-
Notifications
You must be signed in to change notification settings - Fork 33
/
squarefree_strong_fermat_pseudoprimes_in_range_mpz.pl
136 lines (97 loc) · 4.31 KB
/
squarefree_strong_fermat_pseudoprimes_in_range_mpz.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 25 February 2023
# https://github.com/trizen
# Generate all the squarefree strong Fermat pseudoprimes to a given base with n prime factors in a given range [A,B]. (not in sorted order)
# See also:
# https://en.wikipedia.org/wiki/Almost_prime
# https://trizenx.blogspot.com/2020/08/pseudoprimes-construction-methods-and.html
use 5.036;
use Math::GMPz;
use ntheory qw(:all);
sub divceil ($x, $y) { # ceil(x/y)
(($x % $y == 0) ? 0 : 1) + divint($x, $y);
}
sub squarefree_strong_fermat_pseudoprimes_in_range ($A, $B, $k, $base) {
$A = vecmax($A, pn_primorial($k));
$A = Math::GMPz->new("$A");
$B = Math::GMPz->new("$B");
my $u = Math::GMPz::Rmpz_init();
my $v = Math::GMPz::Rmpz_init();
my @list;
my $generator = sub ($m, $L, $lo, $k, $k_exp, $congr) {
Math::GMPz::Rmpz_tdiv_q($u, $B, $m);
Math::GMPz::Rmpz_root($u, $u, $k);
my $hi = Math::GMPz::Rmpz_get_ui($u);
if ($lo > $hi) {
return;
}
if ($k == 1) {
Math::GMPz::Rmpz_cdiv_q($u, $A, $m);
if (Math::GMPz::Rmpz_fits_ulong_p($u)) {
$lo = vecmax($lo, Math::GMPz::Rmpz_get_ui($u));
}
elsif (Math::GMPz::Rmpz_cmp_ui($u, $lo) > 0) {
if (Math::GMPz::Rmpz_cmp_ui($u, $hi) > 0) {
return;
}
$lo = Math::GMPz::Rmpz_get_ui($u);
}
if ($lo > $hi) {
return;
}
Math::GMPz::Rmpz_invert($v, $m, $L);
if (Math::GMPz::Rmpz_cmp_ui($v, $hi) > 0) {
return;
}
if (Math::GMPz::Rmpz_fits_ulong_p($L)) {
$L = Math::GMPz::Rmpz_get_ui($L);
}
my $t = Math::GMPz::Rmpz_get_ui($v);
$t > $hi && return;
$t += $L * divceil($lo - $t, $L) if ($t < $lo);
for (my $p = $t ; $p <= $hi ; $p += $L) {
is_prime($p) || next;
$base % $p == 0 and next;
my $val = valuation($p - 1, 2);
if ($val > $k_exp and powmod($base, ($p - 1) >> ($val - $k_exp), $p) == ($congr % $p)) {
Math::GMPz::Rmpz_mul_ui($v, $m, $p);
Math::GMPz::Rmpz_sub_ui($u, $v, 1);
if (Math::GMPz::Rmpz_divisible_ui_p($u, znorder($base, $p))) {
push(@list, Math::GMPz::Rmpz_init_set($v));
}
}
}
return;
}
my $t = Math::GMPz::Rmpz_init();
my $lcm = Math::GMPz::Rmpz_init();
foreach my $p (@{primes($lo, $hi)}) {
$base % $p == 0 and next;
my $val = valuation($p - 1, 2);
$val > $k_exp or next;
powmod($base, ($p - 1) >> ($val - $k_exp), $p) == ($congr % $p) or next;
my $z = znorder($base, $p);
Math::GMPz::Rmpz_gcd_ui($Math::GMPz::NULL, $m, $z) == 1 or next;
Math::GMPz::Rmpz_lcm_ui($lcm, $L, $z);
Math::GMPz::Rmpz_mul_ui($t, $m, $p);
__SUB__->($t, $lcm, $p + 1, $k - 1, $k_exp, $congr);
}
};
# Case where 2^d == 1 (mod p), where d is the odd part of p-1.
$generator->(Math::GMPz->new(1), Math::GMPz->new(1), 2, $k, 0, 1);
# Cases where 2^(d * 2^v) == -1 (mod p), for some v >= 0.
foreach my $v (0 .. logint($B, 2)) {
$generator->(Math::GMPz->new(1), Math::GMPz->new(1), 2, $k, $v, -1);
}
return sort { $a <=> $b } @list;
}
# Generate all the squarefree strong Fermat pseudoprimes to base 2 with 3 prime factors in the range [1, 10^8]
my $k = 3;
my $base = 2;
my $from = 1;
my $upto = 1e8;
my @arr = squarefree_strong_fermat_pseudoprimes_in_range($from, $upto, $k, $base);
say join(', ', @arr);
__END__
15841, 29341, 52633, 74665, 252601, 314821, 476971, 635401, 1004653, 1023121, 1907851, 1909001, 2419385, 2953711, 3581761, 4335241, 4682833, 5049001, 5444489, 5599765, 5681809, 9069229, 13421773, 15247621, 15510041, 15603391, 17509501, 26254801, 26758057, 27966709, 29111881, 35703361, 36765901, 37769887, 38342071, 44963029, 47349373, 47759041, 53399449, 53711113, 54468001, 60155201, 61377109, 61755751, 66977281, 68154001, 70030501, 71572957, 74329399, 82273201, 91659283, 99036001