-
Notifications
You must be signed in to change notification settings - Fork 33
/
sum_of_three_cubes_problem.pl
executable file
·301 lines (249 loc) · 6.92 KB
/
sum_of_three_cubes_problem.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#!/usr/bin/perl
# Author: Daniel "Trizen" Șuteu
# License: GPLv3
# Date: 01 June 2016
# Website: https://github.com/trizen
# An attempt at creating a new algorithm for finding
# integer solutions to the following equation: x^3 + y^3 + z^3 = n
# The concept of the algorithm is to use modular exponentiation,
# based on the relations:
#
# (x^3 mod n) + (y^3 mod n) + (z^3 mod n) = n
# or:
# (x^3 mod n) + (y^3 mod n) + (z^3 mod n) = 2n ; this is more common (?)
#
# This leads to the following conjecture:
# x = a * n + k
# y = b * n + j
#
# for every term x and y in a valid equation: x^3 + y^3 + z^3 = n
# Less generally, we can say:
#
# x = a * n + s1 + psum(P(k))
# y = b * n + s2 + psum(P(k))
# where `s1` and `s2` are the starting points for the corresponding terms
# and `psum(P(k))` is a partial sum of the remainders of n in the form: (k^3 mod n).
# Example:
# 39 = 134476^3 + 117367^3 - 159380^3
#
# 39 = 1 + 13 + 25
#
# P(1) = {15, 6, 18} ; returned by get_pos_steps(39, 1)
# P(13) = {35} ; returned by get_pos_steps(39, 13)
# P(25) = {6, 15, 18} ; returned by get_pos_steps(39, 25)
#
# s1 = 1 ; returned by get_pos_steps(39, 1)
# s2 = 4 ; returned by get_pos_steps(39, 25)
# s3 = 13 ; returned by get_pos_steps(39, 13)
#
# 117367 = a * 39 + s1 + 15
# 134476 = b * 39 + s2 + 0
# -159380 = c * 39 + s3 + 0
#
# then we find:
# a = 3009
# b = 3448
# c = -4087
#
# which results to:
# 117367 = 3009 * 39 + 16
# 134476 = 3448 * 39 + 4
# -159380 = -4087 * 39 + 13
#
# For n=74:
#
# 2*74 = 68 + 29 + 51
#
# P(68) = {2, 52, 20}
# P(29) = {18, 24, 32}
# P(51) = {8, 6, 60}
#
# s1 = 6
# s2 = 5
# s3 = 17
#
# x = a * 74 + s1 + (2 + 52)
# y = b * 74 + s2 + (0)
# z = c * 74 + s3 + (18)
#
# x = a * 74 + 60
# y = b * 74 + 5
# z = c * 74 + 35
#
# a = 894997732304
# b = 3830406833753
# c = -3846625575080
# We can also easily observe that any valid solution satisfies:
#
# is_cube(x^3 + y^3 - n) or
# is_cube(x^3 - y^3 - n)
#
# Currently, in this code, we show how to calculate the steps
# of a given term and how to collect and filter potential valid solutions.
# To actually find a solution, more work is required...
# Inspired by:
# https://www.youtube.com/watch?v=wymmCdLdPvM
# See also:
# https://mathoverflow.net/questions/138886/which-integers-can-be-expressed-as-a-sum-of-three-cubes-in-infinitely-many-ways
use 5.014;
use strict;
use warnings;
#use integer;
#use Math::AnyNum qw(:overload);
use ntheory qw(powmod is_power);
use List::Util qw(pairmap any sum0);
use Data::Dump qw(pp);
# (a^3 % 33) + (b^3 % 33) + (c^3 % 33) = 66
sub get_pos_steps {
my ($n, $k) = @_;
my @steps;
foreach my $i (1 .. 2 * $n) {
if (powmod($i, 3, $n) == $k) {
push @steps, $i;
}
}
($steps[0], [map { $steps[$_] - $steps[$_ - 1] } 1 .. $#steps]);
}
sub get_neg_steps {
my ($n, $k) = @_;
my @steps;
foreach my $i (1 .. 2 * $n) {
if (powmod(-$i, 3, $n) == $k) {
push @steps, -$i;
}
}
($steps[0], [map { $steps[$_] - $steps[$_ - 1] } 1 .. $#steps]);
}
sub get_partitions {
my ($n) = @_;
my @p;
my %seen;
foreach my $i (1 .. $n) {
foreach my $j ($i .. $n - $i) {
foreach my $k ($j .. $n - $j - $i) {
if ($i + $j + $k == $n) {
my $v = join(' ', sort { $a <=> $b } ($i, $j, $k));
next if (exists $seen{$v});
$seen{$v} = 1;
push @p, [$i, $j, $k];
}
}
}
}
return @p;
}
#use Math::AnyNum qw(:overload);
#~ my $n = 33;
#~ my $x = 0;
#~ my $y = 0;
#~ my $z = 0;
#~ my $n = 42;
#~ my $x = 0;
#~ my $y = 0;
#~ my $z = 0;
#~ my $n = 74;
#~ my $x = 66229832190556;
#~ my $y = 283450105697727;
#~ my $z = -284650292555885;
# First solution for n=33 was found by Andrew Booker
# See also:
# https://people.maths.bris.ac.uk/~maarb/papers/cubesv1.pdf
# https://www.bradyharanblog.com/blog/33-and-the-sum-of-three-cubes
my $n = 33;
my $x = 8866128975287528;
my $y = -8778405442862239;
my $z = -2736111468807040;
say powmod($x, 3, 33) + powmod($y, 3, 33) + powmod($z, 3, 33);
#~ my $n = 30;
#~ my $x = 2_220_422_932;
#~ my $y = -2_218_888_517;
#~ my $z = -283_059_965;
#~ my $n = 52;
#~ my $x = -61922712865;
#~ my $y = 23961292454;
#~ my $z = 60702901317;
#~ my $n = 75;
#~ my $x = -435203231;
#~ my $y = 435203083;
#~ my $z = 4381159;
#~ my $n = 75;
#~ my $x = 2_576_191_140_760;
#~ my $y = 1_217_343_443_218;
#~ my $z = -2_663_786_047_493;
#~ my $n = 75;
#~ my $x = 59_897_299_698_355;
#~ my $y = -47_258_398_396_091;
#~ my $z = -47_819_328_945_509;
#~ my $n = 87;
#~ my $x = 4271;
#~ my $y =-4126;
#~ my $z = -1972;
#~ my $n = 39;
#~ my $x = -159380;
#~ my $y = 134476;
#~ my $z = 117367;
#$x **= 3;
#$y **= 3;
#$z **= 3;
my @partitions = (get_partitions($n), get_partitions(2 * $n));
my @valid;
F1: foreach my $p (@partitions) {
my @data;
foreach my $k (@{$p}) {
my $ok = 0;
my $data = {k => $k};
{
my ($start, $steps) = get_pos_steps($n, $k);
if (defined($start)) {
$ok ||= 1;
$data->{pos} = {
start => $start,
steps => $steps,
};
}
}
{
my ($start, $steps) = get_neg_steps($n, $k);
if (defined($start)) {
$ok ||= 1;
$data->{neg} = {
start => $start,
steps => $steps,
};
}
}
$ok || next F1;
push @data, $data;
}
push @valid, \@data;
}
#
## Experimenting with various optimization ideas
#
foreach my $solution (@valid) {
my $count = 0;
foreach my $k ($x, $y, $z) {
++$count if any {
my $s = $_;
any {
(($k % $n) == sum0(@{$s->{pos}{steps}}[0 .. $_]) + $s->{pos}{start})
or (($k % (-$n)) == sum0(@{$s->{neg}{steps}}[0 .. $_]) + $s->{neg}{start})
}
(-1 .. int(@{$s->{pos}{steps}} / 2) - 1);
#~ any {
#~ ($k % sum(@{$s->{pos}{steps}}[0 .. $_]) == $s->{pos}{start})
#~ or ($k % sum(@{$s->{neg}{steps}}[0 .. $_]) == $s->{neg}{start})
#~ }
#~ int(@{$s->{pos}{steps}} / 2) .. $#{$s->{pos}{steps}};
#(any { $k % $_ == $s->{pos}{start} } @{$s->{pos}{steps}})
#or (any { $k % $_ == $s->{neg}{start} } @{$s->{neg}{steps}})
}
@{$solution};
}
if ($count >= 3) {
pp $solution;
}
}
say scalar @valid;
my %seen;
pp [sort {$a <=> $b} grep{!$seen{$_}++} map { map {$_->{pos}{start}}@{$_} } @valid];