forked from artyyouth/r-quant
-
Notifications
You must be signed in to change notification settings - Fork 0
/
cointegrated_correlated.R
75 lines (63 loc) · 2.51 KB
/
cointegrated_correlated.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
library(MASS)
#Code largely copied from http://quant.stackexchange.com/questions/1027/how-are-correlation-and-cointegration-related
#The input data
nsim <- 250 #Number of data points
mu_a <- 0.0002 #Mu_a growth rate for stock a
sigma_a <- 0.010 #Sigma_a volatility for stock a
mu_b <- 0.0005 #Mu_a growth rate for stock a
sigma_b <- 0.005 #Sigma_a volatility for stock a
corxy <- 0.8 #Correlation coeficient for xy
#Calculate a correlated return series
#Build the covariance matrix and generate the correlated random results
(covmat <- matrix(c(sigma_a^2, corxy*sigma_a*sigma_b, corxy*sigma_a*sigma_b, sigma_b^2), nrow=2))
res <- mvrnorm(nsim, c(mu_a, mu_b), covmat) #Calculate multivariate normal distribution
plot(res[,1], res[,2])
#Calculate the stats of res[] so they can be checked with the input data
mean(res[,1])
sd(res[,1])
mean(res[,2])
sd(res[,2])
cor(res[,1], res[,2])
path_a <- exp(cumsum(res[,1]))
path_b <- exp(cumsum(res[,2]))
spread <- path_a - path_b
#Set the plotting area to a 2 by 1 grid
layout(rbind(1,2))
#Plot the two price series that have correlated returns
plot(path_a, main="Two Price Series with Correlated Returns", ylab="Price", type="l", col="red")
lines(path_b, col="blue")
plot(spread, type="l")
##Cointegrated pair
#The input data
nsim <- 250 #Number of data points
mu_a <- 0.0002 #Mu_a growth rate for stock a
sigma_a <- 0.010 #Sigma_a volatility for stock a
mu_b <- 0.0002 #Mu_a growth rate for stock a
sigma_b <- 0.005 #Sigma_a volatility for stock a
coea <- 0.0200 #Co-integration coefficient for x
coeb <- 0.0200 #Co-integration coefficient for y
#Generate the noise terms for x and y
rana <- rnorm(nsim, mean=mu_a, sd=sigma_a) #White noise for a
ranb <- rnorm(nsim, mean=mu_b, sd=sigma_b) #White noise for b
#Generate the co-integrated series x and y
a <- numeric(nsim)
b <- numeric(nsim)
a[1] <- 0
b[1] <- 0
for (i in 2:nsim) {
#Logic here is that is b>a then we add on the difference so that
#a starts to catch up with b, hence causing the spread to close
a[i] <- a[i-1] + (coea * (b[i-1] - a[i-1])) + rana[i-1]
b[i] <- b[i-1] + (coeb * (a[i-1] - b[i-1])) + ranb[i-1]
}
#Plot a and b as prices
ylim <- range(exp(a), exp(b))
path_a <- exp(a)
path_b <- exp(b)
spread <- path_a - path_b
dev.new()
layout(rbind(1,2))
plot(path_a, ylim=ylim, type="l", main=paste("Co-integrated Pair (coea=",coea,", coeb=",coeb,")", sep=""), ylab="Price", col="red")
lines(path_b, col="blue")
legend("bottomleft", c("exp(a)", "exp(b)"), lty=c(1, 1), col=c("red", "blue"), bg="white")
plot(spread,type="l")