Skip to content

Latest commit

 

History

History
161 lines (118 loc) · 5.06 KB

README.md

File metadata and controls

161 lines (118 loc) · 5.06 KB

ProtSpace

ProtSpace is a visualization tool for exploring protein embeddings or similarity matrix along their 3D protein structures. It allows users to interactively visualize high-dimensional protein language model data in 2D or 3D space, color-code proteins based on various features, and view protein structures when available.

Table of Contents

Quick Start with Google Colab

Try ProtSpace instantly using our Google Colab notebooks:

Note: Some Google Colab functionalities may not work properly in Safari browsers. For the best experience, we recommend using Chrome or Firefox.

  1. Explore Pre-computed Visualizations: Open Explorer In Colab

  2. Generate Protein Embeddings: Open Embeddings In Colab

  3. Full Pipeline Demo: Open Pipeline In Colab

Example Outputs

2D Scatter Plot (SVG)

2D Scatter Plot Example

3D Interactive Plot

View 3D Interactive Plot

Installation

pip install protspace

Usage

Data Preparation

protspace-json -i embeddings.h5 -m features.csv -o output.json --methods pca3 umap2 tsne2

Running protspace

protspace output.json [--pdb_zip pdb_files.zip] [--port 8050]

Access the interface at http://localhost:8050

Features

  • Interactive 2D/3D visualization with multiple dimensionality reduction methods:
    • Principal Component Analysis (PCA)
    • Multidimensional Scaling (MDS)
    • Uniform Manifold Approximation and Projection (UMAP)
    • t-Distributed Stochastic Neighbor Embedding (t-SNE)
    • Pairwise Controlled Manifold Approximation (PaCMAP)
  • Feature-based coloring and marker styling
  • Protein structure visualization (with PDB files)
  • Search and highlight functionality
  • High-quality plot exports
  • Responsive web interface

Data Preparation

The protspace-json command supports:

Required Arguments

  • -i, --input: HDF file (.h5) or similarity matrix (.csv)
  • -m, --metadata: CSV file with features (first column must be named "identifier" and match IDs in HDF5/similarity matrix)
  • -o, --output: Output JSON path
  • --methods: Reduction methods (e.g., pca2, tsne3, umap2, pacmap2, mds2)

Optional Arguments

  • --custom_names: Custom projection names (e.g., pca2=PCA_2D)
  • --verbose: Increase output verbosity

Method-Specific Parameters

  • UMAP:
    • --n_neighbors: Number of neighbors (default: 15)
    • --min_dist: Minimum distance (default: 0.1)
  • t-SNE:
    • --perplexity: Perplexity value (default: 30)
    • --learning_rate: Learning rate (default: 200)
  • PaCMAP:
    • --mn_ratio: MN ratio (default: 0.5)
    • --fp_ratio: FP ratio (default: 2.0)
  • MDS:
    • --n_init: Number of initializations (default: 4)
    • --max_iter: Maximum iterations (default: 300)

Custom Feature Styling

Use protspace-feature-colors to customize feature appearance:

protspace-feature-colors input.json output.json --feature_styles '{
  "feature_name": {
    "colors": {
      "value1": "#FF0000",
      "value2": "#00FF00"
    },
    "shapes": {
      "value1": "circle",
      "value2": "square"
    }
  }
}'

Available shapes: circle, circle-open, cross, diamond, diamond-open, square, square-open, x

File Formats

Input

  1. Embeddings/Similarity

    • HDF5 (.h5) for embeddings
    • CSV for similarity matrix
  2. Metadata

    • CSV with mandatory 'identifier' column matching IDs in embeddings/similarity data
    • Additional columns for features
  3. Structures

    • ZIP containing PDB/CIF files
    • Filenames match identifiers (dots replaced with underscores)

Output

  • JSON containing:
    • Protein features
    • Projection coordinates
    • Visualization state (colors, shapes)