-
Notifications
You must be signed in to change notification settings - Fork 33
/
peg-solitaire-solver
executable file
·257 lines (218 loc) · 6.27 KB
/
peg-solitaire-solver
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/perl
# This program solves the (English) peg solitaire
# Perl translate from Go code (see __END__)
# Translator: Trizen
# Date: 27 February 2012
use 5.010;
use strict;
use warnings;
use utf8;
binmode *STDOUT, ':encoding(utf-8)';
my $N = 11 + 1; # length of a board row (+1 for \n)
# The board must be surrounded by 2 illegal fields
# in each direction so that move() doesn't need to
# check the board boundaries. Periods represent
# illegal fields, ● are pegs, and ○ are holes.
my @board = unpack(
'C*',
'...........
...........
....●●●....
....●●●....
..●●●●●●●..
..●●●○●●●..
..●●●●●●●..
....●●●....
....●●●....
...........
...........
'
);
# center is the position of the center hole if
# there is a single one; otherwise it is -1.
my $center;
{
my $n = 0;
for (my $i = 0 ; $i <= $#board ; ++$i) {
if (chr $board[$i] eq '○') {
$center = $i;
$n++;
last;
}
}
if ($n != 1) {
$center = -1; # no single hole
}
}
my $moves; # number of times move is called
# move tests if there is a peg at position pos that
# can jump over another peg in direction dir. If the
# move is valid, it is executed and move returns true.
# Otherwise, move returns false.
sub move {
my ($pos, $dir) = @_;
++$moves;
if (chr $board[$pos] eq '●' and chr $board[$pos + $dir] eq '●' and chr $board[$pos + 2 * $dir] eq '○') {
$board[$pos] = ord '○';
$board[$pos + $dir] = ord '○';
$board[$pos + 2 * $dir] = ord '●';
return 1;
}
return 0;
}
# unmove reverts a previously executed valid move.
sub unmove {
my ($pos, $dir) = @_;
$board[$pos] = ord '●';
$board[$pos + $dir] = ord '●';
$board[$pos + 2 * $dir] = ord '○';
return 1;
}
# solve tries to find a sequence of moves such that
# there is only one peg left at the end; if center is
# >= 0, that last peg must be in the center position.
# If a solution is found, solve prints the board after
# each move in a backward fashion (i.e., the last
# board position is printed first, all the way back to
# the starting board position).
sub solve {
my ($last, $n);
foreach my $pos (0 .. $#board) {
# try each board position
if (chr $board[$pos] eq '●') {
# found a peg
foreach my $dir (-1, -$N, +1, +$N) {
# try each direction
if (move($pos, $dir)) {
# a valid move was found and executed,
# see if this new board has a solution
if (solve()) {
unmove($pos, $dir);
say map { chr } @board;
return 1;
}
unmove($pos, $dir);
}
}
$last = $pos;
$n++;
}
}
# tried each possible move
if ($n == 1 && ($center < 0 || $last == $center)) {
# there's only one peg left
say map { chr } @board;
return 1;
}
# no solution found for this board
return 0;
}
if (!solve()) {
say "no solution found";
}
say "$moves moves tried";
__END__
// This program solves the (English) peg solitaire
// board game. See also:
// https://en.wikipedia.org/wiki/Peg_solitaire
package main
import "fmt"
const N = 11 + 1 // length of a board row (+1 for \n)
// The board must be surrounded by 2 illegal fields
// in each direction so that move() doesn't need to
// check the board boundaries. Periods represent
// illegal fields, ● are pegs, and ○ are holes.
var board = []int(
`...........
...........
....●●●....
....●●●....
..●●●●●●●..
..●●●○●●●..
..●●●●●●●..
....●●●....
....●●●....
...........
...........
`)
// center is the position of the center hole if
// there is a single one; otherwise it is -1.
var center int
func init() {
n := 0
for pos, field := range board {
if field == '○' {
center = pos
n++
}
}
if n != 1 {
center = -1 // no single hole
}
}
var moves int // number of times move is called
// move tests if there is a peg at position pos that
// can jump over another peg in direction dir. If the
// move is valid, it is executed and move returns true.
// Otherwise, move returns false.
func move(pos, dir int) bool {
moves++
if board[pos] == '●' && board[pos+dir] == '●' && board[pos+2*dir] == '○' {
board[pos] = '○'
board[pos+dir] = '○'
board[pos+2*dir] = '●'
return true
}
return false
}
// unmove reverts a previously executed valid move.
func unmove(pos, dir int) {
board[pos] = '●'
board[pos+dir] = '●'
board[pos+2*dir] = '○'
}
// solve tries to find a sequence of moves such that
// there is only one peg left at the end; if center is
// >= 0, that last peg must be in the center position.
// If a solution is found, solve prints the board after
// each move in a backward fashion (i.e., the last
// board position is printed first, all the way back to
// the starting board position).
func solve() bool {
var last, n int
for pos, field := range board {
// try each board position
if field == '●' {
// found a peg
for _, dir := range [...]int{-1, -N, +1, +N} {
// try each direction
if move(pos, dir) {
// a valid move was found and executed,
// see if this new board has a solution
if solve() {
unmove(pos, dir)
println(string(board))
return true
}
unmove(pos, dir)
}
}
last = pos
n++
}
}
// tried each possible move
if n == 1 && (center < 0 || last == center) {
// there's only one peg left
println(string(board))
return true
}
// no solution found for this board
return false
}
func main() {
if !solve() {
fmt.Println("no solution found")
}
fmt.Println(moves, "moves tried")
}