-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathclient.py
executable file
·289 lines (263 loc) · 9.79 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#!/usr/bin/env python3
# Copyright 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import asyncio
import json
import sys
import numpy as np
import tritonclient.grpc.aio as grpcclient
from tritonclient.utils import *
class LLMClient:
def __init__(self, flags: argparse.Namespace):
self._flags = flags
self._results_dict = {}
def get_triton_client(self):
try:
triton_client = grpcclient.InferenceServerClient(
url=self._flags.url,
verbose=self._flags.verbose,
)
except Exception as e:
print("channel creation failed: " + str(e))
sys.exit()
return triton_client
async def async_request_iterator(
self, prompts, sampling_parameters, exclude_input_in_output
):
try:
for iter in range(self._flags.iterations):
for i, prompt in enumerate(prompts):
prompt_id = self._flags.offset + (len(prompts) * iter) + i
self._results_dict[str(prompt_id)] = []
yield self.create_request(
prompt,
self._flags.streaming_mode,
prompt_id,
sampling_parameters,
exclude_input_in_output,
)
except Exception as error:
print(f"Caught an error in the request iterator: {error}")
async def stream_infer(self, prompts, sampling_parameters, exclude_input_in_output):
try:
triton_client = self.get_triton_client()
# Start streaming
response_iterator = triton_client.stream_infer(
inputs_iterator=self.async_request_iterator(
prompts, sampling_parameters, exclude_input_in_output
),
stream_timeout=self._flags.stream_timeout,
)
async for response in response_iterator:
yield response
except InferenceServerException as error:
print(error)
sys.exit(1)
async def process_stream(
self, prompts, sampling_parameters, exclude_input_in_output
):
# Clear results in between process_stream calls
self.results_dict = []
success = True
# Read response from the stream
async for response in self.stream_infer(
prompts, sampling_parameters, exclude_input_in_output
):
result, error = response
if error:
print(f"Encountered error while processing: {error}")
success = False
else:
output = result.as_numpy("text_output")
for i in output:
self._results_dict[result.get_response().id].append(i)
return success
async def run(self):
# Sampling parameters for text generation
# including `temperature`, `top_p`, top_k`, `max_tokens`, `early_stopping`.
# Full list available at:
# https://github.com/vllmproject/vllm/blob/5255d99dc595f9ae7647842242d6542aa4145a4f/vllm/sampling_params.py#L23
sampling_parameters = {
"temperature": "0.1",
"top_p": "0.95",
"max_tokens": "100",
}
exclude_input_in_output = self._flags.exclude_inputs_in_outputs
if self._flags.lora_name is not None:
sampling_parameters["lora_name"] = self._flags.lora_name
with open(self._flags.input_prompts, "r") as file:
print(f"Loading inputs from `{self._flags.input_prompts}`...")
prompts = file.readlines()
success = await self.process_stream(
prompts, sampling_parameters, exclude_input_in_output
)
with open(self._flags.results_file, "w") as file:
for id in self._results_dict.keys():
for result in self._results_dict[id]:
file.write(result.decode("utf-8"))
file.write("\n")
file.write("\n=========\n\n")
print(f"Storing results into `{self._flags.results_file}`...")
if self._flags.verbose:
with open(self._flags.results_file, "r") as file:
print(f"\nContents of `{self._flags.results_file}` ===>")
print(file.read())
if success:
print("PASS: vLLM example")
else:
print("FAIL: vLLM example")
def run_async(self):
asyncio.run(self.run())
def create_request(
self,
prompt,
stream,
request_id,
sampling_parameters,
exclude_input_in_output,
send_parameters_as_tensor=True,
):
inputs = []
prompt_data = np.array([prompt.encode("utf-8")], dtype=np.object_)
try:
inputs.append(grpcclient.InferInput("text_input", [1], "BYTES"))
inputs[-1].set_data_from_numpy(prompt_data)
except Exception as error:
print(f"Encountered an error during request creation: {error}")
stream_data = np.array([stream], dtype=bool)
inputs.append(grpcclient.InferInput("stream", [1], "BOOL"))
inputs[-1].set_data_from_numpy(stream_data)
# Request parameters are not yet supported via BLS. Provide an
# optional mechanism to send serialized parameters as an input
# tensor until support is added
if send_parameters_as_tensor:
sampling_parameters_data = np.array(
[json.dumps(sampling_parameters).encode("utf-8")], dtype=np.object_
)
inputs.append(grpcclient.InferInput("sampling_parameters", [1], "BYTES"))
inputs[-1].set_data_from_numpy(sampling_parameters_data)
inputs.append(grpcclient.InferInput("exclude_input_in_output", [1], "BOOL"))
inputs[-1].set_data_from_numpy(np.array([exclude_input_in_output], dtype=bool))
# Add requested outputs
outputs = []
outputs.append(grpcclient.InferRequestedOutput("text_output"))
# Issue the asynchronous sequence inference.
return {
"model_name": self._flags.model,
"inputs": inputs,
"outputs": outputs,
"request_id": str(request_id),
"parameters": sampling_parameters,
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-m",
"--model",
type=str,
required=False,
default="vllm_model",
help="Model name",
)
parser.add_argument(
"-v",
"--verbose",
action="store_true",
required=False,
default=False,
help="Enable verbose output",
)
parser.add_argument(
"-u",
"--url",
type=str,
required=False,
default="localhost:8001",
help="Inference server URL and its gRPC port. Default is localhost:8001.",
)
parser.add_argument(
"-t",
"--stream-timeout",
type=float,
required=False,
default=None,
help="Stream timeout in seconds. Default is None.",
)
parser.add_argument(
"--offset",
type=int,
required=False,
default=0,
help="Add offset to request IDs used",
)
parser.add_argument(
"--input-prompts",
type=str,
required=False,
default="prompts.txt",
help="Text file with input prompts",
)
parser.add_argument(
"--results-file",
type=str,
required=False,
default="results.txt",
help="The file with output results",
)
parser.add_argument(
"--iterations",
type=int,
required=False,
default=1,
help="Number of iterations through the prompts file",
)
parser.add_argument(
"-s",
"--streaming-mode",
action="store_true",
required=False,
default=False,
help="Enable streaming mode",
)
parser.add_argument(
"--exclude-inputs-in-outputs",
action="store_true",
required=False,
default=False,
help="Exclude prompt from outputs",
)
parser.add_argument(
"-l",
"--lora-name",
type=str,
required=False,
default=None,
help="The querying LoRA name",
)
FLAGS = parser.parse_args()
client = LLMClient(FLAGS)
client.run_async()