-
Notifications
You must be signed in to change notification settings - Fork 33
/
gaussian_divisors.pl
170 lines (131 loc) · 4.1 KB
/
gaussian_divisors.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/perl
# Author: Trizen
# Date: 13 June 2022
# https://github.com/trizen
# Find the factors and divisors of a Gaussian integer.
# See also:
# https://oeis.org/A125271
# https://oeis.org/A078930
# https://oeis.org/A078910
# https://oeis.org/A078911
# https://projecteuler.net/problem=153
# https://www.alpertron.com.ar/GAUSSIAN.HTM
# https://en.wikipedia.org/wiki/Table_of_Gaussian_integer_factorizations
use 5.020;
use strict;
use warnings;
use ntheory qw(:all);
use experimental qw(signatures);
sub gaussian_mul ($xa, $xb, $ya, $yb) {
($xa * $ya - $xb * $yb, $xa * $yb + $xb * $ya)
}
sub gaussian_div ($xa, $xb, $ya, $yb) { # floor division
my $t = $ya * $ya + $yb * $yb;
(
divint($ya * $t * $xa - $t * -$yb * $xb, $t * $t),
divint($ya * $t * $xb + $t * -$yb * $xa, $t * $t)
);
}
sub gaussian_is_div ($xa, $xb, $ya, $yb) {
my ($ta, $tb) = gaussian_mul($ya, $yb, gaussian_div($xa, $xb, $ya, $yb));
$xa - $ta == 0 and $xb - $tb == 0;
}
sub primitive_sum_of_two_squares ($p) {
if ($p == 2) {
return (1, 1);
}
my $s = sqrtmod(-1, $p) || return;
my $q = $p;
while ($s * $s > $p) {
($s, $q) = ($q % $s, $s);
}
($s, $q % $s);
}
sub gaussian_factors ($x, $y = 0) {
return if ($x == 0 and $y == 0);
my $n = ($x * $x + $y * $y);
my @factors;
foreach my $pe (factor_exp($n)) {
my ($p, $e) = @$pe;
if ($p == 2) {
while (gaussian_is_div($x, $y, 1, 1)) {
push @factors, [1, 1];
($x, $y) = gaussian_div($x, $y, 1, 1);
}
}
elsif ($p % 4 == 3) {
while (gaussian_is_div($x, $y, $p, 0)) {
push @factors, [$p, 0];
($x, $y) = gaussian_div($x, $y, $p, 0);
}
}
elsif ($p % 4 == 1) {
my ($a, $b) = primitive_sum_of_two_squares($p);
while (gaussian_is_div($x, $y, $a, $b)) {
push @factors, [$a, $b];
($x, $y) = gaussian_div($x, $y, $a, $b);
}
while (gaussian_is_div($x, $y, $a, -$b)) {
push @factors, [$a, -$b];
($x, $y) = gaussian_div($x, $y, $a, -$b);
}
}
}
if ($x == 1 and $y == 0) {
## ok
}
else {
push @factors, [$x, $y];
}
@factors = sort {
($a->[0] <=> $b->[0]) ||
($a->[1] <=> $b->[1])
} @factors;
my %count;
$count{join(' ', @$_)}++ for @factors;
my %seen;
my @factor_exp =
map { [$_, $count{join(' ', @$_)}] }
grep { !$seen{join(' ', @$_)}++ } @factors;
return @factor_exp;
}
sub gaussian_divisors ($x, $y = 0) {
my @d = ([1, 0], [-1, 0], [0, 1], [0, -1]);
foreach my $pe (gaussian_factors($x, $y)) {
my ($p, $e) = @$pe;
my ($ra, $rb) = (1, 0);
my @t;
for (1 .. $e) {
($ra, $rb) = gaussian_mul($ra, $rb, $p->[0], $p->[1]);
foreach my $u (@d) {
push @t, [gaussian_mul($u->[0], $u->[1], $ra, $rb)];
}
}
push @d, @t;
}
@d = sort {
($a->[0] <=> $b->[0]) ||
($a->[1] <=> $b->[1])
} @d;
my %seen;
@d = grep { !$seen{join(' ', @$_)}++ } @d;
return @d;
}
say scalar gaussian_divisors(440, -55); #=> 96
say join ', ', map {
scalar grep { $_->[0] > 0 } gaussian_divisors($_, 0)
} 0 .. 30; # A125271
say join ', ', map {
vecsum(map { $_->[0] } grep { $_->[0] > 0 } gaussian_divisors($_, 0))
} 0 .. 30; # A078930
say join ', ', map {
vecsum(map { $_->[0] } grep { $_->[0] > 0 and $_->[1] > 0 } gaussian_divisors($_, 0))
} 0 .. 30; # A078911
say join ', ', map {
vecsum(map { $_->[0] } grep { $_->[0] > 0 or $_->[1] > 0 } gaussian_divisors($_, 0))
} 0 .. 30; # A078910
my $sum = 0;
foreach my $n (1 .. 1000) {
$sum += vecsum(map { $_->[0] } grep { $_->[0] > 0 } gaussian_divisors($n, 0));
}
say $sum; #=> 1752541