVLlO/xOliXEE6L9g9WGxSw7SX7JL30mfsF2g14LBpJ7LZfDm99n5Lg3earhs0ydMkO5N0RR\nJHBeOM2GjKauVkutlu3JyEhg4sQBSjg1M301Qzu1pF7NakiyhbnTApkb7TocaTQaiYxaQGpqOp98\n8iljR01yyNd07dyX1NR0pdHeXwGtQe/y5Ucw6Pnm02OE9vN2ePEb160LURs2PtA2dAb7rPrOGY2u\nlG6ij+CIR6qzh4xbN/3tkCwWtIYH818y6OwtnT86uEMhGbAnqXu37UVacto911G17mOsXL9LUSDZ\n1VW7qFr3sQfal9thNBqZE5PIgZ8vsvHj/3Dg54vMibm3Wul26NT23h+3Q5Ys6NR/rfxTFEUCo+bg\n5d2aZ8b0pv6IrlwsIzMlbDKx8Q8W6rwdfkFj2PNFCrLVrr6TrWaW757NjbzLitpJliU2vb2CmtXs\nHma+oyaSMSmZrbGb2ZGyhbO/nmZt5HLCZ7hOUKdkJdNpRFtyr+VycOV+BvdpTUjIm7Tv1ICZs4MQ\nRRGAxMxsmg0ZrfRNqVavPi+NCmLe/CyWZewgMXq5QjLnLl1l7Y6jWG66MWboGGUdd8JoNLJoUQyN\nnmnkWraf59oT78/ChEB/1h7dj2SxcO7qJbIObiDqwFvcKMoFW5HLF79bjeruF76BE9j+8VpkS/H1\nK87R+AZOeGjH8W/GoxnNQ8bESf6l5mgeBP5+45kaNh9bgdVlF0XJdO+HuXqVynh07MyqvTtxK7BS\nVEbN0/2Hkf/lZw+0L3fCaDQSFffgZoO34Dc+0ClH887So0TO/OPr/CNIzMnglfEDHNyKXxk/gMSc\nDBIXPlhtxu0wGo1EpUwjNWGxojqr0UBP06feYNeWzdgoQoUbbZr35tfTHyGKIhu37CBg8rySSvWU\nJAb268emXTtYvnk9Bo2WgPElVfq3OkJuzdjK8CEdHTzF+ng3Iz09kZiYREyyxakTZLV69an17MtI\nN/KoYiivkMz6nd8zoP0kJSc2I3AeCxPnlEq4Or0WWZadCjd1+j/WLuCPwmg0Mjcxhuj5C/nl8o8M\nndpXua9+EX/gxLlz1KteYrwpWSwYGzZ44G0sTJhbrDqzh3L/zUKAh41HRPOQYTQamb8oxkF19qBC\ngFvriYmczegRY/9w7w9798JwXh0xVmnO9MnypSTOnPmgh/VQYTQaiZyZSGpWImariQKpiAruNVgU\nGWu3sfF/OAn+eyHXKlPHhVuxyfrfx92NRiOLksKVz2MnjuO9o5vp39VHGcjXv5NOzToVSEnLoEPP\nfg6to7v3Hcjb+7fQO2SCcu0mh88hfqZdpabTGDh9/Cy5p6+6zMOZZXsY0iBoXHaCLOPmTtfh40mf\nH4QkW9h96FuFZMCef+j58hDSEjNLTXbfytd07dxXydG8s2czkVH3lik/bBiNRvReBoaO6ntH7q8v\nGVNWMG/AcOXFb8V77/F/7Z15eBRF+sc/rwkhk4CgsnhjyyoInrvecgheiBfgCcq1CkLCkShHQECI\nBjmCymUCRrzQBREV8EAQCQqrgro/3V1cWBVbUVFRFEgykwGs3x/VGZI5kpCZSSe79XmefpJUurq/\n091Tb1e9Ve+bM/vQF2ZalnVIjn/btsmfMxNf8d4qfV//7ZhZZ3UcHeZlHN07H8z9saxwebV8NGX1\nZ86fz95SP40bJpE56NCmSMcb27YZN/o+ul1xMEvk8jUrmDy98twpsSBzXBZH33xpSLTiH5e+E1WP\nJhyDM9Np1e5MNqzYgPILkqRof0N7Pl75Hl9/s51mxx2LqAQ6driaPzQ/hqUvLaTj4FtCDMT219aT\nMWgwD0/N4R8fb4QD0CvtWk48qVyofF8pGzfsYPr0mRV8NGUG663H87jqqhtp1vxY3lryOMn+XZTu\nOYyeV4wM0Z23YirznwlNx1CGbdvMnZvHrl2/Yn/zJce3bMbRzY5l6N33VPv+2U7Cs2L/HlKTDmfo\ngOrXLU/avQPpdEdo6JdVC96necNmFaJ8x/vZsm2bSVmZ9LzqAjzJDfH6Slm8elNE31ddxExvPkTq\ns6GBssCVB3N/DBleO2/8tcGoEaM4v/W5IT22D7d+XGkY+lhQ5qMpGz4rLfGycf4LzByTHfPrO2LM\nSE67/JwKof6/t79l1UtvcOuIvoGozMsfW0qXzjez5t2VXHPvnSHHWZ+3kNQ9P9P3yrMCU5unPvMG\n3fp14cSTjtULMPNWMG/e8xUmBPS5O43UPxxH4mEJdOjUlWbNj6XU5+WLTasYPmQwA/oMYGDXsSHO\n7odfzMbTNJG2bVqTNTp83Dvbthn70HCuHXhuICDm6wUfM+W+yAaqfN0x04Zx9dA/B+q+OffvTM2q\nfKp2OEaOvYczr21RYaKJz1vKB0v+TYqnycE02Gnx//5kjcikc9vmeMr1Nr2+Ugo/+4lpUQw71ybG\n0Bwi9d3Q/DczdNAQrrrkypDy1e+/xdx5VU94iJayWWdFfh+NkpLDRiuurG7ezHy8e714GntIz4xc\n17ZtRmeP5crbD6ZjfnzyY9yZMyQkz8zKvNf5/ttvuX1KVkiPZsWYB8nue3nIYs3MmS/QuqVFQ5VI\nytEnkL9gQcj5R417gM7d+wTWZRUuW0juZL0uy7ZtxmVmc8MFvQNDe/OXz+CGvldwQosTdODVZSuZ\nMnlqyGcceV8G5/Q4MiTE/yev7GLGQxVjlwUzcnwGZ/RqGlL3X4t+C4l7VhW2bTMm51669u8Q8NG8\nWlCIt+gwut/VK3Dd33phBdOzqzciUFMyBt/FjR1C15u9vOEzZuUvCFOj7lHv19GIyAnATOAKQIA1\nQKZSans16jYEcoA7gKbAJ0CWUmp9/BQb4oWnUUp4H1Rq1XHgbNtmZv4T7PX6aexJIjNtQI18YTUZ\nJrNtm/EZE7nxgltJPt6Dz+9lfMZEcmZV7A3Zts2cvHyKSrwc4TmKTS+/S0LDRFKTU2jbtk0FIwNO\n5sziXcx8aAqPPFVA+7/cEhjyWj37KZL3H6hgZECHnzmjtcVhpYkkJKWQNWFC2M+ZO/l+Zj82LxAG\nqMzIlP1/8syJ9Ot1N384sgXbd3xOr7tu4IQWOiFYcnIyF7Q7n34DBtG6zRmkepLISNfDsCX+vSSn\nHFPhfMkpSZT4q04cphOeNQ+pW7zv0NMeW5bF1PGPMHf+LEpKi0hp2IjE/akkNlS8sXA5kii0v6YT\nV952A3PyH6s0+2i0JKc2xusrDenRJKfUPMdNfabWpzeLiAcoBFoBfYDewKnAWud/VfEkcBcwHrgW\n2AGsEpGz4qPYEE+GDBvC8jUr8JU6gTUdH82QYUMqrWfbNhkTp9G8Yy/adE+jecdeZEycFnFKbqzJ\nm5mvjUyS4zxP8nDjBbeSN/NgXhTbthk9fiKtL+zIqX++mB079/Lvz75F+RIZNngoRzU5klJvUHBJ\nr4+z255J+/bteWR8NttfW88nzy1n+2vrOaXR0RydcjzeUn+FOt5SP5LUgJ37S7n/0fCpksHJcZ87\nlflzH+WR3NCeiWVZnHfJuXTpcSfHt2wRMDIAP/20kzfXfEiPIRP50zW9Oeni6xkxIQfbtklJaoyv\npKImX4mflKSqG9XUpMPD1k1tULO0x5ZlMWPKo+Q9UsDQQRn89ONuul3dm1t63MV1V/ZizQur2Lt7\nT5VpsKMlbVgmi1dvwussLSjz0aQNy4zreesqtT50JiIZwAyglVLqK6fMAj4HRimlIg5gisjZwP8B\n/ZVSzzplCcBmYItSqnuEemborA5j2zbTp0znyy+34fWX0qpNa8aPHVNp7yQzazzNO/YiqVwEbL+3\nhJ/eXcTMaTkR68WKYXcNp+tpoY/byi3LmbNAD/kMSh/KuZd3Zc/uPax55TW69xgSGLZ6e9WTZAzr\nz8MFs7hqYLeDmTMLlvNodm7Yz57Rfwjtmp7Nsn8tYtBtFwd8NLnPruK6nl3ZZhczPVdHcLZtm9kF\ncyjyl9AoKYXhAyMHmSyPbduMHp2Df98+br79ssDU5UWLV9Dh5iEhqR6+fv9VMtIHBXw0e38tpnDR\nR+z6uojTWp3NyDHjKj1vLH00wYwYmcXpZ3UIyTuz/M3nOOXEE+Pao4Fys86cSBv1bdZZfR86ux74\noMzIACilbBH5G9ANPaQWiRsAP7CkXN0DIrIYyBKRBkqpfRFrG+osO0tK6D40M9AQj5owidwHI69T\n2Ov1c0JQmoUkTwp7fbVz+z2N9XBZWY8GwOf34mmsG2bbttn8n61ccu2NbFj6UsDIgM6Jc3mXO1n4\n3GISvyth/dSl/J6cwGG+AyRWot9zeApNUprQ/YxePLtkJeqwfRzYn0BCchM2vPcZOYFAnzYjp2TR\n+e4ugejII6dkMWNs1SH1Lcti+vTxTJ48nacLnqP/wN4kJyezbz9hc/sUe/16uvp9s3koN5tvt25l\naO/rAzOtJo7JJHtq5JlWlmUxNWuOnnW2bw+pDQ6PiZEBKCnxhs07s2vHzwx7KP7xySzLqjeO/3jj\nRmSA04F/hSnfDIR6zyrSFvhKKRW80GEzkAQc2iosF1m3bp3bEkJwS9PsvHwuu6lnhYb4spt6Mjsv\nP6Kmxp4k/EGJ4/zeEhonNwi7fyxZt24d6ZlpvLxpCT6/s1Lc7+XlTUtIz0wDYPa8PJoe15xSnxd1\nIHwj/eUXX3P3pT1I73ATQ8/vTnqHm7j70h7Me3ROyDkBBt8zhEX/WEGTlCb0a9ef287twy9FJRxz\n8slcd/2tgcZ5dsGcgJEBnVSs891dmF0Q/rjBWJZFQUEeTzxewCeb/snaVe+w+5efw+b2SXXSI1iW\nxRGeJgEjA7B123Zuu/pC8udW3thalsWMnFnkT3uKGTk1S58cjpQUT9i8M0c0blTnehZ1sT2IJW4Y\nmiOBX8OU7wKOiKJu2f/rBXXxwXJLU7HXF+Ft2RdRU2baADYumRswNn5vCRuXzCUzbUC85bJu3Tos\nyyJnVjYf7HyXlVuW88HOdytMBCjyeWnXrQsvLXoapQ6EbaT3eYsq5JwB8CQ1xLc3fFw862SLSXMm\nU1j0ES/bqyks+oi5iwuY//gCtmzZEtivyF8SNoNlkf/Q/BKWZTEjdwZ5c/N45on5rH/5yYrJ615+\nkoz0QYH9fcV7Kzi/P/nsSzzJDfEVF4UcuzYYNjSNVStfrBD2Z9XKF2nZ0nJFT2XUxfYglpjIAAbX\nSfUkh031nOqJHLDQsixmZWfpWWe+fTRObsCs7PDrPOKFZVlMnxl+xlqjZA+NmjahU6/reXvxMp5f\nOIU7+oyt4KNp26pl2JS/yY0jx8WzTraYOrty30KjpJSwATobJdU8o6tllSWvm0+x10+qJymQvK6M\niDOtUt1JYWxZFtOmZDNnbj4lJV5SUjxMm5LN008/7Yqe/2XcMDS/Er7nEqm3Ely3RYS6cLBnY6hH\nDE9PY9SESYHhs1Kfl7UvLSb3wUmVNgqWZdWK478mDB+czsjsCVza+2ZuvWcQO776hgV5Y2nb6nSO\nOrIJudN0GKDs4aO5/fyrAgnO/vrhaibOji7y8fCBw0J8NIWPr2LG2OiiHViWxaPTI2eFTRuaycQx\nmdx29YV4khuyf/9+XnhzI9lT3fNTWJbFwzNiG+XBcOi4MevsbaCBUqpjUHkhgFKqcyV1JwDjgKbl\n/TQiMgnIAg4PNxlARMyUM4PBYDhE6vOssxVArohYSikbAtOb2wGjq6j7KpAN3AIsdOomALcCqyLN\nOIvVxTIYDAbDoeNGjyYFvZrfC5QtYX4ASAXOVkqVOPu1ALYBk5RSOeXqLwKuQhulr4B04BrgYqXU\np7X1OQwGg8FQPWp91pljSC4D/gM8i+6ZfAlcXmZkHKTcVp7+wFPAg8BrwPFAF2NkDAaDoY6ilKqX\nG3ACsBT4DdgNvAScWM26DYFc4HugBHgP6OCypoeAVcDPwO9AXzevE3Ae8AT6haAY+Bp4DrBc1NQC\nWAbYzn3bCawDurp574KOM8a5f+/Wgef89zDbAeAsN68V0Aa96Hqncx+3AMNceqYmRrhOvwMlLt67\nE4FnnO9dCbAV/XKd4qImy6n7K1AErAXOrVbdaES7tQEedMiaf6AjDVzv/P454KlG/efRM9TuBDo7\nF7skmi9gDDTtAd5B99YOEANDE40mtCF+Dz002RHoCXyGNoTHu6SpLVCADqh6qVN3hdModHfr3pU7\nTktgLzr+XtSGJgbP1O/ol4ULgrZkFzWd5zRwy9CRPi4FBqCD6rrxTB0X5vp0RkcgWeSSphT0C96X\n6FiQlwIj0W2UW5qOBL5z2oCb0XEmC9HtVusqzx3tl8GNDcgA9gEnlyuznLJKH1jgbIJ6DEAC+q1q\nmRuago7zx2B9Ll2nZmHKWqCN4CS3r1PQvfsGWO62JuBNIN/5AsbC0ESly3mOHohWRwyfKUFH8Vha\nVzRFOF4f5zm/2qXrdKVz/iuCyqegDWCNXhSi1DTeObdVriwF+AFYXNW53YgMEAvCxksDyuKlVUbY\neGnAYqCLiNQ0hkk0muJFjTUppX4OU/YNerjjeDc0hcO5d7uB/W5qEpHbgT8BY6PQEXNdcSAaTZ2B\n04BH6pCmcPQDfgRWu6SpLA/E7qDy3Wi/ek1n0Uaj6ULgc2f/srolwHrgOhGp1JbUV0NTF+OlRaMp\nXsRUk4i0AZqju8+uaRJNgogcLSL3o9NMVC+QVxw0iUhTdOM5Sin1WxQ6YqrLIU1EfCJSLCJvi0h7\nFzW1c36miMj7IuIXkR9FZJaIRA4DEV9NFXByZXUCnlNK/e6SpjXo4azpItJGRFJF5DJgOJCvlPJW\nXj0umg6gX9CDKUUPyf2xssr11dDUxXhp0WiKFzHT5KxXmgf8hM4J5Kam6eju/g5gBNBTKbXORU0z\ngK3KSV0RQ6LVtRDtY7scGOgcb62IdKy0Vvw0HYd+G1+MHma8ApiG9tE875KmYPo4GqO9lzXWpJQq\nBTqgh4U3o/1+bwGvKqWGuaEJPRnhVBEJ7Ccigu7plB07IibWmaG6PAZcBFyjlAru0tc2jwKLgGOA\nvsAiEblJKfVGbQsRkQ5oh+2favvcVaGU6lfuz7+JyAr0G+2DaAdzbXMYoICFSqlsp+xdEUkEpohI\na6XUVhd0lacP8H9KqXBv/rWCk0V4CXr04A5gO3qSwkQROaCUSndB1jx0j2qhiAxHr4Mch/bxgPYH\nRqS+9miijZcWqS7UPF5aNJriRUw0ichU9FvnX5RSb7utSSn1vVLq70qpN5RSPYEP0L0KNzTNAxYA\n34tIE2cYLRFIcP5Oqrx63HSFoJQqAl4HzndJ0y/OzzVB5avRvYhzXNAUQEQuQPuQnq6hjlhpGoCe\n6dlVKbVIKbVBKfUIuvc+SETOrG1Njl/nduDPwBfAt+jeTJm/bUdl9eurodmMHm8Mpi1V+w82AyeH\nGRM+HT0G+YULmuJF1JpEZBwwCr3O4a91QVMYPiK6XETRaGoDDEZ/UX9Fv6i0Ay52fh/skq54Ee13\nLx7E6jr1w5nW7LKmM4DfyjvtHTahDXIbFzShlHoFPRGoDXCKUup84HBgu1Lq28rq1ldDswK4yImR\nBlSIl7a8irqvop3+t5SrW2W8tDhrihdRaXK6yA8C9yml8uuCpmCcceIO6DUHbmjqhJ5N1anc9inw\nT+f3pS7pCkFEDgeuAza6pGkluiHvElTeFT2k9qELmsr2bwDcBryhlPqlqv3jrOkHoKmItAwqvwh9\nnb5zQRMASrNVKfWViByHbjfzqlOx3m0cXND0KXq68g3o+GmfU27lLHrdx35gfFD9Rehu/F3ocDhL\n0YuhznZRU0fgJmAoerxzjvP3TW5oQi/QPIAearkwaGvjkqaJwCzn4e7o/Fzt7HeLW/cuzPFitY4m\nmms1Ar2m51a0P6YfenGeD7jExef8frSxmYyepDDG+e4tcPP+ATc637tu0d63GNy7k9Ar97egfZCd\n0KMKu4GNLmlKRA+TdUO/WA1DG7x1QGKV547FRXVjQ4dSeJGKoRRaBO1zErqxnBBU3hA9pl8WguZ9\nYheCpqaaCp3ykM0NTRyMUBBuW+uSpuvR4/s/oJ2RX6FXmF/k5r0Lc6xC4B03n3N0z2U9epZgKXr9\n0ytUM2RIPK8VkIlu8HzOPZwIJLisaZlzrapsNGtDE9pXtBgdgqYYbXSmAU1cep4S0KNBO5zv3ufo\nSPrVWjxa69GbDQaDwfC/RX310RgMBoOhnmAMjcFgMBjiijE0BoPBYIgrxtAYDAaDIa4YQ2MwGAyG\nuGIMjcFgMBjiijE0BoPBYIgrxtAYDA4i0k9Efi+3lYrIFyIy2YmoW9t6bBGJJiWDwVAnMGkCDIaK\nKHRO9O+AxkAPdNbMRuhUuLWtxWCo9xhDYzCE8qlSapvz+9si0gq4k9o3NAbDfwVm6MxgqJq/o9MP\nN4u0g5NWep+IDA3zv9FO2uKjnL+vFJHXReR7J8XyP0Xk3qryrovIJBEJSTAlIk+LyFdBZR4RmSYi\n25whwG0icp8T7dpgqFVMj8ZgqJqT0QEII4aPV0r9KCJr0Nk25wb9uzcVw8+3RAfefAwdMPE8dGDJ\nZsB9lehQhB9Oq1DupL1YjQ7M+AA6q+ZF6MjJR6AjARsMtYYxNAZDKAlOY90YHT6+B5Chqo5AuxCd\n6vZUpdTnACJyDjqRVVnqYpRS88tXEpEN6IjiI6jc0FSX24FLgI5Kqb85ZYVOb+Z+EZmmlPo5Bucx\nGKqFGTozGCoiwFZgHzpD5hPAfFW9xG+voHsofcqV9UGHZH81cAKRY0RkvjOrzO+cKwed7Kp5DD5D\nF3R4+Q9EJKFsA95CJ/27KAbnMBiqjTE0BkNFFDq503nozI9vAUNEpHeVFZXyovN73AHg+Fx6AkuU\nUn6nTNBG5xr0sFZn51yTncMEpxivCc0BC23Aym8bnc93VAzOYTBUGzN0ZjCEsrls1pmIFKIzU+aK\nyEuOMamMhUBfEWkHpALHOGVl/BE4F7hDKRXITS8i3aqhy+fsm6iU2l+uPNhw/AJsQ6crD+f8t6tx\nLoMhZhhDYzBUglLKLyKj0DnV04GHq6hSiF6D0xfwAHY5PwnodLqgU+UCgXz1d1RDztfOzzPQKXgR\nkaZof8yecvu9ifYtFSul/lON4xoMccUYGoOhCpRSr4rIh8AIEZmrlCqtZF8lIs8Dg4AGhBqmf6MN\nxmRnqvJ+dGrjkGnLYViJNigFIjIJPcw2CigK2u95oD+wVkQeRueITwJOQafD7qaU8lXjfAZDTDA+\nGoOheowHjgYGV2PfhUATdI/mufL/UErtQ/uAfgCeAeYA7wBTwxynwrRlpdRu4Fq0UXoB7deZDawN\n2m8/ekLA48BA4HVHRx9gA+CvxmcwGGKGVD1j02AwGAyGmmN6NAaDwWCIK8bQGAwGgyGuGENjMBgM\nhrhiDI3BYDAY4ooxNAaDwWCIK8bQGAwGgyGuGENjMBgMhrhiDI3BYDAY4ooxNAaDwWCIK/8PfFzt\nhAyexiwAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "N, K = out['resp'].shape\n", "random_resp = np.random.dirichlet(np.ones(K), N)\n", @@ -743,11 +1083,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 34, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEKCAYAAAArYJMgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4k1XbwH+nbdokQAuKFGSl+mpRcYMTENyKW7aCImWU\nTrrYe7dN6S6jiIKvLAcO3AMZKu4JVN+PBlmiiLTQJE3anu+PJ02TJi0tLZTx/K4rF/TkrCeFc+c+\n9xJSSlRUVFRUVE4VPk29ARUVFRWVcxtV0KioqKionFJUQaOioqKickpRBY2KioqKyilFFTQqKioq\nKqcUVdCoqKioqJxSVEGjcsYghEgQQuwUQliEEOVCiEeaek+NjRDiDiFEhRBiWlPvpTEQQnR2PM/z\nTb0XlTMXVdConFKEEK86DqIdJ+j3NJAMHAOMwExg15lyMAshLhFCzBBCvCmE2O/Y008nOZ10vFzn\nrxBCfNLwnTY+QgiTEGJ3LV08nkdFxRW/pt6AyrmLEOJC4CGgAggVQtwqpfyihu73oxxWfaWUf7vM\n0e7U77RO9ASmAXZgB3Cy+9oOXAEcbqR9nQ5qEyL7UZ6n6DTtReUsRNVoVE4lw1C+zKQBAniulr7t\nAFyFjANxarZWbzYBNwMtpJTXn+wkUkqrlPI3KeWRRttZEyKlLHM8z6Gm3ovKmYsqaFROJcNRrsKm\nAb8CA4QQOtcOQohnhBAVQB/HzxWO124hxHTgE5Rv1DNc3isXQnRymaOFEGKOi33nsBDidSHENdU3\nVHkNJIRoKYTIFULsFUKUncgeJKXcI6X8Wkppa8gHUv0qsPJnxzP2dnnGCiHEMJdxQggxUgjxpRDi\nmOO1TQjxuJc1XnCMDxFCJAohdgghrEKINMf7lwkhUoQQ3wshjjg+s1+EEJOFEH4u83R27K0TYKi2\nt2mufbzZaBzP9r5jDbMQ4mfHfvy89KsQQkwTQtwohPhQCFEshDgqhHhNCNG5IZ+5StOjXp2pnBKE\nEN2ArsAKKaVVCLEKmA8MAF506fo9MANFKHUCpqNoMUeBH4DOwLMoGsUmxxjpeL/yem4LEAp8CrwN\nXAg8CdwjhLhLSrndZT0JBKAIMB3wuqO9qTQME8rzz3D8/QWX935w+fsaoD+KwK7s0xd4VQgRI6XM\nculbaTPJAboBG4E3gUo7yxPAMyifwYcon8cdwGzgRsf7oHzGM4BxjvkWUaVhbqrtoYQQg4CXgOPA\nWuBfx34XAj2AR70MuwkY79jXYuB64DGgqxCia0OFvEoTIqVUX+qr0V9AHlAO9HH83B4oAz6rof+n\nQLmX9jtQbDzTahi32rHOgGrtl6AclD9Way909H8L8G/A81UAP53EOK/P42j7pIYxox3vZwLCpV0H\nfAlYgLYu7Ssc/QuBdl7mawv4eWlf6vhsbvPyme2uYW+dHWs979IWiGKzOQZc7tLuiyLYyoGhXj6T\ncqBftflf9Pb7VV9n10u9OlNpdIQQAcBAYL+U8lMAKeV+lG/BPYQQlzbSOheifMt/V0q5zvU9KeVu\nYBnKt+ErvQxPkmfPN+QIFKEZJx2nL4CU0oKihQRQpYU43waSpZQHq08mpfxTSlnmZZ3FKBrL3Q3c\n72NAC2CZlPI3l3XLgQmONZ7xMu4zKeUr1dqed/Tv3sA9qTQh6tWZyqmgH9ASWFKtfRVwJ4pTwORG\nWKc7ip2xmcOeU50rHH92QfEUq8QqpdzZCOufchw2rauAP4DJQnj4RrRx/NnFy/Bva5hTAGEoh/1V\nKBpI5cSSk/eoq+Raxzybq78hpfxWCHHc0ac633lp2+f4s2UD96TShKiCRuVU8BzKQfPfau2vodgN\nhgkhprh+Oz9JLnD82cvxqolm1X7+q4Hrnk5aoQiBTihOFd6QeD4jQE2eYNlAOIpN6FXgT8CGcpjH\nomhIDSHwBOsfQnme6hR7aavUvHwbuCeVJkQVNCqNisNDqLfjx5+8fAMHxbZwP/BuA5erPJgWSikn\n1WPc2RRcWPmM26WUt9VzrMdzCiHaAGNQnDBuk1KWurx3E4qgaSiVew6u4f1gvAsVlXMUVdCoNDbP\noXwD3wT8z8v7rVA8wp6jboKm3PGnt2+0X6McprfUe5dnHhV4eUYp5XEhxC7gSiFEMyllSQPXCUH5\n/XzsKmQc9KhhTDmgqccaPzjW6AVscH1DCHED0BzFiUHlPEF1BlBpNBx3/8NQDqanpJSjqr9QnAQO\nAg8LIS6obT4HlW7HHau/IZUgwVeAO4QQkTXsqbYrtTOJI0CHGt7LQrmOWuJwtHBDCHGlEOKiOq7z\nh+PPW6vNcTmKod6btncEaC2E8K/jGm+gaCxhQojLXNbwBRY41lhZx7lUzgGaRKMRQrRH+Ud9I4pR\nUAcYpJR/1DoQp0fTHOAplDvlH4DxUsotp27HKnXkbhR313e9eTsBSCkrHDE1ScBQIOMEc+4CDgCD\nhBA2FOOwBDKllMdQbA2hQIYQYjhKipfjKDaAW1CM5fqGPpjDw83oWLvyPrC9EGKFy7MNb8ASnwD9\nhRCvo1xrlQNvSil/llLmCSFuRfk331MoOdH+RDHaXw1chyI4qmdV8EBKedCxxmNCiK9R3MrbAw8D\n76E4cnjb243Ae0KILSj2nM01/Z+TUhYLIcagOH98LYRwjaO5EnhLSvlSnT4VlXODpvCpRvGbP4gS\nXPcuyn+qTnUc+1+Ub1jPoUSTvwqYgWua2lf8fH8BLzt+l/1P0C/U0e97l7ZPgbIa+ndHOeyOOsa5\n/XtB+aIyAcXL6hjKt+kCx7+VR6vNVQj830k8W2W8SHkNL6979zLPHY7+U6u1B6PEBB1CyadWDgyr\n1mcw8DHwD0rsjMnx/2cUoHPptwLFiO71/xSK40Ca47MwAz+juFAbHOsu99J/MYqQtzn6THP5XDzG\nON7r5djfEZd1EgDfunwmJ5pffZ09L+H4ZTYZQogRKIFiIfIEGo0Q4lqUb3vPSilXOtp8UaKld0kp\nHzvV+1VRUVFRqR9nm43mEZRvVM7gPKkEga0B7hNC1MdgqaKioqJyGjjbBM2VQKGU0lqt/VfAH/jP\n6d+SioqKikptnG2C5gIUo2J1jri8r6KioqJyBnG2CRoVFRUVlbOMsy1g81+8p66o1GS8pnoXQpxN\nkeAqKioqZwRSykYpPHi2aTS/AiFCCG219qtQnAS8RaIDZ145hOnTpzf5HtQ9qXs63/Z0pu7rTNxT\nY3K2CZq3UIz+/SsbHO7NA4D3pZT2ptqYioqKiop3muzqTAjxpOOv3VAirR8UQvwN/C2l3CyUUr27\ngRlSyjkAUsofHFHG6Y50GIXAWJRAs8Gn+xlUVFRUVE5MU9po1lOVV6my7CzAZyg1S4TLy5Vngbko\nBZ9aAj8C90kpfzzF+21Uevfu3dRb8EDdU91Q91Q3zsQ9wZm5rzNxT41Jk2cGOB0IIeT58JwqKioq\njYUQAtlIzgBnm9eZioqKikodMBUWstxoxF5UhCYoiBHx8RhCQppkL6pGo6KickZwJh2MZzumwkJS\nw8OJDQ1Fr9FgtttJLyggIS+vzp9pY2o0qqBRUVFpchrjYFSpYmpkJM/4+qLXVKV/NNvtvFhezuzs\n7DrN0ZiC5mxzb1ZRUTkHWW40OoUMgF6jITY0lOVGYxPv7OzEXlTkJmRA+UztRUVNsh9V0KioqDQ5\nZ9rBeLajCQrCbHcPKzTb7WiCgppkP6qgUVFRaXLOtIPxbGdEfDzpBQXOz7TyKnJEfHyT7Ee10aio\n1AOTqZCcZUYs9iJ0miAiRsZjMKg2hIai2mgan4Y6V6jOAPVEFTQqjYHJVMjkBeE8Gh6KVu+P1Wzj\njbwC5k7IO2eEjamwkPw0I2VFRfgFBREWd/o8v1SvszMLVdDUE1XQqDQGiZMj6T7AF63e39lmNdv4\nel05KXPr5slzJmMqLCRlbDgxV4ai99dgttnJ2FFAYq6qVZyPqIKmnqiCRqUxiEwayr0j23q0v5L6\nf3TQX4zteBH+zYMYFXN2XqdNiYpkmL8ven8Xl1ibnZW2cuZknf2CVKV+qO7NKipNgE4ThNVsc2vb\n+/thSgr28HgnX4ZfH8zjnXyZFxeOyVTYRLs8ecqKityEDIDeX0NZ8fnn+WUqLGRqZCQThg5lamQk\npsKz7/d5JqEKGhWVOhIxMp438gqcwsZqtrFu7nYmPNoDfYAj/iNAw8ieoSzNOPviP/yCgjDbqnl+\n2ez4BTa959fpPPgrHROe8fUlOjiYZ3x9SQ0PV4VNA1CvzlRU6kGV11kxOk0glj8OEX5rZ49+K74/\nROqyVY2y3uJcI1ZLEVpdEGPGnrpruTPVRuPmkebY16n0SGuMqPpzAfXqTEWliTAYQkiZm0128kpS\n5mYT2DoYc2k1LaDUjn/zhmsBJlMhM6eGc9dtvvTrG8xdt/kyc+qpu5YzhISQmJvHSls52QcOsdJW\n3uRCBlyyBjiu9fT+pzZrgBo82vio2ZtVVBrAqJh45sWFM7JnKPoADeZSO8u2FDApLa/Bcy/ONTLk\nyVB0WuXQ02k1DHkylMW5RhYkn5pv1oaQkDPO8G8vKkLfNtitTe+vwX7oSJ3nqHSdPnboELv/+IP2\nF19M6/btvbpQVwaPVtdoTnXw6Lns3q1qNCoqDcBgCGFSWh6v/1HOiu8P8fof5UxKq1tcjclUyITx\nkcRED2XC+EgPTcVqKXIKmUp0Wg1Wy+n/Zm0yFTI5JpKk54YyOcZzr6cSTQ22I00dbUeuNpekzp1J\nu+UW5N693F1S4tX20hRR9ee6XUi10aioNAEmUyEzpoczuH8oOp0Gi8XO6vUFzJhZJaQmJEVy122+\nbsLGYrXz8eflp0yjqWmvC6LDGdutykaS+00BEzJPT6BqQ200NdlcFn/9NWO6d/dqeznd2sWZaBdS\nC5+pqJzlLM4zOoUMgE6nYXD/UBbnGVmwUDlYxoyNV2w0PdvxyZYCysor2PNHMXMXLDmte122yOgU\nMqBcW43tFsqyRUbmZpz6Q9AQEkJCXp5y8B86giYwqF6OAPaiIvTB1a7eNBoqpFRsL0c8r+AMISGn\n9YCvaY/e9nY2ogoaFZUmwGIpQqdzP1h0Og1WS9XBYjCEMGL0ZBYuiCVyTA+n5pO/bC4dOpy+tDf2\nY0Xo23mxkRw7fYdgQw7+mmwuPkKcMYk7m8oudLpQbTQqKk2ATheExeJud7BY7Gh17gfL22+tdQoZ\nZVyV5nO60LSowUbS4uw4BL3ZXFK3bePh0NAmzWjsypmWbbmxUQWNikoTMCY8ntXrC5zCptJGMybc\n/WBRNJ9qDgG60+sQMHJcPLnfFDiFTaWNZuS4hh2CpsJCpkRFMn7YUKZEnbogzMqrtxfLy0nes4e4\nL79EdOzIR82aNSgWpzGDSF33mHnoEC+Wl59TmatVZwAVlQZysqUDTKZCFue5BGOGe46bMD6SPj19\n3YSNxWLn0y3lTlvO6cBkKmTZIiP2Y0VoWgQxclzDAkdNhYUkR3gGhyblnB2H6/lQ1kBNqllPVEGj\ncqpwlg4Y61I6ILfxSgeYTIVMmRTG0CFdnTaaVS//wpx5+Wdl4s5KpkRFMjTAM4HnqtKzI4Hnmegl\n1tioXmcqKmcIOcuMTiEDoNX78+jYUHKWGRutdIDFXsZL67fjIwQVUmKxBzTKvE2JvagIfQdPB4Oy\nv88OL6tz3UussVEFjYpKA7DYi9Dq3UsHaPX+WOyHGmX+vMVGho+5zuPqLG+xkYULGi7ITKZClmYY\nsZUU4d/s9JU4qAzCrK7RnAkJPOvCue4l1tg0iTOAEKKDEOIVIcRRIUSREOJVIUTHOo7tKIR4UQix\nRwhhFkIUCCFmCyH0p3rfKirV8VY6wGq2odMENsr8Fqt3ZwBLacOdAUymQubFh/N4Z0eJg86+zIs/\nPSUOwuLiydjh7mCQsaOAsLgzy8uqJoP/ue4l1ticdkEjhNABnwKXA0OBp4HLgE8c79U2Vg98DPQA\nJgMPAMuAeGD5Kdy2iopXIkbG80aue+mAN3ILiBjZOAeOTuvdDVoX0PBvzkszjM4cbXB6SxwYQkJI\nysljVWk5OfsPsaq0/IxzBKgtLcy57iXW2Jx2ZwAhRAyQClwupSx0tBmA34FEKWV6LWPvAd4D7pNS\nfuTSPh9F2ARKKa1exqnOACqnjOqlA+rqdVbXuafPDKf/01Wpata/VMDM6Q13NkgYNZTh1wd7tK/4\n/hCpSxte4uBM50RpZs4Hg39tnO3OAA8DX1YKGQAppUkIsQ14FKhR0ACVxdqr3xsUoWhnjfKhqKjU\nh8rSAadq7pnT88hbbMRSegRdQBAzpyuZocdPiHS6RoePUYSbyVRIXp4Rq7UIrTaIcC8u05X4NwvC\nXGp3ajTgKHHQ7Ny3M7i5J7cNxmyzkxoe7qaVqAb/xqMpNJqDwAYpZXi19hygn5TS8ytWVZ8A4Efg\nIDAW+AO4GXgJeFVKGVXDOFWjUTlnMJkKmT4jnIGDq7SctasLGBk2mWXL5jJoUFX7mjUFzJzpXfup\ntNF4lDgwnr70No2JqbCQ5WkuGkpczYkwndpKNWcEV21F1WjO7sJnFwD/emk/ArSqbaCUshToCfgC\nvwLHgA+Bt2oSMioq5xp5i41OIQOKc8DAwaHMmpXgFDKV7YMGhZJXQ7oagyGEScY8Xt/jKHGwp9xD\nyJhMhUwaF0nCyKFMGnd6ywPUh8rqoMP8fIlqF8wwP19SxtacZt9eVOQmZMCRv6246rJENfg3HmeV\ne7NDo1kHtAGeAvYCNwHThRDlUsqxTbk/lbMPk6mQ7OVpmO1F6DVBRI6IO+O/zVtrSMjp51fmPV2N\ntearHoMhhHmLvH87N5kKmRcXzqjbQ9EHKJVE58WF17neTn0wFRaSv8iIvbgITWAQYePql5Z/eZqR\n2C7VqnB2CWV5mpHZXgJAa3Kvdq1x45Y1+sgRNEH1yxqtUkVTCJp/8a651KTpuBIG9AL+42Lj2SqE\nKAaWCCHypJQ/N95WVc5VTKZCFmbMZsee72jdUc9dQ64h8AI/JqaMZX5i7mkVNpXOBJXC7kTOBFpH\nQs7qsTVlZX5e27Xak7O5LM0w8vAV7Xj+06+pEBIfKXj4WsUrrSbhdDKYCgtJjgwn6ppQ9K0Ue0ly\nZDhJ2fUsBeAtw/Q/3oXsiPh4jxo3U7dtJWKRu4n4dJcLOFdpCkHzK3CVl/YrgR0nGNsVOOrqSODg\nKxRHgCsAr4JmxowZzr/37t2b3r171223KucErpqLLPVl/z8m+k3tTh/9Q1jNNtYbP+OB4dfTN7YL\n2cvTSJ2dVf/58100o7C6aUaVKWweiQhFq2+L1Wxj8oJwwp+ezBvvrcVsK0bvH0hEmHJdk7PMyL8l\nh5i3cAcjnr0Jg+FCp41m2rTUGm00J8Phg/tZf3Qvo/vdjk6rwWK1s+SVbWhb1inkrc7kLzIqQsZF\nG4m6JpT8RUbmZNbtkK9RQ6khgNIQEsKgyZOJGDOa0KBA/Hx9GHnDNbw831GC4TzUWjZt2sSmTZtO\nydxN5d6cguLebHK0GYDfgKQTuDdPB6YBl0kpd7u0jwLygF5Sym1exqnOAOcxJlMhE1PG0jf2Cmc+\nsjUpW3lgxE1c1KEloMS/vL34cwbE3c4nWQfJXbCyXvNPSh5L35guzvk3ZuxiXtKJNaPEyZF0G+Tr\nTGEDsPd/h3lr+c8Mn9bDOd/qBd+jDfCjX2RXZ9vyedto16Ijbdq0d/M6S02diWnPTixWO/+5rCsT\nk2aelIb2QO+bmfL0LR4VPue89CXvbtpe7/lqYvyzQxnb2dMHKHfPIRa+UOVmbSosJD/NyLFDh9i9\n9w/aX3wxrS9u7wzyTBkb7rw+M9vspO8qIDG3ZqExJSqSoVov+dasZ0e+tVPN2e4MsAwwAW8IIR4R\nQjwCbAD2AEsrOwkhOgkhyoQQU1zGvoDiAPCOEGKYEKK3ECIRRXB9403IqKhkL09zChlQUsQMSuzB\npnU/Ovto9f7ICkXg6DX1u2rKzk9zCpnKufrGdCE7P+2EY832IjchA7Dtnd+cQqZyvoAgm1PIVLaN\nmHQ7rdu1Z+GCbDdBsv/vQgLbCNp11nKs9DfGjX/2pIz4IYZObkIGQKfVEBLSqd5z1YYmsIZ6Ny72\nkspsz0O1viRc1pnUHrcg9+/lztISkiMUB9bE3DxWlpWTdfAQK8vKaxUyAPZi7w4BZcXu0RONWQ7g\nfOW0X51JKc1CiDuBRcBKlCuvj4BxUkqzS1fh8qocu0cIcQswA5gNtEZxCFgMzDstD6By1qEc5he7\ntSmCpUrLtZptVFRUsDF9F/MTc09i/nYe8//1zx4SpkTVep1mNwvyp33EkQPH0ev8CQzWc6TYzBv5\nX1NRIfHxEfR5sis+QngIJK3eH4vNPafa/OTp+PiUMGTw7eh0/lgsNlYs38b85OksyVW0NJOpkNyl\nRiylRegCghg7yrtNKOjCYCxWu4dGE3RBjREIJ0XYuPgqG41DG8n6qYCk7Korv/w0IzFXuV+vxfW8\nndg33+Gy1hdinDGdrBdXOg3/ldqP07nAi6tzpYCrLd9aXeJtVE5Mk+Q6k1Luk1L2l1K2lFIGSSmf\nlFL+Ua3PHimlr5RydrX2XVLKQVLKzlLKZlLKLlLK8VLK01cJSuWsQl9DPrIKh6Cxmm2snPoJF1Zc\ndlKOAGVmwerULawxbmXdom38ta+Ifb8f5s9//+D6oX7cFdmO64f6MSl5rJtmYTIVcmj//wgo82XS\npAeZOOkB+t7VFcrgsbDuDIntwWNh3Xnnxe84Vmz1nlPN3z2n2u+//8LwEYqQAdDp/Bk+4nZ27PjB\nuebUueHc+ogvDw5ry62P+DJ1rvf8ZqOj4lnxYQEWq6M4m9XOig8LGB3VeO69JlMhy9KN+Aa1IHHz\nl8z/9f/4b0m5hyNATdpHaJvWRNx2M3//+rNT03DVfiI7BDNU60tyhKerc1hcPBm/Vsu39qt7vrXl\nRqPTYaByzdjQUJYb3V3GVa2ndtQKmypNgslUSMLUaMInPEvC1OhTGp8ROSKOjek73fORpf5E64r/\nsClrLz+ttJC/YD1Ls16st5AxmQr5t3Q/j0XcwsCEnjw85iY2Pv8tL83ZxjMze9Z6nZa32EiLoAqG\nh93u9BTbtLmAMXPvcRs3OPZ2/t5bwivZv7g9w4YlnjnVdDqNU8hUtfnj62t3ajJPjAhF6+ij1fnz\nxIhQcpd6xtoYDCFMWZjH2zvLeWnrId7eWc6UhbW7NjvjbkadOO7GZCpkQUw4Ay7yJfq6zsx94Baw\nW2rVPlwx2+z4CIHeX8PMPr3IT1OewZv2E3NVqPN95/NV5luzlpOz7xCrrJ751uoSb+OWE62te040\nFYWzKo5G5dzAZCpkQmoU98deg1Z/AVazjQmpUSxIyDolbsUGQwjzE3MdXmeH0WuCSJm4rFHWys5P\n49GEa6rZf3rywsQt3q+6yv5x/myxFuHjI9zckcuF9DrumquvYUpcspJTzXYInX+g1+Jqhs5XYrHY\n3ISNxWKjfacgJY2NvQitrlpZA50/llLlCk5xJpiFybQDi8XOZZd1ZcKEujkTVGYaCOvlEncTH15j\npoFli4yEd3cXCOHdQ1m2yMjcDHdjfFhcvFKR86qq67W0Ldt4ttsNzrFlfymuzPbiIvSBXmrd/OXp\n6mwICXEa/p25zxzXbSPi4+sUb1Ob1qO6RiuogkbltJO9fJFDyFQdzvfHXkP28kWkzs706K+4Ji+i\nxF5MM00gkSPG1VtIGAwh9XZZrgvmMu/2H3tpBVazzU1oWM02dH5VB5ROG8SRo9It9sVXCq/jWgUG\n1ymnWmL8NMIjHyci9g6njebF5Z/zWP/r2b6lmIpyP6wWm1OjAbBabOgCAhVX68lhPP1UV3S6Xlgs\nNp5fsY34hGcxpr5Q42duMhWyOMfIzp++po2/4N/jFvQBGvQBGsJ61Rx3Yz9WhL69l9iX494FQlJO\nHvlpRnZ+to32Gj+e7XYDHYKUq0NX20pdbC8ez1BYSEq4w2vNYYtJCQ9n8OTJpM+d6xZvU1my2fkc\nRUXo23p5jkM1B8qeKKHnuYZ6daZy2imxF3v91l5iL/boazIVMiEliq7DmnNHlIGuw5ozISXqjEmF\novfzbv8JDenKxoxdblddGzN2ERkW5+wXPiYeS0kAK/K3OUsB9O4VyrJpn7iNezNnlzOO5kQYDCF0\n7ngNq/+7nReWb2P9mm94rP/1BLbSYbPCX3t381LmNqwWx/wWG2sX/8LYUfHk5RkdQqbKvvPc8NvR\n60trTGNjMhUya3I493b3ZUJELwYPvZlVX3zH/n+U36U+QIOtxLv5VNOiBm+z5jXHvszJysa4dj1l\nQS25QKdzjnG1rdTF9lKd5UbvmQXeX7v2hOUAKrUej+eoQbDVVn7gXOW0x9E0BWoczZlFwtRouj7T\n3ONb+y8vHvfQaBKmRtN1mJe+Kz37NgXOGJ2YqhidjRk7nZ5r2flpWMqK0Pl59zozmQpZsHA6v//v\nF3RaDYbOVzBo0AiPYM3KcSZTITn5Rq/vuc45bVY4/YeGOrWa9asKCNS15dG7gzhaZOGdTb9QLiSy\nTNJcfzl5S1YSEzOUxx9zv1YDWPHCNrTa9rRsFawUYtNWZYuekBjJvd190WldruqsNp7P30oLbQB2\nWcEvfxwmNWcFPXr09Hz2mHDn9ZnZZifv6wImZNRsBzKZFG+yvw/s58D+A1zSqRMt2gR72HUqvc7+\nObCffQcOcEnHTrQI9uxXyYRhQ4lq6+lNl/XnIRasrL1kgptnWjWtx9taZ0uyzrO9TIDKeU7kiHEu\nNhrlcH4v/ScWJHhebSnazwVubTVpP41BVQaBYvSawBPmPnPaf/LTMJcdRu8X5Oa5ljqn9us6gyGE\nxXmewaHVD+XKvU1aGM4jkV2cWQQmLQxn3nj3g9lgCGHWtMrSAofQBQQya1oe6cZp6LQadFoNIwbe\n5uz/yjuKfUarDfJq36mQFezYuYPhI5uz+ZPd/Hu4nGFDH2Le/MWUWorQad2F09EiC8WlpYwe3MOZ\nUSB5SgTMyaFHj55V5aOPF+Hbug0rTEX4y3I0zYM8hEylV5rtWBF24cvh3YVMvO069K0vxdylE9k/\nFBAWn1yZMdPNAAAgAElEQVQliF3cms0IyouLSe1xi1MAJEeEey2wVtN1W01aiXN/jiuwcp2OuC+/\nVARfcHCt7s/nY/kBVaNRaRLqanc5nRqNop1E8EDsVU4B+G76r8xPzHFG3ddHCDU2iVMiuXGwn8dn\n8e3qMlLmnPib8ISkSO661dcjLubjL8pZkJxdzUbj77TR/HOklPsf7sK320yMePo2dFp/LFYbWUu2\n0aHDlfS/u5WbRrNs1RaGP3izxzrzVn5J3oo1zIvzUprAS6LOrVu3MDNyNP+5MBCNrw/3XxvKK1/+\nzPDuN9ChZZVtZnVxOXMys51uzdFdFc0iddNWIm69uU6R/242GtfMArUIjPpqMpWcjxqNKmhUzmgq\nbTQe2k9i43uoJUyN4pphWo+DPH/cp3QJuYp/bQd4JOE65z7ecRFCp4OIpGHcE+6uPfy1r4jFkz6m\nTfCFXNLhSpJip9V67TRzajhDngh1ahovv1bA9NlVh7w3rzOr7RjIvxjyWDePK7I3PyjGfPQgTz8a\n6hRA89PfZ37UQx7rz1r2KV2vvZXHO/l6FFt7/Y9yN4cBk6mQpCH9mPJAD+chnvHhNp68+Wre/66A\n2DuqNLLFhYdYuGIVU6IieVpXlVIm7bNtxPe63WMfOfsOseBFz+swb15ndRIYtdS08YabgNJonOUH\nzrQgUPXqTOW8wWAIYUFilpv2c7JC5kQaidlejFbvHgCp1fvT5jIdhyv+x+MJt7l5yj0Ye9VJJeA8\nWfT+gW4eaX/tK2Ljim8Zn/OQU/jFzRhO6+ad0OhBX62stMEQwvTZeSzONWK1HEGrC3ITMpU01zfj\n0ksuR6cNYszYePIWGzmw76CbkAHQaf3x8yln2tw8FucYKbUcwmqD4qN2lr60FR+ND337dKVdm0As\nVjt26YfteBH6gGrXRgEabNU8zZYtMjqFjPLsGmLuuZ38LV8jqfrSaLbZ0bRQrrfsxUXog6rm9hGi\nTpH/+S7F0sLq4f11Mt5mcH6WH1AFjcoZj+Ka3LBrMpOpkIT5ox0aieIpljB/NKkTlzgPWr0m0Ktr\nsfAR+ODj1VPObP+rQfuqDxFh8S42Gn8+XPsTQ2Ldc6INjLuOV5ds56lRPZ2ZoF3jbQyGEBYk11x/\nZsa0cAb3C0Wna4vFYmPGtHDCRk1m0sRPsVhtHhrNL7/+Ql6ekfAIxaNr/rhw8p59yHktlvnWNvre\nezWr3vmWyXNyeOfVtd7LR1fzNLMfK0J/sZdDvLwC33LHOJud7B8KGO9IVVPdztLvmq6kbt5GQq/b\nq7SiXwtIylH6V161xVwZir5DcK02HG/UJcamJs638gPq1ZnKeUH4uOe4dWxrDyHyRe5h8hY9D3i3\n0aw3buH+4d3YtO4nHhlzs8f4H1daT4lGs3XrFqYvTMRHW06F1ZeZ41OchvScfCM/7PySsgoLsSl9\nPcauztjK4Jgezj1+s7bshPE3oNhw+vTwdXMGKNxzmJde3ckFF13Avwf+ICHqLucVWXrux+iaB6DX\nazCbA+hwQQjPXBbkIUQiVm4kZbHidbZ16xamjRvNpcGBaIQP918Xytu/HvSw0UyOiWRga89rqXHr\nP+DKG7qjFxJNC0cOMxdHAFcbjdlmZ+7XP9A6JISA8nL8AoO4f8BA3lu3FntxETsKfnM6Criusaq0\nbtmbT9ZGc7agXp2pqNST/zuwkz76u9zatHp//u/ATufPigdZDtnL0/jpt600b+vD/cO7cVGHIHoP\nuIa1KZsZmNjLw0bT2GzduoXpmVE8l3qXc63pU6OYSRY9evQkZU42iVMiMR39tkYNzPUZzXbvVzlK\nwbU0Dh3ez4F9B0CUcvCwngfvvIp2wUEcPFTEm5t+YfQsRWva+792zE77CJ0mgJKSIkaO7oXB0FpJ\n3Pn8Ngp3/Yy+ax+3NfQBGnrccqtTSL6QNZdZ4fc4bUTG/24lfma6x/XdyHHxLIgOZ6yL6/Ocd7cy\nM3epV488cA/qtB86giYwiNnPv+A89N0EUVAwKf/73Xv25r/r5v3ldgXmWO9cETKNjarRqJwX9Hro\nRsIW3eXF0P8xm9/+1qP/1q1bmGgMZ2TyA87D/sUZH6JrpsFW5Mc1l3c7ZV5ndz18C8+l3u6x1+cT\ntvHxW18CipCImfIs+Jc4r8+sZhsvp2/loWdupE37IOe46hqNyVTIvNQZmA79zCPPXc/H637iqYjb\nq2rfZGyjz43/Yc2b33LxZRfip/Hlrke7EnyxcuWYHPEmM2c+5OEGPT3xLRYPe9hDo3n1QDlz07OZ\nGB9J36s8vd42/lrOfKOnBmEyFbJskRH7sSI0LYIYOa72yqMnorqzQPrmzxl9U/eT1mjOdVSNRkWl\nnnQJ6cq6lE0MSOztPFDXpWyiS0hXr/03vLeeZkEBvL34C2SFRPgInoy+hTYdgvgk62CDr8uqKnI6\nHBNcgjl9tOVe7UEioMz5s8EQQsacF5hnnE7ehM1o9RraXmBAlDaj1GJnTdY2yuzl7P/9GMnTF7ut\nO2nBWOy+Rxkx5Q425H/lFDKV69w94Gpee/5roo19q4RP5jYeGnIDwRcHofH38Zq406e5L0u+KGD0\nrVWuy0u+KGDiIsUmUmouQqd1t7votBpKzd41CIMhxCPnWUOo7izQ75quGLdsI76niw1nR5UNR6Xx\nUAWNynnBpPgZRE8bzhvZW/Hx8aGiogIfq55Jk2Z47V9SVkSLC5vxyJgbPTSL+hZGq47JVMjE5Age\njOnqdEyYmBzB/CTFVbrC6uv1SkyWuv93NRhCWJrlHuy5desWZmeO47kpVVpOXq6jPLEhhJxlaTwS\n0YXXl37lrMlTXahteb+AkdPuds8gHX07G5Z/zRPPdKfEXOY1sNNfq2PiojwlwPL4EfybBzFxUZXt\nJUAf5LW+TYC+YZ9nXanuLNChZSADr7uahK1fclXo5fgFBtXZEUClfqi5zlTOCwyGEDJnrSAk8EYu\nCriEkMAbyZy1osarmGZ+Qdzy0JWsTd3mlnds5bQtRI6I8zqmrmTnpzmEjIurdExXZwmBmeNTeH7q\nx27rPj/1Y2aOTznh3G+8u9YpZCrnfmRsF3KWKbnKKit6+vgIpz2neq62srIKrxpVmb2cDct2ceVV\n17N0+RYsjnxpFouNpcu3cMWV1ylaSHo2KfmrmJvuXvlzdFQ8L7zvXt/mhfe917cxmQqZFBdJ/Oih\nTIqrvdxAXQmLiyfzF/ccaK/uPUjW6jWMmTELBOTNmMaUaLWeTGOj2mhUVLygBIpG0r1fR758ewfl\n9nIOFBSROjWvRmN05bicfKPzSsxbLrKx45+hT2RHt7a/9x7lpRlbaNFSh7XETuugdhz8az/6lr7I\nUj+n19mJiEgaxr2jPPOVfbD0T3KSV5I4OYobB/lRfMTCOyu/4+5+V3vYaFKS3ibe+DDFR8x88vov\nyHJJhZTs/c3Ky8+/BsC48c+ib27DB0EFEvNxfxYtrDnDs+vnsyTLSKm5iAB9EKOjvOdqm5sYzog7\nQ9EFaLCU2ln+SQGTU2qvhVMXvFXeBJQKn1e7VPj8ucCj+Nr5hpoZoJ6ogkblZFDsKIs4cuwQhf/b\nT9s2/6Fdm2Ciw8MxGAxe+09KDufhqC7OQ/uFGVuZGpVOjx49nP0SpkRx7VCdU2v4e+9R3l72JU8n\n9ayyiRi3IkqbkTm7Zq3LG4mTI+k20DNNTaVDQKWN5pGILhQfsfDhuh/Z9/tRAkQzfP3LCTboufbW\nznyy4Vf0Wg3DxvZAq/PHarGxeMFmpiZkOD3IcpcYsdiK0fkHMnZ0wwz1rkyKi+SRy3zRuTgVWErt\nvPl7OfPSGt9IPyU6kqf0nq7U/zUrqW0ai/pmHmhqGlPQqFdnKio1YDCEEBkWR/FRLf0iJnLXsGFc\nekcvEqZPx2QyefTPyTc6hQwo103PzuhB4qwxbv0jw+J4J6OqWubHa753CpnKcYPje6BpZXOryFkX\nIkbG82qmeyXOVzN/cVbiNBhCmDchl2/XlPHjRjOGlt1YvfQdNr3/DTdc04PHnruJK27sSLPmAU4h\nA0pxtDETejF+2hhMpkIMhhCS52eTZVxJ8vzsRhMyAKUlRfx7zMLS1z5nybptLH3tc/49ZqG0hnID\nDaUuVTQbSmUutWF+vkS1DWaYny8p53hpAFdUQaNyxmIymYibMo7R40cSN2Wc18P9ZOeNnxLLmPEj\niJ8SW+u8mXl59Bk4gABH7ZMAnY4+AweQmefpmXTk2CGvto2LQ1u6CQyDIYT5STn8uMrCpzl7Of6n\ndy8zHx+Buaz+WapLrWW8svQrXs7cxitLv6LUWub2vsEQwk3X9+TzbV/wxfcf8/hT97L+lXVEjIzj\njSVKDZ2AAD+34migCJuOl7bwWvbZZCokaWIkUXHDSJrYMJuKtVywbuN3jOnWnfhetzOmW3fWbfwO\na3mjfLn2oL71ZE6GmurdLDd6r/NzrqF6namckZhMJhKT47gzugcB+gBKzaUkJseRkpSGwWDAZDKR\nlZ9Oif0YzTQtiAqL9Xqd5W3e8ckx3BN1M1p9B6xmG+OTY4gaksiG99ZRUnaMZn4tHO7GBo5bLU4h\nU0mATsdxq9Vj3h07d3K3ub3HtZWPny8l9mNu/Q2GEGcJgcQpUV69zCoqJLLUh4Qp0ZjtReg1QUSG\n1V5dNCc/jUGTbvCYKyc/jRTHeutfWUfuf2cxIa8qR1ru9FmMZRpzJ+SSsyyNPwutXitx+ml8sdjc\nhZ/JVMjUOeE8ObwLWl1brBYb48Y/y8XBl+DjV44uIIixo73HHJlMhSzONWKxFqPTBjJmbDwa6UNc\nn9vdDuW4PrezfO+p0WjCxsXXaKNpLOzFNeRFO4dLA7iiChqVRsVkMpG1PJ3j9mM017QgakQsABn5\nWZTYS2imaUZMWNQJhUJmfoZTyAAE6AO4M7oHmfkZRIfFkJQcyz0xNxGg70ipuZSk5FiSk9Ld5vUm\njLLy0x1Cpuqa6p6om4mPjWBM1iNo9RdhNduYkBLJgsRsmmt1lFrchU2pxUJzrdZtv9n5aTw54Q5W\nL/qCweNudR7gy6Z/woOje/Hnpz4u+1JsP5XC47H7B5CZNpPH4q52s9GUlwSw328P/Ud3d3GDjmR+\nUs1XVYpXmWdpabP9sPPneYsmO4VM5ftjZt7DvPDJfL/td1LmZmEyFRIe159RSVU2mrwFH3PHg1dQ\nZHJPPJq7xOgQMsp8Rf9aqBDHuWdAS+fYidNHMn/mMo9aM0putS5uudUC7S3Q+7d2W0Pvr8Fflnt9\n5oZiCAkhKTuP/EVG7H8qEf6N7QhwsvVuzhVUQaNyQkwmE5nLMzluP05zTXOiR0TXYAw3kZQSy92x\nNxOg70SpuZRx8yM5VlzOQ9P6EaDXUmq2Ej03nszJxlqFTYn9uFPIVBKgD6DEflwRFjE3uQmhe2Ju\nIis/HeOc9Kq9JMdyb7S7MNJrmqHVd3CbV6v3p93lF7gdvPfFXE92fhrR4XEkTJ/uvD4rtVj4dO06\nUmfOrLbfYjpcFsI9z97Ka8u+h4oK8PFBo9PyzasmFiRlO/ZVyMTkSB6IuRqtvqWibWQsIPqZ6fx3\n6fP8vucXjvxzFI1vAL4+ZfSfWM0NOror2fmLSJ3jPcmoXhPkVTtyjf1pFqTxelWnD6w6BA2GEJ4b\nksSc+An856pg/DQ+PBZ2E68v/4bp8VFuYy2lxWh1VZ5ub677nuGRvdzsOwNHXk1K2ixyMlc4+y2c\nPx1ZVsSaNV8hfAX333sVg/t1YcaktzGHXux5KLc4dYeyISSkUQ3/1RkRH19jvZvzAdVGc5ZiMpmI\nnZrEiAlRxE5NajT7hbd1ElISuGTYJXSP6s4lwy4hISXB63pZy9MdQqZKADyQcDv+F/kSoNc62rTc\nGfcg8zIW1LpuM01zSs2lbm2l5lKaaZpTYj/mXQiVVV1PZeWnO4RM1V7ujb6JPbv3eMSNWM02fDXu\n/xW0en9Kyo5hMBhInTmT//tsM19teIP/+2wzqTNnegjJZo7Mzxd1bMWT4+7kyfi76Tu6B/Yjfk4h\nEz9pHMPGDnQImSrh8UDM1Wx4bz3jY6bRpm1rEhY/xPgVfYnM6s2na7/j771H3fZlttd8hRQRFsdb\nWTvdnAHeytpJRFhV7E/xkVKvn4G52N1O8dX3W5iQ+ShPj+vFoMgedLy0NaOm3Mkb765z66cLCMRq\nqZrv6BGzV/tO4R9VeeVMpkL2mX7mmcduYtSg23n64W68/tr3FBWZaXdpC6a+/ZFbvEvOtwWMHOcZ\nb3O2YAgJITEvj5Vl5WT9eYiVZeW1FlU716iXoBFC+Aghugoh7hBCNDtVm1KpHZPJRGzKVNoMu5Ur\nox6kzbBbiU2ZekqETebyTHrH9nY7sHvH9iZzuec36uM1CADfav/KAvRaft/3f7WuGx0WwyeZW53C\nptRcyieZW4kOi6GZpoV3IeTXwvlzTcLo4vbt+TBru9tBvHrGRm55+Eq3vlazzTmfwWAgbeFClmZk\nkLZwoVdNLDIsjvcyfnSb972MH3k+62UAxs+L54onOtP60kCK/zGzftFm1qV+xvpFmyn+x4y5rJic\n/DQequa1Nmjc7Wx65Ue3fdWWmcBgCGHe+Fy+e9nOR3kH+O5lO/PG5wKKW/WImAEIX8Eq42a3veZO\n/YBJ4+a6zWWxFXnVfCw2d0E3dnQ8r67Y5RQ2lpJSN8EDin3HYqkSZItzjIwb0ctZdkCn9Wfk4NvY\n+O7PtAzS88Tomxmx9g2SvylgwsdfYmulZ3GOsVECN5uKytIAC1auYnZ29nkjZKAeV2dCiAhgOnCh\no6k78J0QYgPwiZSycevqqtRI+vJcbop9wk1LuCn2CdKX55I+O7lR1zpewxXWcftxj77NHQLAtX+p\nuZTyCvd+pWYrpWYrtWEwGEhJSiMzP4MS+3GaaZoTMySOzPwM/jn2D0ujNvPkhLu4+LK2lJpL+TDj\nK5KT0p3jm9Wwl7at2zltNZW2m5lRC8levYDWMS2dNpL3M75nQWLdr1IMBgMLkrLJzk+jpKyYZn6B\nLEjKxmAwED9pHPeM6olWH4Cl2M67z39D/7i7q0oRpH1Ee93lmPVFaPXt3ObV6v0pL1NsE1azjXcy\nf2F+UrYzV9qRY4cw7d5L+/btCG7d3pkzrdLwD474noUR9I26Eq3+P9xp7sSKWR+xOvtzAgL8qJCS\n1voQ+vcb4La2zt/7NZzO313QGQwhzJ6Sp8TVlB7BVurPgolvEdwukH8OHye4fRD79/zLJZ2vrfpd\nWIrQad0DS3Vafw4eOErYiF60DQ6i/eWtOGg5yLiYHs7SBDOnhDN9TsMDN1VOL3XSaIQQI4EMYAMw\nEHD1M9wCPFmfRYUQHYQQrwghjgohioQQrwohOp54pHP8FUKIdUKIv4UQZiHELiFE1IlHnhscs1uc\nQqaSAL2WY3ZLo6/VvIYrrOaa5h59o0bE8lH6djct5OUpb3H0r+NOwVJqtvKW8RWuuKTLCdc2GAyk\nzVnEkoXLiA6LIePlRVz2dGfuiL+N5zKH8f7S7bw/7yt2rfrLwxEgKiyWDzK/ctvLB5lfOb3TjHPS\nWbxwOcY5SjDlgsRsfl1ZxObs3WzPOwDH9QyNGMg9A3oyZlxYnbRFg8FAZNg4mvkFYi4rYmHGLEZG\njuD7nd+idQg8H42vU8iAIkj6x92N1VbKzh2/eb3SOvy/Uj7N+YMfX7Iw33ENFz31OQqLv+eYOEir\nEF8OFBXSsY+VScljPb71Z+enOYRM1ZrDp91NgN6fgXG9GBx/B207XUh1IkbGsWHpLjfNZ8PSXUSM\n9EzBUxlXEx89k8svbcfIsb3w8/clfk5fwuLuZPyCh7HLf5x7C9AFYbG6P6vFaqN16xa0DVbeO/JP\nCdEjerhpPU891oXFOeeHS/C5RF01mjjAKKUcL4TwrfbeLiCxrgsKIXTAp4AFGOpongt8IoS4RkpZ\n62kphOgGfOyYYwRQBFwGeJ585ygtNDpKzVY3YVNqttJCo6tl1MkRPSKahJQE5/VZqbmUTembSE1M\n9ehrMBhITkwna3m6UwuZE5XM3CXzeT/vTXyEDxWyAv9SH6ZOmVyvfSheaD3drvAGzHiC31/ag3HO\nIu97SUp301yqC6Pq/VPnZGIymYicOpLyACvPumQvjp83FuMk5QoqO7+qrLTibqzMqRROi+QBl2SZ\na5O34h8YgNVcilYfQIDWz+t11O/7fqV//G2sWbSNQeNcUvYbtxHUOpCk8BnOb/Gjop6hIqCEx8dW\n1cZZk7qZD1f/wOCEXmTnpzldp6HSE83TAUJWKNkylOs4d08y5TMJYe5Exd3ZYvsHm0UQpGtLSu50\npM2XsrIKNDqJ3j+IiJGKJpW32Mjg4V1Zv/prnq4W8Dlk7PVOh4AxEfHMmhzO04+GOrWVpau38cTj\nN2Cx2nh+5TbaBQd5LR9ttZwfLsHnEnUVNCHA+zW8VwK0rMeaowADcLmUshBACPEz8DswGkivaaAQ\nQgAvAh9KKfu5vPVZPdY/64kdMZbYlKnO67NSs5Wv0l8jPXF2o65jMplIz8/D3+8C1sZtoEOHi2jX\nuh2piam1HtjG2e6/wrwOOe7uzXEndm+uTom9pAYvtJIax1RqLvUhKz8d31YVPD72Hndvr7hbmGuc\nybHyw9wXc32VG3RyFAuSsjAYDGTnL3IIGZfSykk9WJvyFa/lvM0TEQ8hhPfMzO0uDaLDZRdx37M3\ns2HZt5Tby9n3v38YNuVeWlzYzM3TrGD3L4w09nG35ST0YsGIVyg+YsFS7TOpyROtMqHm29k7nHYc\nz88whIiRccwzzsB06BdGTKkqs/By+hb6PtmNwFb+JM0eRUvdxfyx51fuefROKqSs1SHAYAhh2tw8\nFucYKbUcYvvXP1BqO85b7/2En8aXBx+8miVLt3ktH63VeQpFlTObujoDHEYRDt4IBfbXY82HgS8r\nhQyAlNIEbAMePcHYPkAXoH55Oc4xDAYD6Ymz+WvlF+zIeoe/Vn5BeuLseh/etWEymYhJns5FT/Xi\n+rhB3J88DrPwr9G1+UT7XTTHyNKFi1k0p3a35ppopmnmcYV34PeDFOzYdVKZA2rKDlBiP4aPEF61\njl27f3UImepu0IpGZS7zbjwP0Plyz9N38M6LH7KnYD8rpr3tdh21Ytpb3DnoOgAu6tiSfuPuYGDS\nnXQMbcNFHVs5PM2qgiT9Anzc1vl7XxFvLd3OBcEtWD7tQ4786W4/iwyLY2PWDrc1X5z5GQHWNny/\n2sa88bk1BlOOinqGkUn9+Vf+zylkKp9rSGxPPn39Z7R6f56IuoajFb9zYUctFosNHyFO6BBgMISw\nICWbRdkrua3XfTw1fBxltKXUHsh7Hx3hzvsHk5m/zXnFZrHa+O+GXYyJOHu9z85X6qrRvA1ME0Js\nAvY42qQQojUwDsV2U1euqqH/r0A/L+2u3O74Uy+E+AK4EfgXWAOMl1LWbmE+hzAYDI1u+HclPT+P\nm6IG4K9XruP89TpuihpAen4e6XMWnrJ1ayI6LIbE5Hjn9dmB3w/ywZKPGJLSz2vmgNpQYmxiuDf6\nZgL0HSg120hKjiE5KYNmmhZUWKRXDUDbzN+rIClxpInR+9WgOQhfWne4gAefu4t3X3wH8zEzG3K3\n4uMjED6Co/8cJ/BCvdu8riWZXa+2TCYTh/886lzn731FvPvCNwyIq7pGe2Hap858ZFDpiZZDdn4a\nFvvf6DSBLF24zvm+yWQiYXJ0VRG2kXHs27eP2ZlxtGijYfi0Pryx5Auvz17huH7T6v0RwofeT1zN\n8qVbefjRa3gpd6vz+sxqsbEybyuX/8d7obnIiAgmTprMAw8PRqvVYrVaeWXNai5sfwmLVn6JtcTO\n5ZdepToCnKXUKXuzQ6BsAzoC24FewOco2sVfwG1SyjrlhxBClKLYeyZVa5+NIiz8vY8EIUQeyvXa\nESALxU7TDZgNvCel9OqUoGZvrj8jxkfTZexjHu27ct9g+cKMJtiRI3A0P4MSewkFO3YxKOUxD6+y\n317aS5oXm40r8VNiueLpNgS4HJylZhs7X/qLqLBYp42mX8I9zsP7nbQvuahZO24e45li5tdVRaTO\nyahmo/F32mjuHnIfLVo157Xst7j/uRv4bN33PBlzv3OOVbM24OsvGRBfJSzWpX7GA8NvotRSxrqF\nW7nyiisJ8GnGvr/2YvMtxl8rGRjXk7eWbufhUbd47OmHl6xudpraPtOJCyJ5MOJa59pvZnzD/3b9\nQeLih9iw9EsGxfZiXcZmHn/uJo91Niz/ioGRPbCabbyx/CvufOxq1i/5HL1Ww6E/jiJ8BBd3boWf\nxhdrsT/pC2rORm0ymcjOycFsNlNmt3PcWsig4Vej0/ljsdh4ZdVOZk3zrn2pND6nvZSzlPKwwwgf\nC9wH/J9jbDawSEpZ/8x/J4cPIIFVUsrK0OzNQgg/YL4QIlRKWXCa9nJO00Kjw2a2ODUaAJvZQguN\ntpZRp5ZKLzSA0eNH1pg54EQoMTbuxvEAvT8ldiVAM3v2MiZMTyJ9xMs0a6lDUxHA/MmpdOjQgfh5\nY3go/ibnobxq6ntcGnwVJpMJgyGE+YnZSnqZsj+Rpb5crO3Cj6//zs5dv9B/Qg/adGxJRUWFm+aj\nb6nntoe78NaS7cgKSanVTpm9gjXztqFtpiE8/dEqAWQswKfcjzsHdiVr3NsE6LxH+f/021aeixmI\nafcftG/fnuDWF3vNk5a9LM0pZCrHPhLTjYyYPW4F0no/eQ2rM7cyOLqqcufL6VvoO6yb8veMLTw0\ntBufvP4zYRPuQqv35699R/lkw8+U2ys4vLeC/NzaSx4YDAZSU5TibkkTonjovqudVTx1On/6Db2C\n3MVpJC9oWBltldNPneNopJTHUDSHhlqc/wVaeWm/wPFebfzj+POjau0fAAuA6wCvgmbGjBnOv/fu\n3ZvevXufeKfnMbFh4cQkT3den9nMFr7KWkdG0swTDz4NVGYOqK7RNPPidu05tgWlZpuHRtNMUxXw\nWTr9P6MAACAASURBVKG3E73sOee1XGaWkein4im12FmX+jHFfx/nok4X8mhMH5pf0Jznxg/m0jZX\nMDl+mtf0MCaTiez8NP7vg91chIGN6Z/TN/Y2tHp/bn7wWt7I+ZgR86q83N7N/JGQy4K5ZeTFbkJg\nQHwfMqLW8+aSLxmU0JuVsz/yel3Xoq0vD8SFYjWH8Pz09/jbvIcnnnmPiVFz3OJlzPZitHp312at\n3h8fvyoBszZ9CwNje3L/M914ZdmXHN5bQufgUIKbXcGP75Qg7RZ8bHqCWuncSkO36dCSQZFKsbYP\nlh+olyZiLS1Cp3PP2abT+WMtPezWptTFWYS5tAh9QBBjR9eedFSlZjZt2sSmTZtOydynvfCZEOJj\nQCOl7FWt/VMAKWWfWsY+BawEHpFSbnRpvw74DhgspVzrZZx6dXYSVHqdHbNbaaHREhvmveBXVd9c\njtkttNDoiA0b2yDnBJPJ5PBUM9NMo/dIxFmZ3fkul+zOH2du9bDReEusCbjYaPwpNdv4IHM7yUkZ\nSoDllFi6DLnYQ4i9PP4Nhqbew8YlW3hwZG+Pw/3N3M/QljVn4XjvbtSKsFFco6XNh/KyCvx0Puj9\nm/P4/f3Z8N66KjtJWBwL82bSO/wSj3nWpH7EXYNu5O1l2/jnzyMEd2zFoIQ7qjSNhZt4KOwWLurQ\nyrm3t5Z+wcMjb2PppI1EPz2F7T9sxWwv4ucfdjAq9V6PZ1mb/hE+QjAotifF/1r4aO337P71EC0C\nWvGfy0Pw92lOeVk5Gj3oNYE8+sAA3nh3HV9/9zn9I2/g/XU/8PfBYrR6f1q01NG2+RUszX6x2udR\nSM7SNCy2InT+QUSMqsrwnDQhih73aZwaDSglo7MWfs6yxasxGEIwmQqZMieSx5+92mkHev2Fn5kz\npXHr45yvnPYKm0KIT07QRUop76rTgkLEACko7s0mR5sB+A1IklLW5t58AYqH2zIpZbRL+0RgDnCZ\nlHK3l3HnrKAxmUyk5S9xCoO4sNGN6n1W1z3EJk/l5qgnne7W27NeJT2p/p5wJpOJOcY5FBzazZMz\nnnbOtyXrfYzjF3oIEdfMAdFhMR7vK1meb3YKow8ztjszCNRUZmDM+DBuC7/aY28vJK4hLO1hXjF+\nzJPj7vV4/xXjR/QdfSc7Vx/ycKs2mUxMSI7ivqgbnQLhtXlbaN/agPAvd8TkxLntP2FKNFcPCfJM\n+R/3Kp2vCMZqLmXguNs4dsTCpld+oqJCUlEhsZbYeXba/W7rr0vbxIBxfbCabSwMW0PojR247o5L\n+XT9j+ibaxkYe6dzX/nT3mZQXC8Ekk9f/QlZITEfL8VSZGfEzKqMBqsXbabvM90JbKXn7ZxfmDch\nh3379jF+7mgubNucITFVwm/dom9Jm7ncxQGhkClzx/JY2JXOPhvydzBncq5TiEybNZZ+Q69w2mhW\nLtvKfY9ey+YP9jF7ai65SxZxc1+9RymD7RvNJM9XE5U0lKYQNJtQbCOuXIji2vw38JuU8s46LSiE\nHvgBJWBzqqN5FtAMuFZKaXb06wTsBmZIKee4jJ8GTEERVp+gpMKZBqyWUo6oYc1zUtCYTCYik2dz\nfcww5/XW9xkryU6aelqFTeyUJIKfus0jgPTQfz8nfU6yQyBkcrzsOM39mhMdVnP254TkeI7ajvFQ\n3CCP+fa8/CuL5tQ9Kjx+SixdhgZ7aCZfZf9Oi6CgGgXUyWo0G5ds4YmY+9m6eAeLF+a77SVhSgxX\nPdXKOebvfUd4f8Xn9E+oOuDfy/zBmbam8vOYsDCSB6Kurzqw0z7mgWdvpsWFepZNfIPYzEc8nnt1\nymcMSqj63lep0fSP6Q1AVtzrXNQ+iN0/HyQupz/HjpjZ9OqPSIeg2v3LfhJynnR7vtXGTTwx5lZP\nLW7ZdgZE98JqtvH9GiXWes+/3/HEqNs8+n673uosQRA2dghjpnv22f6GjZR5WY7nL2TkmMFc1M4H\nXz8f7ul7NcEXt8RqsbHtPRvm0mIeeKqzx/O/+98/yE57waNdpX6c9lLOUsreUso+1V7XAFei2FXm\n1XVBhyC5E0WDWQmsQnEuuKtSyDgQLi/X8bOAJKA/sBHFC20hSiDoeUVa/hKnkAHFBfn6mGGk5S85\nrfuoKSXOcbvFkf05nkuGGegeeSOXDDOQkBLvNeYlMz+Ta/tdTdHfx73OV2I3e4ypDW+JNYv/KeH3\nQ79z+ZBO3BJ+PZcP6UTiwjjnfkwmE8VFxbw84w239DVrZr7F2GdieT/jW25+6GpeW/She7nk/2fv\nvMOiurou/rsDTKMJiAVQxxLTTY9J7Bp7CSrYe5deLNi72ACp0oy994JYYi/R9G4SY5xEVBSkM41y\nvz8GB0fGxCQm8cvLeh4e4dx7zr0yw12zz1p778hjtPZ6A91DdKLikgIK7hazc+UJdkQeZ+OCdNoN\nfM30oC24q0FvVcTYyUMJnRFUYS5Q4Tc4jHVTjhPtu4P44J007/osrvWMNdlq1XeyWLJGffmO2b1t\njzxN274vmX6u08AZz4ktsXVUIFdKcfWogXdgG9p5v4RUhBoyObG+e8i4cgeAjJ+y+PWHrN+1N2tK\nCtAY8hEekoekMRQY666F++FcT2LxnPubqqlUDXnm2aYMn9iGIWNbUdvNmBcuV0jR6gtQyhwt5uoo\nZdUJnU8a/lI/GlEUrwqCsARjdPHKH5iXgZEofuucX4AHy93cO7aS36gg8L+CwhIdrkrzsjNSpYLC\nUv1DZvw9eFhJnHKNgWH+I+gX0ce8+nNgG2JSY4hcaJ53W1RSxJWDV6lZv7bF9WxtzHNNfg+WCmue\n3voRA+aa308H/1amhmq+s8ZjVUPExs6ayNHJuD/lhsTaGms7G6I3RtKwVmP2LD6LnbuMhIAt2Mhs\nqN3QlU7DW2HnZMeW+WmsXrqxQhuKMm3N5WUWcWTtT/QN7ly5dbbyCG90eZpLh75DU1DC8Nm9Tcem\nLgnE690hrEheiFtTJ5xtavJ29+c5uf1TnOs44OpRg/b9XyN52hHGhVeuuXXFOWQKGdtXnuHmlRw0\nRVqavOzGqV1f8nb35zmx7XO6Dje65mrXr3FfPk4uJ1ZdZPSQt01bVSujjnMzvwg7RyWCBIumA4mF\nXB+x2HIeklLqQHxKFD3Hv8j+9y88pGCnOUko5I4WO30qZA74jA9+qEZTjScLf9kMIAhCJ2CPKIpP\nbNuA/+rWWcDMaTgO7VLFgpy/4TAxC8P/sfuwpNGcXLwOqVxKqVxP36ldq8z5OO5Tkpckm42FzAzh\n+/yfeLt/R06vO0yP4Mr1ds3dxIZlq//QluD9Gk3B3WJOb73ErZ/u4pMwpsq5F1d9Tn5mPje1aobO\n62vSdDbN24eNXIbXpF6mscMrT1KYn8+AeV0pzCni1LZL3PklG0NhKdELVuHh4cHUZQF08n/DRACJ\n/juYEN2vyoM1YvQaPJrWZsDkHmbHMn66zYFVJxi10NO0xq6VR2k34GUupn2DV1BbdBoDcRMOUK+Z\nExIBBImE1n1fw97Jlq3LD1OuExk6tx0FdzWc2PYFN3/OQVukp4arPdoiHS51HbjxUzYjZnfmo73f\nMKz7K1XE97X7P8V7ansyfspiX+J5xs6rJDVLGg1A0IxRlEuLzTSa3bFfsGxWMsvj5/Lu6Abcycjl\n8MaPGDyx0i59v0ZT+RpeY9YCH7yGPWcik62rv8Letj7WcgliKZSXlWAjB6XMgV7dvdmftgOtPr+i\nhXS1C+3P4h/XaH7jRlyATYBbxVbaE4n/KtFY0mg+jlhNXZkt2MpxsJYRPGbCP6LX3HOdFZVosbNR\nUFxcRJNx7TidvINuE1tW0Tt+Xq+uEtGo1Wq8xvVj8EpfinIKuLjrNGK5iFhejhuurI5NfvCyZnNj\nUu/rAlqhA6nVahZFzOfKnR8ZOM+T9KQTdBnbscr9fJ5ymYufn8Vv1QizYztXHKL7+K5Vzo8fvw5r\nuRVyext0hSWU6W14plFDHF2d+Pabzxi1srsZcWxffoR+oeYCPcCOiMNkZeRi72iLbQ0lrfu+gau7\nE7tijtJjbKuqOtDqk1BeTs8JLUiP/RLrMgU9pr5M1o1cDq25wN0b+ciUMrIy7jI+vCsntn9F7u0i\natWvQfv+r2LQlbA/8Tyj5lVaqVNnpCHXSZg+taqfJ3nLh/SZZpRfM37KYmvESeo1deXWD0U891Qz\nk+vsXkXnuJQobmff4OqVa1hZl2Nrr6BRvWeZEjQLlaohk2cE8GpfZUWeTS6n9n5JWUkZOdfLSU3Y\n/NBSOMsj5nPt18sUF+ko0ugZGtAXD5UbOq2etI1nCZ8dCYjMXOBHn+EvmEhp97pvWDjrv+tCU6vV\nJMasRFdUhNzOjgkBQY/t7/0fT9gUBOEaVc0AUqB2xfd/qE1ANR4PVCoVcVNmGV1npXok+hJKdDrq\nTxphIh7/5fOJnTz7bycblUrFyoWVJXHGTPVDppTzulcn9kbswjO0a2X15+jTrJhcVdRXqVSsnB3J\n9Hnz6D1nCN0DvSscZ+nMmjq9yvn3YLQ6h9IuoM195WhCWT7FWFfNwdGRgb7GKgItvJqzN+ognsE9\nKm3RsWepYV2DBi+6V9F0JILEYmKo0lnK6CXepjV2LvuALF0+r3Zswdc/XaoU/a/ncmbnZ9y8kmVx\nq8jK2orRi/uQlnyWbmPasnvlEToNa0lZaZlFDaOspJy714q5mJwJRUq+VX/DtaArFOQUYe+kwP2p\nWhV1xrQc3/oV3kH39b1ZeZzy8jITydxbc8yi7mwIPY5Wa6gS0Yj3dR71aOJKvaa1eG/cO3yxVWOW\nL6RWX2P6Ej+6+7yIXPk8Os1TpCV8zeIw84e879hgAqePxkYpQRBtKCoqI/u6hhefe5W4+AT8fH0t\nvlcLNJmMD2lhIpC1ySfo1LcrrnVd6D6kFXGJ0UiEMhPJgFHL6TP8BRKSov6TLjS1Ws28ycEMavcW\nCpkMrV7PvMnBzFke9Y87T38Pj1pU87SFrwMYXWPPiKK4/++5vWr8HlQqFTELw1mzJBI7W1tazpxg\nZg54NXAIUamJ//h92VXoNs4etXlnWF8OrTrHrqXpbA/dzYrJDy+s2bJlSxb7z2HP1LVsnZTE9uAU\npHobFiasIHjm5IeaCO6RDBiJoF2AUQcC8+ZtrvWc6TCiNYdTjrFu0hZ+3Pwry6dGYqUUsLKx4uaV\nTPasPMy28P3ETHifa99ct9iPp1YDJ7PreU15l7y7WVw4cIJa9VzQaQxkXc/l6NqLdBv9LoNm9GZn\n5FEzkX73yqO09nqtomR/ubE4ZVBnTm6/xPUfblkU+m/+mMviaVFcv3OdAutbBCb0x39lf0ITh2Jt\nY0PL916gX0g7BFEwkQxU9L0J6kD2jQKLBFZH5cHWbT+gvdclU2sgdcMFWg94yez65eUiafFf4zcm\n2GyNuJSoCpKpvF53nxeJS3mwHJCATbkLPbuNoE3LXkj0LvgFhtG5Zy9efP11wmbMqPIaJyRFmrbO\nwEggI8a9zelD5yp+lqHRF6HV51usGK3VP1J1LDOo1WomTZ6Ej68PkyZbbl3+byMxZqWJZAAUMhmD\n2r1FYsyTJ18/agmaEX/zfVTjMaCgVE8tC+aAgn/YHAAQNMaX4GUzeMvfE2eP2rQZ583F2L0kxj68\nJwwY/8CjNsfSZ/lgkz5zYMUenunZBlsnR4KXziBq6iKzNe4WZvO88mmzde4vR2P3QBUB13rOdB3f\nnh833jD1srG1sefplxuQlnScYQt7V2o0c/ezc/levCZ7msbWztiC16RuVa5nJS3lxk9X6TK6Pbsi\nP8BGbkMb77dJSz2JWC4iSKxZ6bOBxi+6U2Ioo7ysnNPbP6FcFNEXGx/wcqWUO9dz6DSiBZvmpzN4\ndldTRLJpfjoRs+PZk74T6xpleE40J5JR899jV8wxhkzrTB2Vs0VCubfWg5HVvRI1q1ZF8NW3J5G7\n2lBQXoa9s63pnOSZh9Dnw7b311fkuqiJS4lEU1LIN998Q+OO5vZnuVKKtiTT7B7iEuLo2e895HI5\n29ZvRWErIS19HZTLaN2qK1179SIuPt5UigZAq8tHrnAH4PbNPD448DWUiVz/OYesW3exr2GHWCqg\nsHuYceDhra8tQa1WM336NLr36moq8Dl9+jQWLw5/oiIFXVGRiWTuQSGToSv+/TJM/zT+kuusGk8W\nHKxlFuuTOVjLfmPW3wOVSkXUlEWsTI036TZRUxb97h9qdGosrQI6mrWp7jmpN0cTP6BLwGDe8fUk\nOjWeqIXGB5Farebby9/TXPP6Q8vR+I8JZMqyYDoEtLivisB5lk2p/LTtPyaIfuM9GRvTzyxSGTy3\nFzuXHSEtKZ3sjHxc3J0pzC3Cwdnc+6LX6Kn3tAs9JrRgx/ITNH7laU5vP49BK9InsFvlFlvEAa5+\nk4FH4zr0DemGXGlsirZjRTpZN3Kxd7LFsaYtP5+/zdyAZezduoNiQyG2UntSl21GpVKxaf8aJBLL\nFuKczCLuZOQhU5gTyp2MPE5u/4SyMpGIidsZPqszHk2MPXXS474kfKoxf2fp0jgmzQzgpQH2FOYW\nsz/loim/xtZewZvPNTeRzLQlfnSbaOzN87bGg23RH9B92BvU8jDakHUaA4oHGqoVazXI5XKy7txB\nL95kZGBlHtHG6I10bDsEjcbcxn7PeZafq+Hg5k8YPaRFZbO0DYfI1VhhJ3ViSuhUEteEW9Ro/gji\n4uNMJAMgl8vp3qsrcfFxrFheteHfvwW5nR1avd6MbLR6PXLbJ68H5EPNABWJkY8KURTFx9t16zHi\nv2oGeBBqtRr/5fN5NXCISaP5LHrjP6LRPC6MmzqBV3xbVhnftWgHNgpbxHKR/J8y2ZKwBpVKRfCM\nyShbe/DxznQ8Qysf6Dvm7mbNkrVmyY+xqdHcyr7FzRs3adBIhYt9TbPk0RGBg2k/6dUq19694gi9\nQ7qxO+IInsHvsWnudqyswSukUnfaszKNziNfx7WeMbclzncngsQa79AeXDr0eUVEI9C82yusm72N\n0NWjkN9HjDqNnoOJJ9BrDdz+5S7TJszF28tyBsCEoDFkllzDc2JrCnOLOL3rMxMZaAr02DvLadv3\nFdLXfki/4HcpyNFweO1FvIM6VRoAZu1GqrAi53oxezcdNhknjGL+TW7l/MLwOcbq1Rk/ZbFp6TEU\nCgUvNHmNqUGziEuJ5KV+VasWbIs+hq2dlLLSMm5cyWf5nFW0bNnKdM6kKZN48a2XSdu/A2+fp6rM\n3xr9Iw3dnjaLaO45z8rL8hnW580qjdAS139LnyGD+PLCt/j5+JKQFPWXXGc+vj506Ni2yviJY6eI\nj7fcIO7fgCWNZvPJi49No/mnzABz/8A6In+92GY1/iJUKhWxk2cTlZpIQakeB2vZ/yuSgXsNzqrm\n0Ny+epOhK8NM22nBS2cSNXUhRSUaGjepT8uhnqQlfgDlZSCxooa8NtEp8RSVaLCzURI41hf/ip42\n/ZZV9rAZOXUEC/wX0rJlS1zsXbnxYyYX9/9Aeak1EutS3ur1NIJEgl6jN/1rW8OWFn1asG7ybsow\nUFJeQu0GNTm94yvaeDfDtZ4TCnsZEispp3dcpE9QJSHtXpmOwlGBXCnjx0+vkb76DFKFFIPWgE6n\nY8wCL+ycbUkIjcfby9tIkCnRFBuKsJXa0btrXzKyfqXYUMSqyTuo6e6Id0il4L9t+TFy7xRh76zk\nbmYB0YHbsLKywnfFAHMDwII+RExYz6pla00kM22JP119XkWurEXGT27EBe3HysoKawUERnuZrjFt\nqR8KazvkSlez106ulHL3ZiFDllZu9yWsCsfDw8P0sPfs5cms+bNxqWu56nRO7k0iFpkL9ypVQxbM\nSsDPd6DF1s4KmQS5XI5GW4xK1fAvC/9KpRKdTmeKaAB0Oh0K5R/L4/q7oVKpmLM8yug6Ky5Cbmv3\nRBoB4F8oqvlv4H8lovkvQK1WE7psqmn7TK/RsW32BtqOGUCdJvVN5+k1Om5uvYQgingMeLUKMW0O\niWFQRCDFuflc2H6M/IwsJPpSBkf1r2pVHp1Mizdbkacp4JvvLtM7KIC6DVXotVp2LIukdf8mfHXq\nB1r1a8mpTefpOLIj9k72rA1ej5W9wLAFgynMKeLM9nNkXc+iRi05pQaBGz/eIiR1XJXrRY5J4j3f\ndpzf+wXD51Q619bM2Y6NjYhznRpc/fwm8eHJxG6MpOP4FqYtts0L99BlzDvIFDbEhWxgxsaRVaKC\nxUPXIJaJSBVSpqwexP7E83gHVK3NFhe8nY2xu1GpVEyaEUiz/jWqrJUQtB/fmG5VxteEnWTkog5V\nxvclnWRIcGuzsU+361m+yFhWZtLUUOo+W4sdazcTuqxjlfknN+WQEP2+xfdG2BQ/2rW0rhLRrN3x\nE9369uXLC9+yYtlf39qypNGk7U9/4jSavxv/uL25GtX4p6BSqQge5M/0yTNBLlBSYKBEIjEjGago\ncWPQMNNnEiFLptPCt6eJmPYtWEuX0EEU5+ZzZsNBegR6I1PKORC5sYpVufBuEXauzjw3ogUypZx3\nNF05uHIXrb364Vy3Lt5TQkjwD8HKppTMn/dRt3Fdzm4/S+bPt3Fq4ESf4F4U5hRxfMNJPAN6mkhj\n4zxj1YC0pBMIEmjZtzmuHs7IlDJkSil7Yz9gUupEMz1o5Lx+JE5ez7hlHdFpDMydN4WOw9qZttiK\ncotwqKPgQMoHOLrYU8PVzmJU0PS1eohlILGyQq6UPjSr37V+DeJSolixKLqiXUAts7V+uXwLQW6w\neA13dzcOrfq8QqMxRi/vzz/IAP93qpyrKcky/VysK8ZD5caQCcPZGLuHIf7NzRI2F02Pf+h7Y4JP\nKHNnT2Sg1zMmjSZl/Se06NSLQ7uOEL5gyUPn/hGoVCoWLw4nLj4OrUaDQqn8nyOZx41qoqnGEwW1\nWk3Ulmi8IvpXurz81lncTrOTKlGpVESGLTbbJnNzqk3dJvU4FLvVRDIAEhubKiVpzmz9kIHzxpmZ\nD3oE9eVoUjrdxoxCplDgVKcWNlI9wxYNqSSSOZsxaA3IlDIOpx41kQxAYW4hto5Khs4ZUKnhxOyn\n47BWODjb0uD5utzNyLOYn3NvTK6UMmhOVw4mnqdPkx5k37jLsc3H8Q5tZ3owLxu1/qEtp3uOa0F8\n8B50GgNtvF5hZ8wxvAIqO4bujDlG56Fv812asb+L0sahyloHVp+lXlNXyy41Vzf8xoSYuc4caklx\ndDJ3Peo0Br7/9kd8QseglNlRpi9Dp9XjWseVjt17syPpBOXlenIzNaxetfE39RSVqiFz568iMSGC\n3Lwb/HztBnXcGnHjpzuEL1jyWIlApVI9UcL//3c8ah4NgiCMEwThc0EQNIIglD349XfeZDX+dxCT\nGkObwPZmn/R7TuvBgfkp6DU6wEgyH8bvIWiMD1DhcFu0nJRl8UQtWk7dmsZaaZSXm5HTW33asTcy\nzaxYZtavORYLeCKWGs/Raikr0ZpI5t49DZk3iMxrt9Fr9IjlohlpnN/9IX2Cepmd3zugF6e3f8iG\neTto1/8N9FqDxfwcw31FIuVKo6gOcHbvhyaSuXest19bVs/cZ5abszPqOG36GqMMeydbdkSewsFZ\nSecRb7I/+QSxIVvZFWskGXtnW77/5oqxwsTYYNITPjOtlfHTHQRBoEP/V9i+8qTZNVJnpZlaGqxY\nFEPCsjW8+crbvDvgdbbEnDM7d9Wsw3Qf04a2w16kWS83cnS32Jm6x0Q23b08sS53YvWqTY8k2qtU\nDVmyLI6k5B0cO3aBDes2smLZiupo4wnHo1YGGAbEAuuAl4D3ARugF8Y2AZv+rhusxv8WikqLzR7a\n2dez+fTAJ+iL8zkQlkCDRo2o6eBE1NSFVR4uarWa6JR4sgpzOR0aQ7m1aBYJubjX4i2vTsSPT6X+\nC43J/DmDmvXqWIyWEKzRa7UcSk7GxcPeYvTh3tSNdTM3UtOjplmk9CDx3Dv/7o1c7BxluNZzotuY\nlqybt8NMo1k3bwfdxrQwzdFpDFz75jo6jR5RrFop4MWWTfhg88eED1vLc2+psLKR0Hn4m9SqZyyW\nWZirode4juyNv8DtX7MpztMwdGYPPJrUMlYKWHGG5q070X+kN8+98BSO8tqcS/4VbUkRt+7eRBTB\n3llJ1+FvcCD1vMnZVlJgVeV37zc2hIAZoxClIklzjqAtNlBUYMBzVBc8GtUFjImVvSa05sPNV/j6\n1GU0umKUcluWzFtWTRT/cTzq1lkQEI7RWTYGSBBF8TNBEJyAU1S2WK5GNf4S7KxtTQ/t7OvZnFx7\nkh4hlcU1z0YfI2jMDJNTKjo1nkKDFsFQzs+3fqXrzGE0Usp5WdOJzdNi2b5wLf1mjjDNP7/9BNpi\nHd0Cx5Ieu47XezRn29xUOo57j88On6e8tIRrX17FoWYtNs6dx8A5npzfdcFi2+hbVzMRBCs0hTeJ\n9Ulk0Mx+uDWpS3l5ucXz7ZzsyM7IZseKE0is4NV3nybaP5UyvYjcTo6msBjbGkZnk05jYO2sfciU\ntuxcmcavP9xgy9JTGLQ6JNYSZHIZ5WIZ+XeL8WjqxvUfcgGR4vyLvDvoNQ4kn6dchJM7LlGQXUz/\noPc4t/4r0qI/wbGOIxLkvPpSZz774igTo96rzGVZdAhXhQdDpnXny3PfkzLzEGMXdsM7sA06jYGU\nmYcInjjTwisnopBb0devhWmt5AUnqVv/AWeaQoZgI7Ji6aP3FarG/388auOzQuA94CRQArQURfFi\nxbF+wCJRFJ/6O2/0r6DadfbkQa1WE5WcQoHBgINUSvC4sSbyCF0+mTaB7TmaeIR3x/eo2gBtw2UC\nx/gTvHQG7/h6mkjkUNQm2gzvgYt7LdO5R2I3IFNKTXksb3u1ZPfiLQxcFMbu6THUc63L5YwfsXdR\nMmjewEoNZsYWCrKK8EsaTWFOEftjDjB4TuXxLQu2YyOT0Se0331jG5ArbRAkAmJ5Od6TKqsJbHeT\nfwAAIABJREFU7IzYQ87tfMYuGW0a2xW5k7ysXMYtHWYa2zB/B3KlDFtHO97o1Jwty7bh3qgOff3f\nozCvkKMbTuB1n+lgzbzN9BrfEffGddFp9OyKOUjOnbtI5dbU8nCh++i2bI9Mp32/lty+oKW4oJQW\nPYzVtPdsW0OvgJer6C8rAzYyenZfTu/7iGfecOPY5o+RKWzQa0voOOgNdD84smJRjNlrOdpnEOMX\nvVU1rybxC/r7vFc5ptXz1f6brFj858qkqNVq4uLj0Gg1KBVK/Hz9qqOhvwn/hutMC1iLoigKgpAJ\nNAIuVhwrAtwex81U438DarUa/8XhvDJ2HK5KJQaNBv/F4cROn4ZKpSJi8nJiUmMouJ5vuQFaaTHR\nqfEmkrk33i14MCdS9tAtYIBpzMrGhp5Bnqb5t366SX5WPutCF6GQyPnh1s9YWQsmkjHOkzFk0UC2\nzT7KhlnbGLqgPzKlkvTk44hiOYIgQWFvRy//3mZzBs4aytHVB3nPvxfZN7JJDHkfhZ0cvUaPXmtg\n4LQBHH7/MGJ5OYJEQtsB7bmUdsFsjaGzvUmatAGlgwNShQwbG2v6+r+HTCnj0NqjJpK5d/7IOYM4\ntOYoffzqIlfK6BvQg4Oph/n24g84OttzMOUUclsZm8P3s3djGrEJCeh1OmRyOUhKLDrKGj7vxold\nl5BIRJq1aEKzFk3Mzjn1TWW3dLVaTdjCUGp4yCznxdzMRafVI1fI0Gn1pK/+kPAZD9Y/e/T3zbSZ\n0+nq2d1kO542czrhCxdXk80Tjkclmq+BpsBR4CwwvaKicynGxM7v/5a7q8Z/Amq1mqiUZApK9DjY\nyCjIK+CVseOQKpXk3bzB5/t2UyYpY7DvRDbFrzI6yRZGEjwz1HIDNGtbCg3mXT3vZtzho13Hyf41\nk0MxW2netz12Tg788tVV0zbWrZ9ukh5/gMGLR3Nu21m6BwxEppRzMGq9RU1Fp8/irT4diPdJpURf\nhmMtF2q4OtBuSBsu7DptcY5Ybvze3sme2qo6pmjqxpUbnN192rwczYoD3FLfYk/MPgTBipZ93qam\nuwseTd3oNvpddkUfQCq3+V3tRyyvjNblShnaIj11G9Sij18XU/7Nmjk7mbFgKojwccoZnF3qotMa\nLFeUtrHijjoPF3cHk9ZzatfnFRpNOTWFStE+LimaLiNak7bpkMW1nm30Ml/tv4lGX4RSZkf4jD+f\nUBgXH2ciGTCWhunq2f2JKw1Tjap4VKJJBhpXfD8L+AA4V/FzIeBpaVI1qqFWq/FfspBXfEbjWlEW\n5+KCZbjk5aLJy+XS1rV0DBplKpkTsGQ+MWGzycjI4OyHH3Hhu48YGD7cTKOJmLKU6NR4EwndzbjD\n2fVpdAkcYjovPWoD2kIthjw9K4cuw0Ymx0Ymx+P5epzdcpIeQUNNRGVlXdX2rNfosa/pyGeHz1Fb\n1YDuvpU6z4HY9xHQWZwjSKjIo9lEbmYeQ+Z44dakLrETE00kAxUVnyf1JC35EN6T2hsdYxHHad23\nJYIgIFPK6BvYk4gxsabrCBLhIdes3N3QafSov8/A3sGe1bP2YNDpeafnS7h41ODXmz+iKdDRc1xb\nGjzrzvq5B4ny30CjZu5IJALl5SL52UV0G9Gan47kUV5aTmLYAZxrK+kX3MGkveyP/thUzfijzy5y\nLed7DLoyUhadZuyMymZn+5Iusygs4ZHcZGq1mrjoZDJvZXHz7lVUjevhXMMFvwmVJYI0FXXS7oex\nIoD2j70pq/GP409VBhAEwRZ4G1ACF0RRzH7cN/Y4Ua3R/HsInDEdx/49qxT6PJOwFitrK9qM96py\n7PvYTVzNucF783wpzs3no20HufvzLzzn8RQLp80HYP6KJfxw5xqes8dwImUP7cZ4VYl81k0MZ27Q\nFCI2p9J7li8ypQK9RsvuhXF09++Di4dRy8m5cYczG/bhGVKpfawPW4+tszNypZx3RwytsvbasAXY\n1VAyeM5w05zN89ZTXFCEexMVLft2xK6GAwcSttBxxDuc3HSK/lOrfh7bG70P70nGxmI6jYE4v+0M\nnj6Qmu41Adi4cAflJaUMmNTXskYzdzO9JlRqNKkzNmFlZcPIWZU5P2sWbqSt93O82LKJ0WQw7wB9\n/Dqi15aSlnyKkQu6mchh9awDFGTpiQtPpmXLlkwMGs3bo92qRCrnkq5TYMijy9i3TFHTtpXpCIKI\nQmlFXoae1QmPZllWq9WEBS/k9ee6ceq7tXj7dK3catt8giVzlhurF0yeRLPmr1QpDfPVpc+rI5q/\nAf9G4zMrURRNuTKiKBZjjGqqUY3fREGJHlcLrQsKb97A3q2OGcncO/bdrz/TLyIEmVKBTKmgS8gY\n9Both6Yay5gELplL84kDqJubx9FV+8i6+otFLcfJ1Znzn39sIhnjuII+M/04kbqJXsH9AXB2r0Vz\nry7EjI5Daa9AZutA5rU8apaAolF9i2vXe7o+L3VoTHJIPC5uLuTdLsTKWopb48a06NMBFzej26qn\nz0A+2LADUcRyNGJVua5cKcWtUS0Tyeg1ekr0JRTlFXMg5RiCAKUlEOmzCo+n3ZBIJOTdzWfvqiPk\nZxUgkVhTVlJGaLyfuY4zcwhJs1J4sWUT5EopI+b05GCKMd/lHsncu/7oBT3ZtuIEcRuNRS2v/nqF\ndkqV2f9frpTy/dXLjJrf21S1QK6U0T+oK/uST2FTbsvqhIf3HHoQcdHJdGkxmoPnk00kA0aHWtdB\n7YlLjGHFkkj8fP2qaDTpe9MIX7j4ka5TjX8Pj7p1dlMQhC3ABlEUP/07b6ga/y042FhuXfByo0Z8\nf+WKxWM6jcZEDPcgUyooKtUxbLIv0lrOFOfm4eRel85BYzmyMsWillOqL6HIoLO4Vvavt01z9Bod\nH6Tsx7aGC0X5xVhJBfzfX8bJdVsRy3UW1/7ps5/JvpGHXlOOJl9k2IIpprUOJmyk/eDO1HR3RaaU\nI5YJlJbArsh0+obcX2DzAF1HvWla16iPSCuuoWd3zEHy7uQzcYmROLJvZnH+4EmecqzPdx/9SKPn\nGhMc64NMKePm1ZtsWrodhb3Soo4jvS8KkFfoRvlZhRYF/MI8Dd5zuhIaGEJd9waWqw8oZGbVp41z\nZRTf1RIVmfiHdJjiIj1ymQLRymAiGdOaChkaXTFgTMwNX7i4wnWmRalQ/KNGALVaTVxMIpoiHUo7\nOX4B/0yb9P8CHpVodgFDAH9BEH4A1gObRFG8/rfdWTX+EwgeO86k0dzTYT5PWE1smDEXI2DJfF73\nrWxrcHhBNGUGPXqN1owg9BotNZvUo3m/blzcdphDEe/jWNuFdwZ78qZ3D3bOS8RrzgQzq/NzjZ7G\nTiq3uJauUMfa4ARsFTbkZOag0RmorapLw2bP0HH0AGRKOW++14WjqetIi19rptFsmR+L9zQ/6jau\nz4HYdXQZ3de8hI3PEA4lbkCmlFFWWsbNn37FuY4zHYZ5cjDxBIhlGHQl6Ir12LtUNhbbtuQDSkuk\nJASlUqOWEx0Hd2J37G4TyZzcuQ/vyS2RK6VsXVZKjxFGN1r2jWzO7D1NUOJg0pLOWoycDDqd6ed7\nnTLzsooskoi+2DhWt747bd7yZvuyZPpNedu0vZYe/zmN6j2NTqOv0uqg2TOv/OGHr62dDJ1ei1Am\nNTnUTGtq9Sjllb1//q3SMGq1mmmT5tKt7SDkMgU6vZZpk+YSvmJuNdk8Ah5ZoxEEwQboDgwFumGs\nDHAWY7WAXaIoFv5dN/lXUa3R/Lt40HUWPHacWZ+YqJREsgrz+O777+g4ZRhSuYyza/fSJXiESVc5\nHLmOZl1a8dXhi3T0m2AipmOxSTT37kzaonjcmz1dkcMiQp6OlMXG7Z/gJbN5a7yXaa3ts6Np+mpH\n7n73JaVlJWjQoi3MRWaroOB2Jo1fewYEG97s1Y2829kcSdpEWUkZUrmM0pJS+k4eT93GxiKfafHr\n6ek7qMr/OXVSOCMWTaAor4Bzu45x+1oGTrVr0mFQD1zcjNrQravX2b9qA25NanP98g1snZxxru1E\nebnIr1//yoAp/dkYvp7GzZ4i85df8I3pYSKF7cvO0dvHC4A9CfvoMeEd5EopWRm5HHn/I/pMqOwS\n+qBG8/6s/ciVdpSWlKGwk9Dvvvpp2yNOUl4m0C+4MwdWfEvvXhPJzrrFuYt7EK10ZN+8w/pkYyGQ\nsMVBZhrN4ZSLLJn+2x1UH/b+eBSN5t/EpJAwXmrUHrms8gOLTq/ly59PsCLy8RTzfNLwODWaP2sG\ncAT6Y4xy3gF0oig+eW3dKlBNNE8+gmZOodbglqbIIOf6bS5tO0z2lesYtDp6Lwzk/PoDdPCZWGWr\nbdfk2cTNXcTO9IMUGnTYS+UEja3c1tixcwezo5dSp6mKnIxMHGo5kXXtJu72tdA72CNVGniuzat8\nnpbOkAWVCZib5+xDYu1MD//RyJQKMq/+wu5lsdg6OVBWUkr7ob354eLndBzuWWVr7eiarbTyasep\nLfvpHVxpad4dkUb7Ab2MRoFV2+gwrA2uHi7oNXrSktPoG9wLvUZP8uS1SG1kDJ83AplSxt64zQyc\nVlmeZkfEWboONdZT2x2/B+/Q9qZjWRm5nNnxGb9ezkIuKAgYF8SlL86ZOnXeunObboGtyb55l80R\nu3FrWBOJBMrLIT+7mK4j32F/4il6tA3AzaNSzNfrtFz+6gT+fhOIjUki81Y2N3Ou0PApD6RWCsrL\nSrBWCiht7PEbG/KHyOFRXGf/JnzGBdHujb5Vxk9+vIuE5D+XfPpHoFZfIzk6EkNhPlJ7R8YFhvzh\nhm5/FP96mwBRFPMFQUgHXDAmb9Z9HDdTjf9dFJboqHffw9q5Xm26ThrOdwkHsbdRYNDqyM/MsWge\neO7Z52jZsiUtW1btzAkQsyYZz+njuLTzMEOWh5i2wLZOj0FzI4sx8VPYOHU541YOMhPRHVwdaDvE\nSDI5NzO5tC+NsTGzTPN3LErghdZvsi08kf7TKrftti1JpKdPHz7cd9xEMvfW7BPanfgJSTR6uTGv\ndm7G+T3nEcsxlvIv0prOc2tSl+6jKgtzSqykXP8xi4v7f6S81AqDoYyNS7YwJGwggiAx2wJz9XCi\n+/hW7J3/AzJRwRuvv2HWrTN0ejA6jZ6abi4413IEAQz6Mm7/mo1LHQcuHPwcm3JnTp08RF/vUcjk\nCvQ6LUfTNxPgO4apkxfSqd0oXn3euIW0Jy0aRd1segW8UdkcbYkf4WFxj0wSKpWKFVFPrqivtJOj\n02urRDRKO/lvzHo8UKuvsTjYh7HvPItS5oZGb2BxsA/Tox7NOv4k4JGrNwMIgmAvCMIoQRBOAteA\nmRi3z3r+wXU8BEHYKQhCniAI+YIg7BIEod4fWaNinTBBEMoFQTjzR+dW48mAWq1mhK8/585eJG3Z\nJg5HbSbn+m3AGBnY28gJGjORY8vX4VzfDYPGPGfCoNGilPz25yVRZsUX6WfoWpFnA0YtZcDiAMrK\nyvggdT82UkkVER2kJm3n0v7DdPMdbDbfe4YPF/d9wJ3rmaydEcna6ZEcXLUFhZ0t9k72iOVlpjWz\nMu6yNzqNQ0nHKCkxULuBK8fWH6esREAst6KsRCA3q4isDGPZQF2RjvQ1h9kTs4+98fuo27gB+2K+\n4t3+Q+g5ZiQ9Ro7EoLNm45JdFGTrWD19t3kV5/DztHpjKB06jCUmNtnsf+U/LpCjKWfRafR0GdoB\nvdZAH/8OBMcPpV9oV/JvGZAr7BBsi4mNm8zhA2u4/NUJloXPZc/uNDq1G2V64MplCmyUViaSAaOh\noJvPK8SlRP7uaz8peBoTx4UwKXiaKTfnSYRfwAQOndqMTm98/+n0Wg6d2oxfwIS//drJ0ZEVJGP8\n/SplUsa+8yzJ0b/9+32S8Kj25h4Yt8l6AnLgDDAO2PFHtRlBEBQYa6ZpMeo9AIuAE4IgNBNF8ZGy\nrwRBaATMAG7/ketXoxLX1GoiU1IpMJTiILUmZOwYGv6D2xRqtZpRYTPRKyQMSIqq1F0iYkA0YMjX\n8ZLKWELvuWefo36fdzkWm0RH//Gmc/ctWI6sXGRMYADlNtbYS2UEjxtv9kla0JdRVlpq0absUMuF\n0hIJBXeLq4joYDAZCcQHWg7cm28js2Hk0sXIFAr0Wi0HY9fwaqeW7IvdjkxphV6jpyCniOPrT+MZ\nUFn7bM30dciVdnQZ1ccUCe2L38axtSfoOKI92oJSevt4IlPI0Wt1JIfFMH5xIDJFBdEp5AydNpYj\nG/bi6ePJzas3iBq9kcZNX0AoVdDu1WBq1nQHoLjIYHbfKpUK/2EhzJo9E6SgK9BzaMUnZOZkIrdx\nwkampG9wG5P2cnT1Gfz9jC3Bi4sMZp/qASQPaY6mKXn4o0GtVhMWupDOrUeaxPWw0IUsiZj5RGyV\nPQiVSkX4irlmrrN/yghgKMxHKTOv8qWUSTEUPdHpi2Z41K2z/cAPGAlhoyiKv/6Fa44DVEBTURSv\nAQiC8DVwBRgPPOqGZwKwEXgGsPqdc6vxAK6p1fguWc4L4wNxrKg35rtkOfFhkx+ZbK6p1USlppBv\nMOAolRI8Zqxp7jW1mqiUFAoMJThIbQgeOxYBiExJoaDEgIONlIK8AsprOPCu72DTlphUqaBjaABn\nEtfQY9YEDBot/ksWUtPaBjtnR57v1IptYXORyhXoNRokNhIUtepSf2h/ivNy+XjnXrz8fXi5URNm\nBocAUMepLl9/9a1Fm3LN+u60HTGAPeF3WTt1CyOWVhbOvK3OZMfilbw7ciC3f/6JtLhkJNYymvfq\ngrObsedNbVV9inIKOH5gF2J5OVJbJWe2HUKmtEFbXMLa6Ztxre9iIhmoyG1ZPJyDCUfNIqT3fPsT\n57+UXRGHUdrZsj9pO1K5DYIgwbmOq4lk7kGmkJtK3kjlMiRWUspKrLEqr/yz1us12NqZk4BarSYm\nKYUB4yaZtsWO795B+LRQZi2cyZAw8/yYTqNbE5scTcTiKGztpFW2kMp1UovuNaWNPWq1mti4RDTF\nWpS2Cvz9jNpZXHSSiWTAGBl1bj2SuOgkVkSFP9L775+GSqX6V4R/qb0jGr3BFNEAaPQGpHaO//i9\n/Fk8KtG8KYriJ4/pmj2Bi/dIBkAURbUgCOcxVoj+XaIRBGEQ8AowANjzmO7rfwqRKam8MD4QqdJY\nll6qVPLC+EAiU1KJXbTwd+dfU6vxW7qEF30nUKOCqPyWLiFuahgA/kuW0GzCRJwrjk1YsJASnYa3\np0zCpWLs4oLFyGo4WtRd7pVVkSoVvOYznOvv7+D00mS0NlK8FoebIpqtoVN4o28fjsTEoy8soteM\nKaZjPvPnkH8nH3nt2sgdarN1egwDFgdUlqmJ3kyLgX2RKRX0nuZH4thJRAxJwNndhdxbebg9/Sya\nwmJOb17D2OjBJgLaG7GNN3q9x5HkbbT26sWZrfvpOmGEKarZuiACbVE+dRrV4fr3RWRn5FvMbZFI\nhAfG5DRq9iytPDtzcvsuegdW5tysnbWRm9eu49awcodZr9UhSCD7RjbHNh3DZ4WvKQLas3IVrV4a\nwRdfpLF82XSz68QmrKJDH29k8ookVrmCDn282bP/AE8/39RifoxGb8xl8Q8Yb9Jo7kUiJZoy9sd8\nbKbRHEr4HN8hYUwNm0vnzgORyxXodFqmhs1l6ZK5FBfrKSzKJe3U+4iSEoRyG1q/3pviYvNmcNWA\ncYEh92k0UjR6AykXLjM9KuHfvrVHxiMRzWMkGYDngb0Wxr8FvH5vsiAINYBIYLIoinmC8FhMEf9z\nKDCU4lhBMvcgVSq5bSh9pPlRqSm86DvBjKhe9J1AVGoKiNBswkSzY6/5+3MuOdFsrOOs6eyZNMVi\n0qYgqZQPpUoFotSa+jXrUm/YILPox8mtLp/s2Y3MVk7nAB+zY2/5jGXLpOkMnhtEcV4up9duInXi\nImxkNrg2rE/LgX1xdjf6WGRKBR7165NzJwedRoogKOgeMIbNMxYwsoJkjOfJ8AztRtSwlSCR8u2F\nT0wkAyBTKBgwK5SNsxZQoiuljsoNG6mVxdyW8nJzJ6Reo8PKypoPDx6jb3APs2uOWDCEOL8UGr5Q\nD4lVOeVlEvLuaOg5rgdndp+mTe+2pK9Lpzi/mJw7Obi6u7Jt3xwSIqoK8kVarYlk7kEmV1Ck1WJn\nb2sxP0YpM+ayqFQqli6fSWxMEppiA0pbKXHxSwFMbZ2VNvaEh8URG5doIhkAuVxB584DiY1LpKxM\nx+FLq/Ee42XK8t+RuhoP12pf0YNQqRoyPSrB6DorykZq5/j/yggAf9J19hfhDORaGM8BnB5h/grg\nB1EU1z/Wu/ofg4PUGoNGY3rwAxg0Ghykj/aWyDcYqGGBqDINBrRaHc4Wjt1PHvfGJAh8EJnEuyGV\nussHUQm8PXzAffelxd5Gxh2N3kQkuTdu8Nne/dy4fJkmb71B3o1Mi5FR3aebUJyXy4XNW+k5eWRl\nXs7Ktdz/mNdrtGRev0ENN1e85wVxInU7MqUCua2NxWikyevP88Ol77ibcctEMqbjCgWiaEXbQd0B\ngd2Rm9gwZzND5w2qrKU2exO6olKz6gT743fSrl9PLhxIt3hNG7lA6/4N8HjK1diEbHIan+/+lOxf\nsjmz5yytPNtxdu9Jxs6rjGyi18bh4eFhRjZ2CuN22f1ko9dpsVMo8B83kamLQuk0urVJo9m0dDeN\nXZ9FrVajUqmMrRwiq25v3d+jBkBTrDWRzD3I5Qo0xTokctFEMsZxOd5jvLh05Bx/B9RqNXFJ0Wh0\nRSjldviND3witaCHQaVqyOKo2H/7Nv40/pDr7N+GIAitMJoS/n6rx38cIWPH8E1SNAaNBjCSzDdJ\n0YSMHfNI8x2lUtPcezBoNEgMJXz3/fcWj4nl5VXGmj//HE8pHUmfsoD0qQv4MXYNcn0pdk41Ks7R\n8mnCOry7due7y99j0GjJvXGDi5u30Kzru7g2aETrkRNwqtfAoiPNysaaT/cepEvgMLN6Z12CRnBp\n1yHASDI750dR97kGeM8LQqZUIEgk6DVa7JyNbZrvh7FGmRyZ0paC7Gz0D1QP1mu1FObkYufkgIu7\nK46uzrw7dAiHEs+wOyKdQ4ln6DhsKHpNCSsnhJMyJYaUqTG06NUZl7q1EQRri9f0aOrO8U2XuXM9\nD7lSytjl3XGr5YJUIsVzgjcfH72I53hvM8NAhxFdmbVwjtla/j4TOb57B3qd8b7vaTT+PhONEcuM\nCD7e/C2JUzeyP/ZDenSdyJvtPZkyfe4fcoYpbRVkZKjZtWsNO3e+z65da8jIUKO0lSNYCRYrMQtW\nj/+RpFarmTY/hJc7e9B+wEu83NmDafNDnmiX238Nfyph8y9d0Ng4bY8oihMfGI8HvERRrP0bc7/F\n2Dr63qazABzASJjdAK0oigYL86oTNi3gr7jO7tdopBWay9fxibhaWaPs0Y3Pd+yinX+A6dixBfNR\nWFvTavpU09gnsfEkzZxV5ZOlsVpAEoUlegRDKWWlZXx39SrPe3nx4cZNyO3tcHKvg75YQye/IKRK\nJbk3b3Bx80Y6+o0zRUZ7Fyzh9V6dOb9pJ27PNEGwgjf6vIuLh/EttjFkEa713bl15Ro9Qgby2cHz\ndPEbCUBOxm3ObtzHW326cHr9+wxZ0N8UjeyJOMzrPbzYuSgah5o1sJHJ8ZoSYNJo0pPeJ+PKVQRR\ngkQCtg52jAqfWuV3eDBxHV3GdudA3HYaNmvKVye+ZFDYeIry8jm5fZdp+0yv0bMndj/vDmmHvbMd\nR9fuwzvUmDO0OuQYOn05Lu510BeX0S9gcJXrxASvYHrAFLy9vI3ifGI8t+7c5ub1W6hUDXFxcjKR\nzD2ETp7KM6+1qxL1fP/pSfx9JxIbk0xxsR5bWxn+AeMsRgfnzp0jdPIs6nrURWIN5aVwK+MWEcsX\nsHf/Xp5vWVmJOSszi5P7z1CUreWll5/FL8jymn8Gk6YF83Jnjyqlbb44ksGK8D/XhO1/Af96wuZf\nxLcYdZoH8Rzw3e/MfRajy2yihWM5QDAQY+EYc+fONX3ftm1b2rZt+/t3+h9HQ5XqkYT/e7imVhOZ\nanSSWRkMKIq1fDBlOlKlkmc8PIibGsa8hHhcmzThzaFDuPD+alM3yTr2dmhKdZxLWYUgWCGKZZRk\n32HBykjKpTbYS2WEjBln2pqJXhSOWq3GL3wxr4wfyw9R0Vw5e55+yyJMRHVw8UKK8vJwVipxcnPn\nrUFDOL1mM3eu/EiJXo+hxMCn+47Rf/Ey05wPEmNpNbw7ds4OlOpL6BIwgsOxq6nTpF5FLxmjndnZ\nozathrzHxV3p3P6lkNgxKaiaPYVgJef1Hl6cWLsNiY01tRvW57VuzTm5aRPlZSCxgne82/FZupwO\nw704GLeBzKu/otfqzFxjeq0OnaaYo2sOYC2VcnrrMToPHsqBVdvJu3sHOycFiaGp1H/WA0Ei8O6Q\ndtT0cAGgvMz4t6/TGLCtLWN4SA90Gj3xftstXqfes3VYuXYldevUJWZ1Ai93eIurH9zE3tWV7y5f\nJnJJeJWHerFGZ1HHuXDxI7749EcGek9BJlOg12uZMnkhy5ZXtSXHxa9C7iDQa1QX5Ao5Oq2OnSm7\nWLd+IzOmhxE2ezqdvbpTmFfI4Y1n8O4QglymRKfXEBa8mCVR0x8L2Wh0RQ8p1ln0l9f+L+HUqVOc\nOnXqb1n734hoAoHlGO3N6ooxFfAjMEUUxYe6zgRBaG1hOBpjROMHXBVF8aaFedURzX0wEUZJCQ42\nNoTcZ0v+rTm+S5fwgq9v5YM+bDqlOi0yOzuKb99mSWgo5z7/HNv+3lW0n6PBIdg92wQBKwQrgSat\nXufb9BN0CPatLLYZv5q4qZUPrIAZ03Hs2xupUslW/yD6Ll5aZd2zqcl09Pc3G9scHETNxg3Jv3GL\n/osWV5lzZl0CpXodJfoSvGb7cSRuLR3G9qQop4Az69Pp4jfcpOUcit5A5pVf0Bfl0/Ax7cNtAAAg\nAElEQVTVZ8i7lUdZSTk1atch73YmPfxGcWn/fnr4DzBpLdsXpfC2Zxe+//BLykrK+PW7H7GWSqjp\n5kxe1l2kChn52fk413ZhwIzR9zVU20lbT2MG/8XDh7hx9UfGRwyrYiI4unYfPSe+yfblp+k0vC01\n3Y0EdONKJgfjP2Lw5JEmjWZv8jY6Dm2Ng5Mdm2bvpNOgPpzZfQ7PfuNN1ubta6J5PynmkSKapJXh\nTBi+BNl99ma9XsvlKweIiKzM7Fer1bzn3YfA+UHI7yM+nVbHmmXvc/bkKaNukhDHpQtfMqpnOHJZ\n5euk02v49tZuVqz869UCqiOaP4fHGdH85oZoRSWAzoIg9BAEwa5i7GlBELYIgvCtIAinBEHo8wev\nmQKogX2CIPQSBKEXRhfaLxg7ed67dn1BEEoFQZh5b0wUxTMPfgF5QL4oimctkUw1zHFNrcZ32RLk\nQ/rj4TsO+ZD++C5bwrXf2a+OTE0xkQzA7e8uYyOT0jsqCs+ICLyTk1m0aRMtX3mFrxISzbSfS0uX\nIzrU4J2RgbTxncJbw3z5ZMshXuvfx8wl9orvaCJTK7PYCw0GinPyOBG3CiupzIwwjHOU5GRkmF1r\n77x5CNZSZHI7XOo3sDznRjav9/YkW52BXqPljd5dSIvaTIlWD4KE7XPiSRg5jV0Lk8jLzMWt6VPU\nVHmQ9UsmMqU9gxfP4uXObSkxaDi6eiPNe/XiYOwO1k5ZSZJ/OGWlZVzcc4L2gwbTY8J4+gT7YS0t\nwVoGo5ZNZPRyH3zjg1E6KinKKwCM1uae/l7sjIvn9J59ZFxRI1PasX72ZpNeo9foWTNjPTe+yyY5\n4IgZyQC4P1UHjSaPlNkJbF25kZQ5cXQc2hpXdxdjh04pfPTBJRPJgDFK6TcykJj4RLPfk7/vRI7t\n32qm4+ze9j61a7ubkQyATKaoYkuOTUjAo0E9M5IBkCvkJkebSqVixbIVvPDMS2YkAyCXKaskmv5Z\n+I0PJG39eXRa4z3qtHrS1p/Hb3zgY1m/Gr+Ph26dCYLQFGNzM3eMWkimIAg9gfSKn38GXgB2CILQ\nWRTFR2qEJoqiRhCE9kAUxnYDQsV1gkVRvF9BFu77+t1lH+Xa1TASxvMBPmY24+cDfIhMTSF24SKz\nc42RTyoFhhK+/eZr3urc2TTv0urVvLdihdk6XebPJ2raNDbHxRGVksKtisTMWkpbmodMNz93+jxO\nxS5F7mhn2l57pW8PCg2VDyxRq+X0qiTsXF2RWFvxQWw0r/Xti5ObB2AkFk1eLuv9fZHLFZSWltF1\nUhi1GjfGoNGwPWySRWedbY0afLTrIK/26kni6DAcXV3Iz86lMPsQfaZPQ6pQYNBq2TprFiW6Qqzl\ntajZwI1XurTmw+1HuHzuIt9fOMn4hEAKcwo5uHI9+Vk5NHixKTUb1OGVLq05tyWd4rw8ZAoFX5w4\nhntTdzqP7mOeoBnoxdHVh+jh0980VqeRB+9NGIVeq+Ng8lqatW1OnF8StVW1yL2dj6NLTQrv5NO0\ncWPsnMzr2Oo0euo1aUTnQX3Zm7SZQWF9ca0gIr1GjzZfR/7dn0lPW4MgWtOidU9q1qqLTK6g+AHz\ngUqlYtniucTGr+KzL7+iRq2adOzTlbPpp9DrtchkCrKyb3D2w/2UiSUU5N80udIAMjNvc+v6bXRa\nXZWIpnHDRmbXsrWTkpH5E5d+3IMo1SIYFDRv2rtKoumfhUqlInx2pJnrLHx25P8r19n/d/yWRrMA\n0AGdgEJgMcbI43PgPVEUdYIgKIGDQBh/oOOmKIoZgPfvnPMLj5DxL4piu0e9bjUwbpdZ+JR/p6TE\nbMy4VbaU5339cVAqqaXRcCYqgjdGDKeGuztSpdJitFAmk9FQpSJmUSVpvdPXm6cfOFeTm4OusJD2\nIYGmrbgTK2MwqK8zYtIUHKRScrJzkNnb0Xr8aNM5x6NjeXvwUGxrOHM8LgapvR3Nunbm0x07GBgR\nZ0ZmnQJD2T1/Pn1mz640JSTEkZd1h5c7deSXL75mTEISUqWCI3EJtB85AmmFVbk4Nxdn95p0Cwyp\ntETHrePtfp3ZtSAWn+RJFOYUcih2D2WlpYyLn2baAkuL2UrLgV05s2M3nv6+QAmCILFYwsagq3zA\nG/NobIzHFHJ6jBvB8S2bmBgdRHLoKkYvCDNtiW1aGEvRyny6BbUw2ZC3zEujtkMjjifuIzszE4cK\nIjImmabhWrcu3cd6V26rJW6iQ4fB2DvUwLZKnTfjAzpi+VJCp0zhmZbNkSnktOrall1bY2n7then\nLv4fe+cZENW5deFnKFNBiiIgaMaaaBJz04vG3kvsPXZs9CJFwYaIFOlFEey9t9g1mqgxMfUmMV2d\nqNgpUqYBM9+PkQMjo2kmucnn+iVnzvueMzCeNXvvtdfezuCRE4UUXNisBSQsnodSqeTa1RuMGBzA\njrytDPEaJNRoViblsT7PvDNh4NA+zEkIZeLcfkLD56roxSwMS7T8If4dUCqVQpqseoBZebkWheLx\nALO/Ag8jmnZAhNFoPA4gEon8MBXyvY1GoxaE6CQDWPqn3+ljPBLUs7W13D9ja2t23sLUNJ728TN7\ncHcICuHssmw6BQehKy+3uI+htAz/qEhK9Hrq3bOl0avrnvv5js30mRdltn+XQH/eTc7EqVc/Ptux\nmas/qxidnWF2TtcAPzb5BtDk+ed5fezbyJ0c2R4ejsczbeoQX8PmzZE52rFpVigNmzbDVibljXHD\nsXNyZEvEPEYujBFSd1UVFQLJAHzyzh763C+J9h3PiVVbsXO0o7SwlIMZ+yktLGVSSpBZpNLXfyTH\n8vZQWmgyyNSU6ii6ec2iBc71C9e5k38beyd79mVso9OwQcLrEpkUQ5UIiVyCR0slZcV3ObJ+Bxir\nqN+4Ifo7etaHHgaxFegNxMyOExysVSoVGcvTKdeXQQUU3yxn7JyxZtLngdOHsn/5bqQiGxJjzSXQ\nteHn7U3Y3Ci6Dx1EA7eGdBzYgdWpMQTPijdLwXXvO5qMzGUkLYnjiSbN8PBoSvc3x/LO6r2Uq4sp\nLLyNrdiKidMm4PGEK24N3PGdGsjuA9sFkgGTT9rEuf3YvXP7Ax25fy9UKhURofPp3bVmgFlE6Hzi\nEh8PMPsz8bAajRtwodbP1f++vw5yHXB5lDf1GCZcUqnwi5rDuPAI/KLm/GId5dcg2GsK59Ozzeoa\n59OzCfaaYnbdz1SXLEcsN29yZVkOLRwdOTh3rtk+h+fOQ+7siGLUEJ6YMRnFqCH4xi9G6dKAkxnJ\nZucWXb1scf/ywjscXDyftgN6YO/qYvEcuZMjXXy8cfRohFgux9raCmuxlcXeHUV9B0anzkesENPd\n1wtnD3fEchliqbRW8+c1bl26hL52P4yhyuIIaF25hrLiMs5seQ9F/QZ4PKm0GKncvnydkoK7FF6/\nTlWlFX1meLNp4Vp0atOkS51ay970XQzw92Jb3DqyvBN4o38f6ru7CfvoNFqsrI3o1Doq9ZWc3Lab\n3l7dGBgwgNfeepmCimKGz53E2AXTGT53EpFJ8zl92tTwqFQqSYpNJsJ3NgVFOpw8Gln0SistuUFi\n7LyHPmSVSiUJ0TF8evg4uYvSOLv7M5o1fs6iKu2zz79iytTpXL1+hW07lmEEOrz+FtZiEdOjpuEz\nz4+3AydRVFaC22tiImIDKSy5ZdmUU//oZylmpi8TSAZMHmu9u44mM33ZL6x8jD+Ch0U0VkBVrZ+r\n/31/PeRxfeRPwCWVCu/4RFr7BdLoXtrHOz6R7PBfb3ppCU2VSrLCIkjOy+XWPdVZVliE2Z7JeXko\nGje2GLG89OSTBHt5kZyXi+HaNTZPmoTY3h6RTk9Lj0a0nRNuFoG09Z3Gzdw1FN6+w+kV2ViJrDAY\nDVSVlljc31mp5I3JkziZno7YTmHxHF15OUX5+YiAT3Zsp6qigqtffse2r8MYVkvKfGBJLDIHOSdz\nNnPzxwtc+uy/fHX4XYqv3qCqsop9ick807ULp9ZtwNG1EbvjEhgYEYZYJsNgqJE6V0On1nD5y+8p\nK9Zw48JNXJsqsbKxtRipOLk2oUp3nQ3R8UxNi0EikyGWOHI49yhGYxUikTUdhg+mfiM3rKys6TBo\nGCfW72bIzGlCauud5avpMPx11s5didzOgaEza0ZGf3LoHGOjvMwilBHh4wiImMmO1ZsF4kjPXkrn\noSM5vHOTRemzuujXFdyVSiXLsrJNkVJqHuc++diiu0A9mQdXVWX0HTwGewcHtm9YjbW1iCHTBwm1\nGqlMyuCxozi4Zwv9prZn7dz9aNVP1zXlFNv/qnv7LSgv19Zxn5ZKTG4Fj/Hn4Zf6aDzu2fFDTb3E\nQyQSFdc6x/PR39ZjJOetoLVfoNlDu7VfIMl5K8iIWfiH9m6qVNYp/NdGSYWe50eM4FRqCm8GBgkP\n7hPR80nx9zfJnP28eVEu51m1mveT03luyEjO5mTRvLDIjBjEcjkGiZgVixaZ3JzvkduwmEXEZy/n\nOe+pNfunZfLK2LcRy+V08vfnREoK70TH0G9uVE0dJyOTHqHBfLRpE8aqSl4aPoivbKwwVFZx/dvv\nWT55HE+1fx29thxbqZQuU2tqQHtiorG2sWX4ojjEMjm3Ll7g/ZUrGLHg3s+XLrAhIhK5owN3Lv9M\nwZWrNHjCjdeG9sLOuR77U1ciUdjxSt+3ObNjNS7KJ3ixRwf2p2+mr3+NvHlbdB7dJ/iicHRiw/w5\nHF+zHaMBim4W8uawMcIYaDA97B1dG3Llpx+5feUGy0Ki8WjVlIJrN3BsWI/tiTto859O/PjdKTMy\nM1YZLUYobi0ak56Thf80H9Izl/Pp11/zdPfetOvWm105Wxk0rVaNJmM3gzvMISM1j6TUX9dPpVQq\nSUqNQaVSETZrAd37jhZqNDs3rabH6xOxt3PiwLFsBo15m6FjJpC7NMai+sxQZYVULqGRpwcHl5+j\n99RXhBrNweXnWDw77Vfd02+BQvGAAWaKP3+AWW2oLqnITMlDfVeP3EGMb5AXyqbKv/Qe/kr8EtFs\nt3DsfkNMEY+jmkeOuxUVNLKQNrpzX9H+z0A9WzFSZydemjCej/KWYzQYMBiNPO3qytZDB3nGz1y1\n1iHYnw9zVtJrQSxnczPoEuIv7GWq/4jrCASqMSMoDCs7Bc5PPMErY9/G0cNT2FdipwBDFWdWrhKU\naa+9PQZHz0YUXr5M9yAfPt2+my737kevVrMvOpY7ly/holTSYYK5seeAqLm8tyKP8qIiTq1byZ2f\nL1KhreBgVipyBwde7DeQ3n4hHF+RidfSLEF9ticuHrHCFhBhrLLih0+O0/jpNpTeLuaD7Ud4Y2gf\njua9g6Gygmvfq+g8ZjLO7o0ovHYdsa2cziMmCa4B25Pi6Dn5LdybN0Gn0bI1Lps+U8azJ2Ml7q2b\n8ta0CWbeaTqNhmMr9+Bcv4lZ5CSyFlmMUKytbbhTXMTMWYvo1HcyP+UXoNNoqO/qTtd+wzm45iBV\nVXqu/3SD0d1jcHFujOrro8C9uk5uKuUVpShs7fGbEmjRtSEjI4cytQ4HOxmrsuNwbdgckdGaHq9P\nxKW+aQaO8V5TqUQqQ2wjtqg+s7I2oFXrhFpN5vJU1PpS5GJ7Fs9O+1U1E5VKRebSDMo1ahQyOb4z\n/B66ztd/ep0azcHjG4lLnP+L13rYPWQtTUetKUMus8NnxsPHT6suqZjlG0/fZ32ROsrR6tXM8o1n\ncWb4v5ZsHkY0E/+yu3iMOnB4QNHe4b6i/Z+BYC8vk+LMz5c3AwPQq9WcXBCNl58fefv2WnR9NhoM\nJiuYy/nCfevVar7MzCEzfJbF66zatp3+iWmcXZXLG5Mn1HmvIisrxPZ2tLPwmk5dzlcHjwgkU30f\n/efOZrN3IDe/t1xj0pWV8eG2NfQImCQ0ih5JW0nbnt04u3U9iKwYOm+uIAwQy2QMiAjn/bWruaP6\nmQYeTekbMpYD6SuwtpZy68Jlti3MwcrW1G3u4tmAnz49hWPDhny4Zy/DwyPNnJ2HhkSQG+aPsm0z\nbGxtkNnZoXB0wNHVGbFEYtGgs8pQQYe+o9iVupJBgW8hkUt5qdcrrIvJE9JnOo2WPdnbadevF9sS\nVzItIBOJVMYbHQawZ/VaBkwYR31Xd3oOHsWevPUCyeh0aqoMaqZ4+XKh6L+MmdcHqbwJWrWO8LhA\n4iNShYemSqUiLDyGbj0nCFHMf7+YR99O0+o0W4qsTd89dVoNT7V4iiObD9JjZG9BfbZz3SY6j3yW\nQ8s/Im626RpLYn/tKCqE+4mYF06v4T2FfSPmhRO3IP6BD3qlUklc4r0BZuVa5ArpHxICqFQqZs8N\npd+wzkhlErQaHbPnhhIbnfjAPTNT8kwkIzb9zqRiOX2f9SUzJY8l6b/eqeOfhAcSjdFoXPNX3shj\nmCPYa7JQo6l+aH+bkUp2eOiffu2mSiWzxoxhRkAQDq1aYWVjy/OTprJ4/UbcZGKLBCiyMhXj7Ru6\ncWb5WrRXL/Na69Zkhs96YE3pu6v5NJbLeW7gEE6kZ9LZ31d4rwcXxiCRyxGJrDiWnE634BrftP0L\nY8EIhsoqi2Qis7dDW66xeJ93b11j1JJIs0bRHgGTOLl8G928vdm9cKGZ+gxMZFNVWUXJnWIqNFXk\nf/cTxkprek/zRyKTo9Oo2ZUUzcCgtohlYk5u+oQDy5MpvV1GeXGRGXlIZDKeePpJ+swYzDuZm3hj\nUF/2L1tDp1H9+HDvMXQaTZ2I5vxHH3H5+6+xkYjI8E7FydmJ5o2bYiyzITs4DTsnOXqtDkeX+uxZ\nupGG9k8JtZP6Lh507j6WQ5t2U3TnMtpSLUM6RQoks/vdWMRSCVW2FfdIptbAM+9XychNJWmRiQAy\nMnIEkgEoLS3CycWV3K3huDk3o9Nrw7G3c2LHgRR6DO6LTqvhyL4tJMQuMK1fmklhcSEq1UU8nnDl\nxod6gWR+DzKXZggkA6Z0XK/hPZk0ZSJPtm5Nla4SKysbRFZWKORyfH28BYujRzXALGtpukAypnuQ\n0G9YZ7KWppMYb3nUsvquHqnjfQ2qYjnqG39+tuLvwt/hdfYYvwJNlUqyw0NJzlvBnYoKHGxt/7AQ\n4GGobs68q6/AQWxLSfFdeiWnmz2o6/n4czsni68zsoX0mb5Wjeb99BReHjsevUbDl5mp3NVXkpyb\n90CzTv09ibSjhyevjB7PB3mrqaqs4Ornn9E3aj4uzVsAUJx/lfdzVlF05Wcq9RXUc3VHZF3A9W+/\ns0gmTs2a89KQoRzNyqD7PYm2UKOxtbI4TsBorEIsk1NacAe9RmNGNnqNhmvf/YDc0Ykek304kJnE\n29GJSGSm60pkcgaFzOX4mnmIrG3pOWOqUK85kLaODoPG4uxuGsWr02i4qbrK6rB0qioq+GDXfjqP\nHkB9D1dee6sb+5atof/08Vz5/iLHN2ynQqfDrXl9xsdMEvY8kXOUhRHRXL16laiUSEbNHSqYb26P\nOYSoQGxWqK/v4kGPvhO5+MVe/H2nkpGah+rroyjsbHF2kdH+FR8Onou3OPDsky8/JSR4Nn7+UylT\n64Q979y+xrHjmxgytia62bQyjUYNGuCptOP7rz5EIZfi7z2FjKyllGs0KGQy5s2a+8hkxOUatcXa\nj0NDR9q89DSHdhxh2MhxwrybiNlRxMXGPFIZs1rzAB81TfkD18gdxGj1aiGiAdDq1cjr/fnZir8L\n/6gxAf/fYCraL2RtfBwZMQv/VJLxiU9AMnIsntN9kYwcy9e3bqEpKjQ7TyyXg1xOVngEmo1b+DEl\nnRPBYZRevsr5fXsEkjmXl8ObsQk0njID2fDR+MTF15FmX1KpMOj1HFy4QCCb1ydOQXu3lMqKCs6s\nyBXkynInZ8ruFCB3asCg2CX0njWHESmZ2EgV7F2wyEw2fTwtm5eGDsXRw4PXx47l5Ko8tkWG897q\nHKz05ZTdLrA4TqBCq0evUePk0YRdsXGC1Fmv0bA7Lh6xQkGPaTP47/HDuLd4UiCZakhkcu7k36Xn\nDC+znpo+AW9zdv9OwEQyO5ITMBqsqaqsxL6BPdoyHXbOppG8ds4OaMo0rIvO4PSu/YxfGE7T51oJ\nJFO9Z+dp3UnPzWDXwZ0CyZhekzA0qhfWsgr2bcgxs485uX8F/r5ThWL+srx4/AK9uHTxJhKJHFGF\nDO197gBatQ6FjQetWg0mLDQWjJXCnqdP7WPQqAlmfTSjJvlh56ggd/kylmWl4eczg/Sly2n9cnva\n9XiL1i+3Jyxy7iOz51fI5Gg15moxrUaLtbU17x15XyAZMI0g6NV/EJlZj3YqpVxmJ1jb1NyDDkMV\nzAwLwdt3BjPDQszes2+QF/u/ykSrN31utXo1+7/KxDfo143o+CfiLzfV/Dvw2FTz4fCLikIycmyd\nyODssiw6Bs00O6bbvL6O47MwbqCigh/On+fNexLj2us0WzcK6y6pVPjGJtB2qh/q4gI+276FG9+d\nRyQS0aB5CwwVlajOfYRYLsXzuecoUKlwbvwELw4dzvlDBwVhwNO9enMgNhpjVSWNnn6G69+ex7XF\nk8gcHHh+4ACcPDwozs9n77x5yBR2lBcX08FrGt+fOULv4ClCjeZwWh7aEg0iow2dJ01n5+K5NHmm\nDSKRCJGVFS8N6IfCyZH3Vm5Ec7eUGz/+yKTEDDOyuXHpAkdWJjA5rW7jY55fNC7uzbGVSnmlT38U\nDk4cWZ9M/4BBvLNkP9Y2Uu7eukqLRp5U6Q18+vUXzEg3SaL3ZGUxLHxInT3P5Z1GJDLw+pSX6ry2\ne84Z3mw+nVNfbKEKHSXqn1mzyvSATc9cTplaj51cTElxCTdvVNGvx3RKywo5+t84hkd2EpwGti9+\nH3W+Pf37TcW+niOffLKKu6U6uvWcwIEDqxg0ZkKda+emxBIXG8muPe9w7uOPGe8dWEcC/e3Hp0lK\njK+z9rfCUo1m++qd9HyrFycPnGLY8HF11rx37CBLszL/8LVr38P9NZrdm46gU1cyfOxgIZrav+sw\nsTE1tSNBdVZSgbye7f+k6uyfPibgMf7HcFdfgael5skrV8wK+99kpZMVEVZnffW4gUsqFYOnTufs\n8hxE1lY8N2gIiOC/u7ajvvwz/lGRBHlNIWV5Hm2n+gk2Ni8MHcG59avoFFAjpf4gKZ6ym7dQFxXR\nPWQmhxYv5rPt2+k8I7imTyZ+Pta2EqoMoC0pZ0xabo0MOjuNNt278M2Ro4xMzqo5vjQdvaaKE8s3\nCETSbuwIFE5OHE1bjcLRGalMRk8/89l6RfnXufbdD1BlxMrGhk0LZzNqTiwSmZwbly7w7vocGipb\nWeypQQTFBdep0FVwcss65PUcqNIZkMil3LjyE+gMtGnbGheXBgRM8WGs/wwkMhkF125y/WK+xT3t\nxApEGC2PiNbY4uLUmL7tvDn6URoZ90hm5qxFdO7thUQqR6dVs3VNPG+8OoRd76QzqJ8/xgJ39kZ/\nh0hagahCRrfnwrB/3ZkDx3MZONAbK2sZCfGhZGTkcOf2ZctTOm0bMi86gZETfbhw+brFps7y+wbF\n/V4olUriFsSbVGdaNd9/8x19RvTHxbUhImvQarVmw9W0Wi2K+z7ntaG6pCIzeQXquxXIHWzxDZ78\niw9/pVJJbHTiPdVZOXKZAkd7FzoOed0smuo7qCeZ2RksSUgyrWuq/NcW/i3hcUTzGA+MaArylmGn\nUNSME3jIYLRLKhW+ixN4Zpqpb+X2hR85viQWW5kU52ZP8PyIYcidnfg6cymG4lLUzg2FyERXWkLn\noKA617+5Oo+SoiI+Pf81VUYRY7PX1jnnZE4qnWf48W5mCq+NGY9TIw/htY2B03Ft2QpNcRE6tQZH\nt0a8NGQ4p1dnMyJhbp33sHnmfIqu3qTxM23o6Te1lnPAdc6s2U6PSUGIZXL0GjWHcuOxllQgldtz\n/adLjFyw0DQyeut6+vi9LdRTtsdk0nncWNyaNUWn0XBo6UpeG9iXE2s38sqAlzi35wwj53oJ57+b\ntYsbF68zamEYx9Zu5/kunfno0E4GBrxV06cTu5nViXkAhMXNpOuMjkKN5lDGMRoYmmAtUqCwt8Ev\n0AulUknwzNk0bzsAibTm96fTqjm0YxUd2g3jzJnd3Lp5hWkT6/qL7XwnlT59J/LDDzuFUQAqlYqJ\nXn6Mmuwn1Gh2rVuLUWvFkCljkEhl7Nqyir6DB//uiKZaSq0u0yK3k+LnN+3hsmGVioi5s+g1tLdp\nxs19NZpD+3Y9sEajuqRilvcS+j4ViFRskhzv/y6Vxdkzf3Ok4e07g66936xz/N2Dp8jK/Oe4dT3K\niOYx0fw/g1D0vycwCPYy5YUnRc1B7+iEyMrKJFUuLmLlb6gL+UdGIRtiIqvi/CuczslA0cAFkcgK\no9FA0RUV9dxdAAO3vvmBHmELsJXJOLsmh4ILF1DUd8HetSEvjx6Lo6eJLH7OW8Y8H2/84uL4+XI+\nQ+PqzkzfERFA18AQFI5OnFmdR5cZptk0xdeucjR9CQMXLKgx5EzPRFempqzgOmNSF5qJAvRqDe/l\nbeba+W+xsrJGWk/BwNmhJsPNtBw6j/BBXCtVpteoOb4hHomdLbcv3WZ0tKmJtvD6NT55Zy8Yqrj0\n3y/pOmEsT75Wk97SaTScWLOZLuNGkusfjM/y2XWilaOLN3NHrcbJ1ZX+07wovH6djw7ux0glImyw\nq7Rl84pVQHXvSzplFWXY2drhN8VyD8dU75m80ml8neN5aWFMGLsIiUTOzh1p9O8xHUktqbJOp+ad\nI8uQyqpISKwZRKZSqRg5eiwVlVZIJXIcpO50f2UiJ/67lqGTxwJw59Z1jh7cwZDRYwUyOrJnG/4z\nprJr137Ky3Qo7CQWCUSlUhEetpCeXccJ/S6Hj68lPqHuRNb712VmZ1KuVT9QdWYJM/3m8B+b8XUK\n9F9UrmFJxm9rkJ4ZFsLzrz5dJ5r6/KPzQkTzT8Dj1Nlj/C5cUqnwTkigtb9/je4Vi00AACAASURB\nVK1NQgKzR4/GRibjBe+aoWZfpvy2/xB39RU43COZA9GR2DVw4Y2pNcq0w9FRvDiiHy4tm6FXazg0\nL4mqKgMyO0dGpK+oSW2lJ/DahInInZ2oJxaTkptL2+nTKUzPsqgwq9BpOZGZipNnYzR3awwrPt25\nVSAZuGfI6e/L9vBZ3L1VyPaoWIbGzBbqNEfTc3lxwFCqKgz08PHn1sULrA0MQyKVoi3T8b7VMqAC\nsOXFHsNxcvOk+NpdhkWHcXL1BkGW7OzeiB5TpqPTaKhatYZLX3xtRjQSmQyjwYBEJsPO2cGiT9q1\nwtu06+LF0V1Z6DQanN3d6T3J9IVAp9Fw5fBJ4XylUknSIssy2tqwk4vRadV1IpoyTRHrtgZgq5BQ\nodaxZXc0IwbORSKRo9Op2bAtmlZPuhEZFW7eTzMviomRQbUGrG1Fr9dw49ZPQkqtQUN3uvcewr5t\nWykvLeS5Z5/Bf8ZUMtJX073rRIFAwsNiiE8wn9CZkZEjkAyYbGJ6dh1HRkYOSUmLH/g+q2fc/Fao\n71YgdbcgOS747ZJjX28/ZkeF03dQzzo1ml+CSqUiK6smDefj8/Dmz38KHqvO/h8hOS+P1v7+5rY2\n/v6ExsfTNijE3KMsKIRRvn6MC4vAL/LBhp6XVCr8Z8/h/FfnuX3hRz7euBr3Z56l55xos/16zo3h\n633H7v0sQ+HqjL2rK518Qs0dnP3D+Gz7Vj7LTCVoihfXbt/mg7xVqIuK2LdwtpnCbP/iuXTzm8ng\nRUm0Gz8VXbmaomv590w7r1jssXFp3pyGymZoSrSs8QlnrU84uxYkYDDAqbVreXmQqfDesFlzxiSn\n4+CixL6hLd38u9I3YiDd/Lty9p1l3FL9SP3GjRDLZbw8oC+74hPR3as96DQa9i5JolJbwW3VDQ4t\nXUNB/g3hNZGVFTqNBnVxmWCyWQ2dWouhypqn/vMGY3zi2b9sndm+p9duJmCapUnmD4e/71S2r0tA\npzX9/nRaNZvXxePW0olx8WOYEDeGcfFjqKc08PGXuZz9NJfvVVtZsy6J3LwscxJYmk3X4YPNnaCn\nDufgZ0tITl7I0X2bBHWafT1HJLbW5C3LIikxnl279gskAyYC6d51IhkZOWb3qy57gCdZmbnC61FB\n7mArqMCqodWrkTv8dsmxUqkkNiaezz86z7sHT/H5R+fNhAAPgkqlIjIylJdebkWPHq/x0sutiIwM\nfWQqvb8TjyOafyFq0mOVONjaEOxlqq08yNamUmJ5eqXVE03xnOKHXq3GJy6RrAhTH0/1/jdLSvnm\n2+9o7zeL1zv35fDiKAakZvDh8mVoCgv5cMVyoQ7z3KChGAymvYuuXOPu1es4Nmpi8bpFP/+MpkJH\nxJIUPv38K+orm1Olr0Bzt5h3s5OQyBXc+ukHuvqGCL02YrmcvrPms3N2MG6tWmPv4mYxArK2tmVA\nVCxbIvxwcGvAgHkzhahmZ9Ridi+ej7WVFJcnmiGWSSm88QMTsgPNJcszh5E3ZT5D50YC4OThjrSe\ngndXrcFKZIW2vAxbWzt6jPcTGjqPrErntaE9+Gj3fl4b2JetMUuorLBmd9ImBoaMqhnnnLoVZ2cl\nAM4NPenYcxLHVu6gtOAKL7V9muS5C37XN1ylUombuxOHD67CWGVAZG2FSKJHVk/C/txjiKyNtB/0\nGr1m9OSHXT+QFJvwwL3KNBqLPmvWElvWr9mLs8KRcyd2Y20rQSGXkhBb03lfXqazSCDl9xGI3K6u\nJ9nV/Et89833zJgchsLeFt/AKY/s275v8OQH1mh+D0yR1W/LCmRlpfPWgK5IpfeaP6US3hrQlays\ndBITfzlq/V/GY6L5l8GUHkuktV9ArfRYItlhoQ+0tbHR6Sw/lG1M3+bEcjltZgSSnLuC4CmT8YlP\noI2vHy3kcpqo1ZxKTuGVkZOo37ylYPNybt0qOvrPFFJi76UvQSTSUXTlGh+t3EE9tyYYjAaL1y29\ndZMOc0xCAreScjr7hqAuKuSzHVsouHSBem7u1HN1E0imGmK5HJdmLeg8LYBbF39i97y5DFwQXcuQ\nM4vXhk9ALJMjc6jHgHlBZg4BXWZM5P1l2+gfMk8o+u+K87eY3pLXk2Hn5Cgc6/D2CE6t30avad68\nt3Y9HYdPNmvo7DHRn5XhMxDLxHyy7yS9JwWhcHBiQ8ws9iTtRGpnmj1TcqOcHoMnC/s6N/Sk64Ap\nfHNkJVRZsyg5AzuphADvqb/5Ievu6kKzV/ogkcoouHWNfTvT6TXSW0h/7V25hm7j21NQUvDQfexk\nMos+a3Y2jWj33FR0OjVHzmSTkFzXK01hJ7FoaqmwM2969PObZlajuZp/iQN7tzD+rViBCCIC4ohL\ni3gkZKNsqmRx9kyT6qzApDr7PUKAPwK1plwgmWpIpQ9v/vyn4LEY4F8Gv6gobMeMq1vL2LCWYC8v\noUYj2NqkpzN79GhiN2ykjV+N0/Hp5GRefHsijh6NhX1OzApGU3qXbskpdfY/tzQXgFenTuFUeiod\nfILrnPN+5mKk9gpeHeeHuqiAU0tTkNk5COkzvVrNgYWRtO0/lJ/OnMBoqKKL70zURYWc27iGztOD\nKS8q4LPdW7hz6Scc3Bvx2pgJ5koz/ym4NGtO6Z1bGAwGdCUlNHn+BaytbXmh31Ac3T3Ra9Rsne2L\nR9snMVaByBpeHNybz3Yc4s1h3pQXF/LZ/p0YDQZuXvqacek+dQr2q71TadBYSS+/mn6c3YtTuaO6\njJObB6Oj6ubjN0XPYmjobLP+G51GzdrZgbzw0n9wcXRgSN9+JC9bR7tB0wQZ8tF1S7CVSeg0qubY\nme0rSI42RVRp2TmUafXYScUEeD9YmaVSqZgZGUOngeM5snc1PSf0rUMWhzavpfRyKScPH3/gZ6y6\nRlOdPtNptOxcvpmeL3rj4mwyRdXp1Hx7dQtJKYvqrA0PizGr0Rw9vqpOjab6XJPqTMd333zPuF6x\ndYr1529vZUnqg53IHzVUKhWZGUtRl2uQK2T4+s14ZFFVaGgwL73cyoxstFodn3z8w98S0TwWAzzG\nA3G3ovIBrs+VJlubsDCS8/JqbG3CwkzHPT3vHa/k+/Pnec4nxIxk9Go11i5u2Lu5W0x3GY0G/jNw\nJO+nJGMjlVo8p+xWEXev3BD6ZyRyRyqr9OyaHYBYrkBR3yQg+Obgfjp5h7B7ton4Pli9XCCZc1vW\n0Mm71uiCrCReGzMBhaMT72anYO/qho1EzODFCfdk1j9xOjeP/uELhCjlaFYiNlIZ7cbMqIl2lqVS\npdNRXlzI2W3r6DbN/97ogB/ZGpnE8EXTa0Y1L9mKyCih/eCJnFyxVZgv022cL4ezUrCt0KHTqOsQ\niv6+Y4U38vn44B7kTvX55qsfSI9bQPv27fH09CQtO1dorGzs0YCneo4WCvkSqZx2QyezKDGZglI1\n7YdOElRdwXNjSI6u+9CGe+mcRVGkZ+Vwt/CaxfTXLVUxzRs8+dDPmFKpJGFBDBlLsynTajj/xbcM\n7holkAyARCKnvKxuIV2pVBKfEEVGRo6gOrNEMtXnVhf+Z0wOMyMZMBXry0v/On8wlUrFrPB59O4+\nDKlUhlarYVb4PBbH/7505v3w8fEnMjJUSJ9ptTr27jnOokWPbqT134XHRPMvg4OtzQNcn01/apOt\nTd1GsdrHL6lU+MQlUm9GjaHn+6mJvPL2ZL7cs8WyqabICrljfXQlZRRd/tniOWW3b4MB4TWJnR2d\n/ILr3Eu1E7SNWIJerTb9LJNzZm2OQDJgIq/OPiFsD/OhQqPGpcWTFF35mQ5TpgjnuDRvQfspXmyf\nG4JL0+Zc/u9nuLZsweAFi81FCNMDWe83lY/3bhNIBqBh05a8OSaEnHER2Dvboy7Voi+vRCyWonB0\npvtE00iEouv5fLR3OxKpLW2atmRn3FwGR0TX1Ghys3Gq7yEQUOGNfE7v3EjPKdOEEQLh8Yls8PRE\nqVSSklDzLX2Kf4iZWgxMZPPjpSu8NT3UzAam/dBJpGXnkJJgWZmlVCpJTlxMcESYxfSXg21j3Nx+\neWCuUqkkKd5UxwkJiqSewtnsdZ1OjcLOciG9NoH8WijsbS36gyns/zp/sMyMpQLJAEilMnp3H0Zm\nxlKWJP1xpwOlUsmiRYlmqrNFix7sAv1PwmPV2b8MwV5efJuRZqbO+jYjTeiX+bVwlYk5HRPJ4cBp\nHAqczitvT8bRw5O2A4ZzKiXFfIRz5Gxc9Bpur8/GSWrDS29P5HB0lNk5B+fPRuHQACfPJzgwb5aZ\n43Nt1D6u16o5kZmE0WBEr1ELBFQbJsKyZ3TGCvrOms/YZWv5dPsOivLzhXNsZVJ0mjJuXfweB3c3\nyu4UWNzHtVVziq5dNuuXARPZvPpqR744eoYjm3fQ9tXX6B8xl8N5meg1aoqu53N663q6jJnGoFkJ\nNB0wAStbCatnBbAmKpBN0bNo+1Jv3ugxmh1LFqHTqPn44B6BZMAke+4fHMqiJPMUiUql4vvz36LT\nqim8mc+BjVns35jOO+vSKSkusNh5X6b95amZ/tO9Obp6K7p7XmE6jZY9WZsRVejxD/jlz4pKpSIk\nOJJpU8MoKb3LgZPp6HT3FG33ajR+AVN+YZdfD9/AKRw+t1RQhl29+SPLdgZRUFRISMisv0SZpS7X\nCCRTDalUhrr80TgdgIlsEhOTycrMITEx+V9BMvC4RvOvgkkNtoL8O3e4ln+VJs2aobCywlBZiVGu\nMFOgPWjtzZJSzn/3LW+EhdOgZUtTNDN/Hi+Mm45L85YAFOdf4Ysdm7h7/Sr1GnnSQmRg/swQknNN\n67/49BM6Ry7kvzu3UF5wmwq1GjtXNwou/MTwjBWcTI/H1k6KvrQcfZmaXpE1Bfv3MpN5fuBIPt+1\nmaKrV1AXF+Ho7onIUIWDR2PaT55RJ1I6vSKbrrUiI71azQdrl9PZx5fia1f5cN0autaqS2308WVM\nanadfdYHTENkhHFJy+s0ZxYe2Era4kUEzIqkQZ8hiGVyiq7l8+k7u7n+/XeMikqss+bE5mx6+U5H\nr9GwI2Yx5TdLEYsqUdSzo8LGljHR0WZ/g8Lr19gZH8vzzz/HzxdV1Hd05fKlq3RsP5lzX+9E4mxN\nX++JQgS0a0k6nd6ahHuTZsIeOq2GK6f3PTCiqY3Tp0/jFxSB1E5BaWEp1iJbZPYy2j7bktlhIQ+t\n9fjMiMRa5CA0+Japr9GqpRIQo7CzxS/g0SnCal83MzWXG9fvcOP2TUaPCLyvmfPROUNbwsyQcNq2\nftOMbLRaDV9+e+qRRDT/a3jsDPAb8f+BaC6pVHjHJ/JUrfk1X6UsoVKr4fnImlHI36WnkR1mPm6g\nem0b35q1p1OX8OL4CTg09jRFLf7+9InPrEmlZS6hacdOfLV+Nc2bNuPCxYu0C5qFS/OWnEiN5/nh\no/hk4yqzUdCH582l4wwTIXyyeQUdgvxQFxZxNHoxckdnii5fRlG/AVUVel4cOZaP16yivruSTkEh\nHE6KxlBVRZVeT785sbVm08yms1+IIAioxs5ZQTgrm6AuKqJHsLm9za0LFziTt5J+EXNqRggsnMur\no4bi4OrKh+u20G1KgFDT+TAvg6ULTHWEScGhPDl6stm1ji7NoOfEgDp/kyOrk+npMxUwuUC/l7OF\nLm9N5911sVzJVzEuIV6IaAqvX+PU1k30nlaTSju0LI/XO47io4M7qNSreWv2+DqzajbOWcyYkFih\nRnN6+0qzGo1KpSJ9eRZlOjV2Ejn+U32E10ICo2jtMo6S8gIOf7mM/hNraj0nd61lSYzlLvwpXr5c\nVpUzeECA0Ni5c08aTZQKcvMenWHlgxASMounW/Wso1w7/8Ph35yS+y2wVKM5eHTbI6vR/K/hMdH8\nRvybiKY68qixkJlMU6USv6g52Iyuqzb7cFkmHWaGmh2rXL/WrE7jFzUH8ai6a8/lLaV9YBAAF5KX\n4GpXj1slpVy+eAFHBwfuVFTRqVY0cio9iZfGTOTL3VsxVFXyuvf0utFHShrdZkZRnH+FTzavpuTa\nVUrvFODk7knvqEU1g88WRWFTaU3XMUEc3ZyErUKOta0NlZUVGCsr0RQVU1/ZnAp1OV386ircPli7\nnDcmTWbf/DkonByR2NkjshLx/MCBOHl4sHbqVKytbHFt9STW1rY8070vn+7exOvjRiICPty4hbJb\nd1AX3aZti+Y4ODTAYCPm+2+/4bXJM2jYtLlwvSPZaXQZNa1ORHNkbSr9g2vGWh9Jy6PPsDB0WjUb\nYqcgdXVhcGgoEpmMAznZdBs/rg6RHM5aTe8RgWzLmcW42PA6n4fN8+Jo07QFRmvbOqozlUrFzJhI\nOk5+S1CHvbdiL0uiFqFUKpk+OYJ2T/my471Euk2s60l28aNDJFuIjNq3683YkYvrWNWs2zyL02cO\n1jn/UWPGtCDefH1kneOnzm5maU7Kn3rtP1N19r+Gx6qz/6eo7pF5yj8Q9/t6ZO5WVOBuqelSZFXn\nWEFFpdmxu/oKPCwpye51WOrValzt7cmIqfF88oucwzPDxpkV1N/0D+GjFct4buAwjiXFWFaeFd4G\nwNGjMTY2UvpHJ7N7VqBAMtXn9Y6MYdu9HL/Uxo6yuwW8NHos72enY9egAfWbNueFgSMQASeyU+ns\nXRONnViawqtvm3zX+s9fyKncHDr7BN1TqaXy4tDB2FiJGRabakYOXaeHcGptJi07vM6dn3/E/alm\nKBpKydfAM4O9EMvkPKFRszthDl0medGwaXP0GjU3L13gnWXx9JseLkRBh1emYLSuUUTpNaYxBGAq\n5Ld++lmK75bxbs4GrGyg6NYNi2Oc7xbfoKykEL1aZ3H6ZuldLVcuF7I0o65ZZPryLIFkTPtJ6Tj5\nLdKXZ5Ecm4jC3gadXo3RusJyrUdtuQtfIlGYkYzpmLzOsT8Llpo5tToNcjvpQ1b9dqhUKjLTllNe\nqkNhL8E3wNS79G9Mk/3ZeEw0/yAk563gKf9AswfyU/6BjPLzo3WLFhaVXgajwWyP2gq0ajiILTdy\nVhflv8lIY/bo0fhFzqFEX0E9sS03S0ppeR+RaIoKuPrfz7j5/TcYKis5mZTE8yNG4ODpKeypLysT\n/l2Wb7KJEcvkFklJUb8BhzfE4Vyh5eqtm3y+YwvD0pfVEEpqIiKsMGJgY8AUrG1ssRHb8sZkLxw9\nPIR9qsnWpFILZEdoIM6uTeoU/cUyOTd/vEjR9UuMSo1GLJdxZEkeHccFCueKZXIGhi1kW3QIrs1b\nILKyosf0QM7t28B7O5YJfTntJwzho+17TO9Vo+FI5nLe7G4iTp1WjbtbA+KjI0jLyqNMXUH57SqL\nRFLftQlnj2zD2e4JDqSvpY//OCG1diBrLf2Hh3H26DYWxiaxYrm56WiZTm1Rwlx2r2jvF+hFWEAi\nRr3IouX/9998i0qlqkNgLVp4otOp60Q0LVo05q+AqZkz2oLhZl1H7t8LlUpFRNAier8xWbhGRNAi\n4lIi/7URzJ+Jv4VoRCKRJ5AKdANEwDEg0Gg0XvmFdS8B04EOgAdwBzgFRBmNRtWfec//C3hQ1CJS\nNuVSwR1sUpbwbFBNN/5XKUuQaDVmM2WqazS1Eew1uU6N5v3ouTRxcuROdib1KqvwS0xG4dGY/wwb\njdTJmW9CfXmiFjndzb/C6aVpuDRvQYeAmgbM99MTeXnCBGTOzryfkoS+qJDDs4Ow1mt5slEjk3xZ\nJOJExhJhPkzbgcNQODqjLi7Crc0zXPzsHB7PP1fHF61zYChn8rLpEhhsGhmQkcoLwwbz6eYt1HN1\nw8nDUyDM2r8vsUxB8a3r/HTuDJc//1SwyXmmRx9E1gYGx0RSVljMmaRciq/csUhIrs1b0n1qTVpM\nLFXQ3bemdqNXa9Dl5/N5bh7fnP+enqMiqN/QE51WzYe7MkiJqUmDGYFWT7Rgd1ISA0NCzGo0b/aa\nyL68BJxk7hiKbVnqG0HzZ1/EGgkdO0+lvosnfUcFsj2nblrNTiK3KGGmwkhwcBRl5Xqc3Gy5W1TE\ntpwUhk0LEmo0+1atpNcrIYQFJZCQEoZSqTQ1UKblodUYyF0VwuABITRyb4FOp+bQsQxS0uaYzknJ\nQ11SibyeDX5BXr/6waxSqchIX055uQ6FQoKfv2X3A1MvzlyzEQKPWgiQmbZcIBkw2eT0fmMymWnL\nWZIS+8iu8/8FfznRiEQiGXAC0ABj7x1eBLwrEonaGo3Gh2kFRwBtMJHU10AjYC7wiUgkes5oNOY/\nZO0/Hg+ykLG2teH5qCgKMzKp3LiWgnv1m9zIWYDJTLPgnu/Z/UIAMPXQZIeHkpy3gjv3Zs9sjTfl\n5n3iEmnjM5Pmteswb0/kjaBZnFgYRec5phTZ59s2oXBpyBtTfMzIoIN/KFumjMWpWVMqS0vpNTcR\nG5mUc+tX8sVFFWdnTMChUSNhncmuJhFdWSlOTzxBl8AwU9F/XpjFqKeaRMRyOZ38Ajm7ajldgoPY\nNTMMl+YtKbt9m47Tfcx+X/WVzXimez9O5WXzVsQiId21L2EOCmdnygqLeTdrPVKFFNdWT6DXqOvU\nXyq0WrOfb/zwI3q1RnAJOBCXgmf9pjSUOzNj0QK27z3E118fw05uS0pMOFevXiUgZCEujVphZWPL\nf9oP4KNPF3A8byMiaxBhw5u9JmLn4ExZUQHPtGxFA2d7dJ8W8NbgWWa/B4lUjrWtuM7nxX+qT50a\nzbGcHehvien3ljcSiZzr137i0y8SaPJEI3Jiwmnk/hQy63p0f2EqLs6Nqe/kT0ZqHoOG9iIoeD6u\nri2xEdkyuF84x97Nw62RI+7uLqSkzQEg3C+Rni8EIG1osokJ90skPiP0VxlKhoUuokeXyUgkMnQ6\nDWGhi0hItBxB/J5enN+C8lLLnmx/lqnnvx1/R0QzFVACrYxG4yUAkUj0FfAjMA0TiTwI8Uaj8U7t\nAyKR6APgEjAFmP8n3O//DIK9Jgs1muqH8pnkJbwwcYKppqJQmNVRqmGpQfN+mBo2zdf6Rc6hzQzz\nVF11HabtoOFotRo+WJ6JyMqKkmtXcfS0bJLZ+MVXKb78My079uKz7RvQlt6l5z2COpmWSDsvc3Lq\n6B/K+1nJ2N6b5yGWy3H0fOKB6b3a16rutWnY6knaTZzO/ugoKu71iujVak5kpvHaiAl8sXeHQDJg\nilL6hy1kx4JAPt76Dvb169N5xhjKCos5tjKJbpNCapwF8pZgqDTVX/QaNcdyMug81If3crah16u5\n/t13DHl7IW6erdBp1SRlp5ESW/OwValURM7NYtykTEG1tW/PEjr2m86X5/bQf2qkYDWzb/kiYueH\ncebzTyjVlVJ897ZFu/+qCnMXaLjnBBC1yEx1ptDb0eOtYCQSOXfuXOX9s5sZ5xeHRCqnk1bNOxuz\naf/8CFycTWkwiUTOjet3mDM/lYkzFgv3tWdrNt06evHzjQOU3L3L2yN8KC8px2/4cqGpUiqW0/OF\nADJS8khKe/hnMCN9uUAypuvK6NFlMhnpy4Vha38lFPaWPdnk93myPcavw99BNP2BD6tJBsBoNKpE\nItEZYAAPIZr7Sebescsikeg2plTavxomC5lQRvn5IVI2xdrWhhcm1kiQHWwe7Z/zboXlEc9Gg4Ev\ntm2kV2yS8OA/lZGMoarygeacfRcuYUfQVNyfbkvHwJoUmEhkZdnSBgO3f/yBk+lJiKysaP5mJw7F\nzKNXVM0gs5MZybwydrzZtarrStX79p0bw65wkyrNrr4LRoOBz/ZuofhqvsWUmGOjJhRevkb9Jp6I\n5TKc5TJenzSQU9szMVbCjZ9+ou/sAI4lL2fbnHAcXT1o138izq6eKJ95icN5yXgFrjKzi3mjbwCL\n4tPIXWpSRKVlrGDwiGihxiGRyOk/YCaHjy3Fw8WZa2e3cqeohJ8vXsJJ4Uj6xrX0D/NBIpPh0u5F\ntmbNZfikaOGhv39LGk2UT1j8GyqVSpJjE1GpVMTGp/D9xWuUanNp9/oQPvhgO/1Hepvda7/R3qxJ\njqRx/daIrKx45fm+5N+8wvDx883OGzDcmyO71nH92o84yz2Y2CeF/e8ttWgToy6prHNf1VCpVGSk\n5vHZ59/wn2dGmL0mkcgoL/97IgjfgKl1ajQHP1hBXErk33I//3T8Hc4AT2NKe92P85jSYr8JIpGo\nNdAQ+OYP3tc/Ak2VSjZlZOBoqOTl6dMEkvku7bd3//8SqlN1tVFtCVOebz7vpenrb1Jw8QLvpyUK\na27/9CN7gn0pu32LvREB2Iql3PnpBzSFhcK6B7kD3Dh/ni7eYViJrDFUVHI2dynqkhLOrs7lZGYK\nJzOSuXsjH4Wzk7DmZEYqT/fuxcm0DP4zcChwr+O/5VPI6zljMFbSJTCAzgH+OHi4o9fcd12NmuKr\nV9GVqE1uBGpTFtfZ051ugZPo6D0K9zbNsHN2pEGDZvQeFkbJzVvY1TPZr9z8+Scuf/c5R/dnc2BH\nMgW3TSVHiVTOl9/+LHSvl5dVWFRtGSorcHdtQKD3FLRFBoYPTsEgdRZIBsCtmZLOPoNYmxXC/i2p\nHN+bx+tdh+Pe8MG2MSqVipDZi2nz5ni8wlLpOnQ8x99bja5SY9Haxt2tBUO6hdK3/QwOvZuDW6NG\nFs+rNFZQWlLM0K4mHzKRyMryTJd6lr8AqVQqwgPjae02EidFE3Q686y5TqdBofhrIgiVSsXMwNnM\n8JrJzMDZAMSlRPLVtb2899Vavrq297EQ4A/g74honIEiC8cLAaffspFIJLIGlgG3gJV//Nb+GWiq\nVJIdajLHLKisxMHGhuzQsF89dvnXInjKZFONppbn2YmYOTzj6oJVU/NU1qWzp+jgO5Mvtm5gy5Sx\nuLRqTZVGQ5eg2fx3x2Z6LJpbE4lkJfLy2Ek4eHry3MBhvJsSR5egCLMajYO7J2c3LKdHxDzh+Dvz\nI3hu0BAcPT0pvnqV/fOi2B7ojwio0GmwFtvy1d4DvDJ6Ao6NapRuRoMB2mBqJwAAIABJREFUK1tr\nOvmZUnTF+abhaO8kzqVfaHRNSix5Pj0nhmIjlfLupjSOpCynR9BUoe5yOHkprw4fwt4FS5AZGvDx\nu9uxNYg5nJnIrZsq5PUdGbcop2a/Fal06jYRO/v6ONZvTFrmClKWLERhZ2tRtXX10pc0cX2BiV5h\nyGTuXLl8nlvFF+vInt2aKXFu7Ebf4UHotGpO788i2UKPTTXSsnJ5s980s4ik72hf1qZGWEzD2WCq\n90jEcsb2X8T644EWz7t65QdkYkchiunwwjB2HE9iSNcQwcr/8GdpxGeYi0+qkZGaR/fXfJBK5Lz5\n4lB27lzG4MHThRrNkXdXkJBoiiCqnZwfNv7598KkMIul12teSCVytDo1EUGxxKXMflz4f0T4yxs2\nRSKRDkgyGo2z7zu+EAg3Go11q5oP3msZMBHoYzQaH+hr/m9q2PyjEBo+9RU4iGsaPs1ez61pCB3e\nuydbDx6m5J5IIHiK6fxTp08zY8FC6rV8EmtbW9QFBfSaYzKC3BcZQtmNGwxLzeXDVct4fbyFxs2V\nmXQKDEWvVrPNdzIebV/AyspKUJ3JHZ35IC+Lzv4zzdadXbOM5wYN4dza1XTyNSnsTqQvof2U6aZx\nAhvW0Nmnhhg/Sl/C9as3aNCiGV2DAinOz+fcmg109ZqJuriAT/ZspvDKRV5+qiUTRwwhIW8jL40K\nIP+n87y7IQ2DQYNELqdKU4mTSyOKbuYzYMJC3Bqb6i9b0kKxFdng6O5Jxwl1mzbfW72MKo2ODj0n\nkn9+N7nZcaYIIyyRDl0DhRrNxjUzqd+gAT3eCheObVkThVQhofe8t+vIntcERPPsU8/g3tCFAN+H\nK7um+oTS5NlefHhsD1QZwVrEa90GsCMvAZmdgpFes2vScBuW0vO5Kbg41UiV93wwh4LyEoaNCRfO\n27hqMe3aDOX4mTXMGJohkM2dwquc+GQT5RXXaftiq4eqzqZ7hdH+6enCz7cLr3Lq0+0UlV/mhRfb\nCKozlUpFWFgMPbpNqCGhY6tJeIDr82/FzMDZPOM+EGkt4tfq1Hx9fTdLUv//Es0/vWGzCMuRy4Mi\nHYsQiURxgBcw7mEkU4358+cL/+7UqROdOnX6tZf618BkNbMEj8HDuLh/L1VqDf2mTmfZ3CjebN/e\n9HrcEtp4B+Jx70Edm51KdsTMOmQUu2ETPVMzhAf6oVlh3P7pR2xlUjQFBTRs+aRZcb42xHI5RZdV\n7AiYho1eh1yuoLN/3W+9uvJS3stOwWg0IBJZ0XbgUIwGA59v2yKQDMDzQ0dwIj2Zzv7BvDJmPKfz\nllGouoisshK9rpJuPpEcXroIvVrNFzt30dVrpql3Ryan2/RQ9Bo1dw+tEyz6F8Qncf7GTUYm17y/\nk2kZWJfAhNAYs8jApZGSHm/5cnR/lsWaT+GdfPoPDsXOvj52cpPTsFKpJMh/FLPmBWO0kiIyaGnW\ntCGvdg43q9uMGB/DjnXRrAuMw71lC/QVZWANpbfv0tD1SRQSMSlLflnoUVWh4b1dGxnYP1Qgsd27\nEnGq54bM1sjXZ9aByJazpz9gTPdFZiSj06u5U3CbmLhwgoJm4+bSEmuRmH6ve3Pu/FbqOcvYfjxB\nSJ/Z2TljLdWQuyrBIgmYJMy5lJXp+f6Hb2ha/yc83EwD7FycPenTYSrf3thMUnLN+8rIyBFIxvS7\nkdGj2wQyMnIeifKsvExvRjIAUomc8rJfNif9N+HkyZOcPHnyT9n77yCa85jqNPejDb+yziISiSKB\nUMDXaDRu/DVrahPN/1ck563AY/Awvty6ifZBIcJDNGjBXFKA0LgErJo05dyKZTw7eDgOHp608TZN\n1sxYtLDWPnm08Q0wU4r1WpzAbu9p1G/ekoZPtcbG2tasOH9/RFNecIc+EbH8fGAbNtpSbl/4kW8P\nvyP0tHg+/xI6dRmdQmt6ct5LSeLmd99Sr6Gb2X6OjRrzytiJ7A4LxrX5U1SWa5FU2NA/JJWT27Kx\nlUqxc2nAuxmpiG3lFgmhRGcqWCuVSuyd6tFz/BSz99cpwI9doWF1ahVWWCGRyim/W2RRBi2T2GFn\nX58zB1NJWWwiU5VKRdLSjfSbnihECNuzZ9OmtMAsnVZaWkClSM8E32zKSgs4cTyPXpO8hdED+9Lj\nLTZU3g+9pkIgGTCR2MD+oWzYGEB09Bx27NtPmUaLzE7KodO5vN1vARKxHJ1ezY5jS/Dw8KR9+/Zs\n25ZLRmoe5WUV3NadJDnTlJRYtHAJqw4EIRMraP6kB0lLZz+QZMJmLqZbx2lIJHJefFbN+s0x9G0/\nHQ+3Fmh1ao5+mEV8qnkasLxMJ5BMNR6lUEBhJ0arU9eJaBR2vzq58q/A/V/AFyxY8Mj2/juIZi+Q\nKBKJlNVNliKRSAm0A8J+abFIJPIHFgKzjEbj0j/vNv8+PMjP7I/irr6Ci/v30j4oBHVhAedyl2E0\nGDBKpcxISKJnXLK5qebYSTh4eHKnouK+fSotWtZIHR3pEDyTj5bn0Lp7f97PSuK5wSN5LzuJjt41\nxHZocRQO7p4mN+g+wziRsQjVymx61fI62z8vnHa+98meg0LYHeCHg7tHHfKSO9bHrfnTdBgxnd0L\nfBkSkYlYJkeEFZ+8s4meUbNRFxZxJDbOIiHUk9T8VyjVVeBi4f2JFfI6tQoDBnRaNXdu/8zhVcn0\nnBhcY0OzKpnr+V+T/+X/tXfe4VFUXx//THo2hY4Yom5QpClWiiJdqoIFUJCqoQnpBQIkdASSTbJp\n1AQJiCBYwQZIFQv62rChKKxIkw5JNtlsyLx/zGZ2N7ubQhJWfs73efYJTObee2Zmc8+c9j3rSF1s\nTm/WZmXT+ekwK8uo97ApbNkwm4Cglrhcc+eRjsP5fN8mhgbPw9NLxScfrqD/xClW7aEHhU1Hu2IV\n2iWO3Ts6nY4//zxL9262yQd33BFEyupX6fqcxDbQtt/TbFu+ki07l+Lt6Yvg4kK3R57nfNFuwFS7\nol1oM7+/bwPuaeuLj787oZHBDhVfRvpqWcmUyTBqeDyvb0mg9d3t8PH1YKl2us14H19PDIZCK2VT\nm4kCIRETbWI0H3+ZzZLUmZUPVlAlOEPRrAamAu8JgpBgOjYf+AtYVXaSIAi3A0eBuaIoLjQdGw6k\nAh8BewVB6GQx71VRFH+9AfLXKcrcW61DLfjMlmpYNj2mxsqmnoc7xZcuo794gW/XvUqXaGnz/zQp\niR6xs6w29cciYvhq9Qo6Bk/G391dli1ldQ4///QTTexYKSVFRXioVLQfOoxv1r7K/c+O4Nft2zAW\nF7Fxymia3t0WVYMGPDJuCgdWp/HR0gSunj1N41ZtbGppnpi3lC9yl9MkLEJew0OlwtPfD/crl/h2\nWQoPTokyJyksmcvt9Rpweec62rVuIyuSh/oO4+PXpCZnHioVfWfGsStbI7vPigv1bE+eQ7tbm8jW\ngYux2K4V5umiYrM2kkYtbsfFo5TSYhcMl/9h/7safOrXp8vQcezbslq2yroMHce+dZdI1VjXJ+UX\nGq2U1YWzf/PlgfUMT46XEw92pC7j/PGT8nmicM2qOydIyqay3jPp6dk0aHib3eSDk+f+4pnIOOue\nOC9PYtfyzTzzeDQGg55PvkwjMVV6/ytLRS7IK8HHz41nhvYnY+lG+j4UgdctlRdo5ucX2822a926\nLStWJTq8htDQSQ5jNLUBtVrNktSZZGpXUZBfjI+vB0tS7VtlCq4PN1zRiKKoFwShF5LCWIeZgiZS\nFEXL3EjB4lOGfqaf/U0fS+wDetWJ0DcQKdk5MtU/mPjMQiNIyc6xW4xZHUSND6bXiJEcemOjrGTA\ncS3LNaORX0wxGqnrpoa2L0fQqc+TfJqioWuUme7mQGoy/gGmep7AQB4a9yKH3txC6TUj/xz+mSfn\naOR+NgBPzE7ki9zlePj6OFy/tBz5Z7Fej+H8OXI2SPUoqauyOWPiXtukWSIr4vDpCbLV0rDZbfjX\nbyYrjvqBzenw4kj2bszgwuE/aBbYmt7PRuJbrxHhCRrSFsQgGq6xOz2NXmHh8vXtTk8j/5yOgHsC\n6B47UFYIn6VuZPrY0YyPiMWnfkMet2gXUFyop7SowOY5+Hq7W1lGX+17g75hL+Gh8jZduzd9I8fz\nTtw8+TxBdLXbHtrXy0NqBZCWQ0G+ER9fd8LCzVZFfr6Rrl2H897WFJ4yFWoaDHo2b57DHa3Vdok8\nC0pP8sVPWfj4ulnRz0yLSKJPx3A8b5PmmDN9Dv06TLIq0Oz7UAQZqTkkp9l+V319PewqPJFioiPi\nKcgz4uPnTmiEdQKBWq0msaz9s4meprYSASzX+C8H/usaTuE6E0XxBDCsknP+AlzLHXsRKcvsfxaO\n+MwuGKvWG72irLIgtZo2rVuh+/u41cbuKI5y7odvWbp0sdSGwIIlwEOl4uHRwXy5bBnFp45TmF/A\nvaPHcezT/XwwPZpSYwl+AQF4+vpy6a+jNL6rpZWSKbsmsbQUFzd3SkvtF3qeOvSDFU/bR7NnEnhL\nAKmrsomcOJ7IieNJXZ3NFaOR1NXZRE6QmrpFvhxM2JwkHn5eIsPs0GcE2+fNp98cKcVa1bABxRfO\nMmBEHM1uv1tes9OzEWiX5SB4+NC930i+XLGWUuEaLqIr3ftNYNeF2XSPHW2lELpEjuDN17dxX8u7\neTc1gacjF8iW0rupCdzV5BabZxQxdTyRsxJl99k1DPKc5vvjzR13qfnswwy6DAylc9dhfLxqmew+\nMxTq+XJjNiOf6MuwoZNo2qQVri7udLy/P7FRSSSlSFaFr687vn4N6dV7HNt3rEIUSykVS2l5d1P8\nGvjaJfK8/942pC61DrJnaLMlJWPh9hr+xDw+2r2SIb3MTee8PFTo8+x/V0PDJljFaAwGPR99koWx\n0MDTPSbhdZvktpoesdTGhVYVyhmZZy2vGJWfR7V41gB0x3RkpuSgv2JEVc+dkKhg1EGOx1f3/P8y\nFPbmfxkc8ZnVc6+8N3qZ261NSAQBDtxudzZvzlk3N6s17hk2jP3aRLpFTLOK0fScuZDFr20iMDDQ\nhiWgfvPb6B4xjZOr0xk/+Emi0rPobtmbJkND26ee5rvX1uOCq0P6mPZPD2NXyiL2ZiTRI9Qc+N+j\nXcq9Tw9lU/A4fJs2Jf/sWbpNiqDFI10p1usJnjEbPFzpEBVLPdOYYdGxBNVvTECTxkybMIIt29aR\nV2TEz8udtOhINm/ZLLNP36FqZKVkADy8VOQVGvHzdqfYUASiIH0QKDYU4ennaVchnMu7xPGTF3B3\n9SE3bjx+jZpQUmSgd99JFJw+aPOc1Go1qYumsSgxjUO/6tCX5Mk8aeb7U8ifR/4iY9E83np3A/l6\nI3c28uPPbRsQ3aTeMzHjxxCfkMWYlzLMVDbvJtOtwwjS03IICw8mz3iF196JpqHfHXR9bCR+vo3Y\nuyed+HjJHRY1Z4EcozEUFvLp5nWkzEuwkbkgrwTP22zdXtdKrZVKUbEelZ/976parSZRM4OM9NWy\ni6pxIxWd7oqWA/Fenir6dAwlQ5ttEw+qCDqdjunhS+nXYSpezU1uvPClLE2zjfnYHX9Mx4wpGp5o\nHYHXrdL4GVM0LF4WY1d5VPf8/zqUxmf/MljGaGTG5QxtlWI0ofEJuI8Ya7OhGzfmym63YzodLybM\npsDLi8dizK6vTxISKDx3gaZt2uHq5s69Tz9HfRP7seHNXAA8n7Od27C57He2jdMOrllBx4mT+Eyb\nCiUiPV42r7dvmYaHX3gRBJHPcrK4fOI4xsJCvOvXB6B+4B10GhOMd4OGvPHyOEZkrrWaf09GIo++\nbKc+Jzmd3i9G8916LdNfGsHmDz7mqqEEf083oiaZ33AjpiXQ9JGxeFjESoqL9Jz9Ipehg/sRsSSd\nJ2LMxZwfaGZz5y1e3Bc9zEYhbJmSyqhxq+QMsg/f1NCt/4v4+DeUEgE0jl2eOp2OBa8k88PJP3g2\nIQ4PlTf//HmMD7VZNGkeRMmls7y2fLndzTIqKp6gu8bYuKJ2frASXz89hSoDj44eLSuR91K0tL7l\nduLjzW2adTodactXkl9kwNfLk/CX7RdCRkfE07qpea1zF/9m31ebOHXuN5o3akXPB0fg59OIHd9o\nq0SiWYbJwdN5rO3LNsc/+moJzZo1Rp9nROXnXql1Eh0eT7smw60ocIqK9fx8blOlPGsAMaEJ3O82\n1mb89yW5aDJsn191z78ZcbPX0SioABKTcgwp2TkyC3NVEwGuFBsJsON2s8waC1KreXXBfOYmJ7M/\nKgoXL09K8wsIbNSYP66VILi6IBHXi/L4c8VG5k6dLMdoypTFL8u1ZMXFMD1Zy10OONE8VCrcvLy4\nb8jzfL5+OdeMRk5++390mRjGwdeyMRRcoe+chfKc+1OT6DA6GFWDhuzPSKbDyBfx8q9HweULNu4+\ne3GdvMvn8PBWEdRnGDHJWTweNY/GJmURsjCJzHhpE4yYEkx4goZOz0bg4aWiuEjPwbe1pC2IIXVl\ntqxkQEp/fiJmPifeWsnBjC10Ch0mx2g+mLuSgU/OtsogGzg0hh1bM1F5GuWUZkdQq9XkrMrg+TGT\n2bf8LfQFFzGUXGGkZg6eKm8M+kIiXpmHduYcm402P7/EbnD9WqmRExd0DJo0zSrQ/1RUBKe2b7dx\nSVm6yXQ6HdER8Zw/n8dffx0lICCQW29tzDND+5OuSaNPx3CuFlxgx+drePbJaNmS2vTOHO5q2bRa\nSgbAx8/dJrX45Jk/+Of4ZXq3jcCrmWQtvDR8GnmF56nv35g7WzUnLj7cah19XjFeze3wrFWxFkZ/\nxYjXrXbGX7DvBqzu+f91KIrmXwh7TMpVgaMGZuXdbkFqNbkZ5iZZZZ07n5xtpon5dOlSBNEVd5U3\npccl/tOsuBhSVudwzsQSkGUq5Dx+7E9ur6BxmlhaSr3AQDpOmMSnack8OGosP21/B99bmtE9xrrH\nTLfIWA6uXkm3kEi6hUbz+aosmtzdkq825tBxRDANAqRiQrG01O61GvV6Lp86wa5ViTwz39xBs+Dy\nBfJw44XIaTzc5m4iJ44nbUEM2mU5srssbUEMarWaq0VGmtqptSl18yAtej7a7OXkGQvxc/fmNo/b\nuDXQ2gXn6aXCkH+alSlLq7zp3tqsMQ90GsmebcsYMPVFPE1Wk6fKm44TRqFdtQLtK0usxvj6utkN\nrp899xutOrSwG+jPNziuPdHpdEyLTKJ353DuVasw3KvnnY+TufeO3qRrNhIWM4J33lzHwYPfMXpo\nsnW85pl5/H7itWoH6EMjxjM9Yil9OobKqcVv70xk0jPpVkkGowbMZ8tODaOfSKCoWE/0lEUkL5Po\naTLSVvHTLz/SoYXexsJQVbEWRlXPnaJiO+Pr2XcDVna+TqcjM3U1+qtGVP7uhERO+E9nsSmus5sY\n5QP/z/XvxysbNtHGooHZr5mVu91C4+NxG2XH9ZW1jG6RUj+YQ9okVsfPsDvPs5Ne5uS1UrqGml1j\nn2ZoaP/8cHSbNxLg6Umhiwu//HqYRyPj+PXjbXSaOIkvVy6ne3iMzXz7tcl0D40G4N2YUHrExuDd\nsCFfZK2gV4hEW7M1IQo3b08GzF1gdsdpUzBeLkLl4YurlwcPDnmB797fQuHVyxTprzJwlvncb1ak\nsGLOTPl6dDodKSuzyTMY+e2XX+gTl2RTa3N5+2ukLbZ2w0TGJKBq9jjffr2VUkpxwYUHOwxGf+aT\nCl1m5aHT6YiITyTftYQB08bZ/P7b5eto6tlEziwLD5WarMXEJtG9Z7hsWby1ZQ4LF0zlrfffJ6Bf\nP5tA/6nt20ldssRmfpDcY428enPw0DZEShFwoVP7QXz13fsM7DGZ3/5ZR7J2AZMmTOeR+6bajP/i\nhyxWrq5+m2Nz2rSUdXbxnzz6tI+2OS9rUxjP9YulScNAior1fHV8FZcuFdCn20Ty8y6zfefrDOsT\nZeZZ+zrr+mI0pvEfHNZWLUZT7nwEmBG6hAEPTpF/99G3y1icEXdTKRvFdabAbuD/lUwtM0cOZ/PG\nXM5Xw+12xVhiv3OnIMj/bh8Ry3xtGq9qU23GN2/SiEbde3NwzQqMhXouHf8L36ZN+TEthY2ZkuWU\nsjoHWrXhx6wUDG5ulDUts5skYGq9XKzX49usqdwK+srpE+xOT+Tc74fpPH4y//fqKj5fsQLBRZDY\nli/n4+XhR9/RMXyUu5QvN62h96RYduekMDBygZXl9NDkKGYsWkzTpk04de4cJ85doU/0XJp4q/A9\ndoQPNLOtYjTfrksnY7ZtPfGQp/sRPT+dwSELZRfc1sx4kmeH2ZxbEdRqNdqF0xj18ssY9IWyRQNg\n0Bfy6w9H6DjK7KqKnpZEcmIsmqRY0tOzyS8owdfHjbWvLkatVhMYGEjk/PlWMZrP168ndbbjdsen\nT1/gpwsbGfy0OQ1667splBqu4empoiBfcgv5OiAF9fWtPGHF0bUnaxfKWWMn/j7N5jMa7mvZg5/+\nPIBYWkoppfh6NWD/N28xpE84Xh4q/vztBM8PnY6XpwovTxX9+rzAe59moS88R/sHWldZyQAgQL0A\nd9Z9NZMiQwGt27WoMLCvDlKzeFmMlHV2Qco6Kzs/JnyWrGRAssgGPDiFzNTVaNIWXdc9utmhKJqb\nFCnZObLlAtLm2SYkgs0Wgf+KYGkN/f7rzzSqQlOxX0+csjtX1PjxTFmaRMcQc93JL5lpLJs/F4Cp\nizXcMzGCu1Uq1Ho9H8ZNpVivp/2QYexPT6ZbWLRNjKZYr2d/ZjIPjx0jy2PUF+Dq7kbfWfNQNWhE\np3Zt8PXx4WpxCS5GA2KzJhz+6x88vFW4urnRY5JUpV9w8azdeM6ho3/x1OQwzq9ZTZ/oSNmCaRrU\nkkfGTWLnklhatWmLv5c7GbOn2WxaOp2OuHlLGRyaLCcVeHipGByykDe3ruOxxx6ze790Oh1pGTnk\nFxjx9ZGsE7VajVqt5rXly4l4ZR4dJ4ySYzRvz03iyQHxVq6qbr0jSMvIITV5ASkptsFutVpN6uzZ\npK1YQb7BgK+nJ6mzK253fPL0CZ57LslqncFPR7EmOwqDQY+PSZGEho9nWlQivbuEyQpp12fpJKZY\nK2JJceRQcNVYKWuATqeTu3M+NECyAtZuncWgx6YQ2KQlRcV63vhkKQX6y4DkpioyFljFdho3DmDY\nM6Ec+HZNlRIALNeOC0mk/wOh9FBLa3/8XYZ1BZ8dqIPUdgP/+qtGvJra68vz343fKIrmJkVVAv+O\nIFtDUyVryOOPI+xOiKfXAnNQ/oBGw0Njg+UxZRu9PZhbQWdz3liCv7sby6bHyvU390y0Vohdwmey\nb/4cus+ex8NjxvH5qiwuHv0TVYPGuLq6883ruVw49gc9pk+nXqCU+bZzzmx6hE2nyZ0tKdbr+WlV\nGpkzbNtSlxVrunt5yYqjWK+3azmJoiglLVwTbfjPmga1pFXbtryaYt8VpNPpCJ+ThGeTIKvMNTCl\nSReVWJ2bnp5Dfr6R0tICzl4spufAGDlLLWp6EilLY2Vlo505h4WpyRz6/U/q1w/Cr7Q5AQHl4kAW\nFoYjqNVqh26yMrkytDnk5xnx9XOn2a3N7SYXNGl0G58c1JKojZXnTUyZRkZaNvn5Rnx93UlMsVbE\nZYqjqqwBGanZUgtoCytg3OBFfLB/JUN7RuLloeL5x6eT+VYIm3doOH/lb3C7xslTf9I84E55niKD\nHh+f6nGUZaZk0/+BUKu1+z8QSmZKNpr0qiusMqj8HcRv/K/P4vtfgKJoblJUNfBvDynZObSZat78\nG9/Vkg4TprI1+CWaPdSBf37+CVXjxqgaNJLn/TQlkXtaBDmcU0pgsP2jvFpspJ5KxeWTf3Povc0y\nPUtjVzcMm9Zz4tx5Th06hId/Pbz963H/kBHUb34bl0/+zfdvbeTKmRP4BwTifa2U4p1bOb7Pk3oe\nbmTOkDa90FnxFi0MxpuKNTUgusnsAPWbBrInI5meoWbLaU9GMvWaSy45wVWwy3/m5+n4XqYuz6bD\nsHD2bVlJcZHeJk3az0v609LpdMTEaOjeQ2oJ8O57ifR5OsYqS61rnwheGB1Cp04PEB4ivfX7udfj\nuRFaPL1UfLQ51a6ryuc6XVVlck0L1/B4pwg8AyUCzf2fTsXQ1XadQuMpVmgzbAsoUx1vwhmpOZKS\nqSJrgP5qiV0rQKTU6v8ugiuDeppjH+u2zWZg/zE0D7hTIuXcv4qlydXjKCvIM+LVxHbtAgeFp5Uh\nJHICYcGzcCtpgIvgQqlYSonbJdJz/ptuM1AUzQ3DMZ2OZAuizOgaEmVGjQ+WYzTlA/+VwZ411Piu\nljS5tTmdJ0yl8OJFPl+WxsHlmQiCC6JYiq+hiLmzq08y6O/hzrk/j/D92xvpGm7e6Pctms3M/v1Z\nvOF1hqx+1ew6S9HQ8YVgVA0aUWIoontYrGzVFG1eR9SE8aSuyiFOo+Xnw7/SJSaW2+6SrJypSxLJ\niptG+rwY5i1JZntyAp1GSv1O8k6f4bNVy+V4zqW/jtNrmnSv7ntmKLtWpdB7opkQ87u16WTGO+Z4\nzSssobm3iof7DmP7umT6jYmWYzRfvZlG2nxJEaan58hKBiSlZq9bZb2mLWnefgyRM5JIXRxLvr5E\nPq9Tj2Fse0/DoKdiZFfV/l1akhMdp07LbqsyWpdybqsMbY6kZEyKwNNDxbO9ZvLmm3MZOnSuvM6e\nvenkrsuw6zbM0GaTn1eCr5+bDW1MwVUjXrfYcR+ZNu/yCQCii8GuFSBYNAEuKtbT/JaWVsprzKD5\nvLY9llZtW+Pj48HS5KpxlOmO6chMzabgSgm//f4Ld/oeIbCpmb2iqFiPj4PC00ohgoebD4M7hMgK\ncet3KWUVA/9JKFlnNwDHdDpeTtTQKtysFH5L07J8Ws2IMq+X5Tk0PgH34bbFl5eyszhTZKTt1AgK\nL17kh82vU/D3cR5ocQezI8Ltzn1MpyN1VQ5XDEbqeboTOdG2kdodz52bAAAgAElEQVSg8ZPpn5xh\nW1w5K4rHlmhsjr87eQIBD3Sg/bPD5EQAgMOaReQZS3mgXOFnh7FjZGVU+MYGMhZJb9oHDhwgRpNF\nn4j56C9d5Jttr3PxxHH8mzTjrk7d+X7XmwyYPU+qFfrzD3YtXsQD991H03p+VsWd9hA+PZ4mXcfg\n4a3i0pkT/N+OLZQajZz67VtWpy2R4zMTJ8bxcAdzYsDW95PpPWiyTbfKnR+vYMBzURiK9Jw8tI78\ngnxaPfKyfN7Fsyf4YtdGDHmnuf++VnJcxx50Oh3TwjT06RAh0/3v/FpLYnqMPGZScByPtrFNWNjx\n9QJuad5IdomFhdnehzLes8c7mbPdPjmYRqLW7BaLDk+gbYMxNorjl0vrCI0MZlp4In07hcnyvbNn\nEV5u3jzRMcZsrXwQzxOPvCzHaF7bMZvBPUNp3DDQSp4Dvy1j+ZqqZ7vpjumIC0liwL3h8lprd8Tz\nRJeJBDZtKcdolmTaxuWqgpiweNqrRtlc+yH9a9flinMWajPrTFE0NwAh8Qm4jrbd2K+tzyWzhkSZ\n1wPLGI1sDWVJGWs5G9/gx6PH8PDxoXVggEMFUzZPyCIN9wab5/kxR0vmLGsF+lxoBHfZaWy2c3oE\nfTQpNsffmTyBJ5PSKbx0kUNvb5GyjkpLufrjDwxMWW1zH79Yt5xu4RKZ5d+rlpGbKG06YTMSqNdv\njI1L7LPXVtArOIqzuiPsXrGUW9StcL3mQkOhkE3rrTtP6HQ6qdbGRGUTMSVYJpkMn5NEh2Hh5tbN\na5Lp8ugL/Pp/W0hdIm3qUVEJBLUYK1s05y/8za69OTw5NFaO0bz/TjLdBrxIw6bSBnrw4yQu/X2R\nIhcvBow0x3L2bdWQoZkpr5+eZk4osCTSjA5PoHXjsbK1AlIDs8PncwmNDCZDm8PBL75jzFNam3N+\nO5tLsrbi72R0RDytbrFlJJDSnxfK902O0Zg28zLWgAxtNm2ajrJZ++AfWfj71UN/tQSVvxvPDOvP\nu5s/ltmir+RdoXOLKbbK6/yGagX/Y8LiuVdlqwRz90XTqnVbfPzcCYmqHk+aJaaMnU6PO2zTv/ce\nz2LZ2uqnfzsLSnrzTYYrRiPN7ATu/ylxThaKJfvAeVMNzsyRw1mSu4l7gyO43UJpVITUVTmykgHp\nmu4NjiB1VQ7pr5g3q1v8/ezGk1yLi+zHmZrdzvaZsXg3bUq3CDP/2fbZM9CXYwgoYyAoG+tvEaPK\nKzLSxE7hpShK5zdVt+TWwNYMGhiLoUjP4c/SiIxJIE9vxE/lzpCn+5G0aiMdh0bQ3OQWC5+dRNp8\n6c09bV4soyaE4t0gCFcXd3r2fIlGTW6jYeMI0jJzSNUsICws2CpG4+fbCA+hiF//bxm//3kKT99m\nVkrGUKTn+NGjjO6TwtWCC+zftJJrLqVQInJrgKesZGKiNfTsZm4FHROtQZMsKbeCPCOeAeXccx4q\nLpzLk+MyAY8P4q2PExnSf5psVXxyUEtiWuWu19OnL3D0l5Vy59PHOgyjcaNACvLNCRBqtVpSKqk5\nMo1MWSJAQZ4Rz0Bb+VwFlY3CsMzc0+l0TA9LpG+HULPy+jqDpemVtrGyQsGVErzq27r1Wrdqx7JX\nHSdPVBUOizmVZAAFdQlHRJn+bs774pVnHwibmVAlpQHmvjRfHv4N7ysruG/QczQICJTHnTFYK9Co\nCcFMXZJkQ1+TFDediHlz6DlnnjnbLSWFTs8Hsy8lQVYyZfP2m7+YL5Zn0TPUvLFYMhD8tCyDrDjz\n7/y83O0G+eU6nUI9LqUuGIr0fPLmfDw8vWn92FjZggidHsLQ6RlWqcsdh0oMz9rEBajVatrc1Y72\n3a1dUJ5eKvILpHugVqvRaGLkrDNfX3eWL58vK4zIGUn4+DcEJCXz2UdabrulOZ4eKpp4qBjS01y4\n+PnhdADS03JkJQNSZljPbhGkp+WQkroAHz93DMV6G4tBd/woLwyUFNiBbzbj4uHGijdC8fZ0o/Oj\n95OYFlPpW7xOp+Ofvy8zon+UVRfObp2H4+NrvZ2o1Wq7gX9H8lUWE1Gr1SxNn2ZiaDYpr/Tqu7d8\n6rk5UAS1sx2GRI5nRkgiA+4NMxds/pjO4szqKcT/JSiK5gYgenywwxhNXaOitgGWuGIwUt+O1VVe\naRzT6ZiyREPbKRE8bsH03PG5l2hg6kfj72lLeZMVF1uOvkZKTb739Tc4mCEF6QXBhU5DXsKnfiO8\n69e3W/ty+cRfVq0Dtr8Sj2tRAYVvbCArbprVtUVNCiZkfhIPjImQ3Vu7VibxyLBgydWlnc0d9epz\n6sdcbg9sxN2PTLXKBmvcvJWD1GXzPfH1cbfpumko0lN6rYCI2ATy9UZ8Ve5EhEmp4tqsHBYmrZCO\nTQ0mdXEsaZk55OuN6AsucfLYUQrzjPRo73gjzi8w2k1DLlNuoZHBdmM0Ac2bc7XgAjsPrmHQ0+bi\nzy2bZxMa4TjmY4mM1BxG9J9vlUQw5PEYVr0dwuZ3V1Y6HiTamfIxmh0H00lMq3wjlpSXrZtMCu6b\na3ZCIh1T9odEjreJ0Xz0YxpLMivmpatqWwB1kJrFmdPITM1Gf0aioFmcOe0/zeqsxGjqAPaC9ADJ\n2TlcLTHi71a1rLOqKomKxjvKTCs/T9jMBFSDbeNI+q25VhZN6KwEPJ63Pe/rlSt4dPRkuzEae5Ao\nX3I4ezmPXw4fpmvIDJoEtaS4UM+hV7U09XWn0Ysv26zzQehkmrRsD64CXBNxy7tITuL8CgPjKSul\nGItLiYHSkhLw8sHf053IyebNdfyUONr3sLZMPnw7ma4vTLZJXT53YB3axAXy/JFxGrr0j5AtoZ1v\nzcfd25uuz5jjK5++o8FoKKTX8AT52JfbtKS+IrmTDhw4wLSZGQwbvYj8qxc58H42Qx83u7V2fqWV\nLY6oyATuVI+1iZH8qcslJdUsV/msswxtDr//kke/wVNsxh49us5u4Wd5TH4pji53h9oc33UoibWv\nV+xqLf9cLLPOymetVQe6YzriQpPo394cD/r4kJYlGbGog9R2lRAgKQJTPCgkcnylvWdmTNEwsI15\njQ9/dUxR878AJRmgmriRikYiqLRD81/NDDNHAfvqtHSuStsAy/WqEtgfMy2O5hNts5U+mRbOI61b\n22Sd2YNOpyNkgYb7xlpYGikJBDauT0CTxkROkjaCqUuSaPeymW3g5+VpzBw1gi3vb+eqwWijLGqC\nyJgEAtqPtbJMzpw4wr5PVjBw8nyL1GWtHKOxvJ60THNgPr8gn7u6TbGxcna9ncnAF6ZZHTv97Tq0\nSQvo1mMwz4xMkRXAhXMn+GL365w/fYSu3R60sjjsxWj27NfKMZqK7vuI4ZG8FJxh87uvv85k1arK\n4xPR4Qm0aTRGtmjOXzzB3q83ojeepv1Dd1dY/V9XiAlL4B5f2+D+T/nrCIkMJjR4Nm7GBri4uFBa\nWkqJ+yUycuZXS0HEhCZwn7ttW4AfjP87bQHKQ0kG+BejtloxWxZVXj55gp/e2sw1V1dGhIaxMSO9\nSsrmn6t5tLDjfjpxNc/m3CC1msxZMaSuyuGMaRO3Z5k4ijd1btOa9EVVu76UlTmykgEpQN87agF5\nH+WSvtg8h+Ruy+asiW2gzN3miNqlJggPCSZyhoZHB5gtk1+/3sLSmVN5c6tFA7X5tpXtarXaikBz\n/NQ4u7UylpQ+ZcfOXzQ9C8HLyspo1CSQJ5+fxqY14TZZYGq1Gk1yDItfSePIkVMYigpo28ZxMW1Z\nhtqFc3lcunjGbvHnb4d/ZvKLcZVSxUhuuST6PhxBXv5FdnyWw9De0+S3/OmhGpZmVB7rqU0UXDXi\n1dBOweVVI6/MS6a00Iune5hrWjbvTeKVecmsWmurcB1Bf8WIV4DtGvrz/11amepAUTS1jJq2Ypbn\nMRVVXj55gm/XraFLlLl2ZEqipkoW0vGjRwm0oxSOHz1q9/wgtdom8F8eUROC5RiNHNhfpmVZXNXj\nTVcNRhrZyQa7Wi4eFKRWyzUxdQU5fbnQSKMG7hw+kIaLmw++KndSF0sbZnUVm6/KftymLDvO8thf\nOtOzEIvsKgBwTOt/6ayR5/su4mrBRfZ/9Tojh0dzT/vbmTEz3Mr6iY3U0OvRCO4JUtHy9iO8viGe\nF0YulK2hDa/N5KlOMXINSUXKQq1Wk5guZZN99cV3jOuvta7+f8Bx9X9dwccB5YuPvztffX6M4D6p\nVjI+1yOWnJ2R1Vqjum0EFFjDpfJTFFQHZW/8lqgqNYzVPCaKmZ/e2iwrGbC2kCpDQGBzDmg1sjxl\ngfuAwObVksUSQWo1y+JiKH4jl1Or0il+I5dlcdVzC/p7StlgligutE0iqGvodDrC4zU07TyWNgPC\naPH4VM7rRWZNm0yqZsF1v5VHTA3my21aDEXSNRqK9LybM4u8y+etjn28KZmA5tKzCJ06htUZ49n6\n5lI+eCeF06eOsGX9LF5ZaD9AnqHNoXenCK4WXOSTL9bQf2AIL47NoH3bqcREa9DpdICUodbrUXOG\nWkCzlgzsOZWs9Jd4Z+MrrF0VwVOdQgls2pJzl/7mg8+Xo9e7Mm50mDxHeZRlk7Vrd4/VxgvOIY8M\niQzm40Naior1nL38N2/sTmTN9unkF+QjioJdGb08fKq3RlQwH/4qrQHIMZqQqOBKRioAxaKpdUSN\nD3YYo6n2PEs1XHN1tZt9VRULqXnjxjTo8ThfZa+QOcbufX4Eqr2fVEuW8pAsjet/Y42aFGwTo/kh\nV0tmQt1n4VlCuyxH7rAJUkZZp2fN6cvXC7VaTeorsWizcuSsszua+RHUYTR73jM/i869hnP+8Hvo\ndDo2btnLhLBsc8fKtdMZM+Jx3n5rO+vWvW9TlJmfZ8TzdhW7dqYweHCMdapzV3Oqc0GebYZaQLOW\n3Bn0ECUGAw28b5GVzPb/e5WnLLpmxkYmkZTquGOmI0viRteLqIPULMmI5ZV5yfz5yzlG9Zsvu8mO\n/JjAiXNHCGxiTS9zZ+uAaq8htwU4b90WQEHlUBRNLSNIrWbZtHKtmK+DaqasqHJEaNh1k2eWKb0O\nNVR6tQ21Wk1mQgwpK3Mkd1lRAU193ZmTtQJ/D3eiJtSMB66qyCs0Emgvfbmw5m/karUabZJF3GZ8\nKAd3vE7/kWZGgI83JNHiVk/SMnLo2te6Lqbvk2Fs2byCYc8ssFuU6evnzqkzR7h09UyFqc4+fvZ7\nx7i6ujNwUCiZK8dSVKxn/w+bZSVTNkevLmaFZQ+hkcFMD9XQ9wGL6v/vtCzNuPHfL3WQGn//eozq\nZ83CPKrfApa/E8LUQVmyjNu+1aBZMeO61qhO4L+q6dD/BSiKpg5wva2Y7c2zMSP9ui2k2lJ6dQG1\nWk364gUc0+mYulhDu/FT5eubulhD1oy6l9PP290+87J37b+Ru7j40LvbKPZtWSF3r+zdLZifvl/L\nz799x29HCxAEFzp3fY5GjQP57sttspIBa0slLDyY/IJ89u5dgijC6dNHuPVW8xu7waDH10e6hrDw\nYDlGU6aw3v1IQ+/uL+HpqaL9fe3Z+a2WklJXuwrrh29/R6fTOYzXLM2IISM1h4tn89D9dZTmAc3J\nTMmpsI6lPKpTA1MRCvJK7LIwt7unDT8WrEN/Wqpp0ayYUecbvlU6dICk4GZM0fxnrSAlvfkmwPWS\nZ94MCJ2VgNcQ2xTsordya+SeqwrKYjRl7rPiIj0H39aStrD2s6aiohJQ32ld+3L69BF2713B0yMW\nyFbOB29r6NHnJb7YtYFnn5huM8+u/QsoKXKlVxez4li3OY6B/UO59daWGAx6Nr+VQO76xVYJAWNH\nh+GnCsLV1Z0unZ6jUaNADAY9f5zIJSw8mHGjw3j+qWQbyyc7NwyVp4p2991OXEK43fsi1bFo6GdR\nx7L9kJYlGZVvqjUZWx4xYfG0q2eb5nzw1HJ8fXwpuGLEp971K7JqyfI/kA6t1NFUEze7ovlfxtjY\nOAKDbetyTuSkk5tUc96pymCZdebnbSbNrOrYtMwcmRutrJeMo3OjYzR072lWELm5IYycmGmTnbZj\nWybnTx7mxVGZNhv/hk0hjB5qezxt1RjUt9+Pu6sHtzS/RvaaDJv1Y6M09LRQUHs+05KUEiPT4cRG\nJlkpsA2bZzHo0ak0N2Wj7fxGazcbLSYsgXa+tpvqz/m5aNIr3lRrMtbePY4LSaLfA+aK//e/1lBc\nXMTQDrPNLAA/aVmSWbeWxZQxcfQMsP1e7zmVzrJ1df+9rg3c9HU0giAEAlrgcaSGqZ8AEaIo/l2F\nsZ7AQmAkUB/4HpguiuKndSexgrqCv4MGbv4elbuvdDodqStyuFpkxN/r+oo31Wr1dQX+JZ4y67qb\nyBkaOSXa8rwynrNGDd059F0aLi4++Pq607Zta7v1NkUFp9Fq49GmaunZ1bzxv799Pojedl1cLe7q\ngEupgJd3CfGzbd2qarWapJQY0tNyKMg34uPrLisZ+fepsYwaHkKjei05efo3hvWaTnNTjxYvDxUP\n3jmMcSPDaN2qrVWPm4rqWCpDTcbau8YlmbFkpmTLjM8evgbEfxqy9YssBMGF7u2fY8A9EWSm5lRb\nkVUHSjq0NW54erMgCN7AHuBuYDQwCmgJ7Db9rjKsAYKBeOAJ4DSwXRCE9nUjsYK6RNSEYH5eqbVK\nwf55pZaoCRWnjep0OkLnamjQaywth4TRoNdYQudqHKbk1jbSMnNkJQOSgnh0gMTabCljTIyGoBZj\nCQp6lpMnRX755RRgICwsmMaN/OR05zIYivQ8cN/dPPbYY2iSY/jzr1y++i6dP//K5fbbGtGwwR2m\n+hqLMQY9rm5uFBhPk5Tq2O2nVqtJSV3AytVLSEm1Td9Wq9V06vwAT3afSmDT1rKSATh36QT7vt3I\nqP4pdGkVRpvGY5kWJt3vsuwzS5TVsVSGmox1dI2a9IUsf3UJIZHjOfuXgcFdpzKsVwxPdpnM9v97\nlav6C+iv1G0KtpIObY0b7joTBCEc0AB3i6J4zHRMDRwBYkVRdEiYJAjCfcB3wDhRFNeZjrkCPwOH\nRVF82sE4xXX2L8YxnY4FqWn8+vcpjAUF3HNnEHOnRVdonYTHJdCg11gbZuZLu3NJW1L3PnB73GgA\nP+5NZ/UyyTUycWIk97afSn7eRfbsWcOgQeYOmfv2aYmIGE5iynp6DDRnou39MIn0lBl2r33ixDju\nvO1Zdu9dw9MDzHNteGsWvQa9TN6FXaQmm7nO0tPMXGeWqdEVoazFsyHfjUFdQ+Q38rd3pTCwx2Qb\nos9fz+cSGhEsx1mu6i+y99vXuVDwN23vdxzXkderxRhNeTiiptn6aRYtHvCrU4sGbv6ss5vddTYI\n+LJMyQCIoqgTBOEz4Ckkl5ojDAaKgc0WY68JgrAJmC4IgrsoigonxE0GATibb6R3+CK5riZkgYbM\nBMdv51eLjNxih13Aklm5LuHnoPrfVyW9iet0On785TgPd1CxY/sKWcmA5Orq3j2CdeuyKCkoZNdb\nmQhuLoglpYilhQ7X9PVxx9evIb16vMRHe1YgiqWIpaW4q3z4+fstcmtnSzYAc02MpkJrpwxqtZrE\ntBgWzU/m9Y8TeKH/Arw8VFwrNVopGZCYmwvyjKY6lhhTHct5RvZdYKakCdGwNLMCK8s01jLrrDaU\nDDh2y50vOE5KpG3DvdpGddOh/5fhDGaAdsBPdo7/DLStZGxb4JgoikV2xnoAd9VcvBuDvXv3OlsE\nGzhLppSVOdw/xpr77P4xEaSszHEok7+XfXYBP6+694Hv3buX8JBgPv/Iuvr/84+0hIdIrpG0zBzq\nNb4Ng0GPKJbajav8ceQUg/rMZsjAaTzbN4YhA6cxqM9s0tPssz6EhQez51Mtvn4NGfxkFP37TiFP\n/w8tWvgw7Nmu8mZeng3A01NFr0cjHM5bHmq1mtVrMlizaTG/XsrlwB/pXCk+hqGci8uydYE6SI2f\nf31ZyQAcPfk9/e6PICOl4nXVQWo06QtYvnYJmvQFtfbW78gtV/8Wl3+dZfFv3A9qE85QNA2BS3aO\nXwQa1GBs2e9vCvwbv1jOkulqkdHKBQYm68RgdChT5ORgvnldKyub4kI937yuJXJy3fvA9+7dK1X/\nL47h1KFcftybzqlDuVaJAHl6I537vMB772sQxVK7cRWDocCuAirIt2+VlZFpWsZtctctJmd1BocP\nH5bPs8cGUNG8jlBGNbNizRLWbkhnx9daWdkYivXs+FpLaKT5fuuvGq3cVL/qvpAoafKc42SwpKYB\n5PYBLe4OdIo8FeHfuB/UJpSCTQVOh7+DTph+FXCfqdVqMubGkLoiR2ZWzph7Y1mDy7M2W8JP5Y6P\nf0MeG/QS+97PZuOmeEYMX2gVo2nTJshu1b6Pb8XX7ahSvwyO2AAqmrcySGSaMVY9bhLTre+3yhEl\nTSWdM+sKZdQ01m65WNbmrnWKPP9lOEPRXMK+5eLIWik/9nYHY8Fs2Si4iVDGfXa/RSfM79dJ3Gdr\n1651OE6tVt+QwP/1QG47MDCCZ16ay5m/j7B2fQjtWremcWM/NBopBTk2UmNVu7L7My1JqTWjcLHH\nBrD785rPW2bhOEJoVDDTQzT0u18K7JdcM7L9ey1LM51HeVTmllPgXDgj62wX4C6KYrdyx/cAiKLY\ns4KxCcAsoL5lnEYQhLnAdMDfXjKAIAhKypkCBQoUVBM3c9bZViBJEAS1KIo6kNObuwCVNQ3fBswD\nhgHrTWNdgeeA7Y4yzmrrZilQoECBgurDGRaNCqmavxBIMB2eD/gA94miqDeddztwFJgriuJCi/Eb\ngb5ISukYMAUYCDwiiuIPN+o6FChQoEBB1XDDs85MiqQX8DuwDsky+RPoXaZkTBAsPpYYB7wKLADe\nB5oD/RQlo0CBAgX/UoiieFN+gEDgTeAycAV4C7itimM9gSTgFKAHPge6OlmmV4DtwHmgFBjjzPsE\nPAxkI70QFAB/Aa8BaifKdDvwLqAzPbdzwF5ggDOfXbl54kzPb/+/4HteaudzDWjvzHsFtEEquj5n\neo6HgVAnfafmOLhPpYDeic/uNiDX9HenB35DerlWOVEmtWnsJSAf2A08VKWxNRHaWR/AG4my5hAS\n08Ag07+PAN5VGL8BKUPtJaCn6Wbra/IHWAsyXQX2IVlr16gFRVMTmZAU8edIrsluwHDgFyRF2NxJ\nMrUFViMRqnY3jd1q2hSedtazs5inBZCHxL9XY0VTC9+pUqSXhY7lPl5OlOlh0wb3LhLTR3dgPBKp\nrjO+UwF27k9PJAaSjU6SSYX0gvcnEhdkdyAGaY9ylkwNgZOmPWAoEs/kHqR9q1Wla9f0j8EZHyAc\nMAJBFsfUpmMVfmGB+yhnMQCuSG9V7zpDpnLz3FlePifdp8Z2jt2OpATnOvs+lXt2x4H3nC0T8DGw\n3PQHWBuKpkZymb5H82sqRy1+pwQkFo83/y0yOZhvtOl73t9J96mPaf3Hyx1fjKQAr+tFoYYyxZvW\nVlscUwFngE2Vre0MZoDagF2+NKCML60i2OVLAzYB/QRBuN7qsprIVFe4bplEUTxv59hxJHdHc2fI\nZA+mZ3cFKHGmTIIgvAA8AFS/R3AdylUHqIlMPYHWQG0TjdX2fRoL/APscJJMHqafV8odv4IUV7/e\nLNqayNQJOGI6v2ysHvgUeFIQhAp1yc2qaP6NfGk1kamuUKsyCYLQBmiKZD47TSZBgqsgCLcIgjAb\nqc1ERmXj6komQRDqI22esaIoXq6BHLUqlwkvC4JQJAhCgSAIuwRBeMyJMnUx/VQJgvCFIAjFgiD8\nIwhCmiAIXk6SyQqmXlk9gNdEUSx1kkyfILmzEgVBaCMIgo8gCL2AMGC5KIqOmVfrTqZrSC/o5WFA\ncsndWdHgm1XR/Bv50moiU12h1mQy1SutAM4i9QRypkyJSOb+aSAaGC6K4l4nyqQBfhNNrStqETWV\naz1SjK03MME0325BELpVOKruZApAehvfhORmfBxYihSj2eAkmcpjtEnGmj7L65ZJFEUD0BXJLfwz\nUtxvJ7BNFMVQZ8iElIzQUhAE+TxBEAQkS6dsbodQuM4UVBVZQGdgoCiK5U36G41UYCPQDBgDbBQE\nYYgoih/eaEEEQeiKFLB94EavXRlEURxr8d/PBEHYivRGuwApwHyj4QKIwHpRFOeZju0XBMENWCwI\nQitRFH9zglyWGA18J4qivTf/GwJTF+HNSN6DkcDfSEkKcwRBuCaK4hQniLUCyaJaLwhCGFId5Cyk\nGA9I8UCHuFktmprypTkaC9fPl1YTmeoKtSKTIAhLkN46XxRFcZezZRJF8ZQoit+KovihKIrDgS+R\nrApnyLQCyAFOCYJQz+RGcwNcTf/3qHh4ncllA1EU84EPgA5OkumC6ecn5Y7vQLIi7neCTDIEQeiI\nFENae51y1JZM45EyPQeIorhRFMUDoiimIFnvkwRBuPdGy2SK67wAPAj8AZxAsmbK4m2nKxp/syqa\nn5H8jeXRlsrjBz8DQXZ8wu2QfJB/OEGmukKNZRIEYRYQi1Tn8Pq/QSY7+D9q1ouoJjK1ASYj/aFe\nQnpR6QI8Yvr3ZCfJVVeo6d9eXaC27tNYTGnNTpbpHuCyZdDehK+QFHIbJ8iEKIrvICUCtQHuEkWx\nA+AP/C2K4omKxt6simYr0NnEkQZY8aW9V8nYbUhB/2EWYyvlS6tjmeoKNZLJZCIvAGaKorj83yBT\neZj8xF2Rag6cIVMPpGyqHhafH4AfTf9+00ly2UAQBH/gSeCgk2T6CGkj71fu+AAkl9rXTpCp7Hx3\n4HngQ1EUL1R2fh3LdAaoLwhCi3LHOyPdp5NOkAkAUcJvoigeEwQhAGnfXFaVgTfdB3NB0w9I6cqD\nkfjTjmBROYtU91ECxJcbvxHJjA9GosN5E6kY6j4nytQNGAKEIPk7M0z/H+IMmZAKNK8huVo6lfu0\ncZJMc4A005e7m+nnDtN5w5z17OzMV1t1NDW5V9FINT3PIbbyqEcAAAT6SURBVMVjxiIV5xUBjzrx\nez4bSdksQkpSiDP97eU48/kBz5r+7p6q6XOrhWd3B1Ll/mGkGGQPJK/CFeCgk2RyQ3KTPYX0YhWK\npPD2Am6Vrl0bN9UZHyQqhS1YUyncXu6cO5A2y4Ryxz2RfPplFDRfUHsUNNcr0x7TcZuPM2TCzFBg\n77PbSTINQvLvn0EKRh5DqjDv7MxnZ2euPcA+Z37PkSyXT5GyBA1I9U/vUEXKkLq8V0AE0oZXZHqG\ncwBXJ8v0ruleVbpp3giZkGJFm5AoaAqQlM5SoJ6Tvk+uSN6g06a/vSNITPpVKh694ezNChQoUKDg\nv4WbNUajQIECBQpuEiiKRoECBQoU1CkURaNAgQIFCuoUiqJRoECBAgV1CkXRKFCgQIGCOoWiaBQo\nUKBAQZ1CUTQKFChQoKBOoSgaBQpMEARhrCAIpRYfgyAIfwiCsMjEqHuj5dEJglCTlgwKFPwroLQJ\nUKDAGiJST/STgB/wDFLXTF+kVrg3WhYFCm56KIpGgQJb/CCK4lHTv3cJgnA38BI3XtEoUPA/AcV1\npkBB5fgWqf1wY0cnmNpKGwVBCLHzu2mmtsWNTP/vIwjCB4IgnDK1WP5REISoyvquC4IwVxAEmwZT\ngiCsFQThWLlj3oIgLBUE4ajJBXhUEISZJrZrBQpuKBSLRoGCyhGEREDokD5eFMV/BEH4BKnbZma5\nX4/Cmn6+BRLxZhYSYeLDSMSSjYGZFcghYt+dZnXc1PZiBxIx43ykrpqdkZiTGyAxAStQcMOgKBoF\nCmzhatqs/ZDo458BwsXKGWjXI7W6bSmK4hEAQRDuR2pkVda6GFEUV1oOEgThABKjeDQVK5qq4gXg\nUaCbKIqfmY7tMVkzswVBWCqK4vlaWEeBgipBcZ0pUGANAfgNMCJ1yMwGVopVa/z2DpKFMtri2Ggk\nSvZt8gKC0EwQhJWmrLJi01oLkZpdNa2Fa+iHRC//pSAIrmUfYCdS07/OtbCGAgVVhqJoFCiwhojU\n3OlhpM6PO4GpgiCMqnSgKBYi9fcYCWCKuQwHNouiWGw6JiApnYFIbq2eprUWmaYp32L8etAUUCMp\nMMvPQdP1NaqFNRQoqDIU15kCBbb4uSzrTBCEPUidKZMEQXjLpEwqwnpgjCAIXQAfoJnpWBnuBB4C\nRoqiKPemFwThqSrIVWQ6100UxRKL4+UVxwXgKFK7cnvBf10V1lKgoNagKBoFCiqAKIrFgiDEIvVU\nnwIkVzJkD1INzhjAG9BZxElAaqcLUqtcQO5XP7IK4vxl+nkPUgteBEGojxSPuWpx3sdIsaUCURR/\nr8K8ChTUKRRFo0BBJRBFcZsgCF8D0YIgZIqiaKjgXFEQhA3AJMAdW8X0K5LCWGRKVS5Bam1sk7Zs\nBx8hKZTVgiDMRXKzxQL55c7bAIwDdguCkIzUI94DuAupHfZToigWVWE9BQpqBUqMRoGCqiEeuAWY\nXIVz1wP1kCya1yx/IYqiESkGdAbIBTKAfcASO/NYpS2LongFeAJJKb2BFNdJB3aXO68EKSFgFTAB\n+MAkx2jgAFBchWtQoKDWIFSesalAgQIFChRcPxSLRoECBQoU1CkURaNAgQIFCuoUiqJRoECBAgV1\nCkXRKFCgQIGCOoWiaBQoUKBAQZ1CUTQKFChQoKBOoSgaBQoUKFBQp1AUjQIFChQoqFMoikaBAgUK\nFNQp/h/GmFKpvr5bRQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "out = EM(img_data, init_means, init_covariances, init_weights, maxiter=1)\n", "plot_responsibilities_in_RB(images, out['resp'], 'After 1 iteration')" @@ -762,11 +1120,33 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 35, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Iteration 0\n", + "Iteration 5\n", + "Iteration 10\n", + "Iteration 15\n", + "Iteration 19\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEKCAYAAAArYJMgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXlYVNX/x19HmFUFSxNzqaENNds0y9LK9n1frdTcBQYQ\nEBfEXXEdkE0UsdQ2bd+Xb5uZtpctllK/nNtiaZo6ILOC9/fHnRkYZkZBQaTu63nmQc7cc++ZO3je\n97OczxGyLKOioqKiotJUtGruAaioqKio/LtRhUZFRUVFpUlRhUZFRUVFpUlRhUZFRUVFpUlRhUZF\nRUVFpUlRhUZFRUVFpUlRhUalSRFCjBdCbBVCOIQQ1UKI25p7TMcDQoiDQoj3m3scjYUQQhJCbG/u\ncagcn6hCo9JghBDPeyfKHw9z3MPAQqACsAAzgW1CiCu8/acdg+Eeanw3CiGKhRDfCiH2CyEqhRDf\nCCEmCyF0h+j3oBDicyHEASHEXiHE60KIPg28vOx91T7veiHEwSP5LE2NEGKV9zs7JcwhQZ9HRcVH\nZHMPQKVlIYRoD9wCHATihBCXyLL8SZjDb0CZfG6WZXl3rXOc3PQjPTReIXkdcALrgbcAPXA9MBe4\nXQgxUJZlZ51+mcAc4FegGGgDPABsEkJcJ8vyhnoOoQdgr9N2PE/WhxvbVcdqICotD1VoVBrKEJS/\nGwswHhgOhBOakwFqi4wX0WSjqz/VwBRgqSzLNl+jECICeAFFTBNRPqfvvTOAGcA24CJZlg942/OB\nL4BSIUR3WZYPa5XIsvxT432UY8IhvzNZlq3HaiAqLRBZltWX+qr3C/gO2I/y9P89YAMMdY4ZimLx\nHESZ0H3/3g5MD9Hu+/2UWudoi2I5bAUcwB7gReDcEGOSvOduBywFfgeqgNuO8DP2847plTrt2d5x\nPhSiT5H3vWvqeY2DwPt1fq97Tw4Cj9bpdyXwhvd+OIAfgIlARJjvYAhwO7AJxYX5tff9KGASsAH4\nC3ChWGnLgJg657KGGV/t8UvA9hCf0wSsBv70XkMC8oEO4e4J0NHb528Uq+8T4IoQx58MFAI/e4/b\n6/2bzK97P9RX875Ui0al3gghLgR6AY/JsuwUQjwOzAPuQ5kYfGxGefIfBpyCIi4CRaC+AU4FHkFx\nWa339pG97/vccx8BccAHwGtAe+Bu4FohxNWyLH9W63oyoEOZpAwoggTKxHMkeLw/q+q0X+H9+U6I\nPm8C8d5j3j2Ca86g5n7NoMaC+MZ3gBDCDOQBu4GXgH3AAJTvoC9wT51zyihuvauBV1BExfd/vgcw\nDeWePYsiWucBo1HucW+5xtLL9Y7tXGAJ3u8JRTRqXysAIUR3YCPKA8CLwE/AhYAZuEkI0U+W5T11\nurXz9tkPPI4iOg8Abwkh+siy/KP33EYUAeqE4gJ9FmgNnAmMQhHRuq5JleaiuZVOfbWcF0pMohq4\n0vt7F5TJ+MMwx38AVIdovwLl6XVamH5Pe69zX53201AmoG/rtFu9x78KaBvhcy71nm9Mnfa/AVuY\nPnHez7S2ntcIsAgOdb+87/UE3CiWSZs67xV4x3tXrTafReMBLgtxvrZAuxDtD3r7ZdZpf4w6VmeI\n72B7nbb1hLAAUZJCDgIrQ9yTaiC/Tvtw73tLa7Xd6m0zhxhL9LH8f6G+Dv9Ss85U6oU3eH4/sEOW\n5Q8AZFnegTKZDBBCnN5I12kP3Au8KcvyM7Xfk2V5O7AC6CWE6Bmi+wRZlt1Hef0bUZ7qfwQerfN2\nNIqrMBS2Wsc0BWOBCCBF9saGapHp/flAiH4vyLL8Ud1GWZYrZFneH+L4p4Fy4JqjGaw3O+1ylIeC\nJ+u8PQ/FKntACFHXq1KJYo3UZjXKA03fEJdy1m2Qa8XcVI4PVNeZSn25B8WtsbxO++MoGUfDUYLr\nR0tflLT71kKI6SHe7+H92R1FDHw4ZVneejQXFkL0BdahuNzulWXZc5gux5KLUNxTtwohbq7znkBx\nfXUP0e+rcCcUQlwNjEO55+1RhMzH0WYGnuf9GZSFJytu18+Bm1AswR9qvf2TLMv2OsdXCyF2ofz9\n+fgQ2AksFUJci5I1uEGW5V+OctwqTYAqNCr1ZTjKRFf36fQFlED4ECFEluz1XRwFJ3p/Xu59haN1\nnd//PpqLeuNP/0NxT10ny/K2EIfZCG+xRNc6pik4EUVQsg5xjDFE265QBwoh7geeQrFe3kKJtzi8\nb6eixLyOhqhDXR9FJGof56M8zPFV1BJCWZbLhRD9gFkobrR7ACGE+AmYKcvy00c0apUmQRUalcMi\nhDgVGOj99TshQma6GlDWzbx5lJfzTTQLZFnOPOSRgRyxwHlF5h3vOa6TZfmbMIf+DPQTQnSUZbmu\nsJ1Z65imoNw7vtayLLvq2edQa1+moQhLb7lOarIQYuIRj7IG3/cYE+b9mDrHNRhZln8DHhHKH+T5\nKH9/KcATQoi/ZFlef6TnVmlcVKFRqQ/DUZ6m1wP/F+L9E1AywoZTP6Gp9v6MCPHeFyiTY78Gj/II\nqCUyANfLsvz1IQ7/EGVc1wFP1HnvJpRxf3gUw6n2jkmEsAw/By4ALiaEO+oIOA34PoTI9EZ5aAg5\nNkJ/Z6HwifVldd/wxvsuQomvlNXzfGHx3qvNwGZvtYoXUayc9Ud7bpXGQU0GUDkk3qfFIdRkD42u\n+0JJEvgLJX5w4qHO58WXdtyt7huyLO8CngOu8KbzhhrToVxq9cZbNuZ/KP8PbpRl+YvDdPFlXk0R\nQvhdPkKIs1Hu0f+hpAsfKWHvC0om3EGgIFRlBSFER286cX35DThTCNGh1jmiUNKnGzq2IGRZ/h1F\ndM8XQgyq8/YklLTlp2VZrptCXi+EED2EECeFeKuT92dQkoBK89EsFo0QogvKH1sflKChATB5TeHD\n9dWhLOR7CCU4+A0wMVRmjUqjcA3Kupc3ZVn+K9QBsiwf9K6pmQAMJvxk5WMbygK+B4QQbuAPFGsg\nX5blCpT1KHFAnhBiGPAZcABljUk/lEkqVDyi3gghTkCxZKJRYhTXCyGur3OYJMuyf32QLMs/CyFm\nALNRXIjPUVOCJhIYJdejKsAheB8l1vCCEOJNlMnyW1mWX5NleYsQIgkllfknIcTrKHGVE4AzUCyH\nLJR76/+Yh7hWIcqamM1CiOdRYjI3AjtQvptQYxsPrPAeXwn8KstyXcuuNvEo66HWCCHuomYdzbXA\nLwRnlzWE64CFQoiNKO7KvcBZKJbMXqD0KM6t0tg0R041yjqKv1AW4r3JIfLzQ/R9EuUPaTjKKunn\nURZmBa0YV1+N8l095f1+7j3McXHe4zbXavsAqApzfF+UyWu/t1/dygAGlInoK5QV7eUobpYngdvr\nnMsK/NLAz3VqreuGe70fpu8gasRvr/fvuHcDr18NvFenLQIl9deKsoq+muDKABejZMbtQBGiP4GP\nUTL+utY6bqi3/5BDjCEe2IJXNFDK7bQOdz+BdBQhc9a9P4foYwJWecfpRBHHPEJXBgi6J+HOj5Jh\nlwN8iZIqXYkiZEXAqc39/0Z9Bb6E90trNoQQI4ASIFY+jEUjhDgPxRf7iCzLa7xtESjpkdtkWb6j\nqceroqKiotIwWlqM5jaU9FP/Qj5ZlquBtSiuD01zDUxFRUVFJTQtTWh6Ala5Tul2FItGi+KrVlFR\nUVE5jmhpQnMiSiHBuuyt9b6KioqKynFESxMaFRUVFZUWRktbsLkPJcW1Lj5LJmRZeCHE8bproYqK\nispxiyzLjbJJYUuzaH4AYoUQ+jrtZ6MkCYRatQ4cf9shTJ8+vdnHoI5JHdN/bUzH67iOxzE1Ji1N\naF5FCfrf62vwpjffB7wtH1/VdlVUVFRUaEbXmRDibu8/L0RZwXyTEGI3sFuW5Q3e/Sy2AzNkWZ4D\nIMvyN0KIdcASIYQWZRFXAsqisLplLlRUVFRUjgOaM0bzLDWVZWWUFb2g1Ee6CkV8fK/aPALMRSkD\n0g74FqUY4rdNPN5GZeDAgc09hCDUMdUPdUz143gcExyf4zoex9SYNHtlgGNB6GK4KioqKirhEEIg\nN1IyQEvLOlNRUVFRqQeS1cpKiwWPzYYmOpoR6emYYmObZSyqRaOionJcIFklSi25uG3laKOjGJme\niinW1NzDapFIViuL4+MZFxeHUaPB7vGwpKyM8cXF9RabxrRoVKFRUVFpdiSrxIL4JBLjemPUaLF7\n3BSVfc3E4gJVbI6AqWYzQyMiMGpqyj/aPR5WV1czu7CwXudoTKFpaenNKioq/0JKLbl+kQEwarQk\nxvWm1JLbzCNrmXhstgCRATBqNHhstmYZjyo0KioqzY7bVu4XGR9GjRa3rbyZRtSy0URHY/cELiu0\nezxooqObZTyq0KioqDQ72ugo7B53QJvd40YbHRWmh8qhGJGezpKyMr/Y+GI0I9LTm2U8aoxGRaUB\nSFaJQstK7DYPxmgN5vQRagyhEVBjNI3P0WadqckADUQVGpXGQLJKZMYv5ua4ceg1RpweO6+XLSG7\nePy/ZjKUrFZKLbn+yUnJ/Do2KbFq1tnxhSo0DUQVGpXGYLx5KhdEDEWvMfrbnB47m6tXs7hwdjOO\nrHGQrFYWxptJjuvltyryy7Ywobiw2dZfqDQfqtA0EFVoVBqDhMGTuDomOaj95V9m07FLhxbvTssy\nJ/NwhCEgKG/3uHmi2sGcwvxmHJlKc6BWBlBRaQaM0RqcHnuARfPHPz+z87f9XH9KOvoYxZ2WGb+4\nRbrTPDYbxpjArCSjRotn785mGlHzIUlWVuRa8FTY0LSNZlRqOiaTatUdKWrWmYpKPTGnj+D1siU4\nPXZAcZut/WweQwfM9ouPXmPk5rhxFFpWNudQjwglJTY486u5UmJrI1mtZCWZmTRkMFlJZiSrtemu\nJVmZnxzP/e0jGH1WJ+5vH8H85Hgkqemu+W9HdZ2pqDQAX9aZw+bBEK1h364Kbjp1QtBx7+/Kp+jx\n+Y1yveWWAlzlleiiWjMmPanJLKXjNUYjWa0sSognpXscRq0Wu9tN3rYyMpbWv5xKQ5iSYub+9hEY\ntbVciG436/6pZm5e/VbV/xtQKwOoqDQTplgTiwtnU/T4fBYXzuaEmLZ+C8eH02PHEK0JfYIGIFkl\n5sRP4JbIHjzcqT+3RPZgTvwEJKt01OcOhSk2lgnFhTxR7aBo1288Ue1odpEBKM2x+EUGwKjVktI9\njtIcS5Ncz1NhCxAZ3zU9Feri0SNFjdGoqBwF5vQRYVOej5bllgKGdb8Og1YHgEGrY1j361huKWBe\nYdNMsqbY2OMu8F9ls2E8uVNAm1GrpeqfXfU+h29NScWuXWz/7Te6dO5Mhy5dQq4t0bSNxu52B1k0\nmrZNu3hUskoUWUqx26owRkeSmD6yxcX5wqFaNCoqR4Ep1kR28Xg2V6/m/V35bK5eXe9EAMlqJcuc\nxMTBQ8kyJwXFHVzllX6R8WHQ6nCVVzbeB6gnkiQxMT2N5DGjmZiehiRJx+zakdHKxF8bu9tNZD2r\nBvgqGQ+NiGCC6VRy+vVD/v13rqmsZHF8fNB9H5WaztIvy/zXtLvdLP2yjFGpTbeqXlmjtYgLIoZw\ndYyZCyKGkBm/qMms12ONGqNRUWkGlHhIYoh4SJH/CXuyOZ1bInsEiI3D7eK1qq1NZtGEHKskMX3C\neO69eiAGnQ6Hy8Wz761n5sLFmEympr/+UcZo/JWMtbUqGbs9LPviC8b27RuyonFN1lk5mrZRTZ51\nlmHO4oKIISHWaK1hUeGcJrvuoVDTm1VUWjillhy/yICSRpwc14tSSw5zCgsAGJOexJz4CdzYuTfv\nl22kutrF/1XsZsayYxuQLi7I94sMgEGn496rB1JckM8CS06TX98UG0vG0mJKcyxU/bOLyOioBiUC\neGw2jJ1iAtqMWg0HZdmbvh3sgjOZYo9p4N9uq0IfYwxo02uM2PdWHbMxNCWq0KioNAMeW3mYNSs1\nk54p1sQjU5IpTE1jZv8rap7m52bTtZbl09Q4Dhzwi4wPg06H48CBY3J98MaOCo5s4tdER2N3e4Is\nmlZCeNO3m79wpzE6MmiNltNjxxj975ii1RiNikozoAlTrbjupPfWunV+kQFvxlXc2ZQeA0vCh6FN\nGxwuV0Cbw+XC0KbNMRvD0eCvZOz2VjJ2e1i8aRO3xsU1a0Xj2iSmj+S1sryANVqvleWRmD6ymUfW\nOKgxGhWVZqA+MRqAiYOHYu7UNah/0a4/mL9m9bEZaxPFaHxxEHdFOdomjoMEZ511oUOXzg2uaBxw\nTsnK8kILTns5emMUY8xHN/7jLetMrXXWQFShUWlKlIrHOXhs5WiioxiZnlavyas+/bLMSQyO0Ael\n2j5e7fTHco4FkiRRXJCvuNHatCE+KfmoRWZ+Sjxj+3b3uwSXfbGNSXnFLaLUiyRZmT05niE3dceg\n1+JwulnzxjamzmsZ468PqtA0EFVoVJoKn2WSUssyyQthmRzN+bNHjia91/n+Cdmy5RsyS0uafSHl\n0TAlxcy9J0UGCeizu6taxOr7yePN3HBeJAZ9zfgdTjdvfVvFvMXH//jrg5p1pqJynFBqyfGLDCgB\n/ZQ62WNHi7PKw9LPNiFaCeSDMk6d9vCdjnPcFeUYuwQvwnQf2NtMI2oYTns5Bn3g+A16LS57yxj/\nsUYVGhWVoyBc9lhViJTZI6HUkkPW+RcEPfk3lpAp7jsLVeXlREZFMfIoYhYNQds2KuTqe22b5s8A\nqw96YxQOpzvIotEZW8b4jzXNknUmhOgqhHhOCLFfCGETQjwvhOhWz77dhBCrhRC/CiHsQogyIcRs\nIYTx8L1VVBqXcNlj9V21fjiqbKHrblWV24763JLVyqL4eIZERmLu1IkhkZEsCrFSvikYlZrOsi+2\nBay+X/bFtiZdfX8kSFYrWclmJg4dTFZyTdXoMeZ01ryxDYdTGb8vRjPGfHyN/3jhmAuNEMIAfACc\nBQwGHgbOBN73vneovkbgPWAAMAW4EVgBpAMtry67SotnZHoaeWVb/GLji9GMTE9rlPOHLb8SdfSl\n+0stFlK6d69TrLI7pZamrzpgMsUyKa+YZ3dXsaJsJ8/urjruEgEkq5WF5ngeNkSQeEoMDxsiWGhW\nhNhkimXqvGLe+raKtR/s5K1vq/5ViQCNzTFPBhBCpACLgbNkWbZ620zAz0CGLMtLDtH3WuAt4HpZ\nlt+t1T4PRWyiZFl2huinJgOoNBm+7LEqWzmRDcg6q++5F8UnkBJXk52VV7aNjOKlR32NSUOGYO7U\nKai9cOdO5q9Zc1TnbglIViuluRY8Nhua6GhGpga6DbOSzTxsCC5d84Sjmjn5/46A/6Fo6ckAtwKf\n+kQGQJZlSQixCbgdCCs0gM+HUNdvYEOxzhrlpqioNASl4nHTpBqbYmPJKF6qCNmuf4iMiiajeCmg\npD77J0mvuElWK6U5lpqU6bTwMZfIqNBxksiof3+cwWetJPeKwxgdg93tYaE5ngmFNaVtPDYbxujg\n0jWenWrAv6E0h0XzF/CSLMvxddqLgHtkWY4J3ROEEDrgW+AvIAH4DbgYeAJ4XpblpDD9VItG5V+D\nklKdQEpcz1pWzo88OCWTp7LnktKjlvWzdRsTwtQF88VofO4zpVjlNjKKm2ZDsaZGkhSRdZfb0EZF\nKyIbxpVVH2tFtWha9sZnJwL7QrTvBU44VEdZll3AZUAE8ANQAbwDvBpOZFRU/m0oKdU965Sl6cmC\njAy/yPjbe3QPu0GYYi0Vs6aqisKdO1lTVRUkMsoWyklMHDKErKTgrQyOFyTJygJzPIOiIog/LYZB\nUREsMIffftljswUICHitFVuNs2Rkajr5WwJL1+RvKWPkcZaw0BJoUenNXovmGaAj8BDwO3ARMF0I\nUS3LckJzjk+l5aHEV3JruaBSj/uneaUacZeANqNWi76qKnSG2p7wrh7F7Rf66VyyWlmYmEBSzx4Y\nu3bG7nazMDGBCUVHHx8Kupa/LL8NTdvoBpejKc2xYD4/zi8eRq0G8/nKLpyhrI9whTY10TVJFqbY\nWCYUFitxnJ170URHB7jWVOpPcwjNPkJbLuEsndqMBC4HzqgV49kohCgHlgshimVZ/r7xhqryb0Wy\nSiyYmcfPX5dxmrEVQ8+NpX2EgYXx5mO+fbG/FE25DU1U9GGTCTTRoXeAdEZGho65HGGqdWlODnd1\n7ULJ559TjUwEgru6d6c0J4c5BY0Xk5IkK/OT44nvG4excyfsbjfzk+OZlF//LC53uQ1jhxDxlIrQ\nIjsyNb0mRqPVYHd7mP7BxyRZcgOOM8XG/ifcZE1NcwjND8DZIdp7Aj8epm8vYH/tRAIvn6MkAvQA\nQgrNjBkz/P8eOHAgAwcOrN9oVf4VSFbJX1fMHRGB1erh3vOncc11yvbLeZumktK7g3dPmNwGb2dc\nU7csMDhfn34L4xNI6d4DYyev1RCfwINTMnnz2edw28rRRkcxKjUVkCnNyaHi710k/fgDk/peypkd\nOvhjNBMXLSIvTIzmSNizYwdrd/7OuKv7+8+35L1NRJ5cryVv9WZFrkURmVouv/i+cazItdS7HI02\nKoyF0jZ0GrgpNpYHJ2URH5/OqVHdkEU0l569iKVz19K1uOu/ZgvlhrB+/XrWr1/fJOdurvTmRSjp\nzZK3zQT8BEw4THrzdGAacKYsy9trtY8GioHLZVneFKKfmgzwH0aySiyIN5MUd56/Htm8TV/Sv/cs\nTopSJk2nx86mL9KYdOl5FO36jQWP178yck29s8DgfH3qnWWZkxgcqQmwQn7as4dlW35g8lXX+8+3\n+POPaB3ZitTzz/W3zVy/gRO7nkL7zp0Dss7yZs1ix9atVHrcnHbOOaRPn3FEFtotl/Zj/tX9giyk\nSe99ymsff9rg84VjwvDBjIoLTrNeUbaLhY/WpFn73GsVu3ex/dff6NKlMx1O7uJf5LnAHO93n9nd\nHgq/KWNiYXiraLx5KhdEDA2xq+VqFhfObrTP11Jp6ckAKwAJeFkIcZsQ4jbgJeBXoMR3kBDiFCFE\nlRAiq1bfVSgJAG8IIYYIIQYKITJQhOvLUCKjolJqyfGLDCglYib3v5CPt5T6j9FrjLhkg3dPmIYt\nhgwXnK/PnjGe8uCV/6/+9JNfZHzna+ep8ouMr236wMtp36UzcwoLAoRk969WOmpacXprI/IvP5M1\nYtgRBfFPO6VbyJjPaac0rkWjaRt6UaqmbY3Lz+deu79DBMnnmci+oR/VO//gsohK5icrCawTC4t5\nuryaZdZdPF1efUiRAbDbPAEiA8rfgcPmCWgLVx1Apf4cc9eZLMt2IcRVQC6wBsXl9S6QKsuyvdah\notbL1/dXIUQ/YAYwG+iAkhCwDMg+Jh9ApcWh1CNrH9Bm1GiJlCv9vzs9diLkSu+eMA3zySvB+cA9\nY4xaLf/8YiUrKdnv/hqZFpxoYEcw8d3P+a3iIHqtka7GaiocNlZ9/CGyfBAhWnH7eX1oJQg56Xt2\n7Qlos8ycgc7uYMzAgTXurvXrscycQcEqxUqTJIll+UtwHahA16YtY5PHhSz5H9UxJmTMJ6pj2BUI\nR8So1PSaGI13zMVflDEpv8bltyLXQkId91rytZcyft2bnNnxRBbPnE7hY2v88RRJsrK8IAdXpQ1d\n62jGJKUFiY4xWhNyV0tDdI37zbfeJumcOIztQq+3UTk8zVLrTJblP2RZvleW5XayLEfLsny3LMu/\n1TnmV1mWI2RZnl2nfZssyw/IsnyqLMutZVnuLsvyRFmWj774k8q/knD1yNyysj2x02NnzYbJ6M7q\ncESJAHYhWLTxQyybNpD78Uf8brPx85497P3tDwZFtiH+ZBODItuwICEwPViySvzyfx4qWp1B/E2l\nxN9YygW9JlOFIP6iCxh/2SXEX3QBT3+xEZvDGfqpv87iyl+2bGGcV2RAmZDHDRzItm++Ua4pScwa\nP47rYjty34U9uS62I7PGj0OSpKDPNTItnaLNgfXIijZvY2Ra46X3SpKVkjwLkdFtyfzfpyz+6hee\n2VMdlAjgqQhd8+2sTh0YdfXF7Nr2vT+VWZKszJmQwM09NDzUvzM399AwZ0JCUKqzOX0Er5ctCdjV\n8vWyJZjTR/iPKc21KCJTK5st6Zw4SnMDU8aVNHCv1ZOkWj11UbdyVmkWJKtEljmFCYOHkWVOQbJK\nTXatkelpFJR9G1CPLHfLlxjPasP7u/LZXL2a5S8somDNqgaLjGS14vzzL+Iv7k/qgIGM6nsJj379\nJbM/2ci0y64OmPDN3c+lNKcmq6nQshLjwY480H+C/6n665+eYP4NVwX0Sx9wKX8cKCf3m+8CJv2C\nLT8yMi2wplprrTbkhKypqkaSrCzLX8LDV1yEQaeIrEGn4+ErLmJZfnBo1GSKZWJhMWttVSzbvpO1\ntqrDuqMkycqUVDMZI4cwJdUcdh2L79jstHju6hpBwsUmZt7RD7nKHjK1OZx7rZUQGLVaptxyOSuW\nKJP/8oIcHrmuBwbvdgoGnZZHruvB8oJAV6Yp1kR28Xg2V6/2/x1kF48PSAQIu96mVlFTJQ08nof1\nESR2jeFhfQQLE49NcdKWQotaR6Py70AJzieRGNcbY0xH7B43C+KTmFhc0CTZPqZYExOLC5WssL1K\naZYppcsb5VqllhzSvJuSgU8YrmDKpg9Du7r+Kff/brd5aCVaBbhuIuQKjNoOQf3OPeccUhcsoDQn\nB8+uPWiiopgYYj1Ll+49Qrq7TO1PYEVOLi5nJQZdYIzFoNPhOlABKJN/7txZ/PHTVirdbk7veQ4Z\nU2fUK81YkqzMS41n9KXdMeo6YXe5mZcaz+Tc0OJUkmdhdP84jF5BMOq0jO4fR0mehezcQPelz72W\nUMu9lvfOxzzc/wL/PXJXKFszuCptGHSd63xGLa7KQDcjKH8bvsC/kmywOGAtT9j1NrWKmpbmWEg+\nO9DqST7bu4anQE2NBlVoVJqBUkuuIjK1gvOJcb29acV5Qcf7UpP9sY70tAaLhCnW1OCU5frgKS/H\n2KnOfjRaLa6D1SEnfE2tNS3GaA0HZWdAnKBatA3Zr21MjLKm4zDrV8ZNncr4e+9h+jXX1MRoPtzA\nQ5dcxJu7L4+pAAAgAElEQVT7bFRpInG4XH6LBsDhcqFr0xZJsjLLPIrEy3phPPty7C43+W9tZPLY\nYcxb9lhYsfHFQ7Z++wUxGsG+SgdGnVYRjku7syLPwtzc4AnXfcCGUVdn8zOdFveB4L18TKZYJuUX\nsyLXwo9ffMDJhkge7n8BXU6M9t8jrTd5QNc6GofL7bdolM/oRtc6fJKHL9kgoU8cxk41a3kenjCF\ngnlz/e4zu9tDwfdlTCisiR95ym0Yo0Ks4fk7/EJZyWplpcXiXzs14hjtA9RcqK4zlWOO21buFxkf\nRo0Wt6086FhfavKgiCjiY05jUEQUC+LNTepqawgab2HK2tjdbk47+2wKtwW6ugq3fcfItFT/ceb0\nEXh0e1m7aaE/TtD7rIeZ8u6GQBfZj1uDXGThMMXG0qnXORR/8jG5H37Iis8+46FLLuKE1q1xyPDb\nTy6Kn9+Iw+UCFJF57N1NjE0ex4olFkVkalkYyTcMIEp2UZIXOoOudjxk6tCBDL77EtZ8spkde23+\nc7gPBH+vANo20dhdde6dK/zmZyZTLHPzCsl96lkOtmnHCW0M/nu07PMyRo1TYkdjktJY9b+tOLzn\ndrjcrPrfVsYkhb+HK3ItisjUskwT+sTx5rPrmFBYzJP2apb+tosn7dVBiQAa7xqegM9Rx+oJuGf+\nfYAiSOrUiSGREcdsH6Dm4pivo2kO1HU0xxdZ5hQeiGgXIDZ2j5u11fuDLJosczKDIqKCjn26urxJ\nLJSG4ltDk9S9l9+CKNi2hQnFRQCU5uTWqqQcnHUmWSWyp1so22JFr2nNaT0689CIu3nrmXU1lQLS\nahZ/Ku6dHNwVNrRtoxmVGpxNJUlW5puTGHNBzZqb5Zu/Q5x0Bpe1G0O54x8+KluNaGWnyqMlKrYN\nJasLyBg5hOG9gtez5L+1kYiTutC2Y6egLK7J6Unc3EMTZD2UPPUhbQ16PHI13/3+D4uLH2XAgMuC\nxpmdFu93n9ldbko2lZGZEz4O5Ese2LNzBzt+/5PTTj2FqJNiGDUuMK7js7J279zBn7//yenduoU8\nzseE4YMZfWbwZy/5OXAtT8gxeWM0PveZ3e0h/4cyJhSFzkybajYzJDIiyGpdU1XN7DDlgJqDlr5N\ngMp/nJHpqTUxGu8CyqKyr5lYHOwWctvKMcbUiVlotHj2VjTJ2Py1z/zlYA5d+8wUG8uE4iJv/GcX\nmqiogIWacwoOLYamWBMla4I/94DLBgSPTbIyPzmBsX17YOzc2eveSWBS/tKAydNkimVSYQErcnJx\nV5SjbRvFpMICFk1bhl5rRK81cvdFNcvT3vtL2XZA2yYKu8vtt2hAsTAOyjJlW38k4exo3tm+HVt1\nNcPuu4XZOctCxkP2l9uxedzE338ZBp0Wh8vN/EwzZBcyYMBliljkW3BVlqM5sSOPbytHQzXaNlFB\nIqMIhgX3gXI8RLD7t+2k3nA+xrgzsLtOoXRDGaPGLfT38QmRu6Ichwyyzcacmy72C9m8cfFMXhIs\nZL5kgyBXZ9tDl+/x7Wlz0GAgY+OnnNbtFNrGxIQVGfC62ursA2TUavE00vbfxyOqRaPSLChxl9xa\ncZfUkHGXY2nRKNaJmaTu59SyTr73pzwre73UKsAZwkJpSqakJHFvB03QZPjsHg9z8w5feywjKYsL\nIh9Cr621bsRtZ3PVkywqmBMYo/FOzPlvbeTvShe3DezJx99vZ+yd/f3isXjtRk4+/WwevLh9gEVT\n/NwGRtx0UZCVM+vpTyhetZY5GfGMuLq7/zwr39tG1qLgyX/jxo+YljaW02LaEhkRwXUXxfHi+u94\n+IredGnvjc243LwkVZOdW6hYSP5kBC35r33E6KsuChLO53dWM3dJoOUQEKPxfvdLvyo7ZL01/xqb\nXjV9CraUHXaNzX/RolGFRuW4xhejMced77d+Csu+YWJxYaNnqGWZk3ko0hg0AYzf8C6nndML544/\nST2nd4AITVx67ApwZgwfwqi4QOvhj302pr76Dh1jTqLbGT1Iy5x6iIlRIjNhIbd0T0KvNeJ023lt\nWwHZSyf476Uv6+z3n7Zi92aduZwVRNj/ZsiNFwaJx7qvbNj37fSnEztcbmateJOF8bcGXX/6qvc5\nu3c/bj0rMug8r/5URXZOzSQrSVZSh99LxgMD/Odd9sIm7rj8HN79pIyEmy/1H7vq610sLllDZqqZ\nuzpH+oWl8PWNJN/QP2gcK3/YxaLSYHdYTQXpcjRtow5bQTor2cxDhmDBePIw+9X4YjTjutcI1JJt\nZcfdPkCq60zlP0NganIFmui2RywyklWixJKPq7wSXVRrRqcnB66ZKLdh7NQuoI9Rq+V0vRH5p19I\n7dc/IFic1P0cSnNyD+seayy0ddw7f+yzseqLr1gUf6d/Ms4yjyC6Uzf0rWR0baIZnVwTwzHFmshe\nOoGinFLs/3gwRmsCREZBoG0Tw8lnRWNsoycxZSzLCyz8/fNfAeIASspwpKgma+FS7yr8PTirBbv3\nGVn8+HZ0Ogd3XdmVLicpWWBuInBVlmOok2mmpB4HZmgtL7D4RcZ3zNi7+rPmjS+QqXlotLvcaFsr\n7i13RXlAFlurViKkK7B2soEkWVmxxOJ3MTZkewJlB84QLrCdh3aB+fYBWmmx+N2tx5vINDaq0Kgc\n9zRGarJklZgxKpUxva7D0EmHw+1ixqhUZqzI9U+0SvZQsJ++lRAcDFcC5p+dRzWuhjAqNa0mRqPV\n8sxX3zL2zisCJuOEG/rw2FubGHXn5ThcbuZkJJC1aGmA2CwqmBPy/JIkkZk6g1v7P4heZ8DpcpCZ\nOoOE9BFMTXs/ZMrwlh+2sKwoh7FJaSALMuMXM/7GdX6L6dGXsnjoJg+r3/6KKdmFvPHCujCpx4Gx\nEPeB0IJUVV1Nq4PKQ7bd5aZ0QxmZFiXVWNs2MMZ0x0Vnk//WJpJv6O93BS7/tIzJS4q9n9fK/HHx\njLm4O8ZTlHU/88fFMylEDCcU4bZr0NRjWwZTbOxx5SZralTXmcp/guRhYxgUfT4Gba31I24XT9u+\nIf+x5UDoGE3Opg8Z2rsvz/3wLaP7XhI0qTxVZW8Si2bjxo3MzZyAVq7CLSKZkr2QAQMG+LPOtn7x\nCZ5qF7NG3hbUt/iVD0m4Q0kmcLjcvPp/HrJz6hHDSZ1E7y5XodcZ/G2/77Ty2qZSOpzUjv1/Wpky\n9Gq/9bTgiffQt9NiNGixu3S0P+ECBkQlBsWAct4eRF5pDgMGXMbGjR+RNX4sp53cFo2I4Po+cbzx\nzZ9BMZrJ6WZujQt2sWWWvM3Z5/XFEAHa1lGMTkkPSASoHaOxu9xY3t1Mx1NOQysryQY33nM/bzy/\nDveBcrZuK2POTZcEWTzP7aoKiuGE4khjNC0F1XWmotJAfv3RiuGKiwPaDFodv/7o323Cm0FWSKkl\nl7JPN9BJRDC0d1+6tGvHPb3OI2fjetIGDAyK0TQ2GzduZFFGEjPvvMY/Yc7NSIJFBQwYMIC5eQVk\npiaxp+zrkNZBq1pTQ7gV8aBMzMsKc9i9awd//PknHKzmz1+sXN7nbjqeeDJ/7/2Lj756gvFDr8Gg\n1yL9cTpTVr6LQafhgL2c0SOvwHRqBxxONyvXbOTnH7ZzzRV1qiFrjfS76Gp/ttnK4rlMTbsWg16L\nw+kmf+VGMqbmBlkQY5LSmTMhnuHX1CQNLFq7kTlLSoLSpH2YTLFk5hYrWWcH9qJtE8W85asChSgt\nnlH9lcoF+b/+FCAy4Fv3E36hZcD1Anbg3IUmOupfIzKNjWrRqPwnuKb3Vcy+/N4gi2bqhmd59+v3\ng47f+NFHLBybxLzrbvALy7T3PkZoT0aO/Isefc9vsqyzGy+/lJm39A960p7+2ibe3PAxoEyak+KH\nofHYib/jCv9kvPTlDxl0TR+6dFCyskJZNJJkZUH2DHZs38Kgm/vwyoffMOKh/v7Jv2T1Zs4/8x7e\n2LCK07pFERnZihsu78PJJ52Aw+lmauEaZmfdikFfS+CcbiZM+pCMG54Jzmrz7u8yKcPMtX0jg/q9\n80UV8xcFC7Y/tbmyHG3rKMYkNWx757pkppq5s2tNskDx65sYcXnfI7Zo/u2oFo2KSgM5rdfZ5G18\nm5QB12PQKjGavI1vc1qvUJu9wpvPPItW14UFn+0hkkqqaM21/RZxUlQ33t+Vz5yC+Uc1HkmSWJ6b\nh6viALq2bRiTmuIv1a+Vq0I+aWvlKv/vJlMs84sfY9HsGcx8+gMMOg0dupyKR2PE5fZQ+NbHuFsd\nxPqHjXkLlta6rpVZkxORXTZSh17Jk6995hcZAINey+03ns4TzzxOlvlOv/g89vzb3H3dJZx80glo\nNa0CxMLXT9/2AK+XLeHmuHH+GM3rZUvILh4PgNNRjkHfKaifyxHagjCZYplnabwJ330gMFng9n69\nyP/fJpKvqxXD+Wwbk5Yc2Y6kKuFRhUblP0HmzHRSHplG/meb0eDBgwZH6yjmzwxd8t5jK6eDMZLL\n+kw65H4lR4IkScxJTuWRPv39iQlzklPJys/FZDLhFpEhs6XcIvC/q8kUS9HKwJ1AN278iLmLMhie\ndh16gxanw03xYwvp2rUbJpOJZYU5DL7xbJ545RMMei0H5YNBovHeRz+T8shtAeIz7O7reeb1D3jg\n5suptFfhcLqDLBOd3kB28XgKLStx7PJgiNIEVEPWG6JC9zMcPnjeGNRdkNq5fTR3XnoOWW98Qs+4\nOLRtouqdCKDSMNRaZyr/CUyxJvJWzaJLnxjanhFDlz4x5K2aFTZNWhMdxR09u/LSx9MC9itZs3FK\nwH4lR8Ly3DxFZLxuPINWxyN9+rM8Vym/MyV7IXNffNdfB8zucjP3xXeZkr3wsOd++fXn/CIDoDdo\nuWPIBRQtV7YncNnLMei1tBICh9NNK9EKhzOw3lhVFSEtlqqqgzz19pf0PLs3JY9+5O/ncLopefQj\neva8wF8NuWjNfBYXzg64v2MT03ni5W0B/Z54eRtjE4PFXpKsTJyURHLKECZOSjrkdgP1ZXRKOis2\nbQu4r69t/ZOix9eSmDUTWQgK50wnM7VxrqdSgxqjUVEJgWS1Mj8xiTu6nspLP/6Bo1qHtfxPspfN\nD1kepqafRKFlJXabsk7FnD4iSMzSho/ioTPPDWj7c+9eFv5vPcbWJ+KS93PSKW3YLf1BtDYiIOvs\ncJhTh3H9oNOD2t9e+wuFOY8xaXwS15+rZ3+FnWff+pJbrzovKEYzY+EbZCUMYX/FAd787HOqIw6C\nG377rYI1Tz0HyGSkjKC11o2IALkaKt1aFuWtPKw1IElWlhVZcDnK0RmiGJsYHHeRJCvTZyRw76Ae\nGAxaHA43zz69lZkzlh61teEvUXOgHG0bJWsNIDs1gVGX9vC70FZ8vJXM3KO/XktGrQzQQFShUTkS\nJKuVFTm5VOz6m59/+4sOJ/ckpkuHkOKhHC+RGb9YiVFojF4LaCpTlyQGiNPklFRuPrGL36L5c+9e\nVnywjfv7z/b3W7d5KhExf5O7aGXIbZbDkTE5hYtuiPZbNABOh5vP37KxaF6eP0Yz+Maz2V9h55X3\nvsG6Yx8ReiOaiGq6dGrDheeZeP2drWhO0jAobQB6oxan3U1p9gdMS8/1Z5AtK8zF6bChN0Qz1pza\naJPyxElJXHalBkOtz+BwuPnoAw8L5h8+TbuhZKYmcWdnTZCr8sU/PWTnNt71lBJGObVKGKUd1xlq\njSk0qutMRSUMpthYRqWlsae8Aw9f/Ch3nD6NCyIeITN+cchtCgotK/0iA6DXGBkyYDYTxs4IOH5M\nagqrvtqEw62U6n/u8+/8IuPrd/8Fs9HJRpYuC12ePxyJY1J5buXnOB2Ke8jpcPPcys9JHKNsT2Ay\nxTJtXhFvf+dkww8HiDmtN6vWvc57H37J+X0G8MAdF3NOj260PjHSLzIAeqOWkZlXMmF6PJJkVZIR\nFuezpGg18xfnN+qTv8Nhw7bfwWNFWyhdvJ3HirZg2+/A4Wya3drdFbYwac6Ndz3JamVhQiIPaXUk\ndOnKQ1odCxMS/9VbA9RGFRqV4xbJKpFpTmX84NFkmlMbbQ8aySoxyZzBuCFmJpkzDnleRTxSA0Tg\n5rhUCi0rg47dt6siIHHAd3y3qNNZmrPM32YymcjKz+X1vTt48ufv2OUSIfvhbo3DGXovl/DIOKvc\nPPvUep5c+Q7PPrUeZ5UbapVtMZli6dPvMtZ/8wkf/fA+dz54Pc8+9wxjE9N46uUfcTjdaI2RfpHx\nj8mopevpURSVBIufJFmZMDmJpLQhTJh8dDEOt1uwbuk+ru+yhLt6LuH6LktYt3QfblejPFwHoW0b\nbl+c8BulNZTSnBySevYMLGHUsyelOQ17kGipqFlnKsclklUiOz6dkXGXY+ykw+52kR2fTmaxBVOs\nCckqsTwnH1f5AXRRbRiTlhw2sF/3vDPjs3io+x0YOulxuJ3MjM9iRNZYXn3xeRwHKjG0aU18kpJu\nbLd50McEi4Bjb+BGV5Ik8VPZV1zV2R6UpaaJaIWz3BVwvMlkYl6eEqAfb54asMumrx/aSg5Wt2Zi\nRjJOezl6YxTxiWmHdKUVrchlUPpFASLhtLspWpHLorlKBYNnn3uGosfnMKHoTr9brGjGHBLJYvrc\nIpYV5bBjhxOn3R10nkhNBA53oPhJkpWpcxK4+5Ee6A2dcTrcpE4cRueOsUREVKPXR5MwNnjfHF/f\npctzcDhtGPTRJIxJQzhP5N4+NRUG9Foj9/aZw8f7isJ+7qNhdEpa2BhNY+Gx2TB26RrQZtRq8ezZ\n3WjXOJ5RhUalUQkVDAdYZlmK0+ZAH21gbHrCYUWhxJKniIw3jmHU6hgZdzklljxGp6cwJzGDYb2u\nxBDtTQ9OzCCraFHAeSWrRElOHu7yCrRRbRmdlsIyS5EiMlo9AAatnoe630GmeTwT4wdh0OlwuFxM\nn5DOzIUWjNGakCJQN8V5eV4uybdeyNPvT+Pui2b5Yy2Pvj+ZBy65i59139aMS7KydFkuTqcNvT6a\nOx64j7zpi7ijV0ZAjIb25VT9Xsmtgy7BoG+vBOqnmJkxtzCs2NjdNvTGwMKgeqMWu7umJlt2TpZf\nZHzvj5lxI9mJWWz++CfmLypAkqyMTb+P4ZMG+sWoJPt/XHFzD8q3B6YjL12e4xUZ5Xy2fQ5k+QDX\n33GiP5ifOXU02bNLgvaamTo7gXuG9ERv6ILT4Wbq7AQ0lXHB4q41Iqp1NAVKRYGllOTl4D6wB22b\n6EZPBAhbFy3q2KR2Nzeq0KgclvpkUvmO8wfDY5QJM2PkPKocO0nsOwxDjB6Hx8nUkZOZXTrvkGLj\ntlVi7BQ4sRi1Oty7Klmek6+ITK304GG9rmR5Tj7zCnL8Y5mbmMrIXpdijFYsormJqUS0bo8hVh9w\nXoNWz6ntO2HQec+n03Hf1ZdTXJCHOT3F+5lS/SLwelmufxGiD9eBCk47/UyG3aDhxY0ZVFXpiYx0\nEt3GwUd/vMOsomnKuCQr02aYuefBc9Ab2uF0uCkpnUfKzMk8ubKIn3+0su/AX2hay7T6zcDoR3oG\nrGd54LbzKC7KYcGi0PXVjNrokJaIUVszoRmjNSHdYsaoGvE0mWIZMSiDeamTOb1XJyK0Edw69mJe\nKfmcmamJAX0dLht6Q832Ba8+8zXDx1zhD+YbDFoeeORcFllmUVTwmP+4eQtnUCUqWPvkF7QScN1N\nvbhnSE9mJGzgyq72oAoDxqNcv3QoTKbYRg3812VkWhoLExL97jNli+4fmbC0aay04w01RtNCkawS\n481TSRg8ifHmqY0Wvwh1ncz4xVwQMZSrY5K5IGJog4Lhd/TKoPXBEzBovBaERs/QXvdjmbnokNfV\nRrfG7g50N9ndLrRRrXGVHwgoJQOK2LjKK/2/l+TkKSJT2yLqdSnS79txuJ0BfR1uJ5F1HpYNOh3O\nA5VKaf3i8WyuXsX7u/LYXL0qYBGiD12btjhcbjq3P4HE2y8i5e5zGX7D+dgj7H6RGW+eyrDBQ7wi\nU7PO5Z4Hz+GV155h4rQUOp7QlbRrniTj8pdIHLCSl5/Zy1+79teMS6/FaQ8ft0kclcorJd/jtHuT\nAexuXin5nsRRqf5jKva6/O/7cNrd2MsD3YGfb/6I8cV3MShjIPelXEa3M05ixIxrefnNZ+rcq2h/\n8gHA/j2VARljoIiN9OtW/++SJLF951ZuHXMV96Zcx80jB/LiC9+wf7+Dbr0OUvp+Ok63d/2S284b\nW5dgTju69UvNiSk2lglLi3jS7WLpnzt40u1iwtKi4zrrrDFpkNAIIVoJIXoJIa4QQrRuqkGpHJqG\nTP5HSyjxuDluXMhguN3mCR3UFnUmHY2eX7du51CMTk+htGyDX2zsbhelZRsYnZ6CLqqNP2PLh8Pt\nQhdV8yfpLq/wi4wPo1bHKV068uS2l/xi43A7yd9UyuX9zws8n8uFvo1yPv8ixMeDFyH6GJOSyqpN\nX+HwBpUdLjerNn3FsieUDbZ831en6K7Y9tt5ovhTHl/yJU8Uf4ptvx2nszzkvb6n9yzeeKPmXjmc\nbvTG8O4WkymW7MmFfPWCnXce/Y2vXrCTPVkp45IxJYmRSffRKgKeyHk/QIyWTX+DzLTA7QPsnvKQ\nlo/dEyh0CWPSeH7VVr/YOOxuHI5AIXM43DjsNUJWVJLLsMk3BLjv7jNfw1uvfkdUOyODpsaw6M17\neWnrLFZ9bkbbZSdLSywteiGlKTaWOQUFLFi9mjkFBf8ZkYEGuM6EEInAdKC9t6kv8LUQ4iXgfVmW\nj83uTyqHnPwXF85u1GvVNxgOhI1nINeZdDxOHN7V9uEwxZrILLZQYsnDvasSbVRrhkxJZVluAft3\n72XKD6tIuvRWYk/qjMPt4rEtH5BVVGMlaaPaYne7AsTG7nbRofPJ/liNc68DfZSBCblZrMjP5b4O\nJ/pjNM+8t4GZCy31vk8mk4msnHyW5+XiOlCBrk1bsnLyMZlMjDdP9X9flfsP8vKKn3jkihEYtEoy\nwqoVj9H+jE5UHQh9r90O5TM4nG7WvvItM+Yq2xYXrchhb/kupO2/07lzN2JOOhnzaGU9iy/wD4q7\nbsq8BG4f0xO98XSus3ejdP57rCv6EJ0+koOyzEmtT+Xee+4LuLZRExXaDacJFDqTKZbZWUuVoL5r\nDy6nhjnT3qRjTDv22vbRqWsUO6S9nNGtZpGq3V2O3nhS4Gc1atnxZznDEwfQsXM7Tj23FXvdX2PO\nHugvpzN1diKzpxb9pxdStkTqZdEIIUYBecBLwP1A7TzDj4C7G3JRIURXIcRzQoj9QgibEOJ5IUS3\nBvTvIYR4RgixWwhhF0JsE0IkNWQMLZlwloPDFjz5Hy0+8ahNuHpf5vQRvF62JKBky6oNmZRX7sDh\n8VoQHicrNz3KWb3OPOy1TbEmsgtzWbymhNHjU3h0QQHXte3B0B7XMO220az5Zj1Lt77Ha47/C0oE\nGJ2WQumWjwMtoi0fMzotBVOsifmFi1iyppD5hYsYMGAAMxda2PCTxMuffM2bX/9AVUQEw4Y/wI23\nXE6CeSSSJB1+vCYTY5JTaaXvjG2vjgWzljB6SBLffFLm/74iqlrzyBXDApIRHrliGG4bbLN+E/Je\n/7VvLy/8z8oHX1YwY24hIJMyZTjSP99S4dnDid007Nz/f3TrG0nm3JSgsRatyPGKTK01MZOuxmDU\nMGjcZTyUejkx3dpTl8RRabxW9EOA5fNa0Q8kjkoL8dljWTivgPTkWcSefhYPjnyQiLatSM69mSFT\nrya14HYckXv9FolRGxXSfdehY2s6dlZiV3t3VzI6dWCAm/Guob1Yuvy/kRL8b6K+Fk0aYJFleaIQ\nIqLOe9uAjPpeUAhhAD4AHMBgb/Nc4H0hxLmyLDsO0/9C4D3vOUYANuBMoE19x9DSqW8mVGNgTh8R\ntNq9dkXe2vjiGYWWlTj2ejBEa5ien0xh1lzWfrYKISKR5Srk1h4yZmY1aBzLcgp4+LxrAybolGsG\n8b+KrczLD7Y8TLEmphTlKllnuw6gjWrDlKJcwiUgmEwmFlhykSSJ9KTRHNQ5SZh8q/9JemJWIgvm\nKIHbopJc7K4KjLq2JI5O9WeASVaJzMQF3NzLjD5aqV68dn0uetr5vy+9NsL/GXwYtHq2/1zGXdMv\nZF3ONO4/pyZrbe13WZxwxkFSM6b7n+JHm4dyUFRz+4O3oDfocDpcrCt5jXde+IRBiTdRWJLL4uw8\n//kdbht6Y5eAa+qNWg4eVNbWhLJSlHsSS/akIopW5GD3/I3HDtH6GBYtnc5BdwTVVQfRGGWMmmgS\nRynpy4XF+dz+0PW8+uIrDErvF+gaS+vDwiWzWLrkMRJHp5KZncQtoy7wZ7WtK3iHO+7vjdPh5oll\nH9GpS2CFA1DExuE69FbJKscf9RWaWODtMO9VAu3CvBeK0YAJOEuWZSuAEOJ74GdgDLAkXEchhABW\nA+/IsnxPrbc+bMD1WzwNmfyPBskqscxSTNu2blZ9aubkzrF07NIhZDDchy+eUZuuq4opseTjsh1A\nF92GrPT6rXmpjau8EkP74Am6dgJAqLFkF+Q26DrFhUvQGw5yx6jrAwP2Qy8le8EsDnj2cMuIvv71\nIplzksnOUlxkhTmlisjUWv/xwMBUnllfyLpNi7m//3iQdTjczgCxcbidxPRoS9czTuKmTA2vrEmn\nqlzPjr9+ZfjcvkSfcApFK3JYNFfJiir7eSujptyD3qDzjk/H/aNvYcH45VTsO4DDdaDOfQqdidaq\nlVCSBZb+SPak0GtGTKZYEkelkb14Bta/tzBsek2689qcj7j5nguJPkHHhDmjaafvzHarlX7Xn4Ms\nqkLGd7b/sc17XhPZmQWKaLvL+WLj97irbLz94jdERLbiujvO47HFm3A63EHldAy6/0ZK8L+J+iYD\n7EERh1DEATsacM1bgU99IgMgy7IEbAJuP0zfK4HuwH/adq7JhFrN+7vy2Vy9+pCT/5EgWSVmxE/j\nynvgXBQAACAASURBVIgBPHTqfYzvl0grR2XY1ObDjrcwB8vjJWQX5hzROHVRrYOyxay7d/C99WcS\nx5rJSM+ol3vLhyRJZExKJXHcKDImpfr7OioPQGSrkE/SP/3yg1dkagTolhF9KSpRxMxe7g5IyQVF\nbHQaHTf1Hs4rXyxj+z9byX9lWWAywivLuWpILwBO6tqO+zL78OD8szm1j5aYLtHedTA1AfhIjcYv\nMgC7//qHV596jxM6taV00Uvs3R0YrE8clcbLy38McIE9Om8DGldHvlrnJntS6DUjkmRltHkoo8ff\ny76D/+cXGVBE44G0y/jgxe/RG7XclXQe+w7+Hx1O0eB0uBByZEjXmLOyps1kMrEoO4+ixY9x+YU3\nMuycUvi9B1V/dWX98oPc0GUqJYs3BJTTeWH1FhLGBLvuVI5v6mvRvAZME0KsB371tslCiA5AKkrs\npr6cHeb4H4B7QrTXpr/3p1EI8QnQB9gHrAUmyrLsDNvzX0Yoy6ExWWYpZlDcvRg0yv7xBo2BQXH3\nssxSzPzCBU123XCMTUtilnmi331m3b2DR797h+FD4tHr9TidTjInZpG9YM5hi1BKkkTmzDRuefAy\nv+spc2Ya2dNzMLRuA/8cDPkkrTNqQwqQ3VUBgDFKi9MdvP5DiFacFN2V2/qO5bV/0rBXHuCJd94i\nopUMRPJP9W7anhgoUE67G+Hdk7n2OhjJKrFn116cDhd6g47df/3Dm8+v577kK/2Wxqrst5AkyX8f\nTKZY5k5eStGKHBzuPRi0USxb9EytLY4lMsZNwnHAgaGNgcRxY/nj9z+YnZdOVMdIRmReyQuPfhLS\nQpG97je9Udl64Mq7e/D08nVce+PVPG15y+8+c9rdPJ27gbNO6xXyO/FZ6bd2n+y30p/5diYxp8dS\nYlEsm7PO6KkmArRQ6lW92Ssom4BuwGfA5cDHKNbF38ClsizXqwKdEMKFEu/JrNM+G0UstKF7ghCi\nGMW9thcoQInTXAjMBt6SZTlkUoJavbnhpAxO5u6Y24LaX9j1Ckseb54EQ0mSWJZTgKu8ku+tPzN8\nsCIyPpxOJ5u3fsYiy6HX6GRMSuWCq08JsAqcDheb3/uNxLEp/hjNg2Ou98donlv9MSeeeDKXDTo1\nSIA2v7qHRdl5gTEabU2M5ubzR9HW0J5nvp/GLeNP4r1Hf+fBs6f7z1Hy5SRaxeznfvPVNW6p/Pe4\n9eELcTvdPLVkEz169ETbqg07vqvCo9uDJuYA9424hVefeo9bR/ULcot988J+Fs+tidMc6p5OGTeD\n2/sNQq8z4HQ5eH7j4/z8549krLqKl0o+5UHzFaxduoFbxwSXtnml5HMeMF+G0+7m5dLPGHjneTy3\nfBN6bWt2/mojQuOhc2w7IjURuPdrWTLv0bBC4VsY7LB58IhKbPzMPSMu8n8HL63ZzNypBQ2qZq1y\n5BzzrZxlWd7jDcKPA64HfvH2LQRyZVluaOW/I6UVSnXAx2VZnult2yCEiATmCSHiZFkuO0Zj+Vdj\niDbg8Dj8Fg2Aw6OUkGkuTCYT872B/8Sx5gCRAdDr9dgrD5lLAoDdeSBAZECJc9idBzCZTFgKSpgy\neQLZkx+nTZSBCKFjzszFdO3alQkzErhjzCX+ye/RBa9xWtceSkXj2FiyiyZSmFOKY5eHgxEuTu5u\n4It9T/Pj5i95ePK5xHRph6z9CafbgV6r3Mu2rTrQ7/5uvLLqI+SDMi6nh+qDHp60bELfNpIky01+\nAXpq9mYi9p7I1Q93pXDOarT60Kv8v9v2JSNS7sO6/Te6dOlMTIcumEcG1xsrWrLMLzIAep2BuwcM\nZvHa6eiNWoQ3jnPl7eeyLncj96cOCIzRDL5QGdeSDdwyuC/vv/gdwzOvRW/U8vf/s3feYVFcXRj/\nDbCVJiggiordJKZoioktliTGXqKCJXaxgYBiQ7GLDQEVLCD2qIjGisaOLTFVk2jy2VfFBgLStgE7\n3x8LiytrS0w0Ce/z8MDOztx7Z5eZM+ec97wn+T5HvvyFgrwC0q4XEBf9aCMD5l76mAn+fPzpexYb\nuM2f/WQDWoqXC09dRyOKYjZGz+HPxmsyACcL250L33sc0gp/H3xo+35gDvAWYNHQTJ061fR3s2bN\naNas2ZNX+h/G0NHDmDpssil8psnTsPF8AlOXTn/RSwNAaatAq9WW8GiUtk82hEq5nSn0ZDpWo0Mp\nLyYuikot48J7mQzKklXzGN5/LDpNPhujDnA/Iwu3yo509fsAe2clg4O6U9WtLsFjphC2eGaJOVWq\nq0THRPD7yWs4Ormx9adlfFZ/KHKpgsaVOpOweCY+s4s9mt3R56hSuzxN+5czy4v0DKnHAp8D7Fgi\n0GNsI1ZPP2Ix0e/gLtBmVHW06krETTnAPfU1uvT9igl+s8zqZTQ5GpORKYJcpjARBZp3eYONUcfo\n4duUtj3eYVv0KVJv5lLFrTblFa/wy55cRL0GQW+Lg5MS0SCa1uLqUQavkU0BOBh745lCXhptFnLF\nQ3U2Cika3UOCnk8pj1SKJyMpKYmkpKS/ZOy/vfGZIAiHAIkoik0f2n4EQBTF5o85thewFuggimLi\nA9vfAn4CeoiiGG/huNLQ2R9AEeusWAxz2CMvYtVVFUvCl6PJ1KFwlDF81JA/dcGrVCqiF0ejzlWj\ntFUywm+EWchEpVIRPG4S7T7uZMrR7D6wvUSORqVSERURgzpLj9JBim+gD0CJHM3uDccJnRKOp6cn\nYyb483brciVCZLGz9zEguB07vzhEhyHvlri5b1/2NZICe0InWQ7vqFRXiVoRjlqfhai3puC+Aily\nFA4yOnZrw46v4lHnZaGUODBi8CjmL5nKR4NLlpd9EXGEj7zrsWPFt6T85ID7KxK8xzco9noi99F+\nSH1cKzma1rZz+Xd0HNyAZcFf4ff5ZL49cxx1XiZnT6jwbT/RzNhodRrWnZ6Nlb0G75FNyErXcHDz\nGa6cu4udwokataoitbKjIL8AG6WxsLNT6+7s2LuZ7376hs9Gvs2B+NOk3jIqC9g7KXC3rUNM1JoS\n33FUrPHzUEod8B1crEz9qAZuy2YfIm7ZF3h6elpsNFfEviw1Nn8ef3uHTUEQDj9hF1EUxZZPNaEg\n+APzMdKbVYXbPIELwFhRFB9Hb3bGyHCLFUVx5APbJwAzgZqiKJbQNvk3G5qX4YlOdVVFyIiZdHm1\nL3KpAq1ew5e/rWFG9KRnXovqqorQKQtQXb/IgN79kcvkaHVadu7fSei8WSWMiNEYaVDaKiwbI79Q\n2tb3MeVMEn+KIXSxMT0YvWwham0OSrkdI4b6m44dMWoAH/eoXWJt0TN2MnRyV+JX7MYrsEmJ9+Mj\nk+jS50N+3HWf+aHm4R2V6irBc0fQ1reuySBsnv09FZyrI0hAKbXDd0iA2frHTPSjfndFCYO2cOxO\nqtRxRXNXSaeai8lWp3H8YhyiLBeDRo7OVsXAeQ3M17bgON6BTdGq9cwevIXab1ekXrPqHN78C7bZ\nHvRu6mfK0SzdMQ+vua8AIklbf8FgENHk6MjNymfg9I8eCJ0do23fd7F3UpIYfZbQ8dEkJyczdtZQ\nypa3p4d/MUEhIeI7IqatMCMgBM/xpe2QN037JC7/mdDxRmVqlUrFxBl+dOpTz+RVbog5Qst2Dfjm\nwEVmTV5IVFgc9az7lqgnO12w5i8lyvxX8CIMTRIPdk4yoixGanMqcEEUxRZPNaEgKIEzGAs2Qwo3\nTwdsgTdFUVQX7lcZuAJMFUVx5gPHTwYmYTRWhzFK4UwGNoqiaFF1799qaF6WJ7qxfhP4QNbGlHMA\n0Oo1fKPbw7zFs59R/Xk+2VnZ9BrQFrnsgbCYTsuPv//wxET/gwjyD6ZemS4lWGBHr6/Cwd3GVHTp\n+0DRJfCHPZpdsafw9mnJgXWXiF5QrFIMEDTJj3o9io1GSnImibFn8Bra1uRV7Vl5itmTIosLQFVX\nCZ4zgvbDio3ThoVHaTvgXeydFSwZeIYRbVaXOO8tv/rTa36x8kKRR+PlbzSOC0ftxMXDkcu/3iFo\nSWey0zUkrbmEqJFSINFy+coVxkR3MTu/DeFJdB7W0AIZ4Fu6jzQasNObNICA6v5pugxuXGLf0wm5\nzJ+1CJVKxcBhvRkQ+mHJfbZkE1Yon6NSqRg4tBdl3WVYW1vTos27uLo7o9Xo+WF/Crk35bR0Mz1v\nmnD47iKi180psb0Uz4a/vZWzKIrNRFFs/tDPG8CrGPMqoU87YaEhaYHRg1kLrMNILmhZZGQKITzw\n8+Dx04GxQDcgESMLbS7GQtD/FJ5F8PKvhCZTZ2ZkAORSBZos3TOrPzdw70qmeN3MyADIZXLUuY/X\nR3sYlupasnMzuJp+mnodytKyby3qdShL8KyRpjoalUpFZlYWK8MTzeo3VkXsZehAfxLXnKJhy3rE\nLzxmVpcSvyiJ5u2MVe1KCwWFan0W2RlqNi88RnzEUdbMOkjLTh+Y8kTZGTnorbIZMqo3QcH+hfTk\nqgzvPYEVE4+zwH87kWN20KBNbVw8jLU15WtJTQrHRdDq1VxTqczXFn6C5l1fN70u7+lE5+EfYOco\nR66U4uLhSLeJb9NsaGWsBDm22mqE90/ixkVjU64bl1K5fv7eE+nNmrws1HmZWAmCZTFOfZbRU5k4\nFmdXpcV9Hmyq5unpSZ1X6tDLpw3eA1vh6u5s3K+QUv4s8kileLH4U/1oRFG8LAjCHIzeRb1nOC4Z\no6F43D7XgIflborei+QxCgL/FTyL4OVfCYWjzIxFBUaPRo+WAT19Gfhe5FMJgKoz8/j65hZc3cuh\n1WlLeDRKW/NzfRIs1bUc/N9a+k0yVw1uO/AdomIi8PUJxH/CQCR2IFFImBm4hko1XLCRCEjtBaLX\nzKFK+VrELzmMo5uUyNFfIpXZUKFyOdp2a4ijky2r5u9nefjGwvxDhCn/kHE3h8TV/8N7VNNiyZUF\nJ3i3cX1OHT6DJkfNwIntTO8Fh/rR+ZM+hC+fToVajthIyvJB21c4vPkMZcs74OrhyEeDq7IqYDT9\nWy8whQa3fheC3E3L5siTJF/MQJ2lp+brHhzZ/BsN29XiUMLPtOn7DnKlFLfKZUxEgpTkTPZMT6fr\nmxHIPzKOtXLiaNKk+7F3VCBYYZF08GCtj0LiAAgYRPGRPXGioxfTsWNLtiXusriPQmpupJUye4s1\nTUqZPSNG/j0KGaX48/jTZABBED4Btomi+NK2Dfi3hs6CfENeihi1pRzN2h+jsFHKMWQr6Pne5BLH\nWApvBPmGoDqfzEedG7A3cS89Ovc05WhWbogjZmXMM9VQPJijycrN4NDpBG4W/EjQopLPOIfXXCA9\nNZs7ackMHN3NFM5avSgBmT30DCxmhG2P/p6s+zn0DW5OVoaagwk/cvd6BrrcAsJDl+HhUYkJs/1o\n6/O26ZjFY7cwcnHrEjfW2QMSqFTLhd4jzd9LvnyXL+OO4TPj02LDtPAYLbze5JvE3+geYKxdiRy6\nj8pVKyHobBFsNbTo54mDs4L18w6Rn63k86AOZGfkcGjnSW5fv4NGrcHZ1RZ1jp6y7vYkX0xjwJSP\nOLnhNm3LRpQIM+68G0CPqfVIvpTKjpivGTSt1WNzNAD+EwdikKrNcjTbF//EvJBlhIXN4ZNPPuBu\nSiq7k3bRfXQTizmaB7/DidP96dC7gSlXs3XVScoI1bARbRGtdRQY8pGItigcJXTyasWOzXtN5I8R\nowaXEgP+IP72HM1jFlIW+AKoUBhKeynxbzU0lnI028/Ox6miFBvR9m8lB5hYZ1k6FA4ysjW5NK7e\njZ0HN9Kh7qinMoaqqyp6fNYXv1E+ZGVlk3QkCYPBgEE04FzOmZiYmEfPb4FdVpRUDp02nysXk+nX\nJYBdJ1fQYUztEjf8Exuuc+r4aUYv6GVGe964YjtdRjQosf8Cn91IJBLkTiLaDIGC+/bUfLUSTrbu\n/HrjGEPCPjE7ZuPir+g5tiSBYENYEqnJmdg72GLnqKR5x/q4VHBi89JDdPCxUCAZdwqDwUCnoe+T\nuPgc1gYFnca/QsrN+ySu/I7Um1nIlTJSrmUxeJI3Sbu+JiM9HddKTnzUvT46TT47Yo8zcHqxwYgJ\n/gqrO5UZ1rLk55twMRDvObUASL6UyqbwJCrXcuHW+RxerfkGEiUoJEbGGAhExYZzN/UWly9fwcpG\nxNZOQbVKdRgXEIKnZ1XGjBnNu+/WQi6XcTcllcPHj5KPnvQUNXFL1z+Cradi3oKZXLl2gdxsLbnp\nIn3rz8ejbK0SXszEEbPpULeY/LHzbAyzoif8a43NX0kG+tsLNgVBuEpJMoAUcCv8+5naBJTi+eBh\ntWSDtQ59voYPnYp7zwcPC/tbyAGeVT2Zt3i26fXwgaOQyxQ0f7818Yfm4NVg/FOpP89fOIsZ02fQ\nt28funt1M9KWExMJDg4usX8RVCoVE/xCafu2j7GFtF7NBL9QZi8OxtPTE4cy9vTrEoBcpqDZW58R\nH74Mr1HFhYeJcT9gl1eFapVrlyjktLLGYi7B1kVg6PwWxU/3005z/4o1jd/vzC/y/aZjUm+mk7Tj\nJ5Ivp1oMFdnYWOMzqy27Yr+hg887xIefoI13Q/LzCyzOm59XwD2VlhOxaYi5tpxT/cLVgPNkpeVi\nV8aWSjVcEaxAk13AkcRjeI1pWMxyiziOIR+TkSka0yf0U1YO/cWifI6VbXEBrEcNFyrVcqWjzwec\n3qQhbOaDPW8KWWRD30SufB2tujaJy0p6KCNG+BEQ4IukwA6rfDnZeitSU9S8UecdosLiHnmjvJ91\nn8+HehWrVS9ZSBvJeFwcKplCsYJgMBkZMOrMdajrQ3R4LPMXz3rk/88/FcUPmoGm1ul/1/X+rHha\nUc2jFn52YWSN1RFFcedfs7xSPAkPdn+0tbOj+1uTXzg5AEBpL0Or0+BS1p02LTuy82w4G76bTtx3\nAY+9EBo3aUzIlBDiln7B0rD1LF20GisJzAsPJWjcKIvCmVERMUYj88ANpu3bPkRFGJ/Q1Tk6U52I\ni3MFWr8+lJ3zz7M0OJHTO9MInbgIGxRY59mSfPU2mxcdZd2M48z328SVc7ctikO6VbMzF5icUo90\nq/MkqVZQvqo9WrWe1Jvp7N10kvbD3qFfSEs2hT9EIIg4TrOub5ok++VKKV6jGnNw6w9cv3DX4ry3\nLmQya0IkN+9eI1tyg1HLOxCwqCNjY7silVnRuPMreI1uClb5eI1uaLbG7oFNSL1936IBq/iqHXvP\nRZq1T044PYlm/auYzS8aDCRGn8V3UKDZGFGx4YVG5oHc19A3iYp9SP9WBEl2RTpVm0XzSiOwznQn\noMUa2lQZRz3rfhaJIlFLF9HWq7m5WvXwjzhydbXxdWEvpkeJmqqzzD/Hp8Hf1Sr9z8BIBgp86HoP\nfCHX+5PwtBI0/f7idZTiOeBlIQcA+AYMIThgJm0b9MWlrDsdPupB4rdrWBkZ9dg8i+qqiiWhXzCg\n0fxivbDvZtH40xrYO9oRPGUModPmm42RnpJV8rylStTZxhuM0s5o9B40Nu0bDeLMjX2EhRrzREoH\nKbUNTdkWto0Bn8wxzb0maSJfzD1Gr3HFSfzlU3bRc0xT8/mUUgQ7LdduXaJDr5psjjqIRGFNC+83\n2BV7CoNBxMpaYP6wrVR/3Z38PAOGAgOHN5/BIIroClWN5Uopd2+l0WZAfdbMOELfkOI8x5oZR5g/\nZQnb9yYgKZNPZ78m5s3MZrYiIfI4n0/4CPeqThYNStFYD3tWbuXc8R03mqjwOE5//Qu2lXRoy6bi\n4FzFtE9MyB50mRC/ch2enlWN4cqYCNT6bM6dPUuNlo3Mxn2YRQbGm2OnumORS5RsPDEXma2U7WcX\nIBRIaF6rl+lG+WBY9UHJoJQ7aRzZfgaDVsqNO8mkVE3GQeGMwVqHnb3SolemdHikfKJF/FM8hZfp\nen8SntajKcU/AC8T3dPT05PQyEmcvruHw79t4PTdPYRGTnpiMt9iT5f3JnJk22nkChltuzcnaql5\nyOb3y2cs0nyV9sYbjK//UBJPrEOrM4aBtDoNiSfW4es/1LS/b+AgDpxeZzIyRXP3bTYLMtzZOv8c\ni8Zu48u4Y2Rl5VhUW/ZwqMeQDrF8syaXWm9V5PK5ZA7H/0z7we/jFfgh3fybUrFaOS6dvU1BgQHv\noGZ4jfqQzsMaIorG2hqtWk8ZFyUXT2YyeeQCTm/ScHj5dU5v0hAzL57GjZug1mdhZWU5pJd+J4fU\n5PvIlRIzjyg1OZONC45SkG8gbOhWki+lmtaduPisUQetqidhi2dQr3kVvCa9xWe+Ddm14hTxkUfZ\nvuxrbO0VNPmgucnIBIeOpF5nZ1r2r4nPjLYkrvmO1OT7Zp/Jwyyyou6wKVk3yJXepkOPTnTt1Yu2\nXu3ZcymKLE1aiU6xRZJBKXfSSFxxjtbVZ/BZvdkMbb+c3T+vYOXhydy6mkbH7q3ZeTbGzCvbeTaG\nEaMGP+5frgT+KZ7Cy3S9PwmPJAMUFkY+LURRFF/aUtx/KxngYbwsBZx/BsP7jqVlpWEltq/7YQIy\n91wMGEhJzmBN7AY8PT0JGh9IpTeUHFp9ie4Nx5g8kbX7Q4nZEP5A8aOKqIXLuHs7lZs3b+FZpRrO\n5RzxDfAx7TPAy59WtUs2i034fjrd+nchYW8U3pPeZuX0vVjbWOEd+GFxjmbmGT7ymE45p0po9WqW\n7O2BtVMWPcc045vE340ejZXAB21fIXbSV0xY6VVSwmbp12jV+dxRZTBu2Ey6dbVcATDMfyApeZfo\n7PceWWkajiScRSwQEClAnZ2Lg7MtzT57g8TV3+M9qinZ6RoSV/2Ad2Bx07KYiYlIlTbcu57L9i/2\nFRqPq0TFRnD33i3upF+j3xQj0y75Uirr5hxBoVBQt0Z9xgWGEBUTQb3OziXOYWP0PuTWLuTnyrh9\n/RYL5s2hcePGpn2MTMl+7Ph5EW292peQvtm5cTtV33Ay82hUKhXBU4LQ5VjTrvasEh7LtkPheL0/\nmtMFq/EdPZDo8Ng/xTob/vl4Wrr5l9h++O7Cl6oQ1MzzMl3vEc/tev+7yABTn2EckT8vtlmKPwlL\nrZT/SUYGHt3T5WaKCv/gLqZk8IQZgcwOiUCty8GjanVaD5Wxa+scDFoJVvI8nKqKprCOUmqs/vf1\nH8r4wFn0bT8FuUyJVqdmcJ9ApoSOpnHjxji72ZOcepFTv+1GFA0IghXvv9oOQVqAVqvFSpaPVq3H\nvoyCZl3fIGbsIfLzIF9rhZtrRY5fiqVJjcGUc6qEQuKE1FHP4fif6f6AQdoccRSlowy5UsrvP9xg\nd+z3yJRSdGo9Op0On+ntsXeyZenoKLp17VaiHqdT667cTLtKjj6H6NG7cHZ1oduItsiVMrRqHfGL\nd5N+1+hxpd/KImLELqxtrBgZ0cGcADCrLfOGbGbJ3DUmIzNhjh9th7+BXFmX5EtuLArYhbW1DTYy\nK/zDvE3nMGG2H0qJHXJlebPvTq6Ucu+anr7t5iOTKdHp1CwMX4iHh4fJmHfyasWUEcE4litjUczz\nnv4KC0abd/v09PQkdFoYgz8PQv56yRCpVCI3hYw8q3r+6cT/39kq/c/gn3S9/+2imi8C/xWP5t8A\nSz1d4g5PpMOYV/CoVnxj02p0nNl7C0SBep94lFBijpqxnhHzOpF9P4eDW38g7VYWhgxHBrYPRS57\n4AaiUxP2xRAaN3uXLHUG575X8XmDBXi41DIWLe4PpnHbevx8/gQfDarCgU0/0m5AA+ydlSzx34+N\nnQGf2a3ITldzMP40d6/m4JBfG4N9KsnJVxgfV9JzmT0wni4jGnJ8228MmvnJAzTjfVgJSpzKunHl\n5+tEhy8iev1c2gypX5ynmfkV7YbVQyaXEOG3k+CYYciVD5y7Wkfo4OWIYh5SmZKghcNJXLcb76CG\nJT7rhQE7WLdoO56eVQmaOJK3vOxKrDXKfy8jFnQssX1VyAEGTv2kxPbNoSo6tix+5tTp1FxMXkt4\nhFFFKsg3hEq5H7Hhu1kM9x1bwqM5dWYHS5cvtvi/ETQyhNfs+pZ4CNl7bBkd3x7G6YLVz6V+7K/2\nFP4p+NslaEpRir8LnlU9GT6hF3HHxrN03xiWHRqFzuGWmZGBwv4xuhx8h/qTuP4kWo0OMBqZNQt3\n4BXQjOz7Oezd+DWdhzXCd0FHylUsY2ZkwChJ41RRQsNennTyb8DomM4k3ZtPauYN5FIlAz4JZcvG\nTVy+do718w9hI7Xh4OYzLBmzC+eqEpOR2bvmezoPa0hAVDt6hldBL6QhkduwY/k3bF54jJTC3IVc\nKUUmk5MQ8a3JyBRt9wltRc59HW27jcZn0hxCZs/h3fbVTPtkpediW8aV+HmX2R17AUdnBzMjYxxH\nRrU6b+FZoyHVX69gNMCC5bbKrpUdiFpR2IY6L6tEzkd17g7YWJaTqVixIomxP5qx6FbMTKRRPXMl\nKJlMSW5Ovum1OjMPj7I16ddoBlsS1prlzfYe/oJxE0Y/6l8D38CB7PvFnBm39XAYjWp2IPF8BL6j\nLUodPjOKW6Wv5vDdhZwuWP2fMzLPG39KgqYUpXjeUF1VsWTWJgY2iDB5NFGn+lruHyOzM4ZVJocT\ntWwhGl0OCpkdbm7l8ajhSsLSg3QvrE4HsLHNQ6tTmxmbwz9/weCpncxpwOM+YOe0OLrWm4pcqqSs\nsyvW5QV8ZnYweRZx03ahU+chV0rZFfsN3QObPmAQNCgd5PSfVlzVvzn8GK37voODs5IKFRqQmf27\nxRu4ws747CeTK+g6ZCSHdy/EO8CVlOQMdiy7waddZiGTK9Fp1axY0A2tWlfCo5HYlOWTdgFsWvU5\nWo2Opm0bER++z6x2aHPkUVr3fZdfdxtZYUqJQwk22o7lZ6hQsYZllpqLO76DA4mKiUCjz+bs2bMo\n7Z2wty1rdk46nZrzv59jeJ/xKB0k5Au5aPPUuDpUok2NESTGbyDfSsv9vOusXLf0sWQRz6qekfBv\nZwAAIABJREFUzFkcRFREHGkp2aiuXaGSe0Vu2B547obgr26V/l/DU3s0giD4CIJwWhAEtSAIBQ//\n/JWLLMV/Byah0AdZZ6/OYm3YbjOvJXHNN/gOCQCMMfywORFER8QSNicCt3LuaNV6DAaD2Q2yWe+a\nJBwLQ6srfCLWqUlRX7AsFikrfmrOs1KbjEzR+wOntOfWlYzCeUSzMZK2/ozX6GbmxmtUUw7Fn2bF\npEM0aDgYTbZg0cvQ5haHeGVyBfla47Pgoc0X+bTLRGRyZeF7Slq2m0DcjC1o1YWfi1pHfMQJ3mvU\nB5lcia29K1uX78DeyZ6Pu7Zi6+IfifTfweZFRiNj76zkf2euorqqwndwIIlLfjGtKfliKmKenKYf\ndiM+/KSZ5xI7ZTe+g42K12GhC4kOW8m79T/gk16vsfPIVHSFn69Op2Zt/Bg61RpNy/J+1LPpQ8Yt\nPZvPTDcZm45v+iGXSli59vFGpgieVT0JWzSDVZsiOfLNTtZuW0pY1IxSb+Mlx9MqA/QBFgNrgDeB\nlYAE6ICxTcAXf9UCS/HfgjozD3n5Yo8jJTOZry/sJjfbnpXT9+JZsyLOZcoxOySixI2pqK4jPSuV\nqPFJYFNg9jTu6lGGj4bnETFxONWq1+DmbRVudSzXlQg6oze1+YdplKtpY9EYVa7lyvLgPbhWcjQb\nQ3zI8BTtn3ozC5l1Zcq6ePBhiyBiJ85m8Kzi/i6xEw/Qsl1x+Een1XD196to1W9RoJebjEwR6rzZ\nmG+OLyN0UBy13ngbQbSjYZOxOLt4oNOqyb5/n26j3mfXuh3cuZpJbmYu/ae2wKOmi9GrmXaaJg5D\n6dGzB6+8U4UycjeOxdxCk5fD3dQ7CNZ67B3K0LypD9sit4G1lgK9DXn3pSU+e1+fQEZOGIxoK2Ht\nrlHoNLloczPo9uo4KpUztiyQS5V0qhvEicwlnC5Y89InsEvx/PC0obMAYDZGZtkgYIkoij8JguAE\nJFHcYrkUpfhTUDpKTKyzlMxk9p5eSffGQcWNy/4Xie+SAJOOWdSyReRqcyEfrqVcoMfY5siV7jRX\n12HpxC9ZOSmJATOLab0H1/4PdY4e7/FNSViRTqOOdYibuZ0OA5pxctdl8jVSLv9+kbKOTkQf7Uvv\n4A4c25tu0RglX0nFykpAnaNj/pAt9J/yMR41XDAYLKsXOzgruHP5Dvu+GoeYb0stz4HMGbAcUcxF\nYSsnJzMfW3tj3YlOq2FD9HyUZQxsWngA1e/3MIgT0GSDtY0VclvI18vIzkyjUh0X7t45i1gg4ejB\nLN5vMpDDiUuwkuZwaPNpMtNy6T22GUmrL7FzwW84Kd2w0TnwnuNQvs2PYfiyYmO3btYBysor02dM\nW06f+B9rYubS12ccHbsMR6fVsCZmLqNGjrL43Yn6anzcbowptPfl6mDKO1Uz20cuVWJVICsNS/3H\n8LSNz7KBjsARIA9oLIriqcL3ugOzRFGs+ZghXihKWWcvH1RXVURFxJGbmYetowTfQKPG1YO1QDt/\nWEb794aWYBmdyV+D7+iBjJ82htY9W5oozwmrttC6/9u4VnQy7qvWEz/9LDKZAqQa0Cto8mYvNmyb\nh29ka1bMTKCimwcXbvyGQqyBt/dsEy13w9pJ5OpUBEQMIvt+NtvWbGHA5DamG/Lq0ESkCmt6ji1W\ndV45dS8KWymClYChQKTnuOKq/g1zD5N+Nxvf8E6mbetnfEtGegbD531WPO60nchsnLFzktKwXU3W\nzduNR41yeAW2IDsjlz2rT+EVWKyxFhuym87DG+NRw6VQ1uYI927lIJHJKV/ZgfaDmrBpwT4+9nqH\nmycF1NeVpmZhm89Nod2c8iUMYrjvZgZP6MqR7WeoUestDu44hFSmRK9T81HHluhTdSyYG2b2Xfbt\nN5IO/cLNvC6dVs3xNVF8/l5xbZJWr+Z0/to/bGheho6y/xX87aKaGLth2oiiKAqCcAeoBpwqfC8H\nqPA8FlOK/wZUV1WM9w2jdd0A5I5GT2W8bxhzooLMagPSdNcta1el5RG1bJHJyICRhdatf1d2f7mN\n7n7NjduUUiRKA50/HGs6/ubty9zPSSN81FaUdiKXb/+OkG+Pdy+jkQEjU6pnn5nsWDWP1bM30W+C\nN3KFgl2rjiEWiAjWArZlpHTzN8/DDJjaml2x39DN/0NSkzNYNHI7CnsZOrUerSaPviGfsH3paQz5\nNljZ5NNqQB1ObP+f2Rj9pnRgSdAmHNzKI1PYIJFamwzLrhUnTX8X7T94Rjt2rThpWotXYHO2LTvB\nr19fpUw5OTtjjiG3k7N29gG2rfuKqLA4U42IQZFrMcRXta47h7Z/CwUK6r7zJnXfedNsnxPbksy+\ny+Bh83GQVC0R2pPJlaTor5s81CKPNHRpyaLYp4FZQfJLLA1TipJ4WkPzK1AL2A8cB4ILFZ3zMRZ2\n/u8vWV0p/hVQqVRELYlCrclFqbAlK0VnNDJSJan3b3D0ShwF0hwG+PRnZewqE+MnyC/EsnaVo4Rc\nbYYZCy3lTipHvzrB3TvpbI4+TLNO9XBwsuXyxYto3zcyzW7evsz2Qyv4fOB0Tv0ShdfY95Erpayf\n+rPJyBRBJlOSLbnDx708iZgYTb7egHOWHU5uCj7tW4+khDOWSQSFHSftnW0pX60sEqkT+XlS7qgu\nsn+dinaDBiJTyNFptOxYFsftq/dZP+dnbCRaWnjVwtXDiUq13Wg3pCGbFxxGqpA8MfdTNGfRa02O\njgqeLnT1Kw6JrQjZzbjJM7Amj29vjKCcdTXy8g2PVJS+m3yfsq4StBot2fezOZp4CkO+DaKgw83R\nzrR/1II42tYJ4MtflqHTqkt4NK+9UYXT+WuN+RgHCaFLx/xho/C4jrKlobiXG09raGKA6oV/hwAH\ngROFr7OBTs95XaX4l0ClUjEhZDytP2uFXC5Hq9WyZukG3rBPI1udxr5bM+geUixlP2GWP7MnLiQ5\nOZmTpw/zffZZBreYb/ZEPHtJEFHLF5kozyl3Utm3fT9dfT8tDqMt2Y0m3YBWp2bukv7I7ERk9gIV\nK7/F8a/X0Hv6+6YbrESpR6dTmxkbnU6NU2WR49tUVKxagW6+rU3V95ujdiAImkd2nNSq9cRN3kvq\nLT0dhwdQ3rMaq0L8aDeoPzKFsWuoTCGn49CB7Iw5zIddJ6PXqtmxbAqf9s1DKGxN0H10C+b0W2ua\np2hsS3M++Fr1+13s7W2JC9mBTqunYbs3cHKrwOUraWhys+nQuzWVa1ZnY8QywoZvxvOV2ogGWwSr\nXHKyb9OuT2Mu7M+mIN9A3Pzl2Cmr0r7jBFNY8eDeSJOK9vc/n+Sa4w3yDSLbV0yh06BpphzNyX2R\nhM8Jeio2WVFI7O7Ne9y8dZOqlavh5GZvFhr7J4lIlsIcf0gZQBAEW+ADQAl8LYrivee9sOeJ0hzN\ni0PQ2CDeaPgacvkDbZm1WrZHn8JaKtIhxLPEjfNg3FmuXU2lbz8/srOyOJJ4iDs3blPrlSpMmzMB\nBAgNm8bla1foM7IHu+L30G5Q0xJ1NpF+XzBxXDBLN82h39TWxbmUyV/Rzb8ZLoW5nJTkDHZHJtPu\n0xDTzXTd2rE418pCInGi0+APS9SqLBq1EQcXGDzr4+Lamsl7ycnUUrmOKy293sbeyZaNYd/SoK0f\nX+/YQDf/niU+n61Ru2jpPQ0AvVbN5vBeDJrVGFePMgCsnrYHQ14Bvcd/8lQ5mqXjd2IjSBk0pUux\nNzN9G3UajKb2W03RadVsXz6RrgPbotPqSFx7gE4+c4oT+DFj0OdeISosmsaNG+MzNIDX3x5cwgj/\n/N0ycvV3aOvVwmTcN0btwXC/PDZKJVl5V1mzZtFTG5ngYWE0cO/OoV834NUoyKJW38vSUfa/ghfR\n+MxaFEVTrYwoirkYvZpSlOKxUGtyzYwMgFwuJ01/ibJ2bhZDQReunMen/xTkcgVyuYLu/Xui1WpY\nu2YhCDBhjh+th9fjjfSy7Ni4hZtX00o0LJMrZJR1t+XbM8dNRqZo/AHTP2X70hN4B34MgKuHEx8P\nyWPJhJ7IZWWwdRJIy1JhuFWOilWdLFbfV/SsTa3anxExfAoulezJSMnGRmpN5drladG9Pi4VjYai\nR1ADNi/cjMFghU6jNXk0ADqNFsTisaVyJeU9K5mMjFatR6/LIydDx7alJ7GyEsjPg7k+G6lcxxXB\nSiA9JYcti09yPzUb6wIZBQX5jIvxNm8fMLkzC8csovZbTZHJlXQaMovju+ai02hNRgaMOZUuPvM5\nFB/MotilIMKlCzd5p2HJsOL5S2cZMqa7WY6sh28bti/4CalNPotjn87IQLFa8s7vl5qMDJQMjfmO\nHvhI0dhSvNx42tDZLUEQNgLrRFH88a9cUCn+XVAqbNFqtSU8mldfq8n5i+cthoK0uXrk8ocEF+UK\n1Ll6Bg31w96jgKx0Na4eZfAe04xNCw5bVA7I0+Wj1mchV5YzH0sp5e61TNPcWrWeXStO4FihgOzM\nZJQyO0I29WXn8m/J02Kx+l518Xsysy6i1+vQ5EgYHtbNNNaWhQf4tO+7uHqUQa6UYiVoMBgK2BWz\nivY+/U05mm3RW2jQulhyRa9VI1UUF0YmRBwm444a/wij4UhJzuDglotUerUK53/4lVpvORK0tC9y\npZQbF1NYNf0Etg4Gi8ZbYVv8WiZXUlBgxf17mRYT+FmZaroP6sPoUZOooHzTYlhRobSxaNyzpCpi\nlsQ+Ux6mKCQmigYzbwXMQ2MvWkSylPH2x/G0hmYr0BvwEwThPLAW+EIUxRt/2cpK8a+A73DfEjma\nvVv3MXuGUW59wix/2gxsYLpJr527F32WBK1WY2ZstFoN5cvXoEmLzhz/eiMb5x3FuaKcVr0b0MKr\nPqvnJNBvfDezHE2dGq+ilNpZNGbqVBsWDz6AsqyBe7ez0Kp1uL9iR636HnQcYmRwNetWl60LvyMh\naq9ZjiZu+kb6T2+HRw1X4sP303GoOfusq//HbF28H7lSQn6+gRsXM3FydaPd4Loc3rwSQ74NeXoN\nmlw7bB2Nki16rZoDX0xCrkhhoW8CTuXtaN3vA+LDkkxG5ssVyXzYZx5ShZICcRJe/p6m9/Z+cRev\nqRs4tWWexfPV5BZ/JzqtGsQ8cjLvWEzg5+kzkSnkVHCpzicePdmxaSFtvf1NYcWjB6KoXrWaReP+\nxhuvP/PNt0gtWRCsnqia/KKkYf4pzdBeVjx1jkYQBAnQFvgcaINRGeA4RrWAraIoZv9Vi/yzKM3R\nvFg8zDrzHe5r3icmJpL0zFR+O62i87uzkEkU7P81km6f90AuV6DVati8aT313/uYMxcS6D62mDyQ\nsOggLbrWZ93Mg1R9rSKCYIUoGsjLElg829jKecJcX1qPeKtYJXlCIm9Z9+Na1o/oyUdvd5MsTSZy\nWyXpKi213qyNtVxL817VSb+TxZdRx8jXi8gVUvL0efSZ3AaPGq4AJEQeoFvAxyXOOdLvC4aGdSEr\nPZf9X1zgxsVcXD0kdBjwmik0duNiCutmn8W1ck1uX/4dp/Iijq7uCGhIPneZzyd9RNyUvdR6qzKq\nCxo6jlmHVGG8CZ/4Ygx9xrwOwMaI76jfwWiAMu7c4JfE6fQc+UFxjmbaNuq8X5yj2bZkHE7lMiko\n0IBYlY+7TzflaA5snozEJoPP+vZnf8QxvN8MJiXrBocuxlNgbSA19yLrN0YbP9cpY8xyNInxh5n9\nUPfTp/r/eMoczYtEUR+dkvmh56MY/TLieeZo/igZwBHwwujlNAS0oijaPf6oF4dSQ/PyY7R/CK+U\nKZaAv5dxg6Rf1nA76yw6vZbeAyZxOGkNXpNfL/G0vnT0NsKmRLN9z5YH+s8EmG54CVsSmBE5BY9a\nFUi5cR87Jw9Srt+gotIdJEqE8tm88kFDvt34C169i4s2v9w6Glu3dLoHGvu9JF+6zbrQbTg4K8jT\nF9B2QGN+PXnZSER4aE07Yo7Q3Ottvoy5RZP+05EqlOg1ao7FhdDVpwIOzko2hX9Dg898cHZ3R6fR\nsG/lFj7xGYVeoyZ+WhAOdvcZOMtYzLl2zk80/XyBaY5j66fi7euBXCll3fxfaNyruIAy484Nfj0Q\nxz3VjyisJPj5jObkdz+Trc7HXmlD2v2LtPdrQOqtNNaF7cW1UhUwKMFKTU56Kp908mbnum10rxxC\npbK1is+rMPHuO3pgMUMs8wKeNTyQSeXkaaVYWdliZydh5MiBz2RwisJSKTfvkfwI1tmLxItuhvYi\nwnYvomDTDKIoZgqCsBcoi7F40/15LKYU/13kZuUhdy1+WiznVImuH07ixKVF2JYV0Ou0ZGquIVe+\nbXacXCnl1VdepXHjxmadHB9E9MoldB01hKNbvsZrfAgyhQKdRkP8nFlo79/GZ+p4Vo5ZTt++y8yK\nNh0cy/FZ4AfIlTJSb6Zx7MtvGB3bw+QprArZRf3mr7B62k76TSlWdl49fSef+TfjYPxlmvSfb/JC\npAolTQfOYOm4nlSrV53aTTrx3e5EMOSDlQ26XL1pvwo1PPDya2kyYFKZnhTVBf53fANWghq9BuKm\nHWbglBbY2GjRa9SmeZzKV+L9rmP5cX4Udlb5vPv2u2bdOoOCA9CqdbhUKEuZsq4YtPYYxGxSbt3B\nsUwlju89jTzbjcO/birhXQyf6F0cQqpu3L75zDQoAx+1LA6vBY0OI2zB01Gb4eVXS36RzdD+DYWq\nz9SPRhAEe0EQBgiCcAS4CkzCGD5r/4zjeAiCsEUQhPuCIGQKgrBVEIRKzzJG4TjjBUEwCIJw7FmP\nLcXLAZVKxeABfpz8eR8JP43ly2+ncy/DmPrT6tXYOkjw8x3C9u0LcfFwsah4LLNSWhq6GFKB7/d9\nz6cDhyNTGPM+MoUCr/ETyRfzObR+EzYoShRtWsv0JhLAse3f0XV0c7NcTP8Z7Tm69UduX0tlSVA8\n0UGb2bL4AAoHKfbOtuTly003/4zbyRyOC+f4F0vQ6K1wrlid4/EbEMRMbGxyEMRMcu/fION2MgB5\n6gwS446yZeF+ti4+gOcrtvy0fTzeI6rQJ+hN+ox+BbFAzdrQPWiy7rIj3OgJAeg1ao5GhdG6ek+L\nve59fQLYu+JbtGod7fq9g16rpVX7SQzyX0kHr3Fk387BTiFDdMpi/hFvdlyewemCNYQuDWJ7/D5T\nQzAwJuutRGc+ajnGzEh/+GEAixaZz1viu7+qIsg3hOGfjyfINwTVVdXjv8cXCN/RA0k8H4E2r1DV\nu7AZ2vPqgfM4PK5Q9Z+Cp6U3t8MYJmsPyIFjgA+Q8Ky5GUEQFBg10zQY8z0As4DDgiC8IYqi5inH\nqQZMBO4+y/ylKIbqqoqo8Dhys/KwdZDgO+rvDVOoVCpG+EzG4JhB4NI+xQWRc6dTkGmP1uYOr9Ux\nhm5efaMGb7Z9jYTIPXQLKBbJXDVtN1YFcoYGDEKQGlBK7fEbFGj+JK0Xyc8TTUamCDKFAkcXZwSr\nDHLV90uwqwp0UhPjTDRYZnNJ5BLGL+5lWk982Fe837YuCeEHsZKURa9Rk3s/nVNbV9JsWJAphLZr\neiBODtZ0Ht4YmVKGTq0jIWIfJzfH0aj7QPK192g3sJ1p3KjADfiF9TSnLU/tyK6Vx/hsRGuSL91h\n9cTeVHNviERnRbeqA3B1MD67PVzQ6OnpyYg+QUyeFIIgEdFk6Tm2PYI7t7KxK3DC1lFPl+FtTeSN\nr7bsxTdoHJ6enhaLJrGxsqiskJPz6ELKf1py/UUy3v4NhapPGzrbCZzHaBDWi6J4/U/M6QN4ArVE\nUbwKIAjCr8BFYAgQ+ZTjLAHWA3UA6z+xnv8kVFdVjB/xkN7YiDDmRD/9xVOUyM/V52ArtTPLi6hU\nKhYviyJXq8ZWrsRvqC8AUbGR5OqzsZXak3m7ABu5lI5BLUyeg1wpo/u4j9ix8gB9R/ZAq9YxLnQ0\nDhIn7J0cqNf0faKDvkSmkKDNzcNaYo1zBSveG+RJdkYOR+K/p09AV16t+hbj/ScB4GZXmV9/O4tO\nozEzNjqNhvJVHWk39H3up2zji1Wj6NU/3BT+uX0rhZVTz9JhcDOu/qZmzcxfkcp0tPSugWulMmjV\neipUdyErPZfdsccRC0TktgoOrP8WqcyWvIJMds0dhWOFaiYjA8bQWPvJEZxZPw5Z4XnLlDK6BbZi\ngU8cR1eGYF/Gik2Rp7CSOSCx1lLOvcxj5WdkcilSmRqpdSrW1sXpUkvhHVNzuVdjixUXzkcyd/ZQ\nJk+eRp/hn5vo6HK5nE+7tiZqSRRh88IshpDIN1ikQNvZSR6ZWyiqnTF/Sg98qeVkXlR470WG7Z4X\nntbQvCeK4g/Pac72wKkiIwMgiqJKEISTGBWin2hoBEHoCdQDvIFtz2ld/ylEhceZ9MbAKFbZum4A\nUeFxhC1+8sWkUqkYHxpA60HvmzyR8aEBzAk2fn1jp07gk55tTTUjoyaNIU/MpEtQc+TKymjVOtZP\n34PCpoLFgkirQlkVuVLGx4M/5If1Z9kWuRNRqWZYeHHNyuKRG2jm1ZLNCw6iycml37T2pvdGzxpO\n+kU59k5lKKN0YNOcmXiPn2TK0exbvYg2Pq8jU8roPbkzc/ssJyrcC2cXd9LTb1P17bLocvJJWHKB\nTmPWmryR7Usn07q/nu1Rx/i4dwP2rzlFl5GfFtOfJ20hLUNOuco1ETJOkZNqMBmZIkgVSgw85GEp\nZdSq70GLbu+ydaWKJgOKSQSJoaO4cekulWq4mfYvkp9JTU7nq7Un8QsfZFrDtnmhfJwXyLe3E0oU\nNFpqLte2dgDb49dQ+/WaFgtsc7XGkFFx0WSgKXdjENI5eGi+KXym06k5ejSSgADvR+YW1Jl5ZCvS\n2Pn9UkTRgCBY0bxudzSaf85T+t+Ff0Oh6lMZmudoZABeA7Zb2H4O6PqkgwVBKAOEA2NEUbwvCM+F\nFPGfQ25WHnJHC8rId5/uQo+KiTQZGTAahNaD3icqJhLRYGMyMmDU9WrTpyO7t3xhtn/vyW2I9t1p\nsSDyQf0uuVIGEqjkXoEGg6qYhY/KeThxeNOvSBS2eI0xVzZuF/g+i4dv4fPQrmSnubAj5idWTBiL\nRCbFo6Y9bXzexsXD2bhGpQyPKhVIu3efAnkKUnsNPcY3Icp3D53GmCf0P/x8OsvHdsFals+ZpEsm\nI1O01oEzu7J41Hby9RrcqrpjLbUxS9aDMY9ihXmUWKfWYWNjxaGt52kyZK7ZnG2Dw1k1rifVXquI\niBIBNbnpt+g07BOOJHxL885N2LPmALmZuaTfzcClYjlWnvMjesGSEh7qw83lir57zd08bMsrLRbY\n2hbW2lgKIS1cPR0EWLQojpycPOzsJIQtCCIq7NG5hXwhl8Sf4vBuNMZ089x0cj7ur5p7baV48YWq\nzwN/iHX2J+EMZFjYng44PcXxYcB5URTXPtdV/cdg6yCxrIzs8HTueK4+x6InotbnoM42mEmtgNHY\nWD307yZXyhAk+SSEHaZbYfhMq9aREL2bVr1bFK9LrcNWake6/o7JkKQkZ3Bs609c+fUOdd53IeP2\nLYuhpcp1y5Kdlsu22Os0GbLQ5CEcXW7utenUOm5eu4edexW6TQ3i5OplyJVSbORlLHojNd5+jfM/\n/Mrda5kWPwcbKw2f9n0HQRDZEb6Wr+YE8en4MNP8e2cHYaVXoVN/YMrRfLkwkVaff8BX8dcszilK\nnKjeKBA3z5roNWp2hI3i+/iL3LuexdFtJ/mwUyOObjvJsOn9TLUtUasi8KjkYZazerC5nOkz1qtR\nOEjwHT6U8ZMn8GnX1qYczbro9VR3q43qqgrPqp6PDCGFh5tve1xuwdraBu9G/mZGyLvRGE5kRpcY\n93ngn17V/7Kz8p6EZ2KdvWgIgtAEIylh6Iteyz8dvqMGsvdsJFp9IYtGr2bv2Uh8Rz0di8ZWamfq\nVV8ErVqHmCfw+4VfjTpeD0Cn0WIgv8T+b7/5Fh72nqyasINVk74kacWPWOdJsXOyN+1zIPYondt0\n4bfff0Or1pOSnMFXa7/jnTbvUb6qO+18WuFSydUiI81aYs2hzRdo4hNi7pUMCeHgxrPGtal1rJy0\nA+daDeg2NQiZUoFBkKNV63F2szaxuYqg16iRynTYOhhIS9FZ/Bwy0zTYO9tTtqIrDi5l6e5bi183\njefUijH8umk8Xn610GoKmNN/BVH+G4gK2EjzrsambRJrrcU5XWq+wvf7N5B+5wZShZKOQeGUdaqJ\nRJDy2bD2fLv/B7oObWemP9aqf1Mmz5xkNpaRQWX+3SeejzTefD09mTN9Nqf2fcPSmTHsijxJ1yoz\n+NDJn+BhYc/EDFM6SkhOu8jmr8OJPxnG5q/DSU67iMJRglAgsyg3Y1Uge8RofxxFxIN61n1p6TaS\netZ9n/lcSvHn8IcKNv/UhMbGadtEURz20PZooKsoim6WjwRBEM5hbB0dXLQJ2IXRYLYBNKIo6i0c\nV1qwaQFFrDN1Vh7KZ2SdWcrR7F1xCgepM7Val+XwhrN06dvLlKP5YtEq5LYi3cd/bNp/d9RJFoRE\nlai1UKlULI5ZRK4+B/KgwJDP/y7/RqMeb7Jv9TfI7WwpV9EZnVpDF/+uyJQy7t28x5ENe+k2qljZ\neFXIDhp1qceelWdwr/UqBuS83q4PZdw9ANg6cTju1Ry4dfEGjYfO4vf98bQbaVRYTr91m+83raCF\n9+skRFyhvd98kzeStG4Kn/ZzZ/Xk7SjLVUApLaDflHam84qPPM7V/91DYqXF2jofO0cFIyJ7lfgM\n14f9RP0+IRxdMp/qr9dE9fVW+k/tSFZ6rjFHM6Q4R3NkeRjveg9A6eTMt3HL+KiPUSNtT1gAOlFN\n+Uq2oEmn58guJeYJG7mC8SPH0617VyOBIzqaO3fvcutyGlUr1LRYGPk4peSigs0neQcnjp9g7OC5\nVHCqjpUgYBBFbmVcZl7sOLbH7zMbPzUrmYO/bCBbvM3r79Z6rh5HqerzH8MLL9j8kziOBCC8AAAg\nAElEQVSHMU/zMF4FfnvCsa9gZJkNs/BeOhAILLJ04NSpU01/N2vWjGbNmj15pf9yeFb1fKrEfxGM\nLLOF5OqzEfMExGxHYoP3orCzpkaV6swJjmRu9Aw8arrx6UApe7dsRMy3QrAx4FLWnqw0B7bMuYS1\nVE+BXkpOqpSZ8xdisJZhL5cQONz4RO3p6cmC0HBUKhXj5vrzid97XJ93gdNHrjFobiAypRydWsvG\n0FVkpefgopRRrmI5mvdszc5lx7h58QZ5ujy0unyObz3L8PC+xRTiyPm82XUMyjLO5OfpaDp0Evuj\nluNStRa/CxJ0ag0ypQLnCu686z2II19uISvtLJumelHl9VpIZTo+7VeN3TEnsJbYULGaM9Vb9CMh\nZjtWBi0GKzmvdfQB5S5a9O/CgcXLuXf1gsU8VE5OAV+vWY6VTMnJhO10G9CELRFJpN3LQmpXga0T\nh+NWuy6ClRXveg+gTAWjgTRgAArzPK7utPYfi16tZs/4Xhb1x8pVq8fcZRtxr1CeqCVLebdBI65d\nuEcZ2/Kcu/QLYf7TLedxLIS9vjn0E798c4m+jWc8kZYcHRGLXKKk8/vDTey2TcfDWBsbT/C00aYE\nd7YmvTBfM9aUr3meVOd/Az3470BSUhJJSUl/ydgvwqPxB+ZjpDerCrd5AheAsaIoPpJ1JghCUwub\nF2L0aHyBy6Io3rJwXKlH8wD+SP2M0YMJpNXghqYn96XB28jT5qNwtCEz5T5Tx07j29MnqdvNtYQk\nyzL/3TiWewfBBqwM1tSp04wff03k4wFjkcqV6LVqvt8SycLpxdXkoycF8GpPF+RKKRFDNtB/1khk\nygdk9tVavor7ki4BnR7YpiPafzEVarhxLzkDn/mDTBTiovcTos+Qp9MgFmTTetxsDixZzvuf+6PO\nSOOnzVG09vscmVKBTq3hQNQSUi5fIisTqtR/HV3qeQz5eTi7O5F+O4NuQa34asN1I31ZqUSvVrNr\n9kw+6NqSy6dOQb6W6+fOI5Va4VDBg9TbeiQKJTn3UrB3qUrrCTNMXsvJJTPo7PU6iHBk149cuZhK\nu5kxJUgE38Yto2m3YexfPY93+g6kTEWjAUq9fIHfVk+i39hicdFN0Ueo32YCtg5l2bfYn07t2pK0\n5Xu860803dTXnJxETMKcp/JoFu8diV/rRU/0DlRXVXT5qD+jOywvkQuKOTqKoz/tNuVNvv/6ND5N\nFv5lOmKlHs0fw/P0aB6boylUAmglCEI7QRDsCrfVFgRhoyAI5wRBSBIEoaSv/njEAipghyAIHQRB\n6ICRhXYNYyfPorkrC4KQLwiCKcAsiuKxh3+A+0CmKIrHLRmZUpijqH7mdUVfmlUayeuKvowf8eR4\ndVTMQpORAVCdv4ncLh/fRV0ZscCLUcv7sWjdfBrUa8RXy7415Uu0aj1b5yeB3I3mA/rRashwmvb7\nnJPfrePddj2RFrKZpHIl73YNIGJJcbVzbl422em5bI08iLVEZmZkAGRKOSk37qErzJHo1DrWTF6D\nlY0NUqUCN083MyNjPEZGbsrvfNrbk1TVdfRqNW93bE/S0jnk6TQIVrB95gxiB48gce5Mcu/doHyd\n6jh5ViPl2h3kdnIGh/fjnXZvk6ORsj36KJ/2rMzXsVPZEjya9QH+GAz5/LzzS7r41KNHUDN6T+yI\nGnc0QmXazo6h3ZwYuizagKyMI7kZ6cbzVyhpNDyEVeG72L/1KDcuX0NuK2XvrLFmFf+7p48m4/LP\n7Jzna2ZkAFyq1yItR8LSyatZH7GVxRM3U7/NBJzcKhnp1NYyTh0uNjJgfLLv22hmSfWAojzOA5Xw\n8V+HUb6Mp2Up/0xz7yBqQRwezrXMjAwY2W1F24oS3K+9VvepxvyjsHQuRTmpUvw9eGToTBCEWhib\nm1XEmAu5IwhCe2Bv4esrQF0gQRCEVqIoPlUjNFEU1YIgtAAiMLYbEArnCRRF8cEMqPDAzxOHfZq5\nS/Fs9TMqlYrFsQtR67M5++s5KjVvZTI0e9YcYei8Xma03n5Tu7Jk0iJWRa8zK8x0kFWh0chhyAqf\nzGUKJZ1HBpMYF43CUQmCHkQpb7foTY62+OZSoBbZtjgJB5cyWEkEti/eRJPPWlC2glE5WafWkns/\ni4XDFyKXK8jLz8d7ohcVarijU+v4P3vnHdbU/f3xVwJksRFQhhZ3HW3VamsdrVar1r33FhXZAm5x\nIS5AQAERwap14KxaZ9Vq66h22KFVq1WjoFb2TEiA5PdH9GIkWtuvdv08z+Mj3Nz7uZ8EOO97zvuc\n91k9OQmNSlMporGpIuOLbV/Tuv/brJs0FhsnRwqzMvmh+AKjF/ZFqnjTcH3wFvKKrDF398C2hgUt\nu/Tg551J/PTFZU4fyaZHzFbUudlsjVtI3v1CXF5vhmUNcxp27sFP2xIpyCnGSSHl1P5fcazTiFae\nvkgUD4BVoeBdv6mcW7uK9hMnG47JFTjXrkU//y5oVCXsjN9Ptdb92R7iiX2NWhRn3sXO0QGVpoj6\ntWugsHcw+nlpVSpq1q1GnxF9SY07SmfPhdhXNagDaNUqtEV5KDOy+KQkAlGZhPdrD8fZprrJNNKj\nJbU/nLpCFVl1ur45iuMXtgvNg5kF6Ry/uI0yXSm5+ptCVRrA/TtZ3Mu9abK6rVYDN6N7PSwaOHN1\nLzq9DrFITKt6PZ9bQ+J/oTz4325P42jCgBKgE1AILMIQeXwP9NLr9SUikUgB7AOm8wcmbur1+nRg\nwO+cc4tn6PjX6/Xtn/W+L+3Z+2eUSiXTFk+m8wRDFNNCVZ8dKw7Qefh7OLs6IFVITJb1iqR6PDw8\niAyvyIC+16M3zR8r1y0uyEFbfpdekyYJaap9sTEUpd9nwhQfLCUKsrJykFpZ8uGkbgLHsjtqLx2G\ndsXKzoY98anIbcxp2eNNjm68hP+q8Uad9v2n9Oej2RsZs3D4IxzNQTLvl/FOj8Yoz19lxiYDf7Mz\nch89JnUQri/IKUZWrRF9/eYLKbEvV0byRr8JHA4Ppk98KurcbL5KWIKm1Iy+8R8J551cGUnTgV4c\n/Hg5I2d0oFQnRSQWCyDz0CQKBaUlFc9WWrUKC3Pdg/3L6OfTjZ3rvqRfdDJ7p05g/NzpQrNp6pII\ncldH0HTiFOG+x5fNpq6DmIMJJ7h3S4ulTRVh3S/WLcDV2ZFeA4YLZcu71sXS7ZUAbORVTDr1hxFH\niN9smlqMQCZR0P61AWw9E0mHxkM4dmGLkejmo7zKnbt3GN52FltPRTGoTbDA0aw+Mo0Nn0Yb3af3\noM7M8VvJ6A7hwnnrjs1iwUo/k7/Df8YeLQ/+t5c6/xvtaUDTGpiu1+uPAYhEIj8MRL63Xq8vASE6\nWQmseuE7fWnPxZ61f2ZJdLgAMmAAkf7+Xfl0zVEG+nWjpFhjkuDWFpURMDWUwpJSgeAvLSlEo1YJ\nEQ3AuUNbGTDLADIAUoWc7gFDOBCfQvXOb3Byx0nSbl3Fb42PEXj0Du5J/MQE6r5Zk07jWmJTxZLE\nwFTcGjeqlCZzreOCmY0bKyZvxrV2VczlVrw1ajSW9nZsnzYH7+h+wjVl2nKj6z/ffolWfksei0BC\nOLs2EZmtA+rcbM4nzaUoV0uPqCSj89r6hfB1yiqKMw3gXVqUQ2Z6JlqVyghstCoV2TeukXc3DYV9\nFU6tCqfb0BbC61KFDLFOg0ShwKVOHYry8jm8ZSflehG27q9gkZPByblB6MyliMs0RIZOpe0DBWul\nUkl0QgpFJaWIyjWoM9IY4jPZSFqm7+jB7E9aj1QqfmqXuW+QJzO9l9GtQQBOdu50eGMgaz6bwYw+\nG544drlmjVq4V6lL16Zj2XtuNUWaPLIL72EhFTN2iB+ubu5Uc3PEd/I4dm87LIAMGB58RncIZ/e2\n9bRpa1qR+8/af0EJ+d9oT+NoqgHXH/n+4deP8yD3AKfnuamXZjClUklwQCheY6cTHBCKUqn8n9d8\nlv4ZpVLJz9d/NhmxFGWU8OVHF3C3f4V183YIPSQlKg3r5+/EQl4LpzajeLWHP05tRhEwJ5IarlU4\nsnEJmgdcg0atIifjhgAyD02qkFOQXUDqovXU6TwWm6rOJjkWKwcFfYI+wKm6A1KFFJHYDMysBK7m\noWlUGmT2Vem27GN0sqq87zcRezcXJAo55jK5sHZmWg73rt83ur5MJzMZgWhVRajzsrm4MwVrRzsc\n671m8ry829cpzskgMz2H8jJzeviN5LPwmWhVD/gWlYqTccvoFBDCkchZbPMfwgd9G+PoVvGnpFGV\noBNL0apU6LQajuw6xJtjptDGZw71uo3grlpM54AoeoXE0DkgiqmLVnLq1CnAIJwZuyyM0CAvitOL\ncbJ7xaS0TK7o5u86WY+aHixKmMqp3ERWHgzg5M97qVO1iUle5Yezl5kw0o/02/fYcmoZIKJ944GY\nic3x6x5NYLdVjGsVSX66jmrajkz3jSTnfqFJLkdV8Pyrwv4LSsj/RntaRCMGyh/5/uHXj/MhL/mR\nF2BKpZJp/pF88GYgsmqGdMI0/0iWrnj2GR+mzKOmB0viQwz9M/cN/TOPC2muSEzAztnVZMTyeoNm\n+I0PIDohhbK0uywek4rCFvSlZbxSrQEtRy8waoxs0T8Q5eF4ivIvcWrvAtDLQFRCmSpfKCV+aBqV\nmqo1q9FxfHf2xKxCLHc0ybGoinRkphlI9GOpF1BprSm69DNJwV8zIWqskCb7OHwv5tZV+X5dGJnX\nfkX53Y9cPHyUgjvp6Mu1bA77hOZd3uBQ8hc4uDry8bxdjJjXF6lCilivMhmB3P3pe8pys8i/eRHH\n2nUxszA3eZ5rdQtydWasmvYpY1csQ6qQY6kw55u1ceh0esRiEa0GDcPe1Q0zMzO6DHuTo+sPMmj6\nCKF8e2f8fur28eXA/CnYWkl5N7Ci6fTS4b30Dlhi9Fl/6LsQn2le7NmUIvyOxMUk8eFb49l7Jtmk\ntIwq37ix9mm/N6s+ijaqFDMl9Ghn7s69Syr6NAvGWu5A6ulliMVmDGobZBSxDG4dxO5vk+j2TiAb\nvgyipPqfV6n4I/ay1PnvsSeWN4tEIh3QD/jxwSEzDArOvTCk0B5aU2CbXq//xyoo/xvLm4MDQmng\nMKrSH9/lnPVExb7YkswJgX7UatucL/ZuZoB/R6GceeOivSyYvJiIpC206B8olOUe3byQdsPe4FDS\nXtoPWioQ0A/tl09XEBrkxcrkCqXnPl36E7Uhidae/QWO5uCqdbQb1Ykq7k5oVCVsjzyMvvgWIxYM\nrJBpiT7E632Gc2HPBtRltjTsN4Erh/aiK9OSeeUiqszb1G/TBpVKh0Scy6BpHwjXbpiVioWFmKFz\nByBVSLn76z0OJBxl+PzhD76/y86I7Vg6KLh7owBbF1dsqtfl9X5jkNtX4UTMEvKUN3mn5ft8eWgt\n9dq2wKOrFz/sTKWtX0V589GF0xnm1xQbByvig7fjXq8mIl0pd35N413v2TjXqit8Nlq1iuPxEdgo\nirj53a/ozSxwq1eLzLsZKBxrkH/nHm+7tuHbnG/oF5EsXPdFXASdh1dOdx1bs5DG7nYETJpoIPK/\n+5kJfcPIyL3DoR/W0nfE0Ec4mlQ+cJ1ImuXRP1zma5SCesDRbD0dSddmY7GWO7D3m0QGtgqipFRF\n3Gf+hPRaXWmNLaeW07/9FPZdCqNcZcaHDQMFjubgpRgWJzz/dNY/pdT538AT/ZUNmztMHHtcEFPE\ny6jmuVtxoWnhw+LCF//kZSWTY2Vrx3s9h7Jn9QGgFF2ZmFrODdm+97AAMmB4ku44dDZf7Q9j2Lyx\n7F2xlg+GzxXW0qpVWMksDE2YCyu3SPnPCMbcUo7TKy4CyICBn1BYSSjWvcKe1V8j0mnRiyW8OdQT\nezdX7t0splXgFC7s2kQ7f3/ByR+cH8q9W5k413RjoN8HRvzOyPDBHEg4TEFOESeSznLnRj66EnN2\nRO7B0k5Om36t6DtlILvjjuD90Vwhstg2fw46uSt6RJiV6jl/6Vtc33gNddY9Lu5IoUn/cXy9dhXl\npWVkXb1A3wnNcHKvQlZ6NpbScnqPbiWA3frwxbw5agbOtQx6ZfuWLKDLhNEcjovFvn4LenqOrTTK\n4KsVW3CRuhkLc5qJTQp1mpuJycrNF0AgzTyeEq0KZ3s3ujQZy4GNOykXabiblsbotxfjbFOdq/cP\nAg94nVUpFfzapMrjmB91kFbOIlad8MNV0QCRSEzXZmNxsjGUW+v1hqIGmYUCiVxskhcUiQ3HH3I1\ncctTUGUZouxnBZk/6rBfhBLyH93Dv20Wz/OwpwHNmL9sFy+tkllamybtLa1f/AwKfy9vQuaH0m5Y\nf7qPGotGXcKOlYlMmxLI2m37cDMh+FheZo5UISMv8xfBAWrVFU2YpuzjnRuYGDeIA6tP0G5s90rN\nmHqRFImljNZjBiJ5JMWmVakpKS7hyqG9AsiAgRv5cG4YuyaNJfdaBtLHxj5LFVLURRr2rrvK2/7h\nvPEAnM6uCKNN94Yc3XAcRGKGLPIW9iJVyBg4dwz715wk8/odnJ1r89b8aZyOmYtMUcRvNy9yPCyA\ncjNL5HILXKo6cvHLdByq2XNy22nGzB1pBHajZg0h0mcaTo1bIZZIkVsrsLK3Q+7kgVQiMTmcrVRc\nSrcWg9m5fAltgqYjkSto2Lknn8TMoE/gYuGzPvbRUt7t2JXd8ZFMb28g6ts1GMz2A4kM6OqFs70b\nPVt5sv1AogAyJaUqSkXFTBjpx4XMLLr4h1HtwXr+cyNZMb8iVWuKSL9Q6kuvt7wrRQgikVj4un7j\nmuy/HEu3BgEVCgGnl/Ne06EcuhjDkriQP6xS8aT9/J7Dft6lzn9mD//GWTz/qz0RaPR6/fq/ciMv\nzdj8Jo+r4Gge/HEe+S6GpSte/AwKDw8PAsdNZHJoCFXruGAm1dNpUgtWbIzGxqyGySdpM/MyNKoS\nHFwVnD00h9xbapo3amzU6f+4XUu7zjuKN2jTvwUHVmymq//QiihiQQoWClvMzUo5GhNDx8BAJAo5\nWpWavQuXIBKVoivTmiTipdb2lKqzTPI79+9q6BQx1wicWvqHcm7tPLpP7s/GWRtMNoZSpqYk8zfy\nLHO5f/kCkvIi+gQMrkjLhW3ind5zMZcp+PqzzWyIOEdJbibv5hXi9MgepAop7q81orl3CKdWLqFV\nn54cWpVM80Fe/LQ31eRwtos/neG68jLIpWz1H4G9fRXqvuKGIruYLaGeyB0c0GrU2FWpwoH1q3A3\nqy84MWeb6nRtNIH9hzaTqbmBukTF4DdnCyCz7Yf5SMzlaJDTJSTMKFJ9c3Ag0atSiF1qcH6PE+mF\n6hwc5TVI+CwIF9tadHx9qMDLdGvmWSlaiFueTG56ITdv38DV3Z3fJEcFkPkz9iRif+xgf16t15Ay\nUTFmYnNE5VKjSON5KiE/rbjgSff4/8gT/R1aZy/tGczDw4OlK0JYGZ1CcWEpltYW/3MhwNNMqVSy\nYs0KikuLsLSwojA/H88Vg40cdRUfB75dfYFvdsSY4Gia8Gn8VjqOaoe2RMORlcdQizJYkbwSf08/\nk/suKSpHo9LgVN2BTqNbcmLtVspK9Vw7r2REWB/c6roAkJWWzfGUaO7fyqO8tIQqLpaos7VkXL5o\nkoivUrc6bw+awI6oFPoHd36Eo9kK5tYmwams3AKpQkpBVh4aVUml6Oq3y5exdRLR26cz2yPCmRTh\nZZyWCx3GlogUSmWWtAqq4Gs+iZlPn6Gv4eTq+GAtDVk3bnJwynjKtRrO7NLx1hAv7Fyr83rPwexf\ns4pu48eT/stVPt+SSqmmFOu6dei6IFJY82JSDItmhnAnLZ3JkSt5f1a48NqpRYsxSzMzIuqdbarT\ns5mPkSDm1fsHkdtaYFdNTqdqU9jya4LJ0QRff3uJEN9QfIPHGTnIzIJ0Dpxfy+A2Ffpk674MpWpt\nBS4NFVxQ70IuscB71mCjtFLo0snPLT30JIdtL6rJ6/K+7D+fLIwieFHpqT8DGv+FiZl/1P5yrbO/\nw/6NxQB/pSmVSqYsCaGDd3vBKaeGbaOb7wc4uVcxOver1d8zw3sm0QkpZOYVcuP6JUpF+bjUr8q7\nA9ugLdFwKPkIg+YPE9b6YuUxIqctMwIbpVJJ/7GjkDroGBnWRzh36+JPufFzFq61bBmxoL9wfMuC\nHVjI5fSaMqCC75iSQrmFCx/OCxMc7RexkbQd3RMH92rk3rnHd1t3knf3HpYudcj/NZ28nPv0Tdle\nCZzOx02nT0AXdizcSInGjIHzxz/C0XyESiOmv187zu87i05bTl//yv3GUX7r6bI8sdLaP6+axRC/\nzoZKuEWbKczWoNVbIKvijDnmdJy6qAK0l8yAojxKLWzpOWUJX25NpMXESZXWVO9ajwiQ9x5V6bUf\nZyxHkq8zaqZ8GFk86mSVN5WM7hWMX6eVbPxxOU2CvCrrqi1dzrA3gtj/Swy21SxoY+uDzELBtjPL\n6dnCq5KzPJUfz6p10cL6T+JDnoezfxKxv/ebRACT+3vepP+T9nAqPx5LKyuTvI0RRyN8LtH/OI7m\neRYDvASal0bQrCDqDapdKc20f/V++gX1MDp2NfUWUeHGnd0V0VAxVy79Qv9lQyqtdXPzVZYvjBLO\nD1wyl5YTB1Ccm8/XO/dw9/IvIJLgXLsGurJSfj13AZnCnJpNa5Fx4zecPJxpPfh9vt33LTodiMXQ\nvHtzUuduorRcgnvjuqT/fB23+m7I7Wxp2q8n9m4u5N65x56ZS5BbyVDl5tHBtx/fHb1B66C5FR3/\nMcvQFWejIIfuPh+SPHsXLq81wVxcjk4spWHfEcjtq/BzyjxK8zO4c+UeAXEBRu/xzvW7bFpxgj4J\nlfsxPvEeRc3qEiQyGa17vIeVvQ2b15zg7YDZ/LgsFIm5ORkZedR1dUWsUXP2pysMj9qERK7gQFI4\n7afNrrRm2lqDSHmN0f6VXvtudiQ9nQcbycOsTTWc/2h0UVCQR85VM/q87UuBOofU9CTe95teMQ4h\nfhlmt4vp3zIAa7kDX+TGUpShp1v9QPZ8ncCg1pXTuCs/82VhfBC7tx5+IJYZ88Kc/dMq3z6/kGpy\nf5/fX0H8x0v+53s/bQ+7L0agLVMzsMmcJwLswwICdb6BJ/r/XnX20v4fWHFpkcnGyNz0PIHn0Kg0\nHIs/ybLpUZWu9/DwYHm4QdZ/wITR7Ev4EjOzctoMaA7Aye3fk3WrGL9ZoQSNH0fsmlW0nDgAqUKO\nVCGnRb9enNy0i87Bo4RSZ7Ml6yi4n0lhjope04ewPWwjJ1O/oqv/MCHS2BGWhJnUHH2JhvKi+/iv\n9RL2unf5Bup1+pDLhw/juTpQuOZA9DbQwFdJcYhEYkRiMc1HG3iOH1ZMxdreGguFNa0nzzF6j/np\nady9qISyMhDLWTMzmfGLDMrQd67fZWfSaZxq1zGZytNhzt0MMeUlueR8fBprWwl6rYFfSku7h0ij\nof7rTXB0ciRo/DiG+ExBIleQey+N7Ju/mlzTRmKB6MHXj79mptLhZFOdni0msf+XaNauMoDM46T1\nuguhtHt1MFtPRzKodQjW98V8FxmHTibGQitmYE1PbGpXlCpb6C1ZtMqLuKgU7muumkz/WFs4siAw\nnlFtwrgtLTYtlvmcuIjHif3LVy/R67VgnGzcEYnEfzg99WdKjk0VF9i7SXjPfspTeZt/+8TMP2ov\nI5qX9sSI5vu1P2FlqaCotBgrC0v8xgc8kSNSKpX4LwrnTc9xSBQKMq7/ypHYJUgUFtjUaETjvuMM\nUUFSDOKC3yh1tEKv0yESi1EXFtJl6qhKzZs31hymMDuX85e+pxwRPmvnVuJODsZtouvkfuyP2kr7\nMR/g6F7BhcSPj6Nq/ToU5pZQVlyIk5s1rYZ2ZH/CMbpEVu7rOBDkRXH6ddxef5UWgUsFB56fnsal\nlGj6jh8kDHLbsWoTZVI5CisL7l5Np094FMV5uZzdsonWARX6Y5/Nn0mrMT441a5riJ7iImnSewhn\n1yfwau++XP5kOx/MWyKc/+PKCHJ+vU730FWc2pxI01bdOfPFVtoEVPA+JxaHsjVqMQC+iyJp7Bko\nvPb9qgg8yiVY6C2NnpSflOL55FwcHV8fyvGL2/gtT4l/18rjnLaejqTXW95GkYjyppLxfWcw+t0w\no2hCp9cx5AFv86T02rNGNH++bPjhjJtkoxk3T0vbPc90lveI6XSoWjnSfN7R1Iu2l6mzP2gvgabC\nlEolMQkpFKpLsZZbEOhtkJ7xnuWN3laBHhkiShDlq0gIT3jm4oOAmTNx6N0TiUJB7t07nEqJxs5Z\nhlgsRqfT8ZuyAJl9A0RlerKuX6DnnAlI5DKOf7SLjOvXsXWywaaqA61G9sLBvRoAl1Z9yuxJQXgv\njeS39MuMi678x7suKJJe0wZi6WDD50l76B7YB4CstCxSl31Ol0UVJPqZ6IWIiu6Rlamm24r1lSKB\nb9fEc//CBSzMdJjZOtBxjgEAzkSG0W9oJ6TyR0BOXcLW9fsQWdlToLxBv0URAOTevcP3e3ah1+lJ\n+/473vH0o9Y7bY3uc3ZtIu+M8iLVdzgD1mystI8L4bPIKCzHzsmVriOnknM/na8/345OpEOsF+Oo\nU7F1nUFe8KZSSXRSCvnaUmwlFkyeMI6aJn5mT3J+MYcm4dUhCpmFgi2nltHnbV+TYCSxK6uU+hna\nZzzlxebILCyxs3Tmw6ajOfLTJoa2mQZUFAw8zhV5zxrM7q2Hnwogf5bfeTQlVfqg6kxcLv3d9JQB\niEc/l5k4/5Sm0P/VXqbOXtqfMqVSSUBoJG/1C8TtwbCxgNBIpkwcjF7iwlujfASn/HVi/B9au1Cr\nodoDkNkdPp8qzhK6eD9C5s/aRKu2g6laox7aEhV7E2eilZRhbWvGxKSpQmrr08iNtPUcgKWDLdYW\nMpYnp9DAJ5CCFYtMVoOVajTsW74NxxpVUeVVKCF/sfVrAWTAUFnWavJsDgWNR3H1NjoAACAASURB\nVJVxj0MzgumyOEp4v6djImjavz+6sjLaBwaT+euv7PYei1Qmo7wohwNoKcMMc8pp27Utji5VUd9L\no/2SGXyzJkFIYdm7uvH+JD9DBVh5OXfOnzMCGolCgV6vQ6JQoHCoYrICLi27gN5uI9j+YzxatQqH\nqu50GWIYJaBVq8g8tUE4v6aHBysW/b7zelKlU6Emh7hvfTGX2lBmVsCGs7MY2TJccO4ffTGLWq87\nM3O+McjMmBSJd7tVQun9ttORaErV3C34RbiPk407XZuN5ZNzccKIZu9Zg0kIT/3dvpM/UzYMfz4l\n9TxLjv+XptB/g2LAn7GnDj57af8ti0lI4a1+gUbDxt7qF8j0BUt5y8vHyCm/5eXDMG9vxk6ZTMCs\nGU8U9FQqlQRMD+XiT5fIuH6dr7ZuosZrdRiyYLhR+e+Q8GFcPLtVuK/CwQUbZyd6BPU3ao7sETKc\nr7ce5HR0KoGe3tzJzOJ8cjQlORlsCU1AozJoc2lUJWyfv5peU/ozerkXH0z4kJJiFVnphv6ZjNt5\nJp24c92aVKvlQllRJp9MHM0ur7F8Nmc6el0559am0HTAIACc6tShf3wiVS1ewdzRjUbeM2kRMp9G\n3jM58MmX3L15G+satZEoFDTuN4gDixYYCWYeWroQSgopvvkzZ+IWkX8nTXhNJBKjVakoyc0Rrnlo\nWpUKsUbPG7Xa4N8+gs+ToowGn329I5ZAb88//LP3DR7H+lOhRsO/Pjo+B7uadekZGEefyTH0DIzD\nwsOOL3Jj+fz+Cr4vX0/yJ0tJ2rCyMgi8ajzTaGDrEPZciiJi9WyjIWPWcgckdmWsTl1KZFwYu7ce\nfiZRS1V+6Qsdhva4PQTiR+3Plhw/5G2+L18vfI7PkoJ7GMU1NRtFh6r+NDUbxcxJvz+U8N9gLyOa\n/6AplUpikhIp1JZgLZEROMELDw8PCtWluMkec74yBToz00rFkupu1B83BK1Kjf/iMFbMCMXDw4Ob\nSiXL16Rwv6CQyz9f4f3RM3ivWXf2xUxl8Mr5nElKojCnkM+SDqLX6RGJRbzTvw2IDSCRez+N3Jzb\nOFhXMdkcma28g0SrJzR6ARd+/JqqdapBmZaivCIOxK5Haqng7tU0eob0w6Wum3DdoPmjWD85EbdX\na+BQ1dIkUS6xKGf4onEk+q9B6uJKxwWLKviUmVPYP382MrEO51rVEcttuFt4k+4Jq40bPCfPYpPX\ncDotMkjq2LpXx8LGllPJqxGJRGiKi7C2KKP/2B4Cp7MrOZq6A7z4cVcqTXoP4dCCKZhrS/gyYhHv\nTplZ0QezfCmuEsN7crZzp3ftURxLSCSrPI3mTesTu2DKn+ql8qjpQVUPW/Z+lyAMFytXiJBa2nBq\nYwJ6CzHNugykdf8p3P96PTERT44KVAWm5ZHMkbM5aR+21Sz4IjdW4IkedbLPGjmYisDSs69x+eol\nvEdMf+5P+xVRSGWO5s/Yn4ms/mwU92+wl0DzHzOlUklg+Hze9hxGjQcVXIHh84mZNRdruQXaEpUQ\n0QBoS1SIy0tMVy9ZGHRSJQo5LSaOJHrNagLHT8RnSSQNvQKpo1BQQ6XidHQkrbuNxcmjLhKFHFWR\nhs8/OkqPkP6PpMR2UFboSO79NM5+HonjKwpKy81MpsPy72czeJEnUpmEu8X36R7cn6LsQk6lnua3\nX+/j4GqOg4udADIPTaqQUa2OG939+3H313R2zpzCh4siBCf+VUw4H45qYdBRs7Hk3QcgY3iPClr6\nBvDzqkUMmT1S2Peaa0qTIGxha4/coaLHqPmY8Xz/0Ro6eAdybl08vQZ3EzgdqVxGX8/+xAYEI7K0\n5fruTfQfMRIrWzvWLQ7jq2VLsLCygrJySu/8RqcGgcK6znbu9Gk6gdP34jEv1bF00UosLaX4Bkz4\nw4BT1dWRJrWGIZMoyMhPZ8u5WIa+6YtUokCjVbE9NZK3Bo8lM7fwqesonjDTyEbsQoeq/o+kirwq\nAcGzNis+nn5Kz77G3u8SGNd++QtpwPwnTOH8LysGvCwG+I9Z4MzpVO3VsVIF1/09Rwmc4CVwNJIH\nHM3XO2OYMnEwS9d/TDPPiYJT/nxVLK2G98XB3UVY59OZiygu1NAhYmUlUPouPhGxqJR3/ftwfMUq\negd1qgQgn8w7gczShk5TWlKUXcie5UewsrUQ0mcaVQnbQhNp2qsrV0+dRaRX0TNkAEXZhRxbe5qO\nk/wozsvlm107yFJex8HNhvZjOj9SaVZCwrhYqtSpR25GITq9ntL8HGq+2QiJRTlt+rXA0c2gDL3K\nfy2Or78tVL417j+QK9s30Gf0OxTmFHJm90l0OhFpV+/QJSql0vvd5z8WB4+atAqaXTHhcsF0cq/f\nwMnFgfHzKsDioX00fSUDpkyvJDGTHDqDN958Cyd7GwZ060Lcks18+Lq/wH/sOBeOxMqM7u9PRCaV\nU6JRc/hkCkuiDP01cdFrBPUI38njn1wZeFPJDJ9ldGvkx55v1tCpozfSR8BCo1Wx47s41Lk3+PLE\n3if+jj3kaB6mz0q0KlJPGWRnnB+Iaj6J/P4jJP+jxP7lq5cY13L5306wv0gO5Z9WRPCyGOClPdEK\ntSXUMDFQrEhbYhiGFRZiVHUWG2aQtXF3dyc6aQ0FWi1XL/1MS59RRiCjVakxc3TH2lli8glfJ9LR\nvONQjkTEIbcWmUyJFatukpcDUkU7pAoZtvZatFo9G4JXIlNYYONsTSff7ny793s6+Y0jdWoYUoWM\nzxKPCCBzdutHdAvuV9EXE7WF9mM+wNrBij3LP0XmUotyqSNdowwVY1m/XuVC4gJ6zR9eMeclci/I\n7Wg5rgJYT8ZGIdbkUphTyLFNx+noOxGJQs7960oOz5lCpwUVkdGZ6HAk4lK6DmrPqdWLKdObYS4q\np8+4HuyL+BhzbRkadUmlKjWNSmMEMtm/3ePM4c+QW7ty9fxVvJfPpk3bNri7uxMXnYzqnkHJ2K2O\nPW83HIJMarhWJpXTue04lixaTt59LV1aTELmZnD40wOWsCR2ukmw8ajpweL4qcQtTyZbk2YEMgBS\niYL827eoV8Ot0rWV1nnw9K/KKeXnixcZ3HyOADLw5CfxPxI5PJp+8h4x/YX25DyLvejpnC9CWfqf\nYi+B5j9m1hKZyYFiVhKD0/Pw8CBmWeWnIw8PD2IXhQMPemIWh2E3caQgZHk4NoXmA334ft92k2k2\nsV6MpW0VtPnF5N9NM5kSK8goQF9mLrwms5LTL2hg5Teh/9YwBVMiMUyZLBcjUcj5csNaAWTAAF5d\ng4ew1mcFJaoynOrXJU/5C528AoX9Odapx2tec0gJmY1LbReuf3cV23pv0n3JdOPxywHB7Bg/glM7\nTgggA1C1tgedx/dnx9iBKOwd0RTlU64uRGohxcrell4TDFI02Xfuc2bnZ0jlFrxa61U2hsUzPNRH\n4Gj2Re/ASVJTEM3M/u0eRz/Zz/ujKzrxpyyaxZZV7gYHu2Kh8HFMmhAsgMxDk0nlXL+axrCO84xI\n+S4tJhEXvYbI2HCTvx8GleSFBAeEotGqKkU0VcyccHZzNHltpXUegECIbyg2Zg5Grz+NSP8z/MU/\nQR/sRXMo/4T03Yuyl1Vn/zELnODFueRNaFRqwAAy55I3ETjB65nX0AOOMhsOhMezffI8dgTNpflA\nH+xcqtOk+0BOxUYaVVh9NmcqTuXFpH0aj4N1Ge1Gd2Jr6HqjCrEtM9chl3rg4OLBlhnJaFQliMQi\n4ZyHplGVgMgMrUqNVl3CvqgdQClalRr0ZSYjJZm1JcNTYukxbwqjN6zk0rZ1QpUXgLlcQWExKK/l\nInOrhyorw2RUVqV+QzLSc4xGEoABbFq/04JLRw5zdEsqjVu8R8dZy9i7aisadQnZd+5z4uN9dB48\ngiEzp9OwV3fEZjIS/KNYNTWSlCkJtLYcTKe6o9gaGYlGrebM4c8EkAGDgGUX/3AWRsYa3Vt5U8mV\nS1co0ajJyL5L6mfJbDyazKaDieQV5pocgVxc9PtP+X6Tx3HwTASaByO9NVoVuw4sQ29ehG/wuN+5\n2rCvEN9QvEdMp6Agj90XI4wq2vb/EvNM6zyr+QaPM6pmS8++RtwRX3LvFxLiG/qXVGb9FZVwD0E4\n/uMlRMaF/SdABl5yNP8pUyqVxCbHcS/zPnfS71PDoxZycwvKykAvt3xqQ59SqSQ6OZGMwjx+vnSN\nloGhONapZxCqXBTKW4O9cKppmAyZey+d83s2U5ChxNHdhldEMuYEzyR6TSKZhfn8eP4cveeP5Oy2\nzynIyqekuAzrak5kXb3F+JSp7InciVhRhbLCPMpV2QxcUEG+74/axZt9e/PNzn3kpKejyi3Cwc2R\nslIZDu5V6eJfmfs5kPAZ7wdVNCNqVWpOrNlBq4Cp5N1J57t1ybQJnlqhqOw5mv6JaytFZTsmjEZM\nOePiF1Waf5O58wgx4Uvwnzkbq17DkSgU5N1J48LezWReusjY2TMqcS+7t35Km8mz0KpUHA6dDr9k\nY64oQ+YgQ2NmTb+5cUY/g9x76exbPpUmTZuQdv06LnJHbt1Ip0sjT07e3om+qg0dPCsioP0Js+jb\neDTVnesIa5RoVVzM3PbEiOZRO3XyFIET5yKzsKOwKBdzxCjkljRuUYtpcwKe6OSUN5UEjJ6DhcYB\nsUiMTq8jX59GnQY1nqk58s/aQ34k404Wv93OY1SbsN/leZ6n/dM4lBdtL5UB/qD9fwAapVJJ0NIZ\ntPX9UHDax2P2UlSkoMXkORUS88kxxM0MMQIbpVKJ/9L5NPcbVpEqW76BJkN9sHWrbnCUIb70WBAn\nOLkvkxbyWqdanFt/iNq1avHrDSXtg31wrlOTo9EraDOkLYfXn6Pl5Aqy/NicafQJ7AR6OLLuK1oG\nzkadm82XC6dg6yAh61YG1o52lGnLaDviA06uPIKLog4dV37IjvCPKS2TIirNZfCiCmXl1JlraBcc\njJ2bq9HnsS1oHjav1Eedm8O702cagUrWtWt8mxjPB3MXCns7NHsab4wYhXU1Fy5+FM+HPqOEz+JM\n/DriQ8Pw8PBgdMg0PEb5GN3r9Ipw+o4eWulnsmN9Ku8EhgIGILsyJ5H+Db3Y8d0CbmTdZsCyZCGi\nyb2XzpldyXQaPbVC1DIxgu7VB3D8/DZUZlraT5tdSV35k3Bv/HpECKT8oW9WGXE0SqWSmPgUilSl\nWCksCPSpmJr5sBu+QJ3Nwe/XMrB1iLDO/isxLH6C454w0o97lzRG8i6pp5fh0lBK0oaVz/gb++ft\n73L4L1qN+p9mL4HmD9p/CWiUSiXLk9ZQqNViLZEQNMFQZTR5dgg1hrxe6Wl/T9xp2vo8MlpZpUK9\ne71RN3nA7OlUGdqx0lP8scRPae1jkBP5NW4Z1aysycgv5LbyGg72UvLLi+k5b/Qj0ch23h4xnO93\n7aVcV8brk+ZVrk6LmU3/mYPITsvg+MfHyUnPpyj7Ps5udgwImyistX1OErK79gxuPIWPM0MR2Vii\ns7ClvLQMfbmG8ty7ONd0Ra0qo11wcKW9H0/eQfMJvnw2cypyB0ekVlaG6rJ+A7Gt7s6OUcMwF4tw\nrl8fcwszXuvckW927uaNsZMA+HF9MuqMe6iycnitTl0cbG3Qm5tz5fIV3pgYjFPtesL9vohdTK/B\nvSpFNDs27qDd1AXCse9mRzLm1RBKtCpiD43BrJor3YLDkcgVHElZRrvBvpWA5KvlEQx9K5C4k6H0\nm1tZh2zPUj9e86iOSC/B0sq46kypVBI4K5KWPQORyhRoSlSc3RtDTLihAMQgSxPAtjNR9HjLq1K5\n8g9lph33e826m1RlTjoZyBfn91U6/3nb36kl9m9QXX5e9rLq7P+pKZVKfBctoamnF04PnsR9Fy0h\nbuZ0irQqk/yFubjc6JhEoeA3rXFOubC0BJfHeAmJQg56w3lalYqqNtasCK9wOpNnT8F1eDMjYr5b\n8AA+S/yUZn17sm9ZEs1N8CB5mQbuqEp1Z2SSckZGjmbj5FgBZB6uNWDBBFI8lwFgmeXKb+U5vDGy\nN2dWRGPl5Ihzzdq0HPQuAMej42k32UeIQI7EJPPGKMMMl06LlnE2IY42k0MMUjPRkbw2aAjSUgsG\nxIUZAWEnv0kcTdmIR7uOZN68hdOrDTCv4spvJYW8NbAPUrmcumo12xdH8vb4IJxqG1KLv924yfbE\nZAZ4eSKVy9Go1Xzy0cdozC2FtbUqFRYlBkpUJlHQsH5jCrKKDWrJcjEFBekmB49lau5ToMqmtKjY\n5GRTdaaKe6U5xK5bUMnhxcSnCCADIJUpaNkzkJj4FGIiwgSCXafXmeR6VE+o6JJZWJrkKmQWlibP\nf972VxUGPKmU+b+YJnvR9hJo/kW2PGkNTT29jKqlmnp6MXyCLw0bVjdZ6VWmMzNaQ6tSYSsx/oO0\ntpChVakrRQWILNCqVFxaHcPM4YMJmDWDglINNhZSsotyqPkYsBVlF6D84Qp3r9xAV1bKmagwGg0a\nja17deHe2uJiYW/56VlIFTKkCqlJkLSqasPa+zOxM5eQn57BT1u30Ht1SkW6a9kCLEQllGHOx+ND\nMLcQI5LIae7lj2316sJnJBaLha9bTw7hgLc3LvYuJgsCcq7+Ql76HXqsWGUQ1FwWTvex44VoRSqX\nM2BGCB/PXYxjnUaIRGI6+kzh7N5Udu8+gLi0FJ2FBQ0n+PNj6mbhfZ9dEsnAmmMBQ7RQ1dWRsMhp\nhqfjglLyVVqTQOJi7c7n32/F1dydzxOX8b5XRWrt+OpIRjabzrELm1g0N6pS2qpIVSqAjPC5yhQU\nqQwA8rCcVo+5yQbMK79cQnlTWQnAajVwNenoazUwTl++KPsryoBfdCnz/zf7W4BGJBK5AzFAR0AE\nHAUC9Xp92u9c1xzwAt4F3IAs4CQwW6/XK1/knv8JVqjV4mTCOSpsPbhzuYDfYvbSPrCnEUcjLlII\n5ciPcjSP2mRPr0oczcH5K3G1dSUzJRY7vYrAyDCs3d14c2AfLO3t+TJ4Bm88AmzZaRnsW3GQanWq\n82HI0Io+l8hoGo+ZjNyhCqeilqHNySM1KAWxppQ6bq+gUZWgF8GnUakgNkcs1tOy33tYOdhQlFtM\ntcaNuPb1Bao2a07b4CnGIplT53B2VRzvhkw1RCvLDdHKj5s+xrqaC3bu7gZtMbHY6POykCvIzv2N\na2e+Iv2786ArB7EZjT7sjF5sTqdFEahzsjkZuZSSW78ilQ8z+rykcjlVa9fhvYlBFcdkclpOni58\nr1Wp0N2+ybWEZVz77grDXpuBs607JVoVBy/FsDi+4meg10MD91c4sGIWXf3DKzia1cvo22gYmw4t\nxUHiivS3ctaFDKN+7ZZIyizoX3MszrbuDG49laSTlRtErRQWaEpURmCjKVEh0mkI8Q1FlV+KbTUL\n8hQ5rPsy1CD5/4hIZq/GwUbO9eETvrZYz4pz3gxtOQv3KnWFYV8RyTP+p4bGZ732rygD/i/Lwfwd\n9pcDjUgkkgPHATUw4sHhcOBzkUj0ul6vVz/l8kFAQwwgdRFwBeYA34pEojf0ev2dF7fzv9+sJRLT\n+l1lEnq0m8O312K5veUnikpVWFkoWDErEj0QnZTCbw9k5B8vBABDD82KaXOJTk6ksLQEawsZW5Ya\nymwDls6lRcBgmjwAoM+iN/DWiKG8G+zP7jlJ9F4wFqlCxqmtX2JV1YnO3t2M+1xCBrNm5ASsajak\nvKiQnvOnYyGXcubjLfxw4wZnxyzGxrUabbw9BZA7FrWaksIirF55lTYhs3lLpWL/zDkmIxCR6JFo\nJSiEb5ISaTt1OgcC/alStx7FGRm08qtwwlqVCoe6NWnU5UO+WRVN/9lBwrC1HYtjkNlXQZ2TzVdx\nsUisrLCv31DofXloGrUabUlFWkmrVpF1+bIRoJ+cH8qrUjeqYo3fstns3naY63cOorCxYHF8COnp\n6UyZuBBXm/qYiy1oVb8/394K5Zu4GPQSM8zLRPRtMAwbS3vyi7Jp2KIe9lWtUZ/OZmzjaUafg0yi\nwFxsPLgOINBnXCWO5tTOCMzuq2nXxAdZVYO0S+qVxdTwcCVy/xhq2DVCbmHFh03H4mzjjqONwbn2\nHtTZaL9DW85i/0+JVKthh7ObIxHJMwAq9ML+YBTwRyOIF53C+i/Lwfwd9ndENBMAD6CeXq+/CSAS\niS4A14CJGEDkSbZUr9dnPXpAJBKdAW4C44F5L2C//xgLmjBe4GiEMcSRcXRvNB6pVIFYbEn0wspk\n6LPIyHt4eBD72LUBs6fRwm+wkFKTKOR0mjyS46t30bRfT4rVcDDhIGZiPVnp+ThUl5tMgdV66zWy\nlb/RsP17fLN9B+qiInosCEGikHM0MpF23sON7tEheCKHYzZhJrN8cEyBXXV3kyD7eLSi1xkk+B3r\nv8rbE705Mms6pSVq4fwzyyN4a9gILu5MFUDGsE85/WcEsiE0gh+3bkbh5ETLSX6oc7LZvyaObuNH\nC/zLvqSPKCkz/Olo1SpOxkbS7+1R/LAwFhUa7l65wqRmYVR/8LSfEF55jO+CwHh8P4gzGhrW4zUf\nzqTvZESn2UJk8fFnC5m/bAqnzv9Idkkp2aosk2muUr2x8vDDn2lMeIhR1ZmdrowPH4wYzixI59iF\nLRX7qGvYR/vGA3F60OUvs1CQcTvL5H67ve7FFf1uCgryGNXPl8KCIoK7pTwWBUx+pijgnxZB/BMa\nRP9L9ncATQ/g7EOQAdDr9UqRSHQa6MVTgOZxkHlw7LZIJMrEkEr7T5uHhwdxM6czfIIvClsPJGUS\nujcaj5NDdTQaFVZWz/ePoLC0BDeTRQLlfLttN70iZgkAcTR6LbpynUmeSGxuQb8l09joE4rb6/Xp\nONVLuE4kFldqkHx4j+wrVzgdGYHezJw677Xl6JxZdFwQXhE1RC3jzTEVkvkPgefh/xKFgg/Cl3Ag\n0AcLS0usHJ3Ql5fx/a4dqNKURuoJYAAbBzdXcm7fxv4VD4OCtUJBw/G+HNi2CXFZKfevXePdueGc\nC1vG3uDJONs706v5IJyquPJqnabs3BGPZ7u1lRzm0vmxrFoXDRic6sMekIfnDGodwt5vEnFxqcJP\neVvJyShEeesGtjZ2LN+wkw8Cw3CSK7Bu/iFJETOZ0G6RAEZbz0Ti8YqHyZ+hh4cHMRFhKG8qWbog\nlusX77P3biLtGw/k+MVtwlCyR/ex8kAANRzrIxKJaVW/B+l37zCuzXKT+03Pu4aDwpUJbWPY83XC\nH5aJeZgu++GrX3in/T8ngvgvy8H8HfZ3KAM0wpD2etx+xpAW+0MmEokaAM7Apf9xX/8K8/DwYGNS\nHHal0OMtbwFkjp2LwS/w+XViQ0WRwKOmVanR6aDwzj0jgKjbphmZ129xMHKz0O3/27XbbPSNoCAj\nl9SgJZhJrLn/SxrF2XnCdQZgqHyP+xd+pquPJ2JAr9VyNiGRkoI8vk5K5OTySE5GLaPg7l3kVRwe\nXGPgaOp368Hp5ZE07meQtpEoFDjXr4+VjTXlOh2tps6gVchUFO6vCOoJD02jUlN4PZ3ynAJ0ep2g\nfmDrXp2WQdNp4huMQ+M3kDtUoYaZB+PqTqX47n1srOwAuHvvOr/e/pGdP8eS+m0EGQUGylFmoeDy\n+VtC9/qTOszLdKU4uzriGzieklwd41rEgL4aHwSGCUUCzjXr8sYUH2KPBLD1dCR7v02kQ+MhOLs+\nWTbmYVqqjY0PIT2S6NnCiwPn16J57In94T7cqtRhUOsp9Gwxib3fJeDi7PbE/RYU5Qr9NCKR+A/N\ndHl0/koVaY3nNg/mz9ijSgchvobepz8zU+almba/vI9GJBJpgCi9Xj/zseNhwDS9Xi/5A2uZAZ8D\n9YH6er0+/wnn/Wf6aB6aUqlkZUwKRUWlWFlZ4BdY0Yj3PO8RsHSukD7TqtTsnxfPq841EFuY4T6x\nnwA2x6OTaNKtJV9tOcLdC7/g8mpNtOpS3vMcwrnUo7TzCn5EGTqKVp69sa/uQm76XU6v2UyXaV7C\nPT6LSkGdV4TITEqHORXNpgdmzqL11FnYVq9Oflo6n82abqgo00NZiRqxVEq1117n9UFDsXM3pH60\nKhXfxkVTVqrl7aBpSBQK8tPS+CE5EV1eJv1mBAgczf6lK+nUzAupRMHWM0mIHa1pE1ShKHAyYjFv\nDBvJ+RUJuN6xwkpmR07hfcxkYn7LvoWlkw0jx8xGKlWg0ajYszWRHnUmYiOvwifn4vBobk1kXNgT\nGw6jDnjyduum3Lh8F2uRC01rtmf3nY30Whxb6WdzImwBk16bY2iu/J2mQeF+j6XbVh4IwK9rbKV9\n7P0mkYGtgoXvU85ONqmcHLPPG7HYnKm9koFHRzdPqTTTxdTeHv0cnjT2+fFChBehmvz/rRHzWe1f\n3bD5nIEmERgDdNXr9ceect5/Dmj+rD2UmnlYpjzZ08sIoJRKJTHJCUJRQP8uPdl+6FOKSkuwspAx\n2XMSHh4enDp1Cq+wedjVq4O5hQht9n36LZgIwOapKym8l8nIhIWcSNpOy2F+lbiVUxtW8MFUT7Qq\nNRvHT6N609cQiUWIxGKa9OuFwsGBL1Zt4L2gYKPrziR/RKP+g/nuo2TaPgCBL6OW0dLbF3V2DufX\nr6X15BABHL6PWExm+m3s69aj1bRZ5KelcXlNHD3HjqQoL58zn35KVloab77akFEDBhMbu5H335/E\nrduX2fl5IlpxGTKFFRRocLBzJTfzDl5N51PdsS4lWhXxh0IwNzPD0cmVzkNHIJU+UuGlUXF488eU\nFZfStdlYLqh3Ef/xEpOOLfFYMI5VHOnfZIZwLPnoTMzsrGg1f2alsuddweNpVvtVQwT0O07Xe8R0\nXpf35fjFbej1OkQiMe0bD+Sj4/OwlFozrkPF6OatpyPp2mwsTjbVheu3XZpF7n21keRLyrHZtG3Q\nh0M/rMO/60oBhDIL0jn602ZhdPPT9vZ442VmQTrHL24jW3OLJu+8Klz7iomTHAAAIABJREFUooHg\n/5u0zLPav71hMxewN3Hc4cFrz2QikWgJ4AmMfBrIPLR58+YJX7dr14527do9663+M6ZUKvFbtoCa\n/T7g5v4vKVep6DHBk1Vz5tGmTRtDBLNsDm/798ddIUOrKiFiRRKxUxcYgdFNpZKFm1PpuCJRcOhH\npgZz79ptpHIpxVn5VKtXG4lCjq5cZLpf5eYdtnhNx1xbhkJhyfvBfpX2qyks5IsVK4UpnW/064te\nV85PWzcLIAPwxqChnIpaRpvgqTQbNZazq+LIu34dq5JSdMVqegdMYEdSskEGZttmeo4diVQuRyqX\n02PCeDRqNXcOHaNNG4NE/8KFkfyQm0XPpGTh/X2zMBKbGzp830s2Ukt2tfegz9u+7Pw51ghkAKRS\nBRmqNIY3m4m13AH5g/4lj5oeeM8azJyQIMTlUnRmGl551YkP3WYY8SCeHRex7vh89k72xuWVBqhQ\nozcDzd0sasjqIrMyfyZHWCYqZv/55EqSMQ5W1ZDYlHEqPx5xuZQzX51mdNtwI5ApKVWRmZ3Fgpip\nTJnoK1Sd9WoxiVO3N2PjoCD19DJhbWu5AyJLNauTl5oEgUcjkytXL1Hf/BruVQwaek427vRs4VXJ\nwb/oQoGXFWYGO3HiBCdOnHgha/8dQPMzBp7mcWvIM/IsIpFoFjAF8NXr9Zuf5ZpHgeb/q0UnJ1Kz\n3wd8vfUo7zxII2lVKgLnzSEamL40DKlHVY4n7aJF/w44uFflbf/+xCQnELNwmbBOVHIKrwZUSPFL\nFAo+WBbFbq+xVKlTC8cGjZCYlaNVqRGb6U1WixVl59DTfxHXj+7ErDyfjF9vcHH/UXQ6PWKxiBrN\nX0et0tBqhq+wz9MRS8m4fAnrqsbNlrbu7rw52pND3v64ub2KNE9FlTtiJnaIY8evUUhlMiydnTkV\ntQxLM5FRqTIY+mKKNAZeycPDA3lVe97zM35/LWaHcGycf6UOerFIjMxCQVFhPhqNqlJEoxDbYC13\nMCKSlTeVxIdvYew7UQKhv+bodAocso2eqgvVOZTrSpnSIYECdQ57f06mT7epwkTMLZ+GolQqfzdl\nqtFoBSAAgxMd3HoqiSd9WbzQUHqtyi9FrlDw6berGfP+gkcinAjcq7vRpm0btuxPFORX0iyPCiXN\ni+ZGkXQyEJmFJbUauBKRPOOJIPNoCXNrBxVrj8+i55veQj+OKcL9RQPBywozgz3+AD5//vzntvbf\nATR7gQiRSOTxsMlSJBJ5AK2Bqb93sUgk8gfCgBl6vX7Vi9vm32dKpZLla5IoKNViYyEhaPwfH9tr\nygpKNdzc/yXvBE1DnZ3DN4mr0Zfr0Evl+EYupFfkDIEnOR61mraju+LgXpXC0pLH1imlmokoRWLn\nSMuQ2ZxPjOO1zq34LOYjWgzoyonEKCOO5sCSedi7uOLsUQ99x/4c/iicG4kb6bxgQcU5M2bydkCQ\nkbNvPWUa+3wmYeNWudRZ7uCAh2NDejT1Yv0GX3w7xCGTKDDTSPjywCHeXRCOOjuHk/Nmm+yLsZJW\nVMrll5biZuL9mdkqKpUW6/Q6SkpV3C1KZ+euBPr19RY4mp27EriZf7kSkRwXlSJMpwRDZNT7LT+S\nvp2Hq3sDLErEdPYYyLGfNjOuw0JkFgp2n08UQAYMQ8qG9AhjZUwKUTFPfqpX3lRy63IWsuqVHXXN\nV2oSvyiVrg0CkbkqeMdRxeYvFrPl1FIUEitEIjEdXhtCmuVRwHTvivKmEhsbOxo1avy73ImpyGRs\n+3BSzgbRoF7DJzZevmggeFlh9uLt7wCaNYAPsEckEoU+OLYAuAUkPTxJJBLVAG4A8/R6/cIHxwYD\n0cBB4IRIJHr7kXUL9Hr95b9g/y/UlEolvkvCaeLjieNDPbMl4cRNn/U/g42NhZSS3DzU2Tl8v3Yd\n7/oYuIwvVy6i/czpRr0s7YMn8tXqdbSf0BdrC5mwt+jk1Vy6+CMOJqKUspISJAoFDQYM4dzaBN7u\n35sfDxxBV1bERp8xVKvXAIWdHe+OGsOJ5ET2xU8jLzMbhwYNaT1pohGodF28iK+SU3CcXPHHLlEo\nkNrYIMnN4UJ0BK9NniIA06l5odQ1s+PX9PU0qv+q4MQ71BrK6luLhFLltvPC2JsUJ6TPNGo1eyJW\n0sDhFUFuxVyjMRmFWZUqiD8ymSrutSlXiDFT6Sghjd0XI7C0taN9h/HsP7AJvb4ckciM9h3Go/4s\nppJzVhWUIqtWsXZGfjp7clLpFl2hjp0atYyizOuCc9WJdSYnYhYXPv2pPi4qBUdFdZOOOv3eHca0\nWm4EeEPfm8Hur+IY1DqkksN9nJDvPagzCeGpz9xk+aTIpEG9hk8Vw3zRQPBfHjj2T7G/HGj0er1K\nJBK9jwEwNlAhQTNZrzfqOhM98u+hdX7wf5cH/x61L4D3X8im/0JbviaJJj6eRk63iY8ny9cksSJ8\n0f+09mRPL9oPHcJPqVsEkAEQi3Ume1nKS3WcW7GD2KkLBH6nmf9I2nV9my8jF9MqZEZFWmt5JNYP\nIg3b6tVpPNabb7dvQV9uxp1L1+kTugDn2hVzU3qHzuf0xlVY2NegXGyax9GVGjtRrUqFNiODjzZ+\nbPisklP+r70zj4uq3B//+wEGBAXcckO7Q4t7ZaVtYmXZtdu+3Mwsl8RKRUFFcMV9RXZwhxKtNOub\nZen9dSu1ssW6t1VTs2TcNVdEhmWA8/vjmRlmOcMM62j3vF+veQGH85zzmXNmns95PitnTSZCdTo2\nJi60VjyYODbBuvJoFdqBNmXtrIojtEMHurw8hvffWEvBnl/R+3dlUPg0QgJbWCdJv/NlfDs3kdsS\nKiPOvp2biPFcHqG3dqLrmLGVwQYrEokZPpiXoybRJLgFjzxeGbxQUmKkrPSS030ICtHZrYz+bdhI\nxNQ4uyZofWLj+WjaKKuC8KnwUe2I2ThYV2VEljHfRL8bB/HWl0l2EV1rPk9Af/01qsU0C5QTbDuV\nYTfhqmXuzxmXwMM3jvTYd+JqZVLhW1kSR21V1BCKQCuWWb9obQIuM4bFT+SaV4Y6bc9bmctriUlu\nx8tVx3IKTEUE6wKtUWIWHn5xOIaz53kical1285li7kn6kmnopobI+NZvSiFPhERxEyfQtMX+lv3\nOX/0BN9u2ErR0TMYC410G/Yihs92cPHoUcrLTIS0a4+uSRPyD/5BYOMm/HP6DCdZty1PQdEJiioa\n2a1o5PmNvDNyFI+vfrUy4GDKJFr7+tGtU0cmjJA5Q8nZOVw0mQjR6YgdIZu6GfIMTBmdJE1C/kEc\nOXOAdWeXcc/CymTPL2ck8HzjkXQwO6KhMtLImG+ie+BTfHRkI6WBFfgX+dC/wwDW/jaHexanO8lZ\n9P4aTu87jOG0kUGD5lpNZ2++mYD+qiDWv5trf4/yDEwZtcRqPsvZm8idCZNx5IcVcwg87svDncap\n+mg+2ZXGM8/fS8qsbJtSNo+y68Tb1onYElFVUHTOGnVWoVTQvGM5IaFNuUnnHPb8kymXpEz7SddV\nZJYMhZ5gt6+rcv1q0WPv7V5CaVkRA8zVCmoTUVbbEOjqjq/PkOvLgSs96kyjCkJ06vXMgnXuo75l\n1NhMekU/Q5jZ1xKTOJP0+NlWZXNNWBh/+vjZneOGxwfx8ZIsHoiLrKw3lvQqfafMZ9Hrb9C+fXsu\nmoppZaOImrVvS/+Jkfy+dAPDH32a8VlZ3DNrZmXOSUoqXZ54kp/WrcVXoF4+xlfhtqf6sWnJWj5L\nSeWeCeOt47cvSabr0wP4vyEv0LhVK1mzbMx4wnv3odRo5MXpM8BfR4/4KbQxj/nnxEl00jWjTZuW\nRE0byHtv5WI8IyeBzNixbHg9l3NmpdS5rKmdkoFKB3NQqI6SwiJ8SxV0ioKvSaHEVIRvSGPVlZch\nv4CThrMEljZmaUYkIU1bUVZcwlOdX+GE39dO90kfrmfh8jgWz0ln7/eHyPctUq3cfGjPQTKSEnjv\nrVyKikx0uDaA/x5cilACaBysI3riQNXSMPff8BxZyTmMmRjJpaJLrPxxEi0bdeCB7oMIMQcmTJ0t\nzU62Crm41MjWvWksXOZsknJl9iqrsF91VuU7UVuZNAvz555mcbWOKKttteXK8Z7Vaavu/v/raCua\nywxbH41l0v1xabZHPpqY6ZO46oU+TiuT069/Qfq8xYAMTX4xYQZGv0bcM7bSNPTR/GkUnz9Jmy6d\n8PEN4MYnnqWp2RRmfOdNhCi3W9FYjn3h9Y+owBf/F553UiTfrMqm5yuj+Do1Gb+SUv4+crT1fJ8u\nT6fPsIdBwMerNnLmyGnKiopo1FRGvodcrafn8BEENm/Ou8OH8M/Va+2O/3lqIrdFjXE658+Tk3im\n7zi2fZ5BzPhBvPPhVi4VldAkMIBxIyuDKqrKnXji2f7Ezcjg8ZHzrcUo318xjQ5/CyF81BSnc34c\nE0Xs7faT/UO3DCc4sLnbXAxDnoEFM5P57uRxHp6WKHvQ5B3g07R5tAu9hmLTcV7PyVC991WtMgJa\nF1JS5ssDt1YqkTf/lcB1nVoydXasXd21rBSbp/IJ6k/ljuey5MscPbef9s070e/GQXbRdZ5Otq6a\nmL3/x1xahbX0eLVQ21wYS7dR5/FrVMdXd/8rEW1F8xdGr9eTNXkaKatXUWAqJVjn73EgQIGpSLU2\n2SVTZamVcL2e1+bOYVZyMtumj8PXvxEVxkuEtWzBH2WCCp8gwAfFOl42SpsVNcrqo7Gser7PWEtm\n/AziU1O5VuVJX6koxz8oCL9GgdwwZBifrn8dpbSUY//9Dw+MHsCOte9TcKmM++curnTqJ8n6ZYHN\nm/NlShK3DB1OQGgoxvPn7CZ4IXxUVxdny84QEBDEjd2fYsqiFB4dG2d1+o+fNY/UWdPR6/VVOpjT\nluVYlQzIHi6Pj5zP758tY3d2Kt1HVK68dixKYEgX+/yXZ3tPZNOuLPyblrl1WOvD9axam8ngp0ax\ne+EyLpZd4KJvIc/MWW4NDBg7O4nMmROdPgNVrTL+PHWM5//u4Oj/x1z2ns918n/YmskspVjOnyog\n7/BBwtqF0Tqspdnxn8bDncZRUHTOKS9nzecJhN/QstpP9Gp+m6NnD3Dy8AX6Xx1rXS2MeGoSBaYz\nNG3ckmu6tGPSzBi789Q2BLq647Xcm+qhKZrLEL1eXyPHf7AuULWBWROdvfIJ1+vJzaxskpVnMDB6\ncRIPT68ML/4icSE+KPg1DqLisAEFyIyfQWr2Si6aignRNSIzfgZ6vZ7DBw/SQbWysi+lRiNKRQWh\nHTpw66govkxO4sYXI/l6y6c0adOW+ydVrkr8g4KImBjPdytX0HvcBHpPmMiuZVm07NiJ/+Tm0HNo\nJE3DZGkZxVyLzPGcpsJCzpw5yqatSxg4b5Y1jPlS/nku+vjxXGw8PTt3YsJLkS4dzK4ahiECyJoW\nY9d2oSOhqia4AuUEK5erJy2q0TqsJf39hvDOryvoM3GqXWDALYPGk7oih/RF9k/Krpzrxy/up9NN\nnVUd/VVFqdmZn/4WRHE7uTrr2bQfy+ZvYLTZHPndf36wa+XcSBfEsLvn8kN5brXNRmoKf8OuhVZz\noOX4L949nw07ExnWZxbFJiNxIxZa83iyknPYs2c3vZvXPAS6uiHU7vb/q/tvqotmOruCsZSTsZSL\neebBR1jy5mp6RT9jXXV8l/G2nY9GjbHTE/AbNMzZ9LUik4g42VRsd/ISsqdOceplA/DkyFEcqyin\nj42P5YuUVLoNfJ7DG94kLMCfIh9fft23j9vjp7B/ywf0fGUk3y1fRkSs8xP/zuQkIibI7R9GR9En\nfgqBLVrwbVYmd4+X8myZNB5dYCD95i2wWw35Hy6keUETRHNfbhnyCN9t/YCi/HzOKSYemLXQuu9P\nWUtYlVD5fgwGA6krcrhYZOLAnl955KVkp4ZhJ/+zlrQlzk7yDoX9+Oq3zVQoFfgIH+7q+BhHGn9S\nbR/DlNFLuODrR8Rk58CA3a8vJswv2G7iApwm6dydCcxIi2LTOx/RpZmzo3/v+VyS09Xlsr6X/R9Y\nS9Xc1elRvtr/gV3Gvitzl6sgAE/euyURNDBUx/lTBTz0N+eUurQtUTzfZwpXhbSn2GRkZ/5S8k+a\nXK6yqmPGs/O5eFCnrar9wfm+XIm10zTTmQYGg4HoxNncGv08bcxKJTEjh/hBL/H26x9wySRXMu6U\nDMgExbZumop1j41jTno6r6WmOo0Pa9mSpvf145tV2ZQZjZw/dIjGrVrza2oyGzIzEMiwbd9O17I3\nNZFiXYA8vrmkv6seM6VGI03atLW2Zc4/fozPUhZzZt9ebhsZxferV/Dt0iyEjw9KRQXKmUsElwTx\n3G1xrPt+ATs3rOeJAVFsenc1D0ydY7dyumlMHJMXLKRVq1YcO32GEycu0D9qLq0Dgwi95QCbsqfx\n5IhKH803m9NImx/n9N6feLY/M8ZmMPy+eVZfyKvbpjMn03kirgp9uJ6Fy+J4YUS0amDAb9/v45E7\ns5wcz46rslXvLEQfrqd9h/ZMGptk56P5+L9pLM50bco7dewMvx1ZbxcG/daXSZRXlNmZheo6gdIS\nWmxROEcPn2D9kURuDu/Lz4e+sEbKNWnUjO27NzLgrgk00gVxcO9xhtwh67Q10gXx8C0j2LQry1pn\nrboTe2gbHWu/mUqxqZBO3cOrHF9VyPXEMQmXVW+dywFN0VyhpGav4Nbo5+2SLG+Nfp63X//Q6viv\nijyDgdTs1eSbSvltzz5aqEaF2TcV23vsqOqxYkdEMioxiZ7msjSlRiP709NYPnsmAhizaD43R0Vy\nVVAQ1xuNbIpNoNRopNszA/gyJYneEyY6+WgsuTm3DBtulcdUWIivn477Z80jsFlz7ujSmSZNmpBv\nMuFbUoJvixbkHT8pO04KPx4e8DIBjQI5X3he1Z/zyx+HeDA6jjPLV9A/KtauFP+dL0Tx4epYOnfq\nSpMgHWnz45wUtiHPwIy4xQy/L9nOFzL8vnm8t3EtEX0iVK+XK7OKPlzP6zkZjJ2dxC2Dxlt9NB8s\njmdItykuJy61yUuv17M4cyKZqTkUFphoHKxjcaazn8eWY8ePEdnbue9M5tYYO0XiaQJldcxHtma7\nO/tUFhV94rYx1vI0b36xkEvFssVEsclIsanQTtldFdKe5yLi2XYqo8YRa/36VL4fd7jKvdH8N85o\niuYKpcBUTBsVx79juRg18gwGxiQupHvMK4QGBRF44A+2z5xC39kLbUxfidwyvLK/TanRSFmhc/Ih\nSJ/P8viJJGfncKrMRIifjuXxsmV09LSp3BwVabea6Bs7mi9nJtB79lxuHjacXUuzOH/wDwKbt8TX\nT8cPuWs4d/B37p4yndAOHWRrgelT6BM7iZbXXS+LY2alsWySc1vqiWNksqYuyJ+ARvL6lBVcUl05\nKeWK3FZWYbeCAKlsOnbvSnaauinIkGdgStQSmvmEq/pCjGfK7Pa1TLhlopDzx0p5onucalisXq8n\nc+ZE5iZl8MueQ7Tx7UDb883o0EM9FLsq9Hq9SzOZo1xBoTqXfWdahXawUySeJFBWN/xXrTzNiH4L\nrC0LGumCGNRnCmlbRrN+ZyKnCw9RoSvj6NnKopxQs5VVXRft1GqnOaMpmisUS1MyR8e/pVxMVaRm\nr6Z7TGWC5FXXX8sdo4ay+aUhtOnZiz/3/ELjFi3tmop9s2QBN1yjd3nMcL2erHnOX8oCUwlXBQVx\n/thxvn/3Q8orwNcHWvlA+bpcTp45w4mff0YXGkpgaCg3DhhE07D2XDh2lJ83vkn+8WOEhIURWF5O\nxZb3OBEQQKhOx7JJctIbMz3BLmHT8rRNiaCkuIiARoG0DmnN14mLuDN+slWRfp24iGZtZWABfj6q\n5qrgRq4nhqyUbB7qGsMHu1aqtlYOCpVfLcf8jvU7E3nydue8kaFPj6HXXTdbn/qb0ZiYGxfTSBfE\nxq9S6nziUlMEX/4RRfE1zue55HucjOUZztFqVUzCcvIe7/A+Xbd1drUKUJQKu799hC9P3j7GupLy\npCinO+p6BTImNpKYYTPQlTTHR/hQoVRgCjhH+po5NTreXwFN0TQQeQYDKdk55JtLpkwwZ7HXlPEj\nRlp9NBbH/38z3iAjfqbbsfmmUkIdTElXXX8trcLacMeolyg6e45dman8mLUYxccPUVFGcPElZqpk\n97sjWBfAn7//wbfvbOXO2MqK0TtnJTDlwf7Mf3MDT7y2tnL7kkR6Do0kqFlzyoqLiZgQR2gHmc9T\n9nousSMiSVmdw6TkNPbs28ftk6bS5nq5yhmVmMTyeOm3WDAzmXdyErnv0cGgQMkfR9m9IIWKAF98\nSsopPHiQngvk++n27AD+vTKJvw+ZaDVX/Xd9GpmzXE9YxvwyGrUP4t4bnuGtnck8GxFr9YVs2ZvO\nwmXSn+P4tGyp9mxLI10QrQM6crPvUOtTv+3k17f7AKcSMu4mVHdmKzVFMPD2qeTuTLDrO7Nlfxqv\nbshwWoW4O767ydtxvOJboqpMLX5Cy98dWnSsdlFOd9fHsV2B5Vy1UeT+foE80WOsTQWExBof66+A\nFnXWAFjChzuPrfRh7MtUN/1UB8eoM8cmZq6Inj6NwMFPO5mSTq/I5URJKV2jZROxX956E+PhQ/TQ\nX0vCuFjVYxsMBtIzKzt9xoy17/RpMBh45OWX6Jex3Ol8X8dN4M6kVKftH7w0nDa39qL7PwcQ2qG9\n9X+/L5hLgamCm8ZUFtP8PCuJm18cbjWxlb2xxrqy2rlzJzMS0hnwzFQKLp3j88/f4fTpIzQPacMN\nnfrw0eEt3LdARq2dOXCAz2fP4tYbbqJVs2DGj6y6Y+nEsdO5KWAIjfyDOH3hKDt+eZvychN/nP6e\nrFcXWf0zjhFaG79K4bFeI50mVEspF0uSYeGlS0SERtWooZgnjcKkXDFOY9//Yw6twlpaI8DUzuPJ\n8atKaFTz8Wz8cY6cnLvHOaxWoqyrlTWfT+fpXuO5KqS9nTzVjXZTixh7dftU1ZVRTaLE/irJnFd0\nh01v4G1FI8OHhzpXO34zl0wVc1N9Y+ujsUzYu9NXMmXQYHKz3+LnIwfxDQ2i89/CSIgZ51IZGgwG\nJsQn0affOGt9ry8+SSMl0d7p/EzMOMJjncNVt02I4b7UDKftmyOH82BGJkVnz7H7nY0yokypoODH\nH3kwPds5DDt3BXeNl8UsTy5LZ+1iOelMmDCNjtf907nr5ZbXeOrBaI6d/J0NH2fQtkNn/I0+hAYW\nsvZd+84Trp7cLT6ah7rGWFcyGz9Ppl+3Qaq1xmwVhmMYbmVXSzmBbj2UyJk/z1FRGMhAm7bI7+1e\nYu31UtWKoqos+TGxkWQl5/DdVz/wch/nNs6eTIaeZOFXFf6blZyjOv6z8+mEhDS1Krknnu3Pe299\nZP374sUL3NMspsbZ//byOyuCnG/GW1dGtcl7caXEt51Kr1H4t7fQwpuvMFyFD581eScKJVyvJyt+\nCqnZqzlZVkqonz9TBg0mc9EG+vcYR99r5MT50Y9pVPUpS8/MsSoZkB0l+/QbR3pmDqnJlV/81sHB\nqs54Xxfl+FsHtufTibEEtGlNRGxlmZxPpk52qhDgHxSEUl5hHRuiqzR3FF4qVe16qSD3D2tzHdcG\nXc+g8DjzRJdmV0XYXRn8hUvjGP7cWJqJcPx8dDzUYzitQjrQMqTSkez49B4c2ByfxsXszF/Kwb3H\nCRZt7ZRMsclI3uGDRN6RSkHRWTZ/t8KmEKa/y0rKtnK5MludP15gnfyv6/mYXWdMxzyQqjh17Ayb\nT62wawt9VUh7O59GVQEDruTTKY2dFIZt5F5VK6nqUNN2BZ6iBQM4oymaBiBUp1OdUEN13vvghev1\nZMybb/07NjqB/j3sm3H17zGOzJQckjPsv/wWf9OuP/bz64kVRNw6gBYt5UQZEBDEpUJ7BWoJf+4c\nbWM6zEgjaVI846ZPp8+8eTbl+Jfw6J3D2fj/ZlmVDEiF0m/BIr7NyuLe6MrVkSUMW5ojU1keXznp\nNG7ir9r1UuBj/d2nwtdsupmNv18g9zQbZp28416JcspQt41G0ofr6Xx9N6fkRVtfhNqEm75mjp3C\nCA6UQReWiTOsXZg1N2TAXZVtB7adSgfcR0m5muhsFdj23RvxFX5kbB1DQGM/bovo4ZGpyJBn4NTh\nfIZG2ObaLOH+G55zmkhdBQzUdCL2JNrNExqukZp6Muf/IpqiaQAmjIh06aOpb6RSyCbfVEaozo8J\nI0aomsKMF000aqkSputQsiTPYGB0onwvfc3v5V8LkvhHj+G0aNmekhIjTRrbf2Ftw58t1ZMt4c83\nr3mLX6dnUBHog1+pD4/2GEpwk+Y0atFUNfflouGQVWmXGo18MnMaPqXSN2M5poXo6JeIi1vE/X1f\nsZr2Nr2bQf8+QykpMbL+/XmEtWzBD+VraBfe0s4n0kgXRLuQTqqOe9snd1eTlkkUOvVYAakkEmes\nsG6znTgvlZ7HcPIgRQUmHrza9UToztHuKs8lrF0YBUVn2fr9q069aTw1FWUl51iDBSznfbZ3HFkf\nR7F+ywq346uSz5OJ2JXyqk7OTk0VgafnqCuF+FdC89HUA3kGAymrs7loKiNE58eEl0YAVDvqTB4n\nh4ulJkL8dUx4qXqRalIpLKFzTEylgktPZ1l8nNNxYqMT6BbiXLJkz8VcuxXN2OkJ+D3v7G/6de4K\nHrx3pKqPRg1L1eBzpwrY/dteHnlyEm3bXU9JiZEdO9IJ7hBA6MtRTuf59MVXuLrZDdYOl74l58jI\nmePaMW4wkJGxmsLCUqCUirJyfH2CaNxEx9iYl6xyqtnVN36VrOq4V/dFVO3Ydtd3ZecXO5kZlcnw\nvvPN5VRyVM1aan4fV3LZlnWx+GYM/ymwhge7GlsVrvwPWw8tJudt90mOFtTkq+lE7C44QU1BANU6\nf3VL1PwV0IIBqklDKpo8g4GoRUvoNqpyct+zPJ2lk50nd7fHWbgN4fjIAAAXnklEQVSE7i9XroJ2\nr0pj6RTPjzN2+nT8Bg9xDkJYt5bMefPs9jUYDEwak2Q1n1l8NIuz7JXGkEmTaTvaubzK9pgYel/b\n2SnqTA3pSE/iH90qz7XuswRaXtuUtm1bEB09AgWkuc1hFTh90EDee+sjjBdNBIW4LmtfXdQcxEfP\nHmDLz8udwn3VkhNtJy3HiDGQk/mmXVk8FxFvt80ywd93+2NE3lGZlW+JMjt+8QB33XeL3UToSdSX\nGoY8A0MfG090/6VO//M0csvxOkk53/AoGq6+cBf84CqnpTpy/lUiyaqDFgxwGZOyOtuqZECae7qN\niiFldTaZ8+e5GW17nByrkrlw7Ag/bX6bcl9fnhs7lvWZmR4pm5MFBVyjYn46WlDgtK9er2dx1kQy\nU3IwFpgICtY5KRlw7W+6vXtnUj2MoMtKybEqGZAmusH3zOXn4lySUiqP4crcFhGhXtqlNqiZU3ad\n2MiMtCjZeKwKE4ijOWf04MmqJjcfm5wQy7bzx+W98ClrpFpOZfn2GKeJzGKaWTw7nYN7j1trc7nC\nogjPnyrg7MWTqqa+vb/9yujBk6tldlIrZOmN5l9VmRIXzEymojCQJ3tX5rRs+DKRBTOTWbU208UR\nq3cODfdoiqaOuWgqI0Rlcv/TVOZihIvjlJoINSuZb996jd4TJ1if7EcnJrIsPt6tsjly8CDtVZTC\nkYMHVffX6/VOjn9HJoyItPpo7PxN8Z77m4wXTTQKUfEH/Wn/pXVVbaAusTWrhLbR8dn5NHRKYzul\n4qpmmStc+W0qbLLcLdvyDst7UeFXrD7Gr8TlefJPmhhyxwIKis7yyc9vMuzxWLrccrVdrxbH0v83\nNjlA9idTGdFvgXXiXf3JZJ68baI1h6QqZWHrf5DtAipDpN1l/9cXVTn3d3+V5yTjwN7xrPrC2fxX\n03NouMfH/S4a1SFEJ9sk2yLDbqun00P85crhp81vW5UMSKXVOSaGlOxst8do2749O1OSrfKUGo3s\nTEmmXfv2bka6JlyvZ1n8RMreyOXEsgzK3shlWXz1Ek+DQnQUl9pfo+JSI0EhDfultUzCN/sO5f7W\n0USERnHpT4W4OSOtUWU1YUxsJFv2p1Fsku+x2GTk1c+mcqHwtN22t75Mon27MABGxQ4hafMI3ty5\nmI1fpXD07AFe3T6NOUnO+UdQmdlvce4/efsYxv49k4jQKKaOSsKQZ7DZrzJCrX2L63nitigWbRrG\nus/mkbk1hidvi6Z9i+s5ffEIm79bTskFX4YPjLYewxHLCq5bt+7qwRL5DfuUb3u9T188yvqdiaze\nPonCS5dQKoSqjI10jWtwjlS7+7dlf6rV36NRNdqKpo6Z8NIIlz6a6h0nkqiFSyj39XXRSdL9Cims\nRUua3t+Pb1euRKmoQPj40H3gIBp/+km1ZHEkXK+vVaLpmAmRTj6af+1JY+HShg3/rOtiihbUoo7a\nXhdMr+Ah1rwYIXy4/4bn2Ke8hyHPwKZXdzDxsWzrKmPVp5N4dmQ/3nvrI95c9aGTSctiytn4VbI1\ngkztPaiZfNq3uJ6O7W7FVFZCsyatrErGMRrNnRnscnnKt1zvBTOTyfvlDMPurvSp/S6mqxbevKZL\nWI3OoUWS1QwtGKAeUIs6q0mpmTyDgefGjuXOpCQVh/46J4e+2vhRS5Lo5Fi+P652pW/qAmuv+osm\nyiikrKkf5boAQv11jH+5dnXgPKWuG3hVxctDxnLi11K7TP8NXy6hbVd/QkKaOjmzZSDCCpeBCLJJ\n2QO8800a4x7OcvkeXDnKN3+3gsd6jWTR+0OZ/PhaNn+33G2EnSOXWySWq/ea8e/RRP99uV3dMUuF\nhfrkSu+yqUWdVRNvl6CpDTJEOVElRNm9j8YyPjk7h4vm8v2xtSzmWdfkGQyMWZBE95dsoutWp5E1\ntf6VoSdhwnXF6MGTuTHwKbbv3miXUf/V6dc4dOgIrQM62mXZu6qJZomkWjw7gx++2oeiKAyKmOz0\nxG55D2oRarYlb97dPxfF5EvJBV8GRUxyknvVF+NZucF1S2rbQIO8wwcJaxdG67CW1ZpU62pCdvXg\nsPVQIs1aB9dJKLWnXG5KuCZoiqaaXMmKBmySLsvKCPVznXR5JRI9NYHAJ53zcoo25ZKxoP4DARqq\n5a6n4dMWJfDxz2+oTvzv/zGXsiJfuwls1ceTeOr2sTbFJxNY/e5Cu4CA4QOjraVyLMrMVnENHxht\nF14N5tXA1rEEBgY5BRnYUptJtS4nZFcPDjvzl9K4SZMGXVn8FcKhNUVTTa50RfNXZujEyVz9ovNT\n6OHXMshNqv8ChLVJHKxZB8nKCTXrY/sSN1CZb3Ps4j7V/634Ygwj+yx12r7w3cFc16YHfr7+NO9Y\n7hS660lSo+P/ZYfLKLcVjWszqdblhKz2HioTZWc26Mrir1BY84rPoxFCtAfSgH6AAD4BximKcsSD\nsQHAPOB5oCnwIzBJUZQv6k9ijfoi1N9FHTh/9w7lujC5uCpp4sm5qypsqSZjaBt/u/Dprt06q0ZE\nFSgnWLJyOsvmpzlVHPAxBamO6RTWC4HAv2kZU2c7B1W4c2Zb/j/06TG0DujI4TP7eS4i3mqSa6QL\n4va2zzB8YDSdO3a1u961yTGpy/wUtffoF1qMcrw573+71GqabIgQ7MslUOJyocHDm4UQgcB2oCMw\nGHgBuB7YZv6fO14FIoHpwMPACeAjIcSN9SOxRn0y/uVIdq9OswvB3r06jfEvVx026hiabGka5iok\nt66pKmLNWcZh3Bj4NKf3VfDbj8ep8C1lTGwkzVoHW8NlLRSbjNzQqyMRfSJYsHwiP5Tnsu1UBj+U\n59IuvAVXNb5adYyfj44C5USVT+oWpbp03SLV8G19uJ5ed93M47eN5uqWnez8PqcvHuXTX9YTeUeK\n0/W2TKqOMnkyqdZmrLv3OCY2kjN5pTx5+xie7T2Rx3qNZOv3r1JQdLbeQ7C1cGh7Gtx0JoSIAZKA\njoqi5Jm36YEDQJyiKC4LJgkhbgJ+AIYpirLWvM0X2APsUxTlCRfjNNPZZUyewcDc1HT25x2n/GIh\nN14dztTZsVWuThrSka+GJxFro4ZNICI0ioKic2z9PodnbSLOtuxPZfS0gaTPWudUE81VRJQloECG\nIVeOyfl0Go/3GsWRxp841Tqr7mrPohxLL/jZ1URzF5xgWy3gk5/f4IzxCF1u+RuTZkZ7rYaYq8/I\npl1Z6HsG1/vnpC7ruXmDK9109ijwjUXJACiKYhBCfAk8jjSpueIxoBTYaDO2XAixAZgkhNApiqLV\nhLjCEAoU7zcxutN8a16NuxwOb5cEcWcaMeQZ2Pv9Ifr9PYjN3y23KgaLnA93Gs8bOUspLSti064s\nmzpcRVWeM9i3OQ/dMpzN3y239qkJ0AVZm61Zzu2JWU8N25yUNZ8nWHNSyipMLitZO+exzPM4F6c+\n81NcfUbOGA+TFJtS6+O7o6Zm2b8i3qgM0A3YrbJ9D9DVzdiuQJ6iKMUqY/2B62ovXsOwY8cOb4vg\nhLdkspqhbGqfWcxQrmSqa5NLddixY4dq9v+W/Wl2lYFbBnWg2GREUSpUJ+mDe48xoMcMnouI59ne\nE3kuIp4BPWbYmd9ssZwzOLA5A+6awOO3jSa/5BQdbmjMY0MjrJOzJ2a9qtCH61m1NpPV7y60mu7O\nK3lVXm99uJ6QkKZWJQPw+8kfrf4Qd+eryqRXU1x9RkLa+Vx2K4vLcT6oS7yhaJoD51W2nwOa1WKs\n5f9XBJfjB8tbMhnzTXbtCUAqm6KLJpcyuZvo65MdO3ZYn8RtfSi2T+LGfBP9bhzEW18uoUKpUJ3w\nik2F1SrhonbO1e8uZNXaTPbt32fdz5jvYvVRTb+ErQJ4dUOG2+vteN49R77ySkkaC64+I9d0qnkJ\npvricpwP6hKtBI2G1wkKlbXPHHvhBFZR++xyKAlSlWnE1sz14X+zyfl0GpH3z7fzQ3TqHl7tyCRP\nzDH1EfHkyfW+3CKtXMm8JneNV+T5X8YbiuY86isXV6sVx7FXuxgLlSsbjSsIu46LZh+NJWejqknh\ncraB276nF/vO4ujZA2R9HEXXbp1p1jrY6k+paadJT89dl8d1d70dWy2UlZu83sL4cv6M/C/hjaiz\nTwGdoih3O2zfDqAoSt8qxiYA04Cmtn4aIcQsYBIQohYMIITQQs40NDQ0qsmVHHW2GVgihNArimIA\na3hzb0C9JnolHwCzgWeAdeaxvsAA4CNXEWd1dbE0NDQ0NKqPN1Y0Qchs/iIgwbx5DtAYuElRFKN5\nv6uBg8AsRVHm2YxfD/wdqZTygNHAQ8CdiqL81FDvQ0NDQ0PDMxo86sysSO4DfgPWIlcmfwD3W5SM\nGWHzsmUY8BowF/gQCAP6a0pGQ0ND4zJFUZQr8gW0B94BLgD5wP8BHTwcGwAsAY4DRuAroI+XZVoA\nfAScASqAId68TkBPIBv5QFAIHAJeB/RelOlq4D3AYL5vp4EdwD+8ee8cjjPZfP8+vww+5xUqr3Lg\nRm9eK6ALMun6tPk+7gPGeukzNdPFdaoAjF68dx2AXPP3zgjsRz5cB3lRJr157HngErANuNWjsbUR\n2lsvIBBZsuZnZKWBR82/HwACPRj/BjJCbTjQ13yxjbX5AtaBTBeBz5CrtXLqQNHURiakIv4KaZq8\nGxgI/IpUhGFekqkrsBpZUPUe89jN5knhCW/dO5vjXAMUIOvv1VrR1MFnqgL5sHCbw6uRF2XqaZ7g\n3kNW+rgHGIEsquuNz1Q7levTF1mBZL2XZApCPuD9gawFeQ8wETlHeUum5sAx8xzwT2Sdye3IeauT\n23PX9svgjRcQA5iAcJttevO2Kj+wwE04rBgAX+RT1XvekMnhONc6yuel69RSZdvVSCU4y9vXyeHe\nHQbe97ZMwP8Dlpu/gHWhaGoll/lzNKe2ctThZ0ogq3i8c7nI5OJ4g82f8we9dJ0eMJ+/n8P2hUgF\nWKMHhVrKNN18br3NtiDgJLDB3bm9URmgLlCtlwZY6qVVhWq9NGAD0F8IUdPsstrIVF/UWCZFUc6o\nbDuMNHdUr+F6Hcmkhvne5QNl3pRJCDEIuBmYUgs56lyueqA2MvUFOgN1XWisrq/TUOAU8G8vyeRv\n/pnvsD0f6VevaRRtbWS6HThg3t8y1gh8ATwihKhSl1ypiuZyrJdWG5nqizqVSQjRBWiFXD57TSYh\n8RVCtBZCzEC2mch0N66+ZBJCNEVOnnGKolyohRx1KpeZUUKIYiFEoRDiUyFEhBdl6m3+GSSE+FoI\nUSqEOCWESBdCNPKSTHaYe2XdC7yuKEqFl2T6BGnOShRCdBFCNBZC3AdEA8sVRXFdebX+ZCpHPqA7\nUoI0yV1b1eArVdFcjvXSaiNTfVFnMpnzlVYAfyJ7AnlTpkTkcv8EEAsMVBRlhxdlSgL2K+bWFXVI\nbeVah/Sx3Q+8ZD7eNiHE3VWOqj+Z2iGfxjcgzYz9gMVIH80bXpLJkcFmGWt7L2ssk6IoJUAfpFl4\nD9Lv9zHwgaIoY70hEzIY4XohhHU/IYRArnQsx3aJVutMw1OWAncADymK4rikb2hSgfVAG2AIsF4I\n8bSiKFsbWhAhRB+kw/bmhj63OxRFGWrz55dCiM3IJ9q5SAdzQ+MDKMA6RVFmm7d9LoTwAxYKITop\nirLfC3LZMhj4QVEUtSf/BsHcRXgj0nrwPHAEGaQwUwhRrijKaC+ItQK5olonhIhG5kFOQ/p4QPoD\nXXKlrmhqWy/N1Vioeb202shUX9SJTEKIRcinzhcVRfnU2zIpinJcUZTvFUXZqijKQOAb5KrCGzKt\nAHKA40KIULMZzQ/wNf/tX/XwepPLCUVRLgFbgF5ekums+ecnDtv/jVxF9PCCTFaEELchfUhraihH\nXck0Ahnp+Q9FUdYrirJTUZQU5Or9FSHEDQ0tk9mvMwi4BfgdOIpczVj8bSeqGn+lKpo9SHujI11x\n7z/YA4Sr2IS7IW2Qv3tBpvqi1jIJIaYBccg8hzcvB5lU+A+160VUG5m6ACORX9TzyAeV3sCd5t9H\nekmu+qK23736oK6u01DMYc1elqk7cMHWaW/mW6RC7uIFmVAUZRMyEKgLcJ2iKL2AEOCIoihHqxp7\npSqazcAd5hppgF29tPfdjP0A6fR/xmas23pp9SxTfVErmcxL5LnAVEVRll8OMjlithP3QeYceEOm\ne5HRVPfavH4CfjH//o6X5HJCCBECPALs8pJM/0JO5P0dtv8DaVL7zgsyWfbXAc8CWxVFOetu/3qW\n6STQVAhxjcP2O5DX6ZgXZAJAkexXFCVPCNEOOW8u82TgFfeiMqHpJ2S48mPI+mkHsMmcReZ9lAHT\nHcavRy7jI5HlcN5BJkPd5EWZ7gaeBsYg7Z2Z5r+f9oZMyATNcqSp5XaHVxcvyTQTSDd/uO82//y3\neb9nvHXvVI5XV3k0tblWscicngFIf8xQZHJeMXCXFz/nM5DKZj4ySGGy+buX4837Bzxl/t49Xtv7\nVgf37m/IzP19SB/kvUirQj6wy0sy+SHNZI8jH6zGIhXeDsDP7bnr4qJ644UspfA29qUUrnbY52/I\nyTLBYXsA0qZvKUHzNXVXgqamMm03b3d6eUMmKisUqL22eUmmR5H2/ZNIZ2QeMsP8Dm/eO5VjbQc+\n8+bnHLly+QIZJViCzH/ahIclQ+rzWgHjkBNesfkezgR8vSzTe+Zr5XbSbAiZkL6iDcgSNIVIpbMY\nCPXS58kXaQ06Yf7uHUBW0vcoebTBqzdraGhoaPxvcaX6aDQ0NDQ0rhA0RaOhoaGhUa9oikZDQ0ND\no17RFI2GhoaGRr2iKRoNDQ0NjXpFUzQaGhoaGvWKpmg0NDQ0NOoVTdFoaJgRQgwVQlTYvEqEEL8L\nIeabK+o2tDwGIURtWjJoaFwWaG0CNDTsUZA90Y8BwcCTyK6ZTZCtcBtaFg2NKx5N0WhoOPOToigH\nzb9/KoToCAyn4RWNhsZfAs10pqHhnu+R7YdbutrB3FbaJIQYo/K/eHPb4hbmvx8QQmwRQhw3t1j+\nRQgxwV3fdSHELCGEU4MpIcQaIUSew7ZAIcRiIcRBswnwoBBiqrnatYZGg6KtaDQ03BOOLEDosny8\noiinhBCfILttZjn8+wXsy89fgyy8uRRZMLEnsrBkS2BqFXIoqJvT7Lab2178G1mYcQ6yq+YdyMrJ\nzZCVgDU0GgxN0WhoOONrnqyDkeXjnwRiFPcVaNchW91eryjKAQAhRA9kIytL62IURVlpO0gIsRNZ\nUTyWqhWNpwwC7gLuVhTlS/O27ebVzAwhxGJFUc7UwXk0NDxCM51paNgjgP2ACdkhMxtYqXjW+G0T\ncoUy2GbbYGRJ9g+sJxCijRBipTmqrNR8rnnIZlet6uA99EeWl/9GCOFreQEfI5v+3VEH59DQ8BhN\n0Who2KMgmzv1RHZ+/BiIEkK84HagohQh+3s8D2D2uQwENiqKUmreJpBK5yGkWauv+VzzzYdxbDFe\nE1oBeqQCs33tMr+/FnVwDg0Nj9FMZxoazuyxRJ0JIbYjO1MuEUL8n1mZVMU6YIgQojfQGGhj3mbh\nWuBW4HlFUay96YUQj3sgV7F5Xz9FUcpstjsqjrPAQWS7cjXnv8GDc2lo1BmaotHQqAJFUUqFEHHI\nnuqjgWQ3Q7Yjc3CGAIGAwcZPArKdLshWuYC1X/3zHohzyPyzO7IFL0KIpkh/zEWb/f4f0rdUqCjK\nbx4cV0OjXtEUjYaGGxRF+UAI8R0QK4TIUhSlpIp9FSHEG8ArgA5nxbQXqTDmm0OVy5CtjZ3CllX4\nF1KhrBZCzEKa2eKASw77vQEMA7YJIZKRPeL9geuQ7bAfVxSl2IPzaWjUCZqPRkPDM6YDrYGRHuy7\nDghFrmhet/2HoigmpA/oJJALZAKfAYtUjmMXtqwoSj7wMFIpvYX062QA2xz2K0MGBKwCXgK2mOUY\nDOwESj14DxoadYZwH7GpoaGhoaFRc7QVjYaGhoZGvaIpGg0NDQ2NekVTNBoaGhoa9YqmaDQ0NDQ0\n6hVN0WhoaGho1CuaotHQ0NDQqFc0RaOhoaGhUa9oikZDQ0NDo17RFI2GhoaGRr3y/wGaFM963llf\n+gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "out = EM(img_data, init_means, init_covariances, init_weights, maxiter=20)\n", "plot_responsibilities_in_RB(images, out['resp'], 'After 20 iterations')" @@ -801,6 +1181,34 @@ "__Quiz Question:__ Calculate the likelihood (score) of the first image in our data set (`images[0]`) under each Gaussian component through a call to `multivariate_normal.pdf`. Given these values, what cluster assignment should we make for this image? " ] }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.48112744909e-07\n", + "2.95757712022e-09\n", + "0.331459620105\n", + "16.5271595911\n" + ] + } + ], + "source": [ + "means = out['means']\n", + "covariance= out['covs']\n", + "rgb = images['rgb']\n", + "N = len(images)\n", + "K = len(means)\n", + "for k in range(K):\n", + " print multivariate_normal.pdf(rgb[0], means[k], covariances[k])" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -810,7 +1218,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 46, "metadata": { "collapsed": false }, @@ -830,19 +1238,126 @@ " p = np.zeros(K)\n", " for k in range(K):\n", " # YOUR CODE HERE (Hint: use multivariate_normal.pdf and rgb[i])\n", - " p[k] = ...\n", + " p[k] = multivariate_normal.pdf(rgb[i], means[k], covariances[k])\n", " \n", " # Compute assignments of each data point to a given cluster based on the above scores:\n", " # YOUR CODE HERE\n", - " assignments[i] = ...\n", + " assignments[i] = np.argmax(p)\n", " \n", " # For data point i, store the corresponding score under this cluster assignment:\n", " # YOUR CODE HERE\n", - " probs[i] = ...\n", + " probs[i] = np.amax(p)\n", "\n", "assignments = gl.SFrame({'assignments':assignments, 'probs':probs, 'image': images['image']})" ] }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
assignmentsprobsimage
316.5271595911Height: 194 Width: 259
38.08362978275Height: 194 Width: 259
32.89751022995Height: 183 Width: 275
30.00571564051932Height: 183 Width: 276
310.9352260395Height: 177 Width: 284
325.2614963611Height: 177 Width: 284
38.86657966748Height: 194 Width: 259
310.2395807105Height: 183 Width: 275
311.6378582377Height: 275 Width: 183
268.5294981075Height: 183 Width: 275
\n", + "[1328 rows x 3 columns]
Note: Only the head of the SFrame is printed.
You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns.\n", + "
" + ], + "text/plain": [ + "Columns:\n", + "\tassignments\tint\n", + "\tprobs\tfloat\n", + "\timage\tImage\n", + "\n", + "Rows: 1328\n", + "\n", + "Data:\n", + "+-------------+------------------+------------------------+\n", + "| assignments | probs | image |\n", + "+-------------+------------------+------------------------+\n", + "| 3 | 16.5271595911 | Height: 194 Width: 259 |\n", + "| 3 | 8.08362978275 | Height: 194 Width: 259 |\n", + "| 3 | 2.89751022995 | Height: 183 Width: 275 |\n", + "| 3 | 0.00571564051932 | Height: 183 Width: 276 |\n", + "| 3 | 10.9352260395 | Height: 177 Width: 284 |\n", + "| 3 | 25.2614963611 | Height: 177 Width: 284 |\n", + "| 3 | 8.86657966748 | Height: 194 Width: 259 |\n", + "| 3 | 10.2395807105 | Height: 183 Width: 275 |\n", + "| 3 | 11.6378582377 | Height: 275 Width: 183 |\n", + "| 2 | 68.5294981075 | Height: 183 Width: 275 |\n", + "+-------------+------------------+------------------------+\n", + "[1328 rows x 3 columns]\n", + "Note: Only the head of the SFrame is printed.\n", + "You can use print_rows(num_rows=m, num_columns=n) to print more rows and columns." + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "assignments" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -854,7 +1369,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "metadata": { "collapsed": true }, @@ -862,7 +1377,7 @@ "source": [ "def get_top_images(assignments, cluster, k=5):\n", " # YOUR CODE HERE\n", - " images_in_cluster = ...\n", + " images_in_cluster = assignments[assignments['assignments'] == cluster]\n", " top_images = images_in_cluster.topk('probs', k)\n", " return top_images['image']" ] @@ -876,11 +1391,184 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 53, "metadata": { "collapsed": false }, - "outputs": [], + "outputs": [ + { + "data": { + "application/javascript": [ + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", + "}));\n", + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"https://static.turi.com/products/graphlab-create/2.1/canvas/css/canvas.css\"\n", + "}));\n", + "\n", + " (function(){\n", + "\n", + " var e = null;\n", + " if (typeof element == 'undefined') {\n", + " var scripts = document.getElementsByTagName('script');\n", + " var thisScriptTag = scripts[scripts.length-1];\n", + " var parentDiv = thisScriptTag.parentNode;\n", + " e = document.createElement('div');\n", + " parentDiv.appendChild(e);\n", + " } else {\n", + " e = element[0];\n", + " }\n", + "\n", + " if (typeof requirejs !== 'undefined') {\n", + " // disable load timeout; ipython_app.js is large and can take a while to load.\n", + " requirejs.config({waitSeconds: 0});\n", + " }\n", + "\n", + " require(['https://static.turi.com/products/graphlab-create/2.1/canvas/js/ipython_app.js'], function(IPythonApp){\n", + " var app = new IPythonApp();\n", + " app.attachView('sarray','Images', {\"ipython\": true, \"rows\": [{\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxITEhUSEhMVFRUXFRUVFRcVFRYVFRcXFRUWFhUVFRUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGy0lHyUtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIALcBEwMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAEBQIDBgABB//EADMQAAEDAwQBAQcEAwACAwAAAAEAAhEDBCEFEjFBUWEGEyJxgZGhFDLB8EKx0RXxFiPh/8QAGQEAAwEBAQAAAAAAAAAAAAAAAQIDAAQF/8QAJREAAwACAwACAgIDAQAAAAAAAAECAxESITEEE0FRFGEjMnEi/9oADAMBAAIRAxEAPwBRXtX1Nr5gE/Ix/KdULFrQIRXtBaxSaxgJIIiPHhL7e4P7HYjleo26XRwJKWMKdMK+lQEzCCZWRtKqpPZRBQphetpKDaisD1JsdJFwhdtUGq1qUY9psymFKAg9yk2st6YYe8UKjghDcJdXaXnJMIqTN6Fmu1nPJawY/Cwuo2j2z6Zmel9OFmAEqvdOD5EZXXiyKejly4uR8wFboheEkZC1V/7LEklsN8R6eiUP9n7iY2Ewu2ckM5XjafgrDwelfbu5AB9MJlpns5WqEnbtHGfK1Ol+zLmGTH2S5M0SFYqr8GStdKqvAdtIb4PfyV9XT3MkkY/0vo1KzgAQhNU04OGQuf8Ak7ZZ/GWj5deggx2mWj6C6rDn/C38n/icOApnaWyPJGU40q6a8GIHoq3lanoWMS3pk9N0ilS/YM95lEV6IiAjLSgOkW21npcbvvs6VHXQltNJcTucBP4+y0NlSIC8p0yOUdaU1O7bHmUjoUmsRbaQXPphT2UBgvHFXupIauYCKAUmuQha2pQoOuOkk1msAD8SrMbeidVpB9zrjmyAJWS1PX7p7g39jXYmPsVZR1emC6ZnweyoV65eAXNDQDIyuqMal9o5rrkumFUbFu0biSezPK5V0sgHcuR7N0Ue03tWWh9Fn7+JBwJ7Hqs/oNy8vDdxk+e/qmXtPorKdUbGk7zPOOZKlp9kA7dx8vPp4TzwUdCvk67GLHvBcepwmdo8kZ5QlpTnnymVvTAXLbOmUEUWoqmAga10GjJCrfeEjClxbH3ocsVwakdpduHOUyp3khJUMZUWVXqn3qrrVZXlIJlPQGwgOVtDlVMaVaMFAxfUAhBtpyZ7RfKjUp+EEwtEGW4VhtmnCsDJCstqXlZsKRVQswCjW0grmU1cKaR0HQMLULn2YRzWL0tQ2HRnrvRWO5aEH/8AHmAy0QtRUwoMITrJSF4oAsrKAjf04VoUXOS72Nor9yFBrYK9NSFU9yKAEU3rt6G94ourraMFuqiEk1rUGsbkwuvtQgL5/wC19895gcBXw4uVEcuTig+617aCR9FnbzWXPJnv8fJKHXJ4PCoe6V6cYUjgq6oP/V+OekdbXBqN2u656+yRALRaXbt2+SR2jaSQJT3oOp3tMADGFy8Hs+053Fcobj9lP8n6NdrIBbwCRlILFrHZEDP9lONS4O0glZKSxxIxzJHH2XPjnc6Oi60x7VvabDBIGO0HR11ri4A/L1SC6JqvAPnk/Ppaiw0ljMxLiI+XyT1EyuxZurfXgrvtVDJlsnCopay9wLmUyYx5A+ZTbU9KJdvGTwAeM4RdhpTKVJzR8Rd+71K3KFPgONt+ie11GofEfaCnVpcy2SUPUY2kwvdGBMJfbXLqp3bDHXhBpV2hk+PTZoGVwcgoi2rgmOEnoW7+W4HJTynRkAxlTpJFJbYxt2zlXVAOEJZsIPOEwdtIXO/Sq8IUoUqhQb7oNMKz9W0raZtkKtUgYXtpdGZKGu70AFKqWpmYI/4nUNoV1pm0oVpRQesta6ieITuhcSFKoaHVbGbKi9fUQIcVRdXMJeI2wi5uIS9+qMb2kmtXzsEH/i+f3uq1SXZIyuvF8fmc2XOoPsFvqDXHBTFrwQvkXs7rBbgkknJWptdePJ4S5PjuWHHnVLZqbhwQVO4lKauut43cpjZvDhKTg0uynLfhbVa4jBVdIHgo5sKogSl2HQuvLMHJCxftJpjs7TjwePuvotVohIr+g49T9FbDkcsnlhUtHyY27pgCSp0LF7jAC3FxpdQuw3H5VdPSHtORn1Xf/IRx/UxPaaNIh/Xj/qZU9Na0YMRx2mdOxLcmVGo0+FJ5GyixqRWx9QCPC5WuPqFyIB6+3a0l0Zz/AO/VZPVbhjGulpc4uxJgeZWh1y9qBgFMEkmMLLX1J+yajSJxJ8/wFPCvyxstfhA/673j2ug/DAj+fVbKwrnaPp+V87p0yDPr0tLbaiIEyDAj1Vc2PfhLDk03s1dxdiNpxj+lKq/vHD/6/wBvnglVmtuzMnj5Z6CYMuQGxBEZmIH0XNridW9ma1OyqbQwuL3T5wPRGaPpFSACSGzJ8fQI51w1sEyQTiOTKYOv4gSGhPV1rSJrHPLZfSc0ENCYU3gJXStC47g4JoygRzlc1aLzsl+oHS8B/wAgVz2eEBdVnN45Wlb8C3o68pcu3JHcaoKZy7HClfXFQAkH5hZi8vdwIIz5XXixb9OXLl4mkpa5TM7j+V5b3jScHhZqwoNcdruSJwU4pUGNgA/cp6xyhIyVXbH9hqTQPiICLdrzWiZCy9RlMA7jjpJrzkljjHjP+0iwTTGrO5R9Go+0jT38vVA6trwOAV8+bWfMycLx9R/JJTr4sp7Jv5baNDqWrFzDB4Wced7xPZyiKFvJlxVmwGYAaB32VaUp8I1VV2w2nRpNAh2Rk+qJuNRa5rWscBHIj+Urs7eMlwA7kdI+qKIy0OzyeikpLZWW9foXXG8Okkn8CFp9K1lzGweOklrVqZHc/L+VOi5rhAPC1rku0aHxfTNVV9p2Mw4plpuptqt3NMrF07Ck0EvG4n8Jn7NU4dLQdvGftP4XNeKFO0dMZKddmztwSrjSC8ouEKbzK5DqSK/07YQtWiJ6R7WqD6MrbM0Ln24cleq2oY3dwtAKRCX6nbOeNvlUiuydLowz6bSSc/dcnx0aOiuXX9qOb62X0ADkoLVrf3g2/wCPY8pPp2rPBDXCCeJx9E0r3XGDMeqnwc0OrVSA/wDgqQEjB+c/hFmwpubAGQIB4S+81QDmQUrZqVVxOwmFVRdfkk8kT1oeuomkQ+ZPEfLtB6nrsna0CD3/AAh6tSsQHH6jz6SgLimXOmI7PgJ5xr2hMmV61I3dcnYdnO0AeR5+qQVXuPJJPrKZW90WyIBhW21YZc4Az6dJpXH8E6fPXYXoOp1dwbIPGPQfNfQKF6wNG4gTHPnwvnlvbVKlQFgkCIIEfMJ69tRrIe0mMtxJkeVy54VM7MFtLs07xguaEqy4nM/6V2i6o2oIgiPOFbdBs4/C50nL0y7aa2Z280+pJ2/G3069FmL+zDTJBb8wvpjGAMn7rE+0ly3fBmPl45XVgyNvRy58aU7FNKjj4D3I8+oRXu3ERMnz2ltK42OxwjTeA/2CulpnLFSeXNrU2yl9Km4mAm1K/PEmFNjsyIn7FZU0FxNPaYBUsXb/AERZ0pznCIgdJy2qzsCVVWumf45P96Sc6KLFKFVwzbw0Hr1+gQdSg6YIIKdU6oJmM+qoq1clp5I5TKmLUJkLa3H+efyAjnNG2YVFrEZIUKl6G4BJyle2x1pICqMc52GomztncwjbSHR6pu61AiEKya6DOPfYtZZuJE8fwjtPin+04J4PR7XlavEjhDOpTn6qfvpTpeGttLgHtHCqPKxVhLc7yfTwmLtQDeyVz1i76Lzk67NGbhVPvBxOUls7veDlGNptGeT90rjXo3LYYbg+F5ReS7PCHdcwJIMfJVC8xMY/P2Q4m2MzTC5IjrjB2uTfVQvORTT0drcvE5/KKvGNa2TxCaVTLYj5pDfXciD+VSadPsRpSjP6y7cPhAmcnyFdpemO28AHvyo3zWn9vI8IzTbl234vwuptqejmSTvbDbZreEPfspzkDKsbUacxlB1aD3GRKRLsdvoX3tGnPwSZ6CeaF7NlxBqD4eh6IXTLWXBb+x2ho44S5srlaRsOFU9s7T7FlJoa1sAI2pbgjhUtriUfRcCFwU36dyS8Ri9Z0iq0l1L4ZS4OuG/vPC2+q3Aa0mJhYrVLzfJ7j4YXTip0tNHPklT2hja1HFnUEJXqGntcz4my+IB6579UkstcqUSWOyOPkmbfaEOE8eQrfVcvaI/dFrTM3XsyP8TCFIT691ZrhgYPKQ1QATHHS64bfpxZJlPpnu4jyvfeHyvAV6D3CfRM413REleMqkGQV1QKCOg7DmX7uyoPvnShQpbUOKDyf7LGVyFca05kz46QYCbUtPGzcXZ8eEtaQZVPpAtK7cCDKb2+vSYOP72gP/HA5Ex9FJujF2GnPrlJXB+lY+yfBvqGoNDQAckf3KAtdUcTBEhWWmiy5rXklvBI5BPBH16Wz0j2coUgPh3ujLnDk+Y6ULyY8a/Z0RGS3vxCKowtAcATjMCY+cLyo18hhpPl3Eg5W8axo4AXPDSQY449FyfyP6Or6f7EOl6I5n7jyMjsH0Ka21k1vE/UotgXOUayOvSswl4DusZjpsyY5+SrvrBvuyGiDz6yjDV6CruHygqZmkfNrvRbve7a1sSY+McfUrlviweAuXWvlV+kcr+PP7YuZctE4P8A2VVeaeHtwFTbV9wCbUqoAhTe5fRVf+l2Yt2nu37YIAOSnLdKDWkjmJTVxYXT2vbxoj4Tn0TvK3oVY0jNCniSIJlGsoBzWgH5ob3FYuJNMwODBTPTdMcPin6Qf9qlUkvRJXfhdS09rR0ERSYB8OT9UFcCuXwGS0fROrSy43CD6KFPS7ZWV+gSo3bxPr2jLdzhwcIi4t2xntLq1Q0xIBLRz6Ke9j+Bd7bmo0tmJHKyVx7M1ACQ+YGBHH1Wsp6g1zA4dqLqs5TRdR4LczXp8quqADoJBPfoVbb2tPkux6I/2qsIql7e+h/tLtKuAHQ/j+V6ifKNo8tpTk00dcUqHRMpe+ktNTtGVAXQI9IXlH2ea7Mx4ygsqn0asNV4ZptPzjwucRELUUvZZ0QXY6jlVu0JwMbMfIBH7p/Yv8ezMlRK3VHQiQBE+Z4SnUvZvbJa4eY4+i054b0avjWlszcLlcyiSYhO7bTabR8bZOMdz/CpVqScY3RnkZQu4bt/3laA0qQGxwEHwEFc6RSzteR+Qp/ZL9KfVU9pgFPUCJEYP0hNaGqta0Ej7JM6zI8Jpoukmq4NI+HszkfRC1GtsON5N6NJ7OVm1HOcOB181pGuSmw0xlGdk55kyj2uXlZqVVtHq401PfoSaiiJUGlXtAUSh41xUmFTfThu44Cos6u8SBhHX5Ns9rOgSOksr35JiCMSE0/Tumfwhq1gSZdx0AqRr8iVv8C9zTOXGfmuTltk2OFybmheDM7W0x1Iy3I9UztLTcBPKZ3NPcFGiNqzyNoyjTINtWjEImjatHSk0yVY4qbZTRE0wrKdEEoKnUO+E7o2jjnj0Qp6MuyptkPCIFsFdBbyF0E+iTY+gC4sgSqrjTRsIhM6dOTkq6EOTRuJhDpzqZLW8eDwPkpvpENI7Wiv6QkwDxyk4oE8q6vZJzoxmp6TcPOBP1HCAq6M9rQC13yxM+sdL6fZaa58xwOSUzsNKLAZgyfCt/Lc9EX8VU9nyr2e9lrt9SGiGETuJIaM/k/JbZ3sVVDYbVHA677ytbQZtxGPRGsOFHJ8q6eyuP48wtHzdlu+nhzSIMEkdohlAuycLa31EPlpAjH38pJf6U4NcWZwSB/CVZdj8NCavtaJJwkF/Va/PEeVY/UA6ZEdEHygmWhcSWT4jr/8XVEa7Zz3W/AK8p06Y3CBPaBNUEzif70mmo+zVR4wfp0kNzpVaj8TgYnkZ+668bml72cmR3L/ANei+uHRE/31lCAHiVS1z3FfQtD9mWOpMqVcvLQSOInpbLaxLsXHLyvoy+k6PUqDeANoMEk+k4Wv0jSvcsJkHdHXEI/9IBDGiAFd+kdx0vPy/Id9fg78eBR/0AIVzGFXe4E4RdKmGxKg2XAmUXJlY2279wVghxAAjyirGjtd6JGwpA4ZBgjHqiWUwBxjowrLqgCD+EIzdETwtsOiwUhyouYrRVwqatVYzIGiuVZrLkexRU6/EwrWVl6+2A6QtO2eX4HordE9sYMqFSqSQj6Olkdot9gIx+VN0imhXpFuDVkjIEhaZkIC3tNpntGtcp29jytEnNCrcvX1FTVq4SoJDfC8D5QznSVfSCJjqjVXTsATJRYaFazCHLQNEqNIAYwroVO9SbUShPKjVCelaXgqtwRTMVtdleVeFMBVuESUdmMHQ9lZqVHVTDdztjW+J5JVmn6eaZiOz9ulrKgnMQqK1CchdP3U/SP1JeAApCELc2zHAhwBBwQUXcyMKjaSgq0HWzMUPZZrKu5mWzInkf8AVs7cAADgRCGPwr0VkMmSr9BETHgcKbVFw5VLaysY8KRUqpWuZKLp0gFWagCqNdYAU2mAZKvpunhCMAPatDo7QCRrvIPMoZrjC9ubgIcVZRQGECoqqr1W96V3V44E4x5/lUmWxKrQeXLkrb75wnAlcqfX/YnM2f6VgGclEW1JvQA+SGbUkyjabgudssi4MEKJwvQ7CHr1Eox5VqqIroKrUJVJc5HQNhrq+VW6ohmuVoK2jE2oqmEMwIpqBiwLi9QleFuFgkhXVragKCLCpAEIaMGyF25CSV575DRgsFQqvCF98TwvCD2joxOo6V5sMKbGhU3Fy1o5TIApvHgFQbVQ15VkyhXXBCcTYXdV0OK6CqV5UBWW0bY0FwpC5SttVWAlbRtjE3K5tdAR6r0FbRtjendwFCpdylhrgdoS9vwGmDlNONtgdpDWpXAySgH60wH4TOfsk1xqO4EEDPc5S/3oHHldeP437Oe8/wCjZCq9/wCwbuindvoILRuieZkoH2Vr0xRaeZ5+aOrXBceTHXhc1tp6RadNbYQbGMSvF4LhvlepNscm0Itr4CX+/C89/lIFMYvuEJVroepcAcIdji4raDsYU2SvKoIUKFXaIVT68rG2cr2oT3isFZY2w5jlYx8oIVZVzHoaCHtIXsIZlRWIBLXLyFQaqrfcIaMFyFU6mEK67UP14R0DYX7kKJaEGbycBRNVHRtl1zcANICWOM8ry4qiUG6smSFbCnMacIG6YJiERScueAimAWPoSuNqjHOCg4o7AUttoU9gU2uVz7Vx4RMDFgQ9xWawZMIi5pOb4Sx9EPMuyqxKfpOqf4Ba9+DAiSq6n7gTx5/hMTprevur224EA5V/siV0S+un6Bv01jmEgZPCKs9EpgDdk/dFsAVvvlF5q8TKrFJfZ2TaYOwROTkxPp4RIqQEG26MRyufUUW2/SnSLzUXIT3i9WMWfq14b1cuW0DZBtxJRbK4AXi5K0E9/UKBrLlyBj0VFNtVcuWCXNqomi5cuWZgprlY55XLkoxVXnpLqlUrlyKAwV9UqIevVybQoVRZhTrLlyxhfVCqFElcuRMTFBwUvdErlyBiX6XEr2nayuXIhCKFiJz5R9ZmMYXLkGzCoN3HPGUquGAOwuXKsCUcZUXOXLkAkRVUhUXLltA2e+8hT97uXLljEtwXi5cgbZ//2Q==\\n\", \"height\": 183, \"channels\": 3, \"width\": 275, \"type\": \"image\", \"id\": 4947632400}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxIQEhQUEBQQFA8PEA8PDxAPDw8PDw8PFBEWFhQRFBQYHCggGBolHBQUITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OFxAQFywcHBwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIAMIBAwMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAADBAECBQAGB//EADIQAAICAQMDAwMDAwMFAAAAAAABAhEDBCExEkFRBRNhInGRBjKBFKGxQsHwFVJy4fH/xAAZAQADAQEBAAAAAAAAAAAAAAABAgMABAX/xAAgEQEBAQEBAAMBAAMBAAAAAAAAARECIQMSMUEiMlET/9oADAMBAAIRAxEAPwC0UXSOiiyR7zyEpBIoqkEijMNiyNKu12xz3kl9Df1c3s1v28CEQkRLyMpvSZXGSltaknvbPbyzRlBKLTjVRa8I8DA9Ri1cMah1dXtuK43fVSbSX3v8nP8APxuLfF1mtjS1JrqXCo17PP4M8K9xTj0XXVK43/A9DVpq1ODjxcZJ064OLviurnuRbVpyvevgw9Smj0enSmrae9rfYx/VcHS67dhvjvuB3PNYOXT2/l+QctOlyOZkK55HQiTnEE4jDRVxCAMcZdxRNEUBlHEjoCqJeMAaICgT0DLiV6QaIaiXjEskXigMqohIot0g3rMa8t/CFEWU4x3k0v8ALEdXrYdr/lCWs1PU2/wZ2TKPOC3oxn1rYnLMDnIDOY+F1bJlF5ZCk5gpSDjaJ1nAqIML0SLJEIsjscyyRdFEERmWiESKRCIDLwQXevgHEKpP+ACtENhk00+a334JWDh9rodnKCSSXahL0actH0/1GVJN7JP+GTq9S589u/cD6Zp4ye+yrtV/kvn07jf5j5a+TlvPP2XluENQKzVj+THa32oTaphAFkUXkiFELKdJ3SFUTnEXRD6S0Yl0gkYi0QukjoGVAt7YNHCvQXjEYWMicaW/YGthPVZulVe5iZZjWrnbM7NMtzMJaHlmKzkXySF5sYqJzATkTIHJmYOTIgQy0EYRtjilnCmegRdIqi8TtcyUiyRKRKRgTELErFBIoDLRGNPG3um1XYBFGz6RpY5Odun+/wDyxO+smm5m1aMLfT2Vi88a87ptUOaqSUnS+G/9kCjh6rppVVXdtkub/VLBNHlcNlz3TG8uZtiULT+rb5rfYOpX8on3PdNyPCMHB9X7r2rwI5tO7f8AzYag0WpVff8AOxM7JcStBprcG0MCEWSLKISEAWirCBdRCdJMUJaZVRCQgWSD44C2ipHAZfqjcZbPtx4N+ETz/rWRObp2lS2Nx7Q6/GLqm+WZuQ0NQzPyo6YlS8ykohGDyBAvkQvNhsjF5GFVkxKtnJgZZs4q2cAz1MUXjEiKCo7HO5IukQkESMDkgiRyQSKBrG9NoOqrcVbWzdf3NLTJ4pSTrpSclW6+KM/Diu19XHZuk/kti2dNul2I9e/1SeJnL3JXxb38KxuDTpL9seyq2/LDYUl2V703FP8AyV/p2qapVSfN/cS9ym+ti8IKnfnYrQy8VkR0vbvTl/uSvSkhKcthv07UKPKTT2p+BSUbJhsgX2DFdUl1Pp4sX6BlROUDaGBQxhlEsollEW0ytF44i0Yh4IWipDCXnOMdm0r4srrJuMbjyYOpzNvds3PP2a3Gjr/U4pOMVbe19jzuoyWXy5BPJMtzzInboWVi2QNkYrlkUIqwGVlpZAGSQBBmwE2EmwZmRRxeCK5ACC5HFWjgC9nELFFIoKona5lkguHG5NJctpFIoPh2ewtFeWDp5GNBpJZZKMeeW+yS7smk91f2Y1oNVLC24Vvs7Vk7bnn6aSb7+PRy0WPHj6fpurly3J92Y8dJGT8vxwP4sbnilklLdb8bUuy/52EtNlp2cnNs3310dZc8HzaRxV9kCeS1TGcupb57iEp7mm/1qbxvwwsMtbp9mnfgRhkIySfBsbS+TJbCRVlMeO2MxxhrRRKiyiFjhG4aJtbCWyGkIqJeMBqWna7HRx0DWwFQoU1et6do8+TQ1K7Jc8mTrqWy3ffwjc+tQn6i3tP+PBm581lc2bf7CGozWW55Ttdny+BaeQpOQCUimFWnkF8kjpMG0Zg5MDNh5RB9ANHAGVUbYd4xjDp6VsXRwB46F8iHMzFMm4BLNkBOkkzY9lBjOJJi0QkTtscxv2fwWjAHiytDMHYnsE1oYJyipbJtW/htG/8A9OxqVJp2uqO1t89+Ox5zDKmu9G/D1hfR9KSimmr5br8cHP8ALOt/xW+O85625RjLG01tVdPHHYQloo9FJbpcjukyrIupcPYrq5rHHlfCfc4pbLjqslmsJ4ndPYBPE7NbNL3Epd7rwJ5sb8HRKjYTUAzjtuFnBUn3KY4N8m0HYcNsYxY9ycWTpfG3kc0soNr57i9bDTK7HpkO4opItLpXyUcuaIW6rJiM0EykcK7lcadhpwe1A/PG/fSXrChjxtvnhLy2eP1cpNW6Ue0Td/U+SulN8KzyepytnT8XPiPyX0tmmJzkHygHE6EgZMHQd4y+HDbBaOFfbJ9g0v6Uah6e5REvRpGJjwWdDT2+Nkb2j0FL6lvvRGbTqK4+9eRL0OMbFpq3ZTUSQxqJUZ2adhYvl3AyQw0UULDrAdJBrY/TpNJ0cJ9obK14hYgohYno1xCJhYToHFBIxAI2PKO6eSEIxDYxbBle+0OJRhGvCf5QlrMfXPfdR2pbDfpeVyxQb3bir7binqmpWLhbyb34r5/ueZzv3s/rv6z6z/hrBgil018+SnqGG1t4F/StS5Tl1cXS8Gjni2tgdbz160zrnx597BFwdqmlJrx/kpFF8/qOiNpcloRXYrKHkvBC6JjBkrZ238+DnqavzwJrM42u7qwsYOW4bxP2h9r+Q1j1FhXmFJzjDmlfHCsFLWQ46lZK8y/istjC/UOVue912PP5Dc9W+qUuEk653Zlx0zlv2Oji5Eev0lJApwHc2Gv/AEK5+R9LimFfg2NDpI31JX4TqmZE34LadytU2J1NNHqMeli92l3+nwdJ0C0TcY03f3KajJyRUdkzGVqtXsw2XIZmq3Y0gWktRksAsQy8YLIxylpo1/096Wssm5ftgupiEMZ6b9PKKxzS/fLpS/vZPvrw3M9MNwW1Lb7HB4+j5Hv0vckh4s87FhIyBpF0j3HmDRmEjMCkEihcDTEcgzpZpyXV+211fYSig+NC2GlfQ9G4uEej9tKvgV1ujcmr+pcPtSuxj06vbio1Sils7S+L7ka7UqC53rZeTyZbOvHo2S8+svG+iW9/u48fJoS1f1V/paMPJq5P6n54rajsWrlNqP8A3bccX9jpvxb7UJ8meQXJkjKT23bf2+4eMNqRb070+St5LSvZVu3fPwOvBFPYTvuS5KPPNzaR6a57ELIkH1WCk93fZL/DEdQ1CLk+Vt/PZB5yxrsquTIuW0hjS6uL2tbd/C+TyufM2+QP9Q0UvOxOXK1vX9XGUvpbdbfFfBiPVNdymXLYtOQeecmNbtHnqW3Z2XWSe10vgUshRbD4Jr3C84dS2ROn0l8jWRqKoS0ZGa18DOkxb2Vhit2MWooFowzLJQKc7Fv6lMieUXBRkyCOaaOzTFMrDgOyZQNkSOirMw+GLk6R7f0L0r24qcu9OPlmR+nPR3L65bR+e56fU5ElUeEqOf5Ov5FuZ/TWT1Hd1svBJ5+efcknimvPpFoh440WWE9v7PLwJIIkEWElYWbQxEUEidHC/AaOknV06ur7X4BbBxtfp3XdHUpP6eV8MP6hrll42W6834Zj5NPPFBOSrr3X/iBhlbOTrmXr7R0Tq/X61oSzJKufK7DOh9RcKSUaTumvPO5mRTYzi25B17+jPHoMPqXU90l/crkTfF/JmYnQ4tY+O1UQvOfiv239aGLT2v8AdmB69njtFdnubej9RxuouS6uF4/Jk+u6OHVKUnUpO0l3VVv44Nx516Pc/wAfHmtR09hGTG9U12F1A6o5wWBmhrpthVBAtHCHtsc0mKqbCe0m/gO0uwtoyLNgJwXdnSfInkmwQV8uZIUzaqwWaQDGrYcA9gnSs7JqCvSByAEPLOygSGJtmxo/RZSV1v2sXrqQZNYLxnp/056D1LrmtuxXT+ldMvrVfHk9jGCjhTWz2SI9/J/Ipzx/0vNKKSWyRl67PQTU6muWYOs1dicw9rp59zjLnn3JKfUn2ek9qBXpS8FFJUR1Hf65bg3X9ifc+wAlIOF01p7lJRVXJpHqffx6fH08yit1V3Lyea9MzyxuTj3i48eSmXJKUu7b5IfLz9rn8W+O/Wb/AF2vzzzSt8LhLhIriwNUu7D44dJf364fZ2wb/I2f2ohts+waORKjL93u2THNbDeWnTWnksX1OVrbyKvN3BSy2CctaZxSB6jO3z9gPuA8kg4GgTVsh8HSZVsIJSK2VlIFLIbBHciPeFXNlPdFsGG55AE8uwGbBZJAELK7Yxgw0jtHh6meh9O9NTau33pcWL33g886zMOilLtzwEn6VK9z1C0/Srrft8fAPItt+SP/AKVT6MjQ+nKLTfKNqCUVsKwdFp5RLdNPF9TqPNbcfAhqddLy/wAspqcpl6jKGctanU6lszc+Wyc+UWT7lueU7VrJAuZxTCa9GpF7FI5C6mdmOfTUZIusgomel9K0GGEOvLUsj6ZRjbqKe6TXd+RO+pxNpuOb1chjBpMcMUJNvqyRad00nyZmoydPA161qU5Jp7JUktq/gzJuzm5lvtW6z8g3u2Ke5yEhITzSp0ivMTtXUwkWLwCKRq0EySKKQNytk2Zl3IpOZScxfLkNjaJLKDnlASmClkNjDSyFHkASmAyZgUTE8gL3RZyLYxaY3uyVHydDLtQOeQURY5af2Nz0z1eSapLelv2PMSkaXp+3PAncmGlevw6u3vv+dmVytsW9KyKbSr/4aetilxsc98qv6z22AyTY4kL5FV2ZmbqJMy9ROjQ1mYxtRK2V5hKFN2ys2F6K+4CZaJ0Ns444IN1MsmQokpna5zGkyuMk1W18pPsaKzv8szccPP47jCyUQ7y1TjZE58jb3KvL2QHNLcqmLgjvJQrdnZZg0xgHUiLBphEAVokzlRVMHnYGCnkATmdNgpSGB05gZTKzmBnMArZMgByKzmUTFomok2DU6KzmIcX3COuxdOxrTY/IKw2DC3u+BxTrZcAPconFcmJfTN/0pt108/3PQe26+vdmb+ntJ0fVLitr/wAj+r1SOfq+q8zwLJlpGXrM52qzmbny2NzyFpfUzFI+Q0/qZ0kkXkStAyTBdHdhG0L58l7IYEOaOAM42Nr0DGfT/wDV9l/k447O/wDWoc/7JnySccQUUmVZJwQCZBxwayQsSThTOF85xwYBWQKZxxmLZAOQg4AgslEnAoxxEjjhaKcY9j4IOEoxZmj6UvqX3OOE6/DR7L/R/BlZ2ccQi1ZepYtLg44tyl0FDkHnOOKkKTAvuccEFDjjjM//2Q==\\n\", \"height\": 194, \"channels\": 3, \"width\": 259, \"type\": \"image\", \"id\": 4947633040}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxQTEhQUExQVFRUWFxgXGBgXFRUaFxQUFxcXFxUVFRcYHCggGBwlHBQUITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OGxAQGywmICQsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIALgBEgMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAEBQIDBgABB//EADgQAAEDAgQEAwYGAgIDAQAAAAEAAhEDIQQFEjFBUWFxIoGRBhMyobHRFEJSweHwI5IW8RVigjP/xAAaAQADAQEBAQAAAAAAAAAAAAACAwQBAAUG/8QAJxEAAgICAgEEAgIDAAAAAAAAAAECEQMhEjFBBBMiUTJhgaEUcZH/2gAMAwEAAhEDEQA/AM4SubWcDIJUiFAhfU0eCN8tzx7bOMjqjKefNJDCLdbjy5LM6eSbZbl4M6nNBJjmZFy2+ztr34qfJjgtsbCcuhycO17S5rmm19x5dEBhcKQ9satJ3ngOnRFZdlwBIc4GRAE2jrCvxFZjW6J2tt8KnunS2O/bFuZVKTHkONzsYmOPkm+FzAFgAvax2+SBxWW0qjNWnSQAJLiZKGOTkGQ+LbXn/wCVzUZLZqckxpUrveA1tiY8vJPslFQCah8uELN5VlVUODw4i+5g27LVYLCVZl5BaP7sps1JUqHY77Y2p1xsgMyZNwjqlZulZbHPe58A258IU+ONsbOVIJp03zbZFU8MXfEYHRe4QhrZJny/lD4vMIgBFtukZpBj2tbYXSrHPurGYjqo6NRWpV2Y3Zn88awUyYkm3NZvCYFzxLTtwWr9ocEWsJG37pLkHhJBm8dgrccvhaESXy2GYBpbZwgDoiBjiXQwE84RJIcNJXmHwwZYbn1S20+w0FtqBreqR5hV94+Btx7ozM8OQwnV80ky+sG73JWwjqzpS8B9LAHip/h9Nyf4TLLW6ocduXExvHNeZnTb6ienl0Q83dG1qxJW0ibSUsLPESLSmVTDXtJQ78IbnbzT4tC3ZS2oQuxuOAbKXVcQQbiyi1pqkDYJnHyweQK/EOed0XgsLHxI2lgGA23VzhG65z8I5L7JU36RZD13uNwCicNT1O6BMa2lg8Vj0G3dK5Uw6ENDCOfd48p+qYU3sZb5KmvVkEsJMbyII677JNWkODibz8kxLl2A3RpPxY5LkrGIC5DwNsucFAhXuCIw9Mth1xeAd78oVjdESVleGpNaQXgOBMWuQf08puL3hFCo3VAJIFiQZnjccTPHij6GF960gQ2BuGzBO7d9tkmDdDrzHNJT5N/Yz8TRYB8AFsHgZH7IrE4AVQdMNeRvzSnAU2ubZxA6FPsDSbsHHhY8VLk+LtFENqjE5jUqMcaZnwWPLuFPBZ1Dm6pt+bl91qfaPBmqSWtDSAPFI8XQpXlXs8DVAqNJB4gWt5JyywcLkBwkpaNNlFZunUXa+RBlP8O8EEi/7IfKMlpUWnQBcze9+nJe5hVgQTpPMcV5c2pS0XRTitg2YyAbhI69QCPEIMG3z9LoHPcVXa2YD282mYHIjdZ6hmBmxl0GGnZ3Yc77KvFgbjZPPLujbDEtf4QCCI+10LmmHdTbqftwBNy7hHVKsjzprRrqbjwt78YCPq5l+IrhtiG3nkOnJY8bjLrRqkmgLD+/1yabtI9LrVZbTBaC6xReAwpibR9eqGzWq1ux8uCROfN0kMjHirAM9aHNN7BZjCVwyYbE+oU8zx8yAZvaEFhZmCDJVePHUdiZTt6CqmKdqG2n6d0ScbBQRZvAS9jXvcQNm7zwR8EweTQ0zavrbpndeZZl0AG0d94ElUOoPIt8XCOPNdSzXSwNcPFpgdRtDvuFlOqianu2Oq2NYxlrE2EW7uHK8DqgaNY1HEnb6oXCYb3plwk+gTRmCjoltRj/ALD2yymByS7OngNMb7JkBCU5vSD4k7clkPyNl0IHYad1ThqRDwBxR7KdyCV67CgEODv5CrsTQzwuGG5XmMwrTtuoNqNA3UnYmAkbsZoFp4k0w42kQB0Bm/09UywLWPYCfETus+97qr3NaDBi/wCkjYnmOiYZXldRtQNe46eMGARG/ZHKKS32YnskMtqvcTSFgSNRNv5RQ9m2XJuT5AHjA5TKdjEtgNbZo+f8KmviAke5LwHxQl/483n81yJOL7rkfKf2ZSFauZVdBjjv+/aVBzVzHkbL0WrPOTC6WJLbtN4uPsl76p/v7Kb3TcqohYopGthOWhwMttz7T1WkyjHta8tB6CZ+qy1Os4AgHeyIGI0OBYZdF5E36HmlZcfMZCfE2rq7BXDQYLmahuQT904wzPDcxyHFfN6Wd1Nesm4EeQWpy32rpljQ8w+4Jj5yoc3p5pKkV480X2OqmMLTpd4WqD6gqS2N+N5CSVM0a4OY1wl1tUydJvxKFbjjTOgEucYgiT5Jawv+QvdRpDl7Wt07zzWT9r8vw7GiGlrxeW2k/wBCfYc1HgB+pp67JP7U5e5+1QWERwciw3GatmZNx0jC1KrncS79lvfY3CUiGPdPvCNuCWU8mbTaxxE6o8jy/la/CYJjAHMAFk/1OZONIXhxtO2NatSBZK8dQFRpBG6Owp4QSpVacLzU6ZW9o+Zv/wAVUtLdTQfQo3GYtjbixKN9sWsLNocNlhaldxsST+y9XHH3UpEU3wdD6tiTUIARGEwTwT29eSXZHWlwERzK1VVzAN7jjO6HI3F8UFDasS4lhaAd+gnfl1XlbAmoA4/Eef8AbKVfFhxgQjMGARuCVjbSs1UwWi6qwWbYD1TTCYrU0Sb8eivFLwxZZ3E4o0nFrhF7HmgS9wK+I6xAHdK8VXaJlLK2fRZKcbjSZg7p0MD8gSyIY4zGN4XXmG1vEAWSnDYZ9RwAC2OAwDmtGqB2R5KgjIXICwODLSS+97I1+G1GwVg0g7phQrtAU0pPsakhO/Aupy6194V4f4dyArMzxoA5pO3FlxhalKStnNpdDWg6SiatGRZV5fh+KaU8KSlSlTCSsRHCnouWg/8AHtXLPeN4GTIUqdAuMASisJl9SqYpsc7sLDueCb4H2XxZMtbA5yPovTnljHto86OOUukyrIMC0mTTBI4yCB3B3Kr9qm0QWhlPS4iSRLQb/pWjw2SOZ/8ArYi0iRHcaV5XwYqMaKtEua3arfY38NgXKL3l7nK9f7KfafDifPRTuJsJ3WuwmOo06bWsDTVIMO0tEGOPzSnMMtBfppO1AiY0xG9oHZN8j9lzIdUE97t8wU/PODjcn/AvFGSdJFeAyN1Z2o0hO+qDpPcCyji/YaoSSA0Do6w7CFu8OHNEF47AWXlXGgeHYnioP8rJfxK/YhWz5JUw4o1NJPwkguAMDnA5p5lWIZTpl51WPhMb952UvbrDtAa8ETMEc+IKy+Ex726hqJBEQZIV6XvY0yRv250aPGe0bqsNp2d2lV18HV0t9434uPfab2SbLcb7ozHYj6pszHumXOs42mbg9EMsfDUUbGfL8hu1pYxskPaNxP8ACIyfFsxB0Nkafyncclnsyrus1rgNRMSC0Ai6e+x9HQ06i3UbkgyYU+SFQcn2OhK5V4NTTbpbBSvH4kmQASmT6zWjmgqtUO2UUe7KZGHzrLapdrdccBx6rN5wwB0NbHOF9KxlH3nhmyzntLkeks93u7d52EL0sGdWkyPLj1aMhhWOnwceP7DomFXF1Gy2oLxaOPIpzluTaTLjq/btzWjoUaR3AJjiEeT1EU+rMhidGGyrAPrkgSBx59FtstyCnSgmS7mVe+KYOkBvYJe7MXEwJKmyZJ5OtIdGMYdheZ12tEiLeqwXtHmPvHQE29pcY5rZAN7dlncpw+t9zdU+nxKMebFZZtvihZCZZblb3/CC4duPdbjLMkotAJY0u5m9/NN9bWiBAHQLsnrPEUbDB5bMbRy2rT/LHzRlPFPHheIHOEzxuOAG6QYvGm6XG59oJ1HoKxrWkSPkk2Jx7mGFRUxp2CZZDlfvTqfe9gfqm8VBXIG+TpAuEaargL3WjweThsGE2weBZT2AldjKtlJPM5Oojo467OosAVwrBJaWME7qFTHzZqX7bbC5IefiAuWaNaovUXs/s7mfW8JgRTEMADeX7ymVJ4iyzNb2notDmOOl4BlpBs4flVOV5lqa0h5M/ljwi+5Kllim1bGLJG6RpKknjCoJ4OM91OlVbad1fVa0i4BSuhhkPafJxAq0KY94CXO0xLhB3HFZCl7SVmvh8wOBBBC+rRBvYJP7U5HSxAEy1w2c0CextcKzB6iK+ORWvv6JcuGX5Qf8CjKcXTqv1NLi48DtyMQntZthrbZY+llGLwsuplr2jnYx/eqIwHtoXO0V2aLXN7GOIRZMLl8se1/ZkMqjqemPMzyqnXbD6YcIseI6g8CvnXtH7PmjU/xNe5hAvvDr2MC3Bb3Ls5D58YiYg2RmOLS3U1wnmuxZsmGVf0bkxwyKz40GlrodLfK/onGLz10aQG+iYe1GVvfU94HtcdIluoBwvwHEXSjLxSdVDXyBsZXpqUckVJogqUHxND7MU3VvFoa4NtJix6SneNww0kghhHH9uyoacPhqbhTfp4wXGJSmnnLah0PdM28KgalOTlFaLE1BcX2WYfHPNQtdOq95lpHT+UdQxzbbgrPY/KqlE+9pEuafVoPNV5X/AJX+J0RuOfTqmyxRkuS6FrJJOmbM1mgSCDzuluOxmsWbqb/bhe1MPcCwYLnmfRM6FamBDYUuo77H7ejMNrPb8Pw9QVMV9Fybm8LTnDtdMhZb2kwDmAmmQAen0+ybCam6AlFxVjKnTNQS4qh72UZM/wALO4TPnNbpcC6LTCAzXHF7gACeidH00uVPoB5lWuxvmuaMNo1eU9lnKVF+uaYiUfQaGeJwIMWBTvK6Bq+IADyTbWKOugKc2VYPFVA0BwJceAEp1Ty2o5mpxj/1TLLcBpHiRlWwXnzzW/iiuOPWzEDKn+8OtwjgAEpzzBmnefCeHELX43EBpJKy+c4wVJgiAq8M5SlfgTkjFIQOr6dvXmnuTZuWRq+E7dOaX5RTZr8Ym+x+q3GEydjhdrY7JvqMkI6kgMUJPaZ7Sx7XAGUNj6uoQEdisA1o8LQOwSGvjwPDF1HBKTuJRJtdlNClHHuiqYHAKmgxzrpnhKIaPFujnIGKKBQcuTD37ea5K5S+hlI2+aZG2t8TGzcyd5PEwkOGymph6gaXA0jvBNjyjdOP+RtJDdLpJgR90bh6ocbxPLiElSyQVPo7jCbtdkqbWtYBDj1gn1Vr5i1vn8ld7y1vpshMZrixU92x3QKcaXktAkt36eaMpUob4jJ+izlKo9lbgeHXrK1QAIujyLjVAwdgWOI0m08185zDJy7FQzxavFHAcwV9FxVQAQF5l+FYACGCeZ39d0zDneJNoDLiWSkynLMho02AOY1x5kA36KBoMpy0NBEkwbxN0wxr3RaEpfrgkgHkBv8AVLUpS22G0l0jNYn2ZFSs5xdDZkBo2B/L9VLEeyNKS8uMx1I790+p03b7dFYKLn3gAcp37qj/ACMi8ifZh9HzPP8ALDTLSHEtNr8I4JTT1NIcNzMdea+l57lL6zdDmt0i7TMeLgJ4LNOyaoBpFzNtO5AtDiQIj5916GH1KcKl2R5cDUtDL2Yo16jZqvIZyi5HUqftDgKLG+9a0teLahIt14FN8LXFJoFQtsBAbskWf5mcS006TZg7yAFJGUpZLWl/RRJRjCvJnGZs7UTOrUIAJtPCFpcpwVWZeWxFiJKxdH/E+Hggg36Lb4HOKXu/C7YbGFV6mLS+CJ8Ek38mPPeaRuElzWq2o0t1X4KNXNKcDXxEqkYQvIe0w0cOfKFHCHF2yqU70jFOY51QsAOqY4rVYPLAymJgmJJiD2ug80xRp1dTWjVsZG/YrQ5LQfVBNWATs3iB16/T6VZ8j4J+BGKC5NeTJZw8Ohogd4snGTueGAAG3LinmIyHDjem2eceLy5Kvw0z4R6bR0SZZ4yjxSGrE4u2G0K1r7qVSrIWefmAdUgb8k+w7bXU04cex8ZWZb2hdUgw2yy+GphxMi/S63PtDh9TTBhZ/L67WTAg8eqvwZKx6RNkj89kcuwVNtQPfMDgea2uFxYLRpErO0YqmDcLSYSnpaFL6iXLvsdijXRViXEi4WZzRtO9hq58U/zbMQ1ptKyNdhrPsCO26P08H29GZZeCzLnETeY+gUKuOJJvborq2FFFog6mneTcx+YDoeBStovc78xuq4xUnyENtaL/AMW9coyF4ipfR1m2pVnOcfd6gTsImUxy/VScdZIIjckHjw48Umo1HMMtJCMw2ZaXanS/qdwkZINqkLxzS7N3gcRLBYt77+fJC5niIYXT8N459EuqZ+x4Aa6/LYz/AHik1RtWo7WHsaDIhztwDHwqCGB3ctFssyqo7DcsqPdV1OY8BwkeEx0haumywn0WXyvHVJJqeFjbE7yenROcLimvMscXDjyCzPF30FiaoKxLOiCZWcDEWRzGOm+yjiaAi26nTS0NPCJ3Q+KpSLKDXOG91b70FdVHdiV1Co5x0yGjjzPFEU6TmCSSmtR8CAlmYFwuNkfNy0DxoFxTnGRNv6L9ErxTGFha8uDjs4SIPNGYKm5xMkgcFa+iAZIlNjLixbVmEoioX6HOLmgw69yOa1GGyoNYCxkN+fdV560VG6dIHI8R6XQOW5zWpj3dQtIFhO5HDurJSlljcdfomilCVS/6Qz3D0Gg62GSPi4grMUMIb2fH6tJA81uqWGbVe1+mSRadh1hOmuLLO+Wy6Pqvbjx7/k5+n5u+j5u6jUMF50tBsXgiewKP/wDNgCxNjHQ9QtfmdZj2lroc08DcLE5zlrWt1U2+gTMeWOXUlQM8bx7iyrE5hrq0nGbHbud+6Z5HmTvedCN/NZ3Ct1u8Q25fVaNmVvfDmPNPuB4upHNNzKEVxYGJybtGsf8A5RvDQNzxWZzjEllmAkXv159lfjMc6iwNnXA3jc84Sk5w2r4XiOCkxYn+VWinJkXXkFy5pL5D5dyAC1uV4ao4S4nsg8iyVlM6mybXlaKdKX6nMm6iHhxtK2DYjLmkeK6yntFTZTb4RdajGYwAGSsniqra79Iuu9Nyu30jctVS7BvZ7HAOA0kkmJi3mty0yEtyzLG0wLIzE1A0IM+SM5/FBYoOMdi7MqU8vNIqzdPwggg3noNyOcmwTPG40EETcc9o5ylLDJ/vlKbjtLYE6s8e8u+L4evHhJ6lKsRSGskbck+qYfUIVtLBNAl0J8MygLljcjPADkVydOYzmuTPeX0D7Y1LVW5qJLVAtRWR0CwnWWV8PDRUDiRJubTzStzFWWLJx5KjYT4uzb0KuHqtjhw8RBj1RtDAU2gaNQHRxv6r59hyA4Ez5LS/8ggBrLwPzWg+e6hy+nktRbLsWeL3JGjdW0xwHzC7WHbFZKrnDnvAdDRO4uUfkuNLnFrjBk2PLmp5+nlFWx0c8ZOkOnhBV6DRcgz3/ZMi4cLqiowpCdDmhYMwa2xnzRDKgeNxCFxuFndUUqY2lMpNaAtl+IqBqXvxzSblFV8HI3KBo0qbZDmz3RRSoyVntV8iwlL8VgHOuR2TimQ34WqGJrud0RRm09AuKa2CZFhnM3Nk1r0WESbnnxWfxfvZ8JMcYRuWm3icT0RZE38rMg1+NHYhhJiBAVzaILbkBGBzOSoqs1bJfNh8TG5zhvdv1Ma0fftCEqZnUIiDq4X/AGWmxeXS66Mo4KkR4mBxjcgEjsVavUxSXJWSvBJt06M7Ryl9QS5xk8jYBOMp9mKFMS8F7pmTwjkArXPFP4duXJW0szad0mefI1Seh0MME7fYz1tYLBLMyx1ioVscDsk+YVrJWOFvYyUqWhaMVrdDnEidlqMHQZpGloCzGU1aYedTb8/stTTxI02VHqHVJCsKvbLamL07pJmOPLzpbuuzR5KW4CsWuuhx41VhTl4CKWVGZddEvwzWq+pjbWKWOqOqG23Nb8pbZnxQT73kQFSXanQSvW5cPzOPqrWPpMOwW2vB2/ISMAxco/8Ak2clyX8wviHlqgWossUHMVqkebQG5qrLUY6mqyxEpAtAhaokIksUCxGmDR7gsQabgeq0GG0YiZNhwPPkCs2WKdJxGx+fy7JWTGpbXY7HlcdPo3uCYGNgXAUqtXksjgcwqUSNRseBmPVX1811vIIgWjTuoJemlyLo+ojQ4q1hsbdUvrsAMhx8lHQ+p8LoH/sLjndEHLbaWvItcnfyQ8VHthcnLwXYcy3mgcawC/FNMLT0iCZhV1cOx1zv2SrpjKtCzD1HHgYV/wCHBvZTe87NUWtB+IgLWzqKxUjwiFEYdnKFbUZTBBb/ANryrWkfCsv6Or7B3UgNiVB9Rzd1Go/yQ9av1RGBH4pnFQqYoflSmu9A1KxCJQszkMsVVJS2pVEqPvuZVbyOCbFUCy1tReV3gC5VRrxuFXWqA8ES7MKbAyEzw+KgXP8ACVGiRf8Av/agWuGxlMl8gVod164jeUC7FtNgIVFOo48FWWeLaei6EV5Ok2H4WjeSZHJGvqBgsEHRxYYNoK8rMqPvsO4+S6nJ76MtJaBcXjnO2XuX3NwSi8Lg6UXJJ7wEZhaLGbMJ7n9k2eTHGPFIXGE3K2e25Lld74fo+q9UnL9FFD401E0kUWKBYm8iOgR1NVOpo4tVbmo1IFxAHU1WaaPLFB1NGpAuICWKssRrqagaaJSBoGBO31UsPYzMR04qZprzQt7OVobYPMIESCTzsj8PiQ4kSAf7tzSDC4XUdwP7yRwwUQA2ST8QER81HkhC+yzHknXQ2e8s3Pmg8Qwk2Jv5BSp03Awb9d/+kS0EcB5lSvRT2Cmg4C5HoqTQkSY+6OFQfmPkqnU42/ZZZtHlKkI+IIbFUwNnKuuShKmIPfyXKLOtFdR57oSoeaJNSeaCxN0xIFsorVOqGdV6KT5Q7uqakCeVKsqh5CvdS5LyAiMBpPdeSeV/oin04XUtPET5rrOoH9yphhHDdEHSNpCHrV+q5OzqJdiiMO6OMeSCovi+mUaK09PJdL9HIjig0kEucT1QtV7uRPJTq0CTY2RNGg4QZ9FqlxOqyWAc8CdA80W7FOPIdlCm88ZKnoZxme6S5W7YaX0UnV+r6rkRqp8guWczeJtC1VuYizTXnu+q3mS8QIsVZpTKZe5H6vl/KlPIn5H06LPdCWL7FGhRNNPNffzVbqbf0rVn/RvsfTEZYoGmnFSg07yEM/C8j/fJMjmTFSwtC001A00wdQIVZopiyC+DASxXU8Q9vXvwTGjRZFwvRTaNmyekeSCWaPTQ2GGXaZTSxbju2e2/8Lx2JbxJ6hwXV8EBcyB22+6HNObA9uCCsbGcskQmqGP+FwQb9QtdTOCO9vVX0qRYJLgfP5IXGK6YUZSb2hU+rUGzh2K8bVdxEptiA13L5IOrQHD6obX0HQDWrkcAh6lUnkr69GeCpOAPCPVGqBbYK6pPAKDh0RAytxEyB6/ZUOwbgeMc+A9EWjNkWYbUQJXlTDlp2PmL+fJMabHBuwPnEzwcB0mEPiKjv1f3qeKG3YQCGngFVUa7kPkiTW6SqawJ4QiVnFPuuvkqXMAKt0OC8c4m0BErM0WAECZC8FXmAqDTfwCr0vXUdYe2s0C6h+MtYE+l+3NUNwxMl2w+ZOw+SvpZO6o3US0DYDkOUcFlLydZW/FEdO6Hq40oill5BLZHUdeY6qGJyx7SQY9R3W1FM62C/jSuXn4Y8vouRVEG2fZffN/U3/YKJrt/UP8AYLly8/kx3BHjqzf1N9W/3gvPft/Uz1auXLuR3E896P1M/wBh91E1m8XN/wBh91y5dyZvBI8NdnNvqFW7Et5t9QuXLTCBxg5j/YKl+NZzA8wvFyKJzRYMxZ+of7D7qs1m7hzf9guXLejGrRcMUHAgubA38QQlesw2BaB3F1y5GgHf2U+8HBw/2C4Vx+pvqF6uRJgtNeT0YhvEj1C8qV2RYjyIXLlzSOUmAVaw7Hy+6Gc502I9QFy5c3RqVk2VHAQXA/8A0J9Ve2oyLvG1/E03Iieo+i8XLFMNw/ZXqbsCIG1x+y5tVo4tPeFy5NbtdCFFp9kKhadi1vYhB1aLTvU+YXLkEXsZJFbMG0Gz/VXNot4uHlC9XI3sWm0yurVpt3g+YQdTMqfAfMLlyyCvsbIrZjZkAC8QCd78Ov8AKKweOfZoaw3tLtly5a6B2FV4aIboLzuZ2P8AeCVVaLybx3kfdcuXLQDk7PPwZ/V9Fy5cts7kz//Z\\n\", \"height\": 184, \"channels\": 3, \"width\": 274, \"type\": \"image\", \"id\": 4947632528}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUTEhMVFhUXGBcXFxcYFRgXFxgYFxcXFxcXFRsYHyggGBolHRUXITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGy0lHx8tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIALEBHAMBIgACEQEDEQH/xAAcAAACAwEBAQEAAAAAAAAAAAAEBQIDBgABBwj/xAA7EAABAwMCBAQEBQMEAAcAAAABAAIRAwQhEjEFQVFhBiJxgRORofAUMrHB0ULh8RUjUmIHFjNDcoKS/8QAGQEAAwEBAQAAAAAAAAAAAAAAAQIDAAQF/8QAJREAAgICAgMBAAEFAAAAAAAAAAECEQMhEjETQVEiMgQUUmFx/9oADAMBAAIRAxEAPwD6Nc3wyeaUX9xITGvwtzjvACA4jQAxzC7I0c0rFVSmSzAH8qIYYzKNoPg5XtcAqliURtHwMEzmJynVmWEQ5o1EdOqR03CIlDG9ewyErjYU6J8Wrfhq4iIfMgdVqOF3ZqNaIA5kTOO6+d8V4u2pVZqkQf8AK+h+G6DC1tRpwR84RyqoqwQdy0YD/wAQeBvbcfEa0Bjug5/9kLw3hIfRcS1pgb7bnYnsvr/E7JlVha8Y+o9FhLrhFWm74VJjzTjLvnhHHmuNfDTx07Ma2waQdO3SfvKArWLgT1/ZaO2oQSAxxg5kSR6qi/uWnl6q6lslRmallGVH4YGQmlQNdt9coCtTIKexQd1OVGnSgiUXTbhWfCWswTZcJa8iKzRPY6vkvo3h2zbRp6MHM5y71I79F88pN06XRK+geEXCpDpJIwOWPTlsoZeikOzTC21AtJGxwMb8ysJe8Gc2oQ8bkOLjzA/eF9DdQDTI3P3lUcSt2PEOIx/GxXNDJTLShaPhl20tqFwEAOxjv05rW8Ovq9BrH1TrcTyGGt7kYJM/TureK8H1veAHHQIEGSRJyRGY/dd/ptWlQaRq+HpILT11STB23+i6nJNEEmhZxqt8VrvhNLSDq8s+cSJETt/CWcK4S6r53fmkOGwGM6XBa21Y2J/6wABB/hB8Oc4OIOJ5z0OMeh+iKlqkahPxHglVrmk0szOlr5BEkwP+OOis4lf/ABaT2ljiWtADPYeY+mkptxjiIa0wfNtHPPP6LL16+oaGfmcf+WfcnfCaNvsD0L7ajSJaHHTOCYJ0559cdAqfwbjW+EzJLtI5A956d0X/AKa6mWucJE7d+hgps23LixwY1pY+S4AbDIB7d/1VLoUynFbR1Kq+k/8AMxxaemOnZBJ34jqmpcOLtM4HlGIGw74SosTroDOYBzUXFTlcUTA7wev0Xmh3X6K5wCgFqDYbY3NFrdNWh8R2okPFU0yAWtAaQAQYIJn/ALKi+qsc6abPhtgeXUX55mXZz0VACkWrJUBs/Sta7AKR8Xqh2AVCvXMboGZMrzIwrZ1SlZW2iRzU3vU6rsSgaZkqvYheqaj+qsdWA3Sy+cCSZiMwilYGxXxS1DzJMLUeCeM6KXw3O2dA7BZZ9cPxCopOLfy+qq48o0xFKnaPudrUD2jPyRAhfNuAeMoZpfAI58vmtfZ8cp1Gghw3hcE8Uos6o5ExhWsWH+kZ3jnPVYbxJ4YBM0wZ3Pp/K2hvQfymVV+IEfOZRhKUTSUZHyR3DixxBx6oCtTyQvonErEO1QNJBkeiylWy0vPP0XZGdnNKNCWhSzCNdZmMBMqNqDkCEXbWpMhZzAkKqFnqYR0TLgWqk9pBIExA5ouytYcQeYhF2NtnI2U5SGSNL/qjPykQRzmfvKV8SvhnTvz7rjRIEQljqZa6R1ypRSKSbCCPhUnVI1PJIdygdgkN1xckNb5seuZ3bC0P4/EaARznmieF8JoucH/Cg5jcifROpJbYtX0Ym8vXUiRpOQCBtvPVKmX9TzZOYAJ5Qvp91wOlcAmphzT5nAxHZYfxPY0qZ0skwcGIxjfr/dUhNPQsotbMnXaSZye6qot0mUa7HdUvMroJhr+NhzSxzc8j/PX1UK949zSxrhHrhLKrIRNG2GkGZneDstSNYI+zJdDXBzvX90LUHIrQUGU6GpzvM4A6Rt80iqQ4kgRPJMmAGcFFsrVeGPD1OqDUq1WsaCQ0HOpw69lsL/hlkWMDm626XAhulsPIjVIGokevJK8qToZRs+SSvITfj7bUODbX4kCdReQQTiNPbfdBUbJ7qZqAeRrg05jJzAVE9WKUMwpSjatmAA4O6+Utg9s7O9UM52dgiA+x1yJyqqeFB7wVUKq886A9juSCubcyS3CkKikKvVZaMxXXY9uSN+6qfTD2gxsjri7bsdlV8ds425AZ+aqhBO+0BMEwfoqa72tloynt1TZvzOUprWzT5oTp2K0KHvMHeCpWdw9pw4j3TZtnDf2VTaEHIhNaBRdS4nV5PdPYrQ2/GnhoBJlZ40SILc9oVrWEzO6nJJjJtGktrsv1EnEbzz9EteMnI3VNnABmZjA2RVFhJiFOqGuwyxogb7plbUWk90JQo8spra2491KTHiiDrASHdMomjbBr/r80yoUA5qtNt+U9MKLmUUQavQbEpfUtAU7uaXlQ1CmgpBaE1e3DREJzwzS5pABHfkgeIUicAKp146k3SMmN+iftCrTJcSvvggtaQDO5Ej3Cx3Gn1a8/Ec0NG0NHLomV7cZkiSfv2Q9S3LmEmAIiJ+qtBcScnZiK9LOFUaR6Jvc0gNvqgHrqTIi+5pwhqby04R9ZsoVzIOydAK7msX7oXbZG6FVUo8+SYA44XXZVYKTi4QQcQBjc43/unHE7lpLWM/KASTG8deixbXaTLV34p/UpXC2Gwm9tGEy0wCT6Dqm1GkNDKYYA0GSScEmJceuAs4CTiVqLCmC0NdOAjLSMj3iljU82k6mQIcYzhJK/Di4yION9tsLTXToaWNHlHMnc9R2WbDXZyfqhBszNpUrloKppXhlL619MckPRfmSSAkUPo3I1VGpMKdzTxIKW03ODMGef+EXw+vOCfT16KbjWxrB3txGc/RDttjgCd9+ia3YzMbZx/CiyCQe22yNmoCq2zjLJ29F5ROkQSFdd4BO5+qAt7qWkEfNHtALBWEmcRyVV3XaTIE90PUtnEyF4yg4GCjSBYZRJcMffqmVhvDhj0QvDrIzkpyy1IOPqVOTQyQXQ4Wx2WnKkyzcDsrrCBE7ptSeRuJC55SaKpIEoN5FMKVvp5SOqtpUWO2weiMpUdPdRlIookrenHJEli8pj5K8BSbKpA1WlIVLqUAo+FF7VrM0JqlPSJO52SatbOcVqKlvqMlUVaTQFSMqJuJlqnDeqBOlpyJH8cgFormTIOyz/ABF+nYAq8G2RkqEnFKjXbUw3ffr1CR1qELQXddrhGmB7pZXph3L7hdUGSYqNIqg0/mmjXgAgjKBLSTOyohGAVmEboV2dyjbgSSgqlOFRAIBi9+HyC5rVdSDdXmmOcImLLa0aY8rnTuQYhaPhNlpnVy6pN+MEeRse+BGx7qf+tvEg8ykkmwqhjxZ2ntI9kgfcgGAAuvb51QoQUgmjGlsDY4oVNpAMK1lMuPl+SKo8NH/L791azhrpxPyz9EG0agnhlE6SCTOI5owUHTiD32IV1jQhsFv0+yr202gyAR+6i5bKJFNNrjI1HG6r+EGnM9kTWYYkCSr6dKR5glsNCa6GrAJBCBFGDlP69s3VIwey9HDGkg7jn/KKmkDiB0LaYkYwi6vDmiCQR19EytLcNIE4RF/woAEtqtg9/opuexlHQjo74AhOKbCQPuUifTe3cTndEW9dwxK0lZkzQW9qWxgSjWa5/KYSO2un8ynFvfkDmoyTKRaGVAdimVByW2V2SmNOoei55FohTWqaiwqSmVOXLlyxiuohKjSjXFC1qiKFYpu6MpLe2BITm8uYSm4vhzXRCznlQhr2GUM61IaSOSYXVcEyCllzdOMgRHSOq6o2RdCq9pQY3QNcHoPVNWWxMuIMD917d02aAZMn5AjorJiUIH9/7oCsco+5AnB+/dAPCqhSExsibbhtSoQ1oMk/rzUbAw8EgEdHAEe8/qtzwzh5aW1XA/lwB7wO+6E58QpWZ3i/Bvw9Mag4uAEluWyRJyOiz7n9Vv8AiXF2tpvY9/mdMdsECey+fubneVsbbWzSpdEmO6rzQVMAKQq91QQ0lvRJWgtYbk4++yWUrgRGlcCRnJG655bKLQ+bByIPddUaOaWtui0CCI98Ixt1qGBPZTcWPYQwYUlBjsdFJpShJaV6xkLgphKEm1WATuqmq1qVhPXWofA6ZXlPhRkOiB6/orqaIfUJbExmc5/wlbY1IXtB6Jnb0pElU0wS7dF0pHL6JZMyQRbADATWg088IKk4NyrjdqMtlVoYghSQVCpKK1qbRVMmvJUdSqfUhajWWucgbpvQx+ivqOwg6tZMkLJie9c7oCEgvG+y0d04HsUgvi0TO66sZzTEteRzQriN0RcDOFCtTjM+y6URPbJ+o6S7SDyOQUzqWYFMtbE8yRM88dN1nKzjKJ4TxBzakasHecouL7RkxRxDhr9ZwQ3qZAVDeFAuY34tOXODZnyieZPITjZbulSFZ514B5Ex8h0VnFfB7QRUogAgAxALTGZIjKPmS0zcG9oT2HhT8PVcX+cAODZaY7kf8vWIyiuKcYLWAbco5k9ew5o654k4NaajpcS7MR1ABA7QkF80OeZznI6+6RXJ3ILpdGV4s5z6hcR78kJTcAt7w74Lg6aflMAy7HaFOta21Rug0mjRIBEgwep3V/KlqhOBgS8KBPZaY+FNTjpfpGdII1HaRkQCO6Hd4TrAxqp/N38J1kj9F4stZcZkY6o+3cH/AH+yDrW05GO0r2xlpStaCg8g04kSNuyJpVi0hw58kL+J5STO45IqlSacgqb/ANjINoXGsxt0RRzjZA22oOzj90Savb0yptDos1gYXrLkTC9MEZVNFsEwWxiespaCHBWNVQKtptkgDcpGMTpp1ZcO1QSZH3hU2FoWmHtkexTJ1DTlh9uXsoTl6RWMfpC44ewCPkUtkjBB/VOX3IiCRKGaIEuSpv2FpehOb0zCJoV5I5qriJBBIb/9kNw4kHKpWid7NTb7Kyo4hAMuIC78SZBUOJbkMC/KjUag61XOFMOd0JWoNk3FAXRjKve93RAcQDhunihJMXXNYlJ7sDeUXdse3MGOsJRc1swuqETnkwetGUBVqk80VXaBkobWOi6EiTB6ju6Aq4R1TPVBVlRAYRZcYdTIJGqIgbCOndbbw74gr3R0U2NLxl+p0ANJjHWByXzkp14W41+Hc9ukn4kZaJc2J2//AEly4046WwwlTNV4h4bW+MymdMPmSMYkBL7+wFu4DU49DE8up5J/ecRyGuJJEOyBy29Fm/EHEHVQQ13VveSoY3J0mUnSsqtbokwDI54jPpyV9cFrSYSbhFjXzpad/syU5p2VV1My0+xkqkkkxVtEqAljd2iNp+aspVABH90JRpls6g7pkQqA8c5lCjWUXtm9ji1zSIPMyEEWEDK+icR4U5zhLNQmRnPuuvOA0qg0imGuP9WMdf8ACyzrVmeJnzl1WTklMbSi8nygx1laq48CNA1B+fSf0QdpwqpqLWlrSzDgd87Rjmm80JLQPHJdglLWBG56FEWuvZ4wr6wNM/7hAdndpExHM9RPyQLeISd8cxCXsPQTXpEkBo8sbqdlYOJnog7V7i/yCfTutbwzh8Nl5yeSnOXFDRXJgj6TMcjsSqmXzWHJ3wnRtWZAb80Kzhoa6YHpuoqS9lXFlB4xgiWx9890Izjp1hjiNMxMgCFDiHDjqHwwADupDwv8QYJDupyE6UEtiXJ9GipCi4B7IPSOqOokOC+bl9SjUNN0gtP9Jwf5TjhnGvN5nQBgf3SSwurTGjlXs1la2Gxx3U6DC0fmBCV1OMNcIz02yUVahrRJnHupOLS2UTV6AeK3zcRvzhBUbvzDJVnGeI0S1zWQXHmEpomIlWjD8kpS2aYXXmwU6tblpaMrGUrxofk+sJ/Y3lKBBH7qU4FYTGFw5s8/ZUtpg5dnorTcMdgFSKmOVXtNj2kObI9Fj6vhzUSWEHPP9FsjcRsqXukz9+6eE3HoScVI+fcQ4K9h84095kJNWsXQXBzXAdDlfXajWuHmAKz/ABrhFHR/ttDCckjb3XTjz+mRniraPnJmO6Fqge63rvDDHNaWu3ySTy6bJN4j8NinqqUqjTTGYJlw7bRuuiOWLdEnBpWZFzVpv/D3h+usahkBrXCRG5Gf1CzNRfUPBNiKVoHOIbr8xcDmDy+ib+olxh/0GKNyE/F6waNUTBMu5kZ6pUCagwJ77fZWiu6rSTDRHJ2Pr1QI+GDGM8h/ZRjKkO1su4M4hnYbz+pRV5dRBDtI5d8817a+HqVQgms8A7gEAekpzU4ZbU6chuw3cZP1U5SjY6i6M/ekOEAgyNucpLdWT2GA2cTuP3Ww4fwdn5ztyE7Z5wrLrhVJzpeGT3E45JlkUXQrg2rE1PxTI8m+56/2TOztTcj4ja5bO+iI+srB2rm88Hr/AIRzOKvpkCm6Gj5T1VZYf8RI5Pp9BseH1KW9Zzmf9on2hIOLXb7es5wDTqIMbz0nor2eKaL2AOe/U3o3fuOyR+IqtN+Wuc8wPPzPUR7qOOEuX6RSclX5GXEuIVrhhHw5I3bhwPoZxCA4RwLXDH+R5zp/6g5M/wCF54YtLiu/TTMU27uLZjsO6+gWHB6VGS3Lzu4mXH3K2TIsX5QYQc9sXWnDadKAG7c+fujqonbHZXac59lVXqCcLlcm2XSpFJpOJ2UxQMZ2R04lLbu+0yeQQVvoLpFdW2kqxjIG8LN3niGDjf73QtTxCTgtJ7q6xTZHyRQD4jcRWJGxS+k7urbtznkn/KCbMrsjHVHM3se8P4h8MyIJ5zlOqvipgYdLPMd5WN1kKpz0rwqT2MsjXQ6NcPlwgdVGnWzvKThxVzHlHgCxpWuRKnT4gOkJUSuY0ocEbkaKxu3B0mSFpLPigLwHEAEdViqF0Gt6norjdgidv1Up4rKRnR9IeWxMhDl07L58/iFTk4+hPRaDw/xz+mqR2PJQlgcVZVZU3Q9c7qh7p2oEafcq6tcsOQRHqo0KZeTybyPVItbGfwTcSpUm09BJbzEE7pRw60cWvy14mRqBBkTGCtjUZpMYKpqVhs2CegIkeyrHI6EcNnyN9n/uEOBaA7zA5jOVq+AVKuh1NzTpH5TGIjkruP8AA9dUQNJcfn1KuvuEVaLG/DaQBgkldM8ilFIjGLTZTeNhhhJRcAOEhzT16ymtO4dA14K910/iB8a3QRGYkggT/ZLHXYXvoXV3VDGmoQ2Bzg49E04dw6vdQHVHMp+0n/KFq2NRxlzS3Vtz7/KEbw6pVpSQDMQ0E4A7IyetdgS3s0lKxFBgDQ57ux375Q1S6ZJ1w09DBWUu/EtdpLa0h2Pl7bbbpfU8SvJksb8kscEntheWPoY2vhyR5ic9FO/8Llv5cx13W6Fo1oEckHWbLoLoCT+5k2P4UkIvDHhZ2v4lZrSyDAO89Y6LcO4exwAcGwOUD5Ie0cGiAiDc4yufLklOVl8cIxVE6FGnRZpptDRkwBGTuT3QVxd5Ua93KEqOHMpEvbGb+EzcndB1L2DlTe8dUDVAKpFIm2PaFyHt3gIPidlqadLsoWg4gQETocRC1U9G7RinWg1ZyZ9lVcdA1aw8KaSCf8ry44a2NgF1LMiHjZh3OcF4Seafca4WaTQ6BpPMSkpqACFeMlJWiTVPZSaknK4QvTpccCF4aOlOKTc8oynRBbhwLsY2xzjul7nkYlWtqINBTCWtg5CuxzGPVCUhq3KucTyjtG/8lK0EGc4TlTNwCIhVvozleMpEeyakKEA8gUZRoPAnl6IamRuflCYfimluCI6SkYyI3JcGyx0R0wo0/EVw2fP05D6KLqmI5H7xCpqUGRvnogor2g2/Q/o8cfp1NHxZwQM5PI4wmthe02sLn0nUnE/1NI+qwNOoWnyyD1Cd/wDmGs5gp6WuAHMEn1JU54fg8cn00PC7ptSqXwHuiGwCQB6nmmXEqdTSSYgjaOfcpdwupTp0muJAc4AkNMZTK6ql9Bp25Gd8f2XLP+Wi8f4mJu6DpLYn0HXl9Efwe1aw6qunH9MyZ/RX1g9oIkQeh29EMOHPc3W0Ejtv0V+VqiVUx9ccWoU2ZAaDjHLtjZZq7qiTzadu47IapbvGW0i0T5i8ZAxJIdEj+U4pW7Q0O0tdAg+XEZWWNR2BzcjI+IWsdoeD5oIM9Btt7pLpWw4tbUHg1C1+ojH9DZHT2/dZU0iO3uu3E/zRzz7PrPxjEqmm/Ud0DW4qGjT8Ooe4Z5T3BVX+qdKNbl/7Z5xnJ2z9CvKO80jDAQ11c4XljWD2A/lOQQ7DhBLcjpiR1BCA4g6DE/JCKthb0RfcKDrpCPeqnOVeJOw01pUWPEoNr1LWjRrDnXEbIulemN0jNQqTaqDibkNX3BK5tbrlL2VVMzyQ4hs941daqJbHoscymZkpvxwO2yg6NqY3yuzCuMTmyO2RxH5fdQDx791fVbp2PshuUkKiELqdIO5BSqWUbZCop1uUfqj6T8RiPvog7RlRU+joGMyutqTp1behj5KyoCB9lStmPPOEPQSYphxzg7bZx+qkOHjMfsrRU0DJn1Gyl+OEYj6FJv0NoDfaubjT6bqZtn6ctEemyuF/1yrzcaxDQR3P7LWzaFxsnRI9sqo27wchOKTSBEfL90Q2pTH5jHT++63Nm4oROoyd8+kQjbG1bJk/wvL11GPKRPOCT81Tfvc2AC0SAccwevdNt6B0X1a4D5DsjIxzRVv4iDWn4r3uJnygAARtvz9Fl7l+eZKFdKbwprYPI10PrvjTN2F5P/aDHqmnAvFDT5K7t8AiQB8tgsZpUg1F4INUBZZJ2fULi+oupvLHNc0CMuGOkeqy7b6pp+G7Sxhg6hAnpgc1mNK1vh/ilm2lor02zAlxbqJyexgBSeLxrWx/Jze9FpczygOdXcN4bLRO+eQ2+SW3deg12n4DJG8ggz7Ba254nSbTFSm3S1olobDdXRsRsZWGvuKGq8vc2CeQ0/u1bFcvQclR9moo7N9UXU5rxcuWXZePR1luh77dcuQXYX0AvVTl6uTinjVIr1ciYrK4LlywCdLdGUt1y5KwojT/APVHoUiP5j7rlyviJZAOtuuO3suXLoIkWKx23uuXLGCaPNNbXYLlylMeIv4ju70S+guXKkehZdhLd/YIzhv5vmuXJZdBXYyofmKBu9/l+65cpR7HfQnr8111s3/4heLl0kWDvVJXLk6AzlNi5ciAkV4uXLGCrj8g9Aq6mzfT+Vy5Kgs//9k=\\n\", \"height\": 177, \"channels\": 3, \"width\": 284, \"type\": \"image\", \"id\": 4947633424}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUTEhMWFhUXGBgXFxgXFxcYGBgWGBYXFxcVFxcYHSggGBolHRUXITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGxAQGi0lICUtLS0tLS8tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAMIBAwMBIgACEQEDEQH/xAAcAAABBQEBAQAAAAAAAAAAAAAEAAIDBQYBBwj/xAA4EAABAwIEBAQEBQQCAwEAAAABAAIRAyEEEjFBBVFhcQYTIoEykaHBBxSx0fAjQuHxM1JiktIW/8QAGQEAAwEBAQAAAAAAAAAAAAAAAQIDAAQF/8QAJBEAAgICAQUAAwEBAAAAAAAAAAECEQMhEgQTMUFRImFxFOH/2gAMAwEAAhEDEQA/APUS5T0myEIKLi4gDZHUMMcoM33VmRRypTsq+o2JVpVH+VGzCtcZv2WToLRna2CJMgAE/wA1TOIYGWG1hr9le4ujePolj6eWnJ5zHPaFRT8COPkxDcA5pMHVBYrgOaSD3tK2dKiH6CFJWoN0Cp3WmT7aZ5+/grdCDbcCfZV1eg5rsrW6mZ2jlC9Jq4cAQLLPcSw86a/p1VYZLEljozOL4UKlMlov8oO8LK4vhTKXredL23nSy3XEcQ2mALl20TJPXl7rzzjfEPOcJblLZtMhdOJNkpF/wjG0sP8A1HMdl2MSDpuPblqtJgPxApksbTc4Pcfhc2GCds0zPzleVFxiJMcpt8k7CFoqMNQSwPaXgbsDhmHylUlgjLyGMmj6R4Jw8VarcUX3ZItEOJEHtErQmuLwqrgPEaNagx+Gjyi30QIAAtEG4IiPZEOuvGnbls7o6WiHHOa4Fp12Kh4KA4lrdtU3H0svqlAYLHVQ8+WBB1nY7fdOo3HQrey+4hwajiMpqNksMi5Go0MbKuw3h5mGDxSqvax5JykhzWuMfDaRpzv9VFxLi9RjDJgj+7Kd+UafJUX/AOviA68G+twOUowhka14NKcEySnwGobFsyfS4d9T03WhdwaWQ/KSAAD2C5gOMU3sD23GoHJUnE/FDWVZcSKUXt/ft7H9kfzk6N+KRkvEfB3Nc4HqvMuJ4VwdfVev8d4ox5aLgkXJdYjYHkqVnh1lZ0B2hnNBy5ZvfmLhduOdL8jnkt6PLCyDDgf0MdFZcU4y6oBTpyyi0ZWsnbrz/wBreeLuB4Z1NxY5n9NsSCLQNz3leXlVi1NWb+ihPo0i4gDU2te/JXPhPgLsXWDAx5aSAXNsGzu4wYC+ieH+DMFRbTa3D0yWQWuLQTmAHqk6m2qlmzRx6Y8YuXg+deI+FcVSZ5jqTizYgSYtcgTGqBxHCqzKTaz6Tm03mGuIgEr6sfw6k74mAzzvbkm4ng9CpT8p1NhZEBpaC2OWXRcv+v8AQ/Zf0+SUl6d+JHgF7KoqYanTDXSPKZDSIvIBsdemgXnOKwVSmS2oxzS2JkaTpddMZKStEmq8g6S6kiKfWMwSVM15IXarZHUrtWhDbG4XlnYPawxfRcDxtoFHRLnWHzOnzT3YKdXH7If038Gsp53A7D9VJjsLmEKUNgABNfiBCFu9BpezNtlqktEkqo8eYirRoOqUIsPUXWAB2aZHqvbW5C8zxPjbFGjkJAcZGb+7KeQFmkaT97rux4JZFaOWWRRdHpdfjlHzDRDwajRdsiQNpWU8ReJm03CnTGZ51JNm9DzOi88diDUqPfUJcXanc2j7KZlQGGtboCuyHSqO2Qlmb0XdTxCXsdLSXxAMjKLfEBrOqzmNotLjBM/TRSfmABGQ3XKmLEklpvb6RquhQrwTUgPISG32J7JUmNcYGY9LSeg6rgqRFtJHeVynUDXAgac4N+xBBR2V0e+eCKGGwzG0qVT4hLmZgfWBDzI1dIv2Gi0xov1BsevyXgfhTxBWGLpPJLwC6WuIu1wa1wbyMARtYbL3xtb0ywGCJ/x0Xk9TicJW/Z04pJqgrD4cPEu2QPFuFBozU7Hl1Q7+NuZiKOHYwE1CS6TdrQJm2nvyWjyg6rlfKDTLKpHn3EOCYys30PAvEG/zXm+PoYn8z5Vd+XKSAcnpI2MTovoenSgmNPus74g4NSqOaSBmGltF04epp00SyYbVnnfB/wAwWmmHFon4g3Un+2J0/dL8RfDrKFIVpeIIc4FxdciIkzGui9Ew+DZRaBAnnBK8/wDxRrV3sDWDPTBBJFnAhwN76Sq48jnkVaQkopR2eYOxlXM7LUIJi02y9J0Q1PF1GOinVe3aQ5zd+h0lT+W+XS2Haa6RtCgey5OW9jroV6HEnyiFfnXeX5AcQJJcYu4m5k9ylw3hzaj2N9bi65DBLo1MDstz+FvhVuIrGrWoB9MBzfU4RnI1yf3D7r1/h3hTC0XZqdFrHREtAFuQgWC5MvVRxvjWykcbkrRkfw94BTw5L6AflcYd5nxSANRH06r0hjhEIN+CyfBJk9FNTpndeZknzdnRCPFUOqPaNVD57diialJpEELN8bqeTvqJSxXLQZOip8T8Rw2GqitW1eQJMmD0B020WT8bcTwIozUbnfUIcDTi5DTBdeIgx7qn8f8AEnVaZDgCGuEeqCL8ovyWAq1JAAm3MyvRx4dJs5JTuyFxvy6JJJK9Cn1tSMXlcwteSQvGW+MMYaflGqBJH9QwHNEi3psB1iYJW88GVHUqbnV3hw9Ls4qebOaATOzZ0C4svSyxxtsbF1UZukbnPAUTqo1JEKB1VpbIMzofbqsfxniTqLnmqXuohgLGANE1Wycsi5sJOy58eLk6OieXirNjRrU6olrw4X0PIwf0VdicfTHwVGi8eoggn/oJ/uMbSVmHeJaTsEx1R4omoC05LubA9eW2uoEj6ryrGUCHHK81GAkMc6QS0Gxg/Drp1XXh6Pk3bo5svVKKVbN9+IXi1jsO7DwHurAiWvBDAx8Zrakuabd+y8pe0DurKlhp1Gi5i6Q2F16eLFHGuKOKeVzdsAFUAQAuZzEqV9MC+v6JjuZVaBaI6lckKNzs2q64LmVah1QxzVxrJMBPIT8PWLHZgBNxcSLiD9CsMmNDHNGcOAIIi4zXEhwHLr1XtX4f+LvzGGd5rfVRIDjNiD8J+3svE8RULzLjJ09hoByHRdo1XNnK4tmxgkSOsKGbCssaZSE+Ls9m4bxCjWxVU0amZ7SC55MDNJ0J6iE/xlx7G0afm0nhrAA18QTmLhleJ15e68eHEHhmQPsZkQNCIIJ3FtERhsVVrFtN9ZxB2JtDRYQbTYRKl/lXJN+F9G7ro9l8KfiVQqU2MxDiMQbEBpDXGYEHQTbfdaLD8cw9ZzjScH5TlcRcNdHw9T2Xz5h6NMCXOBzNIaNSxxMZnQYsJjrFl6Z4P4Xlpl+FcHtq6AhwALRBLgTLb9VzZ+mxxuS/4Ux5pvTNlX/qPPlumAM3vP7Km8Q8I83D1MsF+Ui9ri4uNLoHwxwrEUHl1Zzs7iQWtJIj+0QUzxt4srYJrB5DDnccwLiC5oboLei5F7qUYtTSg7HbTjcjxzij3seWOBa4G88+6Zha7B/yNzA8pDgdjPLopvEHGDiqpqmm1kx6QSY9zqq+mLheura2c1JGt8PeNKuEgUpLRo0j0xrtuvUsB+J1Ko1lvUQC8TGXnc8l4c0m2XTkVKMNWqMz+WRTaYLg3c3gu1Nh7QoZemxz20GGWUfB9G8L8W4evUcxlRphoMyL845wj6vEmg8xEyNPmvM/wv8AD2GOSuW5XiSA4uhwuAYNnDflotxx/iDGNIkSBMaCAvKy4oxycYnXDI3G2XeGxIcJVbxulSqAj05xcDnvEey8ppeO3sxMlxdTkz25N/dTeM/EVKsynVo1XNdeQxwuTFnDaAqrpJqSEfURcQPxzi8FiWsFJmWpJLixoAnQjnr91h8ZwcsuHgiY7d1e8PwzHUqlY1GhzZcAR8TzfXS5VDjMQTd2+w0+S9CEKVL0cjm2yuNLqPmkuwFxNQ9s2Lmn7ew/0FccK486gxwDA5xEAnRo55dCQofyhB6A+nqom0fVf+FO+MlTPMVxdouaPjOoxjGtbnIF/MJN+ka9Ss7xDidWs/zHuOeQZk6gASBMDTYBTOaYdKlfSvbvotGEIu0h3OclTZVeW5xv+w9gLDU/NWFDC5hHLdH4WlOUnnadVMJuDohKYVEAq4AD5aqt4hhi1uYQRvYyO60wPqA5o2jh2wBA1KTu8fI/GzzeoCdVG4LccQ4NnJdJB2EWlV1Xw/BGd8ki0Wj91aOaLFpozFPCud8LSewXMRhXMMOaRyW5wPC20mw2STqSUHxnhhflgi3Pqgsyboa2jGhhTXs56q5xtE0h1Nvkq519d1VbCpAZakynJhTlifhh6v5yWY6kCVGCbGUyFYOnLI1m6lFG99CJd0PPulH5EWELRdw7Is8Ve1rm03OaDrlJB9iLx00KGxAcTGw+gU9Oc2WLfRZpeyabLPhvjvH0aRpsrZpmHPaHvba0Pde2wMqirYutW/5qr3xJ9b3O11jMbLTeFOCDEVGMe7KySXmQCRPwtncrUeI/AbWS+jnLSD6D6i0tY42tNy0a8/Zc7yYsc6qmyy7ko36PMMJw4OcJmN+RXrHhHgNHyHf0WupuMEESCffVD+F/Djqoc19N1JrRclpGcHQSdxc+y03E+J08DRaKekWHPKIJNui58+ZyfCPktjjS5S8Hn3iTwth8PU8xldg9f/FJFrGWO6b/AGRtPjrXs8mliKbMpMCIaZiSSLOHyKG4jx2lVNR1XLJEQRIE2MbhB8IwmHIqCrkc2G5CRFhMwRodFSm4/n5RO1f4m5wHFmNpmqxoflORxYAQDEy0TfbQbqh8SeJ6TmVYJDwMsG85hIj5hZLiPE8jSynULmj4dBH/AKxP6rP1MQ5xlziSbkkyZTY+mV8mCWV1Q17jzlPpstJP+FEQu3XXRE5UcQYmQoijaVAAZig33KVoaLIYSTyEktFLPWatIEQf9Kpq0CDBMiVYYirFlDTZN1zwtI5JpNgzqLSIvfcrtNob35op2FIErjcK4p+S+iqLIG1TM3T7xeU40iDCIFFBtBVsHpl0g/VWLTZBOZ1XWAj+4pZKxk6DhUPNMfSBOY6hRgwniop1Q9jZQVepdGOEoTEU/wBU8RZFHxNodqe26r34YECCJ7rSVaIywAPkqx2GG2q6Yy0TZR1KJBIOyjy8lovy7dSJO6ExeDGot+iopIFsqGEg2JClknndTUqElFNwyLaQydgHlHmUVh6YGkzyJsixQC6acaJHIdDuG49+HeHsAJFocMwvqYO69VwvjCg/Dtql7WOmCwlsgiZBkC0bgLyRtSRJB+yifiQJt/lQy4I5fJXHmcPB6Zi/G7aEvcZFQTTLBna6BuJGXXcg+y804xx1+JfmquOpi1hJmOyr8Q6TI0K4BZPi6eGPa8izyyl5Ea0yJmfqhKlR3wg2GiKLUwYedFcWLoFJJ1JKcxnNT06MJFp3CwzkcpMB1U3pCQp+n4eyic2N7oCCxlQECEGWp7imrUUQyF1JJAc9TfTkJUaRhHGmk6nMaCy4OZLgRtTwuZLe8LgZtKUYbWp5u6iAU5tumVTZFfAMEq3Nk5lLnKky2XGvT2JRw0hGqTU9wXaI5oWGhjkPXaSLa9UaKd017DO0BZMzRVkOaLgIa51hXzqPZCYqkANNVSMxXEqiIUdRoKMfhz0Uf5c9FVSQlAlHDiVK9oGyJZQtYharwd4bc+oypUpsqUiDIdMjkYIg/VJkyqKtlMeNydIxD3gboUUyZ1M6SvesT4ZwxYabcPRA1u356Xn3We454Qo06RyOYw7ekTMelrSTa/dc8Oug9UdMuknFXZ5BWaRN4I22Qhp3VrjsKZMiCJsrHgXhHE4n4GgNgHM85WxmLbGLxBsOS7nOMVbZzKLk6SM2ygTMCY1TKjIW98XeGn4ZjRTAcwN9Rbz3LuixlSiTqhjyKatGnBxdMhwo1JRDWNXadKNFIKaZsCAjhnSdANr7J4bHsh8ey5PRDUaxmC6AjQxNVeQZcR0AKGxFYOMgInFMkgAg2317lQsw8kXEaT1RTDRHTI3SNOLqX8ubz2RYweanm0G3dZsxUvF0kYcEBqbpLWhrPUfMAJP0Szi3RQtapGsXm6Nskn9fokaBF7xrMH5qx4Pw0VD6jAnSDf3Gi1dag2A0QABbp2GijPKoui0MLkrMHiqRbEggnmI94Q8raHhQeHZoJvDiJjtCzWN4Y+nqJETImIHNNDKpaFnicdlbVoToVC1pBRoC6KciVZSI8SBtTYqZgCY+lKcGQg6CrOgwVFXEgid5UiRWWjMHpTodtOqjrnn/AAouFFXbKZPYrWgOJIP0TXRHuU9xKQYYmDHZUFH0WhzoJ9J12gb3W5fx6hh6ADKmYiAAOXIDYLCig6MwEhReW5w0KnPGp1b8FIZXC6NJjPH1Un+k0N7yfdUPFeL18Q6Xvnk3RocgHMcDBH7rjaJcYaDPZUhihHaQks05abNBT8PVK1JoFZuZzoygGYgySZ+Feh8D4c6jQZTcRLWgSJOg1krzXgPFH4d5kFziMrGzGpub72XoR4p5dHzKhGmbqJ7Li6pT1H0dvTSh59lX4n4swE03QSRe026rzTitFod6NO9lofEuMbVDnts6YPUXWTbQJldfT4+MTnz5OUjjGWJ2GqZVxLWxYgbnWBzA3RzmZGQgaWEcZLx859rLoTREqcU8EkZpA0MRPdBQtM7hlMySLcghMNwkOdoY6p1NBKt1YT0IhT0MGYiDGpMFaTCcIY0yQCdtIRWJoCNFN5V6H2ZTEEHmIP0/dSmp/Ty3Eb6z/lF4ikLg/opBhPSIKe0KVrnRuR7rilfhTK6joNnoQYu5VI1ilbTXl8jo4hPCOJeVIdJaeWoKbxHipqk2gRA56zP0C7heGvqOgN7k7JY3hT6fxC3MXHvySXDlfsap8a9EnDuI+Swx6gde/ICVc1KbK7D/ANTaRFlmKuGIAOx/adE6niHNaWAmDf3tdCUE9o0ZNaZp6HDKDRIYDyLhJtuqrj1YQKbQD0AiI0iO6iqcVq5I9IvE8raQhmY4g+kAW5AkmNSfZCMJXbDKUapAowVT/oVD3VlgMXU8wEy6futFUotIEtGnIWTyyOL2JHGpLRixTnT+dkzIeSucZwi5LTHIR9FVva8EA67HT2kqkZJ+CcoteQYuUbweSIqPvcfSD8k3yhzj7clRE2DPbzEKWjVcPS0OjsihRfob97iFLSh4iw6fotyNQHUpBxguc13SPqrPB04FjJ7R+igxAyxAEd7qfCZgcxII7GQlk7Q0VTGvwxJIaWk9Y/ZEcLJ+LIJYYlsfdHVMO0kPABO1rrrsMcpLQA46gb/dSc7VFlCnZSYynSc7M4OaZsYv0uQuYin5pANUOi0XbblA7a3RtTB1C1w0kbiW/uPkgsPwV4bGeJ6EQbb6EQOiopL6Tafwr62DptgVJA/8TnHz27Jr+H0Q2QXTI3A9O7hOqs8Lg6zM7ILpBgiY9ibBR4/htRtLMWNGUD/yMdbfUJ+e6sXjq6KvF0aLWtdTf5jpsCYI6kaoWTml7QQeUg/qp8NiKb3tGRrTMOMenvGYQtTSwdHK4DLDmxmF4HUza6aU+GmCMefgy76GGc1paKgO4B/+rH2UvDOFl85ALcyB213Vxh+DUYGeo4k6FsRbmI6pz2U2/C2I0Op6mAUjy+kUUPbKWtRLdRBR2A4BVqszx6DMEFsg8yHRZdxzaRMs9R1gGAdtNZT6RxkS3M1p9hyuNfmg5Ota/pkle9lPxXhDadruJ3kC/a6rPKIEK2qiXGDm5n9UHW+qtFutiMqSTySTa1chxB2SV6YlnphwTxHpN/dEUuHvDmy3ccu+ytCxzbxI/mykp4kTH6rwu4z1+0ggPdEG385oZ+PyuDQJJ1hEMqc1FTwbcxcBvKRNezNP0Mxj2uBDx8VuoVE7CtBm+WY5E/sr7H4YvgA3nU8oVY7h7zOUSAfrAlUhKiU42wXzA1rwIubc0GaIsY1R1FoDxn0mCrj8mwgRblEKnPiT4WZ/D1SwiARaJjVWuF4jJDXanSJ/gTcZiCx2UAZdrJ+GrNgSBz94QbtXQUqfk5Xa0n1TrtZC44U4jW2+vdH4hrHg+qD0VXWwZuCQeqMGLJAzntyiQHA/RL8i3+wx3uP3UdbBvaBAntdDte4blXX6ZF/tFmzCgESNttPbkpH4dgh0CeZVUcQ8mQfkiaeIdab/AM7INP6FNfDuJD3CPLBH19kThsM0R/25aD6aqB1d0ekjsdU9tRxAtJ/X9lndGVWGZoMmAO6Le7MJAJ7RKgoUyBf5EqVlK5iw/nJSZVHaFEgENPq63XACZDoEamJ+qnbWzWbYjUhcfUZMOI9zqltjUiJtCmGwyfb1So3DKPU1xB0tcd9wiqlVotohKmPaIzR0JI+xuirYHSKZ+EeHk0mAAmX5iwmflKKp1A1pa4AhxgkWE8iAJCWIr0s2aM3QNvPOynZgs7QQJnY2jeSFWUtbJpfADF1WgAgRsIzWib9VWvpgnfSVpWcIcXDSxuFPiuDtMz6TEA9UFligvFJmOY9zDmbAm07+yaXOg5i49ydFq6XAYDZiST1gc1LU4RlBNnOtY7D/AEm78QLDIxrSLW1nmgsSwEabwtnivDYMua6DsNlT1fDlUGJBE6/4VI5o/QPDL4YzE4WpmMRG2iS1VTw0+TJH890lddREn/nl8PR6NRM4gBAMXlDEuAluvJdbh3uuSOy8Sj1xnmBT0ai5imRBhRCpKwKCs0rlRwiNFA2qosSfTrusgNHDw5roi3XmjajWsaANkJgKpBy81cDAA/Ff6IylXkVRMpjjmdKgII0JC0HHeHhrc7G6fFE6c1RMdKrCdq0RlHZEaj4uVEKz9J+aP/KuOiTcI+dvmqKaEcGVmZ43K6KhOoBVzSwfOEQ3CtGwW7iB22UtOnOyf+VPJXflDYBMFPnZDuB7ZTflDyTfyrhorhzR/IXBSHJHuA7ZXeY8c1z8w8c/nKsjhzyTa+COoWU0Dgyvo4oz6voi24Nsy0nre/fqhhRdNxbsrjCUGgb+4WlKvBoxvyBV+Fl1xUOm6psRwupOWAYBIjc8lsAxuxUT8PJme/b90sczQ8sKZjqeAqBwzSBuSbdJhXxwsScx9cQdxpy00XOJECYN7A/ZR4OvAipcAe6eU3JWJGCi6JquHfThzX2MSN+6KOIc6BqgqvEqMEZyV3huOY92VgOb7KburaKKrpMsjTebg2CCxWYXWkCErYcEypRyFnjM3UxTwoanEHDXVWuMwxhzpAjptzVbhsHmOd9xsDv1jkrKSF4tAbuKmdPqkjamFbOg+QSTco/A8ZfS2p1UbTcqilUVhScuZoqGkSIVXWYWkhHCpAuUFiK+aw0/l0EEYEiEpTo1hY1HcNQJcCOf8lX9IwFTMoOH+9EUMYYjfdLLZqHcTxBLDl1GvO/RZwU3a7CNo+X82WhrVGkSOUFBuaCABoP5dNF0hHGyuuuZij62HFtPb7pnkjkm5A4gJeeZ+abmKPGFB2KjdhoR5CuIMKxU1Ks4mBqpKeBJ6I78sA0X9ys5I3FgdBrjcsRtNoUtLoZQeMDm/CTHtHshysNUFuYBqgatPYOso87xEiQnNqc2/qitCvZGaDhyTBUeNJU7qnQrlOlnsm5fQcQc4tw2TX4mTZzhzRLsJeGy6NwEOMIeV+q1o3FnK1JpI9Wpv9kM7CszRnI9pH6omrh3CbJtLCExZZS/ZnG/QJX4ONQ8HuCERwmgaVQRodeyIfw18Ekj6qB2EMkCPmtytVYeCTtI1GayhdUVXSr1AACQYUjahUuJaybFsD2lpmDyQVUBoAGgRDqqGrJkYgJ6JKJzSupwCpOVlSKqmao6lVhKzBddmYQh34UgCL81J5qcKqASKgwyJFlZtcg2vThUQYSarXGiCrvk2TsS8usIlMcx0WgFCjEbX/JIOUb6bm/4unNryIPz37IhJ9QImU8UylTcm4h3yQATU3Fp6IttQEKpFTqpA8wShRg/zAASFA7FTqhC9SU6RK1AJWYmF2rXDtk1mGO9kqmGO1wjo1EZb1TSOq4XJpqIgo6Z5onA1QEF5kp1VsRJHNY1FzUrgAKHMCqr8ypBiYQ4hDyBEKKlTgxtsoWYhTGqtRid0QqfFmDARrq1kJVpt1MlMgMZRaToPeVO3NGiVN4iNE4vRMQymuclKa5EwwlcTHLqIBBStSSSmHKeikksEkKTUkkAnCnpJLGHBCVxcriSyCOabKMFdSWCcapRoe6SSBh52RTdAkklYBEpEpJLAK2ruolxJOBhfDxqhMYfW7ukkivICIaJjSuJJjBmHRTUkkrCiMlSO09l1JYAJyUiSSJhhXHJJLGGFcSSRAf/2Q==\\n\", \"height\": 194, \"channels\": 3, \"width\": 259, \"type\": \"image\", \"id\": 4947633552}], \"selected_variable\": {\"name\": [\"\"], \"dtype\": \"Image\", \"view_component\": \"Images\", \"view_file\": \"sarray\", \"descriptives\": {\"rows\": 5}, \"type\": \"SArray\", \"view_components\": [\"Images\"]}}, e);\n", + " });\n", + " })();\n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", + "}));\n", + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"https://static.turi.com/products/graphlab-create/2.1/canvas/css/canvas.css\"\n", + "}));\n", + "\n", + " (function(){\n", + "\n", + " var e = null;\n", + " if (typeof element == 'undefined') {\n", + " var scripts = document.getElementsByTagName('script');\n", + " var thisScriptTag = scripts[scripts.length-1];\n", + " var parentDiv = thisScriptTag.parentNode;\n", + " e = document.createElement('div');\n", + " parentDiv.appendChild(e);\n", + " } else {\n", + " e = element[0];\n", + " }\n", + "\n", + " if (typeof requirejs !== 'undefined') {\n", + " // disable load timeout; ipython_app.js is large and can take a while to load.\n", + " requirejs.config({waitSeconds: 0});\n", + " }\n", + "\n", + " require(['https://static.turi.com/products/graphlab-create/2.1/canvas/js/ipython_app.js'], function(IPythonApp){\n", + " var app = new IPythonApp();\n", + " app.attachView('sarray','Images', {\"ipython\": true, \"rows\": [{\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxIQEhUTEhMWFRUWGBgXGBgYFRgXFxgYFxsYFxgYGBgYHSggGBolHhcXITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGxAQGyslHyUtLy0tLS0tLS0tLS0tLS8tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAJwBRAMBIgACEQEDEQH/xAAcAAACAgMBAQAAAAAAAAAAAAADBAEFAgYHAAj/xAA9EAACAQMDAgQEBAUDBAEFAQABAhEAAyEEEjEFQSJRYXEGEzKBQpGhsQfB0eHwFCNSM2Jy8TQWJIKy0hX/xAAZAQADAQEBAAAAAAAAAAAAAAABAgMABAX/xAAnEQACAgICAQQCAgMAAAAAAAAAAQIRAyESMUEEEyJRMmFxsRTR8P/aAAwDAQACEQMRAD8A69FQRRIqIrps46BxURRYqCKNmoT118WkZ2IAA5aQo8txAwJ71r3wp8WLrXeyUi7bkuVIa2VBhWVhzNWXxJ1XTWlNm9qRp2uK21siO0gxtn/tPNck6RfXQG7ctXrbubNxWZSSZeBb2KV2tDQSZjaDTI0UnZ12x1qy+pfSqwN1F3kSPYj3EiR61YxXz/8AD3VDptfbvNcYBWC3H+oEHBkqcgwB9q+gxnjigpWGUOIOKiKLtqNtNYoIrUEUWKxijYAUV6KJFRFGwA4rGKLFYlaNmBxURRGFRFGwA4qCKJFRFNZgUVEUUioijZqBbaiKKVqIo2CgcVG2iRUEUbCDisSKLFQRRsAKKgrRYqCKNgBRUEUQioijYAcVG2ibaiKNmBxUEUQioijZgRFYlaMRQNSdoBngifUTEfrRs1EFaiKU6Jrv9RZD95YEYwVJHaja/VLZQu8wPISSTwAKydmrdGF3Uqhg7p5wjN+oFerXLnxcpOLN31gxmvVP38f2P7cvo63ZMop7lQfzANA6beNy2rtgmfykgfoKX0WoLaNX+smyOGA3Hb2M4J/Sl+g3Rb6dacmAtkMTzGJ+5rz2tP8Aku1TZaae6LihhwZj2kj+VZlaqfgnU/N0VluYBUnzKkg47e1WtjUK5YCZQ7SCIIP37HsaD02ajRvi7oly/wDPuao2LemQAq3yvmXAFDS7MoDCMEDjMGuZfEGqVmuC38y7atpbCM9sowXxEtb+WAEtGDhhnPFdR+LPjVrF17CaT5u0KS1xwtsSfxA9vXOa5r1v4i1C3nZNQty5tUOLaqbQ/wCp4B4dtwKGOT3ee1GUlx2GF+DXbqDc9trW1zs2hbhIWAC2Cc7hnvE4rt38LusnV6Q7jLWmCfTAChV2jAjt71wzqF4E70t/7ZYEMTuIbb/0/mAAQOdvtXQf4I6wLduIVdnudwngVVyWa5OCSQNoHlSp7pDyVxOxEVEUXbUbaeyFAiKxIo0ViRRsFAoqNtG21iVo2CgRWsSKMVrErRsxz7+JPXb1hTatXLYDpkAn5vi8JAj6Rmdxjmmf4X9YOo0uxy7XLZMs0Rtb6QCPKDitc/il1Cz87YlpA6qfmXCgDbjBQAyJOJmDwIqq/h/8QXNNqrVpr6Ml9ofcGOzLAbW7FiPbImhz+VFOHwO0xUEUDq+vTS2bl65hLY3H9v3IpqJqlkqBxURRdtRFGzAoqIou2o20bMC21EUWKgijYAUVEUUisSKNmBEVBFF21BWjYAUVEULquo+Tae5/xHlOe3cd61f+H/Url7563CWIYPuM/iwR+YEVuaujcXVm2RUbaIVqIp7AD21BFFisHUwYie08T61rNQM1S/FPVBp7JjLt9KxPrJHlih9R6r8p2LHarBV5JPhLbioHnMT7VqOp0F24dzOdoJI9FnM/c1x5/WKPxj2dWL07/KQz8O/EF21Y+X8gEhmIYmAQzEkwBOJifSh/EPXrzKAFVvEGHgBA5nmcwSJoB0RYYeFBAJ/rBH6+dYHppc7t5kMfCZygxJZcc81xr1OVrs6PZgn1sbbQ2zneSO0cR2wOK9StoX0naogme57AdvYV6p7KG92eqWz0K277mHytreEuZTkFmMLmMtSXUPi1bFjQWVdRKqboDEugVCyiJkSQBkHmuSvqSmmW3LeJp2yY55is7TMCFiIWF/ef88q6nlS/s5nC2zq38Lfi3Tppks3bio5e8xLTyz7lluM7iJMcVvHw/fW584hbikXCrb12kwBkdiOeMV84dEu9j2BnPma3f4H+PX0m5G/3bUyEwrIT3Vu4PkadLlHXbBJUzZv4jdI0NljrNVbNwv4UCqIDRlmE+IwMccZrkmsvIlogNDBxEAzt2z/49xnmtq6z8StrdUpNsXN7qtvTu7QhnYfmAeFd/hhtwiJIrTerIqKVEPu3AsQQdwjcQDMDt68ipZGGCBdX1F/ds1CkMoQQy7XA+WotyMfg2kY71t38GboXqCruI3K8RjcQODPbvWn6zrV2+CLhUtJYueSdioPYwgzT/wAB9VXS6y1ffKo3iAMNBBGPOCeKF7KVo+odtYmtB6d/EsNe23bQW0zAKwPiUExuecEdzHFWvxF14JrdBZRhD3Sz5EFGt3FUg8ZYwPURVnjknTOa76LXqHVltajT2DzfZ1kzA2ozCDwSSsRVltrQ/iNieq6X5gWA4Ns7toICtKEEGXnPl2roEUJaoy6BbagrRYqNtawUCK1iyzjicTxFGK1rvxnrraWTauC+BeBRWsoHM8kAecAnjIopmo5N1rUaVPnsZa/se2qn5jiSSDde620sx8gAB61rC6hVaxcS6GuA7tsFRaYOSqbieM7p9c1YfFPSLuk2ofCriV8QJgkR8zJ2GM7ZMCkdNdtWrd5L9v5jsAodCITbc3Owx45APiU9wOKSUrkXitHQvj/r6/6G3pmuF9Qy27jbirBgwJMlAFYgnECJWujdD1Iv6ezdBkPbRpjmVEmuEdeNqxbS1aJcmWMqqlDA2AMu7cIyRPJ4rs38ONV8zp9mQAVBXbMsoBO0N67Y7CqKbZKUEkX2yo20waxK0eROgG2oK0bbXttNyAL7ajbRLlxVKg4LGB6mCf2FLf6km+bc8Ww0d5LET+VFMATbUbar73Vgj3laB8tEYCed+/8A/k/lVmxAEk45n0prNQPbVf1Hq1iwP924AeyzLH0A5qg1/wAX3PGLVsBZIVydxxiSn5961bW3/mtucs7YgtE4zOK5c3q4wWts6cfpZS/LSLDr3Wruo3BCAv07f+3kySOTArSNR0u8z4eBP4SfftzwKvnVhmY/L7VUW+oMAUYGT9JzkTBwO/FeevUZJSuztcMcVVDlrXaq0P8A5l6VHG4t+jTirbQ/GGstjxEXR/3oAT91j9q1i/r0RgBLEScTz/OjW3e4Bgr5DGIHrVf8jMt2J7WJ+De9N8frtJu2SvqrSuePqzQtV8XfMkLcVQewMH7sef0rSDpfNmJnicUxpb+YAAHnyRuntH61snq8klViRwwi+i1WB9RLt5iT/wCqJqOpkjYGGfqiDzBAqu1124hCoIwZ3THl6UcWti7mfeAAxIEDJjA5qSlKi+rGl1BKKqqgAP1bck+REweKIdQTO76iAMHaI8iKU/1EtCBiAJJ2+nA/rUMpJB7f5iaDclsPxHl1gPYYx9I/rXqXtWWjCyJr1J7khqiaFqGi3AIYlplTM9/sBWFrqn/MSP3+9Ht2UjeYACFoHc5VRmqS4ZJ967FT0cg9pdaQ0KBDYjymfzp3o6+JjOePX3iqE070nVrbeW48+SKtjdSViyVplzp/9u4LlxwSGD7RGSuVkHB44NVep1bX7ly5clmckkmJ3E+mKy6hfAO5YIbuP2NCsa5QSWURtIAAAAPY+tbI96NFChYqY7iptGDNYbufWjWUM7cST+tIMbXpr25VPmBWB6jdtX7TI20qw2EwQCcMSODiMelCsOQEEHkg+X71hcCPetkea44nMkkdv7V1ZctxSIwhTZZ6vr5bVLe1O9ypz8phZciD4lKQEJ7kCTJrs3RvjzQ37e75vyyIBVyN2YzKzu96+etQ+7ZlTumCRwOIJNW+hZ4lgoBGNvFCEecnZpaR9LjNe21wvp3xXq7KlEvMFAEA5gKTAWeOf8ir/onxxqLVu4p/3goDKzsdyjEz/wAxmYJHv2pn6eS6J8kdUik+q6j5NprgRnKgkBRJnziRjzrW/hz48s3rf/3H+3cWS0KSpE4YRxiJmtb/AIi9fFwgJqXNjad9lbQBefpi409+Meec1NwcXsZK+jmXXLhutcdLZDeNrpU+ALIEAHIGY/Ki/D2nuXNLeaFa0t23vGybm6CQbbEY8iJ4ORFLdSuIiOAbe64iyoJ3LBBgiInuBnjNY6DTXF0xcOFR7m0qWO4kIGDC3+JSGjdEYiai2WRlr5YFuM7YxAAHhKtM5j9PWux/waffomMGRdYEkzOAQBOYAMVxG/IHDFVx4jIXv4f+I7wPSuo/wfvLprr2btt1u3cKxbwkJkgLx3+pSZwO1Pj/AELkWtnWdteIou2o201kaAlajbWV5woBPchR7sYFZu20ExxJx6Zo2CjlvxR8VKt+yQ8i3fbcNniQI5QniSHUkAD/AI1ba3r6WdXdfDj5G9NpHAyd36Y9eK5j1e81wLMEm47ckt43Z/ET+LHFH0WmvOrySCQVWTAC9z6D09KnP1PGy8cHIY1/XWe64LEnUW0XOYKZ9wPq/OmrPxVeuadEZyUVEXaB9QUBZLQCxPqarTqNOjZPzLgXb4QWI7HjjJpXru42gYCjHhH4AOP71xyzzevs6FijHZdrqtxggL6Fs49FpV7u5pAEdyfIYMDtxSeg1xe2XA8QUA+ROIz60iOqAwHA3THOOckedc3tttj89Flfu3RvwGBwq9xJ/p60K7Lydu1iADI8j2gkD8qnTt8zg8fhEZmealTB28sORJ/XzNHa1RtMrr2jIYlWYD88+0ZpnSW3V0nO6QWIjJ4H5Rx51Z2UiXIXaBKg8k9wab09lW8TA4+ndkT7fy/aq8rVMHD6KRbTXYC7twYg4IgDz7R/Sn7XTjLG2IAgzHlALHsFk1apbUSQBnEfzjypxbfzAFyDAkEwCAPD28OIo05dB4ryJdO0Ns+J/FA8W7dB7mTM5ps21YEqg259Wxxg8D+lGtdOZgCreA/VAgfbP+QaMwCjaixJMt9P29oz96V8vIyoTWzMkJtXGTx5e1YLYETzE+w9qavauRsEEDiP5jtQXY/hHnzjjFGrASLccqc57cV6oe4QYJBjv5+tep/bRrONpeMROIisZ7VjtrLTvtYEiYPFdJzhdPo3uEhRwJM0Blitrv8AVEv29qHafqIjOOMxmq+x05L8sLm0jncJH6VJTfclQ1fRUWtO7/SpPtUXLDr9SsB6girlujXwZBB/8W/9VGq6teXDEMQNoJBwBj6Tj703NP8AHYK+yr077GE47TE1ZWrSoVmDOQ34dvl9qrLlxW/DtPeOD9jxTen6iQoRoZR6ZA9DRd9oxtOnti5aa4hD7YJAwQPFyv2H51X6i4UKuOySQFA28AE+Xt6UobiWrT/KLA3AynM+EgYx29aF/wD6ZZCp2iVAn1keftRnNzS/QqjTYm7KIAAmCCSJnMg+mMVddAuhV2sveYMgN6jsD7VrqsO/FXfSbrDwkQM7ZUiY5zxV8D+YmTo2zVae29sPZncuCCcwe/2oFixegG3JjBAgMJ5HqKx6Mw3wxA8sxn3q/SwQQVAn969Kzl/Qja6VdAG0KGWcz9ansf1H5UPXdE1G1SumvEkhdvyndZ5Gxh2PYnA862PTtuHtTdvrP+mtXfmC4EZdoKuFbImVmQB2kj2qGd/B0ymK+W0cd+Iej3LTM0BkAQl1ZXXxyFBYHDSpEHOKrtPduKrFZjAOJBB7H0kcVcdUbw3NtpbduRAVmYc+GSxJLQDn1PFVSaqLWwYMg8HPOPIAfzrzaOosgz3LcvAMDmPEBgEAe2T6VddF6hdtWUC2UIW8GtPslt+TtDbgACVGIzBrX0voFIUEGNgBksQRlvIRJAArH/VKxIbCnaMeGVXHHBMdz3p8cqFmrPqL4f1Ny9p7dy6oV2WSAGX2O1srIzB4qwK1Q/AWvbUaKy73N77c+EKV8lZRwQO/fmtgbAk8UW9k+JoXxl1MjVWrW7YqPacN/wATJljmIAxnzqt6z8avct3La+E7pDKY/wBuDjzJNLfHXXgbpW3+GRcP/KCdvbIG4j/BWsrpDcA3BlE+LzxwvopqObLWkVx40yh1zsqq6mBJOcn7DvFZ2L9zViX+YyyBBYIhPfCiT/er7Xaa1diUEKIXnbjiR/Oq/XOLZteLao8RgT+nHNcfup6XZ0Vx8mduybe0JttrjAEmRM/aq/rzkWiD2bnvmT+WRTmn6zbutsQZMyTMAZk+9I9fKlY5E5PnA70keXuLkgSarRh0XVlrb5+gGRzJM7T/AJ5UkbSEqtxl7evPbnFG6K1v5JSYZ28R7mOAB25pB+lXbj7Uh2JgKDBPkJMD9a6Ypc34E8IvbHSrWNpjPIn7+cVZC2gwpJAODy0AECT9+K0tbGoTgMI8uPWmdPqL/PzYPABB/pWljbXYykl4NtFuATz4gTOMdh7EinLNoXPpMMZhYxHn5wSY9c+VUdu64K5EkATDZ85Axn+VXmmvOWm4UWe43d/87VzuSj2Ui2y40mgtq0OBPYTmMd+/Fe1/VrWmjAIMCZI7Dk4juKqTe8jI7RI596X1qB8NBA8+/c80Fnk1XQeCLodeV08IE5lg3fsf3/Sq27q3cbZMTOT3/nSyIqiBHoMQKE18DkxSucpMZJJDYuKsl2wPSldd1LadoXnkk8dh+tBvXN8TIA9ASPX1iktSpu3TjwnMk58pxx7V1YoxS2TlJjjagnsfyNeo+jtwsBu/bxdh3869T1AW2czNeNer1XIkgkZB/Wi2r8HI/LFArxFYxZWuqsFZX8QOBkiB6RWWq6mHCrtBUCIIEj2bmquvTS8VdhthSk8f+qhDnmoR4oikHkxTAClGGQZ9s/nR7moW7tD+AhQox4IXjjg0O3qo7eg9B/Omjo7dxQbbjd/xgzHmf7UGYW1Vpt24rIx9OQYEHgRmJrZemdKvvtZWLWW+mThfPJ/zFa+jXtP5hT2OVNWml+KrlsEbVhhB547xAwYNPDI4u+wOKZsHUeiNav27AcG45A4hQTAGee9Wvw5oHF7YbgAyCDzI8vIcmtQf4qFxwWtLGPESS69pHrT2n+KLaNLkFxuK3CCTJmN2yJ8siqP1DapgWNJ2jd/i6+Ftqtt9u3g4LsRLCfKT+lU/WdJeuW1uEADaDtxwVgLA5Y9+1V174gS5aUsAXLSbkmBAEqFb8QXuT3qdR1tNhKN4SoG4kmCMQP8AO9c+TPxj8VsqoW9sr73RQzKnyytqTJkA4MEnPqI+9VOu6Gh/+OWPvBnMdqvzrgfxQIM/MPJ7eHFY6TWJbb5jkFl4IUwF4I9oM48gK5sbn5Y7gjXdLor2/wCY6BV2uDgL+AjA88DNY6PTE2mYTtLbGgBhxgsD2yePOrC9ds3EM7j9TKVySAduT2JnAqmF25YZShbaCHAYQCexI710wb8kmqOmaf4j/wBLDKGW4ABuBA3gY8S5BGP1q30f8R3vWr1q4CHKN8t1AGcYaODk5iuUN1FrrW5MnjueO3qa2rovSibbXWmT+HhghIE/rP2pnNKDvvwLxbkqFNVcDK8nu/bsp9fWmdDrBcChW3EtBEx3n8hXur9AuG4qgKYK8d/PcOy5ms9TctaUIQYY7goAKgERJBHbJrhe1+zohHewFnTXXN0kwgO0LOXxyD/xivdR0nzbAeSFBhjiYA4HlJrN9RcvAC0MSOxBgYhcc5qGYvYezCndHiySAO8edJSbTeqHaVaF7Oht2LZ+WwLOZ3yCB6Scz6RSPxDs+SNhJLHJyJIGc+fpR9J0O1bguxPluEKpJg9/WftT1jphvqttbe62GJEMVE8Fs8CAPzp1x5crbEa10al0/Wpb+q2dxPO7H5Hj3q4sdbtlxhgJMHvxAq40/RtKqf8ATDtMFidyAr9Sgd4wOarW0+mVm3WlyRGfMThe1VlxlumBKS8mK61GbarmfNlIBJjHJmnbFoTmCfXz4n0/tS40+m2hhbMGOJnPHH5U2mgtgKTaInzPAHJM/wCZqE68JjpML8tVIJI7ZJz5YFGZn8I5wSsgQA2JHngc0PTW7JANsKR6CQPv50fUXktrMyx+lApLGOfsBmoJNypD9InnjsKVvXG7Y9zTFrUqyyMT5iD7ZpXU69FO1pH/AHAYoq+qD4Atcbsf/flUkQcxM9/2o2g1FprhRgPCSczOR3PfinrpDNPh2xAgiTxmTTPXgVIq713bE9+wH61Nxdg3HjBntB/aiXdDJWe55nJB7Azjim9bYBABnHIkTHqo7cGnrVgfdCFtj2j8q9TOm042yTBOYn+1epbQaZzKK9FEB9Kg+1emchjBrJbfmRXqkAngVjHjpz2I/nQ4o7fasC/r+lYwMVOO1Zi56/pUFh5VjGen2kw0j1BH35FZusE7ZgcZzH25oIMnH7UZIBE9ucfzrGH9F1coNrAQcSMNntJnHtXn01u4SVuqJ4BBBnyNVjEf2is0WcD9qXju0aw2p0T2vq+xBBH5ilmf0qy0KvbaSdohvqxIIgjPeg6r5ZAj6/xHsf8APSijCaOQQRyKbTql1eY84gZPnIpVk8v8/OvFcZrNJ9mLS11IEglQQOZ5JoX+vbac95z5DsBVcq1LoKHFBtmyaHUqVOwbnKSCMRGIgen7ULW2NoUEgk+MqZOBnLffMYpT4fZgzBRKHaGMTGZA9JIAn9q2FHlfmFAbh3KykHwjy+4O6e9K9DJWim0tzZfV7atPKyNwj7xnnM1tmg+IbX0O2ySDzAPHLcc9q1LqupZNoQmAIgYED9ao/mt6gHt2pMmFZOwxm49HW2YPJ3CGETOM9ifKgvatsASGgcDHoP5CtU+DdS5JDI9xQRnBVSc5U8+eK323q9JM/KuBe/jWd3mMRt9xXNLCoa/2WUuRXm9aAYFdvcZxtH1Y75/c0iuutqxBUKCZBUTmPxTkedWeo1Gk3HwsG/5ESAvfd/alE1OlkblUD8Uzu+3b2pqTj0gMd0GltsFcsDPHkPeOasH6fanw3lBj8QcDP/4/tQrVzT7Tt3BMfTMR24ExxVfrRpiV3MecS0GfKfepQhu/+/sZ9DOn6SLSrbRrRW0GIIuqTDyTkxOR6HFVlzpdtCGI3EACTG0kd8d/vFWllLcwcCCJnsR6c/rQb7AkyuduRjw5MY3Y+3lTSk2u2ZRRU6vS/MEAkHOR/npQX0RBwzHEQTg/z8zV41tCJmcgY/DJiT3ikn0toTFye8naY/WkXLsJWW1a2i21BnuQcSfYZrKyck7T4exHPtmTmKcfTIQT84EifCNs8A7jJyPak9TaCN4bycjmRjGBHanSd2BsV6nfRFbs0LCgMZnvH2NJ6/UIdoD5iZAPGCCZ9JxTOs6cFKbbyyrNBJJMOcr/AN0GSJ86xSwzFkDWx8sAJIGOBL479jXSnEk+RQnqB2457+w4pnRa9mBYsw2jz7/3q5/+lWuEFrtoj0IHPkaaPw5EojKBiSdpj2AyfOtzi9IVRkIdO6i7nxCQYMecftVlY6ohSGAWZlT3PvxMVhpvh8BmloHYgqT+px7U6/wq1zad5CgMQoK7sfUxPHekajy6H+VFQOq20xujyyTj+Veq2ufDSgmQnpgMY9TPNeoVD6Ybl+jmYivQKwr1dhzmcTUiR3oVTJrGMtpqIqVn3r32rGIANZi2T2qVcDtNZW7lYxNlypwBPtNGGhc5I2g5E4n2qfnqOP0rMkvEmB6/yFAwS2lm2PF4n9Mr+lCfXPmMDtCjAmceVE04SY2z3JJgfYCntOUaSqDB7jH96MYNglJIpmuM31Ek+ZNDdIxmts0WhRiTsCmMHkd5x/nFPp0q1G0iW7t6/wB6qsE30I8sUaMtlsdp4J4xjmjLoHOZGeM10C/0a0QsCCOcyGHlHaktX0nwg7OTheIA8jUs0Z41bQ0Jxl0zU00GYkcdzmfKgHTErxOY8iP61s9zRc+ERiN3M+/esE0KurbpBUEsAeI/qSKnGdj6K/S2jaRmTyAIPngyRWV/XNuDIzS6lSAPPMzwfepewEWfmAExiJ4x96Tt2Ll5wiCe4hTgD6mgeQ5plG+gOVBWulnCuq4G2Z8U8AzTfT/h9bq7mcKCVA7sSTBkAwAOZrefh3+G5uANcHy1KkyfEzExtMY2iMxTPxT8JJoLCPZJJ3bXYgSZ4H5zTyxuMWyayxcqKDS6NdMDatuCc7cwSZmD5HFD1fU0tFQQIaSMERBj96odWGDC4BjDESQTOB7EGrSzeN4AODwSJ5B5I+9cTg+27OqMk9IsLWosurFQTJ858PcZ9yaVtJaYlstEwCNseRIHP50rqNKYDIxjMjsQIx+vFY60fLsfMBJYtAEYIjMffvR+UlVhdLs2HRdQRdqlQI48j705d1+nMk2A0CTuZuw55rR9N1QGN9uO4kEqY85puz1FrCqQ8KwMArII4IP3pI4pRfkPNNGzLr7TLvW1bC3FJEF8ATMDdgn19KSuapLhAUiYBj8UHgH/ADvVZY1dhkAtuF5AQ+HbuyYJ7E1Xi2jkkXFBBwQ2eAAYp5Y012wcmi6v6xVyxxxQTfQEx74PP2NJXEkDxqcjnvHn70U2lIGFBIgkH9f5VLhFDcjO5dBhtvhPeBgf5FYCCSSvHGRmO8jjAomn04RQsho+xH5VF6yygOhDRgrPi9I8x51oJcqQH0Vuu0xUAgFkQkkT4i1zufOMAZ7VN1SoCm2MgKxB+oiOfWadfTO48R7D1x/WldVYYkKFJjyFdKnF6JuL7Kh75BlQUj1Jp+11F3BJLbhkEGPyolnppclIwOD5+dMJ0gr+IeRGK0pQ8mSkD0XUbu4kMPF5/wB+9Mt1i+CCjYyCsEr/AOQjiai1oVQzIMkYnH3p1LSop8MAdgRBBzz70jcbuhvkAPxIQTO7PbbujtAJ7Yr1Ra0m8TEff+1eoXD6N8vs0p7NE03TnucD7zRWtUTTuyfSYrqd+CFgbui24796zRLQGSx8xHf+lH1FzcSe559/SgAEVv5NYT/ULjaGkcCMfekrxY/hgHsBAqwtahlyoUYjj+tYXbjNzWSo1lWVjFHtac8t4R5nFO2bMHcR7U0mkD85ogc0iuayUddkHIIPnGaw1SMuWwTJ/Wr29p1BH3gfYT+1I3NLvAk9yBPvOazVOgKaasqrbmeavuko7/UwE+Yj8h3qvt6OCCM58qtBpnOSZPtVsXdiZJKqHdTrBbbYkEDlvWmNL1lVxtPqe/pAqv8A9Aw5BEZyOfKKfvdGvj5Siywd4IMZYscZ7CutSkc74lmnWbYIDK5PdRz7TxTnWviTTNpxZFtwyMGHjDZIIYGF4z28qgfAupCgkruyWh8nyEkRWvdR+H9RYQvcGxd+wmZIJmCVGSpjmkzxco0xsbimAudQW2StwsVYCB+gOaFp9V8y4tu04XeQu58KJ7t5CqrqOkuLs3z4lDLPdWOCPSouaLawB8IKnI85IH6iK89Y0jp19lhqH3K58DKrBA47mZkehAmY71tHwHrxbuaZVDR8zxFbeWd1ICm4SPAonw+hOa0waEjaG3AMJkcnB2xJiJHPvTHSdRftMnygWuBgywCzKRM7FONxE8g1bG+LJzjaPpD5tVfxNoxqNO6TBHiByYK+g5xIoq38D2FQ92QR512OCao5+VHEdRbKEI4IgjcIzHPH5U6EBCkEEx9+Oaa6re+feun5cMC5LTgqkKMeYAj1qqGqZCGIxwQRyOx/evLy46ejqhIys2WRSJlSZjy9fWsOo6optUCQORPGZBr2p6mqtEQpzPevBRcbdgqR3qVO7aHb+jw1fzlBAz+IUl1kKQpUR29qsLenVDK84kVXdSgRRjXLQHKXkV02iV4ls9xt/wAmmU6UoOTMAnisraqLYZcmI9jSq651J2xMEZzzg88Gq230ZMZTQopkSw8jHtkd6as6dD27djVV/q3/AMFZ29S3/d+VBxbNZdraGNpI9Z/kaIb3EcY7/bP9KRVyG4OfTmaftPvOZWARlexz+9c8o12UUjLdzOaBcv8AaiNP96weM0qSH5Mwt6srwBPfGSDRLurBO5RmIMH9xQzZHNCZCOBTcUwcmjG9cKwfUmY88xTWp1B2g4mJII5zxA796WLisBczFUoXkO6PUFQQOJ/pXqw09vBwRn+leoUvoPJlJdtgE0Miigyc15lyRXQjmugQtTVjpemFyAgEnEmImJ5OKc6DpUe+qsJEAx67lH8zXUtX0XT3Bta0sAGABEeuO+K6cWLkrI5JyXRxS7pWQkHkYPfNYPb24p/VOd0diAP2NK3WqElTopGTaBB/SmtKx4Ail7QpvRjJ9q0VbBNqiNSJyTEeXlWdi3vCqAXJYwBkmQP51s3XOl2rehR1Xx7j4pM8xxx2FL9JHy+n37q4dgF3dwNwXB/DjyqzxVJWIp/Eruk9I+Yw3JegMQ5VCQoXEf8AlII9K6R0j4a09k/MCs25RC3IbZIz9+351q3wZqXGdzHcVBliRyx4nmt9mr4YpR0JJ7M7ultMQzW0JBBBKiQRgfkKOXpTcajdVhRv5lc7+Lr72NRcuWnksoDAA+HcDE55gEg9p9a3DqGpa3bZxEqCRPFcz1vUne784hZbDADwsBEhgTmYE1DPJJUPGL7KJyWiSTtECTMDyHpRrtlwVkDAER3yTn15oeow2BGJx603qdS1w72PiOD24EVxsrfQrePA4I/L7eQirromiv8A+qtlLe112vAjCnILE8Ag596pd+ZrofwEgKXLp+t2gt3ggNHtJNVwxtiTkbn8yoN2lt1eJruIlYnR0Gqa7jYUPhgRuYndPnVX8a9OtJYRl8Py9tsDttM/r3rZCapPjLxaS4D5r/8AsKnkgnFoMZbOdG0rHxGB7fyopQ28hZUd1Pn5io11sfMP3/pU2HMJ7x9q8ySo64NUZ2tQG4YHnHcUr1FOBTl1ARMCfMUhq3JImkit2h5IKLe23H39/OggIGkimL/hQAUuEEj2pok+Q3auW5APHp5UcKO3f9aWsmFHHPlWR8JMUrHTGUPdcE9++KZS4AZJmcEff9MH9KT2ys+RoqCQK1Dplla06OcYicH0xz37Uj1LRsDCZ7TyMVCMeZPB709b1TKzKDgR+01lBVaDysrUskAE9588xzWIQd6vbJ32xu9o7UjqdMoWklGmMis1FqMjkfrSWuQBpHkPSatC0HFC1FlWyQMVSEvArFtM5jJP2Neoi2hXqPIGz//Z\\n\", \"height\": 156, \"channels\": 3, \"width\": 324, \"type\": \"image\", \"id\": 4947633040}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxQTEhUUEhQUFhUVFBQUFBQYFhgXGBcYFBQWFhQVGBgYHCggGBolHBQUITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OGxAQGzQkHyQsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIAMIBAwMBEQACEQEDEQH/xAAbAAABBQEBAAAAAAAAAAAAAAAAAQIDBAUGB//EAD0QAAEDAQYDBQcDAgUFAQAAAAEAAhEDBAUSITFRQWGRBhNxgaEUIjJSscHRFULwkuEHI0NicjOCwtLxU//EABoBAAMBAQEBAAAAAAAAAAAAAAABAgMEBQb/xAA0EQACAgEDBAAFAwIFBQEAAAAAAQIRAxIhMQQTQVEFFCIyYUKRoVJxgbHB4fAjQ2LR8Qb/2gAMAwEAAhEDEQA/AOlpUoXYeaySECFhAEVd5gxkgKObva8Hg4SclpFWSMu693AwOXNRNOtjbGk3udC+1GZa0aZg8SOK54aqqRvkULuPBXtl5v8AeBaMxLS2cj/IVxjSM5bvY5m02usX4nE/bZbpRrYzqRoWWgXj3vLP6KCuDasFlMtwOGMRAmOi5s2SKVTWx04YSbuD3NG+rrrPAFR3kMzpxXP0+TErcNkbZoyaWrf+xjWrsoWAERnrLmzB5SuiPWQlLSn/AAc76aSjqosforS0AzkF02cdkFm7Pta6XZiMoyzT1BaNxjAAAErJoUsPEEeIhTGcZcOypQlH7lQgVEChAUOAQAjmoGRYSgBWsyQAhpDZMRC2yAaZTqiwJg1IAhAhIQMSEAI94HFAUMxznKBkVR2yYFKpZiSTicix0aYqZKS6EdUyQGkjdUPJA6GVASMkWFGJarjc4k4uCpTFSJLuurATiE/UKZSstbcF+z2R4Mg5HgVNlWqLrrJiEEx4CErJtFcXKzjJ8UWDmSi7gBATJ1ETMdH34khwjlmonBTTTNcc9LtGvYL9PvOczE+IJ4az5Lgy9HKS0J1E7FnglqfJmW+01qr/AHQA08Btsd1vg6SGNeyMvVOexbszCG56rsR58nbHwUyTEvxjy4YceQnImPRNVW5SvwVrntlYOjMtnMbocYrdA5SezZ1FOSMxCRAjXgzBzCAHNQA9MBISAQhMQ0hACQgAKAESASEWAx7wBJMBFjSswbV2hpZjCXCdd+eadSstRjXJcuy206oOAxGoOqHaILT3NGZIHikUVqtoYD8bP6m/lZ9xf8TNOzL8fuhlnsrhTbT4DUzmqctzTSuSWlZnNHxHzSsHQ4kNk1HADfRPkhiU7yokT3jR4z+FLbTqilC97GG86R/cBzVbkaaEfb6TACXgznlrnxTSbE9jRu6syq0lrhkJg5HwCxlk0y0tGqwtx1WWGU50E+CpyS3ZmotukStpbmM4I4qXNrhWVHGm93RNVp02yDjkCQfdIPTRc2PqMsn9v+Z0z6bFFXqKNRgcOUrts4uGMZZBJM68OCVj8FvuGtYajiAxgxO3AmAI3PBYZOo0vSlb8G0MDktTexk1u01lgEd5zaGgkc5JAVw7/Ekv73Q548Ph/wAFC19qWj4KZ5YuI5wtYqctnsZyjCG/JZsPaGjVEPa6m/hniaeW49VGnLGW9NfsxtYpK1szQo2doMgarSzAsosBgposQ4hAChADsSYDSUWIaSiwK9a1hrg0znpsgAtVXC0ugmBMDikOKTM2hf5aQTSbnl75keijLjc1Sk1/Y1xyjB21ZmXp2mqvJw4WcIYIBjiUYen0pJtv+5pPMndKinX7TF9Pu6wnZwAbGWWgzW0MGluSf7mUszlSaOefXjaFvVmVklltpafdMIcRnSU6hqskjMDXTyWD2KRz1pccRkDVNLY0PRLXaGtEk6bffksuQRg2vtK/D7gDTOZyOW2YTeJSe5pGTjwYtuvJ9UguOggRktFURaGyt3mSL3K07EtOzPIkAkDZQ88U6ZS6aUlZLRs8nNDy7bCWDfc9A7P2FhEMngCcok6rxsnWOEvrR6L6aLjtI2m3ZUbJa6D9lq+qxZKTRzRwzhvFlY0uJInmcyuvuJUjk7UpW7E7nf8AnNNz9BHF7M68b3bTeKeFsACXGczv7uayhqdyv/Y6ZQikotGg1gdTD2ZjOSJIOfPMbKoZU5OLZjlwuMU6M29LO19PA54YCZ1iY+q2bp3VmULaavY4x9mYypEhwB8lvbaJui3ars74B1LwI0CmL0hJ2Q3bdzxWa14wgGSf7q21Vojc7hrFkIdhQIEANLhpInxQ2lyVGLfCEQIx6jX0XSC9zZMgkkZ+KtbiYlW98My5oj9vEoURNg/tAwRlJOsEZI0CsrPv6m7UEROR9MwnoY0yjV7QviGzEzJAPlnOSHjvllqSXgxrXejqmRIjy/CuONR3FLI5FSqHA66cVaJIJBzKe4DnVKefujlmUqfsdlTEJVbjssOvR4YWhxg8FOhBaM81+aVDO1vG+gPcZmBHgeeYk+CyjHa2aU7MQ+8dU3KjaEN9y1QrMGUSuacZPds645IrZIsspg592s3JL9RVP+k6rs/TplvwmZzkcI+q4ZwlKdM6O5pjaJa90NfUcWtdmcso8c1Eck4Km1sU4wlua9y3ZUY04QBJyn0K5s2XFOW7/YNTgqLlO7KpMuqgwYiQABJ2XRhzY4L7Wc2VOfDGWq7CIcSHAagHRdcM6m6po5njlFXyWDexiGtAAEDis/kIu23yJ9Vvsjn76sffOx5YuQWuLp3i2T2KfVKS3W5Nd7CM4AMRpGS2hijFGOXqJSYlusmMEZStkctnOPuJwdJ4nNaahm3dtmwgiIUMGXTRCCRcKAAoA5W/rVaMbmsJDZERkeuq1go+Rb+Dn7UyqXTUzJic54LVNVsTTOyue1jum4iAQI124eK55Lcso3hf7qZI7vE0fuzA6FVGF+RO0cjeF4mq4uIAPJdEY0Q9yGz2ggg7JtBRcq3mcUsAblG8qFD2O2Vn1+JPjGSdCI6lqblAT0sZSq2oqkgZA60FAEeMp2OggqbGojKgMIbKSIcBU2Ojp6FBzuC5Z5Yryd+PDJ+Deo9l3PbiB8uK86XxFRlVHofIpq7Lt2dmgD70gjUEc1E+qnPaI44IQ3Z2lCjSDAC3MQMo04rnXTyT9kz6q2H6YwuxNfgAE5azMrnlLMnWk0WSOn2bFOvTA184Wcekyvc55Zbe7Kdptzp9wiNwIXb0/RRi7kjDLmVVEpEk68V6aSWyONtvkjNdoOGTJ/mqqibFTM2IQmAsJiY1yBURuPJFjoAEWFCp2IRyLCivaKhAybJ8UIDl73vepSqe8A5pHwxpuJW0YJol2jnbVeGJxdpnIG3JaqNAT2O/TTOkgmSOEpPHYrG26+O8BloTjjoTbZlvtGUAZK6AhLymArWE8UWOhX0+aVhQ3uhuix0RmlsiwoaLMTwSckUoMt0bpe7SOoWMs8UbRwSY6pdrmmJlLvJldmtirWoFuRCetMThQ/2fkeijWVoR62y6m/tLQRpAy9V8/PUnutj3Y5YvzuadiAY3C8tOe34XO+nlN2lQ55oryWatqYRAYBz28F14OleN3ZwZMzkQin5BdTyUttzHt29y33NIQcRO/wDIXG83UN/ajZY4eys52wyXbFutzmklewx5KtMzaIbVaAAIAG5Jkn7BOKle7G3GtkYd4X8abgAwHc4h5aLohHV5MZKiGydqASRUAaOBE+q0eP0Z2bdC1tdm1wI5EFZO0OiV1VIbQ01QmITGmFDHVEhUMfamNEucB4mEwor1b5ogfG3yKpQl6FaRj2vtQwSGtcdjMCfDiOi0WGQlJGPaL+DwRUY12x0WixVwxajHqVmngNVdMRDUew6NjzKpJ+wsSk5oPwjzQ7oRpm8aQbHctJ3kx0WOiT8mlozKgaSSBA2mYV20t2PSmwbZidAVLzRXJounlLhFmjd9Q5Bjj5LGfVY0rbN4dJN7JGvYOx9asCcmgcSuPL8Uhj43OiHw9v7nQ+h2Rqh4bUGETE6/RD+IKUbgrYLolGX1PY2WdnqdP4SXHmI8VzPL1GTmkbr5fHxuaNSzU4GCk1pHHXqoh08398mxS6yMftiZjrmAMgld8djhnlchLRYWxOAT5KjK2VTT5BAWdc+sSAMgBoAMlyxwqO/k6pZ23+DRpWqnqW+9Hl0XHPp8vClsdCywe4jrawfCxvQJxwT/AFSYPJHwhX2jHq2CqhB4+GEmpLgjY07StZTj5ZlHHLwhajiERkmEotFG12lzRIbiHHktVXslQ5Obvi8a0ZZM9fNdEIwk7Zk9cVSOTq13E5yV2qlwc0ou9yanam4YcPMapU/AbF6wW2lTMhzxyGp+yTjJk2kXXX8wn/q1RyDWj1S7T9E6hKnaIt+CpiEaEehkBCx3ygk0uGU7V2trftLR4D8q1hj5J1Mx7TflV5kuO2sfRaLHFBuVTbXHUq1FEO/I11qKdIKIjVO6BpADKls0URSxLUPQIAUakLR6LFGyvdo0nyKylmjHlm0ME5eC/ZLiqvMYSOcZLnn1uOKuzoh0U26aOos3YunlNUcwvNfxLLLiJ3fJYo+Tq7PYrJTYGkNhoykgnmZXnyj1EpN3yb9xRSS4KtovSzUvgAOZzESFtj6TLL7jOfVRXk5+09rQBhY0tE5nFJPou+Hw9eTkn1rvYZS7TN4nrJ+y3XS14OeWdvyT/rzDxJP/ABP3Vdpozc7LFO14tAUtNCslBO6LCipabdTbrUbI4SPsqUX6C0ZT75oTqeifbkKzsKRzzblG655KX6WbQlFfcrLbrW1oEMAzEjIyOMyMlxZOnyy/V/odmPNiS4osutoObAGn1CmPTy4mxvMkrRWD3zm9x5GMvCAt1hiuEYvMy5Qrlc+XAnyb48urYdVBdqMlEaiqRtTvgqCy9Frra2Fpg1fBl226gQYcc89AfqumGSS5Oeag1SOWvixvAz4fzRdmPIrOOWO+DnSxdSkjHQxhpHZPuRH2ZeiFzCrU0ZvGxCw7p6idBG4JtlKICkVGtFvG6F7lVrI0EjLNlos3kpmscO1kjLOdYUvIvZccX4LNnsZeYa0ysZ5VBW2bwxOTpI0adxkENeQJ3089lzfN6lcTf5XTtI3LPclmDcgXPjOCIXM8nUTe7pGl9PDhWwqPdTgMDuHuxHlqto4IvdnPPqpcLYZ+oEa0gP8AuPFa9iPsweeZFaKpeci7/i3RXGCRDm2ILvMTA8ynrQtyjeFMNyc7yBiFcNzOWxmVarOA81skyRKZZxMeaHY9iwLXQZoHPPPIKNM2O0gqdoXARTa1vPUprEvIW/Bn171qu1e7rHorUYrwFNlR7yU7LUBmEqdRpoPZX1RoGCOZM/heWo5L3l/BerF4j/I1s8YWlfkycvwShoiZHhmldvgdUuRwQKxWuhTJJouMnexbYSd1zycEdUVkZI2jPFYZMrS+k2hBeR5u3FMl2fMrjeafhm2qC8GVV7HsLsWNxzkg5rT57MlVEf8ASu9JBX7IUpkl3pohdfnSpGmnFLfSQ1Ox9PC51OXZZAlNdfltKQ9OJbVuc5aOy1Q/Cw8+XVejD4jBcswydJfDGU+xdUk4yGgcVo/ikf0q2ZLoF+qWw49lGMzq1mgR+2CekqJfEMk9ow/cuPSY47uRFUu6yx7tUzxxD6ZK45Opb+pCksCWxTo2SligyRuP7LolLJp2OePbs2mOHdlgs7C3g7R88ydQuPR9epzd/wAHTrdUlsSUbE3CIpAGP3AfUIlu95CU2lSX8DWUng5UwfRVUK5JeSY4XZJlxLc+BVrJXBjKLfLIzZabT/1Hf1rZSk/BhJJeRr7TSbpUaOhVpSfgzuK8lSteFLXvejSqUJ+ibj7IXXswD/Llx4gqu1J8hrS4EbbbRUkNa0A7j7lJwxx5Y1Kb4Rl26mWuON0u4hbQkmtiHF+TNe9WNRInVExsSUWCiOawlS5pGscTJRRWbmarGkPFPYKdRVDu4OyWtD0npNotoYJdkBxXJH6tkYSg48jaV5NdofJU01yLRtdkdS+6TdajcxORn6Kljm/BDa9liz20nPIjKCDP2USVFqi2KoKyb9lpei7Z7WD8R6AArjnj0u4nbHJqVNmky0AAYY+65nFyf1Gmw11rVLGGpEL65PFWoCcyAO3J6rTtoz7jJmVslDxIpZWOdaSo7EfQ+5RUtIDhmf55BUsbjwi1kXkwLxpkyIJHM/ldeONK7M5TUnSVmLUu4n4W9M4810LLFcsyljk+ET0LojUZ9I6jNPvaiJY9J0llswgZxyH4C8/JJ3sdcNNbktSytOsn6KIymuS3o8IoW+2tpBb44SmzLJJJHI3lflQu910DYflepi6eKW55ubM72MOtaHEyTK7IxS4OVuyEuVE0OY4cUmUWaN4BmgCh47GpUS1L+qEQ2G+AWfYiuTRTkzOqVS4ycytNlsUokZCLK0itoEqXkLWMu0LvJ4ErnnmOiOA06NyOyJAaOa531CfBro0+DToXPS/c4HzAWbyyBssixWdupb1n6KdUxMstpWaP9NLVMWk4213tVqACo8uA0BOXTivWx4McHcVR5uTNOe0mVRXjRbVfJkM7zmigL9gvl1KQ0iDwI9VlPEpclxm0adk7UOn34I5a/VYz6ZVsaQy77mgO1FPZ3osPlZGveRp2DtHTdlJHIrnydNJG0MqNelbAdFzNVydCTZYbVUah6BlR6uMjOUQpVJRJhFExUKZekiLldsmkR92wuBcJ81L11SZcZRT4LYqsb8LAFj25S5ZfcrgzbVULjJhdeOKiqRzZJOTtjqVWBzUZIu9jXFKNbsKgDh8TvKAsvrXo2vG/bM23XWwjjO5JP1WsM80+RyxwkuKOIvahhcRM7L2cE9Ss8nPBKWxmmkV06kcziNcwjVNSQtJGQnYqHU7OToCplNI0jjsuUbte7Rv0WEs0V5OiOMnbdL9IHVQ88S9DNKxdmyfiIHquefVrwawxG9ZOztMbk88h6LhydVI6oYya12KqAe7DY2bJI8yueOaF/UdDxX9rMt13VnHMOK3+axpEfLSJrN2dqu1EeOSiXWwXA1g9mrZuzTR8Z6LCXVylwaLHBFwXRSHBR3snsPp9HjJrL7Kj5VyE71AxDUQIewEpNodFmlZnnQeoUOcUWotl2jdrzsPNZSzxRosTNq7rCW65rlyZdXBvCFG7ZHkZcFx5I3udEJ1saVN/NYNGtkveJaWFkXekLXSmZXTJm1+az0larIn11ookNiC0aIaGmi9kROKFy65J1R1rHFrkxLXaXScOnCdV3Y0q+rk4p/dsXbscC33zmuTqJSjL6eDswRhKO/JeFQDSOi5ncuTopR4KFvt4iIHRb4sG9mOTPSowqoZn7snwXoLV7OHbkzqzPlZGx0XQn7Zg1+DPtNgfGI8VrHPG9KCXTS06itTsjycmnorlmjFbsiHTzk+DRo3NWOjHdFxz63Ev1HdHosno1bH2YrEjFDRzI+y5MnxLGvt3/wADoj0TX3M37J2ca0fGCV5+TrsknwdMcWOPg0bPdbW/u8gsH1E34HUfCLzaTBll9Vm5SYCEtGiN2O2NLwqSFbGmoE0hDS8bqlYg935kW/Qv8TxShZgSJIC+zlNpcHzsYq+TUddAjX0XN8zvwbdlEDbmBOTh0VPqaXALp78j7Rc+AS5wjw/ulDqFN0kLJ0+hW2LQrsaPhzGhyVShJ+SFkivBB7U6ZBz3VvHGqI7krs1LHfPzieYMSuefTf0s3hn/AKjSF+Mge66dsvrxWHy0/Zo8sTQsN6MqSAcxwORPhusMmKUN2bY5Kd0y534WdFCmqCmthNWN78JteiUMfXRTBje95piRbpWhmA4iZAOcgAZarnnGepUdUJR07nLVb3GLQuG+nQcV6kcDo895o2bF1W5rgcJncaELi6jFK9zswZVWxpPrtiSuNQldI6u4mrZzl43m0Oj0Xp4cEqs8/LlV0Uxeo0iB4rd4HyY91FqjXDhOo8VjJadjWLvcs0KgPDjGaxmqNoO+C5RLdvRc02/Z0QgWhahzWPbZq5bUK21eKeghyJG2kpOItQ72o7paEGpie1HdLSh6mHtZ3S0D1DTbyn2kLWMNuKrtoWojdbCqWMTkM9sKfaJ1HmocvqDw7Ju9O5UUW2KKxBkEzujSqpit3aHVbU50YnExpKUccY8IJTlLlkLqquiBGvSoCZj0UBapOBHgsZ2mdOOKkty9d1OHB2RgzG3Nc+adpxOrD07tSRPbb8IcWtw5cdZSxdKnG5GeXqHGTUUNs/aBw+IA+GSc+iT+10RHq6W8R7O0AnNmXI5ofRutmT8yr4JKt+Nj3WmeE6KY9LK92OXUKtkZ1O9qgM4p1yOma6H08GqoxWaadjbVeb6ggkRsN904YYwdoJ5ZSVMqd4tqMyWzW0sMt1UTxqSplwm4u0Wal+VDsPJYrpILc1fUzaKde1F5kxPJbRx6VSMpSct2RY1RJJRtLm6GFE4KXKKjJxex19217O7LvJJ4GGHwGWa8LqI9THfTt+57uGXTPh/vsZl5X6WvLabQA0wcWZJBz0Oi68HRaoapu2/RydR1ememC2/JLdt9sdPfEM+UgOIO44wpz9JONdrf9h4eqjK1N0aP6lQyh7dtVy9jN5R0PLi9kZvyiHFs/wDdqPBV8nllGyPmMadFltta4SCD4FZPDKOzNFJS3RWqXtTH729VrHpsj8MzeWC8oSpeNNoxFzYOYjU+SccE26oJZYpW2QMvykf3EeIP2Wj6TKvBkuoxvyRVr7bnhE7Gfsqj0kvISzw8GfVvZ5HxegXTHpo+jCWdlQ3g75ndVt8vH0Zd+XsxywjgV16k/Jg8cvQsHYo1L2GiXoQTsU9SFol6CDsUtSDty9AWO2PRGuPsfan6BrTsjUgWKT8EmeiNSK7TuqLdOyVNisHnx8WdEelyrei8bE9zMycWkRkRzK5vmIRntwdMunlPHu9/9DMqUHtMFp6LtjlhJWmedLBOLqiNziNQrTT4M3BrZiBxTtIFFkgJGqm0+B6GnuTOsdSJwOI3AlZ9/HdalZs+kypXp2Iu4f8AKcuSvuw9k9ifoZgdsehT1x9k9qfoDSfsUu5H2X8vk9ELiRqqUk+DNwadMUOTJocHoYDu8SoQCqk0NMWpWJMkknc5pKKWyHKTluxGuPNDaBJ+h7GuOgPRS5RRcccpPZDnUXj/AOhJZIst4JolZZnbrN5omi6eXsR9nchZYieB+BfZXRM57I70bD5eVckRs7/lV92Hsz7M/RG4OGqpSi+CXjkuRoqEKid0HelFIk6L2Rp4eq8fuzXk+i0wvge2yUx+31UvNkfkenEv0k1INboAPKfUrOWqfLKjkUPt2Fc8HWOiSi1wS8jb3ITSDsiMlprcdzNpMY2wtBmFTzzaoSxxTslbZmzMZqHklVFqkWqbY4LGTs1TJ6YnQdFD/uWr9CvZGrY8QlF3wwe3KKTrCxzpIAk5nX0XSs04xpHM4Qbtj2XPS1xNE5GA+Y/pA+iT6zLxX+X/ALGsGPlDqthpkzAOxLYPRKGbIl6/xKljg3b/AMiRzclKe5TexWcJyAWypbs57b2QyxWJwkCdZAictk82eD3ZWHFNEtps8jZZQyUbuDMO0WZ+hDT4gTG+a9CGTHymceSGThpEBsRy/wAvxgnPqVqsy/qOd4Lr6f2/+iix/wCzq4p97/yF8ur+392T+ytjJoB6rLuy8s27MK2RE+wNGcu8oVrqJcGUulhyR0KbCdD5q5ymkRCGNyqi/TLWjguWWqTOpVFAbTIyCO3XIa/RA0niAPBW68MzTflErDGSh7lJpEmIKNx2JKYhS5ILK9oEjQHxWsHXkie/goOsh5DwXSsyOV4be4z2Mqu8ifl0daLABv5BeF8w2e92EiOowNyM+i0jJy3RjNKOzI5CvczsUFJjTJWuA4T5/hQ02WpJcoXvEaWGqxza8cY6KXCylNrgf7Xu4qVi9Iruy8smF5RoXf1lR8vfK/gvvfn+SI2kHitO20Q5WIazU1GRLaITagNY6/laLG5LYz11yTNtbYlZvFK6NVNVYrrYOIiULG3wNy9kH6kKL/eZj0OE5AgjUH+y1+XeeH0uv8/2Mu92ZU1Zofr4qN/y2YIgOznWYg7ZFcj+HvG/rlZ1Y+s1rZFPFPE/wytqrwEXvZWtlLE/F/twnfSJnVa4p6Yafzf/ABE5vrnq/Ff8ZDUYeBP19VpGS8oylZCKcf3WmuzKqGOpSqU6M3GxBR5p6xaK4FDQp1MdCZJqxMSQjcmwlArExBG4WhrqwHFNRYnJLkhdbG7q1ikZvNET2xqfZkT34h7W3dHakPux9ittLTxScJLwNZIvySAqP7mqjZZq3sTqY8FjDpEuDon1TfJWNvC3WBnO8qE9rJ0hHaS5DW3wO9oPzfRLQvRVgbWdz6IWJCc2J7Udyn20Gtie1p9oXcHNryk4UXGVj2uUMtJkneqdJbEFccXAeaeh+ELVHyyG1PBGTxvGa0xKS5RllUJLaRWp1y3RdEoqXJzQlKL2HC0GNeMqdCuzRZJVQheTrmnshU3ySUKzmmWkg55+Ig/UqZxjNVI0hqg7iXP1d5+PPKJ0PLRc3ymNfbsdC6jJ+rcjfeRPD1VLpkvJMs79Fd1sctViijF5JkRrOV6IozubEFV38CNMRfUhe/ejTALyDXVHniU0oIl9xkXvKriRokHvbouIaZexPe3RcQ0S9iGd0WhaJexpanqJ7YndI1h2bA04Qp2DxUJhHJPUw0JDmxy9FLbKioid5zHonX4BS9M51181Nx0W+iJnbJqd/R8TfMfgqXBeAVjj2hGgYY8YS0FW6osWa/mE5y3xzHoplAqMmmMtPaL5Gg8zx8AhYV5G8r8E1lv5rsne6fTqk8dcB3Gyz+o0v/0Z1S0MNQC9KfztR22PWvApvdnzjr+Edr8B3WKL0pn946o7bXgfcT5Kr76pz+484/KtY2ZucSeheVN2joOxyUuEkWpRfBfo16Z4jqCsZKaOrG8b5JmWmmDGITtI+6zcZtbm0ZY1waNns+IZNPDgOPmuSebT5O7Hg1L7SwbAfkPRZ/Mr+o2+Vfoq1LOflK1jmvyYy6drwQ93yPRaKf5MXifoaW8lSl+SHB+hSxvzehS1S9fyN44+/wCCIgb+itNmbgvAmXGU7ZOheRCW8/T8IWsTjD8kNU/KfGVpH8mM14iRCsNCrcH4Mu4k6kJ3o4T1RpYa4vgaag/hT0snVAaam31TSJcvCGH/AJJ36RLg3zISB8ydv0R24eZC+6lci1HEgJaj6h1jDG3ZH1ewvH6OKlbWRQSgAlFgEoAEgCUwCUrChcZTsKQYkWFBiRYULjKLFSDEnYUOFRPUJxF75GoWgsWa8X0zNN72HWWuLdPAqJxhNVJJ/wBzXHkyY39Mmj0C5f8AF+tTpYLRQZXIiKkhjojR0NIJ55L53qf/AM5hyT1YpOH45X+G53w6tcyu/wAElf8AxVY/WykeFUH/AMQlD4BKH/c/j/c7IfFIQ8P+ClX/AMRGEZUHTzeP/VdMfhElzNft/ubP45BL7H/BWqdt6Z/0nf1Bbx+HSX6jGfxfHL9DKz+1rD/pu6hbR6Nr9Ryy+Ixf6SF/adh0Y7qPytF035MpdanwiJ3aJvyu9PytFhoxfUtjf15uz/T8qu2Z95kdS/W8A6ecBNY0S8jI233u3oVWghyb5FN8t2d6flLSIP1hmzvT8ooBf1dmzug/KekQC9mf7vT8o0huBvVn+7oihUxRelPc9EUx0L+p09z0KVMdIT2+n831/CimKjnJV2a0AKWoKDEjUgoQuUSn6GkNDlKlVjod3ip5RaRuMqHNjpCYlOp+woJT1P2FCh6ayMKHCotFkROkXGq1IKDGk50GkMaNaDSLjT1BQY0agoMaNSCg7xGoNIneKXNINId4nrQaRe8RrQaRDUQ5hpDvEnkVhpDGnqQaQ7xGtBpELknNDoA5GoKDGnrQqDGlrQ9IY0aw0hjRrQaQxo1oNIgepWTYKGLO2UCQAgAQAIAEACABAAgAQAIAEACABACynbChEWAqLYCJACABAAgAQAIAEACAFlO2AiQAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAH/9k=\\n\", \"height\": 194, \"channels\": 3, \"width\": 259, \"type\": \"image\", \"id\": 4947632528}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxQTEhQTExQVFhQWGBwbGRgYGCIcHxwaHBwYGBsYHiAcHCggHx0lHR0aITEhJSkrLi4uHCAzODMsNygtLisBCgoKDg0OGxAQGzQkICQsLCwsNCwsLCw0LywsLCw1NCwsLC8sLCwsLCwsLCwsLCwsLCwsLCwsNCwsLCwsLCwsLP/AABEIALcBEwMBIgACEQEDEQH/xAAbAAACAgMBAAAAAAAAAAAAAAAEBQMGAAECB//EAEAQAAIBAgUCBAQEBQMCBAcAAAECEQMhAAQSMUEFUSJhcYEGEzKRQqGx8BQjUsHRYnLhkvEHM1OCFRYkQ6Ky0v/EABkBAAMBAQEAAAAAAAAAAAAAAAECAwQABf/EAC4RAAICAQMDAwIGAgMAAAAAAAECABEDEiExBEFREyJhcdEUMoGhsfBS4SORwf/aAAwDAQACEQMRAD8AoVbLEKpU3jcGYYkE+kCPvgvLPUIDQSoYgqT4SIuSDfuPTEGVhgBUJA2BnvEQJtiXLsLIJa9iPq7iTETvjBdQEQ4Zx6L0yqEktErO9/CTEEEbXi1sWzJ/EA0qriahbSQveJv2xTKlJxUC/NI0kEWi0GJjzMYJyJlC30GCNp3AJIj8UT35xow5mQ2piOgPM9IpddpU6fzCRIJAHJ0kggd7j9MXVGRFFRoWYmbb7D1x4tSzAFPQVVnMsGiTJG6zsARG43nizjI9dd6gpzUZUUgsGBCm2loMzEDyttscWbqdU5Fqer5bqFKp9Dq2+x7Eg/mD9sJs38RxVzChCUoICZEajcyrci0HtHM4pGVBprl2pnS6OXGoC4g6xC7q3cHk9icKM/WrU31KwKsGMQ39RVwRsFVtQuZsZmRKFz4lKl5r/FZ1saUElQFpwTBDOTdbSUKE9sWjKVGNNWeNZUEgeY23M35GKL8K5/Mqy2Wu7QTqqhQoI8IHhLTpPa2niScXtS3hZlCWuoMwe0xfFEN7wGLczXIMDf7W5ww6ZWOxMjAjdNJqF+Ithrl8sFG2LORVRFBuT4Hq1YxOcBZmnOJiMYZTxlRYGIcrWEgSJ7emJ8w0Y7vDINM46NPvgTL54H9/liDMZ1maBthtJi6hDw8zG22JNEcYjyOXIvgiuQInCnmMJDUXAznBNYxgOo2CIpkLHEerG3OBnczAxYCITN5mqFE84WVKjsoJMgnHWerQe84gy4aYEe+LotC5Fms1GWSr2A0kHBaSd/8AjAZlY574lSoWN7AcYmw7ygmswgJA4F8ZRAQ2AvfEzxgd10yx3OwH5Y4eJxhFRNW/2wKKYExAvjWYd1kiMC0XmNU+398EKagJ3hKm47+eO3aBiDM1wACOMcnNKdr47SeZ1yUZeb/v9cZgKpmGkxMemMwdJgsTxmqFJC0w3cHTfmL/AJ/9hgfLowqI07kAbC/YnafPGNX2kAWAWOwK9rzaONz5Yyn4BLDmSIsCLX5OPDPE2EbSw5xNerSTr0jYgDUJ8t9mv28sB9P0KtOBci97gmw9t7bYgoVDpEEEydUfeB6e+3njqrXmmZBllBY2JgTEcknz74QK1VOqTV8ywbefwqZ2kR3tbiwtiXonUKaM3zAx2YpP1BSWNxfaRz+WFuXQaYkem1osT6EeeCc1k4ppUAmB4jAHhOlJvBgwDbuTPaijmoCJZsv1ul86mSqj5bJpvaAEAJ5kaSfKdsWjpHSmYnMVAzrmNN18Ssh07zBYECwjzMbDzVEVocmPDbyFwAT6g27Ri9/BnXx8k5dKgUKFabksPxqAfpgHcevGLISD7p1y8dA6BTosX+TSpOSVENqLL+A3jSYFwJ23w5rJcDHnlbq1SlmVLaVBqMAz1ARqJ0lwACWAAI406hP1HFuyfVar5t6QRWogAh1aYPIPn/p8sWVoDH6C2NjGCMYWvgzpsrgfM04E4IGOaySMETpUupZpkqBkiVHNxfEv/wAwB0KvZo3xB1rKOktEib/59MIyv3xvTGrKJkZ2Uw2jmGVrG2HfSqoJ8UYrtCqsid/3bDDJZxRUBNwP+2OypYgxtLklcEW3wIrySSDKnHeRdWGoDfBNROcYeDNfMDrCcBVMGGsNsadVIww2ineI8zWgxPGICSJY9sd9Upwwi84Gz0gXEavP9MalANSDGbVVN+TiFqoBIBvMY1l13k/bAXVK60g9U/SokDuYJj8sU2F3J79o3XNjbnGnYz4fzwtyGZ+bTSqoKyJg7j97/bBSVFO5n1wAARYjWeDCarnv+/XA+bzJ9wcSfxKCxwLUXX9O2Cq+YGPiEVM4TaMFU4ie2F1KtpWPtjRZpA/LnHFPE4NDmZGF8Ds5MBbL3AxArAWA++CFeRJPljqqG7nIDcMY9MZiQA+eN4Fzp4OraySd5P52973xM9QuukQbxYbbAwe0j3wNlfDNuL3M+33P2xMlWRYkAnbvMkx6T9ox4NTdUNy+cAGkRJMmed5EDiR+eN1MyIKICB9QibSZPoP0nADH5Zg+txwbxt64l1guCskjczI8h52n7+eFA3+IandSr8ywWCJMfu+8mOJMYYVeoMy6GhgAdc/0keFB5A38oGF1ZwXta4JjYbg298dUKwWBG+2oRYzv7cd8DcbidO80m62vO3c3n9/4xDliwJido4Hhg9uY88GZekSzCNgYuI7g3O8R/iMQ5qmFdZBKsWIAN+YuN79hH64fmdtLt8N1WqUqdOswaSwDnTK6mVtfikli42Bi8kbAXT/w4ro6Fl1r4ihViQCVA+lTPis5a+48oHkaZ36QWEQLkkxyQtrHa3lO2HvR/iWrTAH1KIYCSLggsrGQSDJ54vY4ZctHeKZ7pVKqC7GFUEk8AC5JwnzudOlilWm1No0tqi7TI13AEFCpA4/1CEdH4wfMoadNQtTTrDEkAifpgHUCf6rj74FragS6U0+WlIyJK0/mMyh0B+qAAIcAhQpEE2GkNe4gnoNI2GO2OBqdSwPl+974kV74eCJfi6rFG0ySB/fFPpgbnHovVaGui691MesW/PHmtVSrFeRY43dKQVImTqBRuMMqBufbBVHSZkep4wsyL+LywdmYjwyB64qw3iqdpZ+l1lVAJx1m+roBGoWxTkzLRvbtjAQecQ/Di7Mp6220ZUurjUQdid+2GFDOdzhBScAW3xj5kt4cOcQPEAyERpnOoKX08Dnz+2FWbzJYy1xwBx6YiqEC3fEeey/zaehWZDI8S72vzxhwukWBELFooPVyKleCCqCApMywuSe0Djz9cK/jfqDk/JVvAV8SgbkzbyIJU/bCsZpVrMJFwwcCd5ENB57jfGswDXrs4BiZ5M/0qBE+3p2x575TkGkHkywXTvLz0xlo0VUmC7AAkkkkxH77ROGFGirKWDTBI9xvhD0/KM8M7ERIN77FYtYWi9zaMPaKqqqogKosBjagYbcCTNGRVqB3P/Pric1LBQLfriKrVkE8bD2xJQqQontip4iDmdJUI8NgcZTK6rtuLnEVGmSSTtjqrTUeWO2nbzKlIE2xlNtIi2B+o5v5KKSfqZVCjcyQsx2EycaR5nbe5wAb2ncQ1qh/rP5YzCDMdWCsRoJg760H6tOMwmpPMNmec5fLs8bErEr+KIB23P2tPEzgGtT8UAEDWDDEgqWOnbeLj7YITqTBA1vCIA5iCt+4IMd/tJ0UHyqa+LVUdTJH4S4jiMeV6a37ZtDNe86pUCxiCxYEKYi4mJJMQOf878UaBAcNAv6zxH3H6Ya0RTpVTpi2oRBaGABkiY3gSDsOIjHOeY5io7lVBpJCsNuY1XEzxAMScO3T2nzF9TeI8sxFTxA9mgcWkx6f5wbUphWGqysCQAD4eAYtPNh98bVwWLaPAgAXtPcze5/d8GpTq1Ek+JR/pk6oO5/pvt5nGWvdUoJxlpJiS06iCTuYI/e8XxNmcszMur6IsfTmPy9MQoCrIpAVgbpIgTcC3BkWPkMGrUEHkmBBvAgg72nc73nYRg2o2nb3vFdNSHFOAQbjmBceZg3N8T08yUMR4Z5G4NiCft9hiNaJJNThjf0geEeem8d8FBhqAOrSTZ9QMSLzbYnnzxNl91GAkRx8O5tqVYMGcIPqgHVEQY7E3AOwJxaPhT4las7ZWsy6WAIBFk1av5a86YIEk2nmceeHMOqxIb+5P78sGZeq8EafEbsW5bw3Bm587+1zgo5XacZ7d0bMCy/NZ/Da+raASfCCCNr29zZypx5p8E/NAFWkoXUkOhJOprhHNrCzWBE+HF0zXUXQFtGqYCIPqYzczsABB2mxxuU2Lix6lTFC+JkU12+XfafI4f8AVev06CkljMSNNzH6emKr/FMxJM97/eMa+mUg3IZmBFSKnbffBPzpgb4ERdRJxs1GJtjYRczA1JaxBsu/OOaCQfFbElGjBknGqaSTbAuGpsiTbC7O9WWm6qxI1bWtI3HrgypIkCAML+tsgoPqGqBwoME2B9pwH2UkThzU4z/VqdMMdQZwLLPPYnj0wrX4jqMzEaQoXVB43UA+UkT6Tis/MswuVJWWPmB9oA/I+mOlM6rg2vxE2McAi3No3x5D9VkZrJofE1rhUCS9CpCs9QEeJ0dpNpJZYF7gRB94E4snTyyrTSmnhWAQsanZbMeAF1A+Ik24jFXyx0MpUmTAkdosJ9DNrXjBPT+omk40kknXBmN7z9/1xPF1QBG0Z0JG09Ey6KF2Aje9vvid2gQBOKE/V6tVStSBTadQjcbj7Wv54P6d1+q7rT0gyAe0gCCPSbj7Y9AdWmrTRkPTNS2Ksz2wF1DqS0iim+q0AixkC88Xwk671gMrIkgDnUVliQAIG8dj5e1dyzkEs2oqou8zMiIuPtInEc3W02lN4VxWLM9DqZoaS7MAtrk2jiMVvrvxGjUyKYJV1aWI84K/a9j2wt63njVRGWQmkKVJESLlj7Wi22+0o6lZjUBMkTpAJ3MAi15txzhc3Uu4rHsIyYq5jWt1R3NNqjhjTcaYHpqW9zwPUHFk+G1b5bfMki1iDysHffjCPovw67BTUAVD4mM+I3nSBwP32xdqTIoVJAtIXmPTD9NgcNryGLkYcLE9TpVGT/KqeyyPucZhq+WDGSzAnjUR/fGsaDgF8CJrnidATKNCwRv+Xt/xhoKGooqT/WdpMAxxvsYg7YYp8P1NQauq0BVGlFdgr+EDxBDfaPExUeYkSsqrR1OivI1NGm8oNgSYBnby8xjzyyoRW/0m4IxFnacmZLiwkCbCFFvIcHeNjOO8pSIBqO3y1JMA7kqAQCNokge21sbfNM6baQWA8MbDb1YW/ZwCx1gIoGsHbk+5/TEWdm+IwCiNs1n0ZQqs7BR+I6dRECSALCBtJ2F8D5/qlQqVMKrASq+EEe1ztvgVKIUuWJIHkd52twCLxjFq/MMAKeYEXG8ST5EAL5zjseHsBBrr4mlV0Ew20kRx3/Invzhpl83CRLEi/iEyDc3+9/TAD1CJJa30xME8D3k/kcTUG1SRAUKJ8rwOLcW/zhHQg+4QXfEd/wApqdOKgJY1ZDHYLp03DEXDDcDY+4r0wijc6kUsOVBESCO/nET5Tg7p3RKlSEo5ZXIWfmOGlZA/CFK7iRPnbs56X8O0l1DNZgBV/AGnU+qCzHaBa5AiGtIkWK6lAqpwAG9ypAkWbVLDtH1Qw3i42j8sG9LaWQEyAAWIg7mIE3a8D7YI6rTSpXRaC7zYNqncTMRJ0mFH34Fh+HPh1KYqmsrllUiwggl9AZdiwMaiQfQHEvSszjLH8O9RqOSRl1NKF8aEeFiZKbCYnVF7sb4C+P8AOV6JRFsOCYHBaJuD9ENEiDfCimmY6f4FXQv/AJggEq0GysfK0GOd8LOtfFVTOKoqASPGIUEQRpK34iSAfO9pxU5Sq0eZMiQdT6lXdHdixmATEXAF94GwsPPDj4ez+qmW2EgCTcsRJH7OKfUzjMjIGaObx2Fx6bn1xvJ5lkCEjZgYnfTEbfu5x2LqtD6ojYrE9Fo1NycS/NAGEHT85Vqk1AwjYrp8INjaRMxNxhhB5iftj3MbjINQ4mJrXaGipI88aYmwm+ByxuRbEdVyFYzBi3OHIoXBdzrOdWSnAsRszE2BiQLSTeOML6vU9SVZECCARfcfmCZ/LFfrliWOnm+43vB38UkmPIn1Gao6ahE247R+Vu2PHy9VlsitpsXECLgtaipY6ZnmSIsZ/frjVCSGaYmAOTzxPf8AtiSnli/zJkC0Gd+CD5CcTVqXhIjva/EX8/X1xgo8TQILSbUTfcx78D8gcEPRVdIAki1z5e1+Z3wC9Q/MEWG095m4HewwUd/APDAPckgb/vtjtLdhCRDTXU0ap1EMq+EcGDfzk3PYbYH6RVFDSxIZyDpjibz+dtuZ2wC0mQBAbxD0uSPy5xLQoaSTYtJAva0bf52uMUctse4gCiddTrXYyTIgX7bT5kjf/jEtGqwp6AykMZJ28o/LEK21BpY3JjYDe5HMxbyxFVqE+cmSBMm36b+mJEG/kzqjVqK6FVTqCSTb8TQfD5CNz9sMemZQVnARP5KXLk7kgNAkE3N5538sLOkmFHigM20ElewEkXv5xfB7ZwJUPynOghS4/wBQM2M+IWIG3vbG5cioBY37yLWbqWbI5VaQPiuxmOAbk6R74U/xuut89IIUGnBUm4MypB5U29cazecZ6Iq6D4XIItAA/GNQmeLdzvhRRYsyqDDMYGwkggiSfv5nF8nUgsoUbcyIxmiTLgep0jvUUHtfG8VOnQosNVSowcklgAdyZ8v0xmB+Nfyv9/WH0x8ys9RzVWtWZ8zVZyCViI+ki0GxH64KXLS2tfCyCPBsSCAABFiAQsSdvYWY5BEKvXFGlRYE+NSGJgmIPiCySwt28sCpV0inSp0ilOTqqRNRl+ld/ptYSZgjaLKoUHRj3/8APqZqYsRqybD+8Sv9QpfKMkLqgHSt1G/1R+LSD9wcDCkup2qqFIF1ItqiY8J3mLeZw/y3RTUcGnoWizXO7EyLcHafEpMknfAXxD8OAVSiM248MRAIJnUYEzbYce7HpSDrO5kjlB2GwnFCjRRQzDUKiqTpsBJMCBza23GBqeVdan0sAZ0C8Rb87iwntibK5B2pE/TRX/7lSwCk7pG7iAIE/acMsnTWdFIt8ptP85xDkRsiEwqyT4rn1jABUt7Bv+36xtJC2x2/vEGzaFHRqzAtOoU1NyZ8OrfTE7b7WxB0yrLEuAVmyEeG1gSGkW78Y1nKglVQIbz3YySRJkiYUXv7YXfKbWIJiCw553jvEXPnieRG1b7wq4I22EsfSfiL+Hq6VqVNDJdQ4EzFpj92Ft8K8z1t9TahqBIibwAWaCDIa5BvYRYDCrOGJmN7Qdvy/Py9DjNcqDzH6R/jEWJMcLPUf/DwUqlVOWO4JCkEKxUyPrm5PPhAvtix9S+IKbfNTxKtMadSglheJJDzG5G30kzjyDouYKMpJbStzoJBG5EHcMDB9QMXLPdCqGhRry5Dm4LaoUXM32nVFreU2KOQNhARcBzuf1VQwd7gqo2OkggWntNzOFzJbUBMSCQJHBiwkfn+WImoFAYJkcgAzsQ0egNvbyxJdnAFhe202mPODf355ykMzENCKgrPJUMJM3IubgzPkOPKcEVMrp0rDNNgYF4IjyEXxPmciy6GIU6gfCDJ8NyCL32I9zgrMZRi7arAAgCxJ0xJgn3PriqdMSagYhRca5HOqlCdUap0+RgwAI7g+uFyZyaympsgEGd4bmRzcxgI5mQA2wnbym37/tgfN1DrjY7Hyi9o53/LF26p9hXEkMMO/jmXMIxcsCpDAACRa224t2w+yeeWq+lNUXvFoEyQYvutv92Kf8pVdFeo2kzqKg+oj9/fFn6KGpk0yVIEaY8xe+5tBmO+NvRMzXv3kM4A7QyvkAxC7RtFhe5MDnfFb69lFSrpL3IkwYJHO8wJn7Ys+azujxFWbgBR+vb1xW+r9WLZkSqllpjRyBJIabb/AKDtNq9X6YG/MTDquZnqYK6qdSmABI2OkdrATJvOElWsFLIbgKZnkEfkAZ9I4xsn+cCb3I2iZIt2iD+Qwfm8iajggBdRgflYXiAODvjyQvqksBuTNy+zvE9UEkGdKzPnsBBPHp/fBVEgnffudpsZt7W3jEvUFKjRBKRBJGzcGQLEEWO4jHFKkGIU2DGSdvCJ24vEbjm+DpptJlLFXJc4pvpI0KQCZjnngzB229sbpZfWQaMkRHjAmTMgdvTufTHeUy6mbwgJATkjYTckbSN7CfQnJuHMIWusQIiTI39O+4NpxXDiBJknaoCmWcAgrAJuRcDz/wAcb+5i5YU4fWIWSZiSBaIAJmdNvOBM4PGXKUnqTqKkCD3P4YFyTI8N8Rr0fSEquokmRTG+o3/6j2FhfsTg+hZsCD1LG5hmS6OrhjWMFjYWmNgSTJ22g+d8B/8Awsh5TxLq0mDwfpJPee542wZl8wGbS5CMqho7SYIM+m4jBCUBDJomlMkzcfTtFgN+JsdsXfECuw+8irG4nrZUuwpsQBq8RVQYkDeIneTG3bAVbMsNIEQkxHYag0exnDLqdICf4VmZaw8WlSFnzJBhQJm/POEdaiUMkSNIIaD4oA1Eci/PqcYciHepcVJa6XujMbeIFhNhwtsZiSilTSNLGOIGMxHQ3j+I2qpHV6RqUVqzVGUm9R9JAXQWBBBMktELt98RdUYhmVfo2QNKsLWi403Im0xyoiW/Reo1WoVaRMCmNSgrKllaVUQQR4gFAvtFsJHyJY/MrvpRZVQNzFyZ3373O5Pf0nypjX27RVRsjb7zfQzUFemKVxrX6QbybCGjiRHkDwDhv16tozWltT1B4SNYKlSQQDAsQ3JIiQNhdNS6uYanQWRCpcy2kGfDqmDvz/bHPUSFKI9pY3VYa0eMkgHXPkLRiSs7DmhKFUQ+TCMz1Jq1SlRqgaVARUEaQBDALFiTvN98EZjMaWekwCQGBmb7r28M2sORiLpmYpozPTE6WJuIA4J3gwGUf+8+WE/VOqCtXNQAiwEXNrzG322+84dSMa0PMm9ud5p8sS4cGfGFgTYQOYA8rGf1wbns1qBZPCRAeBYHxDRHbttsbYCyil2OmwFzEzp9uPfBTUPlLqIBDyCIPgiIJ87kgHaROynCsx07RlUXvAhk4A1ESTOkSTz3sDv9+2+65XUVGmO8ntt/bHVJBBQwSIuSfQAQDfzP/fWXRRPispAMCQZmYn0j1OF0UJzOJLklOmOCGJF77/ni05X4rrhFyxINMqTayjcaSeBHtYbYrWTYAFTMRY3jVsB6ce+O8s5FxPaIHn/zxGMxYodv1gIuWTq2QqaFICopvEwTJdQPyLQTfw+5dDO0aZVmaCwAJ2uex7naObb4r9KtKFAVuVA8N7WgGfM+mOBT8DBgCLCZmDZp8vQbzgfiip1KICgPMe9LrtWzdInUFB+Y0jZKalmttcEj0MHA3ViWVKlNmkmWv3E2t9V+T3t210eoEpZpjAYIAhmx1son3F49e2AemZpSrK8lb+R1A8HcHYRF/Y40dO5cm+8OUAKKgVVmDCWF9p5gfYA/vnDDreXZK7ggghoIaPIi8xt/bBOc6UqU9WmXkNZZKwQQIBmDcxffE3V8oXzdUkDWxll3Itcb3iBYczAw+TAyNXfmBMoZDFar4kLCAGAa8xEgyANtv2cMaIhg12b8JKngIdWwJiDY8gbYDr0kpVpIDU2AMAnc/hM3BU87jvbBekFwyyNKlrmxZRccQLsLyCPO+Djy6DpEm66t42y/UAyUm3BJmPKYn/HceWKv1qpGYZoA1KIvYgGZsJ2v3wT1HqheglJUVSm7DextbbgziuZmiajmZaLz5WAY+mO6jqFyrpnYcWkwqkC7h2YwLmBteJJ/Y9cG5TrX0h2soIiLHVDSeSAQBG5vwYwjA0DUD6d/fG4WRI7etgMQTIU/LLsgbmN61b5wAELcAi/eLiZgqTO1j3wZlskXb5bNpYeGm5J0gzJE7QZI9TzhGSxINhFhIkk9z+mCsnUWpCswBEzxfjgzfv5Y4/8ALsZwOj6Rx/BMhNNgUAs4NiNiZuJngHvYXBxJ0vPhZcGPEVveAeBJ5FyfIcDBQrNnqaKjg5mmdMkn+Ymh2AJm0tABNgTviqZXONO3hBBP77n3whdtqNVGfEBvLnRmqzN4tUELsDJXSbnbwzEcE98Q1KtQsGJIVVPygVJ1ExYEW0gixmSO4vhP0rqY8SOGemTfRaIi88Cw+wvhzW6vTUhA6Opn8ckQDxqsRI4J/t6WDIum7+syZFN1UhzmUasqrrVmsSZAJm8AxwANpmD7lZLotRUIDCmSbgEkQBEb3kb/ALOA6WeBsNTIoMmCY2IJNud/TzOD8tXqEfLWkfCBLNUEX30ldUn3F+2LAY2OrmSOobSSpWSiyUwNWsgPcxAO4X6RB54jAFWhKtTIGt2YBoAMLdVA3AAnbeTaNzK+Wd4HzIUBTCLpvqIEhi1hE+2DKXTQKrVCWYsIIJkG957mwtsIwzYmc8bQK4URBleiqUBd9LcjwH8zjMWdqom7geVsZjvw2KL6rxT1jruUy1IUconzawCq9VlBjgGwgGeFxXK3Q6roatct4mXVaQikFpZVM2EduMA5+s9IIzUgjEyAQYIU2IvD3i4lRbm+GOX+LHCPraQ0GY2sBpiYAET5nuDbDhxYgbY2Zvy5chFKKiCmookmdQUiLETPG8ngbWm+Dc1nf4hg2hVdp0lRA2O8k+ImBJ+53wrzVbXUmp4p/pte1h7++DKa6QPF9J7eZ54/X2OJO44HEKqRueYRkummnMso1gqfHcCwB/pkNDf+zvAKhqD3keIHSwE2Yn7X2t2wwoV20sHf6V8MiSzHQADxAE3F7D1FoynQldaTtUQZjMaPlUgR4AEBepUMTJCloF4aJ7IWF7d46KSN+0WdI6XU0oEfxn8AiyGxaSYBi2kQSJ4nE3UOky4pq0wraJ2Zubg7krMeRtbD2vQWj82mhpVIAbUwmYRbzH9Wyi/+7Y1utXQvDAhdQ5JvaTtNwL3kTscbcWPSvu5kcj2dp1W6MCoDIFqBbsNj9Q1RMWiPteYjWZyoSmdGoDTdiPqaRY2GlIg3HbDrPZuirioA004FhIkgBj/tjTJO9u16r1TPSDEw7EsYIG1gF2kSQb+wky+dVUfMlitjvxIURhcLBEi5vJsOL3tAvhzRpkUlDgF6rwJBOhQLf9RncbXwJ8PdLXM1aagmmLmoSJARZLMI/wBO3mRbB2froarafCJGkTcLG3h2g/a+PP8ASGoTSWpYMlNQxptGoHuSZnff9+eJAV1MAwgqd+4vPe+1u+N56oKegINRO5cyZMA+0T574DZQxBQCTAO/O58o3/M4XqMCgnf9IuJiw4j3OKFyisGn5hOpAZ0hLKGWN5aQZI3kXxX8tl38NVWiCZkGRsVO1xY4c/FNRKFRkpHU0jUSti5HjHA7fvdEM8zQfCTsYAEDb1i/f8th02w9whyA8S6fCdf5uZpifqqKb720kqRJ3AbfC7rHUFapUUhgSzXhZAm0e9u+++CvhAk5lalwtOm9QnxTZGCkd9zt29sKOouS2ohTJJkbkGLkGLwNxa5tjTmyEkkeJNEpAPkyPMVVmGDK2kagex8j98E5KuytT+WoPi0ydrRaYFubX9cAsCRqiSCZM3tPi2JI7+3fE9XKtTIgeEXktbgyD+XOM6A3q8Qk9oF1djrZoMk7iIJBN/ff32wDl8z4p4sIHPlthrmGfcGx45ME+XnhfTVdXhmBIFoub328hF8OqK5uHVpEgqMHeGMcT57x7m3vOM3YgCTA9dv+/HbHD5eGmRAifQgEYKbLaNDiWVwSGUXkEqytvBUwYjYjvgBKNGV5WxOVp95ki35/4/LBtDKSCoWIIk8328rzx2GFlVysDfsB7+XGJ8tWcXBOxvPe0k834G98EAA7xSCRcKdygUg3Vrrpgxbnv7GDOHtbKDMZM1aAp6qQZW8ALfLEBJkGIUESADa3YVjMKYvJJvbzwz6VnqlBXVTpWqjIwBuCywSOxj9yBhSpbgcSiOBsYGAzsRULOVFgx1CPIkwogcbnEoidJtMaZAJBJmx3xcuv9H/lrnKEOriaiiNUm5IG0EA6ojb1xVswNRZVBYwPtaQN5F+fzwQNS+07ybrpbeNejZE0/mMwABiRYzuRYDtO3GHNLKGPmqS20q2yWsYvA2/42xQ0zZLal1DYiJi3EXHe0Ys/SviEgAVSLeEMLEkkjytEiP8AONPT50Hs4mXJjY78xhnc78tmUkaioMHkeIDbvDeunCjqPXXCeEm0g+ZEcj8Jvsb2nmQcxnWq1KjaXKSwV1BgaTG4iR4WO8eJY5GI61FSQGsQLgN4WH9W28wIFr+eE6jqXugZVcS1xvBqnVyx1NBJ58XttbbG8BeE7U192g4zGLW3k/tH0L4jvMdLbLaVqzUok6mpElwpIMHUpASpAMMpB9bjCnOdPUI9Sm5NKZBjxIzKIpVBNjYw48JCkjkBouXJLqG8dQXmQpnkzcx+98QZMNSdwHpFHJQqxkMJICG8liRwwIN5BFqrmDH2iMBtRlWUyLhZvEduxH6YYtXGgAgnwjSefFcmLyDg7N9CQktQcQIDo5sjEgaRUIC1AGtaDPBiTYMp0ullaPzKyh8yVAp0mcIqsQSGJYjU4EQqyQY7g4DmVVTAsu65Mq1RJrBPApgFGtDkafFNonz5wqXqjHMmozMSLsZjUSSO3ckxtbzwqzvU6j1HZz4jbzBFue3njhamp5Ji1z3Gx/L8vzbECps8xMrWKHEtVeqhbVrs4nUWLQy31He29ztPnh7lMxQFNmB16BbXAY2mLxc27Yq2UyIeoV1OzqZB28og2iPSbDnElTIurCoSdFOVrEEXe7aQRaSeDsRfHqjKcaliJi9L1CFBkHVU1PFPU8CBYRvBMqJgsTb+0QPTYBKlMkFrAET3vMncEARINjjb1BpFSQpkgBWvba9rDje0m82Y/DvTPn1qaBwPmNLTB0qZLGf9mqIMTFsQvlm/ola4Uf0xlkMjUy2SYgxXzfhEn6MspGprcsYHpiat09KlN2QD5sXY2lokkRF94nv7476j1v5uYZqewUU0H4QqkAeZH4pxwMytPUSqxWbgkgARMwOw1RyLetulxros9/2keoclqHaVjN0WIYiAVubfhMXEbrJF8NOhdPJalqHhAFRiBNmMCxMbbDz9MEkKzIlzsBHMwwmDvqg33AbD7LZFjla9dd2qBB/tAVRBubGSbegNsef1SKraVm3prK6mlG+Jq3za1SuwM1CbHYiTGnyiPtvfGsi2sksZJm4te5AIPkP1xLVyLtpJVxTvpYgkCBde3pEWAtjgJJUTFgQRGwufbDXo5G0kfd9Z6J8MFV+bGolKLKSbxIMAxa21x2wizWUpwCSdOm6REMZ5jvNu23my+FPFlM6RIqFAsncKBuD6sOeDhRmMnVZgAQQYmCOAQT5kHgcQecU9TUWZVviKylVUE+YqyZ0Ea/lnT9MLcTEwAZEHaRhrLMpOmRuQCJA0kj+1t7DANRQtSKgMKwDDYiRzPH73Nm+Qz2mppKlVbSYA2UL+Qm5wmLKh9r+Yj6hxK9XK2Ugi0lrGQfOJHG2Ac4BCimsAXP6zJF+2Cut1gjsmkaSTcm7bXufsO2FT1DChDA/3WtuIHn74jk/NQ4l04EjRDM2j8MxJAIsf+cGpXGg02XcgiB+IeHTG0kESPTCxAVmRJ+95vz34wdlKw1KDG4IMT5wRv7i/rxxlVPaTUaHzCTMKN443J9o3Pl5xjKaQR+FSO4Nv6SfbHGYGi6kwzDSbQQxKgmOdIkkf4ndHLk3LS3Y7Xn+8cHnDAlt6iMK2MysADFwCOBffsY45++BqjQR45taLjyH9vfBlCacsYXVcLNzq2gRaJkz5YBq1A19rxPEb7nkW7YUjvOEsnwx1x6Zi+jUJUPCsPxIYIEkBgDa8XjFp630paYXNUTTqUWjUkErTJ3K76Vkn6h4dvSm5R9QChgyhZEQNwVYS08x/+Pni5fB3UUJqZWsSzPJIJ1K4IA0nSYmANUW1X9WvQdSxx7xpaVPqeZp/M1aSlpUCEXxAXB3PoRPHqI51BVXUCxgamkAcsYUGI89/fFo+LPhY5eoayACgwJnSDp3LK1htG8gxO8E4qdSg5qU1AgEPExZVUEmdhwJ/7nmtjqigadp3llgFFhV2IDAkjeNgBa+/9sc5ik0kao53MAC4vYyO/piam7EalZmUGCC20eU3E+v2xFSr6tYVL3kdh2jb6sSC2YbAkZqn/wBMN/qPPnZsbwJ86kN6bT5N74zHen8idq+I+y+a1FqjDxaCO20CbX9eYiJx1VrhDdQLDTCyexA97e3GIaWgGkVUeEMCx/FMEFgREzM+tojDQVAKRrwhq+HXa8KAq3HMAc+XJxm9l0I43mUmIRRU8G2lQNMAg3JF2sduLdzgZ6L1QrKzU0E69JIXQLGVDQTJAmORcYBzHUHcioWUGwBY2FwJYQOxHe2GPSeoVsqXYK8kFFJ1KjblWjVpgRyLgHe02woxfeBz4msr8K0iGrBSUTVuCZgbjZje11BkMMMqPS8uKLeCKhECILBiSwMTy1hPkDzgPrHWmqimikka/msbkEEsSdLHUAtzH2FsJqr1KeZC0z8xnMryCGMfSLAETbeMeyuTGo4mBkZjzLXlx8sNpVfmVXExcAqFbUT/AEgAknv5tiudXzjZh6dCmpFIeJdjrexNRo1GW4EbCNicS/EGZCRRV5Vm/naGJE2Y0hzEEAm24wpyurLVFbwhVja8zNrAcceXG2Is/qsGr2jj7/aWC+kum/ceft953nqaoSrKFqa50wQImTAnw3m8mx34w16dXWjlatUSKuZ/loANlsXK3mLGY54gDBNbp7ZoIQdIZ9LmPbVMDYLpM7H3wrzdcIxRYdKfhXw2MSTN7SZ2Pbe4wudNT+n25/SdhbSpfvx+sFyf4G1aSASIgEb/AGtcfpgrNEuoI+sNBJJAY3m3BB1W2vxhdRUqKiKhZ3MLpP0mQYECGvAgYlTMPc3EwQm5PA8t5/v5qLQUIppjGORybL82udQWkhkz+IqVBkkeR7QRi8Z9RlcjlUY+JtLkWBkKDufO/qMV/pvTHNHJUWY6szVLMh5RIJ+4SeIkxhp/4k5jVmEpGYpp9IiCGsJPBs2wO8W3xiDasoPz/E3sNOOvj+ZDXzusa4DHXJWZEsuwWPqnn3k4qfU0UFAoZeCurUvIEE8zMwTvg3I1XDwwnUAqmeIFxN5vuZO+2M6llTT1gQ3i424BEXiIb0AOPSyrrXYfWeajU1GOvhTM6clXNgoD6mk7KaOwHcMe22M6nlSyAkqsDdVPYqBvcEGLjnE3QaaHpNeFGrWB4vPQpPpKn7YrYzzioqOGlTACEhrSJAmJjeVbnGfpmADBhyZo6hSdNeJH1OZBZSt9HiMgQTMyDN7+4w9+H8+jL/DsquwttHhgSoO835N/IYCp5AtRDVGYIRsNLMAZZdRYhli9wNzucQVVpU2fS7GpsVAKkmPrEjgwLE98LpbGdaxDTCpz14o1cVVUKhULBAiNjJueB7Yrmby2htKrpBuJva15J4w3KhdTQWIF+02kb+R++B1UVLMIAuCSdzuJ7R+gxkOYkknvGC1EjXsAZ5gTPnbHKuweZiPONsMEDUDqICofCQb6pBjgjz9hgGsTJJZGB41RHpqjt9sXGkixHANw2lU16AbAEmdgAEqGeOT5YmSquoKoAIHDWsOQOf8AjAOSpMrBgs6bkxI53I44Pkfuy6igFZlOoowDBNUATx2FzzxGGVyNo7pYvxI6hLjU2oEiB5KNudo354vgVUWCBGqT7nyFv7+2DM1WXQAFAkbAd/3beMLoGwPHPpf0/XES28AMnXMKCova3hEExeLecYPTqNMVKbIpTTct9R1SNTTOqLc+3mhqVAZC2njv7/2H54zTJtv5f8f3wRYnT2T4Y63/AB+Xai403BK65+llcNOkWMCQRHqDaof+IWVqUM1T1MDK1CpA2nTMRzA9Y+5g+E6ZWaoqfzgPChbSHk/TJIvF/fjFq+LM4uby1KnTp1HrD+aht4WSS1NuRqTUokESV7YcEgfBh2YfInm38YyqQ0aidiNwZ8WOstm7FTGpjYi02gAkHYEyB357mdVy60qcxrNRQy1gumVMlfUlSJtI2mdkmVzRDAixG3Pt54IfSbk2XaWRfhqwOuncT9Y5vyuMwuFdv/Ub2Ygeu+MxX8Tg/wAP3kfTy/5Sy0KAp0BWLfzNWkqDqBabWP1SIjTbcjfABUuTqJg3uPpMgnc2JHbbbfHWQzdIP8zNG40mjGlqcfiQzb5gB9hcDDHrWcFQUqrKUimV0ARAEaRuYi1oA8r4zNh0rq7zU+QE0IvrrqdWBJgQxFpkiWjaYHpt2wBn8w6GqlRnekNIi4G63uBcCcG0q6ixECAZ8+Nge+M6rQ1qdRX5arrZgJINlAMEATMb97QDEsJfVvvFMcfD5y5yjCozmoi6iQQA020qxJXWFJE+YtMRxnM0lGpRFNGSs4FMajrYeIguIFyFsNzsOLw/DVGnTywrVkLUkjxaiD8zVqKggwwsoPHhA3nFc6i9evWeqQ0EnSALKo2g9h5bbmBjS2TV7R+v2jKugajz2+8f9Oyyiq6IupX0szahCsFINttYidyTLeRUv4o+G6QCMoZiWiAQN1CiBa1pgYi+BckrNqaPmBmWCb6QQQsaRYzO9hvO2GuZ6VVqZpVWoCjtL01adJ8MkELItO/rycbsbAIS3EyOpLe3mD1qBpUYpt42OkSQB4QdTGTAt4fb7VbL0VRqqBmZbKAQDqfVItE3v5yN8PPjfqSjMaKWnRTgCRYibsLwfEoG398VZc8zNciRsOJtLC/h2G2M4yqbc7Mf4lMi1SDgfzC6NY0mkyCGWVPdSLN2Enf9cM81TWvAKnWSwHhkXm4HK8z+sYrssrEsNLTtvtfz574tPwgA1UVXY6KaFie5jabnk34jEm6lkBXtGx4AzAy7dCyU55JM08pQKqNrtp3UCLAEW7GwxUfiWavUHquPAH0IJsxGqR/1A28j2xc/hWaeUrZh58bOwJJPhsF3m0Anf24x5jWzYbWSZgzJ3JG0nvF/OPOydKq6yT2/mX6onRXmGZjJ6QrFtSmflkjsboQTyNr9scUyrgimSoqQTI2Pb9DNz5QBhpkqIcEGpBMte4UQN9xBuZ8zgLK5ZtcBg52Fp5nSNt4JHrxjcQoPt4PzMAur7iW6tQ+X0iJKkvMrAJJcwAbjyxVulFUdWskMYMQwm5nxRpMgTB57XuPWrdOoDcu6yBC6p1fqTtt6ROEeQ6SqJUqamAIuogFYFwY59I53F8L0ak2QO8r1e1fSL/iLqXzwPltMghkHe8xE7jntN8J8pQkpTcgEi/e4jQZ47Ce4GN9Tp6fpYNTK6gWmQJHMxzHOIlchZggGAq2IJiSR2gXm364XOXL7iLi06Ywr0kCbghGUMRsbReSCt9N/PCennVliRpgzJkwu0fpff74kTNhCVNMPUvGoTp3OoAGCYJIN++E2cyzNLE+XEkxIO36+WIaewldVcx27Ag6oIMwAZkDcCbzz9sJc309pOm99rAgW/wD6v6Xwd0GGSCVmQTqMAaQYvwZkAc4dPl6dRUKkKQ0MAL1AZJ50gxAEnftviAQo20PyIi6PlmFNqhB0awrQDIItM7eUA8/Z/mOmHSEqsw+WoadX1I+lwZ5gdzuMWbonwdSbLMXp3AM1DocfSCdLBgebEQPcTilUlY0qoL3CNTOptwVYIVFyLgzeIZIG+LuCtGWxkGwZA9ALd1dVPiQHlSZEneY4tHOErRLHaT+vEdoGLH16s3gZ5Klf5evhbHSIgiJMk+gwplLggDw2b+nuTFjOwFvqAwjEHjiJpINGZlgG84nUY2HJJ2Ed8SvlaUakaTzKkgeY0giD5HtiCkmobSJ2kwDYajAiZtJmJthrkenGFLBkVgIOnUbzAO0AkHcek4CqTsISQINTZabQtQGBMaXFpB2K/wCMFdC6r/DZgPqIlYJAI0gkGYKxE3j3jfHFQKq/SZkgybE3Cx2tfzkcbrKrErAgj9LffAIo1OVu4l5r0aR/+mrOxoVdVTLOogU2JJqKq9wx1ATdCewmhdW6ZUoVjSYCVuCD4WU3DKZgqRz7bgjBqdWii9Lg6WRtmpupkMpEQQcem0OgrnsklKtpFRJZXRr3uDJEQbysRtG04O3JjkauJ5KlRiBZj6Ax/wDqcZi3Zpc5SdqdOVRDpUAqbLbc3J5PnOMwK+JO4Pkelo9M1qtRnpoSDJawiYW5uDPAnviutRJfTrJUCTO4BNvvPHfjjWMx6WVF08TKrG4Tks8EBLFjNhzyJPrFr4stTpSV1oFSRrE1NQkaYkx+LX9IG4EzNjO8ZjzCdIseJrxqGcA+Ys+IeqHMInyytPLUDpVQpjUBckbkzYCI3k4VEMKKvJOptKs7XJmLBZKi5Eao8Nx3zGYqqgbCB2J5lv6GRQoh2oLVrV7rqChVEXY33mLAc22xa8jmno5J69RgXfwpbYEXNh6n0jGsZhMxOoJ2hwgbt4nl/XsuQ0GSVaGM2BMcTcmDeOPTC2lTA0sIm9o/2wR53ON4zF8qgSGM3zGWcqypaAo1ReSZMybG2xNsWfpSCl0+o9lNUkSokgSAAZ4ufSTvtjMZjzmYmvrNuHk/SW/4hP8AD5BKVm1QssTcNaCQOb3G07d/HzC1IqWBNl3AN7WgW9IxmMxpx7oSZPP+YD4ll6bm1p01JAh9QLxJMMVmI4JNvPtfDPLZ9axX5X/nKCWLE+gMxcxftMY3jMXxOdap2/1MrD23LJ8UuKVHKqqyQuoHyUEt/Y+d7YQZfOrX+a4AgCHp/wBSRzNtUbHtAPEZjMa+i/LX1k+rPv8A+oqzvTmY0aSz8oklPMEagCCd97xa2BM/8P16WpioK2P1CF9L9rbc43jMa8mJWG8zI5E76f035nghNSAEgyZMyT6Rffv71brbJ8wlNWk3BNiwIsx7A7x2N74zGYy9TjVUFS+BiW3nOUzEKREGDDDsYmb82++GXS0AgkSCRffyJg25xmMx5WWaxxcavX1U/wCUCuhNTwdJa4HiM33HFrWtdZmXFNi/ywQywwJ/GR4j4TEgaSOJ4MY1jMVH5bhBNwmrlWzGXesTqNIACTsimGj1csfSO2K/mHgaTb8R7knb7Cf+o4zGYmniXy+fiTUKhRdX4Dt6kWnm9sE9N6nU+imSXa0zEAAwAT2ABv2tjMZix2IqZxuDIWR3tEASBtcjfneOecdvkiACsQZIJ3MNpnsIMj7ntjMZjmEKwSpTgEs1v77wP84uXwT8SvSC0ql+VJM2HFu1sZjMLpFRwSDPWstoqotQQQ4BBK8EWxvGYzEqlrn/2Q==\\n\", \"height\": 183, \"channels\": 3, \"width\": 275, \"type\": \"image\", \"id\": 4947633680}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMSEhUTExMVFRUXFxoYFxcYGBcgFxgVFxgXFhcaFxgYHSggHholHhgaITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OFxAQGi0dHx0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0rLS0tLS0tLf/AABEIAKABOwMBIgACEQEDEQH/xAAcAAABBQEBAQAAAAAAAAAAAAADAAECBAUGBwj/xABAEAABAwIEAwUHAgQDCAMAAAABAAIRAyEEEjFBUWFxBSKBkaEGEzKxwdHwB+FCUmLxI3KSFBUkM0OCstIWU6P/xAAYAQEBAQEBAAAAAAAAAAAAAAAAAQIDBP/EACERAQEBAAICAgIDAAAAAAAAAAABEQISITFBUQMTFGFx/9oADAMBAAIRAxEAPwDv4TwnShevXlNCUKUJQmmIwnhShKE0RhPClCUKaYinTgJ4TVRSUoShNDQlCeE8JqYjCUKUJQmmIpKSUJq4ilCeEoTTDJJ0oTTDJlKFS7S7Vo4cA1X5Z0EEk+A25ppi2kuYq+3eFEwKh6NH1Kycd+oZj/CoweLzPoITTHeqLnAakDqV5Hi/arFVPiqkA7N7o8gs52Me43cbppj2xlRpAIcCDoQQQfJTheFiu4Wn85K1hO28RSjJWqCNsxI8jbdNMe0wlC8xw3t5im/EKb+rSD5tIRq/t1iSO62k3o0k+pTTHo6ULzCl7bYubup+LB9FqUPbmr/FSpu6FzfnKnYyu6hReQBJIAGpOg6lca729gXw/wD+g/8AVc1237T1MQe+YZsxun/dxKdjHXdr+2dJkiiPeO/m0YPq5cxiPazFPNqmUcGtaPUyVz5xP5ZSpYpsXkmeKzbyakg+LxlSoQXve87ZiT81VNM8Uf386Nj5KIPIeSzrT3CE8KUJQujBoShShJQRTqUJQgjCeEPFYllJuao4MbxJ+XFZFL2uwjjHvC3m5rgD4x80G3CUKi/tzDAZjXpR/mHyF1iYr29w7XFrGVKn9QgAnxv6IOphKFwVf2+qH4KLB1JPyhUXe2eJJ+No5BjY9Qmj0yEoXl2I9qMU7/rOHQNHyCq/76xJ1r1f9bvummPWyma4HQg9CvGMZ2hVcMrqlRw/qe4jyJhS7K7YrYZ00nkTqDdp6t0QezQlC4bCfqGI/wAWhfix30d90Wv+olOO5QeT/U4AekoO0hKF5niPb7Eu+EU2dGknzcVRf7UYt8zXeB/T3f8AxAQetOssPtf2ow9C2b3jv5WEHzOgXmWI7QqO1qPf/mc4/MqkZKaY6ntT26rvtSApDld3mR8lzFfEvqOJe4uJ1JNygkJQikQmKJVahlUMEo3STlAxSY1ELJsBsmNJ3BS8pDDiAE1V8iAiMoTrYcT9kGtXa2zdeP2We0+Fws8f2+qG6uSbBDOJd/MfNB9+6Zk+aoLUcTrKhKlTxLuMohxXENPgJTauBhp4FTp0iTorFPEO3t1Se93JZ7mEwHmeic5v5fQqsX9VJtYxqg9/Q6+IYwS9zW9SB81wNftrEOEGo6OVv/FZWK7RA+Ilx6yfErr1+3PXp57QpCP8WnfTvN+6DU7aw4MGq3wkjzFl5Y3tVu7T6KNTtW9hbmmT7PL17DYynUnI9roiYPHRZntL2+3CssQ6q6zW8LfE7g0eq8u/3nUOkDmNUzGEiTudSb+MrHLIsiWKxr6ji57y93EmY6KTRIuEJrOCRqxvKy0RpKIowih390i0/umgZThsp/dhInyTTCEzZNWqD4d1Co47QB1UC2dxKoE2xgpyiGnxKiQOKupiEplMxxTUzyMppidKnufJEybnwCRqRwQX4gHn4LO6uCNqQbIjnA/dVTiAoOxLttEMWXSkKaqHEO4pMqk6k3TyYtuLRrKA5zY/dDqUyoFo4KSqsZ2cPVOKoGyqt4xCfITYILXvydPT6KWeEMGPLVIuyiTqs4IYmoQOZWe4otWpKETyW5MEQUilEmyOKYHxft4rVuAdOmXdOJ0RAWjSZ4lCqVD+yG53NQELvNSpudshtbIkmAPMpNrxMHX5KUFe2NT4f2T+9i2UeJQGPuSkXDg4qDadiHHdCKJSqbEdU5pjWbLprOAqTWpTa3mnbVA5/m6Wg1Kx25qVGob28/qqlSvfqpmpAgn86lZUd9Ukw1OKPH0QszosA0eviiNdHE33Wbc9Ag5CECvXjRQfWj9kKpiGxxSKXvk4qKuKo4JOqnitItCpOqkD0VH3hO6VzupVW844qHvROnmg5Y1S9UFkVeEDooPqkaqBCa4ElQJ9U6SoSoSlKoISkoAqQVDgI1NhG11Cm4DVT/2kLNtBA8jZMXTqAEM1p5KJeG7SfQfdTBYazwUg0BUYc777BJlXLoL8T9AlguvgXNuAVDEVsx5KD3EmUMqyBOTsZKlRpyVbGRoib+R8kvLAIHKO7bid1Vq1Cbk/ngi1K2awB4objl5nj9kggKR3sOafMG/f7IT3c0qdMu++yv8AoRfedeKTuICKykJ3PgiaWFuJ/N1NFVgJ0BR7i0jzCn7o7kjqT8giClHBTsq0Bb9tYTisYiPNLDuBuAQeBPpCM2oCdBw2sVx/fnteqnTO354KYI6I+dhtEcLKLA2JAn5q/wAjj9HVVdqjjvfEPAa+eycVBJ/NAnDQRO/FP5E+YdSdVgfTZB99w1SrUXaiSOG48FB+HcNlvjz435TEKlYndQCYiEguqJBSCiE7UDgXRm9FF1ROZOxWaGi+qeVHNyjqpOHP0QJ/P+6EXFFaBsTKRofn9k0BUoRfdgW3UwA3XVNVFlLifBJ7gLBSc+yASkEi4cPVRc6dkoUiBqgVFm50RIZwUTVI2AQX1JU9idSqXW2TPYOM+CRfOwHRRfmNvyFREt5qTMPuSoSBPHY8ESlSc7UqWogacmyI3Dga6qzkDbD86qtiKvRTtaob3XtbkhS4mBJPijUqBftbjt4cVZENswEnc/upbiKwoR8fePCbBKs/iY6fZSDSSQTAHC99EVlEAfk+Km/YrUridB6lFa3UkG1/zmmNdsE6EHx/PuguxLiw310+39k8qicdPwi5RgHfzjyCq4eiG3MzsrIwxN7+BA9FOVkU9F5aDIIi34eKWHxe3z0nVDr4nuGQQePXUqlTrDR1r7eq4ZrbXo1mvNzBG/PfT8sp1XwY2jXWVm0HjQRAk/unxdcCwnQdLlZzyLLHgx+a7FX8PSsZMfusrC1YI2V8YppIHLWfzdTlFE95YjQbcfFTpVBEfPdL3gIjc8PNVamHg6kwR0hZnCWJg/8AtLXHLl4jyU30KYtl13usltn5nO4nqj1MYA6J4a8VZOUviouFjR/CCOunNDDuDbEG8bjQ+CE93ly/LKnXrEMJDjO2v1W85X5MamHxDXaua4hQfVZPeAvveFjYOi897Q6yeHH1SdWMASZkyCnXz4o6M1WsAytF+mqjTqNqOMiMulr348lkmsA2SZjQHSdE+FxDTI3P8Q34C6z15e9GwKVMiRElCfhmgEguPJVsBXhuV9iCVMOm83k92LSOak5c5c0GOEGodfmhtwRn4vGEWhVFi6IOltEz8QA7XNtKft/J6EamHJtLTHh6IJwjt48FZbVBkRN9eMX3U67yXANifot8fzc/RiuzB2uDPVQFANsdT6cEes8zNuvBUsaXTYeK1+zlTEajP6p8FBjSVfpEQ3NcG0cDMXU69D+FpGmhGnQ+C3Pzz0mM3qneI6rRp4EfxQ78/LodTCtkZWnKdXTpx6q/v4mM+nAubogrunumPkrFTDtMtbOYX/ZUmkzGhmPJdJynI6rTqugm/K5KmzC6F3lt4qu2idZU2PdwJOs8kv8ASYu1Z0GUdeHIKq+IvJ6GyA57jMg+qTqTzaDx8FJx+zExUymwmdVJuHcSHOIDef2Cq06ZJi4Wm0ZGjMZ34m6xzvX0sjNxmFvIJPG0Hn1QpE32+EcOq03YhsA2N7/sliCxozZbrM/LflcUKQGpMk+XRW2uto0+KqOeHWYMttYtKIwQIgHnCt5GMp9SYH5bVQ97uBf6jdV2PtrpeOZUqbgG639PH82TFaGG7w1gxMGFWfWzOunbWyiR0VMVLlSQXRWg6k/mys0qx1NgsyiZ6brco4IWl3WDty4qcsguYd4Nx+c01avrfr9xCTqUDu3POLhQZ3Xd682F1zist8gFx3Np1I2v9ELD1L5idxbkVp42nm9fNUu0WFrWgN0Mkz8/RdJZUxfbX1MWMwUzaPvQRoOennusw4gl0HYafJa2Fd3NgFL4FttMMADYBi/Axa/mVn47BkkOLmxe+8nSeXNGq1QYuSNfFTo1muEEA8J46XWJs8iuzDNcBM92J5k/RA7YAGUiBFjAEcrq9VJJIbYD57wgYyoGsIcJPDpEStS+RTwVeCXE/uVoNxDS3W/TfUwsj3ZIL2iGjW/yRaNaIIWrw3yNbDYhwY62hQMTUzDMGkHcR81RdUIDodY+qVDFuAgb6ypPx55RpVKxGUmBBA8Duo1MQ33ljII/JVXFViGACIOo3VJrzqrOHyrZr1CCCNxpPDT5qOIECZJm4EaQg4TGACDf85phis3xCb2GkcvmmUHpVS5o+fG6eljSdTEbHxK6H2T7Aq452Wk+m1o1kmQOTQNF11b9Iy4y/Fiw2pE+uYJOP9DzvD4siZ0/NlXr4t5NrDbjpuF69gv0/wADRy+8fVrOAuCWtaT0aJjxV8ezWBHwYKif8wLvmVqfjm6PEqDZBEkTqf3RaWEaHNMF8ESDmhw1gmdNrL2Sr2VRERhsOINoossRwlqt/wCyCNADwAA+ULc4mud7I9mOzsRTBdhK2HqETDqtQNPHJL8xb4Kb/wBPMGfhD7xEVah+a6JmFnn1J+qN/s2XXKAtDjsX7AYcHu1KrSONT7sMLLxX6c1S4e7eCOb7+fuwu9x3alOiwuMgf0skrHPtvhiO8K8cctieBvbyUHHdsez9DBM/4itVdVOjWZS2OJLmCPBcV2xjJOZsjaOXMLuvazFYTEAvo06peRBcZ2EwWCb25LkanZ7hmLQTbem6flA89lizyuMduKi/RSqY1zgbGNlZr9nPfFsoGpjhrYcAhmgR3WAvAJAMCDHKUyJgbKrt5JG3hon9243PzCbE4Ks/vPGQA6yL+DSmf2fUJs9o/wBX2TFxjutAuoGxhRfUJMqM3C1iDvfYIZKn7hxIG7gCOhm9vFQqNgkTI2MRI4wkE6Tr/dXKePcBAKzQUfIANZSyDZoY4lsnbXT+6tU8W0tNhPMb/Jc7TrgaiVZw1QE6wbxOnn5LF4RWk54gkOk28LpnulpE2KzqzXuJ1ubzqjYgODc1uVxZOoRaDUnaLyj++EQ50RoBqs7DOmQSQDqZR6DTtcQY53VsRZFS8zMWV3DVAZ4keCyMRRIOYTl368IKKMTB7py23v8AJZvDRYpY/bcHT5p+0HlxytFyL+KrMwr82bUzPKStrA9n13izARmiczRfgZ08fBXrisim73bgJnjwQnsc4lwYY8Y811vZXsZisRlyYdzmuNnNEAjc5jqN5C7jsz9JquZnvqrWM/ja1xzkbXLSJ5rQ8cbhHkxEE8bepV3CdnOBl214F9F77S/TLBNc0nO4AzkdlId17txyW1hvZ/CU3Zm4ekDaO6PO+/NXyeHzvS7PFQju1HSZlrTEc7K/g/Zmu8kNwlU8DlsemYBfRbXBo7rWjkAB8vFSL3HQH6JhrxX2c/S+pVqtOIo1adO8y5gcLWsZ+S7rDfpbgKTszWudye+R5LsWAncgqLpG4P2vumIzMH2XQw4inRDRvDQL+SjWxAnQjpHp+6tV3GCDO/5ZU67ja/79FZATB12t+OZO+UfQlSrh8mHPI4CIHkqxdJ9PwojK+XT0GvWFQOq/iC7/AFn5KLaY/lYOuafValSoMozbgH9pI5Kq+mbFptMX4nYQoK9OlNxlP/da3BFGHe/fKNNZFkPHVxSpuqPAMAmzSXQOAXN4L22wTg5zw+m4OIgsc4mDqMsh3hxTR0GMw5IyF0Agi0EH5HdcJ2l2BVwwcWy9pk/BBbJFhJXZ0O0ffUi7DvD9PiDwW/5mkA6FTfhPeCHPBMHUGAT/AEk8kHkeIqOJAIYWiYzk2EGdLTcrVdWaGsL/AHORokObnBHATefMLbxvsZXccxxLAJtFMDTYm8oT/Y5wBHvC/cSGjU6AlthPXW0KNOfx9TBPDgX5XOJgTqdAZLiLTdVqXZVAmWv97bYt5T9eK18N2LXa6XiGzoDDtYNy1Z/a2JFFzppVQMs5nOZBPh01hTKazsX2Tky+7bnJBJgPNht3RbqVQFCsLe7I5Evn0RH45zwLuayIltRzRGrWkF0xsIVc5Tfv+Z/9UHIVGOi7ZnRwVjCUCXgCIiHSRManSbBVmWt8Q4SYV3CuqAm0NMd0zZt9Y25K1kV7y05GAgMuJOk/FPn5Kh2hmc+TEkCdpt81eJJGa9tNLnhfT63UcfQAAe1v9LjIidRAgQYWYrMp0XbCfX0TsV3CO0Ea/nFEOEa8mCWkSP6bLXZGeKO8zyvK0KbSzuuNtiIt5fl1awFQUe6crhBktAJIMiLxa/FWnsa+nYkuLoApsGYC8ZnC6arJxA927uweH3Cs0qbJBIcWmQSZtB357Qr9Ds97DkfScSQIIBJvYCOPVb/Z3so+rNM03MaC6XAOcHHUAiDBm3LVSji+0sOGvhhmenpwCVFrgNYFpHFev9h/pa94aatUMbmks92Ji38ZANwNB/fsMF+nGAp/FT94ZJ70RrMRwCqPAMPhvfw0Eg6fwxFtXOIFoK28D+n1esWii5pn+ZzQBHMOK+hMN2bRpANZRptbNgGN+cfkIrW5fhptAPAAH1hB5Jgf0kxJyirVptGSDl7xD5tEjSN7dF1fsx+m7MLVFV9c1ItkLG5YiDvvPDZdma7thpx18EE1HG1h4/OExdW6dNjAA1rWgWgACB9lF9U7edvuqTo1NTnqfl5IbKtMCMzjvMa+JVRoTPhz3TCmdfsq9LENEd13yHmmdi3E2EeJ9fBBaa8cPnxRACfNUHvOunMz90jXeJlwjWzdkGi91lWrVTwQHYnYHX4dNvFVnVSd5vHHjMcEFn3x1Mgfkef0UKuJ4tA3uY4eqG/CuMQCY5nTqU9PBEv7wcW8j496TfoEAX1gDYEm1gNVYw7Gxme297CQJOgM9dTCLWbldDcwlum+voqdV5adXAeEnlNvyUE6lQEzleyLTqPGdPAqjjKLv/sBOoh+oHKNeSlj8Y1jHVajgxgBzE/CAOGt9V5piP1Ec8ltClFOYDnmQdmkCLTI80Hdw1wh7rDU6xGt9VYoVaTYLWNIH8Vsw53C4HAfqAwf8yiSY2NyfTedeK2x7RUcQ0+6ptc6IykEEHS4nXorLpXZsxuHpjNmphrtbtG28Xkm0BVn4qjWJyVmSTYF0OA5AuuJC8nxeLr06kGoGwJ7re9BBJHOLeeqNTxpqAZX0wcwzuqZiYvdsG2unIws2rj1E0agmKrTN7m//bdAean8gcQdbExfXLeVyfZjK7nAitUfTkS1rCJF7NdUdYWB58F0tM1Q0ZHMe4n+LLpzDRPqroPe5IcP39dlWxGBbUHeawi/xNE81I1sS346LHc2Ei3SfomPbrAQHse06XEj1CIxe0fZChUdmDA0wQYNr75Ygceq5+t7DwTFQxtLPuV3VHH0HxLmxuCDbeASEVrKW2SP8w/9lR89YOi1sy6GkXkiDcObA9fBBxTxfKQbW06+Y+qsVKjZIAESdRxuNPl1VJ8EaQG3OXhEWGlyVynkVwR8pnW+q08U8OpAQCdb5bN4jgAFnNHG8gb/AD8VvYLsGrWpn3YAeNSSxrdhebxw5+KvyMduFc1gdYi5BG4Bi0qzTa58ZWvLzYw3id/Ndh2V7C1ngshoAiQXCDrmyu+EWv0I1Xedh9gUMO4OpOdmbDHfEdpggU9CZM6c1dXHntD9N8VUaKhaWSe+X2AEatIPe8Yjmuq7B/TBjR/i40lpAJYyQd9bz4r0tldhGQxG8TlgaDQdNEWjSZ8LWtAbIEAbcjEH6KjHw3slhKX/AEi46zp5Xt06LZwlOlS/5bGsB1NrnqdSiGBEyToLz5OMKtUc03IAaItczAI1AVxFx+KbbSTPW35wQhiHQIGUbWva5tZZ9d4AbGjrTAtvwuma7K7Id43ECbyBeImEF2niHEnvHeZGm2/RTFYTBAkeV9BPFVmNyAk2vra53zTYHmrDWg3HSOPj9kEcxm5gzGunS0SolucHNe/LXpopEPG2v9tfNBptbs7SSYgka6QFRNtIDRnKYPW3JOx44RxknfjPknySJBMzbn0tZMGE79SfrOvVAq0bwZ3nUcpRsoHhfkbeSgHAk2I8ogb7/JFouBNjP1P2UDZzMNtG/wCbqNSmCBmM7ECL3+/BM+QQJGpkEamb+CC7Emwc2SXECBw5mw80Bm0IAF5BOpOuu232SDoJ8tBc+CT6kv1cLaagjoCgsdMu1BIsdARraOG4CC1Tnc6a8uianWgkGSAREk9T1TzPzBvB68FVqiCXQf5bD+I9duZQE7SIN9QQBoLTF+aq0HMFxJy+HkN44IzmA2Bgj1vcRpyWe43MtvrIER1hBi+1eGZiqTmNljxJbJIba8Ec9F5mfZeufiaLXGVwJBmdrWXr9VjJhzbncgmOEh02VM9ms2IneJgeRhOsNrzBnZQa4e9pAC131CLzqANRveFqYUMwxD6fuXPBtlc6x20dz00XaHBxYEXnTfYg+vkqOO9msM9vdY5r5nYAHSQ3QDkOKl4rrC/+YVn1O+2lUzd2HAZRxyuAkTpr4K/QrgtvRY1pF4ALbwSBmaePBZOL9lazZIIfNssEG15mYKHgcran/EtyxeCYaRzNxMdNE9Ht0Yc3LLSCBrEiBzLSBYcAr2AqObam2TGazie6baGDvxWdia+ANM08prOJlrS4nTQS2QI1jQqOC7Oo0muc0Op5p7uYmJ/pBsQfKOFldn0jcqGs5jgwRe5ESJvOkE8uSzamGxLQRnLnakPZI4R/aEPC1n5YbWNhoZk+n5Cn/vCsDd5J53V6J2CY2nVPeY6k8Hq3/VFvHgjNoMFvfN8ifWyd2Me74gTPXj6IjMK94zCkSDvE+sqyYW6//9k=\\n\", \"height\": 160, \"channels\": 3, \"width\": 315, \"type\": \"image\", \"id\": 4947633168}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxISEhUTEhMWFRUXFxgWFxYXFxgXFxUXGBcXGBUXFRYYHSggGBolGxgXITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OGhAQGy8mHyUtNS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAKgBLAMBIgACEQEDEQH/xAAcAAACAgMBAQAAAAAAAAAAAAADBAIFAAEGBwj/xABCEAACAQMCAwUFBgQDBgcAAAABAhEAAyESMQRBUQUiYXGRBhMygaFCUrHB0fAUI2JyB+HxM1OCkpPSFUODorLC0//EABkBAAMBAQEAAAAAAAAAAAAAAAECAwAEBf/EACURAAICAwEAAgICAwEAAAAAAAABAhEDEiExQVEEE2FxIjKRFP/aAAwDAQACEQMRAD8A9LK1ErTGmola9FSOMXK1ErTBWolabYwuVqJWmClRK01goWK1ErTBWolaNi0LkVoijFaiVo2ACRUStGK1EisYCVqJWjkVErRswArUStHK1ErWMLlKiVpgrUStazC5WolaYK1EpWsFC5WolaOUrRWjYABWo6aPprRWsYAVrWmjlajprWYDprWmjFazTRswDTWaKOErZUKCzEBQCSTsANyTQswEW6V7X7RtcLb13Tn7KD4nPQfrVL2r7cW1IThk94x+22ADE4EZ/wAq5Hj7d1n97xB1MW2dhJEYwDhfDFcub8qMeR9OjH+PKXX4WHaXthxV46bK+6H9PeY7/ajw5RWdk9kcTxVsvddiiydVxyQpKs2Sxx3Ub0qqs3i2wERGMbTExvk5HhV1xV86blkHuj3c4EO1sC2cHJHeYxiS55GvLzZpS9Z34sUV4h7irQs2LnuCRHcuAmD9rEDnJ/Q7xvs/s4e7tuwhiS8ae6ur4ZE7aVPLdppfs3tBLnvQ506yoY8gfeAqQSOYDA78zVd217T+8Z1AIUwLeAfheS2dpUkc65UpSdHQ3GKs6nhb/vQ5Q6ytxUUMAys2rvqPE6sHO3hVRf7X9yxVSoEliGJ1AnrqM+tctwHHXLaLoZlh9cgxBMRPp9axrj3GZz3yTljzMAU7ghFkbPpziCltdVx1RerEKPU1SXfa7s9ZB4hTHRXM7bELB+VeU9pdo3uIfXfuM5yAWO0nIUbL8qV0ggABZg84PzNevFNnmuKR7W/bXBhNZ4mzpP8AWs7TGnefCKornt7wQJAF5h94IAD5SwP0ry3TtyPI8ue9Ne+eCpIAOYMQcbr0O3rVFD+ReHsXZvafD8SJsXVcxJUGHUf1Icj5imWt14/7/wB2Vu23OCYeYupkiD95dpH9RrquxP8AEQk6eKRSP95aBBB8UOG5nBBxsaLTXgp2ZWoFaNwPEWr6C5ZcOp5jl4Ebg+dSa3WUzUKlaiVpkpUClPsChYpUSlMlaiVo2ChYrUStMlagVo2ChcitFaOUqJStYABWolaOVqJWjZgBWolaYK1ErWswuVrRWmCtRKVrNQuUqJSmCla01rNQuUqOmmdNZoo2ChbRWxbpgJW7kIjO2yif8qGxqEuN4m1YXXecIpMAnmeg61x/afbw4pWEFOHUkkEw19YAgjks6jE5Aqg7Z465evPcv6mIn3doNCosnQTGx0keJxNa4PjLj2HQCIGRGSJaM88n0HnXm5/yXJVHw78P46i7l6K8HfS1dNy2gOWIRu8BEwP6oAP1qF24Lgm65Z2BGcAY8B9c4x0qTdn6EVhJ1bkCIJneZ9ZjO1R4lTuTJYjJ5jkY+tcjnZ0a0WfBW1tkWrSBmYbzJDH4snA28OdZd7PYKfesvdGod4hSrHVnbU0jUBByBQOA0JLudR2UZBBWCCIOZgj51UcfxTXHZmJzsN/sx+FSq2U2pDN/ifenuDEx47GZH2cClHtDBblPjy/CBR+G/lqRMB2LHqcR6wT60lc4ieXy88fvzorngjd9ZO7xYUqYBnA5Z2B+UVu3xcDG3Klb5AgKCSJI8yT+Yp7hDpQBlQnM7EjJGk55RRaVGTdl5a4kONsiRHk0TmoFTVL2bxgS8S7QJn4gFknx6Tygb1a9p9paFMaYK/FEwSJB/fXxr0seVa2zknDvCZatrcIHhSnA9oLdGNxueTSNx+FMJvmY5xy8frXRGSkrRJqgtu+QZ8duvn1oyupmSTMHzzGeu9I3Fg1PQQJkH501i0Opxlyyxfh3e2JGVYiCNp67nfqa9L9lfbuzfQW+KZbV4Y1nFu5tBnZWPTb8K8oF/wANx3geZ6j8fWsZgT3QI2id/OlkkzH0O9mgtbrx/wBmfbPiOEIAJuWhAay5kacAe6O6MAI6eFetdgds2OOt+8sHIw6HDIehHMeIwam24+momUqJSnGtUM26ZTNQoUqJSmzbqJt02wKFStRKU0UqJt0djUKFKiUpspUClbYFCpSolaaKVEpR2BqKla0VpkpWilbY1C2mtaaYNutaK1gF9FbFuj+7pbtjtBOEsPxFz4UAx95iQqr8yQJrOVBSsj2jxdrhrRvX20oOe5JOwA5nwrzDt/2q4nibg92fd2iO5b3LA87hE97+kVT9u9rXeLutdvE8gqbKiiIAHXfO+TSvCPtMjmd4mCQB0J/SuHNnclS8OzFiUXb9CGyyZn4pz4qRIjlkxJxW+zeINvugEkgyMwWBBHp3qPxLhzqkAGH0wO7iCDH9vPPhStomdQwZkZzGfQVx3a6dNU+Bra5jeJIXIWZ9IitcVdUmFzAGfH9/lULlzBz1BP19MUvbu5E5kEz5bT0GaT0P8ELxyDMAgQPEz/lQSTvuBMnxxA9Kjw7guUiZEyeuc+G8VPi9It/ME5yf3+lN80BLlguLVjbLhgcwB0Ec/HlRbPCw5k/CBMczEbmt2+6uR90t0EiYpe7dZngnBkeYDCguqgtJUwvC3FUsx+IbTsNzj1oPDliJBO/WhICVuHoNvM/5U5wdgaRg8/rkbeEUXwCd8F73DNOiZETIk7yRgHNKcVeMCd4jGMdGncfn9bng7B1PAnQpAAGCSFgD6/U+VV2hwJBJAzv8syflVYsm0D4Xi9LgiRjIkgGAYk1edm8WHQCTqUQZ9Aa5u5l3jqQBnGYHjT3ZPFFDETqxOZxicT4VbHLVkpK0dAJqaHoYO/zFCao6q7bIE5rBcoc1k1jBi87UzwXG3bDi7ZuMjrkMp8chuo8DINIzW9dEB7T7Hf4i2OLi1xOmxfiJJi3cMfZJ+Az9k/Imu0NoEwCCRXzAa6v2d9srloqnEXLjWxs65uJ5SRqHzkeO1SeP6Gv7PcDZqJs1zvC9uJeti5bue+3iTgmBggbEdDBpe92rdVTBKkgDGAsfdHWOZzttSrYLSOoNmtGzzribPbrWBAZjOSJGZ33Bjzqq7S7VvcQw947afug4A54JyfGm7YKPSRYkSMjqKg9mvJnutGGYb7EwfMTVx2B7V3OHIS7Ny1tBMsnihP8A8Tjyp9ZULaO8KVEpTPC3bd5BctMHQ7EfUEcj4Gtm3U9xtRMpUSlOG3Wjarbm1E/d1nu6b91Q+Mu27Fs3braUXc8yeQUcyelbc2oNLE1yf+J3F2LfDC291Q+qdAgue626zIXfP61Qe0ft/fYOtoi2IIAWC2di9w7H+2K8/vObranMtzjIGCY+efWpZclqiuPG07NDv4EdB1InrzNN8BwpZxqKqgA1NIwDJA/uNIK8HG8kz0/cAfOjIes7AR18/wB865JXXC8WrGyxuECBCKASBAxJk/eyfU0G7eA6chP2twPQTNR4niIXSIG0kH/mIzyBAFIcTckagDJI/OB4YyaklZRsYt3TqICjSD8zEn8QPSo37PdBnkZPWTt5fpQ016lZfh7xc+E9fE/jWXLkggHkAAOpzWDtwmnE2yoldxHPkCRVfxMzpBjVz5ACTmjLbJ8xP4RJ8Mmhi1NzT9rHoJBIH1plSYkpNjjOSjqQDKgjO5G/61u5w5TS7GSR/wC4mTk5+g3pZmIi2sknAPOKZucWAwnvNkDxhSCcHHI46UrteDXfoC6wiOcnV4jGPLNWPABWtqfe27YOwd1UwDEgEjGDy5VW8Dw5uAMSVDFhLfC0ASEgEs2JOwHWh3WGo4J8SJ2AjntWavhk66y1t8UA2kA7Fm67QkTtmicaizJ+6rERyEaYPPMHTuZPmB2bykEkZC6Ry3IPd8oX1o1y+Buo3wMRCk9M8j6+lBTmrtrSzvHdVtj9ojV/9hn5+VSWwFGptpOB/URE9AVH1p280JB2mQD9lR9syMkjUflzmaX1MSyE4+yoG8GEbHI4HhJ61Uk0X1qz3EIWMAQNp5RG2Kg9uOY9ZpXhuLCyjSSu7TvGBk9YwB1rBeO8EjxHh1HOunHNtEpxDTW61Ztu4JVSY3xR17PvEhfdPJ8Dz/Cq7InTA1lPXewuIXe2fUH8DS79nXRurelZTi/GZxaAg1ua0OGc7D8KIvAXTyH/ADKPxNNsgUMdm9p3OHbVaYg4noY6jY11HCe1XvoW7CN1Hwny+7XMJ2FfImbQ87tv/urD2He62/8ArWf++lc4hSZ2yOp2z47isv3FA/OuOXsziFjvL8r1r/8ASo6OJE95R/6tv/uqbmrKdov7u8g0ImqQ/wAT95f+pb8fGpFOIIH8yP8AiTr4Gn/9KXwT/S2dL2R2xf4V9Vl4n4lOUb+5fz38a73sz294e4ALyNaubYgofJiQR5EeteMjg+JZSRrYjAAOMxJxyqFnsbiG3VxvvucTAnnUp5oy7Q8cbXye+P7QWYkBieQwB69KpOP9sFt/FdtWxyEgn8yfSvIbXs9fY95MZ5ifDc1L/wACYRNsZ5yMZ86k80Y/BWOFy+TvuO/xQK4tFG/qYY+SiCfnBrj/AGh9rb/Fvqe7gCAqrCLjOkHM+O9VfE9nMmnSOUHbJJGTnYTSw7POsqdOATOoCck4yM7fWp/tvpT9evCFxiQJO56b7behHrQtDeQwc7np86cv8GwVm7o0xAUgzgc5gefj0rTdn3nYr3AQsk61YTnaD3sfdkVPdGa6KETsP03n1waJxANvMz0EZn/X8qbXhTbW4TBcKAOQyPimP9Jp3h7XdDTIUso28gSTzxgVCedI6sX4+ytnKlXU95Tgxsd8GfHf8KM7mAoU5JJxsoAz9au+P4n3YtquWmWkCSSQYA8M+lV1zi5BChyxJiBLGDOABtjajHI5K6EljjFtWIWuLi4V+zpgeExJztzqVoHXAj4mORIxsfpR+HRVVlIOpsjA3GBJ/wA+dTe8SVwFMEYzI3+WXFO5fRJIXuPpUgZJBB2jGrI/SjraIukwDCkHO0jH78Kg9q1sJJU56fFE/WrvXaKaLaMFwCcFzEADqo9CfKpznS4iuOFvrEEsqWBXVIQ7kAAmBgHLbRPjRuD4RQGChm7oa6ZhSJEL1M+BjBpcJanVp1RgqCSFE7kfMb75pq7dI95eZi8DQMaQcyAFGMAHMGpybKRimLKzLNxUItiUguO93caYGFiMeXM0S12HfMlASCZmcZ6d7OIz1mqftPiyrAhp3LDl3jJUCcDArobN64UQkJJQSXEknqJ2HQbU09opNfIqUW2pFbYBUBuoIMGSTmR6fjRbd4HIE6diPDSTGMnP1OOqrGSIHMgLONQ0zGJGIHjTFq4qgjkIg7hoyYA8gPoOtdTIIDxtsHUfiJABnOkyBGQZ5kA8gOpqF21/N1bMQZEiLWqTJYYB1GJ6+JEGXiNQkiSSXhjjVBC4/pjbfvE1FnDMQ5ls6jG3dMb4xIz86ZCsSdlY4HcDES0qSD8TATueX9x+Vp2Wt8qsWwVJgnXy+W8VUXY1anP/AAiDEjkfkNudXfZPbIkIQQuwJ3Hixn9Inwp0ychwWyJAJE753qPuzPlVg1mj8N2aW8B5TVVI57Kx7jndj60ErXZcL7OW4ksD8o/Gnrfs9a8PRf0opsFnnpStrYJ2BPkK9S4PsGwudIJ/tX9KubHCW12QegprZjyThuwr7f8AlPHiI/GrXhvZi5iU/D9a9SWOgrDWCcFZ9m7v+7/D9anc9nLv+7+q/rXbTUHNBoNnBt7NXt9A9RWJ7NX2+yB5mu2ZAdxWkQDb8TTClF2b7MXEyzKPWuhscAoEEg1O2+nb9aY/jm6D0pGhlITbs+1+xQT2Zb6/QVY/x3VQaieJX7goaoOz+ytfsmwd1n0qv432V4R8lCD1Bir57qfd+tAuEcq2q+gbP7OVu+xvDRjX/wA3+VV3HeyVoZXVtHxcvSuwuGkuNOKDhGvDby+zlv4Fwuk6WAAA1AbDblS3Gdm6wQ4H5DABgDmetXtxz40u7H9iuSeCC6i8c86oprfB2kILWw/9xP0/fKtJC3NQC6IjQARA5gQYg43HIeNPXj40Fx41zvGiyzzKziOA4Z7hYo4GO6rAL6R+dFscJwamfdktnvMZO0bTAxAwKY0ZoZQUrjyrMs0rvn/CTWeEg/yzJMgTA8MjNRucHaaMlYUgBQBgwT9fP60NrY8K2Fz8qk4tFVnYjY7KUMAtyFOXMZLTgGOUUa/2UHBVrwRfeEyFZuniPE0YJmt3Bg+c0W3aYY5aTRPg+xeFtjukFuTtBbzk7HnjpWXuyGuMSbqLyHe3HXPnSbJTDGaWnd2H96qqOasr8T6YXUVAPeOpsznnA6RJXwofCQyxA1EE/MmDBPLB+U71OzrYrp5M53MLIALc86YHz5mtoy/yxuNQ3MFnyoJHIbYO0jxn0znNcQUMqmQJzMZnGRsSOfiKUttLS2Rv494tgx1M48+k0O4ZwxzksSYjJwIHhy6n5lDEHTnczyEy0+e+B40aBZC+mto+0OXSRy5ajjy+tN9mm0GGu4FgqBKltQnOkQJM+IzQL/EdzuZLfaJYnK4HTYnb84quCEEEywxMee08zviihWex2ODR1BSNuUdOk/StHslzs5H0rlvZLtt7WtWaUG1uAMnJJaN812/DdrI3LbcAzHgarFbHPOOrFuH7CaZNw1f8Jw2kbzS9rjUPMj5U5b4hPvCn1aEsctCqvje3CBpCsjT8XdYYEkb9ceOIBmKsGZWWJHLcTsZ261Q3AxYnQwgSPeBSGliACgJIkgGdwAeZFTySkuIrjSfo5wvtIW1fDIGFbuNI+IQeexjf0ml+A7Vd7rXLt4BBBUJlTnIyvQGT44jlT3+KZveW7iAupJTujOqSBJAMnbMDBncU52IzC61q/CKxMoG3kjSBmCZBGMd3lkVG5Nq2W1il4N8X2q7uFAOg51ZCxjYx09J6VacPxoAh5GJk8/8AOfxpN+Htpp0NqXWgbMsJZZU/SCMj61Di+OVV1QCTIGcJOJxzyP2atdekn3iRb2bwcSKmKoezb7YIBA3IwTmTO+F/CasL/FqV+ILmJnYjkfl+NOpcJuNMsayaRu8SV73djGC0TMfDg+n4b1Pg+NW7OkMIidSsvIbFgNXmJGK2wNRkmoGtk1AmiA2TUGNYTUWrWYG1K8TtTLUvf2oPwCK5xQGFNXBS7rUpeDoTuL5UB7XgKauA0FwYrmkUQr7nwoTWxTJmhMTUmMBNuoG3RpqBqbGQIpWmXfFENaNINYsR4VOpkVuKxrOIe+xQAAFSWEAySFCQs7xnaKNfSJiY1HScwIDsZbwZhkePSo2XBKgzBfSB3ZI1AbjPIfvdhRrZcwYLMY2zAgDcRkY8PE+jtQaEHgNGNWCx2GRsBnYH6mi2kUqBgCO8dyZKkz57Dpnxon8GSWhgfKAWxsQSPDHjQFBCgN3e4GkxnUJBk5M4H+lFNMwxbKsuIOJJgATnMHA9Y2otrh1IgYiIHOY3nzH08KFZvd4gHugdBO/Od9pmjhkzEn7UYkbE+WZ9BSsZUb4a21oRO+DH4x+xmul7BuW1GtdSz8QJUg+u2x26+nOWNTvpIMbtAg+W2OpH7HX9ndmWkCIbF4MGUtcWCneMQ8tBBzjlvFXxXdkMlFrw19XGpCCKct0ottB/s1gbxsSORjeKIjV6C6jjfpY/xIQSfpv8qpe0e2LpJCqUkagSct89l5+HOaS7R7SM6dAicE4mPEGhW+GvY1tgnBORkwAGBxJPz+lceVuTpHTjSirZYqPd3Fd2IlmwxLd42y+pXmPiQADfv450jf48akZnKsWYH4jKkRDKPOB896Le4hiIacOpkGNOq0wURgZ2EYkcqE3FRbUMO6fhJ7uqO8S2Miflt4VGUV8FIv7LG5xyjg3eCZElphu7kPBY6YI5AyBR+0L491bxp1GMkANoZSPiiOvIxzrnX4n+U8HusrKVGSMEEs22xOfrii9l8Qbt5GMOV5NJJMEEiTp2CZHUYNA3hbrwGsTcvg7IGBK6ZMbrg74Pl51d9l9nhkPvBqwIbmw1HMjkYB+tIcPdR1a2UKnEggNPd5gZHST0waZ4HtDT/tAAkgahBBmArMQYGN55imVInK2M8PY0y1sle8ymFEQGIgdOXh880K9xnC27oa64LAagxWdGGUmQDAgMPWluL4iNGte4wLtJUspwzKAx0jJHU4FEs9lcNeJJZrhUw0kgqSCAGQQRhq39A/st7XFW3+BwTzE5HLKnIqTGqC12Gtpy9jmoDISVaAQAFII7uDg9MdDdDAAiPDePnTJsSSXwTJqBNaLVEmjYphoN2pk1B6BhNxQWFMuKC4pGMhO4KE60y4oTCoSQ6FCtDdaaZaEy1FhsXK0J1prTQ3WpyHTF2WoFaYYVAipjWLFayKMwqMVjHFi1/MU6u6obmQZDTjP3jn61lhQxIgASBhvEbz5Uh/ExqLSIxOZJ94GweWUOR0o/A3zmAAp70Z+8R3jBkxny5V6Li6GTVjgUd8DETI3MquofQY86gvASxCj4CqnSJU/ywYncHcGJPlQFHx9JY4IOYKnpyAqXDNdhtIiGP0IHkPh38DS018jLoPs9WOYgZB8xJn+nl+pqdpTqyASSM7ySCR4D86AeIdGaeZktAyScn1/CiJdXQSxxgAbE4Mgc4jfyHWm7YPguOyr99QSCNMQ0EBoY6ZicjA3xtXa+zfD3WK3I1rotsdJZCD3pJDDvnIyIn61xfYR0cRbe0whclrkqjRGMDumNvHrz9e4OzaZUm13lAIOJUkRggCYGJgTAq+JkMgrx3DsRIXy61WX7LKNjsTHOPLnmPWutkdPWgcXwFu6MkrggkGMSCcxjbcVaWWVcIxir6ef8Ezt1dnAIOCNTQQMA+OMetM3ODuRLZAjVAE6CFjCkzyI8vkG7nAhLlzQyvb1poRGyJGnvArnZYjnPiawE8K5F1g5OqAoY3A5LNywYk4J6YiuVSkvWdHPgpOIsgFpcMV924BnvIHJcTjBUMfx2EtcVYPurQKq40rIzKlu7piMyYETPOnn4Jbp4ica7IuIUAb3dwFtbLmeaYk8+uK7tPjQOFtvp+K2GYrkAFAF1bSNKxvEjGDAzkwqips8aRauhsONULO/xBsdZ/EDpVpwfCXDchzEBEBIAAzyJwIjfxrnw6ox1FkYFQVkHUAA31HLpV5Z4249y8FVWZhpPdyw1MCCo27wBIn1pVJjNItrPsu4buXu8BnSGjaRkH5f6xQX4y4t0pcJZE7rQCNROlral1OOoM7b7mr7sziLqIpKKTz0sgLTtpk4IiI54mK503mu+/uqAtlrkCDoLaLSoSk7DUhknTjG+QXJJE1bfS3Nx7klGVgAQApuam6yEEkHGTvp8aX4lmuIf5xtXE7oDXGAeBBnSBzBieW4pazw1shWsgo0/CqhgkTJMgiJIHIwSASYBveEtXLi6WK6RgES2c/HqiTnfBx40bsD4A7H4riwio4t3YkFzcCXCAQB3VDKxz94SelXT1z3aPs1aYnvlS2xBAOo/Dg4YxIz0G+Zb7J4hwot3NRZQBqYQTgAGByOTPy5UUyckn1FkTUSawmok0bEMJqLGsJqJNazA2obUQ0M0oQLigsKOwqBFIxkLMKGy0wwobCpSQwHTQ3WmIqDCpSQUxYrUCtMstQK1FoaxZlqEUwy0MrQDZ5SRA3Ez12ifnO1Ga+VBQaR8DEmSSdOfGMjFIM36/v0pu/pUnIJG3PaBnl1x+NeqMWfD3Q4yqjvbrImSN5+XhmTyo54owQML97BmT3tKnmW8NqqeGvHIUETEkZYxz6YPQCm+G4kgE4gAKQwjcHoMmQfHwqckUi+B7NxtyI6Agd75gT6fSoPYUjvKD0iUjn1/I1jXZWDpjYZOeZwJ5nn1oacQcRK8sHl4ig0/g1jXC2FtMLlr3isDIgkgYMZIXnHWvR+x/aM37D20XTdVfhBKgk7FDzE/hXmrcTAgMD4yRPyNM8NcvAq6lgRsdM+pxihjyuD/AMvBJxUlw9X7M4y4LaBxpIUAjoYyPHNK9u9rhAFFwh2OyxqIzyPLxrkOH9sLo7ty1bc9Q7IfmCDUeI7efVrFhySukgtq3iSpC4PrXRPPjapMjHFK7Y4OAfvXvfOG3DN8Q30hkVSp5bGMRyoLNcNrNw3cmYhRtsJTugAjEgRyPNu52qHtgWyVMT7t+7G0iTEnpHUx0qz4g+7VG7xR4WBgDVkFoPqc0FBS/wBWFya9Kf8AiroezeVnaJV7ZtspgvbtnurPvAGYZGxQeVb4K8r8GVBUEo9tIdROgFBqxOe7A3gdKh2lZEBfhVj3c52J+I4IBFsFSTvO9UfAcZqsojoNRYnUcaZYOwzjYyAf1lZRGTsnftvcN1/dsToW7hRBQTqPxCMmDBzAq87HsBpGov3yRpmHQSSqsZMfzAcgxIA3rn+E7T0NcV3kMHtmGIPeYhRj4l06Z/uXxq39nu1P5MP31UhSA2kFVRQo3BIBWIGwY770r4M+lr2xxjqjFZDSFW4bjMx1RqYI2IBbAOwXaIqHs+ysoWIX4ebo2kz3yc7j1yd8x7S7Ttve4YKYBW7KjS3fYAR3sYX3gB3HzMq8BxLvde2ri2upmBbTb1EgzqDZYd3bSQZaScQnfk3wXl/tprbaCFeRA07HmwJEkQAfMAzTbceqNqUhpg9wgagQDlcSBM78+W5qeLW17sogZrilfiaQpBnSxYxq2hOc7AGa3wDvbIUqCjSWIQKy3MEgg7rAiF6jYCj4I1Zf8BxV5yZCeIVgTudIJMfuasLtzSCWBEZ64rmH4X3pPuLjpCqSFHeDkmVYsdPSM5zVaLVxLrW3uEwNUC4pYGTARSBqPPIP2eUUyYmp1h7TtnCnU0atI3iQJztRrVwsoJUqeYPL9aoPfXRgXjqXvablsMYyIIUat8YiYkDeneF4riGIFxMHOtNJUg7FCW6Eb5xgUbFcSyJrRNaJqJNCxTRNRJrZqJrWYi1QIqRqBoBIEUNhRTUGpWEHFRYUSKiRU2ggSKgRRSKgag0EERUCKMRQyKSg2eMrv9KMzAtkEkkzBAkknbumsrK9UoHA0EQVnmMsfmQABHny51r3mkgiD+Ix+frWqylCbscQBnSMHfMHwOc9at7NougYqSDkaCRA2xE4nEf61qsrMMeifu2BiViTliYPy3H0qY4VCZMg7yrH8RMVlZST4YZt22Hw3J8CRcP5kelYEvbhx5Sw+mKysqEuMZeBhfvDE3PIGfy/OneG9ob6mT3gOTKW5cs4PiOlZWUkX3g7VrpaN7T2eIa3K+7e3czM5D23TUpbaCwwQdgKruzCrM4Oy8RdyBiHU6YUsc4PWM5rKyu620Q1SK2yFLWVYMJdwxMZVgAhkxuEg9YarPs+wTaaFPecyCSFGkgOTEQZx5A9K3WUkgoJxWEe6IDWStwQNtLHUFMQMMR0MAZrC91rk4i6usEzrKAlYGkd3qT0PkaysrUCwnB8YVJK2tbF5FvIKkgQQpEN3YyBz1TnO7f8U2ko3eIYi0qatIUkOqCdUBiRERnltWqyh6Bug/B3uKtnRcAtqxAAQZdhHd1Ke6JE41QSZzXTcPZsjui4w2w5caT00vk5JYT9751usoWB9N8TY1BQLnlcBgrAJlhkROIxvyoy8BcMFrjA8xhpE4iRgx1BiecTWVlEm+D8Riok1lZQFNTUTWVlYBEmoGsrKwSJqJrKylMRqJrKylYyIGoEVlZUmYgRUSKysqbMf//Z\\n\", \"height\": 168, \"channels\": 3, \"width\": 300, \"type\": \"image\", \"id\": 4947633296}], \"selected_variable\": {\"name\": [\"\"], \"dtype\": \"Image\", \"view_component\": \"Images\", \"view_file\": \"sarray\", \"descriptives\": {\"rows\": 5}, \"type\": \"SArray\", \"view_components\": [\"Images\"]}}, e);\n", + " });\n", + " })();\n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", + "}));\n", + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"https://static.turi.com/products/graphlab-create/2.1/canvas/css/canvas.css\"\n", + "}));\n", + "\n", + " (function(){\n", + "\n", + " var e = null;\n", + " if (typeof element == 'undefined') {\n", + " var scripts = document.getElementsByTagName('script');\n", + " var thisScriptTag = scripts[scripts.length-1];\n", + " var parentDiv = thisScriptTag.parentNode;\n", + " e = document.createElement('div');\n", + " parentDiv.appendChild(e);\n", + " } else {\n", + " e = element[0];\n", + " }\n", + "\n", + " if (typeof requirejs !== 'undefined') {\n", + " // disable load timeout; ipython_app.js is large and can take a while to load.\n", + " requirejs.config({waitSeconds: 0});\n", + " }\n", + "\n", + " require(['https://static.turi.com/products/graphlab-create/2.1/canvas/js/ipython_app.js'], function(IPythonApp){\n", + " var app = new IPythonApp();\n", + " app.attachView('sarray','Images', {\"ipython\": true, \"rows\": [{\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUSEhMVFhUVGBgYFxgYGRsaHRoaHhcaGiAaHRgfHighHR0lHRgaITEhJSkrLi4uFyAzODMtNygtLisBCgoKDg0OGxAQGy0mICUrLS4tLS0tLS0tLSsvLS0uLS4tMC0tLS0rLS0tLS0tLS0tLS0tLSstLS0tLS0tLS0tLf/AABEIAJgBDgMBIgACEQEDEQH/xAAcAAABBQEBAQAAAAAAAAAAAAAEAAIDBQYHAQj/xAA7EAACAQMDAgUCBAYBBAEFAQABAhEAAyEEEjEFQQYTIlFhcYEykaHwFCNCscHR4TNSYvFTFRYkcpIH/8QAGgEAAwEBAQEAAAAAAAAAAAAAAQIDBAAFBv/EACsRAAICAQQCAQMDBQEAAAAAAAABAhEDBBIhMRNBUSJhgQUycRShscHhkf/aAAwDAQACEQMRAD8Au4pRT4pRXs2eXQyK9ipFScCihoXP9JpXNLsKi2BBJqX+Eb4/Op20VxRxAqFQaXffQdtdohZI5ryKlaTUF66qCWYAe5MU26lbA48jopRTbF5XAZCCD3FSd47129fJ21/A2K821JFORTRbo6iPyz7U0irVHAGaGvlT8VOORt9DuCSA4pRTwtWGg04Uh27cCmnkUULGLk6K3bXkVfX9SCMxHtVRdQkkxilhlsacK6B4pRTyK8iq2SGxSinU21cVhKkEGePgwf1obkGhRSinxXoT4rtxxHFKKftpRRsFDIryKlW2TwKmOjbvQckgqLYJFKKkK16LJia7cDaDuM0h71MUpu2lYaGEVDfUDsPvS1bkfhnBE1V6+7sywbJ7Gf8A1xUcmauKHjCzSqk0QujPvUIqZdQRTScvQYpBdhAn4fzqf+JMd6rjqDTfN96g4N8sqppdBt3VEiKALxUou+wqJ5PM08EkLKTZ6bkj2rFeNnVrllGiFYbiTGGI4EewJrXXrgVSzGAMkntWL1lgXr63DJ3AkBh6dsxj7VHUySjtXsONOTA9VcUahvKYiyiSCGGD9MRRmr8RIli21ti16TuZh8jBH0PPxQVnoqMHSdpaeBnnA+lZHW23ssVafSSJjv8AWsa3Lo0SbOj+BfFNktdXV/idiyf9oG3I+OKv+h+ItLf8wKdpVsBm5BGMVxew5HMScZ+n/unC+UIKnINU8sk+yfB37URHYD5oVrHsa5Dd8Q3m9TXC2eDx9vzqPS9fvCDvYbT6R95/vTrVNehZQTOt3XCRuMSRHzJgfqah1/WEspvd4WYxnPtXJeoa57rF3Ykn949qg8yRtkkTMH3+nvRetv0Dxfc6a3jHTxuBZhuAIAznvmitd4ot2mYMJVQDzkys4H1gVyIvA/wae9wsQTJ+Z/ftU5alsdRR0bqnjK0mw213o6sT7gzEf3rN63xVfd5Q7BK4B7An+81nO3tHFSadWZSwUQMmPbikepyP2d40G6jrd03C0tPvJ4z/ALqC11Bk/CSPaDQuoumcQQeRUaXRxE1K33Z34NDd8T3jcW4DlVgAHA7SQeZxWj6B47gFb4EThh2B96w/TLO7zfZbTN+RU/4obP27g8U/kmubOSR2np3VrWpUm0wYAwfg0YmnzyK5B4d642lJZBIaJHuJ/QxXQvC3jC3fuPbdAjH/AKcnkRwSf6q1w1FqhdnJp0WOKjvXD+zWe8VdTay1u4mRJDGfSD7ETiROfih9J1Zm3mcEblkcAxHbjmR8fNcssVLkLTrgviaXnwJMQKyut64d0N6QDEe595+DH50KOrO1vapJJJ+4mIA7/TvRlq49IRQZc67xMg3BYO3EcGZ/UfT3qj0/jUbjuAIZhGYCiADmPefyrO669DyPS0xEQxz3H5j7VRaxSCQRlWzWfzZH7HUUdh0muS6rNaz89jjsakayIz+cVhPDnVvIX1KCWAyzEQPpHHxjImtJY8Sad/xMVjie/v8AlxWqOoi/3dkXB+jU0qo7XiW2fxKR9wftR2m6taf+oA+zYrRbFTTD5pUO+sQf1T9Kp+o+LrFlyjByQs4Hfsv3pZS29jJWaINFZ7xB4ut2G2IBcfuAcD4J96xXWPFV/UKqj+XAM7T+In3+IqjuLkzPGTPJrJk1C6RWMSx6t1q7eZi7mGP4ZwB9PvXStEg8lSVHptjAPEAVx8AkgdpH2zXT9Pr1s2i26VNpZ9gYyPrWa7dsrj4BtJeKagFyBbOAf/Izz8Y/Wgurvp2t3R5ihizuARJn0gFfjnFZjqfVA+49zkCOMn5+lU5uEmaWO7kMmGapVBkemABt5/WoHYTiaiMt8VFkUyRMK+8U8W4UHdmhEyf3xRCoSfpSy4D9gmx6c4iCYn9/NQDcxwAYp2peB/ioBeyTMT8UiXsZ/BNtAIJmafcMyOPpTMfv3qFswB2rkrAkSGZ9gOK0XStOPJluGPJk4mO1ZsXgAIz/ALrUdC6+ba7zIZMKo4Izz9KbrsMWG6Pwut0SFEc5O32xVd4j6E1jaVtnaRmAcH6n3mt30TqwvKvqCs+4iTwRmIA5o3qKHyyty6SxEzgAweQAMdx70+5PoptRk/AnhF7tu9duSFZVQDvDEgz9IrD6zSNbuNbJB2Myn5gxXcvBWoF61eaJ2GPtsP5zFc68R9JtC8zBWm8d4cbuGPMe49qdxtE2jFlR/wAVPZsn+mJH2qz6t0Hy7AvK5I37CCu3+nnk98VUaJ/VHP3qUk0hSyXqrm06vME8H3jGe1SaHUsUK/0kjarH2kx9I9vYUHfO07hEcHuPyqbpbwNqn8Rn6dvtUpZHtsKJ7tyJLQYzkyP7dhNQXbzSrz6Z/FPxEVJqtOCMjaePk/InvUdq4CuC0gHnAP3zn7VnT9lPRFqurs7Dc24jj7f45quvbT6pkloAIjGM+1LUwTM/Aoa6+36iMe9bIdUTr4LFtYY/F/4kfAjHsB/oUl1QA7c+01XgD8QgT2pjvmJP2Nc47mFI0K6uRTk1zKOT9CaEmKguPPArX5mZ1BFqevXdpCmMEGq3cxO5iSTySc1FZ+anI9oqGTLJ8MeMUuiNeZ9uKjckY7nmntd7V6ec59vrU7Yw1p949vmpLGpO0gk+rt2nsaive579u1RJ6j9KZKwrgYDOB71J5RDerA/OvUMSfmKQmCe3vXOQT3Pf8qY5z7+9FPaOzaFzJM1GqiINJvOo8QoREZ5n2qJroAgD6mnPYIML8UU+mRRtIy0VzkjkAvc3D981PpkiDjHv3qV7AAyPvn+1M25gduJ+lByTVIBHqm74P79qGS5JEZJMAUZp1VpDR3AipRpFQhiR6SCB7kEESaMckY8Mb7l//wDbv8OobVq0kA7MqOe5OTQHUijR5YCKOB7/APPzUviPrtzWXjduRMBYHYDt+v61WO/q9RJMYis7Tcrsd5bW1JEuk19y0UIMFW3gfv4FXeo60zXPMbI27YECJHuZn/isnqr0EH7V414kz/T8cVZRbQsTpng/xbprFq9Zvhitzkg4gggiAB2NZfxf4mF+6FsW0t2rcbYBngSCfr2FAdIVYLMCVMbcEzP75ojUpbyptAbgQp/fzH50vnae1nAr9VZrQs4IndJA+n1+1RSqwfST7+30qtvWijbWiRHyKeIK98cfWncQBkzIbIb2796mBVVlQVGOB+WZqusXCJEcZmf8Uc9slHAKncBEnkgjj5xFLOPNHAV28GIBBJnOZn6VZ3mELBI24zOe3MdzP0qlvW2n5GT8f6qezdOXk4/Ln2+9GUE1wMg7U6VVBaft2+kxzVTf04bIMRkT3FF3dVuAOBM5Hv7RVY0yBPHNHFFo49UnJA4qNWHJJHwKbeY+9O0zLndV6OoutJcgeofc1IsxxM5oj+BUOZuqQBKxwT8zFRrp5wbiDnMnn7CpyUuyVA9xDP4a8NpjGR9P8T7VYaXTIG9VxSNvGcH70kByd6Azj6R7RQe4KKy4scngdqhS5LqJkcmt5pbdg2/WtsHEsMn2mIjPtnnmp7YscFwQYBIxjvjaO3ahua9FNn3MFcuktE14zRImB3rTN0bQgSNRcJkjPxH+6h13TtCkMrXLpn8O4Lj67eaarF2P5KC36mABBkxirHVAWwAMbR96tOnrpASw0zbh+Gb8z/qqLqLFi2FQSIAlo+J70s8bbR1cEb6rdwSPimediT+dT6e2otn1CWJBhSCB7z8e1QLZGJcYH/aTPPb/AHXbPQvA/TXROBmfft/7p5u5JMD6/wCaMs6ex5f/AFNrHmFPtxGKBu2QDtDyvO7acfEGkSu+BnRCbhJnMD9zXjXIHM+2aYqEAkHJxEHimWbMGSCY4qmyheCcXtoVuAZB+g/ZohtSIDTPYGKb0vS2mUm8xBJIiJAH0PefmptfbtgDy2mP/AD7/iNLKCuhvQBc1BIk5+a88/cOSPan3lmBAA/PHtxV/wBRuW209q2q21CAwVJLAlcmIGZzTKCo5JFI18SIIB9zmD+Xv/ehwS7epgTPHtxyOP2aI/glOC7R8If916mjtCYuXAe38sf33cU3HQVQZdO1QqPB7+35fviq6w7EMSZ2SZ/wPrzXqWgGk74kR8574o3WKmxTsVcknaT688OJgCO4FTUKClZU20a6ZAniTHzGPpRep6b5akm5PxEVpul2rY8zbYsghQSPMYBf/Jcfij+1VHUbVsofU2+O/wBfr+tFt3x0FxKrS30kSfg47UW9xVgSS4PBOB+4oLp+j3sFG3n3iatP4AmVJTAgAsTH+KacV2wDLOukSfo3zj/FAa24PVG0AASO59XA+e/2oi70xi0B0UfUmj9B0ZPxXXRRn8ALHHyRHNKoqPJxTXdMTBUAAwRnP3E0BdstvgBif1q+02iaZ3J78n/Aqy6fokDQ7LlWG4bpzmBA+K7yOL5OVmRu6cKhLbw8jau30kdzu3YPxtP1oYPW8s9LsNgtuPbdx+le6founUze/h4iAF3Ez7nFNHNfaGR6vULPa2P/AORUidQs/wDxj8hWdVvbNO08twMdyf8Adanm5owLGaA9Rtf/ABr+Qoe51K32tj9KZoukA/8AVNy2THlgWmcuCY9IkT+dAajTMCQFY5idpGZ4+tLLI7CsYY/UFIwgoZ9WJ/CKM6T4b1Wp3CzaZtuGmBBiYyRn7Ube8Eay21s3bLKjMql19USYjaDJPx+tJvKLGUNzU54FSnXCCIFdLPgbp213uO6C36TtcMS+cHHI7xAmR2ofoPQ7ulUsFXLgo5ILOOJGDCAZ7eokUksvFjrEzA9O6ffv7zZsvcCZfaswKGFt2IVFLMewBJ/KK6n0nbYN97dpkIuKXZp2rA5IIVQxnI44q58P9Gs7zcS0tu+4bayOSAOdxXgTj86XypjeI5LY8N6p7i2Vt/zHXeFlZC+7Z9P3/Ko+odFewk3HUXd23yRlgfYxifjPNd7a2SZN0tdeATaUCIGCQSS0An8uKB6n1pLVsWiLwbPrJYsIiWG/uPb5BmueRobxI4W/S9SrANZugkBgNjTtPeIq56R4duEMb1jUNIG0W/SQTMs0qYAjj6ZzXT+idVVnljbnI2sTuC4gDt2k5yR8Vaabqnmr/wBRQrA43ERAk+rOPgDjvQWZPo7wo5XovDFzU3ytvQXUtqm2fNK+oEjzC7JBmD6QPanJ/wD5rqFci7cXYATutQxMRGCQBJkST+ddE66X09prtu+HSQduMniTGCO2Y4qr6f1G+6J/Lby3baNyghvdFMDbuOP81N5q4D4o/Bgep+AdVadUBDyrMWEqE9gxOJOOCRnmqjVeHtSjpbay4djCiJk+wg5P+67f1G61m3bR19SsAygCIjkCZYYiMTBr231vTNa8u84dmB5GyAODAwCJ59hTOavsHiicpXwisFbuoW1d2b9hE7QCQdxJAPH9JJ+DWe0+luXARbBYrlo7CQJz8kfnXaeqdW01xUs2hbaUEmBBjkFY5xMmYmjOn6y35G0vszuG4FlKlt3sB3IiY47YpFlV0F4kcw0XgbUNINy3uUKSEdH2ychgDMgZgTJxVf13wfrNOHe4koo3b1jaFz+IkiDjgTXatP0ywo81xadiWfd5dsARMRALQI9+1TWSjgh9tzO5jcUHsNpiTAEdhFU3+g+NHG7fhbXLbtzaMXRKAlc/meYzVDq+k6hDtexcU7ioBRhJ5gY5+lfQV7VDR2wW/mElnfhZkgTxwAYge1UOt1yXmR8zu3o+6QkGdwJGDjb8TwJoNpHeM4nc096wT5lu5b3DAdWWY55Gf+aF1Tkjg19BHS3b1vz01CreJhAwDCJIAj+hmnJA78Vk9X4Atshuap793U3ydnk7doYSQvq7QAPUc8CKbh0K4/ByHRyGBzgzUwWrXTeF9QdS+mIVbtsw8t6VxMs4kAcc+9Ravpj2iyXCFcBvSZnBA/X8Q+BXTfoTkq3tzk04XiARJ4/yKL6l069YCeZgXVDoQZDLMSCD74NASc57UquuTiVLxBmTU2m6oyvMng/2oNweaGY5popN8ndMPbqLgSGMgjvRFrxBcPLE/XNUpuekj3j9KZbFUUEkOdFHS9JqNPcuWXuC8PW6naY5HGMGQZGMfaovB/Tke6bVxf5gKlSSeM4ABA5IyZ+nNTaLSMtpdfpdQlvUW3I8mRLKBMgd8TIPPuDXvQdQly+lxkCq0bh2gESs/eB9fisWbNOKtDKKo3XWb62B5mrXzGx5a78IdvYclvcnHYd6h6NqFLWNVqLiMLgbyld5M4iDGMf0z7cRWGd01GpcM4S2gOPZRiAffgSa1/hTqdo2X8wBBcUqrGCE5AKyvfn7Uvk53SY/FcF5Z1iXr1wm0lotNoFgyXNp9J/mREYxzMUbqLVy2rXk8p3WCGUAEgf0gfnk8yYiqPQ6lmdLbul1SdiN5gLKxDZZRnZJBA+lP6lasW7llTqWQH+Vc2iFJgls8Akkcg1ZTbBwLrmvt2JYC2wKeobwzK53c4iMx+Rp+g0V3UWP4m2UZihVSzDBGCYCziOKn11npKXQlxFUqvBkqd0Dn4g1W9J6LcuvqDodX/D6bdtVdjOC20EsrFoAkxI4zipqFuw2CdA8QrbfbqwbqEHJIaDnEdhkiO01PpuuWP4piGAtjaQVV8gZ2bQR3nPya5z1ZyrG16cMVMHd+HB9Wad08bi204RS2ccZJ/4ik+uiW92dZu6rzGtXrF1s3WtNtEgAncIGPYfWa2Fp3ZVWBtYSHbkYBHp/7pPv2rjlvWF1WxZKm5duJkYChQoBycZGfpTn6x1DR6pNMrrcgPcHMXBBMDuZOBFXj3yilm80/TCbF/SBQbiMdhkgtIDBg0SAYj6jmmeH76WrVzS399lvU8OBEYkgyZBIPHY9qxj+INQrpq2KOduzaZXaSJ2/inA2yYHIxVs7X9btsXwoUNNy7O8qIGAGIgHAqceeUugpnnTfEY3JaXYls3ID2xA3HvsOIIPHE1udTq7RsrY/6pOwFVwSJB3ACPcGRxXMfE9mxo3tnTOu7a8ggEgmFAYZ9QAiYHA9s23h7ximmS0txPMusGBcEEDJaZj54+aMLTaZ26zX+JNYtu2TdtXCMADcsMFggGScZPuea5p1zxI16XSx/Drt8ttvqV4JYAkgRgkVdeJ/Gz6my1g6e4HOSdpxHcYz+lYe3prt1wiIFX0zuImCY3EffgZqc3uf2Fk76JG1lwsiMxgCBu+pjPYSa6Z4GtasWLi+Uj2ngoXaN0DaRHq9JI5+8Vg/FPRf4O4Le4tIVpAiYwQUmQfbJBxxmrbwz1+6EGnF5kUIzoCBjvtkdiZ/Zwiag+Topp8nQr1ll8tls27Sbt9wCCMY2zgSZMGBXnUerza/kllZdwGOYBxu457zz3rMdb6yqo2mtnfHlsSB6RJLtJJyZA/MigdJ4uFlHRkUi5umGIiQBgZEd6eWdJ7X7H6Z50XVanUayyzuogwA7FivvIjPqyB9Pat5p7hF+6CGusiRbYmZEEmYxzgmOwFcj6VeGlJvb2MsQs5McAgf9xE1rukXWusLiXSn4XdQSwZd0hTmN0rBwMVklq1i5n0vZeGLf+090rem7uQo7hnQBjtZs42RCkmRurS9G1Kpa/nMTyAsyB7Be/595rKdf02oO+5ZuSWaWBABEntkCB8ntVcNTZtqLWquB3A3SxG2SZJEH+5rNDW5Hcoc/bm1+DS9NHiPRurmqtXgbxClVwsk23BiCv145kZrm3W7vl3LnnWVuhz6HOSbYwF+BH6zgivfEniPzBNi7uAADweIgCCcdvbisrqrxgu3mkAmJHp3H5jPMfQ1rhPNkalLj7ezLNY43HtnSLHVrF/TsupsrcQKCqu34TG0FDmO2B7Viul6zTfxFtBp7WxT62eWBgk8dhgDv+tVVq4fLa0wIB9SH2MjH+aWhdFsXHYeqVWZ4HJERz6asnNXud/BGkbnS9G02o33raKJlxbgKuH2HJ4mJA9mFQ6zRWLbOl7TJb2yVKDJGAMEdzP5VT31bZallNsEcEjmBjOTPer49ZuWQtk2l2R3fMnJlDyDOT71kyZHw4q3/JfFG00+F/BVuulJhUYSMSs5+Yihk1iEx5UR7Tn5giR+tFeINDZ1Fk3tN6bikcHmWCkR2zxWc12huBVF2N0mGB5GP7U8JrLH4d9fBGeNwddjuoJtREP4x6y88H2GPVxzQlncjKwf8RBkcjPJH3mrK/pdjnzHG0xsYTJZhIke2DzzFAdQZQ6rtYKpYGfaREExJIHNbIQbXYIpdFjq+oqq+UF3WwYjvcP19poxJdbnnKCwEACfR6ZwO3f8j9w+laMXLkkLt2MFYRKmcA55jGPerDqfVUtwtjZO5RAkFoHuIxmPyp4YIx5YrCdLstG81sF2RLYttjcCTJuKScTBx8VQh21upRblyPMZQx7Dj+n86M0wIZ7h2Wl4DR6iGIG6fYbT+vvQqaF9PeuXLO5xtYKxG31EE4MwSqnP9s1TYqQjQP1Po93S6htNcZQSJVgfSwAMMPiJM0f0Prep0uo/h0vHbvAcDIaSOAfeO3MxQmp02quX0LqX2eXJkBgGPbn9B2PFTXfDhN8m3u9DbmO5cHcIHpA24n1e54p9qj2clRRdSuM1y58XG+o9XBz8+/arfRK1livlkkpgTj1AGW5B98+1Wmt6ZavWAiHfdJYpyMs5Yg5M8d54+9OTwVdmybrpsLKLihvUokAz2OPrUM2bHhaU3+B44Zy5igHWaw7FKYubkKllhjIgAZMzAFbRunakzcdUDuQxWfUvp/CJxg5qRLmntxbt21JWCDlzKnB94kc1VazxZeV2TywttZ3bGP4tm6IP5mK82Wu1GVrwxqvk3LSxgt2RgfUdSL7BbhHoZWaZJLSJHAkCeZoHR9RfzWAZUBgiBlgTGD/3CD+lH6HqNu+zXr+1ZMBRIaAqy+4ZiGzivU1FrTLcNu15wSXDluVBnIAA9Jad3yK2LWyTpx5/t/citPdO1TKrxMfUYs7iw2o4BEqD8H59vatJ0fw5a/l6lm2H03FGSYAiMmIEEgmT9O5tvpqu9vUM4t4MIBxuG4gvj5zB4NR3tS5YW3ZFVSJYA8TgbJBkkc/8Vjz655YVidP3/BbFpUp/Wv4Jv4MlroC3GBeMkAZGckmYmfbNRt4eKXA9q8FjtGGbduMtOOIiM+1Aa7qd+0ttEYkkt+JQM4jEnb8R/iq9Ovam5v2kRaUs8ESQIwMHODn5rNeqnUtyoq46eL2y7J+rFr7sl5B5llQuGwJ/qIyfc8/aoOlW7ju4tpbZR/LYHJIGZk8CWPzgU/TeIfNUMLW1UYqwPq7Yg+8E895pmk6ydzhSLW7aqEe0QM+/+TFanlzK3X1L/wAMtYlLu0O1vQbmnstdWGJzcX8USxgTkwBBn/yrN2NWd4UjcsdvbIJn4q26l1PUC21t3Yz6WBiYmfuP1oHpGi8w7CduQWM++Rj71SEpbHLLX4FyKLdQugq2DqXAX0m2YloCjvJM8mPtRuit3LV24W1G3J2hENzfI5jGIxurwtp7CXVuEXT5pZVCrBGIO7MDHH+6rr/XSzpcezJC7UCn57RG0Yk/T60qi53GK+n8f7LxUMdW+TTt1vSKoDMtzEMSSCZ7be2PrGM1zrrt31nYNyZKk4w2QI+B3+aku6DczXVbKy4EQSJAmJxzU9vTbra/zCGuHIMcBjn4ESee9aNPgx4HuTfJnzZ5ZfXRDoCwUFUPqIJ/tGM/StFpeseZa/h74CWvwrAiGHG8c59/rWl0fhXSqnpdywAm4D7R2GO/f3rE+J7W26CYaMEgQHWYkfqPsDUI58Wpm4pdBeLJgW5+wC/rfMurPoI9MySPYn4NP12qV1YXQC4nYw754JHPNVuqtwfTkcg+3x9qfZfucyI44E/p/wA1uUFxRB3+0O0fUGFoqSdrEZySAACQB2BgfnVt07xBNs2mG9mPcDgZEnk8Vm9ON4gNEEAYwffPv3+1TxbVhseSDBY8e2B3+tJkwwl2gwnNcIt7HX/QTA8yIUGJIH+BRVnV29Qq+YQvJj5EA/7+9UtrpNtlFw3s5iFmCJ5H2HfE94r3T9K88iR5e0Ge8kmZ+MGpTxYf3XX3O2utzZr9Z0a2yLdm55lzayQRAaOAODzG4zArPp4dvBbjuN6kGWGVEEfh7sfn4HPa21Wpuaa3YN1vMkQttJEAgzubJJzt4wBmaB1HivU+ZBASSoG7BCkj0xiQQoH0qGN56ai019/8I9LJiwpW1RRaK9cs3BvJXaQZImQO3zjj6mrW11C1cu2pYr5KtGSJJI4kn5rZ67pZe2P4h0VzjcqD8pLZrmHXulrYu+WLgbmSOPcR34FadNqY57XTMubTvEuVw/ZsdCtq/c2oXcKZLHA57kmTLCZEcRRPXNMysbhKtbcbQU53fYcn/VZ/p/jJrAhVFwMqhZ9BG0NOBOM/FSt4pbVKUIAZ2HcgAAYI/wCc5xQn/U7+ltQcePFKFX9Qbobz20uOzSXIVJ9gJ3MfaI/OrzpmlcBru1jhioOeFEEDbkj4+eKzVrpd91BFtrhDw2wZggEZ7Zn8z7VpNX4ma15a37e0hcKRuMiVAKwD2Jn5pNRqclpY6bOwadTlWTgg6Vec+q2qlrYCs0Rhhu+o54k/Sg+p6+7dlWIgGCo3AD4+TIBjv+VHaHpX8am8A2VYglQJBYdwZxPHxFSa7w/cs3E9Pm2g6kkyAPUMMJMD54rLLU4XmuVbvj/vRR48sIbY9WUNrw1q3D3EtkblG0bgJHeYifyqHW+H9RZtL5ibVkSFg8gDJnkZrqF3qG0RG7MSsHIOe/A96yfiDxQqK9lGO9lKnAwfUDIzP1kcVDDr9TlnSiuyuTSwWO5SKDwES14rdI2BWIU4k/8Ab9Pj4FbHquqtbvKNqPNGzcBBCnHaJEEn5rMdP6Q62fNcFWYb1IJAiMExyT7fFarVymnVmhmVJQmCm+IwR8SJ7V2ralmUvxx8h00WsX1Ez68qbWF27CXOG2hdq7SeJz+v3qm651FhqECsCjpMqCzRuYHiPTj+/vWGGouahi28ggA/DHdJk/M1ZdMdmwCqGNrOBClceqJ5+nNWWhji+pvn2Tnqdy2x7sstXeUqiraEOSN7k7meeZ9+Y+taHofSbKKLcLcuMDv5lp5+wquHhneLVy3fcm2waGAVQO4BAmeeZ5orW6LUKA9kWjsO4jIMAGcjMR7e9Z8s4ZEoQnXz/Po14sNbp5F0v5CE6Hp7N4FUgOZ27i6hu/p2mDiB/wDqasb1lLx2siuGkAsAZjn5AxWZ6f4mFwNuttaKgq3rLeoRB4Ur/wACgPEGpvXUCWFe4UhhdRSGBXOXUmTB9/nml/pssppTlTXseM8axuUUmvgb4st27NwFlhEEAAmZkyZMSIKkDOBWRua9tsWkxyWbJPyadrOoX7g8lvMcrEi424yTE5zmfnn8odI7adjuVHA/GpHABAIn78ivdwYdkEpcv/J5eRuTbiqQFq2ZoduO4nuDkVvPDXXLDJ5d7ylQAAoR6iYy27vVD1TqQ1COUA2kL6eWXaNvtxxWZAmIBJ+/P/FUlhWeG2XDQG/C7VOzUajU21cm2T5YLL39Sk4gkY59u1C6vWMwOCQYK+0DAz9vzofyPSCwMkCSMY7T7zJ/ZpaW+ougbC5BzD7QMwBx8+9FQS65oxt3wT//AFHUkhfNfaB+EkAiZxn709m9QfkFSILjGWEwTgkAfuKJPVmTeNqbQsrtQE895PPP5ULqusv5cxEnJ2oc8wMfrjNIk2+IpFrk0NOxg0YJ+3zkVGNJhDMEgzPYcCM8kf3qruXuQAJOZESD7cfpUra4lY7mDIJwB2gccc1bxSXQqkXui1dq0PLa00t+FhEkkwAARx9SeKsG8MNZVm8w7XEOoGckYGcj7dqC0XiFS1tr9lGCjapcsYG8tIOTuljFXXVPGJViNMeP6/k+3+6wZfPGaUF338f8HSgvZntjeb6H3MGHA5juPtyI9616Wo4xgYj9xWTueI/NWb7F2AO0r+INyrbu4nEUHa6rdtkwxzzOc0c2nyZF8CZYr07LS34mdmEAoy29kkTOIiewn+wrO3rtzf6ibgX0ye8fc/3pUq2RhHHe1CTzTk6bCRrbqjcrtJJMSCAZ9jxj+wqe901rs3XZVAWSGcSe8r7nnFKlXT+hrb7LYrnFqTB96mEEYmMTz3n70St60htpbsxcDL69+4yYxxEH2NeUqdwvsjBtM7Jp9ZbtWF8sAp7r3JOT+eKqbl3S6i9supJyy8sTyP6YxjivKVfKYsCuck3avk99v6Yl9qNStsBFUsMwqjC4HJ/Wsz1zxqiLssqCV9REjkdv3xSpU/6dpMeV3PmhdTkeNcFL1fxq5VPKt5ZVz3WeYPcEfArNdS6mNXqPNK+XgAkGT9TgSee1KlXv4dNjxRuCrs8yWeeV7ZdFpdsXbduzvEK5BI4Pb0weO351ceHujDUsXvtNtDFu1Jy0ZgTgARxSpV5ufI1ico8PnkvjW3PsXRp+o6mxp7LvdRAoO0AKJJMcfvtXPRqVDjBZN8kkdhnj3IjvXlKh+nY1LFvftsH6hKsirg13SfE6OXRdq2wwCrujEZ+AC35T3qXq3XtPbUo0M2Ay7gctHqEYaARSpUz0OJ5qL4dTN4+TDdRbaGKfh7n3BE5jv2n3rU9B6/ZTTKbTKqJg22PrZuWx27x744r2lWvJp45cX1emLgk4ZnXsdetre2NbUEO/qcmSpUYUnv2iqDpHTHfqUrb9IPqkfhBP4wJ9xIpUqxLJLHHJXpMtkdTSXyjV9b8LhgXtruuq0n0gFh3Xdzke9ZTR+C7l/UXJ/wDxlb8KMu4gR8MO896VKsWDX5oYnTK5sEJy5Mz1C2bT3AZLI5VhB4B5B7ggD2j5pmnVyRuJWey47ew78H7ilSr6mLuCf2PAyLa2kS6rSqSNuXYgFcyff+360n0Ds2y1/MKiXCD0r95z+lKlSObjG/hAi3RV3re05EGSKmt2liYkiO8fcc0qVWviw+iz6kht6e33t3PWmIIjBB+9VNl/+6YbvSpUmF3H8grkP0htNuUgRE7hIK/fuO0fNE9X0NtLdq5baVcR9x3/AH7UqVJktTjT7f8Aphj3R//Z\\n\", \"height\": 152, \"channels\": 3, \"width\": 270, \"type\": \"image\", \"id\": 4947633552}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUTExQWFhUWGRgaGBgYGRsaGBsdGBoXHR0ZFxoYHSggGh0lHxoYITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGi0fHyUtLS0tLSstLSstLS0tLS0tLS0tLS0tLS0tKy0tLS0tLSstLS0tLS0tLS0tKystLS0tLf/AABEIAQ4AugMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAEBQIDBgEHAP/EAEAQAAECAwUGAwYFAgUEAwAAAAECEQADIQQSMUFRBSJhcYGRE6GxBjJCwdHwFFJy4fEVIxZTYoKSJDOywkOD0v/EABkBAAMBAQEAAAAAAAAAAAAAAAECAwAEBf/EACsRAAICAgICAgECBgMAAAAAAAABAhEDIRIxE0EEURQigUJhkaGx0QUjMv/aAAwDAQACEQMRAD8AyptpwWlwAAAwI58YFM8gkJHvcG/jvEJcsnNg2fyi1BCRi7YuGBH3nCLRqKUzbqy/H74iPrYolIAIIccoomKYlSag+UcUplBi3D6iCxBouxpIZWJ07Uig2ZKQ4cB2xiy+7OeIj4zgJfmx9YAwAtJUQGw9IkmSb4AGcTTLJU4wbGL7EkgknSsBitBcu04JBIAq49IhazvPk3clsXiiQDTFicsoJnLKQ+NRTEnnCJUxa2E2UqEwAaDEliOkObjHjjCrZ028d05OQX8tIYpW5f76R0wdDpF1omVYn9XnT9tIla7QlV0Vaj8Yp8OtMOMTIAqRh1qfsd461PRGUNlKbQwUKsl+gZx6t0gSSnxA7sAX41gq1LF1wKmhA0f5RTJRlXUjlEZZmmN4lRaldWFGwJ5QOuczh8mc8fKLSKjh1gGbO3qAMC1cDzjnWWTlszgcNQkffOC7GpSXwu88+kCGaHDkAEYJBoeDmLRaRdZqCg+Z4xWMn0LpF8qYgneULrEl6PwBPz0iEi2DGjgAAAU6PnxhTNW4A1iubM8NKlnBI76AczD1Ss12Q27bDOmJl1YMtf8A6j74QWmeWELrLKISVL99ZvH5DpE7x1jRQWw1U1GLGg19DrAVy8SAwTXE1I6xJJUVJUobuQZweLZxO2STVq4VDMARwq/OOSzo7KJsoipSWamnTWKFq3klnbv15QZZ3Ky+AcBx8oHtxZSGb39K4YQbFYeq1hmKU8W/nj5QPNm3iRVtMMsYIIqHwo/nSK7HUrdqAN2LfKBFpo3ImqzN2b0iqR7yg+AL00gqTNAcEDKoisLZSlag0GB5xmwMpkg0GAi1ajTMPmB6xQhVaRBS8OkbdgD7FN3jgx0xr9mHUtQ3SMKCEFlULwKQeh74w7lJwyYhvPjFIhXYYteb1aKzOZNft4jNUPSKr94t1iikMytU6lc384nZZgckqbIgYn5RXNAJww7ZtxiMlLK5AGpeEbMFTlbtAzd+sIrVMOJoNM4ZzV1I1hfaAagkN5xOhZKyqbOe6e/lBSw6Q9IDUKgNlF8l1KAxej4QylRFo7LkOoeUC2pHizhLxRKYqGqsh0ENlrTKvqNUpBU/LLygbZNnaVfV78031dcB2h5zGiqRTbpJCsD1hTMmMSNCY1s8ywjeLEZ+82bBoxyrEVG9vb1e9YWOZmUR5JmhYAdzk0WKRi6SDhn5ZGBEyjKAIOTinp9IOse0AA6u93TX9ogW2j66lRN0AGprz0hVtEJ8RGL3vNg1YZzJqHKgCBibpzLYQBbJN+ZLUHIKi5D0FMTlGCqYWDQXtPsEwFZJgcg44eWEMZNmvFicsMAP3j47MSVbpuhIzqSeHeJqai6ElpgazQZEtHJ6GCubVxbhB0gEAk0ZmGJL/wCl27kQHNQS912qS5r9/SOlBB5o+IRShbkRK1BjXjAyDmINAY12e1+uDGGaprHHMHpCWyKDhzDRFSBTEerQvKjJhk+e47RGXND1JD0plEZ0sBLggin33hXap7Gr4wVLl0ZsczkbhI1DR8RUtoPn+0AptLoOQcY17RCTai5oav6YwLrQEy6c7PABmnUdounLoOsLlrqztrDpDMsVM3xpnlnBiJjFyTQUr9IRFe9rDNE3dYtCNE6Cdqzb8lKQf+5MQk8iajyhlaReZKaYACMxPWVqSkEi4x/3KLBuQc9Yb2mcWACXPEO3LjAYXpH20JpCVJUXIBD9DwEfS7ZQUGAygS1e4rGgzjiSWwTBoyOyppUjAhhqDhpnA00tTSuFRjWJIlBW6DdfNnT+2USulP8A3EEKQap1HP8AaJ2kVk9BVlsxIHxDUH5GIoaXOSDW89GiNlUCrcpqCW51zga0TB+IS1WBhVdirs1EpaMwnlj3eOSmdk3XehAoKZaHjA0iYCLpSBShavX5wLJte8reaqmbCh9Ig9hk0H7SsTgVDBy5vN1f6wokWYhKlEi7hnX+NY0HiJmC6slQxAAJwy5wpkbQqdy6zJqb2HbypFcOW479CqWhTtOhbzgJCoN2us366Px6vC4YdRHUtowxsYJUAKvD+RJF0qYoUkYE4uDhpGZspYuOkNlzJlwXgoPgpnSRw7iOfKmBjCyBJQGx4VUeGghVtOi2bz4YQXZwAgEBRriCK6uSKQTarN4iSpZUlIFEhNepFBzMThkUJCi7Z29uggEF+cStFGw5Jx5mkS2dIQQKG9+Z2B5HM4UixaEJD4kZv2HfSM8y8gt7BrQ7OeOMJpkxzDW3P8WbmsIlHejuXRYvUC+MEoOWsDoTWtYtnoUlJOYBb+YVgpndmqJWpWQJ5aegPeGtoLiq2GN0E1IyaANmWcBIORLtwFPP5wTaVOSXA+8ITtisrmSwUXQ7mnOkLRalCl00+9YumC6wUTlhyj5Mg8e0Ewy2CBPnplndRvGYorUQlCarUXDUSO5AiW2LWlU0pRdSA4Q5BZIZkkkuSHzzgbZFvTIkzUhxMmqSCpVUiU9AlqqKl48JbZx9tqyS5JS6jMJa6tmQpL+8lve5UrQwjimyzKZ8sJAUSHJDAEXiKuqmAygSdMKZgIpuiPp04TKPuhgAznDFRpj00EEpQDNUUgMlIocmAxvGsZaFYwslrJQBfGrN66xFVoD45l2o1ThwgedPGIbJ+DQqKzrSJrHYrNtsu0guoEDiXV9nlA+05ISxZaXZnq9dDAOxNoKoGJFKBz3g/biAo3wVDQMyeQcuTHLTjkEQj2tKqFVIIqcoBR7p5j5wzm2PxEgglASSCCllHhUsTC+QrdJAzH3SO/FNNDh+zrIVuSq6lONCcdGz4QwtC87166GDJZLDiM6ZQFLt0xSTLloYf6dKOa56mOyp6koIYi8CAGoNecRmpN2Au2faFymcAOHdwXfDDAwxnpTMS8yYQH3glQZqe8G+sLkTXFa4BtCIs8eYiYEVSMwQcGpQxKcb2jNDEXQkBKipIOFAAciFaQIicFKqyN1nZyKYAa41ge22rwkqKWINHSpjVssM9IV2W1gsDzrWJY8b/wDRNINt7kPUDJ829ecJru9Di3l0BZUScOQ+QhROoa9I9LE7iURNEwpUDmIst84zAHqokef8RVLN6JyjvpTo6vvvDUh70MFUAaja6NFkuWky1Od4YPR8X+XeKkpJBcsGyzjpS6MRTpj6wohy1SicA7Y4Gjc4gLuquw+sfTzQghLA4EkKoGcfekBi9xgmCE2dBACU4D3gFKdRGb4AcBrHTtGWQuUqqPeKSLgKgPeRV0LGmCsxFOyrUCXUAzgEsgtxJmJIAi/bWz5d7xBcINKTZZIV+YpQEsO0TXRbtBEkSUkoTLSFGoU6kjCoIUSCW1NSYAs027MnF2OAwbEUdQaLLdtMoP8AYBuEMSopOFMS5BHEkQDsycWWL6gDU0vCvDD0jKIJI5aNxwCK5Av59coHSumBdoZWG4tBvpSVA8QSKVLCnRs4nbNkAC8gpSlRYIWTfABZ6io5QeSWmLQPYZheimqK6RpZNsKAlSTUYuL3UV0hRsyxAuARRnUCW5Rbbpdy6xcOa5cj9YlOMZMHEJVtAklamDmpSAMeBcvAM6YlSllDhO73Y1rFSkVvU707REWhADJbItxGMUhBR2g0kFWGUXYOXxBoDzOUMbTICEuFqw91wQH0VpxhPLmhWBb740gm2rF2jsdSKNyhMkXditgYWULBdnJzi+ZtA3gTQHDi2v8AEASyFEEa184ItEpKi4L8agaZ4DpB4L2CgPac1J+Bj+aoPYwNLUQxAFD9tBe0bS48NIQsAO6aluBxLQFJVvMcM615iHUf0h46HitoDwWUCVHpzJ6YQClbigPMl24MzRdZpJXUVbE4EcxF/wDT2STeFS2LdRk0NjiktBSJImhKXerH30p0GBA1yo0Uy5JCnAe6N7F9T2+cW+FuMa/xDXYs4XQVFiQpQ5k4H5GC7Wx0k3QNLs6iksxBaorjnHTZsAgOCQMnckNhE7JbPCJZyFFQLtdLE4CqhHFT5YN6UkpLhzeJFGIA0/aNTA0ivbNkKcQcHPByA5yxpFMval0AeDLLABy701rDCbMQVoUS6VsFEKfA/ENMO0ETNn2Vy0sM5+JX1gNmUL6ZOVYkyFqYIaoolsNC1SONcoMG0DKTcK5ZStx/cBuq4AXbpatRHmSbYtKgpSlEguxJL+caC0bZBSEuGIcXqty06QvCmMpaH+1ZMhCAAEJKq3UIUzn8xUukZWbYVyVMJa0nHCmNFDprrBNnmIK6FRJZ7zqSWxrlT0hzt+0TVIlAzEoIlMXxKXoD5QvJ2kB7M54hvAkhlO5wrmGahgte01FMuWF3kpWCkFqULgnHH5QmnWQkl5oLnJ/lBmy9nC8FKW9ePzhnFMW6NVKm7o8NKGchQqK0xpzhZaVT/wAyMaA1HmMOENrPZkkYqMXTtnIIoDwr9RCRjRN5KEQ2epbXjLB4EAdsYuRsVP5x2J9BDAWE5OOv0josZxvzHf8AOoReMmc7ab7BbNs2QFgTJsu6XdiSQAKvShelY+t1tshlkJUlRZksFBgP1Z55cILGzkklwo3gQSSag66wvtfsxKalOZ/aIShylcmVjOKVCGy24Xg1GeqTiePDGIWqeV0qTwDBya4ZQen2ZUPdUkvxilXs1N18/wB4rSD5IfYoExSCU4B6g6+oPEQVZpzpIEwguGSpmPFyCPTGPrRsSaDg/F4H/pswGoMPxsdZI/Zptl3gUBSUKBOAYvlUPG42n7JoIC5UurAqllwDTFP07R5dY9nTXoSOpjUWexWiWB/1Mwp/K6iMOJjmlGayJxl+wJyjKLRNdgSH3cHi2xWJPho3TVKSOLisEzbWFoIYuoMeFYI2fOT4SMXCU5cOdI9LlByPL/7YwvsWS7EkXqBwo59fnFZsqQPv6Q3kTB/crirP9KWiokghsONGpiDkeMOuLiCWaalQvFkKxeTUoq1DQZgdYj+GJr8kxZOm/CKB3YDPn8oH8Ma+cFYkxH8z6sxcwAm7dDu3KDZsqXRLVAg+bNWu8rw3zJrTiSBFBshDqZuh+cefZ7ROaq5RD/LppAarXMWTeJLU84cWdJd2DN38oqTs1W+brPm30gIEhUghRcYCGYZKEnMkcqQKuyKAYB+UDLlqLUbpBoRyoeSbUzYxYu3KoyiCYV2SxzDr5w+k7HUoNURpCc4+wqwT1Kxr2g0hzRBNccoWq9n1t7wH6oE/wzNyKTyMJ433YOeM0cqzKfdK09En1EHXpwFFJP6pafNjGRRsSegvdOPwluzZxK02efdYhZ5vEZYZ32UWTGak2pATfn/h0oGJuqvf8Rh1MZq2+0sm8fCs5uuQFEqBOirowzpCmXZZqVPdUDyI7xNMlZU5HE0isMTRvJBj+y7QkzEg+Cslqi8KecTmXCaIUngSDCiSgpIcF+Ar5wfKuqJALkGozEV2kc8qbdB9mko1bp9DFtrmgUcHhUQP4RHuu3HSOIvFnFOXm0FRE5Kj4gFJYgUOdehaPtkW9P4dO8Hup3RUkszYYxG0zriFKBLhJbzakc2Y0lSUuGulwagkXcdHc4aRnaY8HFxLLMU3A9DiXcVNYrtCpbMO7EFxnhQQZ+NJJ41ri+umFOkctM9QZg9KnTvjDxbIZeK2hHOCB8Yd9WDdYqAH5x3g2fPV+R+gij/6/IRTk/s43GIs9nk3yobxBG9dD0rXjF1uspvkICil8W9eML7BeSykgf7xQ884ZTvGUt7oroSQOZcU7xyOaR71SJ2TZZViW/UW8jBI2ckKLramtPKKZ9imKTRExSsRcKAnq7qgaRswrLrVNQM0qAJ5hyPOE8kQeORZahZ0YLvHQP6wvNpKqIQTz/aHs32ekD3Z6lc0fMFuMXyPZsiqJo5KBSDwvBwDA80F7FeOQNsiVN/K3QfOHoCxRvpFmzQZYabLUBkQ6knkpMO9nIs82gSgn9RvdjCvMrIP48mZ5d/NJPGhHlFIJepIjcp2XJSKSxyY+VY6LFKzlJBycCD+VFegfjS+zDJn3cz5RwWwnBzzjd/gEH4EN+kPEfwKMPDT1SIT8hMP47MjJmKUaIJ50HpBQsijiEg/feNIvZqCPcbkWgO2bKW39tQHApf5iD5xfx2JV7P1IA+9Y+seyZYKjf8AeL1HABgekE2rY9opdnkE6I3XHBzlFM2xW1IBvpWQ4xunGm6RWGWVtdjeCjpsiSWC86UZz95RRNsxTUhx9iKJcyZXxAUkONM+dP2izw7xCsc2OD+rfWLxlJISWNdC/aJQrw0Gl5VTQURvFnrU3R3jvjIKipmoyeTuT1p24xZtaQoJTNISgoUMAWCVULvizhXSGFnQDLTQCiQaOzUPpGbl9mlFJaQClIUzByNMYOk2QtvC6MXIx6/KCV3gN0Adn8opXJUcX7k+TQrtexFFeyibY0OXDjW8x8oF8OR+U91fSCVWQvRL9/KCxZ0fkV9/7onJSfstGGP6Mjs/YkopBE0KGW+BDqy7NSfcrr/cp9YwBQpVfEW+hp6RZKKgzTZlKs/7xOeBy9nfzR6LL2QjMKBxcLeL1bL4qI++8YaVtOaA4mEtqHPqI6NuzirdmkagJT6GI/iz+zc0buXYCnEPzDGCZMgKoUHpGCl7dtJa7MJb8wAfvh0aJo9o5hxUp+bj1hfxZX2ZzR6VKlFOBLaFqdhFe0bDfKSyCygaqAocdI86m+005qLUOo+YMCf4ntQ/+dR5sflFI/FkvYvNG82jbrRZ1PLUShvzX0+pI6tBWzvawTKTPDfQpI8ySPKPP7N7U2glzcL0JKW8xA8y2EqJu3XLsk0fVop4PsXkey2LaEubRKkFsgoQcbMpqANz+keNSrUS63ZWoLHo1OlId2H2ktEugmP+oP8AOJS+O/QeSPSk2dWDN1/aOKszYMepeM7sz20B3Zxb9IUfl840Vm2jLmDdmJL4A0VE3CSGpFZkvpTh6R94OpLaQTMnpTiDzenlFUy1SxithyJHcBoyBxBJ1ilke4knkMYFNhKfdDcKQ1ROkTKCag8HaLjITk/R4pHI0TljTM9abGVBlpBTgoGrjThSFFhWqzr8FYJTUoUa3hn1GfMHOm0UEsz10rA1tsiZiQkhiKpUki8kjBQOo84oszF8YhmWmm5dBOFAQe31gb+tzZdJso3cbyH9FQamYZSiiagOzhgm4tsSkO6VZlFeFIuTabMoOJg60D6HKHcrB466EX+NJLt4c1tbo9Hi7/GUj/Lmf8P3gq1y1JIKJctQVgygFUxo1ekAHaqhT8JMp/oT9YNIVprtHlsua4AeumkFSZJNKdoDlJCqYfesXS1LRleEdFFGwpVjWKhn1+ogS0yl6DiQK+US/GDOWfOIeKg4EpPNoALKryhj6CPkLxjtttKaMcm5nWBEzHFDXj8oKQQ1S6VgWfO0im8c4+MNRmxhYJoukN5s3EQdKU8KJanDYHX6wSiZMSASHGUChGxtKmEcvKLCoNT6/wAQFItN8OzQQmYwhaApFqJhFSSrmajrlB1mt60lxTjif3EKkTXxMWylaO2g+WkK4jKZudj+05BCJuB+IGnUElhxHaNIhAULyCQ+aaj6R5NJmm8WNKUOB15GGNl2nNlEKlLKSPhfd6g0MQlj+h1I3lsBXRUnxhmVXUt3BMKJ9sUgkS7NaSkYb7drqsIlsz2qvkJnAJUfiBZJbnDtE9w9erHsRE6p7H5aM5P9rbShz4F1Oi28iwJhXM9t5hoQ3BAAHnGytUuXMF2YAocQ/nCyX7NSDVMsHmD84pFx+iTkZhe3pk3dSkkZXi7ctDxFYKsyZ15K1pSSCC5oWGRUEl+0aJVhlSU7wQgaUHmIFE2TglSeDGvpD2vQnNiWZbLUmZ4gUABRsUs1SKFic8PlFattTzXX/Ur6wdatg2taqEFGIwB/mBv8KWr8qO4+sOnH7Gbvs8/RKKcT98YOs6pmCVA84ZzrOHwis2ZP7t8xFqF5WQTKXQqKW0165QptclSiSAQMs+xz5w6kWQFQqo8McPWGX9OXMwQoNnhC2kwcn0ZVGyyQ5IjqNm6hqRvLF7KrOKmhgfZWUBvLUTwaFeaKClL6PNE7OJNGj7+mHUdsI9Vs/sxZ2wV1IHkBFqvZqRhcJ/3ftA88TOMjzSTs0gZHjpFhkkHGmgj0uV7M2ciiVf8AI/KIzvY+ViL4Oj08xA88TcJHnKbFeqkXD3B6ZR1dlUAXckaYfxHo8n2UlJ+JXVvpFdr9nwP+2vooehEbzRYlTR5xLT94Ra0ai3bGpvIKVP72RHLXrAC9ksAWUQ+SXPlDckwcq7Et6Jy57tWvn1h0rY6CKFXMhvKKrRsRQqK6axnQVMDQKt6hx98YbWPapSUyxuJ1vV8/o8LZtnXLN1abpxY1x0Ip0iubeGHQ8eMTaKpmoFplTC19ayAVOnQY0zhRMtljUaWiYOBvJ9BGbtS5yi1CdUE+bFoGFgmqNQ2pNO7wY4wNo2J2hZwndCphGD4f8lCGOx1hSwrw0IIq4dXqBGb2X7OLJCphcc389I00i0y7PWcoJyFMcMIWelSEtN6NFLZ3ALnn6ZQRf4Rm1e2FkR7qionQEkwYn2gJD+BMrX7pHM4MsjBKUCMa9/TKDrDs74lAn99BEdmWUEB03e1OcOVzbjeGLz60A5/tHXKb9CKJfs6yywM0kY0A6PDtBTiBSEsoXhvFN/sOz1g+yrIBcuOMc8my8YoaoQDRuWUTuYuAD94MfKF3iqyJDVYBnHB4vkSyz3anXHrEWyvEIXKwwHr6wVJlpxLFsKtAjPmImkKGDnyp6wryGWMJkTpdSkhRfFJBA4Ui78R/qSoaQuMoVYBtH+QxiYtAll1qAHYdsYm5N9FFBDISUqrgfvIxBVnPAwmn+0EsUQCpR0Ho8EyJ09XxJl4FlG8puITRI5mFlm4L9TA8cQkyX0+UDLsZFQSD3HaDyhTbocg1JVdB6CvlBKZazVaEBA+J1O2VCkGGx/KfdEZYExKizEhlgffOKbVslF3hwMaDwEXXvOCWACSP/LH94n/SAoE3a/ekUX/IwbqmRfxmYm0bN/KARoW+cJdo7JJBSjdci8HABbV8431s2UEGpKRqWbzLj9oGmbIWEullBxV3+cdUfkY37JvFOJ5/Y9mKSBeArkNNXwhxL2chTOQeBHq0Ol2GYCSoEDRn8xEES0pG9TJyGxivkj9k3GRKyWUJAzPCg6CJz5Ut3WA/EftSAbVseYN6zzVIJqyjeQe+HSEu0bftKWCCiWoNikAns7+UTavpjRVDi1Gzo3kCXfPu0DvwIqeYhcdtTx8MnvGL2ht+0h03LijiplXul47vSM2pSjWsPHC/ZVHo9jtN5CTUOPvlFypwFSW0i6RYwASlyMW+kfKY6caP6wLGqgEk3woE444vyEObHaCRdLOT9uXhXNQK3TvABsgIskS8/PX9oSSRSI98ZuJzCXPkItXaDgCL2ii/ZCPnCG1TQgO7viCbqQ2aiPSLEbSkkHw1XsyEi6HOZoCYk4WVTNJ/VhJTfWQkpqxb/wAQTAUn288YncUyR726+PHOMtaViaFJF5ZOJDBI/wBxx5CJ2KxCUk1vPU5DpG8arYeRpLd7QrSgqANRRy6u2AjJWr2iWpRvvkXIpTFwAxgtdmWuowyfCK1WZGC/eSoMKspw5fUCGUYpdBcmN9gbQlkIW916bzcS7tTIdoabUmS5b3ZqStV1RLKISk4AF8TvdzgwEY+xzJYJvqYAUHXSAdpbfTLvEJeZMN5gzaBzyakcX40pTbQJSPS/8WyZUr+2yCGegJURkmrq58c4W2H2zZZXOtRUTglKGQA+P20edtMm+ESXchUxsE5oQkcBWlXVDgyZJClKlsm6141VnVr2PPB4r4Yw7diKT7PRLX7Yybo8EFU1TuSPd4jL+Iz+2/aOYhN9awB/l3jeIPxEJIL8OOZwQbOtyPDKkFCVfACBVsgTTD5w02ds78R/1M15pxlJpcDUdIwIpmIisajK2tBUmx5sm1FEsTJigVs4SUlYQk5Zi9qa8KCJyfaaeZlVpurO4lgUhLh1EAUJw4CPlTfDBQoOpVS2AGh0GA4xm1WFRKpid1qkh2FaAa8uEGL7Hs3w2wE3kzbgAPvK3QAdbvkIzVr9r7MSr+2Al7qDvErVwCfejOrCm3lEKUxIQwKlZODiABp1gfYikz7RfO7KQSElviauOFA3WD4otXLYtm32TabRPTuy5UgAsFLBL0GCCokdTHy5Exawk2q6pr25JlJQz1JUtJJrShiuybWA3krHhgUBDl2PXKEu3NpTCpCWCrySFYgjDDzoIZNR6dBqNbG20tkqCPEWETU/mSHHY+71hR+DT/lo7D6RKzW6bJSRWSgiviEXT0JJ8tYkja1nIBvysNFfIQ0fkzS6shLCm7RGVNcltIot13Jwcx9IhLmEOzF4FmE1BN2lCMRHf6EB12a4tKiCQoseuozgu2aYKyAwA+kAT582UnfUVg0CsR1AFI+sG2EEXCxWTiRU/SHePVjpkZ8pKgyw7YA4ds4qFgUahQGrUococIlA1IBP3jpHTLQH3h+lsTwrVondDpWDWclheYcR/wCoEWqnD4WpUlYcds+UAWmxrXgEqGpLNybOISdmgEH+6og4KXumuF0nCBxQbDpYmzHKbwTheUq6gDggFuUQlWkFJSpQUS9y85UEpcM4wcgk8IOkqV8agRklIoOEINuWO9OKUBjMZ8kpAYnew6ZvwhUk9MNg8hPjzAkboUoAzFUTzrXrErds4yJhEwIvq+JKgvdwyNMNY+nIXMPhKDJAYs1aYOMgMY+TYksEpKBxFR9nWCzaojs2cPEKQd1Smc0xZycGFGYZCN5a5NmkS1VSqjpQkk/pBKiXzLcIxH4a5UMDqD3aI2jaRAAFSaBOJOGGjsz5ROUHKRk6LEKKphRLBCVXTMWMWWQGc58I9XsNjTIkole6woH1ricTV4wVjUmSuXZ2SsrWlU5Q90UGb/CCPsxu7NtoTllEpBKUsLy6A0qySHOUTmrCl7JzmKglYwegGL5nU8YRe0EveSgF0F713EBxkMTl1aHO1ZxkochicWFAGNQHfgOLDOPP9rWxVpUmVLd1gm8QU+GHqtsSTwbGOfhvj/UDe6BvaC3pWoos6ZqlJopQvNKFBS7yqeLRpPZ+QESQiXKKyRS6zPreVRzrWPvZ2ySbMkIBKsbzlkk6qGZ5vhDexWii0ouskumpS7uSEvTdbzieXMox4xRn+nsWT9kLSUmYq6nAol0U4D1WaqHJoWeOqUsiUESb3wlgpnI94ipLc4O2kJlonISQUAKIWbw3Ulga4DgI5tiWhDBJe6lV1dCXpUqxy5QkJPSlv/AqF5tqVFpmLUTdAZnYKJBxAdxTgYr/AKlJFDIPYf8A6hVbrWpBUl8VOohkijGrUI59o4izkgHdqH/7WsdscKq2NY+SDw7R9MSn8pf7rTKLbNLJDk0NYsnKBBGBw0juOcVrY1yb9SeTRm7Zs8ImCaKJBDjg4FI002WAkJBIbT1hVtGSZkpaXqxFWqekNYScq3qv3C6hUpZLpIyww6wcmcDib3AMG7Rntj7QlqRcmHfArlUFmpDpFrIoyEABwUmrcf5hWtjIMUk0LgDTPpEJlqScAVNQHCvKKZVpulmSq9m7PxGvKCZT3nYXceMAYulWNziqowdxzOTRLbFlBlO4F0uSeGOEFWK2OSLpdqBmocHfCsXy5aiSVskH4Qb3cmnQCEkmmFHn861ql/2kpClzKu9Mc2Fcob7NsSkBlC+TUqOZ1jQW3YcspvjdIyx6B8IU7atpkywlDLVUGlBpzbrGdy0hloB2hMloUCtykM4FHbGtQ8DTZtnm79nRMSR/mXW4gEFzllHRYSpN+aGxYUAfU6wIicA6QCeQcCCor9wqTVjP2ftCJE0TZwvlzuGif93eGf8AVnneKQAl2CXuuPyhvSM3MtJUQFi6GxdyBxbLlFNqtDEIKiAoAXgwZOfvVBMLLHexL+jS+0ftNKIKUBa5gULgK76a65UfANUAxf7K2aZKlrnzVJvzSAUEbwFcVZfZjK2efZ5V3w0JUoKZyTe/VQ5cKRs9h7WlfHdASzJB3nAFSSaExy5k4Q/Sv9mi/ZoNlyBcM6ad0Gl4UcEGj5CleMTlzJcyYVKoXu76Q1WILPmxz0jNTvaNc+cZUqiEPUHcDY5Opie7QTarTLSkS0KBJ3Ru1UcdA5etY89/Hl/F2/7GbtjS3WZKU+GGUFEquhTEMRgTgRkOJjIba2CZawaTPEUHANQpQ9wHQUODQ2lrVVkB8SondVkwctVm1rFc3aUiVLSoqZUohYa8XIPwgnE6fzHRgUoOlsKRm7RKAe+99OOG6Q4IpgOOJgA2/ijyjVezew5m1bQq0zj4VmBLkMCWI3R3qqPY5PstYgkAWeSwAA3AaAavWPTigP8AkeTJnAMCTT7pEVTtPvvE51jCSTXGBZxakVJAG0QpyUVOZfEaNSKpE+8zpI1PD+YNKM3PCBTMcEuafOGSCK9q7BCleJJUAo4g4cxxhabNaJNVBKgC74txIbCNGoKuvTBwHP28VqmE4khxVs+b9Y1mRPZyyof3E1FAxBDY04RoLGBRz0y/eM7JlhCQkO2mj5A4tWBdibSUm0iRM30vdBrR6uQ+91hX9jI280bwu4GhOWuOcWqkqYhGP5sT0im2zfDSpm3SMAPKFo9o1KUlEtAClPvKwDcBErb2MHidaUOm6iaTg1FB/wAyXhJakovud1T3S5aucNbR4xSQZgFCSUJuqPVyYUW1AEtbgKYBTnGKw2ZsuMxKwwCd2gOLnkIWTbC5Lm6C5q2A1EDbLmGoyOOvSD9qbIFwTCouosOQyP3nGcUnRrM7abUHdIcPQkOVcsgIbWbb9pEj8IEyfDIIJMsKmG/iAs9nZxAmz5QWlU1Xw7oDM3L6QWZSjQEffKNLRkJpWyLqgThUMca0yii37KUgBQJUDidM61JjRW6UEpN593TOrVhUmZXFTsc6MIKb9gF1l2xNlC6ggDMgMoh3YkYjhB+zPaVSVb2CiHWzrSNEHLSrs8UWmyeJv0DlsPlFQ2UAHKsMgPQwZRjLsw62p7WklXhUCqkkbz6nhygKyz1T96aokBRISAMWFHyGEJEorGj2dLAl3BrU86fLCEeOMFSRrPSLRtlFns6FoTfCwUkJYBwKHphzAjKf40tgoFkDIaecRsMwJs4Ck3khRABJFWdy3GvWAitRqAgA1a6KPlhEo0tFeR//2Q==\\n\", \"height\": 270, \"channels\": 3, \"width\": 186, \"type\": \"image\", \"id\": 4947633680}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUTExMWFRUXGB4bGRgYGRoYGBobGx0dGBgYGxsYICggGhsnGxsbITEhJSkrLi4uGh8zODUtNygtLisBCgoKDg0OGxAQGy8lICY1LzAyLS8tLS0tLTAtMC8tLy0tLS0tLS0tLS8vLTUtLS0tLS0vLS0tKy0tLS0tLS0tLf/AABEIAKgBLAMBIgACEQEDEQH/xAAaAAACAwEBAAAAAAAAAAAAAAAEBQACAwYB/8QAPBAAAQIEAwYEBAQFBQEBAQAAAQIRAAMhMQQSQQUiUWFxgZGhscETMtHwBkLh8SNSYnKCFDOSorLCUxX/xAAaAQADAQEBAQAAAAAAAAAAAAACAwQBAAUG/8QALxEAAgICAQEGBQQCAwAAAAAAAAECEQMhMRIEEyJBUWEjMnGB8EKRscEz0RSh8f/aAAwDAQACEQMRAD8A5gygqbvBSQCSoMSQ3IBw1TEwRzFS8pU5YElqda1tpG65jIW5Ls1De1DWoZ/ARbZsohAQogA6Bnq5c8q6N3iWPikNl4Yk/wBtQWS9DyFiKcetYB2jiUk0SQGoOWkNMfhDMlllCxDVt3fh++nPYqUczEWDeUbOXSqZP82S0M8IQUJGZgEjR3LOQGPEmCsQoZaBmpUu9K30++uOzZKjLSWYNfueN72AN9IrOAK7uLllBTkdd5uvlBXofRBNcBIcl6tXqOZenubxupLaEnmG/QdA9o1lYoZ2bdD5RVgH+lK8YzmLza9W+6/tAM0CxZy0P5qkffPSA8OjNMTbUngaWgvaCdTUnv2rGey5Qc1aja6nlCa8RkdtsOxMkKG7RQPymqmYvcbwI56OwgFMrK6ksQD/ALanB4kA3fp9HLnF9KBt4OdTbgNfCPMdhBlMwO4IzVckVrU3A4aHSD5DsGnlJSVJBJGliCSA1Lj9YHcpllOuZyWrYNBk2UAUqcHerTkSDzB0is0pOYtqw5k0FoxS8TYSj4THBpqkEKUHDgVfUJvUl+IoSIP2XgZk2YsISkHKSyqADMLOL109oKw8j4ORSUlK00UTck1BbgWPCw5RMFjVy1LUgOogCzuSezVFC4traCqqbFt3aQB8IoUoLynKWZROV+OVqtz8o9kT3VQbv5lAU4ADubisHS8M5C5gzAn5RlygqcVGatWLnRo020uS7ISQoVJBBDkAaEghn52gqYClugbBScynOXpXuxa9DvVL9a+XVuhSyqmUVoBVzVt7UVbrGCpxSkpDurWzln978hDzYqBkILKLvukc3Soku2jDTQxq2c3WwBwyjMGckbpZQCdf4Y5k/Me0UkJFwC9aqt3Z2I7Qw2mSSxDf0ZiWLCurvofSMpMkgBh+nPzjRfeIBn4I5lEuOBIcNXQF4BnyKFgOz3Gh4UeGWNklNnL3D68mo3l5wMZQmVdWYceIdgXP3WFcsoXAEhW4oB215Nr98BFMMjN8vzX1IUHb3hivBKIG8CaF/wCXqWJ7W8IGn4RctSVLLOfmBFzrW/e4e9YLgK0bolJyHOhROrNR6jMDYNbTV4X5cqlJpyfsfTjDVS1UM7dBO7MQCz8CRUXtVJ4QDjAM7ulTNvJYB8t8ope7a6R03xRlaZTEYhJ65Q54Dh4xvsdWZamruF/btGUsDKKMVg3ransBBOwUpTMXauUf4uc1uQP2IKC+JYm/Cy+JNiefr+pgDCqImj8tL06MH1MF45LcbWNToP8A6PgIXyphMxJ9RdgfrDcrQzHYxkJDgOz9H4XMMZs0IUSwTnKjXhvq0tvKSOqYGlgMpRqtiQHDafV+0CrW6VOd5bJFGDAuB0p5weBVHYvI9mEyWklDHRm1FbnmQIDnp+YDUAe318DDKfJbK9aMRyFHgCYN5VXAID6WIA84DtFJB4rsCVLrb7pDVBpQsOeX3EDrluSAPlL+je3nDXCzE5QCkEh33RxPPhEsB0+CglhawCWFSbnQnStbQVMmZstHUw03flD0BfqW94rg8QEhZcAkBKXOrjQBy3zU/liSJGYXKU2f86jqTwFOvSHYl4b9ROR7r0LyppSVUByCpS7XBIc36Aawjxc6qqaPHRCclIZwQEjd5AjRrvHO4sBTijcdWJjcsaUSZbyMd4aelPzjMQHBNgwpQ30H7QPhMMTLzlglRPEEtz0HSC9rT0lLS0hlFgQ5IbSttPGB1pSlQCWIs5ZRJse1NOTMKx0nUqZSuD2WQ5yvWzV8YsUtXy1PduvCM0zLkAO9Oxs0YrWoHp318B3hbdHIyxs0OS7kH9TzNfSL7PkApdRF7DoG7PAGMklIZ9GHuecM8GSJaRyJpzrW/tGUnJoCD8N+pcS3PT7HINFyhg7C7Vc5ifYDhxEZS5jXYxtNSVXq0F0qtG9TvYHKWMhSatbpWgiIlOmyjzApm4EmlEuWu8Z49BzULbotxjodmzTLlJlzZWZBQ9N4ZiHzWdJBvpqDxT0ttjlKkYTDNmSVT1TCKBIASA41S4axPDvaPdiYHOhSizZmAUpgDQZyNQH1I1rCyZMUAtAUcr20JGsE4PELEkZEKKkkqKy4SnSjlntYO4jYvdmyjppDKfiJqkqlpUEoKXJACE5WqnecqLcDqHhMtSVrKQugcqUScpA1/qVyAqTBuFICZU2eFTAFEhOVRlgfORWiiSQTU8zHuzELxM6ZMTLBGYKY0QnRIKuAS9BenBoY7ZPSjbMsPs4pO+ATMZVQzAkluAPZoKQsSx8xDA8CCHBdjejeEb4/DKTlch0tRJYZamjWsIvLwmcP1oW4cWrwrwjbS0D0yltgSlusn0t19Y9mTS1KaGM5koCg68/EtGCiDyg3E2KrkK+G9H0HI9PGPP8ATJKCphm0appw0bvAiC5yhidOfuDBEjE/DGVQsSRUWuzt1gNeY1lZSVFyzAUercyRwGp9I3m4bOn4ZLE0CS5HHMCCWqxpS9432FKK0EuL14g8AdPekGr2VmDhSQDoWUHN3oybnhpBV4RTyJSo5GVOXLzSjZmL1TWjtwLio4vF9p4D4fw15krRM+Ugk2YMXHE8+GkGbYwqpK0Zfh5gCxRUEVSoKfoaVvCnFTkLWChORy5Tok6gQr2ZRyrPfgkpBDU8afN5xvsFJJWOLB+eVbDq8TDoZJA+31jbZYZK2oSulHPytTmAotzh2KFTTEOVxaLYgpUXFdexWfaBcIWmAmuUEjrQE+BMehKnUCaadgfL6QPImusj+k0/y/aNyuNaGwvzH+HkpUVMzkWBenJ70DQNisOMu7Rs5Rzyl0/9VAGPcCGUFEOK2vb1YU/WNZgbIBcBIp/WKjwCfKHYdwsVkWxaZhzZjQBAJIrcufaBEqCCAxsCa0BNdLn6CC5iQ00AUc1vRIHsPSBZwddf5k/+QaxLnW9lGLg2ky80z+5Q9f0ibQlFCyONfGLSlMtI+6havYQbMnJN1Mex5+8IYcuQXAMxXercxxhjhWFbsTS9AdOTwJsdBVLSlq1PiSP/AJ14x5iiUEpuD8qrGpD9XH3wuxqkiee2aLwiSDPAysAGoQaVbmxB/eFE6VmWKsCR4VPtDda3lh7DMQNCXAr5sOULEPnQPTxPaOyR2iaG5s1kTVuUBVB4Ec/SNJswmpJAeg08BTXhxiuFSDnUSzmwBJL6AW4XIjQy9fI6CJ48aKpLZpLB1NALC4H3XWPPggCz/do8UQ3uOAqfSIpQqrMDWpDtfhxgkrYEnURbjlnMXt5DkOUOMOBlqbC3sxhPNIUoDiQCO8NFP/aOZb7MYuXYP6EkevX9AS3jGiSOavuz/rGcuWW6n7qI1lAOAfHlz7xsWmgXdi3HTApZajsLdNI6dZIlkhQZns1BzevhHKYZZMxLmpUC+vGOjTKmGWpspG85FFEEcD7Ed7QqPmyhuqQpSR8FB1Klk8xugV6g93hwjASyjDD5s++rNYBIzZRoHU4e/GEhmj4aAdHFuKifeC8DtFKFZVs0oLKVCpOYhgAb3LdeUAhkk60MNs45UxMvDJO+DvE0SE0bMdBQE2oI2KVSJZQQE5aoUCSFHKFKQVUcuQWZw7pdimMvw7glzCuZQrmuXLshIOY5m4pHyhy2U0cRpjJhaYhQCiksof2pCaeHrwgot8iJ/N01o8O8kLL5VOOhqCCOROvDpFp2IABFHAIez820P3rCZKsqlS0kkEuSXqGFCHp9G77hWYhwAB9gD69YJc2M8qKX4dHfyaKqar/fjGk+UQASRW1rfbQOAaj3bzh3WLogJsKa386axopYVQghzXVg/iNLcYphVNVyO5Nuserd8w49GGnf6mFt6CCcHOMpRRndJsUkVq2vp9YfqxSwjM6VyyWNFDKaeDuHHLtHK42aFBwwWDoG7hoeJw6/hCY4WCkOzpUzWIO6vxGrQSdICUbZnt/EgzpKWSrLUBywS7sokBywrSEe3g+ISrK2cZqPXnWodveLIUFT0vW4aoNElhUjkL2jT8SgieCRXIC1aaNvVPWFrbv3GUor7AeJfIGBvVu0F7IdMo5hTOTzZIqx/uDd4FlTAUZiWuWJ5H6EQfLRmkpSKOFCnEqdR/6N3MU44+O/YnT1QMpYZQ1q/UpJb74RnsrCZpizWgah0JPvFHNVNQvTqmCvw8o/xSS3yhh/kfeF5avRSm1HYZKxLLHXlc7vqqMsXaaoUAmoSOglsB5wVh5YU9ny0/uFQ/cQvxc1syQHClJbgSndJ7luxEP7NfdiZvZhi1g5j/NMNP6Wr5pSPHjGGGmOpSy7BVP/ACnygrES05k1ehKiOKqt6GBnASp7vmrrUW4NWF9oQ7EzMZlTEkVICiQRoM/D+70hlJWlIZQST/kKMP5S0LtnSgpcwkigDdKl/LzhjMwij8rENSrRG2rDlspseYU5H1HoSW8432mgBSVPm3wTx4n0+3gfBgFCWNQB43iuJm5lJD6PWjff06x6MY0Tt7N8WcoANKW67xbiHAhdJSklZUWyocMHcuEgcqqv0hvtlPOoYeQVTlW8JCj5jzA9SfQQOYXhXiYw2VIDAuWKm5PYFyGuW7841xqVZshNRRtBqxPKN8JJPwkglkkOw1F3p+Z+jhrwNNn5auN0G1BWgZu5gIqojduRhMQ5JzWFKNfgBaNZUvdD6luJ5HygfLutxIB5/fvBKxUM1PBiD+kdjVpAZuGLlSx8VGUahtHZz7QYHIPF2FKDX0EYYJH8cE1oS3M/vBUkMS1WWWpWg56V8oTKOnQ1eVl1Ta0a1BfVgRytTrGpW2Ys7DQAAPQDhA+JP8RNhQtfSuvGKzA0sqWqqy7aX07A+Ud0UjHsDwkt5yer+UdLhplg4To/l4Qi2E3xCeAbxv6QwVNIqdOHGOxx8IvK9oV4VbzQg1DuW1AqW7AmLY2QTPCFHNvJSCA5UlgEkNc5GibKURPChcJPnTSLYdClYoJSMpcgO26wI8A1BC6bSKXLxHU7NxeUAAFIQKJGhFXURcXLWrV9FHxVTl5t45i6qsSxzEJb1HbjG80FSjKRYllKoVFvmSDrzPbWNZEvKQQLWJox4HRrDyjY43H3ESknsEXJaUbMhrN+Yt+sXM5gGQ6iBWrO2g1DcfaB9qTXmFg2ZQOUh2LVHRz6QUvC5Vpzqd0s9hlYtfQZSOxjk96C8tgpkqv7j7+msSbhwwckvqLOToDfhfSG0uWFJJyhlNlcufYcXbg0CIwu8Azkmo0cm47ePeGV6AdVcgSJCszB+MNR+HZuTOzktRJuKBnAZ60r4kwyXslQTn+I6qF6Mw4ageuseStnKWErT8yRQlVNXG84T1Iamkb3aBeXRzOJwuV8xKSH3SH/ALuhHC5YwRsnaOVBlqScqSd4F2STV06puXFn7wWs/DUROAIJLlKWKTwVLaofh4QmRMSiYFIUwFDcOHpYUJDO+ojnBJryNjOTi/P8/ORghAOMQzEAEhrEZSb94x/EhBxLBTsgA/fQiM8Ct8SfhZQCCxDsAQASAeb34wNthhPXlP8AKCTUuwBcj+qOUUl9zHNt0/QyyBQrybuSn2hthWTh00DhCj3o3/vyMKpRcAH7OZvQw0nrAlgJDPQc0i/iVP8A2pHCKMcPP6GJ7YqxCikEJFCadhlV2gn8NJBEwEai78/aA8St0hta+f0gzYck/DWqpdV+gHuoxPmm7Kemo7GahllKIICnoRoHAJHQP48qiYpP8RCQBlQHLWdVfT1gvDyqc94ANq3DixPbpCvGGicqiTMGYgUYMkMDd2pXyaLMesaJ3yYYmcFKmEUb2TveYI8IEmbzHRQHpBEwZCyQGUlmezU0dzp2gbDuyf6aV1YH2ERdplbKMUSbPXvqFq34NS4htNngHed70djzHKFmz/8AdfVwbA1J4G8dCraEt6oBJuSASTZ626CkBGFq+AM+VQq039ADZaUkAEcGOl6uNRFpKM05YPFnGlhHmzkMhyzfuY02NMATMWzlSqNpU3/5Ad49BCpMx20o51VqTQcA1B4AQpkhRLVqe7mntBuLn5pihz06nyr5CMZdFElqA+IBI82ifOr0vMzBVtnTImIQgJzO4sxbt1hRjkJM4BNASPmpoL0tevOsdFsfZxEkZgxNXYPQPq9uTe8L/gCbiSHp8NRJYOGBNjR7DvBzChkVtCaTVbaB40nKDDyGvOv3YRXZw3iWJazXowDdz5RfF4aqkkuzEkUFqAeMKwPw2bnWqBsCk/EJFgPUg+0bypjLUa6+cZ7Kl/OXNCK34n77xphxVZ560F4zysOj2etyFciO5SYpj0gZU6s9eYc+ppyi89FDWhYj7HKMNrLHxTejDytGZXo5Gmw5FFqH83p+5g7aqDlKhw9fcPAWzQUozPQkU0qf1gvHz3lrDEOU63PLwPhHLUGDJXMW7GUfiKNQw9Wi+BAVPJUVAbxo4JrZxWr8YpsqmdT208f0EX2cGzl7C/jHQjbig5a6mdRgFpJG4UtbKHHSlGaNJiCVMwrQuHd+tz0rCDDbUWhJCaOb1ezsG5Qfh8ZMUGJpxNC3Nju94rcSNpg+MQr/AFCErqUsCRqNDzOVq9Y22pOOZObR/CvC/wBiBEqKp6y4YA1HIN4RMYCWrp66U0iWlckhq/SzoNkz8zgB1PpwcWavYfuTiUbqGQ1RXrZ/8m8BHNYBSkkzEqKUpcE2zUqn37cWgyTtYLYFZf8AK47369NIZPHW0LZ2WDnJCSpRZLFgG6EOK8Rr0jm5m0Fy8xy3/NoXDeR+xF0qCkmpcVoQ3X945jGTpmYpmKLg2aDx7F9FhM/FrWt1Kc0cl+DB+zUgPHzHQ40N9CPpGRWxHPjWIUkpU9SXLg+1oZNXFofCKi0WwSyZgLmqen5RSkZzlhSpirMr0cD0jzZlVyxW+XQmtKA0PSPZg/3KH5jfiHe0SLa+7HZNfsjTBSc5loBYsa15/UdxGmInOnkEqy0008AdecVwOHX8SUbMH7JAJ8gYLxgHyasAAbCgUrzYdhFMdR0Kxq5CPFqUGpoPIffhD3Y+LIwqQw3lKrVw5NmIhFjLu48a9SOg84OROyykpawHfjCoxuW0OzLwUh/sxTZVEuylHqyFu/CwLwkmSznSqwUaJ4Bn8s0GBREhXEoLcXUcjeQgfG2e5QUANqWB+p8Ipa0KWgWal1qNSxAHgPqqFyFEFLXIJPUt9TB8+YwmMbqyjjUB/CsBzgztoGHU39vCPLyQqRbB6L7Ll7zvdV+QcwxMvMSX1bQ+sCYMMUMeJ7BJPpDXCymQl0XD11fWvtD4RThfuKm/EConASRxCfs9oL2dJBk5nIYGtqkgV6h/IwJsaWhSjnUkDKWSQSXYM7jKL3J/QqRJWUqSlWZKVMCjeB8GoHrTThFXUrojlNIWGSHcU4caUr5xJSAVpRdyB9fJ4oVEOFPwHQEwRgZgTNC1WBPZwR7xN0fEQ3G/hnbLx2ZFaHQcvRoQ7Jn1xU6lJSkh2uqiTW1ngbHbTBLA3FKUbhAEnFqTKXLBooh+bFxDsoGPHUX9gjYiRnJNAEv3cAHx9IE2itblR1Jfxp2pBuysSz0fdyg/1ZnHmYXYt0umzUa9gHfvC4x6YbCn4pJBOyUOhTgsSeFmZ37xWQoZFcW/eNdmLAlpBpX1UQDFEqGRRoxdvAtC03VDnVliP4bG5Ca+De8D4+hUBbTidI1M7cCKMGr4OCOnfwgYIJUAdT6VMDlT4Zq29DJCGlUJopgKVDjTn5MI1/EGHAlyFMBmSbcRXTkoQvQsOlJD6guzPcN7wy/E2IlrTKCQ2RABHAsl+7gwzKqWvYVB+NL6inDBIlKGUEk0JuLCn3ryjyUtkkH8zdmP0jDDrI3fu8ahXv7QWNfEX0GS4f1LJmAAG7KqOLEfWGS9oH4ZCEAVG9QmguGDVJHiYUykbq+obrV4vhZh+FXiQPBPuYqYiSDsHiMqVrNyKNcuQKWY146RMPPzA5rgE9bt3ePXSmQskVZknV2JB8WtFZDMkpIpLBL/AJVMxLa70T9n3Fv3ByaX7GWOxCvlGl2oHL0A4DzMDKmklxcMz8mHrpBTODQfMeQFC1OpgdCQnM1hlFbu7k9yCekUhcIYYPbCgWowILF79qiJtLbomBkoHGoFDycU6QokpJLsSHA75VEf+T4GL7IklawONRA9KRlJbN5EkqDgaReUWfhYx0+D2LMQh6amp0bR9YWYuXmD82Pnr2jTFJMTYNWVYbRVDz0PR49mly3FRJ4XYesVkD+IADTMB5tGwk1GpKh5qZvKI46te7H5FaQThZ6s0xJDZEKNnoyXDdAB3MZ7Qmb133lEvbQ+4gmUhzNPFYR2dKleSTC/alcvFWY9nYeQEUSbUAMK2LJyaEj9dG8hDCeoiWgXevRvOBB8vd/I+7QZtNNJYFyn1akBgt22NzapDtaP4UpgCVLT13UFSj/yI7wsngBU3+UEluYAe/TzhvOl/DWlLk7iwOSsyA/i3ZMJJgdC1aKWW6FbehiiXApGExQ/hpDXJPm58TaA5i6tbeKvAU9QYLxVFhPBPq49oBmgOo9uTuQfSPLm7kVxVKhlgEuZeagSlzYOLNWnjG22ZiFTN7QMKGwJaB1Sy4TYlKR3LfWNtrnKtkME5Qz1fie5rDGl3SEv/L9gzZc0JStLpBUremOVqb+UCzkNrpVoPnqlkEZpiuALODckgAAUB3etYpg8LLQTmcA3MsWd6VNOpr6R7tMS5ZT8M0I+VQLpKaFyaG58Ieubs8PvlKScd/yc8hOYnNQE/wD1W/S0HYXBoIUZoIBIAqEpd6AnQEhqc+sWlqSHPwwK3UHJa7A8xf3jNE+aoEBSv4h+c0cAKcA9wO8Zzksrjmbi0tfyCT8KUzMhbdQFFjSozBuI3g3KL4aSak0Arz8gS3aG+KyzDMWgVCEprSgyuSbMEpSl+r8wEylEEITQghSnAfMfmrYUNmFI2c+rQxdoUo3dGUlYSpCBXUlmJZ1V4ilIrtCWSTlBJFSQCeZPRyzxqvDlM4K0fd10a9tR9vF8AblUxKEagsolnUGR+YuRwEbka6NDcUlqQJgFErKC7Cgo1qU8S3SNAD8MuG7uKj78YMwch1/EIV8LMpWYpKXG6S35baPEw6MsvMA9GL2FBWtLPTnGTktI7vPP0oWylfKriTTSgH1HjF5aWU/AEnwZvONBJCUIU5IL3AFRldg5paurcorhxRR/tHnWFZ38RDsLTTZ6JTqBajtV9EpfzMDT3qLcG1vDaZLILEUKkEHi6K+YHcQpxKSSw/MfUweZ+X0/sHA+rZ7LltW5b2B94pM17QQZZClPx9N31ECTT82rRuL/ACy9kkG34DeWjcUeCvRJiYdO6kcz/wDMHp2etQWhIJU5ysGdkgPXQkEQPjMOuSv4agykkuxBvbyaG5JpRYhyT0i+0ltKCeJL9in78YtILSnb8oHcsGgydslc5IyMSzM4tckPz9IImYFcxakHKVAJ1DDKzDdFdOtYTil044oRmzRWv3+wjwuIFQrQOdYii4UQGGYdKAmIcOpIUr5R8OpteYE/fIRnLXuN/UT/ANW9T6xVdjupNWi2ExJlkqsQSR1+HMSP/fnGv4bm/DmpUE5mSS3XdvoecbbKwgmA59S9bNepNLD0hnN2elFQh9K8DwKVD7MY2kIydoUdJWNpPx5iPiUAuBmzOKBgkOQW4tCmThyXqXH3SHchc4yyZeZKDcCWMpbVgTW9Ryi2D2GqZODz0jMTukFK2qzO1frCllS5/gUsk/0R/c4jAlpssuwC0+oi8qikl6oAPJwXr98Y8xknLNWAaBRAe9zfnSNcNL3kjif194TB3OR6cm+lB0pW6kmhUsk8jkU/ahhRPm7pIP5Upfg4+p8oYTwQlKW08CsgA9WzeMLcSKnmv0S7dnirJqJmFbVmRa1/v9YY4iWr/USZZFUZBqNczl+RhZJTVTaC/gYbYYFWKKhVgWN7IYM56QGD5Tc3zhuOnFKio1IlqYf5qA8co8oXTENLQh3tT70t5QVi0BSyB8qfhg88odgfAnnGE3ECYsqG6kDdDdHP3whsgULSrfWr7oIFIOVKeLP1jUzaAAfMT5gmvGpiSZf8WWgm5A5CoDjnHmPkrDFSCqbkJANAbtwMX2jmCgKUSPusaLBOJLAVNbWJrekU21mE0vQsHFG8oY2+7RMref7f6GmD2gEJLuTcVDu7O9WDcNdeJqZyFIbIElncqAYm5oy3OtRe8BYaYJegUlQIUQxIJtW3Xy4xSZLROICnQACCQlR0IA3QEh+pguuV1R890Vx/4FyUSgkqyACzkpykgOyUKuW/mUq45MXLZYVlWlOb8pTlpw4QrThNUq3UFyVMUpOgAHXV4ImlFcq89nNbnStvOCUrYqcqp8hOEwgKxkZLXUmpLtRgLCtS14Hx2AQmhVnVmYHMwDDUJsa2PpFRnLb1yAkOXsauAGt92g7BuF74CwcwYFiO5DfsY2TjfOw4SklaEc7BKzA5Skl7hmGjJ9+WkTBYZIujMutCwQG1FyVUd6eVegnYZJA3ghQPyJCaaVAAd2LKrZ3hdOwjuQCQX3iAA7EsSKA614wtZoySXoWLNOMemjxKZoSiWtDipUDmKRpqTvMCakGvOmpwKCoFJUZYTZKSso1yksjxDtQVhlMwqVS0qlnKjVClEU4uCQXpQhxoNSnxa1ZU5cw1LkpYWzNoSwboIzqXkZ3jiq/PsWXKScudAJBPOjuASSxpq3k8LlychIISBmCgE3IJseFOgrSHeF3y4UQrdCVKT8RQNLflS/EB6mJtHBpUj50hQcrZRWpn+Y5UsC78uXHH6jsWfpileiv4nwskIl/CWrOsgsbBIRlSKWfxjmE4cmclBcb4BfStXHSO428pCsMlacuYAAgAvlys5qBdKRSOb/C+FE3GpSoEhlk30QSFacj4cYCWTh+hXh/xySqwTaWE+GoB3YO7M9SbGPMBLHxUWJE1RYa5ctqciYe/jXBpGJSiSl05APmdzUm5jL8O7EJn74IG8QQN5IynKa/LUp1s+pYnhy7lP1BmpdwotrqospK1LJzFwmutCX+l4R4svOVehat+FY6k4KUTNC5qwlt1aQcyiL5ga9hwvHNYfCJz1UoknWmtO7amN6pTi0/qRRlHFJSfol6vSGsuVZkuWDMxNHs1QfCLYCSFTpoAU4AJ/wCru1GcmGD/AA0/7gYi1SAAWDn8p1eBZyUJzFKi6nJIBZiQAxe1hUXgHPSiTVucnq/L6nP47EbpF81BWwBBOnL1jLZUkKZRKQEqsone+UtSrMG7xvNwSjMSANws5IoEkgOWuz1EPJeyR/s5wkJfeSksvV7PwqYqUkoFsfDhSie4OVLIGVYTpl4ufkBI3qsXr5tF5eyFLoype8XNcqSNCOLtSl7GDMGcO6JCip2GZYzgEuVbySGIAF7QxkomBSlZnUQSMzasCrhUJatbxFPJNfKLhij5sQbWwxly6k5lHKyQACwCju1bStHheiZMFXVVjSpqRqLdTHdKRmczE5lJSnK6SGy6vahF3Yv1hWcOMxVmKgaqIS5SSXO8zcdLdYd2fM/llyHLArtM4GckhTG7t3eC8OTvFx+ZvbtQRXGoHxpjfzqI8SRGkiqX0UUAdaH6ecMw25SfuejkrpX0CcQchQm5JQ5/tEwt/wBQYSTrlXEqPmz+UNtoqdSNCZiieQSkoUPLzhEFug8MpPiVGKMyuNB4nTGWw8F8QTHzPT5Q4uQXodAOHeGYwiZaswKnU6d5hchSiAHaiSPDjGH4Sm5VzHRnoN3MQPmW7hi+kMcVm+LLStBT86mIZqBFqaqvqwgML0kgMzfXoXLVuzFf3H/iMvqKQuA3HuyFH9oMx81kFCQ2clNbsFBz0+sATpjImG4BKfLKf+1YPJtNGx00YFB3AA5yv3pEwZeek2Dorwq59PKJLxGQqJruC3e8b7FXknylHKWFlDdLJeoHeIK3Q+b8LfsOsHObGG7KSfNlffWF34iJGIWFVINS8MNnTicYopyjdVcFhawDdoT7YW85bl63pWNcSfEvi37IZ4daVJmKUSVswSHGoOcsd5QqwbxtBeDngKSgJJQzud4OxYqSSEmmpfvAJCZSVqTKJUoggFiH4M3AvBkhUyaEJ3go/l4GmlAQ2XeNm5PDclrhngtqTvyNMTjgoEASxmUwQlCUipod1gT18YVqQ11MToHPSpNe0MZslcoqz5SyTUZSlFQxo9XZgBFJKUOJijRgAXcqfM9dKU7QhunQD2rA040JIzlg4odHYaXDF+NYaomJJDtlYZmqp/6uLENbQwrkbLeaTnIVLKSmrGrkKcWYh+4g6bhzMCClGVQBzspw5qCFKNQwF1GogHO/P8Y1QionuK2uQRKJKdXTUGhG6xZm5Rts7HpIJUnI9AU1JqxJyllAVLEOWvCrHISh0qQ6yNNMwJD0pQiof677OlTlkUDBiUgAMHZ2ZieYg9VyEk7utjWVKWiWkuhyQEhif8jQMQ9iRGmNkpMtlpVmzPmIUQrmTlcVp5WjDZuHSElRACwq7BjvORxsMw08AIIlhCVqWFlbgKoKOKEsLB61LluYYU/QPqXTspszEplBxvZrtboBrqKjhBM+WpyxUMxqlSilA/qag5NUu/OBpsvL8Nk5EklikFSq3ZykAZiG9rxZconeWpW4wDuxf8ritLsnXnDo8WKk6VclmTNUUGYAQmgSng3FXuekX2bhJMpUzIslag1RVhVXIWer2jdBlEKUUkLS5BRlDpZ3JAcDwNDrGWFwZK5iZ+ZIp8oQpQq9VEbrBqXqBZ4Kk9UjvGlUXoXbXwE1awtG+Gulze7jTx4Wh1hlzghTBxQkg21LnXpy7x7O2qnM0r5EpITYVFS78SKQFOxilIIUWl5n+GFHqaO5Ju9t4wpuONbYbk5P6aJhsVMmEpU7OWVuAjXMAr5vy14awsxWMHxEhBQlAGUEAK49avWltGvBuKSFLTkRmCpZylQYFWUgi5SCC5fpA2JkiXNVLSpSUim6N5VK1ezuL6xkZxlyufzZjjKK0zadI3UhKip1Vc0zEhmGh404coyM1T5GYm4P/K9XVakGKxGVQS75EhywKc2VyQ+hLl73jPFrJTuywV0OYaXNOLuCffTHk9zFijyjLDpOQlIKkksyTWlibsC7WJqRSMUYhSQd4Joc2YBQFWIykEWNzwaPcDMyOFhQs7Us/vB2BxKHyJAAUzmlGcO6qWgY5FoNY16lcBjFAKzgqYBnaxeoows4PCINslDlITLLHfqVMbAVy2Ooj3E4hILZmANg9TzIv5W7leqYhSnZ3JBD6a9Ixtt2FpUkw7ZWOUSQ4AVqSc5arPRya0tHS4TakqqUo3QA7ODetACp+/jHGmWS6kocC2Ygkk8gA1PXwrPlTMxKgAt3UHqXFdW+naHxh1JIbji07TOtmSEtMeRIylROZQOepJzMAM19OEchjZbLoEhLuEpASB+UEAWub8uEMMJMWUkJIHF1ceWvaFszDETMhIcGpDlvrFeO62UpQaT/ALFGPnZpiQ35FE/5K165fOFEtByAirg8db+sdhtHZKUkrBz0boNAdP3gJKENlCQGpYUNhxgpNPzCeeMXsH/Ds1UpSl0DhnrRi+hD3hsMVSbNewCAeZGbt8yfCMcbhgFFKS7AHhQgceZ0jXKEpl4Y3U8yYf5RfL3IboDHYqS0NWRZOAfFyWxQR8zSw3JyfpCDEKdC06fEJJ0SM1TD/a+IyYhahQIljNqbk+LHzEIlBpK3Zz7mvrGZJaoYlsriw8uYp62HQe0HbG+F/qZfxXyZD8ocuRSnVoBmzgpKwGAaLbMLzJXh4GsQJW0Nkri17HTfg5CBiJnxgcipZAVlKqhSVMANWSYR7TwSzMUUDdJLUNnpZ9GjoU5xTJKHMjKfEkAxjPwcx6pT2KSPJUVrCo7ZFLI4V/SKzGUQ+9ru3PACnLibxqMVldISAWZqCjgaOAKjhDGZslISlblQIfMEksA17VrQ9ItL2WklIJyvRWU1awyjjSr+TCPPXbH5M8J9nfDMJeAKkFSlh0lmcg11AbtQ+0YhLqRQgkMkkcHIUdD1grFS1JYAF3G+SQeGVrVvqaaVfKRNKV5lFyCXtXUEfSlIT1PJu7GV0aoKlurLlLtcgB6OS4obVHUXgjGSpYUhISxJZTBnIBPGsLcGutf5qkU56PV2+7aGfVAAUwU7/MvgaFzQF3/pgFHWmNUvI2mYGWSpaXBQwL3OUpBBJsyQRBcqWAoAbpyMlhU6APqp3Pa0DY3aBqJaUg1DiocMLuSLAMeEC/64s1QvLQg7wJAOltRXnwg31OmcppOj2cjKChPFx1uQHP8AMT56RkiQsBuCd19Q4oWrWtODwRInNRmPzUrV7EvS2uvWDsBKURmKlIKSNDa+YF7v5G8C20gUrejdUoJkMoFWYigABa4UzkAglRDM9SK1hVKlqCyFAqGYkJe4LgkakFzDubigsqc5rZSHuNavx4wtkzt4MKpajjia8dB5wELpj5raNFYfMggKBJFBUkvbnlZ63v1jzaex87qStTFhlJcfKVF21omnMwVOmBKyoOKM1zQlzU0NB5wumbcExakWGZw9TQUduTjqR1guqa4N8K0aYbB5VgpzEhzmBf5eBoSogmgvw4C4vCqSVJKSxcpepYOE9Ho/2ziZiTLonK4DXtUEUBoCH6Zg+sMJeKkzJTrmBILu7PvOWIF669+Ed1M1Y4y1exdKUjJKUkkqQxq4JCgoA1fjrwTpCnGyxNKVOMwyqOirnd8APLkzlExCVfKCkhqhg2lSasTakLfiJExRy5HoQXU45HhqxdrVvHJSauJ03qmCzZOVTlNCKFzUgV5tYN1ge+Usdw6kkMGALC3CHO0JqBLAAzWsTf5nHHpzgMS0KAUoFtQBvE8A5vo9dIfjjJ7YE8b8gbEvMBVqGBAAysKAlVKt9aQFhcPxetuD/ShhyyRRXC3Dn6DXg1IzmT5GV3ALszqUQORbiNXveDjjbVJGdxOTbAZuHOUKKgcxainL6uNLs55c3xEoEi+Y8eR8/vhDOXipBllGZlEtYmnUC7vcCB/9LLei1LBsAgpPWsOh2efoE+yya0E4eVm3EgE9QAK1BJtfTtzGnoZeUgFRAJIL/KQD1FD1gvAbMSFBQ+KGucwZv7QB/wCmhzhNn4dJK1IVmP8AMlRDGpYkN5tGR7NJOmx0eyTZyKEJcq3h2BDczpEVhys7qVVOgcnt92jucbj5cpO4uWnlug2/lBJeOcl7Vnz15Za70fdTe1WEUQ7O6qw32NebMpGyphFZMzjvDK+lAesDT9jKlliGq/zJzdgHsDaG83BJSl580zCfyvutpa/6wqkbTKF7oSlINSkh2GlaiD7mFnf8XGufz/oJl7PW6SJM1Zy5Q6FZSA5dV6OAHPKkJpWy8SgrXMkzMxVvEoIe+vBnAh9I/EXzZpq3NgSVAcGIJ4m/CM5215KSChlUd1UryzUvwjsUGndUh+OKitHKbSTMWlW6xWsO5AoKMxLm0CTMBNXQJYUJqDQWtWOln41c9gmUg891LaXPpzhfisMtCgFIbpvD1rDnji+Rqk0KhsyZUMDRtfpHmF2euWUqdyC7C3MODyhqiYXNq8h2pEM3Lccup/aBWCCO7xvQ42RipKqLXMlKo7LU3X5SB4+EHK2ZLXvIxClA6/NXVy0cyvVgR1b1EXk4+YkMlZA4VLeAjMsMlfD59xU11D6eFOUhJUCwdil6adjp+5OB2pVVNwMDVuQrYMBa1IkSPm5R017nmw5sF2xiUKYpdzU0IopsoqOHR4xw8orLh1B3KnBAFKM+6acqWdokSGxqOOxco3MsiUpChmIq5LKBFKF2NKHwjREpVShi44NU1u3IWiRIXLJpaGQxqwHEpZZIqKEd2d78zGikgICiak0BBq1z2cDvEiQ/GrUV6/6FydSf56A+ZYdTig52PqGgobVmVckg3q/2L05xIkemscEnpflFEJdMbS/NGitpgAsihu7eOnrGSccp8yUpD3cEjhxiRIOEIP8AShkZJpNo3/8A6U01/h15M51Nb9oE+EokLJzEVoRzIFhS8SJD+5x1winojV0bysYX305yRqryZIgiTMQs1krL2yPfhVveJEgXixr9JyhDqqkGfAWSwlLysbqr9t6PGRwMxyE7r/8A6KLDhZgWjyJCIxgnKorQbhGnoHxOzJifzp5soeAv7QRhNkqmXBfgWHEWduNIkSDjktJ1+aAhK/IbSNgSUUUEg0Z2rxoSdKe8Wm4SWkbstTpNS0scNSlrxIkdlyOK0Ob6UIMTOQk7wJ7ODelKecUw34iSmgkAB7kBz4i3KJEh0VaVsC3fIxP4hQr5JExxq7ADjSjcrQIoYmeXWShD0CA5/wCRoCBHsSNpJjVbNp2ysOkEfDWToSVOTqKsDU9bcIVzMOS5lypgo1HqOiaHwjyJGOVKzJaTYvmrUPmVejXLe0VUFEUSbUNCez3iRIZwwOlMwOHWVAVB4ZW9NfrzhphNjBTZljUt0a7GukSJGm0HTNky5YITMIOuUG7W8TfhGP8AqESwQQsi2+HbqHpT26x5EjGDN60JcTlUpTDKHoHcAdb+kVSoizE/feJEgjjQlhr3iqJTj5FHpaJEjjj/2Q==\\n\", \"height\": 168, \"channels\": 3, \"width\": 300, \"type\": \"image\", \"id\": 4947634448}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUUExQWFhUXGR8bGBgYGRwbGxwfHx8aHh4cIBwgICggGxwlHR4cIjIiJSkrLi4yGB8zODMsNygtLiwBCgoKDg0OGxAQGiwkHyQsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIALcBEwMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAEBQADBgIBB//EADsQAAIBAgQDBgQFBAMAAQUAAAECEQMhAAQSMQVBURMiYXGBkQYyobEjQsHR8BRS4fEzYnIVB0OSwtL/xAAZAQADAQEBAAAAAAAAAAAAAAAAAQIDBAX/xAAqEQACAgICAgEDAwUBAAAAAAAAAQIREiEDMUFRIhNhcRQy8FKBobHhBP/aAAwDAQACEQMRAD8Ay75N2pExIBBn+08x1g/ti8V9eWdGntKfIkzyP+I8Rg3L5kPScVUXukCRa1geYkDfAGVpioCfzCVI21AbR/2B2xhZDA6WTdqQZSCZMDy5et48sXcNftKdm7y3i9wv6/ti5GZSFRTpK6o5gg8h54oUhKy1FEKWMiNj+n+8Xk3YrGedSpURGpEq69w8oG6mOV7YDyddrqTYwTbYzF/thtlauqNtDjQZJF5sfC32wFnU7KqSZhv4fA9QcKMvAIzcnUY/K2GopI5AJgTMj3j12xXRy09qTuSWXx6iMDpV03A538picb3YzZD+nNNhUJK0UHZSBrOpSwSQogSOl+uMzTMibExBjy/fA7amZAOW7cgLxPhBx6o0ty8eg52OJSoAjLvqVm/t3F7xje/AnZgVW1Qypt/13n6fXHz2iQDPMmNrf5t9sMRxAp3VIQspQ+Knl7YnkWSoQPl6atULOZCgsT+nrvjhMqzd7TIBAEeI2PvgpabEHSBKRM8/PmY547ymUzOl1XT00kwTsbePTDyEVZejBvZdUGev+f1xQmWeAdlJg8wCAZGDMxSZRMGHVSAd9S/Yi3vjpmC5UGobbPp6kSDPUT9MGQWUV0dGlW3HseYj2HrixszAAYBlXlgCtUNRdVMEhQBP0k/T6YEepoVSbkCfDpf3AxSQ0HUqYQmW7pmwuLj9xHrjmtTNQowFoJPla2LuD0EZAahEv3QPCd/OcQUdK6VPeViL9P8AZ++HkBYahlXQnUB3vTbw/wBYqzKaT+HMTJPQi8euKOFVmFRgf7evUftg2tliCEDqRBgLubHfxGFdOgJlIqVURiANQLTccwfpg74u4oNaAGSFEjkDAxl9LMQVtzP2/ScNq1GxdwGI7/WO9byGK8iOs1nyJVRGlYPLkN5/l8L/AOosP/MH3N/bHObzGsFuZABPX+DAec1I2k2IABtHKcUkMJq1ywIHKPt98cZ11UKEkgbk9bG3htjjJXXrDCx57/pjjiNSSFAt/Ptt6YYHKNfUeQA9cG5jMkhQTYXj6DAjZQgooIOs87bdfDFtfLtAZdrD74ToCrOVQxCiwB398RHLB42At5XH2wTR4eFQ6iCzewG4Pnv9MV6pTSPGP5vhWMuya8ye6AOfqf0xOGR2uo3uVX7T7Y6yeUhQxJ0jkRuZ3PrgGvXipbYHb7/fB2BTmlGs976HExa6KSSSZ9MTBaGO3pNpVh3WJup2f/Y+owCM7pjSbKQRB64lGs7rT0X5+M8/9Yoz2XIbXEU6vL+1uhEW6jHLH0xGhXiqlW5aSrjy/MPabYr4upVlZB+G/LaGj7ET9cAcDpKBU7Req3sQRIJ+v0w1y9qGioTYHvIpaRcgxO4PlvjN0paEV8BqFlamTuCRPIjb744YmsOzJhg3MTsLj6TGBMhrptTJ2ewEXM29OXji/MB6dSb3bVEXM2Inff8Al8X50BSUamdLNYxDDp5bz4eGBGUFTzEkauRj9/1wVna4elI3Uk7wYm31n6474RRatRqIFJGmbi8ySD573xonStjAFq3gHz+v+MTLK1QwLmNvKf8AGPEyzQjRAcmG5GDfyuOeCaZFEtMbWN7+s9cXfoTDU4cyqvMMgYE+zDzH7YorcM1VWJkUwgZSLwec9QDOGPCcyKtJlbYzpc7gxEj1j2xxRqslWmsFkUC9rhpgnoQdU4zyabJsryWcPZhqclywBG4IJIv0Avfxwbk3qM+pSNVNTqExZTv7T9MD5PIinVqIF7wuikAC1wfC5v6YrzGdNDNyBaoQfCI+l5t4YO+g7HGYUMdGoNIDJJueUE/T2xnc3l2ShUUjukkgnexufYx6YPy1TW20BHlWA2F5Unpt7YKUrVNXUYUSSCLTBkeUnEp4gLeBZJQKiK2oOttVrwZHlYGfDC2nwKt2hVgQveGrceA8yYwb/Wyjqm4GgHoTuPKJ9cE0eKkTrnv/AKgfqMaZSTtDoGyfDGqUwZK1CNQB2MyQANwbT64JzGSYzUpgkxpYE7kcweZ2nC1eJFqgYiABy8OWLcvxspTK6rusDwFwT9SMV8h0zuplxR0MWDCwJHMQCLcumGVXiFGpdlAZYi0c9p85OFdBO1BDju6VPSDBOryGLMnw9mcCIiHIPQQN/P74TryI6FRSKlG1xKsfAxc+X3xdxCsr0CikKygAncXPeHjFsU1iukVBaWbUOY8APT6DAVCtpJRTc8xvMSfpIwR9jQRlsnTBP4iwgm83O8b3IP2OFvFsq+ouYOo6pG0G/wDBhytcalYQZcHyIvMbXBH1xK9Ttqp7WwYzAHQGY9bemLUxibhrALfdjbHlWNJHTveMSP3wXxDJnWdJAUTHSdreB3wqZWSZEzC2w07AYZAr2kvvuB06Y74owU928k388JK1QycGUCW0TcavtH64deQPcxVKgzubfpGOck4BI5/z/OOeKVZqW/hxS1Mo0bmJPtfB4ALzGfHygmNzfp/DhUXvPPHikloUEk2AG+I6EGCIMwQeWGgGQBNwcTArZwiw2FsTCoB7lco1Isy6SBfr3D5iLeY54aJllqVGQgBXUPTaOc3kb2/XfCvLVG/D1FYkrBEyPO4FjtffB2oaqQWzJU0SRyuYm1pj0GOCVjZc+WUuHN7aWXYahbkZ+W9zyGOqBKsultIMspMkQNwRIneI8sc57Od6xmNJvPuN+uPc0AyBtcLN97FvzG0Rbbe+Gk2xUFZULTPZVSoZW1KwMgmZEHoRiZoOQ7/l1Blg+UyPrhfXy+ulTMxUQANJ3Vv1UmffA1apVouQWuwifykNYGOdsJR39yQ+nw+nVrVabnSGEqRFjAJF/GbeODODcLGXdhrnVdDfpFwN729RjM1M09Kqqt8wsf0P7Ya8UzVVqS1YOlX0mJtIBDX5HbzOLaelemAz4jUV6TaRD/8AJGwJEg+RMH1wnHB1qsjhh2cBlBNybEobc4N/EYmXzDVKiMAWBX8QRtEAz1tf1OGdZ47MqZNNgCB439hcYFcdIZ5kOFikHi6FtSie8qkAg38ZBxWMyS3dMkyApkzbz6YbvoJEagyqdPNSsiQ3r7ThfxLgs9+iSQSQyztPMHpOJXIm9kgn/wAyZRmU6gNNxe5P2gfXF/FcquYpyrBHQapiZmR9zGENcs9RTvDEGd/XxmcFZpGSx2Jho9wbcp++NKSaodFeUzPZqKcm51dbSB++D6OcXv64GuQNt2kDzgXjCzs7DqN/LzxwMnCFSe+tSZ6jp6i+KdMdHnCMiRUG5GqF53iZ9xGGZoq5Iie+duR3j/Hni3hDhQWiWAMDoOZ898HnhzrUNRGUa/xAN4kQxt0J28cTKbvYWC0+HMJWAbiNNy20m/jI9PDCjMcF7QxTkEXOoRAJMiOovbGsp7awSxIAFraTEif7owZSyoBLgSLMbXawEnlIHLfc4hcriLJiTI8NZKZ1FTpFiLkW3vvYbeJwu4I7vJmNUeu7RPQzEeIxpKQKMe43euJvsIPhMR74C4QKRpxoAvLRvINr+W/ph/U0xWKM9l2ZgrCNVwoHMwI85xaOHImpbdoQSpmxsYPmQfthxmMgxIMwL6Z5kx7f4xWnBUcoajEMogaT4yDtJwfVXsMjO5BWV1UgkEgiR80+Hv7Y0uappXRSQVG/QmCQV8Jtgp8vTcgaIcDTPJTFo+n1wLnqNWL3GoN0gRBHnscH1FJhYuq8M1qApAvOo7xeB56ftywHXyCOXUN+YBR1MA8+n64tq8TKrUO14X1EbYWcQ4jodGiQRqgzcxGNY5DTYRmeGotJRHeBhj4kX/XC5F0qI9P57YbZCoKtE6jBLM5PQTsPQ+OF3EKGp1p07ahYT8oN2v4QcVF+GVYNRQEAtYj+R9cEVnVlCKsljE7kTYgecT7YsznDHFIJTUsyklyv8uYi2KqGWdNRIAaYFxIJi0TZo++ByXYFS5NabEkGRYA9difbHmbympyYkkgCPKPv9sWcYrnttJEAAMbR5nDPgrgAMY1PI8QL7ev2w8nVgKl+GWI+cY8w3TNIoClNRAiSd8TCzkIUZAB6TAreNQIlrjpF9uWGlLOOHUOD/wAYOs9JOx62sf8AOFPwvUqI4IloPyi/MEEeuPq+doUc5lSoYUm7y/JzF7KSDNtv1jGUo7oujC8XSCrMv5isx4MQY5HYe+GXAuOtSj8PtC40Cme8GO4+/wBMHVOHaKJy+YE6oWnVmRJuLxsSLBhOEmUyDqzgiXUArpIJgWJ6RHMdDiE/8BQZnGq9tqq0tOo6zKwVBFhExAgdDMk4TcQMVApMlbC8WFx0PP64M+IuOktTDATuzGdRgFSCSdsX8T4etaklVT+KogHrFwD1t98NvafgkX53Kq4pVm3WA6mLiDcgDcW85w3oVEDNT0jS4POBJFj52++M1UoOabDQZJ1SReCLiTb/AFhvwNaYNLtLswiJECI+u5nbCnD42FM9+EG0ByWAcMAwI2vBBPTHtT8PNMAIDrrQGGBPtYg484mih2VZViSzERpgRDRzBgWwJxtz2yVJkBZ523mI9D6YO5fkbC0z2ovSaAwEqT12MEbyD64aPmlogQYkFQp6gAHfxA98KuFCiayVGJJCQF3AINm9B98M89lzWpldREDUjsCQCCRfncSNunTCaVk0Z3huVqNVLIpZheZHjfx/XDTMcSFMWJsABMCxFweZgz7jFvBE7JO9IqybnaRYW5yNmxx8Q8PFVqbGdJbVUiNyP/2MX88VKm9hQpyuWZjUqBTo+Xe+5vG5AmCdr4ty7tqHPUYPkVIgfQ+mL6bHLsZOwIAjum4F4F7ST5Yp4PmASSDBDWJExy35HkPPA2MY5bhwR9NQQhksbkERcTsL7xffDXN50CvSRbLDatMzcbWwNmq5fulyaYUSpMTAt47+W+E2Uyru5dZ0jVEgQW39T9sRVr5Co1uVzMN2akFLWgDmdRjx39MErWIlt9PdAje/dj7YzWXRlcSR3X1uvQEELM+PLDmnmmC6oAUBhyieRvysROMpKhUX5/h7VKWjUNW4OwkEHSTva9xgZVFDQlMd2Czs0mR+kn7YXV+LfjoikWub2kz0P3x6yFUrCoxXtIZNR2sJi5kWAw1fkKKM5xMCnUC20uWQz4gRHniw5qKiqoJGkvAPUiR4nCrhGSNQUea3ci5nSTC7W/xhxm11OHUfLIIj1vinXRVIIbOMaqiO4QdXIg2FwN9x74KrVNZW6jSdD9NUfXA1VD3XHzN3SRsLEietuWO8jUSmhSNRCioW6sTeT4YjS6FSFnF+BUyZJIUHvAWJO+mepmR4Yz2f4WC+lpYq4Qf+dhPvPtjXZRdYL6o0uzG0mYIm56cseZ2miEVLr3SSth6kzNsarla0NIVcM4K1JWkylgJkM0wNuQBx3kaYPySWVtBmbKDffbB9VxdwSZUAIbzaZkbDz6Y9y1YFe0Okc42DSI2/m2FLlYUWVbgGdKL35PK3Lqf2xjK5UVzoPdYayTyJ2Hnv741HGs+oy5VmuSYjZbjpa04x1NmLPANyBt4TMzzn64rjt7BIfPlEbRWYBgUC6dR9Z57mIwwr8OAoGjSAtB1N53k+AOEKV1imhIu0SLRF9z+mNNxSoxpEAjcLYxPQefM4Tco0AhHBQJDVhIJ+/niYccMpotJQ9m3aQZkkk/fExL55hRj/AIbqaKikzAJiDBBII1ehg42WS+IQaIq1aC1HUkSFAiI/NzEzYmRI88Yng+X7zo7aWEBQ8gEm4E7LPja+Hfw5T/HanVsRqkHYEBibgxsSeYPjjvcUyrNzU+IMvUTV2RhbvSJkrpZR7yQwIPLCbiWZVHqPoABmBElVIgqBNiCOvPCOrl209rl7sx7N5hQAx6mwB28Me6tFQ0KrAO3eMHUt7RykEDV1xlyRjVoWxRxzIMEpVrsGPfj8pNxfofuDhpk+IOqOlSQHp92b8rHE4cAwqZdwIgiPEXHtbHVbLF8s5WDpBKKBJAtJBPLwxlfhjo4pKc0EVn0C3eJttDdZNhgfNgrURaYLBQAIAmL2EffAXBczoCFxEkRI3B5+I8cPMvkatNmdx3nPdK3uTYSNvLFXjoRfXyHbqQh01lX0cEXXwjliv4Xy3bNLSNAKgkd3UZ7vjthrnKDIe3o3/uYeB7xjkbEbc8WtxBcvWRVC6KoLsFi7HTB6+PrjHPVIYBwjgxo1yr6T2fyjcjVJHgIi9sPM1lKa02KkQoudt7iPAzEeAwjydR2zNZmeDESYsORj13xfly/y1AupNlJHegkFhJiFBBwSb7YgHj76qNOoNjIsbf7/AHxfUbXlCxEmAJBkAgge959cU8aykwlP5HUaUD2UqfqCSb4N4VSYFqL0y43YGI81vMeU4HKkAqbJPmKgVBHcMlgYkACPXbCHg+Zek7qB3gSAOeqwG3jAxvMhnjrZCug1DMDqLCJ2sAMVZ7I0lrf1ISGZYIItJgTe0zgXJWmgEVKjWQVO0PyKCTae9eI8INz0wy4DmQwmfwlIFhEOYg2P+8GDNqzokgxKNcCzciefvgim9KiBRVTo/MJk7zOBysQNVybJWcl/+TTyjkecQRiytXCCotoCQJvquYwRnO4PlDI3dMSSSYAJI2t6YWZrJMKjoVLAqugf3AEk+QHOMRHa2Ap/pGQq7kSwjTeVkz6WjHfH82WDNEwNpI/nP3wemXLLUpuCG5mJ5byJgeOB87kValqbTCN+Y3YA31HqdpxpasBj8Jr2WXVj8xMXWPGBI+s/bFvFnVGmCS9iFaPXoJ+sYEzmesmid12kwNpJ6YbVsmrookKxGwsSfGb4yl7YzN5jOfjUwWgCTAteCJ335YZZiuQDUsNYtJ3P7354z9UOM0q1WAYg73FyImIjbGozENQZ1USk84AIH28sOSqgKfh/M/hkkWPeAg3JPUwDE8sL/idiU0ywLG5NjeRG0EHwPLDTIyaaAkDSq2Pem0TJtGM1xDOM+YUXKgi2mNpi5wR3IYYcwDlwGDSo0+ZAA9OWHQ+SWmABECfcbn0xnjMJqUkaxN2vpk6YttpOHDVxojVynTMmPQfb1wpIliH4hz2rSIAUWt4CY+nlhRwwxLzsSYJFwbD15+mD85wwmvpMhAuqedz8o8f3ww4R8OqGqqWttBlTBAIIPPmN+R642zjGIIUcNytVqykAkbg+GwN+VyMbBaOmmNVwJOluZPPwxSh7NTSy41gLdge8x2F+Ym/qcE8ZZjQ3U1FuZOlBY79cYck3JoBJTzbONUIJJi42kxy6Y8wBQzCqqiFsAO8gnbxWcTDf4GbX4xo5TNVaFWlVRGqA95UkH5YDiZUzaD0MYyea4W1CudZ0woZWEEMNiYPygiRJi+GtTKvk9VOsoekYDhTdSwEOpPMekxirPZuoGDO+umZFMtuVFiOo/uC8px3uTV+hlXBaqO1WmrEK2xmdr+Ek4qzXw2alPt8uxYo81EJFrWZTPQbdbYVmh2NY3Ohu8jRaDe58Dhrk6rPTqU1Pe0nTEkR/qD4RjDJp2ugEvCs9+NMaud+g3PlzxrOE5nWS2kLLG9jpFoBvsR98Zr4czISu8BJMwdQBixgA3/3jTZIdlWQLJXSWKwJjck8jeB7YOX7DQfX+HEZR2qhQpDIF2Ucx0IPTxwVUoqqO0akALAdD08B44so5tm1oTcRBvJB6R7YzfF8yVdqZJUFQI8eRIBtcnGOwF2VzZFOodYUsCN23JvYC98Lclnm/DDzppys7i/TwERbDbh+WLBA4CovzMFuZMCBMk3sb7HFT/DFSiWIOumOYEQOjA9QTjTKO0yRjwmkGptpJFRtvGBaesgb4dUMyD2ZJiFnTpFoH5uY8MZfhlclrd4hoEWJEzaeUzthvn6Zpue9arM3I9uXh6YzfoZdnSNOqbX0AkWJN7TcjcRtfFLZ9uy0qQjgaWdwdhcDaZPLHORzKNSGok6GEGLyCfYYA45xAtTfSJK2Y7SL3PM8sJK3RIyydbWAyMjMGMSIMciJM4ccTziUgCw1ayBB2AO588Zz4NQNQa+lpIBEGAB9cMeMB6gNIyVIlGAvbe3L/ADhSrKhsVZTJvSr1GgmmO/3ohhcD/e+GNctVei0KsqSx5Wgj6GJ64vzFQGilMAnSASRyH/YC59euA2LHKnSQYWVN5HUR08DzE4Mr/wBCHZpOrBWkqEm0xqmx3thfxXNMKRJ+cmYO6i49L/fFtHP6+xBMqUve9hzOE3E6pGsatRKlfpN7xt0wknewY4yNYGnIMkDTMEteN+owtyuY7TtUQwl9zPladicWcGrsFZFMQCJYHcX/AHicD5OoqlQqRJOuDMyD1F+vhOH1Y0BZXMtSaRSqyLBpOk+4MjB1ZqgdXa0333iLg7c+uBZ780w7Fj+Y/LG4nrzMYofNOXKswMKQBJgiRIHSwxa3sQy4hWUK7imS8EF0EqwE2Jm0Ti74fdtLF/lC72i3+vPC6rK0HioChIAIF78iu23PBORqqaYUtAuZAsfC/XEv9tAMuI5hAgYEDUAL7Dygg+k4xVC7ljq7xIU7SPCbAThhxTNKe6rwoGx/UA/bCW7MkyBBMg8+UDpYjbF8UaQ0NalUKVJMaQzyIg7C8C25540fDY0rUfTqZRo25i4NvqZxkuL1yKJVVABhZtInl1xoOHV2WgGIggQvh1MYmfVgwrMUXYIsNNtWm4mxAv6jF2ZzLmoFc6RGor+Y8p6D7W3wFwnipciQLgmd/CDY9fDFqZynUcr2Lu177beJsPI28sYtO9okLfMBAoXvCYBPvYiPDFHB6pYM5AaTcfmiYkDntOF2ZzYUGEJVQZLTveNJ52Bx7laYpSXgAaRe1435z/uMPHRQ4dFBIgD/ANIZ+s4mLEqoRPaD2J+s4mM6Yy7i+dVqdNnAOuUdxIN9jHrbkNsZurllCtR1atyhgSpExaZmMMEbtFNJxJuIgje2/L2ws4dwrUlV6kjsiwNrgAXI21CPptjqU3LsAM19DU6j017wKEnTcACRY+PgbnDjhXw1EOKjIo1bHf8AtaDcf4vgmtwinmKNMgBIIMERvuRB5j9MNjlmDiI7PTaBt1t4g/TEz5K6BIxOXyVX+prUWEUwTOocmMyoO5va8Y1q1FVRTqEkBQocC97T4E/rgf4o42tA09GhgXXXzOm4g9BgPOgIAwBYG6nYwQCFPWBPsL4Tk5VYx526I47xghQJFj83LyIGKON5Jc1SkaVZSIZe8YE90gXE8j44Cy7rUakVHe0t3YOm0G/oDbB7GkjBgWDstwNjvtFt8Em0rABpVqdR1Tvd0ixsR5k/MBfpg/hWYEAdRsTO/vhHUdVcszA8wDMKB13M+HljvgjSd4OokqT/ANiYjp+2Br4knmd4dUoVnrwppqWgf+huIuINuWFeU4o9VCjEnSTBi3WNp6DfnjaMVq09LSJkHqDe0xtjF08p2QqJs3eI3sV+U+w98EZ632AZwpHqdxRB1HULxFjp2gG43vvbDwZVaLSYcVDG3KY0x0n74XcMRSBUQjU/Ik2kANE8+frGCauYekdD/iU90k3878wehxMpW6EVf0n9NVamBCMSV0zaesc/XYYsyc1azgse7pYWiDcGP9464ZxLUStQqSXPP28uV8C16iUkZqY1VFntAvMA+sASIwU7p9gdcRz4eoQp5QSdhJNwBdjEiD0wBwdAyiH7NtNujQBeDsOuF9CrUJ7WAUgEahqMmee0DlJ5bYv4NmKQQCp+W4ZJkWuD1xeNRpDGeTbstCuChM3n2IPPy2wm4lmtVWpqJJ0mJsbyBt4Xw04pn00h2KEiYKm4B5RFzYf5xmsiprVCVhmLAlTCkid4tPljWCtWxGq+HsoXRmPdWYBUCT0IsP2xTxFVpTqLEgkgkyYgjla53GKeKcWNNlpILAb3gXFh4dMB8bzBKqWkkAi4vB5gztviMW3+QCqVYDL02nS7G978/wAswBtgdahapUR9REKrEWYQCbbiL9MVZfOKTTBAFpkgkjlt0xfRqS1VQ6mXAG+owqiRO49MVVWBM/l0p0G7MudW+okmZ8IHvbFWVrhKLo40zbvEzJi0EQMaLJ03pp2jqhqCJAGoLe3L3wr+IcorhqgmodIJFtII3P8A6gRfGcZp6AQU6SOHJWGWIAIhtze0DAeVrFn06rtEGwAubdLmMd5nPIoCqgANyq2naxYycLHrliWIANuW0fY/vjpSY0P62Wao6UmgOGN52+tz9cMuLV/kprsLcgCdj9ThVlMyKlUM4lQtiBYHxxOHuHzOi8bT0kzNsZSXvwBo/hcEpp7OFXd5gNEHc3gTyw6zuahSCBAaFFgAL8jYjFT1QlPSnd0zZAL8uv26+GEma7eTKysE3NgNhzkbHnjmrOViK+L0nlUFSQ7GFANgIJkgX22x7lgzbkHkGjf9RGA2rFK0kyQpukkAtYRYTAnB1CsDcpFQCDrLAmIO3jjVppDLBkyb9pv/ANY/XHuCqNWVE9mPA1SD4bqeWJiMn/KGecWNSjWDGYOxLdbDpzJ6bYN4b8SMAoK/9D5zAPlyx2lQ1kNN11KRPobef+sIaOVKVqlMGGHyhpgg3n0v7YJJee0Ux18TZkHSAQjG5E7ex2nF+XzlVsv2iiWUagJAkbYX0Ki02WoxLAwDax5bySJF5xxSqGi4WTewv+S8creGElaoOmIvifMBqdMKe87HcHcm4B2G2/8ArBPDeLTTiqs6bXMREjVa5OK/iHhYBBpau4NQBMk+BB8OmFdSvNye6V52BPpynHTSkkSarNVyy02QESbsBpWY03I8+eDuM5wrRVCS62J3mfv7YymV4qTQCsZIkAg7AHVv+gw2ztYFdT1CSRAYN9PPEyjQFdWsNIKJpBEG8mNW59tzj3J5sLq1Kslud91Anz8+uF2UzPODC3BJBk33HP1xdRqfjHUNYIUkHoZsT+WPPAoiH3CeJpJLEzaYJ364p+JqDNVRkVWBkOygbRbVHhHvjnslWn3AASRtBk+M3/nsFxPWukd7Sq6SIUiJMzt5e2Mmt2gAP6oo9MqIQowHST9j0jBGeql8kCXCmlDEnd/+oM/vgDL1NaFVmQZtaLnmSD4c8PuDUkqFqbERJBB2IgGJ33OG3j/YDP5XPkEPeOVvKI6Xg4dfD2YBribB1ab2YErbe58sB5/h6pqRLCdgNgZsCbxI+mKuDELVVmRlUKQCFJE2ggt4ffFyalF0IdfFdJewXQsANBCiLDrGwxT8HZZXAJUEqLwTJkdNh0NvXDrhjU3VlqRo1XG4JgbjpBx321PQTTAkWEWJA6Dyxg5tRxQWLeKfDPa6qi6VG0AQJFhb7jCDg3DqaVGVgSwBZfmuNiI8/LG+4dX1021QPr/DjM8LqqXqK+ltTkAnY35HeN8VHkkrQWZlldn7WJRWgzcDwsbwcXZioashVZm2EkkecTH+8NajKtc01jTN94iNoJMjq3PGio0adGqWkHtIX/zE8z1AAj/ri5ctboLowuTps1TSNRYWIG9gBAH0nGiy/DamXHauFkszaN9IIEct+tueD6tSnlyxphZqd4km4ItysLTAHU4T8Q4n2p0FoB3IM9T/ADpic5T6WhWMuD58NUKsZ1bnbflgbigFHWKjgTaVsw8v7vPAuTlWBgFS0Aze0Dl4jDTjnC2zHZsw7qEFjMArNxfA6jP7AfNs4dLmVOnlNibzOOKFA1nsQsmACZk9PEnH0Ti3w5Rr0tSXcfKZ8h8oIF8Lfhjh39M51aBUJMMGZgRNhpsBEb+MY6FzLG/JSLeF/DypSDMY21UzuLQT/wDkR54rTgZpv2x7qMfmNoPQA32nww5q50hiTqbkB1Ezti7J1NRFXsmLR/cAD5q1vWMcznLv2An7PSYhip2JW1vH6zAwJn6T6Ce1U6gd5OojkALj1wz4xmmYwXFt1JMjqIAn2xma9a7TK87bW5R0xpBN7AryyPqPZkAWBm2313keuGuZ4u4qLSqKKZvDEGT7Xg+EYz+VMA94aiLC9r7/AKY1OQdMwGSuJEkqRO0X72wNvXGk15YyPk6znVKmees3x7gRsnVXu0q0oLCaqA+s33xMZ190BqspUisuhSRedJDFTudUEkyCCNrT0w6zpXSDUEQRBMAyf8E4zNDhR7btC4IUm0RpkG/XVO7GZA5bYcVKaV0AsbCRcAjeZIsLjyxx8lN3ZTYm45w5dOvW5UKAAFkADa3MX8MefD/CGqNrrAhQsSYgny8+W+OuK8SVFu8qSBCxKTK77ARzBOPKtN6VNUQtdgd5vtytyB8caQclGiWw08KcVW1MsflO8+Y6WxleKfD1XU5VW0g3CmDbkLXN8OfiLijg0gNQeNuoG598W8M40fzbmLkyCeZjyjGsJT7FZ8+ytWpTOkf3bHfyOH2Rmrp76Qs90Ry37uyj64I+OuHjUKiKF1bmwna0frhfwSsKdKo5WSWsZkwNx4CTPtjpbyjYWFplWqFtIjTvePLlviikp7ZbBRoMCTsCJ33mcXZtqqURVRjpNm6X6H9sIMvWIqKzkxJgmJA/XBFOhm64NSNa5MaCWIMyQIIERfl5TifE+fWsysAQ6iLDcXsb3FueO8lVSnQdkcNqiIHWIO9rdOgtjMtUHaEObG5g3+uOZRuV+iWc8HqxrkiOcWvyHl/m+Nb8NZDQWruAF3WTBnYkiOcmPLCHKZKzJtrI7yxAja07HD3iGYFKilIGb3JufE7WPhhc3ydLyDY04lwpasMinfWGMab/ADCOYPSMLuGZJdLokrTudBs0bTEwBubdMNvhvMh6YWZIUSOV+uPeJZlKRWAL3MecfWccyyTwCzN5Wo1PM6DdQsGYNr/W32xZwurqq94wFvYe1thb74O+IeH6m7VTewk2tuYG84WcIprUbTMQdLQYJAj6HbG2SqxPYbweoSwB1KrXtY/764q4zlaVHTp1fNINoMnYnqMO6OVpjoEjuEbzz9vrOJmsmrjSw1+J5cx7Wxn9ZZWugozfCaBWpUzFURp7um3TmCBaIuOpxR/86nasXXuwALWn745427q4pkxb+7cb/wAGELEFyqtqn5SZ9Ji+OqMFLbEGcQz1J2aJAHyg79Z/k4Gy6EuiA3gi38vOFVFzqIMkgkeJODsrmJqTqggTtAsCb8sb40qQ0jQZNppBT80ypJjmTtsfph7lq7tQKKYA3uduZHvtjO0mHYKp3ChjJBbzt64cfDnZvSUu3embWMHraPfrjn5fYNBXwzK027rWmSdJG8/tYTgYu7NFRVAOzRpHkN/acNa2aC/IQBzIURMfUxhLnuJkwrGwG0RN/wBrYxjcnYFXEM03aBFOqJI0xM2F/fBPDGcd2ovdmNQBifAnmPbCOk7K5IUmYBnkPm6+W2HmWqVFYBiTIuJ5Y2mqVFC34gK6gaTqGBgrJVp8OUeWMvxFjq0kgxzmQfGcaf4gVWQEFSTYdpEkjcBxBnfunrjGVKhJNwQN/LG3D+0AvLOAoV1EGYcDvDyODslrow5YkGIIsw8xzG22E/8AVgxfbY4cNSVqZhWBUAo0zfciQbjz2jyxo0NAOayVZnYmpRBJmA/XEx4ONEWCJA/usfUAxiYfzCz7A1ACpqEhmBIblMCwG2Kcmo7lUGxkMIjvDaxiAIgDn0x1Wd2iCkhZAMQdrxyi844OYYsFc6NI7k2DR+YW58seOt+RsT8T4ClWqKkFxqhwWgiBuP7bwZnYbDDOpkBrUjWAm3elRbcgiJ8ZGKeIUHUQHsdxvABv3dzbnb0x1XytRl0q6qrQWmAxUet+VgeeKcm62I6qPSrgg950gFlne8Cxk7z74xWdzgDtpBAEiDJO+8HYTyBONNk8qyto1KvdMCe+0G0e4EzaRgHjmSIQwfxS2hFCklZkkybyQCZMmNoxvxSSkAjzGa7XSCZgcxzxWC3ZMp0wskkm5Y7jT5R9MX5vIFAXggE2DLpAHkYJvzgDzwqYyh2F9up+2OtNSWiQ3+vDU6aEHTTEi9ifp+uAMkitVGlCe9J70G/PnAHSDgItBZSTzJAIjw/1ipSS4HPUIjw59caYlG5zbBKSAoiMBE31sBzJFjtueuMxXfUxJG5neB/rFmZzrlix1MBYGP5GAmrXnSeVut/D9MZwhRKRrQyDsIC6r6oM8jyB9fXFXxBxHUQCsd0XmfUdMB5moQqBqbJ/bNxHg2Fz5vV1n+dMQobsKNj8PZjTSLiwjebmDHLbDCtk6lSHtpMEA38d7WMb4zXDq0UNIkFtu7vBB6+mNRwSs7KtTkLEfLFrEDmMZ80cXkgkjzP06vYqum83i9vMfKT49MZzJs3fMHUxO3haOlvDG1p56TtueVwep8Tb64TZ2iqVKhOoFiDLACeoUSJ/TGMdaYvAZkYfK3NwCQeYn9cAZPPE1LX0i5tFiL+MicJafFAKKwIYi8GRAt6T548p1x3QARI5dTH7DFLh7sVM0XxTwha9E1KV6ouDfYbjwnGW+DchTZ2NQMXpnUguAYkEhrTztfGu+HM0CrJIgbg89/cY84gF1krMEWUbL5eJ+uFCbinAaZm+N8BbLMX1BhUMQBPIkGLkQB19cZOqCDtukecyMfTfiajVrU1FJ9JNiCQARMxe8kdOm2PnTUmDkECQQLmNjsOXLnjq4J2tlBq5wGqUDGLjlcWty8cang7ooDU6BBMKSHMaTEyrGNxvynHz7I1yHm8+Xnyxqvh3Ps4cAaXFu7Pek9NpH6YXNDQGq4rmtMKiqdr2gH2uZxnyyLUBYE2km+4G1txjrNV+zYICbm7ECRAt64qzNGQ9QNBWm3zWZrTAE3+98Y8cBIryVdfmAJLFjG0KDAE9T4XE4a1c1TRdMLTI3jcxfeOvTFOS7L+np9mG1qFYahI8X2+UyTi/NqaiA7tEBQN/AGII5xuJxU1bGKuO55HTk2ojcddiCOfjjHpUUK0/NqgC23WPf2GGPGss6vcgLupgyRyn/tvhPQybN59MdXHCoge0suCbXvO3nyxrMtwZlBcMAG+ZTMmN/LbcYT5Dgrk/K4BsDyPUnwx9L4FoZVy5rh5DAKhGnxvEtH6jGXNyuL0NM+TZsKHbSoAmwxMfTsx/9NXLEq1MryJAn7YmH+oiFHVTPuVAZQrE6XmYjmesCYPmcMOG1ixYVdJIIKEagPlINjG4naRB23wPl6mXrASCX1EhTNx3jcgkE368uYGCEpoO4Wa9QOq6NpIE3FlH9viNsef49AUJll1EwGKsYIB/uGx+m1/AHF2bqaYMGQoJYyLTcDZha/QRtgPiWWcvVZy0EamfSq9mVOna5uI3F4mQNulzKUiU5sQGGlo7wESYMGIuBa3TA1b1sTC8xQK6pK6mM7Bd9oINlC3vBmTF8UFkbuI6mSx083iRJPPoQCL7xzgpiq7HXrMQupbiCNQH9xify2tfACVWAdVQimrN3yUDkkgEIBtpE7gTA3N8OvQGN47xAtVZe01gGF5AcioBiIiNuWAy4IBJiLTG/TwnGk4lwAFCtBUUiO2ks7ibxqawvuVj2GMzXydREVqqQjkgT1G4649DjnBqkAqqOQxJ/N/NsXuNiDB3EYozhJYb7W8sQk898bjL6WemQ3Pn44JyLBXGqd/y7+GAKa328jg3JPTWS4Zr7K2nzvE4lpC0NOJZ9oVWEx4g/bbCdXJuJmbRvi3O10YDQuleQJ1G/Vt/TFNFeYtHthRVIZqeFVWqQjFSBsWiZ3N9gT+mNNq7Km0CGIixN/vfbY4y3DTTdQJ1GPlkBZ6yCPtODM5WOymALzzPjawxz8iylRLDaWdKuNyY62H1npg7idevUogoqtbvHTcehF/TCXheTLBqlWoUEGGEmTIuAOQETcfNzwz/AK80S9NmJiCCQJI5EfWxnESSvXaAyleosqpmQNunhGGvDqYZ0QzJWBzkyMZ/NOXcmQRqJFo/nLDbh1YoyuCJi17j5R5g+ONmtDo0XBAtMSZkE23BN7WxOIZssQeQi+0jV05b/XFHCcydAqrJK2Egx7bTPPFPGYBBEMasGQCu28TsDe+MEvlZPk0SVqbp2bgAsIAJix8ReCfvjA/E6LSrFEpFACILfmI/MACZETt1xpcpn10qVEkKU8upBIn39Md/EWXq5jLdzdOUGWIMW2EGd9hiYSwnvoa9GB4Jl2qVQVamCD8rNpkc46iMa8oETtI0uTpLLF4FgOZ87b4yfw1ki2YhlUhJLSbW+3njV57QjKJ0rEqJJ52mTMb+eOjmTckNo84TRc1C7aSeR1CQYJ5zPSPHBvxFSdqTMVKoqhVDHcsIDAbiTHIemFvw7nHFQqAdJIhtrnc2Bt9Bi7i/xE7oKKMGUVFcgqtyJqXIB1XAmTjNxeQI0WVyrV8uqU4Vkp9mxJ+YqByiRpjlbCZcpW0jX+GsxJMfwcjhl8KZs62D0m7R2Lr39MAxAA2ILSTab9MW8byoNRjUAECYLmJPiRc3NrYyi3niPTMlxPK6VBIMSRJM329sAZU9mjNEyYBF/HfyONHm1eD8pVWhwWHMe/PpzwDkKelCIUK1Se9AAAUbLF7n6Y9PjutjqjQ8ByhqBTDFXHItOrnf5bDf1w7y/BgjA0qcg8lHeN/7uY5mIB8cKvh3MFai0kVysE6kAuBB0gGQJ6j6Y+gcIpQpMBGbfmeQve5+2JnCM1TAXUc0YGoLqFjIIPsRiYcOHkwB7j/+cTHH+kX9TKPjPCs87VAAASJJ/KIHIDl5+Aw1fPallyysG+UGY5RqidUNY2AHQ4mJjGX7qMy/jTI6rWm9OC4vLalEKTzExe57uKchWdTUY3BvJ9e8FuJjr/qYmJivjj9/+jl2AcH4v2xzDERTDSIkaIE2E3JPXqZw9zIQsdVO4Fyb2EG25kx05YmJhcvxnS/mkSwPJ1mFeB8lOmWMADX5+J/bHXE+E9sr93Q0j88gAoNrSLlhAjmb7GYmM5ycZJr7DXZ824jUL5hu6kg6RokfKImTcm259sVf0sp2jmEMhbSWPTwA5k/XExMewtUHk0NH4XWtTXsGmon/ADMxIUWM6REwCLc73xljl2FQpALBtMeMxiYmMOLkk3JPwNdFmeCq2lRIW0xBOPMnUvBAINyOX6Y9xMdHgBvwjJM76Z0pctp5QJsOZONCnCqalgarvSCkm0MTcaQIgXBM4mJjk5ZOyWCpnjUomof/ALdRQASbpYAG14ibxvir4pzqBVVTqVg26wR3pAnmIPvOJiYqMVkinFaM5TZVkrMibchgulV0qomSVO022PPyi2JiY2YGj+GnDTIkLsvLYi/3jwx1mWLlVQAQ58tgARPieY549xMY0tskZVuHuQp7QlgwVVAAAlogk9L7dcM+H5h6bgCDBIj7fQfTExMcE5OS2SzrjFKnQV6xChz0XkTGox5RHW+Pn3GM2ajMQFhVF+sAeAjExMdv/misbKO+EZl1ZVKqQ47xa50iRbpz9sBZitorA8gSYixuRMeWPMTG9baA1GTz4D0SD+JEmRIAMwdt7fzk+zwIplifxnJ0zceu4jbbHuJjllFLkSKqmYClWqvmVnvyb30yAZ35AifG+NhmeEVRULOqAN/x01Mgr0k7Cxub48xMdPLJp0ins13DuHiAD3WA5XgDpIw/NWYVPCJtYeMH+AYmJjzY8klLT7YIupF45YmJiY9LYWf/2Q==\\n\", \"height\": 183, \"channels\": 3, \"width\": 275, \"type\": \"image\", \"id\": 4947634576}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxITEhUUExQVFhUXGRwbGBgYGBwcGRwfIBoaGhwaHxggHCggIB4lHBwYIzEhJikrLi4uGR8zODMsNygtLisBCgoKDg0OGxAQGywkICQsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIAK4BIgMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAEBQIDBgEAB//EAD8QAAEDAgQDBgUDAgUEAQUAAAECESEAAwQSMUEFUWETInGBkaEGMrHB8ELR4SNSFGJykvEVM1PSBxY0Q1SC/8QAGQEAAwEBAQAAAAAAAAAAAAAAAAECAwQF/8QAKhEAAgICAgEDAwMFAAAAAAAAAAECERIhAzFBEyJRBGFxMlKRgaHB4fD/2gAMAwEAAhEDEQA/APlY4dBJIYPOng6qX3MODCSVKGrCPWm/E8Yu4lKICRrlgeBqHDrELyqAKElWuwaOqiSzVywnJK5EWLsPg2btXQC5DwS21EW2toVyOkmX2I/emVi9aWgm7bcuwWB3tHIfNHpM1Sq5aKMqgUKZgQSytTIkdIbQU/UvsLFN633ndgrTNBkP5+O9TtpkuYnflO32oZSSILuNvvRYUezAaDu0+FbDOItpKgArXR3bzNaLC27gUnvBYB2UdN+keNIcPhS4SCS+7MBvqaacMSkQFGIPLcatM+VZzAb2A5KiY+9C9q4U08/o1F4O2Q8CRuROtD2lJBUMzfbm35rWdgMuCBlAuxZQBbpvVOKthRY/m31qBvZQjLDBhzOlGK0JP7ehqRiy5d74Yser9WozA8LWp3eRmGUvs4gz/FV4DhhuFaiO6AWOzu4EjYE+1ataXUGSQCkBWnIH9xHWm54qkIR28BcKBBByuJ58/JL0MSDlUCXdyAXmNOU/StGtTJ0hjADauG/OnKkWIwJ+ZAJQ86N5b604TyYDi5fWd2BykQ+7tEtFZ7iiiSsgCW5vz0phZvAd1TnMCMv0EGhcUQ8M56x4dK0GwWzfUIktp06etcu2wppLjWNfz71ai0QokDQeO9V2bXeHJz+eoo6ZIZZWoaPAYkBp18K0wUolOUkaMXDTqI2jeZakeCVdRlLE2yXAMpJBBfKdYFPL9y2lBUXeAQUj0BJIJDgs/lpXNyy3QC3GKKHa25zEpUS6C8l0l9KCweKDiAV65kpYBzoB4wBTbA3QUsUqyqMFWjRALMN9eVLrWBQhSiQCB+pzAJcJDwdCN996t0ojf2Gp4wgoCdwJfuqDakQx86Sqx+YKGUKXASrcdQHgcyYavLVKl2ykqL6hzB0nTbpQeLxq0qcgEnUsM4BYExtpOtY5NjNHhsX2rIcAJSxU8kifm0ZvbxpNiLNxKk3QQpBOrnKw9JYaeMUPggoJKkM0MAC5G7hyB4jWarx1+8UMVAII7oJYM+qQdm3rOTTbTAL4rirSllOHSnNDrPNnUcqoAfc8tqGFpV24m1bQlKzCsjlPPVy9LDYVlLCDD8vWj8JiV2EMi4xVq2obZ9Q/SsmqWh2eXdUkKTdTmWFQ4ygdTOn81VbsLXcUlCWLDOQHyg+MJ9frUVrzliQtSoS/ygM7/XWBNUYe5cQoiQggEkD5g+jcp25V0ccLVsDV4XGWLT5Aoq6jUgufUvJ57VTjrRvF8pKgmAzJ5FTnQk7l9OtVWAm6i2tQSGByh2A31OpppetOAU5QkARlZweQjWZ3+qSkv8sevIrThUrCic2ZJDJ/UotJAbQvryfnVuI4faSlJTnuqI+VSgQlTO8JkaV3HYZQs3V2lAWlAAA/M76wdw/SNKGRhbtsgBQtukSdG3AefFmqp59lJo4OH2N0l9+6T716pIxaQAMhjkD+9ero9SP7RUYO1eY94a6/n3qq4T+kNrRQAzaR1FRuKAWl9Gc6N+9EXswKbq28gJOhJbbyrisWtsySkjcBnHkZoi4UqJTDbERNV28NbStOcOknb851ScV2NMHsYW5c7xadz0ar8TaASEoUVHU8tNnqfHcDctLSCsKSp8ipHKCGghxpS1zIf61pF5K/Aw/CLUACxJ0mQB0HlRSb5CiFMS0F4GgHt0pVaSsgsXG86bAUfw27cGiXGjb+GlEkA6w61dmokExBbU9RQdi2vMWYl3aNeRJP70XYsKKVKUFAH5YgeFC3+SQrZ2Mt6c+VZp/AxsoAkJSHgkRALblmPKiUWSbYLSEklzDDXrVPDUgJJSCeQlnfUjnpNHYJAIJJU+hCidArvFhz8NBUAH4HFTkSRlSkGN4IiIEU4yHKljJBH/D0vw1iylwAeigG5MDzM+dFXMxILglweg3YxyP0rCXYgm1kABU8Awxkx5uH83qtForQXEyenP0j1qgKdIcuSdej79dn2qa+JMkBOhBAAmBzc86WwM7xXBhHZFYZTlQEwHh2LHUUPiVMfEedNeM4Jd7IQklWmQMQ3M7Q3WlXE8KtK23SnSWDt+9dEZZDRDtHSQE6MNZLa1WpPXvNsY9K5ZsEEplyxHi2nU615KG2lgAWY+hkVowGWEsqyqNtRUsP/TZwAR82ractGq7ihFxQDC2lIGZiSkqAH6dpHv40PwXiOULb5horlA/maouquLAKiQpS+8P7pDQ/KsnBuVokeIUpOUgXSFJAZBLJfvNIOgq25fShKXSQAUkurunr1LiRQNnHpSgpdecCcp7rEADMDyHjq1WYzFkIQlKkLS4DyT8skvrMxWFOxlnEcAhKUXMoQc0KkAzuNZceM67L+LWWBBYJcBIMg9X9R57UYvALVZa5dzKUQySYaDr6v5UlvYu6LotIWCAWkBo2b2cVV7GgzB4RIcrzJl3BJTpoB0AEedJ8el7qkpYMY6zPTyo//qS0pPad2e7Dcu971T2gVmEgguCJB1fqIH/FRdvYwDE5wpYfKwgHQnoR96jg7SlgquqcuXJDszS+nOrOJ37ISSkkKPytIfkAQ/m/Oh7F8qsfqdywAE6DyS+86Vai60gLMRiR2icmXKhtWkmNGopGIKgAlRJJIMiNmD6CdudVYVBUhKOzQXJzFmUA+55RHpXcPgUIUoqUTJSEsoHnB3qpOKjQGitYcFm7yUic3eBLAbaOzQ21EY7EtkGYJS472qRr3S/6eTx1pV8PryXgAVlLgHWS3SHejOJKCislIlobvO8OORiPWpyS0NhmAxKFYtFpYGU21SWbNlVyhgCdPtSLGsooQGdJILFmnK5O+lXIxfY5Ll581t8iFNuf7R7uaBtIL9pdGQEwAZJf1Ou1Cm6QB3+ETupXof2rlKr1rFZj3Nz+sfQqeu1pmv3IoSlYIzKOmgqCwlwZHXcc6GvrYOelSQsEa71atK0Y0zmNw7B0Et13qeFuhQcs9C4u+fk0G/WqTeOVjl8WnrIrRQco7Ko0fxBxlOJshOVJUgpGZJ8RpyYVmkql3c1K1hlFyIAl3DDzerreBKpBDDUuwHrThGMFSF0QRZLgBzmamVlSrShBdOpd400+1UYReV0gqS+hGh67HWrFLYkO5G7a+tKbvQGp4bxZJQygFAAEA9JZxvU+KYcXQksEEaBmKgd/Ss9hr5ABUAZ2itPgUoUpKiwAkJykkl/1EmK8/kh6UsoldnbeAVassoGHAD6k6AN41G1fZBII7R4juvyffUUf/ihcWWBUOTDut9vGpYuzbWABmSwgJ36bdNKUPqfE0FFuBuJKkquFPaMWGgHPugtDczRRzFlIHd3mOXgXmKHukBKQiDqWIAmZerISnIVgZ3iGBUIEfmtbLbEgbFZt/wC4DuAMHJYM7aDyLVbaQgM4UAxb9R89C/R/WqlKtF8i3IkCeuvLvM3jSnFcRzPlIj5iB0YwNX161dNgx1bxJdSgYA5Hl/b66c6W4i8oKKmlUkHcaAeFWYXIkAKLAsxA3IdulC45875nPPWNfpRCrDoLwwT2k/jpI11cGKHx9sAhzvD1OzfCUk5SVscrM+ZixEfWo3Rm1dJ6H+P23rZ0xi7BAhVwmBt9Z9qMsYrYmDOuraihlMAQ5G50330/JqODcyQW/SWhn50P5JDOFHOu5k7qsvdkQoEMXJGz0FbS6ZhjlZgAfCixaBKlAKdw+zwY9qDwdgkZWkqgbnf+apRVWFD3DWCE2+6spEOykgHmZnvGrlcMRbWSoAlJdREEOQlJI5DmNSek1YTCXEW8yluoh0pLjLsxc6kw1W8KxKiglSSkpgkCRuHMy1cU7vTGkU8SsC2qFlZYkumNOsaFP+6WpDjkC4juWyFBj3dW5deZOtPV4e5dHaZ0rALgFn2dh4/kVn7V8ouqJBTuNoBMk6s4pxXlDK+HcEuqSbxSRlUABozgyQQ2WPfSl93tbSyllF/6aT4HQRvmB861Ni528JGXPKxGg/WCevh81W47BC2pVlQRlttDmQxOYBpBZ3jflWvqv4AU2sKLaSpa3JZ4LgEyHEHxjQ1fichAe4IGZIEqytu8S496Fsla1FnIUHYAEgFxvyY+FSwnDU2zmUolTsAAFBuXi1Z4332AZwUgJNwZmchR2kPJ6cqIPEEAMFd4Bwh2ykc41GmtCYPhpRmWBcQ7/qTDDMzNBchhvIoy1Zskk5nUof2lzJLt1LnfTpQ0mwsptWULUsq7yB3itQchm7qQ51J9PWr+J8YIzCwMndggAkBm5QJLDal2KKjbWElxmAUASIILJbl169a5ibpUBoCUMoJMvuGqZQTW3/QpMMRwvFkBkqZokaetepBmuCMv1/evVnjP7fx/sLECruYjMIHI127fywW6Ea1X2ndaPSfWrbdgFiuebHpzr1KSIA7iyS9SsoJLD0JailYAqClpaNUgGB41LBXGBHy8xBfZn+anlrQyJQlOVwW3kT9xts9U4hZdwFJG0kjxBNF4YpkBCc8hJUCRPTR236121h8xIKfASwP+oGPCldCB7QLc2q9C3ctJ0NDhKkqYiRyIP3ailg6s77gmhiDeH4ZSiBBfQCm/D8RkCgksJcGRy0GtKMKcshtHYvGkwdWej7ZVkSpj3nkAF5ju9a5ORWykaLg9ggEkTqA8s8baM3pRdy/bBAUS/NxHgB9qScMu3lTpDMB7jXfamljDpSCD3nPzEAct/H7+FcHLGpW/7DYzu5FIzIDBW0MGA6asAW50qvWRlSnvAguX5tI/OlF3wAj5dAXggQHbx60FgkOdFBBBVB0B2Eg/N+RXXxP22SLhhrjqV8wIdhs777ab8qqZaSSXdpfYFuk+PhWrQbaWASwUwJOkFgCCd38mqvFYKyu0vKoJaQr02eW2Tz8KvIQoQhSckZUhLqUQ7nQazow8OVU8SsfLlWCXc8hHTTYURiVZClDZh8pWokB2P6Zh9OVA8VWoJFv5VP1ZjuG+1Tx/qLqzuGXmzakCHaX8g7a1fiVhIBdRfSPahsOvIhiSpTgloGnVoqtd1JBCkkpd0yIGp0J3rZNZFLin8HlAhmzHxkNuw5fTrTLD4BSJUQlmJYuJOheRS/D4spzEN3uh0/28oomzjrirasneQT3lBOYOwABmGiOdXNpxpFLgl/zCcWooc5WS4IPzA9OVNb+GItwIDkEaGPl5+9ZgYhahJVB6SQ45H06UTgcTfxFwWSpQKZAISA2rgpA2rCalXfQek120GXEhSEublsg7HMHiACnYtGulFYbtUmQWIJmOhUWOje4NVca/7iELUOzUwBBcOD0gEmlPF+JXrdwWwXSzMyfMMz6/mtZRjkZ6C8LiVBQJDpZn0aWd2YbTVSzbUs5kJugkAudACczNpJZzE9aBtXb15YeZhH6RqWgwG9g1D38Iu1mPfCM2V0FgSz+G1aqCX5CjQ2GZKuzTb7pBYggnNrtsaq4xjiEldwBTDKFOMw1YPOkx1pfwawpaVJN4IILpQQ6mEu+jae/nTdxKUlMKCJJIIJMEOKjD3AV4jFi2t7asqSEk+kgGY+9V2sVmXmToC+5DtLiC0bVLCY+3lKVIKyDlCU/2u5U/ODy12qfDMRbQSDZzLJASCYAbVvlMy5etaq9AFWMTcXczhXcTIABCcwBdUjxgkmu/4pFwOD3iXJ0eRr+c6hjcapTdokgOwQyQAdNNpf1pjh8L2dtLptqMg7dBEe9Z3S2UwTiGGWhy5CXdTBvuXJjTrV68GDaSOzyDKXUfmMKZQh4h+cdanfxi0IKU20uDqqTPLZ9/MVHhtu5exCQq2bpMZcxAAaX6ND+PSlGTb0BK1gLOUOq87B/6qR7NHhXqX3knMfn1P6/5rlXh92FGPTh3YEhIMufrVZypO5I32qaL5T8oDg7yPQ1C5cUR9Y+tduyDilKYOddgarUqXqSW21PpXlhiRTA8i4Xf2NTWsq1Ceen1OtVii8OskZTcUgNoND70mJsosQfw02tW0qS6VMeTx1pZbSnNDgO0+j/emN/CG2shCwoAkZkmC27Aw4qZqxBJRbBRMFwoMwbdjz1HnTq4u2SEMUqDlIAMOfr16VmheMDUZhDR+RV6SpisH5WDfTxrCcE0tlJj/h14u6SAnxyg7Mw606KAoFy7DcOBPj41kOFcVKSlkJGY6tPQknrt41s1PkdpMAyU+I6+TaVx8sMWIqsYnOkJBLudjHTw/muDE5WzpBYtlbfmCRHh1qnCrOfvONIiW6+HjVt8FZe2AwDgAjvPq+8PVxbugBeI4lSiS5bYZtNCHDba+1K04/8AqALWsFyQqTI2brv41BWJZ3B8ucCJ5MPSqMbdtZk5rmRQMgJkE7k6tPSuiK8CNAUdol+5kYEqUEgiJLs4VA/mk3EFqUShJcWku/zdBLc58hzpxjMaMmZJBSwDgDvkaa8+dTwHDracP32C1sLhcHfM3Rgw8hSTrbNIulYo4og9mhKdD3ZEabtsznyIqvhhCbCgDBQYiC0j0n1r1vEAXFlRZBLSTAGihEzvyD71G0oJFy1lYgFzq5lvV9araVG9dMeYCyjtHWlhy2UNH+tS4Vlt2+5CVlSVjScyglUdGHkKCwfEe4SCWJSwCNTzfr47URh79sWSwWoLzEltHUTl8txWPJkS06uvsxci6HUkiMyniPmLHyprwVCc90KOUgJUF8mBh+R+9Z9N0yEg/MZO4f18ad8CUpZVlSgsAFZ1AAglTQeX3q+RPEbT39ui7jFsLWj5mBYKBJA6aAPI9apxdkOFMCyksSzSoBm6B/wUVcskMClNpKm7pUQwb5tXIOXSYNLF3iEFgFp59SWCm0lvaojdGMFbDU8KULqiFIDuWkRqWDbxPhRF6xcG47x+UcgPm8T+9DX7ayXWQVFkAKLOOhGggnnFU8NuqX/UVcSkOO6Xju83A0AqHdWy8XVlarCLa5CgQIGpzPHTp50EntVKYo7RCQ+SAkDYHT+6jeIWbq1nMoBLjKSXfcFgXbKHqrjHZpm26lw5DFKho2xB8q26WyZCbE4cJdWT9R0UygFd0Bn2PjrMVzChSE925G3d8tSJ3io8OPaLKTDuHVpzZ6jhAFoUhTEh2ILEEmCecbePlq7rYkHYHN2gJWFBzKmZLGS7wzsG501TfuJuZhm7MFipUBgJ9mrNHhi7qwm2nQPJbRpeNZYUfaxPZJCVklsoUliwSxd5kz9KynFMQ0/xN64odmMqRqTKhsWBLJ9KN4Rif8Je7QK7U94FM8g/MDUVRZx1ns5WCkMyg4WgEt6BudE4TidrC3BcdJ0dJS6zBYguwD+G9TDUhoXYlS1LURbSAVEgAlhOldp6r4jwqjmV2TmTG5k7V6tMZG3t+T5SsAh9NK5b0Ya868tCkulUEbVBFdZgWpZ9S9VXy6iRUgqdNK4veihESn8FTCehqNttz6VwAjSgQxwSQAzOTu2nR3piu3bC1JYJCpBaBoeWmsdaA4dbdJKixcBI9Semw9aIsoclRYp6O+n4KzlYWV45aAQUEnTUR/x+PU8PhlrBLa6OW+sV3G2bZt5kF1aEHXb13mr8KU5E945ixIOnUaVnJ1GwGnDMEpKQHZjsAXlzOre1MLmMWl2zHdm9YZx6UDw+2CIUx/S5A8p60dZwd1jALCS4n1/Irhm1bbCitGJWuDDag/QiicBfAzIBIJIaD66eFDJSXIMFiCfLl967wq4UEolSSopCjyBk/Srg1TAI4natNky5X1YHM+7mSC+nhWTxuCQVllFtHUIfqr7034pfUlRCRlS4YmXh9z+PSrEnNDanR+7rsf3rogmhMb8OsJK0oAGS2JCVEhSykyH5Cf8AbWmvL/pkIGbLsGedg3Ssjwe+hGzEHU6vpH4KOtcRDrzOQepnk3X2qJJ2U5JlOLtpGfOqZCUlQJBIMa6bUPhb4XbyxnSmZlSNBL7GjMJwqxdBIDFJLgpGZzuWP3ajeHfDdsLzIASwPeBc9QxNXKSS2dEOSKWxVbxiEoS6knKAkpLOIZwOke9XcN4jZCLdlRlRUFMY+bMkeentTG38IJd+zD67Pro+j1y9wCwhTlAB10Tz/wBPOhuLH6sbEa7ltCl5lhKipRZWhAMBtZLh+T1xXEbQJWhWUkd150VudzT7F8Mtq7xAUotKgkk+1C3MPbKQi2kKuEsAAgt0bK3jSUk/DB8kLtHcTxq2bVlaC6Uvm0ZJgmeenoKoTaCkpIBKVd7MkPlDOzA76AsNqb3/AIeUi0CqFMSpKcpnYMEtt1qfB8BdIV3ClIBzKLBtI8Y2FKSrSWwzh4RxAUwWSoIKcoJDJynbmSXPePhQuIw1u2gqZMHMXUow0NzcMf8AirL6rtovbUVBpOo6gjXy6irCVL7qUvcI7x2EAnpH3rBp3tmbnqizC3DdyZcrIJIgknQ5hDu4jbm9IMRaSpa05sm+ZYYvykgPPm1PDwm9bUjKtyQymSXaIfQOSfRqvxltVwZbiMtsaAyXII1iXHXSrjXgRhMTeshRAcyXdvCCx6+tWYe3bJCgSDLhnA5DNzYUZjcCntciQ0BiWbWTGrtqKljsAlCnBJCWdJAn+2IiA+grou9Ehl9kJCfkJJUDvOmh9PrVScGASLpUZAP9zEFp3kiKo4vjkYi2pYDKSWuMRJYDMN8rwKCtJdKTcWpQLFgS+kS2U/zWa43VgwviAWHQU/K+rkqJ/DSvA4AXC/apSUlmOp6APTe1ZtFQ/qFBUSSlZ32Yt0o6/wAMwyk7FY1yqkPuW+/OhSx0TRfaGECQFWLZIABL6nc16k5wfJFxvFNcp+75KsScYydqQErA/wA2vKlyAwnn9qPtYdS1uJnLmOgjnQuJRykbHpXXFpe0myu4qW9KilYdjpR3C8GbtwJLAbk/nlVeIwLLUAFOCzNP59KbkuhWVdmAl3HgNf8AiuAx096OVw5SQMzjOnVn/wA3owoUWiDlKWOsn3qU0+hMJwpYAxJ302im1zKE8nDkyACYhvP1pNZToIYUVfxCe0AIB5z96bVAiV/DZpSFGWJlju4nluacCwhKPmAUZIZztFEcNti2lz3gA4yn6ig+LYwKDlGVxqxf02Arn3OVDoJ4XjGBtKATm+aHfWJ0A6U8t4dKUE5gTJYGTyDPtWHs31HKD3mgTP8AxpWw4SpfZMRtKt21g++tYc3FjLQ0CYpHc1KYdeYhiH0DzG4pZhsUQkDXUuNJrUYPguGUpQFu3cSls6rqlJWkqLnR8zB4DdaM4X8C2HPa3TczOUJQShKQDzBffY+tdK4FTGzJYu32hTlciN/t0qriGFKQCQnLsRLHk8ESK+gYj4PwTAIQUEQ4uKJ9yRUbnwwhCGQVKH6s8gnyG/8ANVHh1tiPmV2/3kvJ3+1EYVRMuQIoz4m+HzZujI+VQfvbF2Z9/rQlnhaxGYFUQATryp+i6JCMK1q4VJcJLS+YE7gkzWr4PxAKSzh3ZuXXlS74c4ei6tFtUlJKizFMDeGIdhW8xXDrOQC4lDAwQGPkQx/eplwZKpFxoAs3EhsrTrLh+nhUcXgk3CknK4kFiXHJmbn6UvxmFulCuzFwZiQlUAwW1Bei+H3MfkzZUqbTYwJLb+VRD6WXyJyigLiPCcvfUpRB7o7rD960nCOAYRSE3ELRbLM5Cp+woLC8Yxav/wAaC+5ePNn+4p5wvC3L1otcsi4//bDEQXdzvG4raHC4snNPplivhsGMztyBn3pFiFqtr7NlJIS6gJDdCN+dV3sbj8+RriC7NmAM/wCYNUeJ3cQm4EruBRUnVCszs8FhsSfWtOT2kx5LFGNwq7gKkXAkP8pg7hjDTVSDdJLoCFEZUyATJdKlA9121blUzcxKmBAOYlUiSzjlJB+1C4m3xA3XBuqCSGOULAUUz4xudK5krZbY6wdq65C0WkhO6VEnnIDkkdeetU4rGoW1sKIJMMzKgFpd450t4bwnEququXFFBLuSkIUQWc5WYlw8yWo7h9paVnsbSk3A4VcyFSkgiA+gO+kvVR4M3sHyJB2M7FKricgtJQkf9ubkiApZdgD13pRasKu4e4hZJSr9RDjQsEsCSpm0FextyU2UBQYup0CVEj5zmJ6uXJNeSU2rqULvJVeUWBzAW0gjuuBALZtXMCZFEuLGWSHGTZgU4NWHxD3EHKhUpbVOhjmzEb1q/iAWiq2pKVLCwFEdoolLBgAHYk9Rs1X/ABXe7BGYZri1MVKlQYbpKgCwDaBpM6Ui+F+LJIUheQLJKsxHeU/6X0DHc84p3J+CqFvEcq4QkgOp8wJIA2zalgHkDWrbPDCoQc4yuW1kdQ/L1p3iMEVqK0hKsrsEszAAnYgDXXnVBVcSQocpBHyxLsIMctKzk2wFAUv/AMVz/fXqLUi2S/aXZ/y/zXqWX2HQPw1GS0+R3dxr59Helxw5USTlSncsfTr/ADX0dfBbYSECxcWCTGbXZ3YVPhnCcOtQAw/cTIKiYVuH/Ux8q1bSeltkuJjOG8FvlWZCGAMEuHHh4itJhuDG2kqu5AVkFTKJOjdGHR9qc4/hqgqLgCSYRliNnzO5mkXG+L2UKyJUgqd9e4eTsebe9c3IuR9r+AUQjFWLbEJILbHYaUgufDOKxSwEZAn9I0b/AFMI+nKrUjvsVu+o5nVq1vw/xY3WtpZKvmUE/MQCAzMwBO5JNVwWugOo/wDjzB27Ce1KipKTnuBWV+cTGwpDi/gKwsgYa8UbntO95AMD59K3/H7ttNlWfKe7CVSHaHbq0VhVcT7rCFEZXQlW/IEmW6V1q2DF2O+D8XatllIUBqLS3JiO6w+9Z5GFu9kLipS5cO5TzJGwjWtvw60LRfNiFkDLlyEAHqCHryeHqWtabd42mkBaiIJKiMzMwJ351WNEszfAEWu4Li+zBCu+ROrCWYecU0s8YYFNkG8gu6kyRGYSOWm32q+3wZCSQVIOr5GKZ1+WJ5UUjAYXLlKVHps3JmqJccX2heogLDgLSLqFXUXUJD51ApYkD/2JkHWi+F37tu7aWbqU2wM6knKbiswYjKl9dZMb0wwmFtOAmyGH9xLejjmfWnvDEkKGWzajQhOnKSWFWifURbw7H4fEpBObcsUORPhr+9G3kXFJUm2kwP1JKX5MSQnzc0ysYa8e8+UdG8tKMtWLiQ5uP5sfpVUPNibD8Kw9y2pGLKcxV3U5wptGiQ4L86s4b8HIQruqRlP+XvDw29qfYW8rUFJHQv70aWGpnkBNV0S99meu/CSc2btRDNmTp0hQpjw7gyUO1xDnUpQEn1eaZFTt3D5muC0nfx6UWOkU38JbPdWvNuASAX5vQV7gqIypW/NS1FvKmyFW82z+T1cu62iXosKQDhrISnIpJUBMiBvArl3D2iT3PmZ1JDe4mi7WKzFg4bpU13BL0goWjhGFCT3QQp5kmY1L0De4BhCBlQUqEJLEnxYn38Ka3sWEy4Hi1IuIYoqLm6waGH80OKfYm6Lk4EJSAlAzgSoqAcxLOWkO1ZvjGMVmyqDga5SFEEB3LSP5onGWsSm32iUZ5gOxPWQRWSvJvX7qbinQpiNIgw4YRt/FYctr2wQJ3tleN47fJ7Kwsi2DKss6b6Mnrzr1/ieLUnICLaSod0EgNG4U53LmTRw4XfcFxr3tw2rpLs/SqMfjUWjzbZiACI8a5r5o7a0aLFifGW8QQlSlqGV2ACo5hgwD6NSn/H3kZ8o7xOYgswLNuHzM0R9a1eIxSCCGJJgSR5jYN+a0mt8Ksus3sRcQhIcBO5OugMTO5gb1vxOTVyL/AAIU8ZvXlBChcUWKVkqeNOWjMJcDlSi3hAFkAEZQ4l2DjVmdhuNelawcNwycpsBaioKGZSkpzEkCESQ37Un4jhhbWWeDKgCWB208Ku9j/IVwy9aQtiUJSCxzFlF2Zo5ATy5PTHFjOpSra03JlKfm3y992PjvWeN1F0JzsCmJJBUdEzIgMKt4be7NRJUUF2cudIykco06ms5RfaBjg30//pH/AHW//SvVFOEUrvf46wHlswDPLM8V6jFAX2+PsD2aFFTEArWs9QQ/UmB0ojhfGsQlChcRmckpWA0Enu5QG6PTrgnw8i4WXdZtClKSl/EypvKmeE4NdSrJcuJRYfVCUuW8QSD4V0KJk+Ux5vYtZCgCClw5SwbcO/05UFiuC3LxzGxGbNmSgpeGJc/p3bTWvq3EeDYRYBQFA/8AkCumrb+YFZ278OWiFBWJu3FN3QgQOhJBBjlFDiJ8jMFg+BCUAOxd+05Qzuxeiv8AphsKJAShzIF0Ejxk19Ew3wvY7JVsWVFRYhay6hzDsAPKn3D8GhKAm5h0HKIKghR81E0KIs2fKLWKXliUg8nAJh3Iai8DwvFX1f00XCTu2VP+6BX1Q3LRVCABHdYH3D1JS1d0ICUgxGb01qqJtmKHwbdT/wDc3sv+nvHzJIPtQeN+GbQHzqzbZ06+/KvoNyypAY5ZOgSS/maVZLy1Ky20lnhX7saKQmZ3DfCaiE5VSRPdDAeL064d8DlQOZQDOzfXSnvB8CbacyzlO6UyAPGjr3F7YHdV7GKNAoryY3E/DyrRlKyOYLvTjhOFASy0sDPWnB4kFDmOoLerUIvEo1Sz+H0oCkhphwgcvrXbiUjQAis+eJHvQWG4H3of/q6P1KV5pNA8kaZGKQmI8B/AqFziCXiPzlWfGPtrDIUSSf7T6VYLCgCopgblJoFkOxjwd/b9jVqrpb9I8YrOG9cjKEjwqy/iViGfzphkOO0aVKBG7bferLHFLGygD/mNZS/cWdQlv9Sf3oa5ZuEv3QPEUCzNqMfaSDmuJJ8dPKlGL+ILL5cxfYgF/pNZhdpQd1f7WoDiF4KICQQwnck+kU8RPkZpL/G8N+oXF+Ib+aWpx1tSotOD8veMe9ILvdI1Vz/iaquXhsFA+P2aqozcmzS8S4ktQCSFBI0c/cbUuVxVSd26Bz7GlSbytdR5t9aovYtQBKQPzqXND0h7ZLGfEK1OEEluYjw9WpdxDFBaSlCTsC4ktrv9KoOJvKeWl4Hu+tF2ryygd8kgQx3/ABq45O3tnVBUgOxc1K80eDvyY760x4piQm0ybZUZVMvMqccizDSKXqZKwCrKSxKW/fzpikgi5bBUzJS+aJYQGhyAKhz2aRaMgjiJeHcENHebcRyP2okXVAuxL/MfamGDwQzjIO91lue9QWkZ1McxBPdmOp2IaqlLaSFYpVhncLGUMyVEw8kgjkXBfpUMZw1ZzZj3kxzcgAN+3jTXE3EKTlJDzHI89fx6W47FLC0kjKoCZf3B9atIq1QnNrx9K7WnPFAZNoOZgFq9T93wTaPsHBLQLqUgqYOSwJ6B21/emybhugFQZI0Co9hrRw4Wgl7hc15SbSCMqQ43rYxoot4eGSkzL6j3ig72DacyX8vTR/OmF3iJ5hI60BfxSBLpKvDSpbBl+AtqMskgdCffWhcZxAglOVAliCmaHu8XGjk/6XNUf4bELkIyJ/uuH3YzRfwSGoxVxLKCROjF/bap/wDW1yGSC+jF6S3cfbtuCo3FdEsl6pHF0sxBH/8AbUrQrHqeJXFRMbFP2muYi+p4JVz1bzFCYXGW7gEEEiZBB8KuxFpKZ56Bm9qfgZTeXc3Qw2ZNWW8PfIcpUB4N51G5xTKycx9YFG4L4ktuwzEDchhS7FoDXjVSkbddK5hM/wA7QPP20orjl9KkhYIcs4Gn/NI7uPTo5Hg1VQmxtf4udEgg7z9Ksw/EyXffmNqzZx6CZSfVquVxhIgOByZ/emLI0tjFs2UE86uu41pBIrKq4ytu6/mGP560Ecatb5ysdJb0FOh5DvF8QmFPSrE8SUXYRz/BS1V1y7Ny1PsTUlYlYEufQDpDM9OiLLb15TSROkufahDd6nw/DTLh3BV4lIU5CXY5llvFmEedN8F8K20k99K4bUx1aigxbMmrENsfVvoKqVi1Szjzra2vhbDf3P4kp+1cvfC2G/8AIUjZmU3vTTQYMwxvK5+5rnaqG9aC9wJiyFIWNyTkDeEl6DxPBr5LIRbIiUqcDq5mnaFixUbhh1BtnNUXcvMHwNF8Q4JeQpgkKiZbXro1RHwpi2B7IMeSv3FOl5YvdekCoYkaHpzq5CbQCikZShyU6MHidZ50bhvg6/qWQORLn2irMT8ILSlS7l8aEyDyMGfxq4vqY3+k6uJT8oxvEsR2iysPyPKNPGhhiCQUgfzXb2GlR1lokn+KjgrN4qOW2spGsHbyfxrBJ1oumEcNxdxKsoMk8hDxvRNhduzf7VVxVwBLJGQoBVsr5pbnDsKhfwK1KBIAdM9mVaHfM53pxhfgrE4gg5mQ0LXBV1CWcjrD1cLSsdV0ZnEKOIvXLqikJAeGBMNyonD4OwlJUogqaJjxL/hNfQuF/wDx1hbbnEXTdLaJ7ifqVH1o298N8NykC0A+6bin9c1aXIpJnywYxewPoK9W/wD/AKBw5kG+x07w/wDSvVGMhUzaHjF3KVEAAakqDUuvcft5v+4kdUz96y2I4mSwUAUtCdhUCpBTnyQC2v2/mt7Oex9f4sjVKio8z9m0pRi+Lnb6k0ItSdGaNgB0o/h+EsqMpUqdy30o7EdwXxLdtBkH2hzQuP43funvrV9vSjcVw227ArTyAYj96pRwtLQo+n3p0xC/tVnQt9aO4fhHLnzP/JrwwhSddDyrX8G4XaWkEA5uZLz4MzUYWCALqlWmKdDopoboQWoTFX3EKnlt+9avFWu7kLC2nVKRqfE0gvYWylfdKwTzAO/iKppg0DcO4QbhUu4rKgaAb1LF3k2xkSH5aa86jiSUw58QW9mNKUXSt3fxeaKFYYrFXHZRA8RDeG9UWGUXKCobsC9RsAkkJCQQHcuTQV+65OYqUfHKPQUxBV67achSfQ/tQqsVbSe6l/8AUY9A1ewGGNxRACYf5n+1MrmA7FQSrJP9qApp/wAxpiFqeI3TCT5AD7CiMLgbyyxOX/VDfeo4/jNy1bWUKchmGRKQZ3KTUFcQvKBuXFAlmZIYBgT4k+NJyo0hx5DmzwNBJBUonmNPpv8AajLuAtW7eRIK1kucokeKjXz/AOLuMXbVtKUqKTcMlPJO2vMj0p3wLELxFvPnIO770lIuXFXQ2WkJLZCTu6gR9PvVP+OUkRbAPP8AipnAKXqs+/70wweCQO6HdtTOsx60OdEriYmxXFr2WXCeYT9wKDGPuwXVOnXwqrj/AMRrt3uwthmJClHUtMcg5qF74htrWnDdmQrLmWvYAJ0Sl9z1FF/JT4/g1HB7ZWCu8sCykOSSz9CfzWjj8SWFk28PaXcKBmhOVPqf2rADGXLqU2c2W1mJYak6z9qKX8Ym0GtW0pdg7SfEvTasqOka3h1vEX1FdwKspSYtMMp6q3PtTcEhYBVHM6eAFfNuHfHF5JdSQSfT0oP4l+LL10BKSUB9v3qHFtmikkj6LxL4js2yUZgVbtoPE1k+N/Ffaf0rTF9TrWKsZ1wVa60ZwjALJcLCQ7E6mnikLNsFxV1YVmcgglmU3tX034HuoxWHSpQCriSUrAGWdiW5hjWa/wCiIzl3JAknc+lEfBmLOHxRCfluuFJGjhyCOo+9S5JopRaZuUcHsW1AlIJGgYkD99N4ruJxrCGHWiV4sEOB61Vbsi6W0DEnn6VJYi7K7dJyZlEagVdw60vMXQtQBnu+odq2GHsoQnKkMDMdd/GqMXjhbIBBPh6VHRXZl14LFOcpxAGwyIgbD5q7WqViF9PSvUWgpn//2Q==\\n\", \"height\": 174, \"channels\": 3, \"width\": 290, \"type\": \"image\", \"id\": 4947634704}], \"selected_variable\": {\"name\": [\"\"], \"dtype\": \"Image\", \"view_component\": \"Images\", \"view_file\": \"sarray\", \"descriptives\": {\"rows\": 5}, \"type\": \"SArray\", \"view_components\": [\"Images\"]}}, e);\n", + " });\n", + " })();\n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"//cdnjs.cloudflare.com/ajax/libs/font-awesome/4.1.0/css/font-awesome.min.css\"\n", + "}));\n", + "$(\"head\").append($(\"\").attr({\n", + " rel: \"stylesheet\",\n", + " type: \"text/css\",\n", + " href: \"https://static.turi.com/products/graphlab-create/2.1/canvas/css/canvas.css\"\n", + "}));\n", + "\n", + " (function(){\n", + "\n", + " var e = null;\n", + " if (typeof element == 'undefined') {\n", + " var scripts = document.getElementsByTagName('script');\n", + " var thisScriptTag = scripts[scripts.length-1];\n", + " var parentDiv = thisScriptTag.parentNode;\n", + " e = document.createElement('div');\n", + " parentDiv.appendChild(e);\n", + " } else {\n", + " e = element[0];\n", + " }\n", + "\n", + " if (typeof requirejs !== 'undefined') {\n", + " // disable load timeout; ipython_app.js is large and can take a while to load.\n", + " requirejs.config({waitSeconds: 0});\n", + " }\n", + "\n", + " require(['https://static.turi.com/products/graphlab-create/2.1/canvas/js/ipython_app.js'], function(IPythonApp){\n", + " var app = new IPythonApp();\n", + " app.attachView('sarray','Images', {\"ipython\": true, \"rows\": [{\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUQEhMVFhUXFRUVFRUVFxcYFhUVFxUXFhUYFxcYHSggGBolGxUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGy0lHx0tLS0tLS0tLS0tLS0tLS0tKy0tLS0tKy0tLS0tLS0tLS0tLSstLS0tLS0tLS0tLS0tLf/AABEIALEBHAMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAADBAECBQAGB//EAEQQAAEDAQQHBAgEBAYABwAAAAEAAhEDBBIhMQVBUWFxgZETIqGxBhQyQlJiwdGCkuHwI3KTohUzU8LS8UNUc4OjsvL/xAAaAQADAQEBAQAAAAAAAAAAAAABAgMABAUG/8QALxEAAgEDAwEGBgEFAAAAAAAAAAECAxESEyFRQQQiMVKh8GFxgZGx4TIUM0PB0f/aAAwDAQACEQMRAD8A8gArAKQ1XDV6tzgsQGq4CkNVgFrhsQArgLgFYBa4bHAKwCkBXDVrhsQArgKQ1Ea1C41irWq7WqwCsAsGxLQrhqgK4CASQFcKApCBiZUypDSiNoo3DYoJV2sKZp0EcUtyVyQ6ixNtEojbOU62mitpnYkc0OoCTaBRBZin2WUnaj0rGUjqjqmZYs6IyzLap2Dij+pRnA4lI6oypmD6qp9UdsW8KLRmRyCteYNqR1RsEYAsbtisLA7Ytp1doQX22NnVDVYcEZn+HlR6gnnW1CdbCUuozYoUNiOxQbMUZ9oQzW3nzRzYuKAvpbpQ+y3eKKam6eK6/wDL4oZgsfPQ1WDVYBWAXfkcOJAarAKQ1EaxbI2JQNVw1EFNWDFsg4lA1XAVw1XDEMg2KAKwCI1m5XDVshsQYYdiM2zlWaEVjRvKV1EMoFW2Yq3q5/ZCYY3ZT6kpilSdsASOqh1TEmWcnUeiKLMVossxOZRm2cDMeKR1hlSMttApilZXbFptgah0Um1Aa/JK6o6ppC1OxOTVOwnaq+vDVK7107PP6JHUYyihtllAzJRmtYNZWa60EqWknUpuY6iagtDBtXG27AkGsPDmUUUTtSOoMoDBtROxVFbmup2XeU1TsIUnVHxFu23BQT+wtSnYhsRPVgkdU1kYhpzqUdju81supBBewDUUNUOJlGmf2PuqOp7vJaFR25Lvc7YFtUOAp2W5UfTGzwR3hxQH0SmVQVwAuaNqHdG1GNBU7BNqCYHggxFZSVQFcFei6hxKAZlIKxAQmozWpXUGUTrqsGojKaK1oQ1Q4AQxEawoocFYVUNU2BDaRRW2ca1TtSpDidaV1BlEO2k0akZrgNiWbTJRmUBuSOoh1FhfWGq/rJ1NPRQxjRrRQ9v7hTdVDqDKCu/YuAedaMKo2eKu2p8qR1hlTAdgdqs2gmRWOwdFbtHfuEjrMZU0CbZ9yM2ynZ++akE7URtMnWkdYdUzm2U7QOiu2zfN4K7KXzIzKI+IqTr/ABHUAbLKU1Ss52Dqr0qA3p2jSCk6twvYHSs7toTlGyH4kxQpjYnGNTw7zOadV9BRti3q/qY3pwBTC612chqMzX2QJapZdy2XBAqhctWOBSFVmHUs52JapQO7qtevgkqtQbAuV1LHXBtmY+kUF1LetB7xsS76m5bWZXESdR3qvYph79yEXJtVi4HzgOVw9KCorh69Z1DhwGw8qwclWvRG1ErqB0xppRBKUFVXFVK6gypjjWb0RrN6SFVXFVI6jG00PNaNqI26kG1ERtRI6jGUDQa4K4eEg2siiukdRjqA40ogSQrq4tCm6jHUB5pVw5IisrCqkdRjqA+HK4eEiHojXqbqDqmOioFdr0o16K1ylKqOqQ4x6Zp1dyRYUxSKhKqPpGhTqJ2hUWZSKeoEJdUhUga1Com2OSFCE5TK7Oy1u94nm1EMLlAKmV76asc5V6XqORqjktVcF5HbqqvsysEI2grOq8U5aaoWbWeF5WoelRgwdRvzJWozer1ao2JSpVGxZVGdqpnPaNvigkDaqPqjYhGsNiqpsV00fJhpV3wDqfsrDS7vgHU/ZLSNvh9FcFozOHAr6p0ocHz2rLkYGl3fCOp+yuNLv+EdSki8anA8iVUVRtHSfqhow4Dqz5NEaXf8A6lW/wAYf8I8VnirO7ku7XYD0/VDRhwbVnyaI0y/4W/3K/8AjFT4W9HLM7XbeHgoFbH343AFDRhwHWnyav8Ajjxqb0epGnn7G/lesv1sa73QT5q1K2g4XX9AfqhoQ4DrT5NZunKmxv5Xog01V2M6O+6y22ynl3p4AHoiU7RTPx8LoSOjDgbWnyajdM1tjOjvurt0xW+T8rv+SxxXp5d4cWg+Su210x7rt3dn6whoQ4DrT5NgaXrfJ0d/yVxpit8nR3/JZVK3MjFxz+E4Dl900LQDk/8AtcPGUroQ8oyrT5Hhpmt8n5XfdXbpmvsZ+V33WdSrzPeaRGoGfPgjlxw19P8AkldCn5UOq1Tkfbpmt8v5H/dXGnK3y/06n3WebSQPYceAaP8Acqf4gQZ7B/INJ263JX2en5UNr1PMah9I6w1A8KVRXHpVVHu//DVWOzSrTk14PzAD6oo0iRBLXn8GM8kr7LS8qG/qanmNmn6X1fhP9Csm6PphW+HrQq/deapacBJFx+OvvDDgSjjTBEFvaEg5Fjo3yb2Km+yU/KHWk/FnrqHpfXkCG/0av3WlR9La5whn9Kr915Cz+kGE3H8A3LfMz/0tGzaep6+0HImdWqeq559mivCJSLi/E9nYvSV5ID4A+WlVP3TWlPSNrGzTvk65oVo8gvNaJ9IqF4E2hzMwbwqxtnUNyc0r6RUHNgWsjMY0nydkSYSJSUWrv39f9DadNzTx29PwwVT01qTEDnRrYeOaSr+mtXK6P6Nb7oFfSlLIV5MHEUnZHDHNZds0ldMX3EDZTOfAHzCEaCk90dM9FLuxNB/pRWOpn9Op90Cpp20fCz8j/usutp2l71Rzd7qThjHBDOk6LsqgOuS1w810R7LT8pyOpKPgx+ppq0fCz8r0s7TVb4R+R/1QBaaLgSHsO7Xr1FVNentHAlUXZ6XlFfaKnJWtp6qM2O5Unn6pQ+ktT/Sqf0nf8k26oDqP5WkdZwSznsmeyd+Uf8lRUKXlEdefJ4x2lH/6Lf7vurN0v8VDoSPMJs2QZwev2XNsjNc9T9V6GcTz8WCGmGZGk4cIP2V26TpfC8fvijig3YeQVxRb8PglziHFgRb6PzKwt1L5uiIyi06ugRRQb/3+qDlE1mV9ZpxOJ5fqh/4nRBxvDkT5I/ZMHuz0VrrTq/RDJBswJ0lQGv8AtP1VG6TofMN8fqmTRYfdHgoGj2HGB0Qyj8Q2ZSnpWznW6d7SinSdAe8D+E/QYLqVgp7jwxUu0VTcZujmEMo8sa0g7LXZyJvN5gjzVy+z/G3970GnommB7I6BHbotmwcgEjlHljJPgh1rs7cC/oHHxAhW9es3+o0cZafEINTQdMnLrKq7QLI9k9Y8yteHLDaXA+NI2bLtW8/vClukbOBDXs5vu/8ASyH+jbNnKZXD0XB1Acz5BDuch73BrjSdDW+lPy1rx5iEzZrbTJi+0ax3mnniV593ot8w3Xc/HJLVvRQzh3uJg+JWtDkPe4PYNc04CownHG8PEgghFp0czey2kc8yfJeIo+iTj7sfiH0nBVqeiT2+647mi94BK4x8wyb4PoIpGJa0EE6zgMN2pM0rLUOJY38MHrIGHNfMx6N1B7N8bcm/XFDboyvSJLXVWD4m3hPEtPmkdPiS9/UZS5R9dFjeO92UicLox6QcFqWPR04upmCRmGQDnkMfFfJbLabc0hotdYbA41QOpz4Lcsmk9LAy2vVga7l4eLCuWpSmuqOim1LZH1XRtgpHuvpHOJNMkEajenCceC0bVoOkcqNONczlwj6r57ofT+lGul7nVBrBpiPBoha9o9K9IaqLObXY9CpKpTisZJ3+n5uNLs1Zu8ZL7sZtWiWNJuUmySO8LoAGWABnUUpatF4e6BuvHqScMl57SPpnbm4mlSifeLyJ3S/BZLfT+3Yh1Og7cJb/ALihGFR7ovpSS71j0VXRz9baThuz5kkpF+ju8ZoNj+ZuPAEfVZ1H02tBMOsZcfkcfAXT5qtT0trf+Rfn8Z8ri6IwrLp6/s5p4dWO1dGM/wBET0Qamih/pj8xP7CVZ6WOnGyVW+P0EdFW0elYGdnqgbcMOuaolW49f2SenyWfodmfZjk670gKw0cwZNd/clqnpdTjClU6D6EpV3pa2cKb+n6hUSqvoTagYDap2Tvgooedn3SzrSTkOc4Lg1zsy7xA64LtxOO7GwTnH0VTXj4BxMpT1dusjm1zvGUzSY3b0a0JWkG7LC1/MJ3fsq7S47eJEfZWEbT1+y4uAyaTvOPml+SGKuDtRnhPmJRad7f4n7KGVTsI4T9cFYPIM+bsfAoNsyCCdh54DzXMpmRePKR+/FR2o1n+5VAYTMTvxS3GGXPbqd0E/RGY4HEGd8/ZJl7YyHJWo20fMPLpCGOw1zQDxtPirh5OX/2xKVZawThf/KY8kT1jYCeAUrPge4y6qRqI5/orgk6vFAZXO/n+iKKmuepSsdBWN5HifurCmD+mKBTqZ4jcRP8A0iNrEYSCErTGTQdtNoGRPMq1OmCcM+BPmUBtQjM4cD4QmWVd/wBOqVxYyaGG2c7Md5+mSKLKDn5keAhLB/zR4+SJ2wzvY8T5KTjIdNGnZrK3IR0HkU3TsrC6boJ2iPKMVi0axPdljdhLhn4p+nUrCB3DvHenmCoTpy5KxlHg9BZqAm9dbO0jELYsVmDs8doOXKT9F5ahpGq0xUNLde7p6OwK1rPpqmSIjDMNeWY7g8AHkoYSvuCd2u6evs1MNEDLUNSvWYCMQFm2PTNJ2F4jAGXa+eUpqrbW5Ajm5o8JlevGrS0bHmSpzUt0ZttoUhMgY6oJ3ZNGXNeat+jaJcf4DHfNdIwjYQvQ2zSLIxdGfdILOEEiDrWDa7W5xN9oDTsIcOsfReO077M9Ps6l1MpujmNx7IDfM8MzKHaKDXaidzgCPFNXdhB3mCegACWdWOIPhAVIylyWkkK9m1upo1YBBq0Guxw8foUapAM3cN5H3+iXqVBqH0+qsnLoyLx6oFUoA5hvTFKusLN/RFe47Cd37BXB5+FWTkupJqJ857YjJvEnBS997dwH2UUnu1Cf5mgecK7nEfDGswAJ/CCvaszzEQymRj9/Iohk4YHjK59o7ox4kEDy/RCbWG1/L/8AUpbGDUqLyYmOACI8Ee9PRLCqIJ7w/mcZ5Rmqh7Tk0Xs8RjyvOQxZrh2l23qSfBTePx+H3QnVSMwZMQ2QMMcYDssFXtqgEm6OIH1WsG40Hna88GgfREDWnEtceP2SbazzqLuAgdSqG9OMt/FmOQS4huactbiABxAHiYUutLoza3f3nfokXtEe3cPEGeEyuosIxFR52y4A+eCDiG49decb7zwutHVWa+MC8jd2k/RJdrJi6X8XfaVcWkNwljBsBl39uKVoNx11JuZa4nU5z8PEjyRWmB3LnEz5jzlZ4tFIZvk7g7xkphtfWCDvd9JMBBpjXGqdUn3mE6mgO82ko9E1M8uRnh3jKXo1HH/xGcJ/YRxTGsg9fCT5JG0Orhm2rUXx08BimKT9d8kcG/okw+nracNZkj7rv8Qpj2ZHBhPilfwQy+ZotqgZjqE7QbOIa3ynqFhU9JE5An+Yx0AJxR216biL5IcNUtH+5TlBjqSNmo4g967G5jXeKZY9kiGjHZIj8N5ZJrmP4RaTsc4fSQopdsRN2mDtvHz7M+MKTiUTPQ0q4ECcfhexxaRw708gtKjSeT7DLp91zHXcdjnNbCwLHpeo3uu7hjBzXNeObQ4GeSdr6RtDQCLS0jDuhl09H5rnlCXT36FVJHt9CNcf4ZaWNGOEOHK+MOgTemntuhoqPDjkWUw/80NK8pYfSxt1rKlXsz3g7sxTeHSc7hBjCQYPJOH1drRVs7ixxBh7Q4vObSbvsg55t4BC7jCzJYXnf39fbItlia0TVe/HW4Npz+G6sWt2Im484TmBhvN049Csy2WWu5xeXV3knB1TWBuEQN6z3MccLxEH45HLFGFK/U6HPFcms5wODKrD1HTBZ9azgGXPaPxEz0KAbK/MuJ2EmemtArOcPay3wZ5F0rojC3gyEpX6Dd9s+0eRI+qE2o0yQ553OnwvFIutG4x+Fo6Ocgm1T7jujT5FUVMRyNI1ARiHDqfEFLGudTvL7pW/I97qqdoBkB++SdQEcjxxMw41Q7DHIkbjgrdn8pA1YxPhBUPDHYirj8wx6hQyznK826c4eceRC9NxZwXCtpn3X4e9F0cJMR5KGHHBjnHqI146ku4Cm7CoeAGpM0O+ZlzRBJkRO4HE+CWzNcsbTODgSNQcQ67wgYK9ocWhpMub8kCOIwKRqVMSACZ1OJMc5hMmobvdNPVIAaHTMYHX1WCNdrGLQBtEgE8SQYVqlpIZeujAgTJLtZ39UlexhzHggYXSAJ2kFEa1oBcA4AZuBa7peEjqELBuMMrPPtPIHzYeGC7sC/I3jrJGB2RKWp2sXZNQTlBpjll9CiULS1zT3zP8pGG7E/dCxgjaNNpxMDHBoJk8YUteCCBlOGz7zxS/rLYdJDvleTB3xCoy00nYFhBy7hN2N4JCWwR9zcAHsBG1xaB4qb4EhrG/pxAgrOaxk4XxwDTyMymWWYn3qgbh7RAHIEYoNBuEbVddkEAD4QBA6ShevHG890ZYj/uEVlkdjceCBry8f1QTaA3AX3HbfddB4NIQsG4alUESAAMiXtPgR+iJTrNBghrt7XNkcsD4FK1KocZcTO2I5TB+qo/U4QcSCDDtmBOBBxQxGTH6xn2QwHY9r54ycPBDpvqtxuMM7sxuIiENtouR3nNOxk5fi+iKbS+CWPqc7nkDKFg3GAxzwcAORPjPmFPYPiC1vMj6O8wkKbHu/wAys8avaAPQBS5l0XXPqROEzPI3Sg0wqw6KcfCMPjj7yoNpqU8RI+YHD80lBFHAdx5EwHPqADkSyRwTNkoUySBdY4Y43Xf7s+SVvkK+AWjpMOcBVc4A+80PI5ljm3tWMOOKbFlZDbjqzg4YBtSkYMxBh0t1HGM80mKzGuLKlE1NUhzWB0bmiDxWpQtFkgPr2GqWTDS5tNrGvwvRUD2F226TrUZO26X4LR32G9E+iFSs6XFlBoJBNoc8OkagCRPGY3raHogXPNSaFJrboMVu0e4CAXt7KYnEwQMVn1m91vY202Wi/DsnU7RSZN3vAuAeHTvcc0ra7ObJUizWm867DnU6VWRkXAVKdNwIyxB1hRylLrv78SlrHodIWqlSp3abK1eO8XG0AkScJZfECIwjFeStWmQCSWtGJ9urB/tEz1WhoK1OrVQyrUbVBDgL0tcI70hzgMMDhBJnJMW/SYaboLXOiHEEQOBaZz1kb1OCcJWaux3aS2exjN0nUON0XQM3EXB+JzseiA3S7hm8XdwEAbLwwI5IFWrTqOyDjjN3E9S8SN8IVa0NBgPe3KWljiB+LFdiin4o53JrqPC2NcJaRO6MeUpY25gwL28BP0BCEHl4hpJ3dm7DnEeCHUe5vtB4HxMMDm3JOoiXGjaWxIdO8FhjqAo7Y/F4H6JF1495pcRvieoPkq3n8eLj90cQXMKtSYcQwzxVOwnaNwWr/A11D4lUJo/F1/7XccYiGubk480Wlpctlr8QRB2H9UciznOPzHyRB6vEd2NwIR3AJ1LbSOMcBmB4LqOkmz7LRxa36hGNKzD30KLLtJ5o/Ywd0TfZVAcc8xHCNSD6pUJvNuOjO7IMcDCE42YZXuRVH2mn7t+Ov0Q7ptzRfZCQTg2fjugjpK6zWIAkOrC6cCBe4iMBrWabW35lQ23cUJYsKZ6F+jaDh/m1AduHjggVdEV2d6i/tmxLg3Mau8wnEbwsUaRIylM0tLkayD0UcX0ZXKPA07tacPuPYSMSQBHUABR24Il3eJ2XRPQEFXpadcMnjoE1T0w4+0GO/maCmxYLrkTs9pa3GGxsc+egABCLVtDXkQIb8xe5oPyxMeCbq0LJUEmabtdwujoZCGNCV2y6l32RmHAOj+Rwg8pU3JddhsX03+QE2hsy5jTGHdaLm4kmfNE9ZbEkOAOpgDW9Dj0SDnOpujHHMHAjbIGfRWfWc7vG5A2gjwBAK1jXGS8xABIzh04DfAw/eKMw9mAQGNOYJe6OhEpR9eQCwtaRmLxAj+UHwXdrJAIDv5cCDuaYM8kGgphqlMPdIqsBjKGkciYKOyz3RsyOfdcDrzM+CUFtD+4XhwBJALRe1e1A3bVam4A4CmMJ9l17fEmDySMdDApucZa0DVLW59QYTlhtVRjg9tVoLSO65wY6J1hwA2YwRuWVVtrQQWtdM94jAEasABCs+s8iWMDWYYtzH4XO44wUsk2twppM9PpDSveirTl7gCKlO5dumcJAAJnGQnbHbbXZWBratR1N+L6deyl9JwAaXEOvQ8AGZkZb15h1B3cPbU3OwllbtKcHukBzp7MhwOBBjbC0NFVKtQAUqBYwF1+LRdaWlsnvdn3YDXd8zF4CcQDzuCSsvf3L5Xe49bKlW1tudqLoEijRs804D/dLnuuul0wMIKaqVOxo9lVrNqUxIYKENuCQSyuaZYATex9qYWLatJvoVWlz7TSqN9qLQyuXU3i8A0kBkQ7eO8MoRdOaSNohwrVKdGbrS6pZWHKSajaMQIcMgZ3mUmL2W1h0+o1obSVmpOqVKV41XC6BRbeLGu9sk1KcE4AZnMpexkudep0q7u/i59JlQAgXpdUGG0wQmtD6GsdYtp0/43tdrVNSqWUruAIPZ02vGboiTtxhbui6tmpFprNYKVI4OlrWanC7TcC9zjeLi6DvySznGLdrtmUW9nY8paaV9xvOcDrMtLer5x4LMtD3DAOIZrH8GTwgAnxTOmNOmvaH1KLYYXm5EukDLDPLHHBZ4q1He84DcC0DkMui66cZWVznqNXdhutaAGBkNa0D4jecdpu4jokzaT7Te6NoL3NPGRhzCXfZvjMD4rkn810HxTFGuaYwLXje8Ax/K4CFW1hLk0nknANI15gDr9k0KjtQPgqeth4xc5o2Bwj6+aXLafxjm4/VyBjz4ot/ZVhQbqCsFHHFdJzHert2dFPq7dnipULGLCiz4VcUm/CFQK7VgF20W/CFcjchyunFa5i5YMyFXsQcwAulSCgEH6oCrCwtVw5TeWsYWdo3YVX1SoMjKdDlYPWMIUbUWnvBalDSztTz1VHtDh3gEkbDOLT1wQbv4jJteB6Gz6eeIvOkAziA7dr8k9a9N2apBLLp13BE8l4x1lqjIyhHtMo8Ejpwbva3yHVWVrHpqr7M3FjQ6cTeGM8BAUM0mxvsUaTTtFNk9YXnIq/Ceigtq7D0TYw6gzfQ9hZ9PtJDatGg5kiQadMZHP2dhOUasU1pixWCuGmjV9XcB3myX0yd0kELw4ZVVBWeMIUpUY3vFtFFW2tJJnr7Xos0WM7O02evifZIDmYDE9qMAd0qtJoyq12Rra1naEAEHBzmgDXkPOV5b1l+xR607WFtPbd+hlNdEezdouhUjsLReePcrscGnc1zHeF3Yj6NdaaDi1lGHDu1HUO0p3mxI7R3aRdEzDbrtUjELxDbdG0LesHpY4AMrMp12DJtYOlo+V7SHNz2qU6MrbO/z9orGor38Pf3PaWz0lttGmztTaxTGBqU7OwNaCMHdtUc9tUE+7IkAY6llv8AT4T33l8XJIpUQ57bxJvupwGwHex3xemVjUdL2ZhJp2Kj3hEVHVKsDdfcRO+JXDSFlfAqWWkADnTHZnmW5qSobbxfp/0q5p9V6mdX0t2j2v7FjiCSTULzfJjF0OABmThGJS1tfVe6886yYOQynOdg1nUvQO0JTq/xLNWaM+5WutcB/M0Q7LMgDeqD0arO7na2c6+9Ui7gMGideAmMSqqdOPwtyTcZvp9jDpl7ml3YseBhecHXQSDGEx02KbO97XD+GGk5Rfxx1XpbGB1LTdoa0UjIY1sAgvY++AMjPZNLwNXNRZKgJJbdJvGS6q280QSAXOLQMiZI+ybO+6Ew92Bm2t1hxd/6jMDwbP0Q61oqe0CSP/cjyPgrVWySBUEyRAqUwM9Ra4AhEosqNAIqtOqYfUI53iB1RugWYGg0HvHnHaEHi2BPNQ1rPiP4abmjoFa1VA/F76btWDQ5x4QYBS7rTBgPIGwiPBrICYUziqs9rkuXK5zl1LMj+9YXLljFgrKFyxiVAXLkDElSuXImICsVy5YxYKwXLkDE6wiNXLlglilq/wDmM5qVyxhkqApXLBO1IJXLljFaeQ5+aWr5rlyVhQrUQSpXIDoPQTVNQuTILHbKj1s+S5cs/wCRSH8T0XopmeI8isz0jz/N5Lly4/8AMx639tHlm60vRzULl2nLDxC0vaTTVy5Ixuh//9k=\\n\", \"height\": 177, \"channels\": 3, \"width\": 284, \"type\": \"image\", \"id\": 4947633040}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxITEhUSExIVFRIVFRUVFxUXFRUXFRUVFRUWFhUVFRUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGyslHx0tLS0tLS0rLSstLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIAMIBAwMBIgACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAACAwABBAUGB//EAEYQAAIBAgIGBgYFCgQHAAAAAAABAgMRBCESMUFRYXEFE4GRobFSksHR4fAGFCIyQhUzQ1NygoOy0vEWYpOiIyQ0Y8Li8v/EABoBAAMBAQEBAAAAAAAAAAAAAAABAwIEBQb/xAAqEQACAgEEAgECBgMAAAAAAAAAAQIREgMhMUETUWEEsRQiUnHh8DJigf/aAAwDAQACEQMRAD8A8molqJaQaOk5qB0SaIxIlgELSGJFNFxA2XYODJYlgChlgXEOIVgBCUgkgtEJIDVBQQaiDEYFioqxVhlgUgsEitEZCJEg4Iy2UiimgLDpIHRJtlEhTiWoDlAJQMuRtREaAUYD+rDhTMuRuMBcKYyNI0QpGilQISmdEdMRCiMVI1qkLmSTsq0kjNKILgOSKqFUSZmkrCpDJA6JREGKbINcSDEeaSCsVEYjqs4XEpIuwSReiMVAWKaGWI0MCoF2KSGREMqI5IXojYAMFoobKItoQ0FEOIMEHFBY2gkSwaQMgsVESGxQtBpmWURbCUQUhsUTkUjuFTgNVIOjE0qBzynudkYbGXqh1OiaIUTVSoEZahWOmIp0DSqVjRGFhc2QycmXpRRmqszzRonEpUy8VRzyZnUBFY11Baol4qjnk72MegRQNMoEiragbEomZxZBziyzRg8hAbolaAUTos5nFoqwSDSLUR2KrBKcRmgTRNWZoUWg3AGwWFBBwATCiwsKHpASiFGRbEzSAihkUCkMiYspQSQM0GkXNDTMtCUhiQNhqQmzSWxEOhEXCJrpRJTkW042MpI2UoC6VI6WHonDqTo9DTgShQNKp2G0oAVTlytnTjSE1GLULjZjqMFa7LxRCTMzoCpwOhONyuoKp1ySe5zlRBqxN8lYzThfUh5mMDDoXZcomyFO2fxJWqL3WsvIM9wcNjn9WQc3z7yGszOCPJxpXKlRNMZxe0bGN+RvNoz40zn6Bdjc6XcKnC2wotUlLRFQLdMLRQaVii1CT0mI0SpUzTKJVil2ScaMjiUaHEVKArNVZEw4sWgkGQYjEMixZUUZdM2k0aooqRKbCZlsaQtRHKICY6MjLbKxigqNM2UYA0IGunA5pzOrThQ6hE6FIx04jesscsouR0xkom7SshM5oySqtlJNjho1uzM9W+ApVMzVSlcxWzNtKHE64pHFOUjRGSLqVUKSF1Ktr5LwMyjTs1GTaot1UZK+IW0RUxDbshFYVJGrb4Kq4jMum7iFG2bGQb2DbXQlF3ubk4kMqpvcyEih5j6mthcaMlqZ0ZUlHLUVOHFHTbOb8t8GJTkinX3mmcRUqV9gJrtGmm+GJUkxsYbmCqO5jI0GackZUZC3pIuFQ0RpS5lSpb0C1AlpWBZMXUpDlQewbBbzfkJPSaOa4lM6UsPcz1MKPNDwYiLGRKVIOMRWCiOpxNCppi6SHxRNtl0kJqUCUaRsgjVQw92YcmkaUE2DRyNNKDeoqVLMfQIOPZdS6GQolzglrBq19iMNXrJOwkmDaNHXps1RkhFHCKMc9Y6EopGJST4NxT7GLD3d2FNxQynVk9SAq4faEdRrkzKCYl1WkYsVilqNtek7ZGeHRz1vWV88eyXgl0ZINFyaNiwD7TXhui/SIy1VyVjBpUciOGcjqYPo3Vc11KkI5RQupXdsgWTVsy2k9jWqcVkoohii5+iyBUQuR88eKc3dse6j2M4yug4VWtp6WFcHn+S+TrqpvyG04S2NNHNpYp7zTQxSWzPgTlFlIzidWkm/vRT+d4cqEb5NrxEUMavSsbKWPg/vK/FHO4yXR0x1IPsqGFlsaZpjhW1mu8fTdCSyln3BxhJZxldcyEps6YxiYXh4p5prxRJYbbFpm94ectq+eRzMTgakXfyzHDUvsJwroqcd6aYiUTVRUtdr8s/DWbFh01e3cW8lckfFfBwqlIBU7nclRW1AywqtdLPgWU7ISjicmFCRqhQltDbknksuRpeNuvu2sauyb26M+ilrN9KyVzmSnd3Z0KE4uNnkwcl2JRlewCk7jb5awrxjr7w3VpbFcnKXpFYxp7szaDbus+8Zh6Mm1m9Zsw9aG2OXA2yx9NK0VnyOSWpJbJHVghDwDebYudNRewy1K05Syky25bRKEu2PNdDni2tSY11LpXdgMLh3l35mmriqcVq0pbrZCbrZIPlgrEN5Rj2vUNpzSX2mjPGpUqJ2jZLsCo9FTlm8lxEtK+RS1kuAp47ZCOe8TUqVHk75nYwvRyjsbHSwrexJfO03GFf4olLVVbs4+Gg461n3s2JJZ7TUsPFa34gVKkI6reBTxe2Rf1H6UZuv4MgLm9xDOGmHk1T5EsVF649qYdovU+8xR5ho9KzkxNCpNbQo3FwqGiEkxNmkglcbGoxNy+sENGyniJb/ABNUMZLkcxTQyNTiYcUysZtHfwmNnr0rrc8mdyjOM1t8/eeKpzey5toYuS2s5dXQvg69PXpbnrIQhfWr8VbxNKjbPRXfY8zDpVvJtmin0m8s5W+d1jmloSLrXizp4zD31J+DERpaOTu/ngaMH0lnk78Gg8fjFLPJdjS8imnqOOzIaunk7RzJR1tPs/uZq0nuQyvNrVq5mTM6FIni0XGrwQ+E78BcaF9Ws6WG6IqPLRd+5eIpTiuRpMwue9XQ3DRu9SXNJ+Z6DC9DpWU0r820bFgKW3wJS1ojWxzaeGcktCKfNWGroeS+1J34R1ncoQSX2Y2XIbLERjuILWVmXOT2OZR6ITX2c7rbsBj0M9LNpdh0Xjt2SOfjukPRld72yimmZqY6XRENbnfwQyn0ZQ1nEnjntl2FfXZvKKb7B5JDcJvs9JTp0Y5JXHSrRS2LgeUUq3Lm7GmjTntkuzN94nrxRn8NJ9ndqYlLgYauIT1NsyaCWebfHPzBlipei/BeRN/VejcfpfYdSm3vAdBpXbiuYvrG9bS5sCUKb1zu+ZF60nyXWjGPBoVSPprwIZ1Spbn3/AhPJfJSj5AoLei7IxwroKWMjFXbsj6CmeTszdCCfDtG9RJZ2yOXhekYyba3LLvuzbDGr5uL8xpY9miHMamt5mVeD4eRFXiG4UjZdDI23GdYinbLSvzXkV9YQtzWxvp8F3DoT33OasWvm4ccUt5lpm00diOg/SXcacPCHpNdi95xFjOIdPpFXtdX12JuDKKUT12Ew0Hqqq/J3NUujaj/ABRlHnn4nmcL0yo64pnSpfSGn6LT53RyThqJ7HRHB9nZodFw2tvl70xlXoulHUtJ7r2aONH6RxV9HaHH6Trcr7yWGsNuN8ncwuFUbWUuyNvE29ZfUu13PLr6TtrJ9oP5cb+9PuZh6Wo+Q2fZ6bE4qEV9qefAwfW5X+zd7jjwx1O93PS5r3mun01FK0cuLafcg8cl1ZtRSXJsVTEt67Le7IOeJnqdRX4Rv4szx6WpytpSi3ucn5WQ59LUlktFcs33sw8v0hj8Cp4STzvJ8Xl5lU8GvSXi/IlXp6LyvftXkLj03Bbe5f2NLy1wG3dG6jgmuC32S/mzNFWnFbW+9+WRyX09T49yAl09D0W+bM4aj6M2vZ0nVS2Lwv4A9dN5RT52Ob/iFbrFP6RczXin6ByR1I4Wo/vN9/xLlhN7l61jjS+kHMVLp3g+8Xh1GLNHehh47o9ruN0VHd2WR5p9Orc/AB9OrcD0JsWa9nputXy2Q8t+XVxLD8PL0PNez5CkW43IpfORFM+hPHJTpJalYYosHS+bFxd9j7gANRCjH5uRS3IJS3pis0kWo8S9DiB1j2L57glUlu8fgLc1sGoF9WCpT3fPcMtLh3huPYrRL0OYSv6UfEn78fHLwFuFoihzKtz7mSWX4ovkpF2d9b9WXuHuJtFxXMNLiLjGXH1UVaV9U2v3Ev5goVj0uI2MXv8AMXSp/tL1fePUGtT8veZaNJlxi94+FN7xH2t67h0ZNbV6nxJyTKJmiFHiNVHj4/ECOId8ppW2dVJ58tIZPpGOS6zPd1Vr/wC8i7K7FKjxt88y3B733ip4x2/ONfwo9yuzNUxb/XWt/wBuBpRYnJG7Re997DjTe1+LMFOtJ6qjlypR9hpg55X6x8owQ6aM2h+g9772WqUt772DFTeejW5aUF5XBm6r1U63r0woLG9RLY5d7K+ry/zeIqFGu/0dV86kL95c6dVLOm7f5qnuFQWXLCviRYZ8Sk5tZdXF8ZyfjYONKqs3OmlwTl4ZB/0Cnh3vIGlU/Xw/02WKxngVb5uUnH5/uVbh3yZFyXrP3HccQd4k04rUm+1AxVvwx+ewtQk81o91wGEqi2xfeimqbecE3yv5FNvU5L2+ZcaVvxeK94AElG/5vw+Aemr/AJvNcF7BcaUH+KL8faWsHBZq1/2RAOVZWzjbuJGtN6oruXvFp2/+Y+0uOJ3Ttwah7A3NWhyr1PRz5/AqVWsnmklzQUKz9O/L+wSdR6pS9VipjtfJVGVST12XNe4e3bJzu+fs1ipuovSfal4ZEpKbzbS46fuYgG9VpapNeshiwu9vmm2KnpenBfvNiYKT/TLsX/sG3sN/Ro6lar1AamD26c1/Ea9pI0U9dWXq/EaqVHb1mu21eBlyXyPFgU9FPXVfHrFb+Y6FCtTWb6y/NP3iYQoLWpPnJ+RpofV75RXak/MxKUX0ykU16Dhj431SS42fmkVW6SjqTfO1P2tnQoRo7JQT/Yh7R9SvBa5x5pR9hDKN8FsZVycWGNq3y0pLhBeaGLG4h3tCSe9xt/MzVW6Qpr9Knu+1byfsMlbpinFOUZaWim3FSd3ZZJXTzZtP/Um18k6zFu1nbkoavEfGGLavfvkv6Sp14Ttm7v0Z1FqzySSuaY19qp1PVkvGVhOXwh4/LKovFpa6T53b71YbKnipLN0Uuc15Axqybv1cvWp/1Fy6299KnBb5VIp9tshZfsGP7gLA19bq01xTk/BlwwNST/6hL+HLwzsLqV6cXeWNprhGcX4KLEz6Zwsb/wDNTk+EJP8A8UFt8fb+Apd/c3vCSX6eW7KnJ9uWRSwM0sqzz30femcCp9Jaeik5VpStG8koRvJNXtduyaJX+l1P8OHbe+dT2RXtDGfr7BlD39zv/UJ/r3/p0/6Sjy/+LJ/qaffU/qIPCf8AaDOH9s4cYS3O/Ne0twnu/wB3uQ1Te5FO+/z9527HFuZ1Tnw75DKcZf5fH3jLcfIl4bWu1isdAaO/R+eAWjJ6k+xZeIaxNNbV2fAv8oQX9mLJ9GlGPbJGlU4dvwD+rvbLs+Iv8qR3PwKfS26Pj8BXI0lA0dQvRv2y9wdOnFbJX5y9xj/K8tkV23ZT6arbJJckvaZakaygjpadmo2ld3tm22lrsu01QpX/AA1O1SR5r8oV3JTlUbkk0nqaTtdZckHLHVXrqT9eXvE4Ma1EemjhX+qb5qROss3HQjFxte7irXvbXyPKSqSeuTfNtgxp2DD2Zcz1M8ZFa5w9ZewzSx8E76cb/vPyRwCWQ8EGbO3V6Thsz5aXtSFrphrUlyt8TksmkPFCyZ0Z9Jt7APr++F+cn5IwuRTmgoMmdCHSKS/NQy1fe8c8yUuk0s+pou+xxlZd0l4nMdRFdYGKDNnbXTk1qp0FypL2tlPp6tZpOCvup079jtkcTrQXLgLBeg8j9nen9IcU7f8AGeWqyirXy2Iz1Ola7116r/iS8rnK6wpzHgvQvI/ZqqVW9bvzz8xekvmwjTI5GqM2OdVFdehFyMKFY7ruALrsS2VcdBYx1CCywCx/XS3smm977wLk0gAIiRWkTSAArF2B0ynMQBpF5CXWK6wANGRNIzOZNIAs0daV1vERcq46Cx/WguqKsQKCx3WFOYslwoLDUnvK0gblXAVhEuDclwAK5VyrkbGBaJcHSJcACJcG5AALSBbJYi5ABLkRC7CAosliwAGxZCABSLiQgAEWQgABJ5gyIQAIiEIMRZEWQQyEIQYEKkQgAVEtEIAimEiEACEkQgDYJRCAIoKJCAATIQgDLKZCCAsjIQALRRCAAJZCAB//2Q==\\n\", \"height\": 194, \"channels\": 3, \"width\": 259, \"type\": \"image\", \"id\": 4947634448}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMTEhUUEhIWFBQUFBQUFRcXFxQUFBQUFBQWFhQVFBQYHCggGBolHBQUITEhJSkrLi4uFx8zODMsNygtLisBCgoKDg0OGhAQGzAlHyQsLCwsLCwtLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIALcBEwMBIgACEQEDEQH/xAAaAAACAwEBAAAAAAAAAAAAAAACAwABBAUG/8QANxAAAQMBBgMGBAYCAwEAAAAAAQACEQMEEiExQVEFE2EUcYGRobEiQlLwBhUywdHhYvFTgpIj/8QAGwEAAwEBAQEBAAAAAAAAAAAAAAECAwQGBQf/xAAuEQACAQMDBAECBQUBAAAAAAAAAQIDERITIVEEFDFBYQWhFTJxkbFSU2LR8CL/2gAMAwEAAhEDEQA/AOlTdCcHrlU652TTaT3LqzOZ0jp3wqvhYGVSUbSnmTpm7mIed1WdpO+CsEbozQtJjub1RiuO9Z4G6qW9E80LSZq7U1QWgaLLHRC9mGfglmh6TN4tA3VdpC5gYUbaiMkGHwdAV0XP6rnX1BWRkPD4OmLSVYtPVc8VCoTKWQaZ0e2jdGLa3dcwU2qyxqnJD0jp9sGigtS5rSN0wFqWaHonSbXTBVXNa7ZMAUuog0WdAVOqK+N1gjqralqoNBm/mDdWKpWMQjDgodVDVFmsVFfNKy8wKxVUOqi1RZrFQq+csnM71YJUuqi1Rkauer552WW8d0JeodSJapSNZq9El9pKTJ3QFg1KzcolqDHdoUWYvCtTkisGeXulW1i7D7AN1bOHdV1LqUZui+Tl3ULguueHhAeHqlXiQ6UjmXSrxyC6J4ad1G8NI1VqtEhwkYWscmhh2Wo0SEJou3T1ULBiRTch5ZOi1toHVU6ilqIeJj7NumUqQT+SiFPuS1UPArkhRtIK+TshdRcpdRFKATqbUuGqcuMz5Ibs6qcy1EtzmINcoV9n6qzZuqMkXYOAmU2jol8gD5iqPQqGUjUB3Jb6oCyFjzrCoUj8zgoxRaka+aDqi8fVZWU+pKddd9MqXFcjyNDYR3wsgc/6QO/H0VCk6Zc49wgKHD5KU0bea1QVQspfo1pPijY930HzCzcWUpI08wqFx3SCSfljxUNI6lZtMpNDHO6ob/VALO3UkogxoyBUu5V0VfJ1Vxu5DyycsFYs56qP/RV4khqis2bvUU7heI4ORhyzgq7wXfkj51maZVgpAervhLJDxZovKSk31A9S6g1Bjg0bK7oSRURhynUKwYXKCgoBUHK7ypVBOBRs4QGyhND0QejUYsDObKhdZJWwORAoVQbjY5hsKA2ArryFC8KtQlXOI6yOGkrHaXPaMZC9DVqDRZH2QHEkrOVdm8I8nDZWJ3lHzD0XVNjBwCdS4eBmhVpei2oI4zLO939rUyxRniuo4gZJIY52kBT3DDBMyl8YAIbzjkCV0qdiGqa2kEu4t5J0+DlNs7j0Tm2crommq5PVPuYck6cuDAbMdSg5B3K3uMdVWJ0UutHkpQlwYuU7qrAK2co6qNp9FDrItRZkFMlEKJ6rfHRXdCwl1UF5LVORka07Kxe2Wlo6Kz4BLuIciwlwZ4com3huop7qnyPTnwcJ9YoBWdslO4i0ITbgei6cmSoDKtrLcypStJOh8VVOrTmYkplS1j5RCWZWHwNNphK7YfsoG0pxcZT2sZ0TzRONvQHaXdys2t28pr6je9L7awfLKMkCT4Cba3Jgtp2WOrxN3ytHlKyur1T8oPgobjyWoy4OyOIJzLYCuCx9X/j9FqYX6tAWcov1ItW9o7AtCMWnouO+0XdT4CUNbicBOMJEOx2uf0UBnMeq8+3ixOQ8yn07ZOZA7jKqSkhKKO0C1FeauP2umM3FUeK0hr7qc5j0kdttQI8DqvPHjdLdLd+IGaeytar9fYl00emAaNFfMb3Ly4/EAOh9EY4u07epTk5ryhKlc9IKrDkVd0aFefHGB0RjjQ7u/H91mpS9jdLhHd5Z3VBh2lcVnGG61h5Qk1uOj5Xhw7z/AApck3a32KVKa9nobh2UBI0Xl3fiF3+jKEfid4/sKJUJy8RNEmvLPVGqdlBV3BXmB+LTq0Hz/lNZ+LQc6Z91D6aaW8GF23sz0wqBC4hcWl+ImHOR4Jz+N0xnPkuOXTQls0y7zR1G1BqVZDTkuM38Q0ULvxLRnASsn0XqKkNSfs7fLCi5Q4/R3AUWHZS4kVkzz35Yz6ilmwDcqjbIyHmibxHeF9mMq6W7uJxgw22Zo0PqiFL/AChCbeNDCW60zqPJVGpVf5kJ016NQo9SUD2DY+aQKo0IHcYVtqu3lXkTgw2tZkSQmtpM0chvAjEeiTUpt6hTlcaizbTwyITe1Efcrlho+pFh9SzlCL8/wWsjqfmsaITxFpzXNcOqkt1Cy0F5i2Xfk6ZtLDqkvZTOaxGm05OQGidHJ6Uv6gujcLNSKc2jR+5XJAeNUclZzpVF4f3LTTOmbNROoS3cOp6H1WK8iaCVg1VXtlWRpbwhmpHmhqcHboR5pEO0cVbGvOqeVZb5CtEZ+TjcHxUPCW7qnUKmhVcup19U1UqPzP7isuCxwxo+ZW6xNGqAWesf9JzeHvOcJSk1vKoCfwIbw1nzOlaG8Ppboxwx31Kxwl/1KX1P+YYvgW+yUR1Sm2KmcSU93Bqh+YKN4VU2CpdXFL84sGAOHUj8yhsFMZOHoiPDX6qjwpyl9Sn5kNQkEyytGTgi5E6g98JX5S45fuo/g79z6qFVhf8AMPGRVSwB2ZEdMEDOCsP3KJvCKg1PmmfltQanzT7mS2jUFp8og4Izf2URdgqfU7zCtR3NX+4GmuDznNVXylX1d5exXTJejh1b+w+Z0VXwhRNZKHGnBXZSU5bInMO6HmJoss5FH+Xu+4Kw7vpV5Zp29YS2s4ZEpgtbt0Js3X0QmkVtF9NU4MXGtEabQShL0vlqXFrGnRXgzbrew7xV3yl3VcLVRp/Bm9QK+UXNO5QKJ4Qfom80Hzjur5yCFIUuhTfopVKiGi0ndELY7dIuqXFlLpaL9GirVDSLe7dMbxIrDdVQuaf06hP0bR6ia8nUbxM7po4md1xoUhck/o9L0bLqnwdn8zdup+bO3XHhEFi/pVNeS1XbOt+av3U/M37lcxrOqvln6lzy6Kitv9milJnSHEXfUUxvED9R81yS07oSHLJ9FF+GisnwegZbz9S0stp1K8sC4aojUfuVjLoPlFqSPXMtvUJnbeq8c17vqKdTe76yFzS6NL2aKz9Hq+29PQqduGxXnWVXf8h9VqZP1rJ9PFDwR2ha27+qi4//AG9lFGjENNHlLql1c1ttdqAVfbX9F+oaMjyWpE6cKx3riPJOZJVXU309/I1Xa8HdDjoUwWpwXn2gjIwnOtDz8x8MPZc8/p1Kb3SZ0R6+olZM7gtR2UNq6Lz4Ls5PmU5tqfvPeFn+FUVul92C+oVDs8/oPVTnD6fVcR1oeTMx3ZIm2l+/oFf4fD/mw76R22vYc5Hqo67oVwRWf9RTxbXageyh/T2ndSZS67beKOoHBQkbrB20fSfRU23f4+q0XTSXJL6lP0dAFWuWba/SB4IH2h7szhsMFqqDM3XR1G1ATAIJCKVxW4ZYLQLY+NO+MUOhwCrHSlUucLU/f0CtlrcM8fT2S0WPWR0JUlZRbR9J81RtmzVGnLgtVImtVK57q7ic47skxtrOoB9EOgxxrI2SpKxvtLjkI9VGWo6ifRZvp3waKuuTZeKu8d1kNqOg/dA6q46x3YKe1v5SL7hI3OqwJJhJdbhoCfQLIROeKsNVR6On7IfUy9DKdtfOIkdMIThbBGo6LNCl1OfSUpehR6movZsbaho79kYrk5OnxWC6pcXLP6bSfj+DaPWzXk6HNduosOO58yosfwyPx+xp336nOhXCtVK9Bc+EWohq1LomEVkN9rnZXS0RnN697QPNDkkrscYuWyLUURQncQKtXCiVwKhXCsBY+I13NIDTGE4ROZ37k07ga4UhSjVBa2SA4gYeiY8hokmApUrlyji7AXVd1Jbb2TGMbxh/KttvYTGOsHfZF2IddUhZjxD/AB9f6W66htoFZi4UhMuqXVORVgIUupoYsZ4g0Pu3TndnDOY8kXGaLqu6g4i8sZLcDIHug4bULmS4zjHolfa4x11S6mQlutDAbpcJ8fU5BK4y7ql1MhRLIYAarhGAkWy1CnEgmZ9EJ3Hew2FFns/EGuMEXepIjzRV7dTaYmT0x9ck7MFJDlaXQrteCW6Z6JillXIrVKKQuEoqVJAcnnhWK4XMvImOGMnTDv8A9SunY5Ubq9QFsDon2SoG03zqW+krk8xR1YlROKkrfp9tzWnPC7+Gv3Vjc+1kZAR4oatoJiDGGMbrFfKo1FpsYnToWnD4jJlF2pq5QepzEtg3OsLW1ZbbUDnAjaPUrIaigqHvTVg3G80yP8YjwMp9aq5zcTJkYf8Aqf281iFWE3m90x55o2HuUrZmO8Km1CcDgeqov6+6d0G5oeMSmG11DgXYdICyNqHIKw844d6NmJbGhlocCPiMSNVsrW34TGBhcpr50UNVS7DQyi9wcCCZBE/2mvJvE7ucfPFJFp6KG07hN2BXH80lhBJPxA4mYgFMpW0sBAE4z6BYnWiflVioNipsik2dZnEJEwudUxLjuSfMrPzemPei5oRZDudenbsBO3skVuJunACPdc8VB1RcwaJWQ7s6tLiQgTAK5jqhcZJJ70AqBWaiFZA3cZCAjFVzUIqp3Eh9nMOB2IK6LrauPzkXOUuzKTsdbtvRX21cbmgboubO6VkPI6/buitcgVRsfNRLFBkzEjEem6QSl308jGxqBGRAnvKF4Sw7r3Kp75zRncdhpPcFGA5hKDkZITzEkGahnEDyRGpe0HlHsUguUbUjRDkA0VIOnkpzJ+z/ACllwI2QgYIyYDHOCIHbPvSWkojKLjGVaplWSPTcJRPirqVdNEZAMABQOHWUNNSQlkAcx1UnqqMbqoH9J3BBuf191bMRnCT1UvEJXAeHkYydkAPX+UsOJBQXeqMmA0vVmp5oApKVxh3lBU9UJKumwuwaPvqmrvZA2krsJr8f7UvbK6ljc0TEgZwZjvSQ4okpRdmhRkpK6HSVZfuhagc5K5Q0FXeQsf0UeUXQy5RSdkNOsQCENSsSZJ7kbCuMAO3uohFqduVEbBdmaCraOg81nHVMe46LNMkeKZnIeY/lO7KY/Wwf9gfaVi5p3RPquOZ6fsqTQnc2MsY1qMnbE/sqfZwMnT4Efusja5jE+Oqp1Qk44qnNcCxfI6M/dRt0n9RHeMu+CkudGStr1ORQxzAMnT4QhLSEp3SUbnzh0Hsi4gpQFQO6K8U9wLCtpxHghunQKmuOHf0Qr8A2GrbCTdOo/hE14nBTcEhoGI2lVKFxOe6FhhF2MaTgPHTqgnFC0zl+6Y6mRBLcDhOx6ovcEUmu5cakzjos1WIRjIHVOMrMTVzQBSIABIOuvuqDGXovOjfBKpCTgR3yhLiJww/dVqrgWD5DrvAPwzHWFVGoZwMEwEDSDicYTKT/AIm4Y3hHfPsoc97lpbWZ0adRwIaHAk3hMmDGDmkEfcrI2lMOj4SCRjsYIJ0Wm46Tda0YHIExMVCSHanAY7Jb2n4viYGkPBwfH6y52mYveRQ5uXkSil4KbQbecHGLoxIvANxiILZMnYJdWgQHS4C6QNTeJbeF2BqE4uORDbgFxwmoYIcCBOZMkRGGalam5wF4ht94OREXQW66ADwwlLLYYttgeCB/kGn9QguyxIg+EohZiYhwIIc6ReODTBwiTmNEYc4lr4F68XfPi5t4kQcJ+A5dMkqmC24IBumBi4EPfDtMiBj4pX3GXTsTnYjWYi9jdzxAgeMKdnAbN4Tda6Mf0viNI13VNeXDNpkvLT/9G5/E+BhgJJE+qquHXXYtPwNaYvZU3tbIkZy0IuAlzhOZUWaCoqyCwTDvko6oBooooi9hSI2rJ6dwTOaMomYx2UURdgOoV2hj23GuvR8RBvtjH4DMDrgVnbVgiBMaGCPEK1EL2DLdWB0A7hCjbs5T7KKI8AtwXgaTPeuiOKMJHOoNcACJaS0iRmMYnAK1FTipeQUmvBlo227+gCRjJAkbQV06vELPUYDVpv5omXMLWh+UXvLZRRZ6ak9/Q1Va2EVLexzi5zHNxwDCA2NWmZwgrrN/FnwwQ4HQgMPdIOG3kook+mpy8rwaKvNePZ5uu689ztyc4mSZOAwGqC0WtznEuMnKYGmAUUWtrGLdxLqkDPNJvKlEgH2dxEgHMQfdNa6c/wDfioohuyAkNg4QfE+6jq5OGnh/CiiJMZVOBiMfZdWz8crXbvwQA6AKdMATE4RGiiijGMmk0Vk0rpnLvsjERJJw+8lRAMFhIgjPHZRRaJeib7mprmiADkHafUIKlS0Bwkk7YQM88h65qKKmrAB2vXTEQQ0zMZiMchidkNW2OORI10nGZg6fqPmooo9AZ31zMzJgicPmmfO8fNEy0OGv2AAI8goopKRTbU4HPA7ADPOIGExjujc8nWQfYm9turUTQMCWqKKJXJP/2Q==\\n\", \"height\": 183, \"channels\": 3, \"width\": 275, \"type\": \"image\", \"id\": 4947634832}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxISEBMSEhIVFhUWEhUWFRUVFRUWFRYVFRUWFhUVFRUYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGxAQGislHyUtLS0tLy8tLS0tLy0tLS0tLS0tLS0tLS8tLS0tLy0tLS0tLS0vLS0tLS0tLS0tLS0tLf/AABEIALcBEwMBEQACEQEDEQH/xAAbAAACAwEBAQAAAAAAAAAAAAAABAMFBgECB//EAD4QAAEEAAUCBQIEBAMGBwAAAAEAAgMRBAUSITFBUQYTImFxMpGBobHBFEJS8AcjchUzgsLR4VNig5Kis/H/xAAaAQACAwEBAAAAAAAAAAAAAAAAAQIDBAUG/8QAMREAAgIBAwIEBQQBBQEAAAAAAAECEQMEEiExQRNRYXEFIoGh8JHB0eGxFDJCUvEj/9oADAMBAAIRAxEAPwDIMaplAwxqBkzWpDJ2NSGMRsQOiV4oJDETNupET0EhjOHw9pWSSLCLLwVHcWKJKMtCNxLYcOWeyNwbDy/BUjcJxo9CAVaLFQuzM4g/RqFopiUlZf4dthQs0JDHkpWSo4+AEUQixNCb8vaNwN1LcQeNCLcKWu9lKyG0sBEo2WUcMKLChaRt7JkGiizfwsJbcOVJTK3jZ5yDITCd0OQRgy8lhSsm4iro07IURkJkTpQBCUxEUiZFkDimIGuQI9pDPBanZEqWNSAYYEDoma1IdE8QSskkMtFJWMUxk/ZNCZFDhyd07EkNwwJNkki5wmG2CrbLYxH2RKNlqiTsjRZKiQRpWOjG+M838nZvKsgjNklyd8M4p2IhIPKJcMUOeCqb4WmGIEhNt1fZS3oWxm7GJbEwaj0VXU0WorkZy/Hsl+kgpO0TjJMfMaROiN0aLFRBPh+qaYminzfMPIbumlZXKW0zWG8aBztPG9bqe0q8Q2GXjW0O7qDZdHkdMSVk6IzEnYqPD4UWKhKaBSTK3ETdEpWQ2nNCLFRG6NOxULytTItCr2p2QojTEStQAFAyiE26CI3C9JjGCdtuUhnjKi8uOpKQ4l1JD6VCydCH8OSapTsjRaxYOgPhV7i1RGYMHuhyJKJaRwUoWWqJIGosdErGpWSSPZiNIsdGF8SeE5p5dQ4VkciSMs8Umy58PeHzhm7qMsiZZjxOPJdahW6jZaYzxmHEaWE07hWwZlyh/h/gZoydYNWjI0Swp2fR2iwqTURTu0pgeWDUEAZ7xTlJlZtyFKMqKcsLMLlHhGR03qHpBVjmqM8cbbPqeCwehgb2Cps2RjSPcgQMXemI9MCBHmaFFg0IyQKVkHEiMKdkXEjkhRZFxE5YlNMg0KSRp2QoXLE7FR7a1Fio7pQFGJbOVMiPYTEWkxou8NwoMkiHFzOY4ae6FyD4LyHGAsB69VXXJYnweWY1upOhplvh5wVW0Wx5LLCgFJliRNM4AJEmVz8e0GiUckLQ/g5wVW2y6NFtEAoNstSRKKS5HweZKKA4Mt4igfpOg1eyshJdyjJF1wVeW4Wo2h5LqPXspSyclUcTrk1ODhGnYUkpFuyhuF1KVhQtO0ufXS0XwKhuNlIJEWNZ6bQJkGXwDshsSVD5YgYtKxFhQs5idio9RsRYUSFiAoXkjTsi0QmJFio8OhTsVCk2HTsg4iEsCkmVuIs6BSshtPJjRYqOaU7CjAscKVpWO4JotRY0aHCURyqmWJDUmD1NsUVHcScLGMJgLak5ckowPAyndPePwyzweCI6qDkWRiW+GhIChZYkecZdJiZkMwa8ybAqxNUUSTs0eSwuAFqpsugmaKIGki09oACoskmV2YstpVTssVMoIZ3gubp70VGSXmCb54LzLs0bpaCKJ/VQ+ZMs+WRcAAiwpLIxPGhaJ4111VkchB4h2Vm1qxSK9pWYrE2K96TsTiO4RlBOxUeXYgaqTHRK5lpCIXQIABEmAaEARSxoFQs5idio4GosR4kiRYNCksClZW4icsKaZBxFnxqSZFoh0J2Ro+bQtV9lNDrWEcJWOibz3hpq0nQcl14XlfpIcT+KqyFuM0uBf6VS+pfEmJ3SGM4U7pNkkXUTdkrLKPMmHtFg0KOywXwixbBzD4akiSVDgamAaUAeXBAxTEQ2CkJmdwOmRxdG8OAcRbTdOHII6H2RKK7orjJt8MmgB+tzKp7gW2CdnFt2Pi/xUHjXQsjN9WWmV5k6SEPMbojbvQ8guGlxG+k1vShLFTLYZbVsscK5pdZG6ioE3MsnEEKZWVUkDS78UckmkNX0CsRBows3iFrs2bhmzPYGzaXAxsLXv0gGIOBsNJ6kWHX0Iq7b8tmV5LybbN9SgaApAjyWoA8FiAI3sRYCz2IsKISEWKgRYqI5Gp2KhWWNOyLQnJEnZBxFzGpWQo+Tt1FwpaDKaGAANBPbdVNliLPAwMfwoyk0WRSZbZRhmgkKqci2EUWMDACQoNk0hnyrRY9o1god0mySRbsagmTAIAKQB0BAHUDOFFgCLCit8QYIz4WeFrg1z4nNDjdAkda3rv7JxlTTIzjui0Zfwb4XbhGeY7EMc+YM0Fh/y6olukmvMvV24qu6nlybnVdCrDh2K2zUGDUx5qvVuOx0t1D72qrL6Fcqdetp5DnD77hDIxHodnIJlhI+mn4QBUYXFvM0jHRFrWBumTU0h+oWaANiuN0NISbbaHTiRoc4HZrXOcaI0ht3sevpNfftckhNmb8OZLG7HyzvwJiMVeXOZHETPeCHPEf0k0T6t+bO5NWyl8tWVRgt7e02tKqy45SLA5SLA5SLA8uCLAhkjQIUkYiwogcixUUfiXxEzCNaXNLi47AKcIuXQqyZFAjyrxLh8RTWP9ZF6TsfhDjKPUUckZFjKErJ0LEJ2Ro+Uvh0rRusxVQs/HO3Fqe0jZd+FMWdW5VOVFuJ8mq8t3mhw4Ko3KqNG17huZ5L6Ciqom07LLD3W6jZNItcCxKydFiwJ2BIE7A8yOpKx0LDGevTSLChsosDySix0UPi7xOzAxMeWF5e/SACBVAkkk/H5qcIObpFWXIsatmVzDxTPi2mLAMk1ODdUhaAIw6rAvk7/ayFOONR5mVSzOarGiXxj4YxOJfhRhiPLiiDBbtPlObVGj6roN/9qeLJGN7u4ZsUpNbTdYBtFzHUSQ15I21HSGONdPpB/wCJUdjTQthcOBI5w4Lz+W37JNgkMSNp32RZKhmc+lFioqWzf5sux9LWbbbn1VVd9kxd2OTxelsPOtzTKdvULBc0+zmscPhtdlJPuKi2tKx0cSsdHEWFAiwo8kosdHglKwo8Ep2KjCf4k4jFsa0wWIx9Rb9Vq3Eot/MZ9RvS+Uj8BYyV2HPnuJOr06uaRlSUuBYG3Hkb8U5fHiIvLP1XbT27pQm4uyWXGpKijyjwtFhnCVzy5zdx0AVkszlwVQwKPLZo4sUHDYqovuwMje6Qj5TjnEWOi0wSZhm6K3qtHYqNL4ca2J4cac081yFhzyclXQ16dRi7Z9Mwccb2tIIohcxzknTOuowatHHQNEn4bKam6IuCGYoxasUitxLOGOgppkaGAFKxHsBFgBCAIZIxd0gZJaLAhnBIoJWOiqeMPNI7CzMEj2NbIWujtoDr0uBIq+eFJOUfmRF7ZPayUQMH0NA07tDRXHQD34ULJbaLIRB4B3BrYjY1+49jsnYUZ/FZ8xmOiwrw/WbBk0ER+W9hcQXdHamx7jbforFBuDkVPIlNRHMole5jtUIiAlkaxoIILA86XChsCOirk12dlkLa5VFrMzr7JWSRXZzmnkvw7PKe/wA6TRba9GxOpw5qgft8XJK03fQhKW1pV1IwB57XE7GNxd/6bm6f/sJ+QEk+CTXJF4jzk4OF2JMest0WzWG7yuDG70d2tbWwP1fJVkI73tK8s9kd1HnwDmzcRh3OEz5H+Y50jJDboTJ6hG00NTBvR+R0oPKnGVULDJTjd/0agKuy2hXHZhFCGmV4aHODQTxZSsTpdSdkgcAWkEHgjcFFjo6U7CiKSQBKyW0TlxzR1TCjN+Ic+a1jtNE1tfFqyMG2VZJqKMPhc/k1WD0Wh41RhWV2SM8Ruc7fnp8I8IfjNstZ8xBi53UFHktlNbSmbnmi6Ks2WULLRXSeIn2dyp+GVvKyHFYYuUIySE0yv/g3K3eQ2j2Q4V5mG5A6+6rzSW0sxJ7jctldA2ul/quftU2bt7gqG8LmocC4njZReKmTjmtF5l2IbJVFQqi6Mky+aFJAenEAWnYUZPFePcO2YRNJcdWk0NgflTWPI47qKXmxqW2zWRSW0HuFBS4LqPLwnYUeWnZFhR7jb1RYBLC0gmqPcc38osCtxeNiw0bpJnBjR/N0J7V39kJNukKUlFXJk+CxrTh/NaHOaGFwDQS4tA1ABvUkVsi+R3atGby3xBJjYpy/CyQOiLXxa9Qa57DrDS5zRTraAR2crZwUGvmTspxzeRP5WqLTEQl+Cexkuk+W9rZRtpBFsdtxTS1UqdSTaL3BuLSZ8q/21jsPLIWSSahEA5zmyURsBOYpRzQA1EcnfldBQxySvz9P0tHLeTLCTav7/rTN54T8WNxocHs0yxxg92kVT3tP8u5O3avdZM+J4/Y3afMstquUXUdvfC9uny9VBzgTq1NNHTY9OprKJO5INbAmpOuGXNW0yn8W5FNj8O/ypLLcQS1hDQH+XcTy3jfbaz0O9OtX4sqhLnyKM+J5I8EP+GWQ4nCvxPnxhjXaA122p+ku3FGw2jwQDZ9innyRlVMjpsU4N7kafO81fAARE54LmglpAqzVkHpus12anwrqzHeJ/EWGmBimaXNB2o0bHUFThDJdxKc08TW2RZ+Fs3jELI4ydLRTQTZA7KublF8mjAoSilE0Zx2yFKy14yjzHNjdK6MbItJGVzbNncaitMIoy5slcGax8znC7KuVGGfPJSiYtPKtqzNdHTObtFBZ04x/9RRtQtzPOolAHghMVGrzSA6rb23WHHLjk2ZIckuCwOptnm/1UJZKCOO0XGDyvTTgqZZb4L4Ya5H8wg1xEDmvzUITqRZkhceDLRMfpdH1BWxtXZiSfQ1Hg2F8biH3vws2eabTRr08WupvGHZVJmigkI0mzshsdGQk8CwGfz2kj1aqvYnlWePPbtKHp4btw3nfiBuHDburr4VcIOXCLcmRQVshi8XRvAAdudgEOE0RjmgzSYKbW0H2UVItoeaFLcKjkg2RuBITzDKoZ4wyZge27o8WOCmpNcoUoRlxJWRZXCYnujv0GjGbN0AGlvtQDeOb+VHcT20h/EvOkhmkuBaSHE/TqGrYb3puvek00yHJ8+xOcvw2IGEETnQjS7zI9T3C9UbfTRAFxO/XorXBShvb58vv+5XLK4TUNro0WLY2eAx16XNMfYkvFO9/SCT8+4WdZNrv6mmWNSTTKXwr4Vjw7pQ1zng0H6q3A3bGQNjzqPe29CQrc2peRKynDpY4m0uSz8UZkYoXllW1uoX0LPW0119TRt78hUY3umo+ZdluMGyfw7mjZY2eX9IAAvnbY37pycoyqQ8e2UbiLZPFmYxsnnSRnDAmvSLIo6Q0DcHcXd8K1zx7VV338jPFZlke5raWuPiL2FriNW/A77NVG/zNSjwfHs2whfiMQwNcDE7ex043I78j2XUxz2wi76nHyw3ZJLyE8nx0kMjdPF8d1PNjjOPJDBkljkqPq2CzVjm0S0ODQ4tvcA8Ej8CuTTid2OSMvcyHiPMfXTFtwdLZj1OWnSM/OHuGqjS0qaToxyUpKypE7tdHi6paKVGVSe4cdlZc3U3oqfGp0y54LVoVGFv5Vm8p2CldlbZUP4DBk7kfCpyZKLscL6ls3KGkWqPHZpWBMRmzgmQ9rpWrD8pneX5hvA5pRrooTxE4ZDR4POKFLNLAa4ZRDH585jthseVZHTpopnnaYvBmoc+6+fwOylLFSogsnNmnhzoUHDosvgO6NqyqrLzDZ20jlQ8OSLlJMkmzJr2kEo2Mdogw+dMazSDen33T8ORHdE+bZTjZZZZjIHGKRz3lryaDi62hpPB3qvZb8mOMYrb1Ry8cpSk76Mt8HgoWNfKxrnSMaSGOIG9bb9vdUTc5NRfQ0QxxSckuV2NfFngw8LS8AODbe1p1AGtwD1FrJ4Tcqib96jH5i5y/OmSsD2nYqqUXF0ycVGatEmPzUsZbGa3W0BuoNvU4D6jdc3+CceXyJwaXAyzMWF5jv1BocRR4N1vx0KfJHbzR8/zbxVjYswMEnkxQh+sSFjnVC03rvVu4tBbQHLqrha4YMcsW9Nt+Xr+cmWefJDLslSj5+n5wazI8twrsScwhJc+eLSXB5c2rbYA/4W/ZZnOcY+G+iZb4cG3kj3MtNnsD8bJEzEGF4BhEg0hriyfzG7uBB3kkbXsa5U5Ysixqbja6/qvT2QeNjlkcVKn+fn6jLPEb43zCWNrWxFxhLHeYZGuc6MSuazrbX7bEl1UKtVvCmouLtvr2rvXP0/OCzxmt29Ul072jWYAt8lmm9xdnkk7kn3JN/iszZfVMy2fYfzxK0MkDfIMnmEEM2JGjffVsT8KeKW1qSffp39yGZKacafTqO5TPhcHI2Ayxi3EfULD/AE03T72evbuleTI91MPkgtkWv17ljnfiSPCw+Y/g7gN3Js+n8qUMSyZZbIdRTUccXOb4FMh8VwYu9BpwA9LtnXfbqnmxZcL+dDxZceVfIzLeN/EbY53QCPlot183tXwKWvR6eWSO++/Qz6vUrG/DrsYaXFhriWtqza6kcbkuWcqU0nwgix7nSB5cQa0kg8t7JyxJRpII5G5XYSYh7i4PsjgVQ36UeyShFJOI3KTbUjT+F8GwRU59vcDYu2gWT6ffuuZrc0t/CpI6mixR2U3bYhnWR04vYFfptXa2yKNTpNr3RDAyuGGlayjJqFau21ge/KnOnkTl0I45NYpKPUqcIyQudbSBZux+Q91pm4pLkywUm3wQsiAfRFb/APdScm42QUVuoanx7W2AoRxt9SyWRLhCv+1H9CrPBRV4zLPEeFJ9ZoCr5VEddjovlosliMDWA7OOqyAD1r9FbJtroVRSTLHBY0Fwb7qmcWlZdjyJuh3MMCH7iuFHHmrhluTFfKM6AWPWu00YqcWW2Ae42Pt8KqTSL8dvgs8LiHAfCg6s0QboZgxDnA2k6RbG2iIWHEd07FtplZjsU7WG9LVkVxZnySe6izew6GuH9TQ7/SXC/wBvzVW7mjTs+VNEOagk7nbrfCcGiGaHPI5lc72tAYfT7cKvJGL6luG646D/APHvJFn+Zv5EO/QKrZFGi2xx+PMjCWSEUQdTav0kEt3HBqj8qG1J8ot4nG4szXi2V2JdI0nU6IRmINbuGvH+ZqdfqBpvx91fgrHT87v9jn6uLyOUe6qq9epYeHs4iy/DsoP1SNc+RriL1nQAR0AoAVzsOeVRmjkzzfpwvuTwvHgxLcnzyYXMixz5JBsXSuOkVQDtyBXYkj4pdLFuSUX2Rysu1tyXdltgc6psQ00Y2bEekGtIDSByDos+5J5WbJp+Zc9WasWoVR46f1/Bo8f47dCyLymNeHNNhxILTY22/FZMWh3uW51Rtz69QUXFXYvjfGcz4zojaYnxEOvZweQ5r23e44ogdOqcNFGMqlLlP6V2f8kMmtlKO6Mfla+/dGVkbJi53yksY57ruyG6qAAHJ6Lfuhpsahy6OftnqcjlwrPo+Y5Q3EwxRveCGgDrTiBR44pefw6h4puSR6LLpllgoy7B4a8Ltw8vmAi6Iuzs3Ynn3DVPPrZZltZVh0cMDcl16FRmEUc+NkD3sAia0Na4U5z5AXNAJ5vfYKUMs8WnTin8zfPZJcPp+5DJCGXO1Jr5UuPVlcMoZLE8va1srXU4NNgEdLHsrXrZ48sVF3F9Cn/SRyY25KpLr6GbbgiH1XVdd5k42ctYalRLjsJQJvhQw5bdE82KlYz4bcDIG6qNqrXfLBuizRVKaVn0PDSxSRvFguYdDx2cAD+68/LfBp+fK9j0EXCaa8uGfO80n0SyBh21n/r+69Hp478ab8jzueShkaj5kjMS5oafTpN67u+BWlR2ptrv2GpNJPt3KqbECyRzZWuMHVGWU1diRKuKDiYH1STMQAvOrC2ekllSRgM1ha2R5adnGx3BO537crsYZNxSfY4maKUm13OYCmgu5KMlydCx0lYQ5l5YLWcE3v3Kbw7uWEcuxUhabGOcbNKyONJFcsjbstMsx+w2Ft/MKjLjNOHIWAxgLqrY7qlRaRfvTZZslFDZRNUXweJ5WgtsgEmh7nsmrFNxTVlZj8dCJS1xNjk1sNrpWwjNxtGbJlxqdMuoqMZBOxbz+HKzuVM3xScaZXB7MU1zA8XVEji+4HYqxt4+WjOtuoTimRYXw9MDE6OYBrTZBLhY1XYA5sd05amNNNckcegyJxcZcL8+4w3OIzP5X0lryNRrSSA5tA/JUXikobixaqDy7OnP0Lz+JDQ4Ftadhx6vf2H97rL16HR3pJprp9ynzLJdOHc7VT3EanX0NANHsKB/Aq7HqLml2MWbR7cLd8vqZXH2KaQQd7vq7gn8gt2OnycfNa4f4xR7CDRG6tTTXBS00+T055+KSSRJtnpspdtyk4pcjUm+C/w2WSSMGgHSWivj27LmT1WOEvmfJ08elyZI/KuDmDyqRgY+q9bSD8G/2Ty6vHJyjfZhi0mSKjL1RbZtiLiGh5IcaGn+obEWO9f/ABKx6ZfPUl08/L8/ybdTL/5/I+vl5k2GzwtDYA4+Z5bLsG+7vx4Ucmm3Xkf+22ShqUqxX81L+zNZwyeWUygONFgsbU5gDW17hdLTSw4oLG67/o+TlanHmyTc0n2/VcFn5kzoaAIkLRQJ31Xu6+5/dZNuGOW3/tT+3kbf/tLFSVSf5ZUYlk0TGl4p2o8kHb3rrz+S3Y5YssmoPijBkhlwwTmubE3zOksd+ey0KCxlG55BYPcw7Gj7K2lNclVuD4Josyka5zg8guFO32PuR3VctNjlFRa6dCUdROMnJPl9RWSQk2TZVyikqRU5Nu2enTOIAvhJQS5G5tkamQBAHEAbCPECRtg2CuZt2umddS3q0VOPj9X5LTB8GXJHkTOwpWdSl8cC1UrCqjwpCPcUlG1GUbQ4ypliyTgrO0aUzRYJwICyTbR0sVNHc2gd5RLeen4gj90Y8i3cj1GN7Pl6mLYC53U7i+/3XSdJHDVtmjhxxjppHpoCiQdq7rBKG7lHThm2cPoecNNGwnQNJ1Btd9ZrY8db/wCFOSnJc8/0EJY4t7eHf+RzNssxJk8wPGhg2DSQRQ3AAG6rxZ8W3a1yy/UabO5774RnsvwRc63tOkc6ttRJ2FnuevTcrblyqKqL5OZhwuUrkuC+zLBTz/UWsYNLy8uoEOFbDoBxXwsWLLjx9Lb6UdLPgzZuHSXW78/4LbO3edHHCwjUHA/IaK2+/Ky4H4cnOXQ26qPiwWOD5KqfLg2VsTjYbX+YXG/W4XGW9wOl7jdXRzXBzXft7Lr+dzHLTbZqD6Lvfm+n0EmZS92Ij8xw0yOeGH/S1xBrsCArnqYRxS2LlJX9WihaScs0d74bdfRMexWFZICGMoiw8dnjYi+wIPys2PLODuT9vY05MMcnEV7+5WYTLHNAc4EHzA2x062R+BWrLqVJ7Y+Rkx6WUVul50bbIJ2mNzGkWLAroeoHtuCPYrzusg1PdJfn5w/U9BpJRePbF9BLCRvxGCfE2T1s1RudV7hxsfat/dX5ZRwapZHHh00voUY4Sz6Z41L5lab9b/juZHHyuhf5P/hgNP8Aq5v813cEY5o+L/25+hw805YZeF/1/wAmqydkbozM1o1bAk/V9IoEn3H6LiauWSM/Ck+Pt1O7pI4pQ8WKV/foVGJz0RP0xt9LdfNU95BGoj+m91ux6B5Ybpvl19F5e/Y5+T4gsU9uNcK/q/P2vktMgzF0rNT2gUSLAoH4WLXaaOKe2LN2g1MssN00KZqySRr/ADGt2eS0s3qOiQXB3JNVt1V+lljxyjsb6c35+lflFOqhkyKW9LrxXl63+WZzFRCItAvcB1g9De399l2MU/FTflwcbLBYml50xbEDdXQ6FWRckLmqxMqcWjymIECBAAgDiANTFC2AFuu97okWPt/e65byPK7o68cccK22IYzEt1H++y0Y4OjNkmrKuSUkrSo0ZZSsjJUiAUiwo4mIsMI621W/RZsnDs1Y3ao0GTwvNENsXRXP1GWEeGzp6bHN8pF7isKSNIBsg79tr3WKGoV3Z0cmJtbfMzmMyt1GRu1mhXtz+d/ZdCGpi3tZysumdOcSixGoAWOtb9wt0Nrbo509ySsZixQbpEsepn1V1JrYDsFW8blex89C2ORRpZI2updM8VXC5oic542B5BaOHOPeue6yPQ1NPckv3Ogvid42lFtr/Hmyz8KBmKic+VjbBLGirAFWXC+CdVfgsutbwTUYP1NXw+tTjc5peSDMS1uEla9waY9gfqvVVbd7P3FqGGUpZ47Vd/t+foT1G2OnmpOq+vXp9zNYGZ+Fmb5h1W0G7ugeOfhdLLGOpxPw+KZyMM56XKvE5tFnicQZH6Yg4hrGSPNWS4vLjzVdRfSljxx8ON5GuW0vaqNuSbyS2474Sb97tk2aCZuLiibGG015jsig0tomweihgeJ6aU5Svpf68fqWZ5ZFqYQiq617VX2CBgY9mh+qOW6cKovbte461+XuoZJOcZbo1KPb0f8ABPHFQnHZK4yvn1X8lzNhB/lnUfrF/TvdgdPdc+GV/Mq7ep0ZYV8vPcoMzyWduLZKytGppDiQA0srZwA610G66mm1mGWmeOXWnx535e32OTqdFmjqVkh0telV5+5d4DGysh9ETSDG5+oPBudzzUWkDc8b2ufmw45Zfmk+qVV/xSXzf0bcWXIsfEV0b6/8m+n92TYTAw4lomkgaJNy+xvq7HvX/RVZc+XTt4oTe3t7E8WHFmSyzgtx7w+Uj/c8AjXY66HaS39Coz1TvxOvb9SfhQivD7ehQY7wS4ML2P8ApsljtiQOjXe66uH40nJRmuvdfwcrN8ISVwlfp+1i2CyjERyigGF2rS0kuaG9dxtfTdWZtXgyY+bdVb4XIsGkz48nFJu6XLSHcww79NOMZLRqc0kiqILXF3TbpX8yzYJw3XFOn0f+VXv/AINeeE3GpbW11X14d+3p3M1mOsPJkq/5W9ACb2/NdnT7JQXh9O5xdRvjNvJ17ITDgTZWinVIz7k3bOWHX+XsnTVBalZAVYihnExAgDiAOoAk1USbsnr3tQq1RO6d2RkqRFsExAgAtAHuOr34UZX2JRq+SV0hHHQ3f9/3uoKKfUscmuhpcizkiNwFa9JLb4JHsuPrdGnNP/jdM6+j1jUGl/urgew2NkxTWFwdGGygkiwXgNLtuwsLNkxY9LKW17rX6c0aMebJqoxck40/a6Vl7l0kU0QIINN3aCCQTubXOzrLhyU/1N+CePLBNf8AhkJsfBHJKHNcKNAVdg8EHp/+Luxw58kIOLXqcWWow45zUk/T2G4MjilmDnEuYYztZab2otr5691nnr8uLFUVUr9/1L46HFly3J3Gvb9BbOHR4YtEVV9Lh3HQ/Pv7lXaPxNTbye6K9W8elpYvZr87lVhM6kjeC11Nuy0DY9wt+TRwnFprkw49ZkhJOLpeRJg8ew4lsr3O+sk3RFVTQB3G6rzYJLA8cEuhLFqIvOsk2+vuQZrIZJnO6Wdu2/Hzf5lWaaKx4lHuV6qTyZXLsaLwxKGy6S76mtD7FeqnWCb53r8FyfiEW4bkujde3B1tBJKe1vqlfvTE/G+IDjA7UNRhGqjxuRpPauo72tPwjG4qca43cGX4tNNwa8hXJMM9sumbUxhZepxoNOoaXNva77fsrdZlhLHuxU5X27+af0IaLHOGXbltRrv28q+pqMJiJHkj0lsRGsg8uBBBA/pLd/y6Li5McIK+bl09v5T/AJO5iyznKuKj19/T0a/gb8RwTSgthka0agHg7EimnZ29HcqnQ5MWJ7skW3XH37D1WPPlhthJLnn29yxyTDAQRUNRjLo3NaALma9zCQOAWgX8P9gs+ryN5Zdt1NX/ANWk/v8AsQ0/EFF9r+3H8llBgHOL2lzSDXAIO+7nX2PTtRWSWaKSlTv8r+y15dvL6Fd4lLoI3uiY972PYGta0kUQ1xuu9n7LVoFHNkUcjSTT6v6FeTPOOPfBW/L6jHhHzMZgpJZwdeuRtFukadtIaD81aXxDFHT6hRw8pJPrfPqZcWpnS3qm79O5cYXLtI0uG7drI5ut/va52TNbtGiWfhNMw+c4djMY+SSFvleXpDnEaXaXD+U7E317ALv6ac56aMMcnuu6Xa15/nNlT2+K8mSKrb1defl5/sVDsm/iQZDpMhi1MDP93W4ZqPU/SK6bX3W9az/TNQV7U+b6+tenV3+hnlpVqFvdbmuK6el/nuZfEhjSGgl1fXtTdQv6epHyAuzjc5JtqvLzr1OPkUINRTuuvlfp+IgJbZ03RHXlW065K7jdLoQkKZU+ATECAOIA6gAQBxAAgAQAIA6Eho9Ncf2SaQ02TYeXy3Bw5UJw3qmWQl4btGmy7NmmQOLiRoc5zOgdxt9wFxs+jkoNJd0k/Q7On1cZTtu1TbXqQjHMwkzntZdsokOO7j0/dT8CerxKMpVT8uxX40NJlcoxu159xeXEtxEbooR5dvEj9ZJ1kCvq6DYbfCujilp5rJl+bilS6fQplkjqIPHiW3m3b6/URGPfFs124JBN8gj/ALLS8EMvMlwZvHni4T5QjPO55txtaYY4wVIzTnKbtkamQBAEwxDtIbewdqHsf7/QKvw47t30LPElt2/UlwuLLTuTRI1d9uv33UMmFSXHXsWYszi+encejx8bZxLpBDS00RybJdY/ErNLT5Hh8O+t/wBGpajGs3iV0r+yx8R58zEAACtJsUdqPIr7LHoNBPTttvqatbrceZJLsVgzpzWlrNr2sf00NvwIsdrPdbHooyknLn+fz9jKtdKMXGPH8BPnsrywlxtrtXazd7/akQ0GKKkkuqoU/iGWe1t9HZpPD3jTQXCQbW94/wBTjqIrtZNLla34NuScOvC+i4N+m+Iwlccirq/3o23h7PI3sMoP/me3q3qa/v37357WaOcJbH9PX8/o3vbmhcf/AD3ND4cxX8Q2RwYRvYPN6g0ij7AAfdZ8uncXs68fpyZNWlj28lv5REbfSR6xqrq1p1/8v6q7BCcYKWx8dfVdf2Mm5Sm+e3Hu+P3KhmKdK6SRoIuQeWXn0FpY0bGqIvqL5VWocJ5OnL/k2vHHElB80ua63dmP/wAQcrGMlhiZJoc0OpmjUP5RuQfT0+o9TxtfU+E6v/SxnklG06715/r9P5qnJp3mgot+b87/AD0FhkzsLh4Y5ZAXR6hrb9Ia877HmiWjfp0UpaxanNOcI0n2fW1/ju/fubtJi244py6cHzrNmDzXkkH1GqAAoGgPfgi16rSt+GkuODg6qK8Rt88lba10Yr7o8lSIsECOIAEACABAAgAQAIAEAdQAWgAtAHWPI4KTSfUcZNO0de8nlJRS6DcmzyCmRAlAAmAIAEACABAAgAQMEAdSA60pMkmXOTY14Pl6yGu+rerHa1z9XhjW+ra6HT0eaTlsvh9T7J4WzAxn/LbphNEnu80A5vsRRPufcrxGo3we5S+f9l2f7eh19Zp4zXr29upu8Lig4tFHeyHAemxtR96J+xXZ+Da955KGWPN8NdLp8enBwMmJxTf27nqXLo3AAsb6fpbQ0jqCR1r9vxXSyfCsGVNONSXSuKT55rr5eXFepGOpnF2m+erMr4siEMbnhzAG/W54Jof1UP0H7Lx8MW3VSw8unSrv6HX0WVSvdx/j6mKz3PYpcM50NSUHAjgtABBJJ7/yjkmuaK6mk0OTHnSyfL0+v53Nfix8OTh83Hbp/T8vPsfLMU+wLfZArTVaRZNA9rP5r2eNU3S6nmsztK5crivIVV5nBAgQBxAAgAQAIAEACABAAgAQAIAEACABAHUACAOIA6gDiABAHUACABAAgDqQwCGNE0bq3UGrLoOlZtvCvi10TBEaIOw1cAHoe/x+i878R+FRyS8RfY7Wl1UZxUJ9ez8j6Z4a8YYeOMmSTg1ZrVVOOwvuAK+D1KwaHLl0eWtlxfl16efvTJ63RPK08bX98fn2LTF+OcKGBzZAXObdf8p+5WnN8Rzzi/Cg4zfDfDr+e9f2zJj+F5N1TaS9z5V/iJnH8Q7XHI4ANAcLNGzQFXud+qXwXTPFxkjbb4ff3Nepg8eDbGXTrXezEDM5BF5N+nUTsN7Pc9eF6L/SweTxa5OT/q5xx+FfAhI8k2VpiklSMUpOTtnlSInEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQB1AHEACABAAgAQAIA6gAQM6gDoKiSTPbH0otWTjKiduNcDyq3hi10LlqZp3ZK7MXEg3wft+CgtNFKki2Wrk2nYvNinOuzzz7q2GKMehRkzymLkq0zNnExAgDiABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACAOoAEACBnbSCwtAWcQAWmAIEcQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAAgAQAIAEACABAHUACAOIA6gDiABAAgAQAIAEACABAAgD//2Q==\\n\", \"height\": 183, \"channels\": 3, \"width\": 275, \"type\": \"image\", \"id\": 4947633808}, {\"format\": \"jpeg\", \"value\": \"image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMSEhUTExMVFhUXFRUVFxcYFRgVFxcXFRUXFxUVFRYYHSggGBolHRUVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGy0mICUvLy0tLS0tLS0rLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLf/AABEIALYBFAMBIgACEQEDEQH/xAAbAAABBQEBAAAAAAAAAAAAAAAEAAECAwUGB//EADwQAAEDAgQDBQcDBAIBBQEAAAEAAhEDIQQSMUEFUWETcYGRoQYiMlKxwfAUQtEVYuHxFoIzI0NjkqIH/8QAGgEAAwEBAQEAAAAAAAAAAAAAAAECAwQFBv/EACwRAAICAgEDAgUEAwEAAAAAAAABAhEDEiEEMVETQSIyYYGhBRRS8EJx4RX/2gAMAwEAAhEDEQA/AONo4cgQVcKBWpSpWUjSC9mzTQzBQTihzWll5BLKgegA2krBQ5okjuUCEgpFeQJCkFaB0Uw1KgKcnRRNJFCmnNBFCASxRLEeaCgaSlioCyInD4UE+8YCkWKJsoYUTx9FhPuQOiA7FEFNlUJUDKDSSyK/KllQIo7NLs0RlSypAD9mm7NE5UsikAbIlkRORLIkOgfIlkRGRPlUgDZE/ZojKllUsKB+zS7NEZU+VSxg3ZpxTRGRSDFLAHFNP2SIDFIMSsdGXUwl0lrdkkjYKK2VSpmq47pMplWiivdUCNmQfXJEfZVyr+xTGik4pBbKVIBTyBOCOShjExqJpUVU1yvbiGtuTAmOWqkdoIZQUzh0JxTiwogWF4PeOhWLS9qJqZ3AhgZ8I3On1hY5M8IOmx7I3qlOEO9ir4VxI1WlzwBc5R038OqKJB0IPckpqStDAnNUHop7FDs1LYqBMibKiXtUMimxUU5U+VWkKMJWFEIT5VKE8KbCiGVLKpwnypWFFeVLKrMqWVTYFeVLKrIShTY6K8qWVWZUoSsKIQlCnCUKbCiICcBSATgKWx0MGqbWpBWNUtjEGpKwJKbHRRhKTsozaxdGDD22XN1ONtOHLs3vFuXxNkPwbjz6YLXDM3aTEDmV7L6/FCUYvs13Oc6p1JUPCz2+0rXOgtgczotcMzCQF0QzY8l6sYG4qEo79ITsnGD5qZNIpRkwNrU2KqMa2HuaAbX3WgKAUauGBEGCFjKXHBaxs5Xi/wD48s5miTTcDMc2E92i5l9SYXXcR4G1l6bsoOrSYa7+D1WGeEzUylwAjMSeW68vPFt2yXBjYOrUqnIyY/cRJtsOgXd8PwjabA1v+VzeH4c7JDASP7TlHi7UozB4Wqwg9ibf/IVWL4OS4wZ0HZqDyNlKhUztktLTuD9lF7Vs5WXVFLiqnFWuao5BzU2KmUkJZFfbmlIS2FqD5U+VXZk0pbBRVlShWplOwUQhKFNJS5BRCE0KyE8JbBRVCUK2ElLkFFeVLKppSp2HRDKlkU5ThLYKRENVjWpgFY1qlyHRINSUgElOxVHAcUwXZhoa7M10EGNOYVOCZmjeSNdPVE4z4ADrII8gP8qmi7IxpOsfX8ClyU2nHg5UdtwfgdNre0ecw2E+MELRHFaLfda2ALbW8F59h8fVFphptqjaWAq1LsOYnTn6r0YdXSqMeTVP+KO+pOFQS10hO3CzsqPY/glemP8A1WhoI2P1XUDBNGrgt459o2+51wwtq2YAwR6KxuAG910LcMzv8CsX2jc5xZhqUtdUu9wEFrBrHUrOWVmnpRSs5LizaTXVKrodlIDd2i2jebpXK/r3CsXgAEjLEWgRb6XWz7ZGHikwEU6UDvdEknrouTq1HAx3HzhcOSTk+DmlJRbR0WBx8ulriwE3Goa/qPlK3cNxFzHBlcC/w1B8J7+RXD4WoSSPmA85sfNdpwGv2tPs3tzZYg9RseSrFJvgmLNl4KHeCrqj3BCVXuXVyOTQzmqshQc4qJcUjO0WZU4plU5j1T3UsLReGqQaFQGlWCmoY/sWhoUsncqhTU8izbKX+iWUcwllHNRlIKRj2TZgpFp7k2TqFNoOSBf0Uc/RWFoUSAlaJ5I5k2ZIhRKBWSzJdooSpBIVskKym2uoBifs0uA2ZaK6ShkTI4Hszjqbw6WuMkwAJ+HoOSjUpM/bBIt07+pVNGg0Os7TedJ3jxRVPEBpkZb75fBcsZU+Gc8GV4LhFV1wCesaLsfZJj6E9plHiJXN02vqT70W/dOXw2C0HcIqdmH+66x0GwJm7dwfQrsxZYJ3V/c3hvF3E9ApcRYef1RlLiDV5pwXOyo1zWuguhw8M0Ed0wei9C4iadEMMTmAdBtLYk5Tz6Lvw9ThmntwdEcmZq0alHiFM807GUTUNSDmLQ2egXPM41Qk5TlNN7CQdH0nEAuHcHT4Iaj7TNbSrtcZc12RkakZnkk+AATn1PSx8ieXKu9GF7UcKdne7KYNUOceQc8gegC5LiHDXA6aMk/9CWk//leocM9oKdVgpVhZ2UGY+FpJzE9+VPxHDUH42iBlNN1F+bQNEtJueZESuB5sc3cXwTpurPL8Fw+ajWkWcC3znL6wux4PhCCH7ObDm/3AxPp6rtv+L0YZpLCwyDezpZPeLeKVfhYBkEQDoOauDUC1ha7HO1qECS1CVGj5V0lfCE7H7LOr4YtHwyms3kp4mYxp9D5KBo9FrtwhOohOcJCTzoXosxuy6FTFI8lqfpx+FLsYUPMHomaKR5KQpFHZQlHRJ5A0QH2PVN2YRpYeqgaZ5FTuDigWDyCYk9EQWn8Kg7wS2JaBy0puzKvnuUS2eSW5OqK+z6qQpBTFApfpnbSpc15Fr9BhQUTS6KwYZ/XyUxQeFPqLyGr8AxpdFDIVoCi/cJ/03RT6qE4MzoKkCtFuDVjcAh54h6cjODuiS1Rw/uSUfuID9KR5jgGiSCLyQfPfn4r03AeyFOphmCWgk5g5rdQO/XcLiq3Aa9JgrVG5LxpLjexc0bX9F7nwXD9jgqTRdzWCZa1pBcJPuiwKqKanbRHT/C3a70cj7Pez5pl7KgBbJggC4Jt4rQqeylMuLmSw82nLfqND4rXpVpuR9EuI4xlOkXkw3TN8pPwnumFs0kqPSc2qSOepcLFCsHVQCB++MpFh8Ue64AETYEKftfi8O6n2ZIY8QaVQiWyOTh3RC4jjvtU99sxvUqOJGhzNZbusVj4njb6lIUnSWNJLRrE3IB77+KyTlyq4McvURfHv+APEY2al7QC0xpuB4BD06xk+qjXpAgGb923VISwuaYM2/ghEkmefK27YY3EzHoFq4DFFj2GoRAO92+W4nVY+GpjLM+9aBoFYXQYd70eS5pRV8FRtcnUYn2tqdqHCYDMpnctdnaSP+oCP9m+MmrVotuSS4kd8kE84JeVwOJrRF4vYaztrKswWOex7XU3FkWzCxg7Tutfiq0bRzyUuT24gOnLeDE7TuBzhC1sK5YHs17X0W0A2vUOYOcAYn3dpPmjP+b4Z7oY4kAnMct40BaBrsb7SsXml4O2OeD9wh+DdyVLsM7ktfDVxUaHtMg6JzPI+Sj94baJ+5iGg7l6KDqB5en+FtlvQ+SEqYxnwkkOOxsVUep27Il4/LMiucgl1vRBV+IMbvm6AyfHkheO8Kqve4y7uOngufrUH0rF19xuF34lGaXJxZZTi+x1FPiTHOAiBuSdEW4MiczPNctgcOCMxPj/KlWeRaCAd+fiqlj5pMzWR1bR0zaQcJEEdEzsOFn4RgABbUjznrARwxwjVzuoafsuPJkcXwdEIqSImgOaj2I5lMeIN3DvI/wAKv+pM5HxCzeWQ/TRd2beZTho5nzQ7eItO0+YUv1w+T1lZyysaxsJa0dfNWADqhG8QbuyO8FXtxQN8ojvWMszNFiZe1reRVzGjmfJZ9HijC4tANuoRH6z+1/ksp5JLhjUA6mI39EQwSsf+ogOiH33yz9NFVWxhFT3jUDLRlFj0MCVntJsmSOkFIfhSWbTxjXCR/HoksHkkY0zhfaX2p7UBrA4CQXF1iSNo5fwmpe3OMzA9sTDSBIECSNoidIJWdlD3e+y4ne55xCYYeLgNaDu0T3zz2X0qybv4u5z44SnfJrN9tsXJJquFyTAA6G0W0V2L9o6uJp9m7KRc6Fhk84N97RusEYRzrAEmzoDdvNWNwpblb8B62ifr/lVKPiTB4Z+RPwUwMw3m+vorsThKYY0AvLzzgN9CTzVlLBFzrPaItN42tomr4KtmMEO7j4aFKEJ+UT6U0ZlSmC6B6zCc4NxEyCBKuyODvf1kwNCbbhWYPFAPyskCLg8+Q6rHJKa7exg5STBqOFj3zMA3A1A3JRNXDl3wmZ0t9URWrCZgWBuRBvrbooDFWJAuNbWMcutlg8k3zRO7Mh7XtJDm+ikxlrGIE9/nutOvXzNsLidtjclA1KUidOR2P8LeORtcqh7Mm1rS2IO/238VaA0xsbCQIPKFQWO+JtwL215EdNvJTY4bzMyBprtHohxk+wVI7L2Z9q/0sU3e9SvaJIPMH7Loqv8A/QKIkaRIuCSeRgaBeYZ/isZIv4Rf0QWJdntMO27uSxj0ycrkjdZMkVR6rR9qhnzZmEPtHaN10sJslUxL2kOLKb2iTPukkagSbyvI+zdHXb0ldNR9onNptaWBxY0audJ66rolhp8RX9+5tDI383B0nGuMEiwLHb7iy5d9V5OaZnp9Qra3tMXa0QeUuMx5LM/5E2b0mxPzH7hbYY6RpRDI1J/Ma1LEBsbcxf6KTsYDuI8is/8A5QD/AO0IGku/wpYbjdN5AyhrjoDcdwMKvifeP5RNR8h3bBoABOuaUdR440atadZMX6EwhHYx8fCPMoSpi/7WBYzxPJxOH5LjLT5ZBVXi18227ZJH1tsgzxMzoNZmNehum/WE/Iotrnkz0TWFL/D8ieRv/I2cPxZn7mDvvEc9UX21F2kD86rnXYlxEe5CY4kxHux3Lkn0Nu4qvubLqWu7Oi7Zgu10R3IerjGanJ3kfxKwn4k82+SgKx/t8pUx/T2u4S6q/c6JlYC4yc7R/CvbxAmwe2e/7LlBWPMeRCdrnbQP+qT/AE5vuwXVHUOx5aYc+Z096PIQr242R8UdZ+65PM/5vRRBd8x8iof6ZfuUurXg6g46nu93m5JcuGnmfIpK/wDzV/J/37EfuvoX0KkzmIZyhs879dlCo2ASZcDoWmLjYjQ9yIo8MfaapJA1sZV39KBgS4gai3hoPqtnlj5OmOKXgxMHjDeBDrFrgYt3FGVcY/L75a/vYCdOaOHA6Rvl5DXn4wN0R/QabhFxro6DYa2JCcupx3YR6bLVHPjiWW9pHeB5KVDjV4n9tswBv91fjfY9xu2o6Dpmus3/AItX1bBHR34FtGeGS+YwlDqIP5TYrF9nMeRFjI0O48zsqP10NJdfXa1vwH7LNq8JxjLw+Lcj3fVC1eF4iLsf5Jxgv5ImWR+0WaTscCS4taQI1iZ1kEXOyApcYAg+6eYPign4CsJ91yDqYVzf2kd4W8ccDmlkkndG6zjQi8T3myd3FQWgCJ5wuZdTcVY3DuHNX6SJ9aRtniV9baRqNERQ4iIgkT3DTvOywmtfyP0UjRe7ZJwQKcjRqVw7wkIWpixO5tzuPFL9E8i0DxhR/p7uYTWvkT28Fzcc7Qie/wCo5KBxz7xp3x5clOnw87ovD+z1Q6Mdz0SWr7DqRm1cZoTEx+FDnEkmwtyW3V9nahM9m6/5zUT7P1B+xw/O9Wl9CWmA4DDmobvazv18P9rqODcCa1wdnDiNBIA77SfVY9Pgj2mRm8YP1XTez+GcHtL2jwACUm0VBGq3h06tb5uUv6YPlHmVpAjkFbnHILmlkkdCgjDfwsch5uUDwtu4/PFa9RwGwVLndPRR6kgcEZzuFt6Ks8NatbMq3VfyVHqTDSJm/wBPA5eihUwTRyWn2w/CndVCn1JhpEyv0reXokcIz5R5fytQPb0805LTyQ8sg0RkjBUz8vkFM4Jg0APgFqBw6KdtwPJS80g0RlHBM+UeiS2fd5fT+ElHrSHojnP1ExEctINtz08EXSOhPLvE7aDe6Ha7bcG/KOV/unp4j34aWzfKLcr72WD5PWiF03anMbek+Ft/JG4a4cRobnQA9xH1WWXE+9mDYA93mDyGxROCeBMX5Ai4O3f3LKa4NYPkMbiAWzltEWAOnK9lOjioG3iM0wIvpbxCEOIESZJ2vY2iJExebJUcWD8TXbWiR3gz6WU0/BVo2cHRbUEiINtyP/rdaVBrCSCBIjMLE6ajoucwlck+60ifhLZ22dpH0Wpga8EF4gxuJMn5YTtkSj4NZ3Cqbh8IXM+0vs84+9TALQPhGvf1XUNxjcwaHCTtN1f2kqoZZQZzyTfDPGsRw4t2A/6x6wgzQPNew8R4XSqgy0B2x/lcPj+HNpuLXtA66j/C9DFm3OXJgrlHN0sESYhXu4ZFyNORW5S4cDduUjonfhi3SB0iJ8V0KLZg40Y+GwAJ0JHT/KNHAN4tqLx5rSweHO4juIhdBREDyW8IKuSas51vAGgAwdp/3C6TB8IAbadOZCJBBEW8Vp0nw0CJ/O9VJ12LjBe5zeLwrgfhEC3NBvomdF0OMJ+X1Cx8Q87j1v6BTchSSAX028grMNTaNlB9U8j5yqzXjkk0yOA7INlPKOvqs79Sf9JDFnmsZRY1JBVSOf1VB7x5FQdip3lQ7dTqwbCWu6hNm6hV9t+QkCOnkFm4hZYH93nCZ1QcvUqkgdPJMKQ6eSnVDtlrT+fgVhE7fT+EGaJ2j1SyOHNJw+otg5pHy+gSzDcen+0Gx7+fmFIuqd6n02PYPBHIpIMGp8o8x/CSj035/IbIyGteX5m6xcXkCdr6qNdpAJBLTzy5tdZBVjqlV1xLBluSACfzmlhw4tu+CDIv9djqs7rk9P6EMI9rhlDjykgjMd7G3WByRjHOj3XANt7zQZsO6fFUNxRALCyTOovbpEQeqGxjDYvs2AARMnq6NeamrZSlSNbEEhoDSTOsiTcTcOAnoqqTxADRmJkQQQRa9z9igGkugB5FhH7m2NhB0I1RDMS6kXENB3LhJg2vEmFOlcF73yaDGlp90ZbCYzWjX781oM4hkAgFwOkuaPeO19/ELDw/EC+4Lh+4wJHXXTRXgOeC9pLrTHPuClwafxFKSa4NhvEGzcPYZm8ZZjQkExK18Pimm25E/wClw2LxYE5wBJnKZBA0tA8NUXg+JAQxjS2wu2XN0MEnXyVPE6sjdXR2pqIDH4VlUXAJ57rPwfEqhnOGmDY3B8ZV36udRHXbzSjFxdoG0cxiuHVaDpZJb0ReExoeIdr6rWfUnVZ+JoNOwPXQ+a78XUV3OOeLwWfpDqx3gnOJqMF2T4/YqqjWDNyjqWKa+3pb+ZXdHMmc7gDs4yJvIPd/AWrh+LtI/wDIha3DWuEwFk4vh0aW/OabakL4om7WxoP93kEHWqtdzHj/AAueqio3n9VAY54Tozczbe1vP7/VVhoOxQFPGn5gr2408gk0TaLjSPMdyrLOnol+qBurRXB/0pdgDFgCr938v9UY9w5Kiqf7SkIqOXZREcz5qzKflj1TOI1I9P5KVCIBo+b6K0NPzfb7KsAFRdSHPyv9VLQBLXEfuU8/96B7Mjn6BIA/M3yJUuKHZotM7/nkpimfm/PNZhJHL6KQruHPwKlwDY0hTPM+f+UkCMYf7klOjHaB6gLtXQ2IBiCbcttkPWwlQQM0xyA/mFjNqVKnhHUnvj7rWY99MSXgtIvAANxzNj4rmcHDhNHprIp90wdtKo6oIIPKwPmfzVG4mu+PfFg4A3gtkHTpqqsNiYB7MAFxMAx5zyuiqVJ0S907nM2CROymb55/6VFccAGRt7RG8A69WqzCYguIJa0uAhuUkT3zvY26qWMY2pAY6DzAibxY/ZUVXPaLHSZBE3bGgjuVL4l9SbpmxRDXMdroZpuAMbyJ2sgG13U2gkgO2GgjbeJVP6sVD7rofAF22PTorsRShnvNAcNToCSfzVQo06ZblfKKqmKqvI90ERczJM9c3PZEU8Y59qlIQIBIGV0dRF1kF7ZMX05nfotLC1M1EgjMZsCHA9wcZWs40uxnCVvubPaNLZBJgamxjvt6JsPViGzvo51h3GbrGpDK4gOdcSBNh06IY16+cZgDeJA0ju2us44/DLlk8o6ftcpi4Max7uvPRQqVgNbddQsZ3FHtMEm2ht5dfRW0cS55Og57CLzI+8bLRLyZN+A6s+NUOXHUJqrxHTnqPNVtcPwyrXBm2aWC426nYzHI3HkUYeL0qmvunyXPOMoaoFtGRm2dJVoh2hBHgs+thnDke/8AlZFPEvZ8JIR1DjpFntBW6mYtIjVY3cFpVTqbho6VsUsbRqdPzkpP4Ux12x3tKrde5Lj4MdmKcNR5K9uO/IUq+Ae3YO9Cs6oIPwx6J2mS7RrM4iVYziAKwX1+YI/OimzEDn5paoWx0IxIOw8lXUc1ZNPEdPWVc2u0paoLDPd/Lpi8fKVQHhPbmikKywvA2SFcnu8lS6n19P4Uf052ulqgthLnU+adpadz6ILsSN1BzY0S0XkNjQyDn6JkCA78KSWn1DYEo4MM+GzufmqKdfL7ziXDQgiQZ6SkkuKD2fJ6XZcFmGrMe8ZWubNtZvKK4jiZApiQNNJjQc+aSSJwW6KjJ6AWTI7KNCL7eQ8lOtWzfEAQCBvN43nuskkmuaZF+xfi8M2GlpLQY0873QVLEOLiAXQIsXSDbdJJLFzF2XPhqiTnsHxMFrS22nTdHU8QQ22+hiDbSRoU6Sc0qRKk0YzsWXk5p12gELQdiDktrHxGJTpLWcVwRCT5A6OKcAbydtANOSpwXEXAzA15n0SSWsIRadkSk00b2DcHNOtzpZCudlkjnGl/8pJLCPzNDkSFXe9/uk4ykktCGUvKrc1MkqRDIQdQisPj6jND6/dJJaxVkmrhOMOfbXo4CPMK79Sx8gsg+YTJJSik+Ab4B62BYdLd38LNxGDI5H0TpJRk7MWBtk6EhMXPG8pJLcQwxLlczGFJJOhBFPGFENxJSSUNDJirKkKgSSUgSDupTpJKRn//2Q==\\n\", \"height\": 182, \"channels\": 3, \"width\": 276, \"type\": \"image\", \"id\": 4947634960}], \"selected_variable\": {\"name\": [\"\"], \"dtype\": \"Image\", \"view_component\": \"Images\", \"view_file\": \"sarray\", \"descriptives\": {\"rows\": 5}, \"type\": \"SArray\", \"view_components\": [\"Images\"]}}, e);\n", + " });\n", + " })();\n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "gl.canvas.set_target('ipynb')\n", "for component_id in range(4):\n", @@ -909,15 +1597,6 @@ "source": [ "![Images](chosen_images.png)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": true - }, - "outputs": [], - "source": [] } ], "metadata": { @@ -936,7 +1615,13 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", - "version": "2.7.11" + "version": "2.7.12" + }, + "toc": { + "toc_cell": false, + "toc_number_sections": false, + "toc_threshold": "8", + "toc_window_display": false } }, "nbformat": 4, diff --git a/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.10 PM.png b/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.10 PM.png new file mode 100644 index 0000000..fc10dd1 Binary files /dev/null and b/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.10 PM.png differ diff --git a/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.15 PM.png b/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.15 PM.png new file mode 100644 index 0000000..3bb4236 Binary files /dev/null and b/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.15 PM.png differ diff --git a/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.19 PM.png b/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.19 PM.png new file mode 100644 index 0000000..22294a0 Binary files /dev/null and b/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.19 PM.png differ diff --git a/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.26 PM.png b/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.26 PM.png new file mode 100644 index 0000000..7a040a7 Binary files /dev/null and b/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.26 PM.png differ diff --git a/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.33 PM.png b/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.33 PM.png new file mode 100644 index 0000000..88af0f8 Binary files /dev/null and b/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.30.33 PM.png differ diff --git a/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.41.00 PM.png b/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.41.00 PM.png new file mode 100644 index 0000000..c8827c7 Binary files /dev/null and b/machine_learning/4_clustering_and_retrieval/assigment/week4/images/Screen Shot 2016-07-23 at 7.41.00 PM.png differ diff --git a/machine_learning/4_clustering_and_retrieval/assigment/week4/quiz-week4-assignment1.ipynb b/machine_learning/4_clustering_and_retrieval/assigment/week4/quiz-week4-assignment1.ipynb new file mode 100644 index 0000000..f6afcdc --- /dev/null +++ b/machine_learning/4_clustering_and_retrieval/assigment/week4/quiz-week4-assignment1.ipynb @@ -0,0 +1,116 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Implementing EM for Gaussian mixtures" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Question 1\n", + "\n", + "\n", + "\n", + "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-clustering-and-retrieval/exam/UnnXU/implementing-em-for-gaussian-mixtures)*\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Question 2\n", + "\n", + "\n", + "\n", + "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-clustering-and-retrieval/exam/UnnXU/implementing-em-for-gaussian-mixtures)*\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Question 3\n", + "\n", + "\n", + "\n", + "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-clustering-and-retrieval/exam/UnnXU/implementing-em-for-gaussian-mixtures)*\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Question 4\n", + "\n", + "\n", + "\n", + "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-clustering-and-retrieval/exam/UnnXU/implementing-em-for-gaussian-mixtures)*\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Question 5\n", + "\n", + "\n", + "\n", + "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-clustering-and-retrieval/exam/UnnXU/implementing-em-for-gaussian-mixtures)*\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Question 6\n", + "\n", + "\n", + "\n", + "*Screenshot taken from [Coursera](https://www.coursera.org/learn/ml-clustering-and-retrieval/exam/UnnXU/implementing-em-for-gaussian-mixtures)*\n", + "\n", + "" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + }, + "toc": { + "toc_cell": false, + "toc_number_sections": false, + "toc_threshold": "8", + "toc_window_display": false + } + }, + "nbformat": 4, + "nbformat_minor": 0 +}