-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcurvy_ortho_heart.py
107 lines (85 loc) · 2.92 KB
/
curvy_ortho_heart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Sample Python/Pygame Programs
# Simpson College Computer Science
# http://programarcadegames.com/
# http://simpson.edu/computer-science/
# Import a library of functions called 'pygame'
import pygame
import math
# Initialize the game engine
pygame.init()
# Define the colors we will use in RGB format
black = [ 0, 0, 0]
white = [255,255,255]
blue = [ 0, 0,255]
green = [ 0,255, 0]
red = [255, 0, 0]
PI = 3.141592653
r=50
R=200
# Set the height and width of the screen
size = [800,480]
screen = pygame.display.set_mode(size)
pygame.display.set_caption("Sansagraphics World")
#Loop until the user clicks the close button.
done = False
clock = pygame.time.Clock()
colour=red
thickness=0
i=0
cx=10
cy=155
cz=240
ortho_distance=100
while done == False:
# This limits the while loop to a max of 10 times per second.
# Leave this out and we will use all CPU we can.
clock.tick(10)
for event in pygame.event.get(): # User did something
if event.type == pygame.QUIT: # If user clicked close
done = True # Flag that we are done so we exit this loop
# All drawing code happens after the for loop and but
# inside the main while done==False loop.
# Clear the screen and set the screen background
#screen.fill(white)
prevx=400.0
prevy=240.0
# Draw on the screen several green lines from (0,10) to (100,110)
# 5 pixels wide using a loop
if colour==red:
colour=blue
elif colour==blue:
colour=green
else:
colour=red
thickness+=1
if thickness > 100:
thickness=0
for n in range(1200):
##pygame.draw.line(screen,red,[0,10+y_offset],[100,110+y_offset],5)
theta = n * 2*PI/120
y_offset = R*math.cos(theta/10)+r*math.cos(theta) + 240.0
x_offset = R*math.sin(theta/10)+r*math.sin(theta) + 400.0
if (n>0):
pygame.draw.line(screen,colour,[prevx,prevy],[x_offset,y_offset],3)
### the following are derived from differentiated function of y_offset and x_offset
### dy/dt = d(y_offset)/dt (t = theta)
### dx/dt = d(x_offset)/dt (t = theta)
gradient_y=(-R*math.sin(theta/10)/10 - r*math.sin(theta))
gradient_x=(R*math.cos(theta/10)/10 + r*math.cos(theta))
### atan cannot be used, because there is an infinite value somewhere.
angle=math.atan2(gradient_y, gradient_x) + PI/2
norm_x1=ortho_distance*(math.sin(6*theta)+1)*math.cos(angle) + x_offset
norm_y1=ortho_distance*(math.cos(6*theta)+1)*math.sin(angle) + y_offset
if (n>0):
cx=int(120*(math.sin(7*theta)+1)+10)
cy=int(120*(math.sin(5*theta)+1)+10)
cz=int(120*(math.sin(8*theta-PI)+1)+10)
pygame.draw.line(screen,[cx,cy,cz],[x_offset,y_offset],[norm_x1,norm_y1],2*thickness)
prevx=x_offset
prevy=y_offset
##pygame.draw.ellipse(screen,black,[y_offset,x_offset,30,30],1/3)
# Go ahead and update the screen with what we've drawn.
# This MUST happen after all the other drawing commands.
pygame.display.flip()
# Be IDLE friendly
pygame.quit()