forked from artyyouth/r-quant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pairs_trading_price_ratio_lm.R
222 lines (177 loc) · 5.88 KB
/
pairs_trading_price_ratio_lm.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
library(quantmod)
library(tseries)
library(timeDate)
library(fUnitRoots)
library(RcppArmadillo)
ind <- function(x) {
# Divide each column by the first non-NA value
# (There may already be a function to do that.)
coredata(x) <- t(t(coredata(x)) / apply(coredata(x),2,function(u){ c(u[!is.na(u)&u!=0],NA)[1] }))
x
}
# load(file = "djia_20120101_20131130.rda")
# load(file = "djia_20131119.csv_1992-01-01_2013-11-30.rda")
# load(file = "sp100_20131119.csv_2012-01-01_2013-11-30.rda")
load(file = "sp100_20131119.csv_1992-01-01_2013-11-30.rda")
# load(file = "russell2000_20120625.csv_2012-01-01_2013-11-30.rda")
stocks <- names(dataset)
nrStocks <- length(stocks)
ds_old <- dataset;
ds_old <- dataset;
t_horizon <- "2004-01-01/2008-01-01"
# subset the dataset
dataset <- dataset[t_horizon]
nDays <- length(dataset[,1])
# seting learning and testing periods
testPeriod <- 252 # 252/4, a quarter
learningPeriod <- (252 * 2) # a year
testDates <- (nDays-testPeriod):nDays
learningDates <- (nDays - testPeriod - learningPeriod):(nDays - testPeriod)
learning_ds <- dataset[learningDates,]
test_ds <- dataset[testDates,]
# prepare variables
ht <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks)
beta <- matrix(data = NA, ncol = nrStocks, nrow = nrStocks)
p_ratio <- list()
# here we go! let's find the cointegrated pairs
for (j in 1:(nrStocks-1)) {
for (i in (j+1):nrStocks) {
cat("Calculating price ratio ", j, " - ", i, "\n")
tmp_ds <- na.omit(cbind(learning_ds[,j], learning_ds[,i]))
if (length(tmp_ds) == 0)
{
beta[j,i] <- NA
ht[j, i] <- NA
next
}
# The lm function builds linear regression models using OLS.
# We build the linear model, m, forcing a zero intercept,
# then we extract the model's first regression coefficient.
#
m <- fastLm(learning_ds[, j] ~ learning_ds[, i] + 0)
beta[j,i] <- coef(m)[1]
# price i * beta / price j
# tmp_ds <- ind(tmp_ds)
p_ratio <- ((beta[j, i] * tmp_ds[,2])/tmp_ds[,1])
p_ratio[is.infinite(p_ratio)] <- NA
p_ratio <- na.omit(p_ratio)
# The ht object contains the p-value from the ADF test.
# The p-value is the probability that the spread is NOT
# mean-reverting. Hence, a small p-value means it is very
# improbable that the spread is NOT mean-reverting
p <- try(adfTest(na.omit(coredata(p_ratio)), type="nc")@test$p.value)
if (isTRUE(class(p) == "try-error"))
{
ht[j, i] <- NA
next
}
ht[j, i] <- p
}
}
# save(ht, file = paste0(ticker_file, "_", date_begin, "_", date_end, "_ADF.rda"))
zscore <- 0;
rscore <- matrix(data = NA, ncol = 5, nrow = (nrStocks^2)/2)
pairSummary <- matrix(data = NA, ncol = 5, nrow = (nrStocks^2)/2)
idx <- 1;
# lets evaluate the spreads
for (j in 1:(nrStocks-1)) {
for (i in (j+1):nrStocks) {
# if no data, skip
if (is.na(ht[j, i])) {
next
}
# is spread stationary (i.e. pair is co-integrated)
# p-value is the smaller the better
if (ht[j, i] < 0.02) {
tmp_ds <- na.omit(cbind(learning_ds[,j], learning_ds[,i]))
if (length(tmp_ds) == 0)
{
next
}
# tmp_ds <- ind(tmp_ds)
# price i * beta / price j
p_ratio <- ((beta[j, i] * tmp_ds[,2])/tmp_ds[,1])
p_ratio[is.infinite(p_ratio)] <- NA
p_ratio <- na.omit(p_ratio)
# calculate z-score
zscore <- sum(abs(scale(p_ratio)))/length(p_ratio)
rscore[idx, 3] <- sd(p_ratio)
rscore[idx, 4] <- zscore
rscore[idx, 5] <- mean(p_ratio)
rscore[idx, 1] <- j
rscore[idx, 2] <- i
# pairSummary[idx, ] = summary(coredata(sprd))[1:6]
pairSummary[idx, ] = fivenum(coredata(p_ratio))[1:5]
idx <- idx + 1
}
}
cat("Calculating ", j, "\n")
}
# save(ht, file = paste0(ticker_file, "_", date_begin, "_", date_end, "_ht.rda"))
# save(rscore, file = paste0(ticker_file, "_", date_begin, "_", date_end, "_rscore.rda"))
# save(pairSummary, file = paste0(ticker_file, "_", date_begin, "_", date_end, "_pairSummary.rda"))
# clean up na rows
rscore <- na.remove(rscore)
pairSummary <- na.remove(pairSummary)
"
# set up boundaries for 1st and 3rd quartiles
badSD_up <- 2.5
badSD_down <- -2.5
# re-order spreads
order_id <- order(rscore[,3], decreasing = T)
rscore <- rscore[order_id,]
pairSummary <- pairSummary[order_id,]
goodSprd_id <- (pairSummary[, 2] > badSprd_down) & (pairSummary[, 4] < badSprd_up)
backup <- rscore
rscore <- rscore[goodSprd_id, ]
pairSummary <- pairSummary[goodSprd_id, ]
"
sddist <- 2
boundary <- 4.5
cat("Found ", length(rscore[,1]), " good pairs!")
if (length(rscore[,1]) == 0) { stop("No good pair found!") }
for (pos in 1:length(rscore[,1])) {
j <- rscore[pos, 1]
i <- rscore[pos, 2]
# if (ht[j,i] > 0.01) { next }
name_j <- stocks[j]
name_i <- stocks[i]
l_ds <- na.omit(cbind(learning_ds[,j], learning_ds[,i]))
if (length(l_ds) == 0)
{
next
}
# price i / price j
l_pr <- ((l_ds[,2] * beta[j, i]) / l_ds[,1])
l_pr[is.infinite(l_pr)] <- NA
l_pr <- na.omit(l_pr)
l_ds_j <- l_ds[,1]
l_ds_i <- l_ds[,2] * beta[j, i]
t_ds <- na.omit(cbind(test_ds[,j], test_ds[,i]))
if (length(t_ds) == 0)
{
next
}
# price i / price j
t_pr <- ((t_ds[,2] * beta[j, i]) / t_ds[,1])
t_pr[is.infinite(t_pr)] <- NA
t_pr <- na.omit(t_pr)
pr_mean = mean(l_pr, na.rm = T)
pr_sd = sd(l_pr, na.rm = T)
lb = pr_mean - boundary*pr_sd
ub = pr_mean + boundary*pr_sd
par(mfrow=c(3,1))
plot(l_ds_j, type = "l", main = "")
lines(l_ds_j, col="blue")
title(main = paste(name_j, "&", name_i))
points(l_ds_i, type = "l", col = "red")
plot(l_pr, ylim = c(lb, ub))
abline(h = (pr_mean - sddist*pr_sd), col = "red")
abline(h = (pr_mean + sddist*pr_sd), col = "red")
plot(t_pr, ylim = c(lb, ub))
abline(h = (pr_mean - sddist*pr_sd), col = "red")
abline(h = (pr_mean + sddist*pr_sd), col = "red")
#Sys.sleep(1)
cmd <- readline()
if (cmd == 'c') break
}