-
Notifications
You must be signed in to change notification settings - Fork 33
/
count_of_smooth_numbers_with_k_factors.pl
executable file
·90 lines (65 loc) · 1.88 KB
/
count_of_smooth_numbers_with_k_factors.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 05 March 2020
# https://github.com/trizen
# Count the number of B-smooth numbers below a given limit, where each number has at least k distinct prime factors.
# Problem inspired by:
# https://projecteuler.net/problem=268
# See also:
# https://en.wikipedia.org/wiki/Smooth_number
use 5.020;
use warnings;
use ntheory qw(:all);
use experimental qw(signatures);
sub smooth_numbers ($initial, $limit, $primes) {
my @h = ($initial);
foreach my $p (@$primes) {
foreach my $n (@h) {
if ($n * $p <= $limit) {
push @h, $n * $p;
}
}
}
return \@h;
}
my $PRIME_MAX = 100; # the prime factors must all be <= this value
my $LEAST_K = 4; # each number must have at least this many distinct prime factors
sub count_smooth_numbers ($limit) {
my $count = 0;
my @primes = @{primes($PRIME_MAX)};
forcomb {
my $c = [@primes[@_]];
my $v = vecprod(@$c);
if ($v <= $limit) {
my $h = smooth_numbers($v, $limit, $c);
foreach my $n (@$h) {
my $new_h = smooth_numbers(1, divint($limit, $n), [grep { $_ < $c->[0] } @primes]);
$count += scalar @$new_h;
}
}
} scalar(@primes), $LEAST_K;
return $count;
}
say "\n# Count of $PRIME_MAX-smooth numbers with at least $LEAST_K distinct prime factors:\n";
foreach my $n (1 .. 16) {
my $count = count_smooth_numbers(powint(10, $n));
say "C(10^$n) = $count";
}
__END__
# Count of 100-smooth numbers with at least 4 distinct prime factors:
C(10^1) = 0
C(10^2) = 0
C(10^3) = 23
C(10^4) = 811
C(10^5) = 8963
C(10^6) = 53808
C(10^7) = 235362
C(10^8) = 866945
C(10^9) = 2855050
C(10^10) = 8668733
C(10^11) = 24692618
C(10^12) = 66682074
C(10^13) = 171957884
C(10^14) = 425693882
C(10^15) = 1015820003
C(10^16) = 2344465914