-
Notifications
You must be signed in to change notification settings - Fork 33
/
lucas_theorem.pl
102 lines (70 loc) · 1.97 KB
/
lucas_theorem.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date 04 September 2020
# https://github.com/trizen
# Simple implementation of Lucas's theorem, for computing binomial(n,k) mod p, for some prime p.
# See also:
# https://en.wikipedia.org/wiki/Lucas%27s_theorem
use 5.020;
use strict;
use warnings;
use experimental qw(signatures);
use ntheory qw(:all);
sub factorial_valuation ($n, $p) {
($n - vecsum(todigits($n, $p))) / ($p - 1);
}
sub modular_binomial ($n, $k, $m) { # fast for small n
my $j = $n - $k;
my $prod = 1;
forprimes {
my $p = factorial_valuation($n, $_);
if ($_ <= $k) {
$p -= factorial_valuation($k, $_);
}
if ($_ <= $j) {
$p -= factorial_valuation($j, $_);
}
if ($p > 0) {
$prod *= ($p == 1) ? ($_ % $m) : powmod($_, $p, $m);
$prod %= $m;
}
} $n;
return $prod;
}
sub lucas_theorem ($n, $k, $p) {
if ($n < $k) {
return 0;
}
my $res = 1;
while ($k > 0) {
my ($Nr, $Kr) = ($n % $p, $k % $p);
if ($Nr < $Kr) {
return 0;
}
($n, $k) = (divint($n, $p), divint($k, $p));
$res = mulmod($res, modular_binomial($Nr, $Kr, $p), $p);
}
return $res;
}
sub lucas_theorem_alt ($n, $k, $p) { # alternative implementation
if ($n < $k) {
return 0;
}
my @Nd = reverse todigits($n, $p);
my @Kd = reverse todigits($k, $p);
my $res = 1;
foreach my $i (0 .. $#Kd) {
my $Nr = $Nd[$i];
my $Kr = $Kd[$i];
if ($Nr < $Kr) {
return 0;
}
$res = mulmod($res, modular_binomial($Nr, $Kr, $p), $p);
}
return $res;
}
say lucas_theorem(1e10, 1e5, 1009); #=> 559
say lucas_theorem(powint(10, 18), powint(10, 9), 2957); #=> 2049
say '';
say lucas_theorem_alt(1e10, 1e5, 1009); #=> 559
say lucas_theorem_alt(powint(10, 18), powint(10, 9), 2957); #=> 2049