-
Notifications
You must be signed in to change notification settings - Fork 33
/
kempner_binomial_numbers.pl
executable file
·48 lines (36 loc) · 1.27 KB
/
kempner_binomial_numbers.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 08 January 2019
# https://github.com/trizen
# a(n) = smallest positive integer k such that n divides binomial(n+k, k).
# Sequence inspired by the Kempner numbers:
# https://oeis.org/A002034
# Prime power identity:
# a(p^k) = p^k * (p^k - 1), for p^k a prime power.
# Lower bound formula for a(n). Let:
# f(n, p^k) = p^k * (p^k - n/p^k)
# if n = p1^e1 * p2^e2 * ... * pu^eu,
# then a(n) >= max( f(n,p1^e1), f(n,p2^e2), ..., f(n,pu^eu) ).
use 5.020;
use warnings;
use experimental qw(signatures);
use ntheory qw(factor_exp);
use Math::AnyNum qw(binomial is_div ipow max);
sub f ($n) {
for (my $k = 1 ; ; ++$k) {
if (is_div(binomial($n + $k, $k), $n)) {
return $k;
}
}
}
sub g($n) { # g(n) <= f(n)
max(map {
my $pk = ipow($_->[0], $_->[1]);
$pk * ($pk - $n / $pk)
} factor_exp($n));
}
say "f(n) = [", join(", ", map { f($_) } 2 .. 31), "]";
say "g(n) = [", join(", ", map { g($_) } 2 .. 31), "]";
__END__
f(n) = [2, 6, 12, 20, 3, 42, 56, 72, 15, 110, 6, 156, 35, 12, 240, 272, 63, 342, 12, 33, 99, 506, 40, 600, 143, 702, 21, 812, 24, 930]
g(n) = [2, 6, 12, 20, 3, 42, 56, 72, 15, 110, 4, 156, 35, 10, 240, 272, 63, 342, 5, 28, 99, 506, 40, 600, 143, 702, 21, 812, -5, 930]