-
Notifications
You must be signed in to change notification settings - Fork 152
/
repeat_client.py
125 lines (106 loc) · 4.45 KB
/
repeat_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Copyright 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import queue
import sys
from functools import partial
import numpy as np
import tritonclient.grpc as grpcclient
from tritonclient.utils import *
class UserData:
def __init__(self):
self._completed_requests = queue.Queue()
def callback(user_data, result, error):
if error:
user_data._completed_requests.put(error)
else:
user_data._completed_requests.put(result)
# This client sends a single request to the model with the
# following tensor data. In compliance with the behavior
# of repeat_int32 model, it will expect the 4 responses
# with output: [4], [2], [0] and [1] respectively.
model_name = "repeat_int32"
in_value = [4, 2, 0, 1]
delay_value = [1, 2, 3, 4]
wait_value = 5
inputs = []
inputs.append(grpcclient.InferInput("IN", [len(in_value)], "INT32"))
inputs.append(grpcclient.InferInput("DELAY", [len(delay_value)], "UINT32"))
inputs.append(grpcclient.InferInput("WAIT", [1], "UINT32"))
outputs = []
outputs.append(grpcclient.InferRequestedOutput("OUT"))
outputs.append(grpcclient.InferRequestedOutput("IDX"))
user_data = UserData()
with grpcclient.InferenceServerClient(
url="localhost:8001", verbose=True
) as triton_client:
# Establish stream
triton_client.start_stream(callback=partial(callback, user_data))
in_data = np.array(in_value, dtype=np.int32)
inputs[0].set_data_from_numpy(in_data)
delay_data = np.array(delay_value, dtype=np.uint32)
inputs[1].set_data_from_numpy(delay_data)
wait_data = np.array([wait_value], dtype=np.uint32)
inputs[2].set_data_from_numpy(wait_data)
request_id = "0"
triton_client.async_stream_infer(
model_name=model_name,
inputs=inputs,
request_id=request_id,
outputs=outputs,
)
# Retrieve results...
recv_count = 0
expected_count = len(in_value)
result_dict = {}
while recv_count < expected_count:
data_item = user_data._completed_requests.get()
if type(data_item) == InferenceServerException:
raise data_item
else:
this_id = data_item.get_response().id
if this_id not in result_dict.keys():
result_dict[this_id] = []
result_dict[this_id].append((recv_count, data_item))
recv_count += 1
# Validate results...
if len(result_dict[request_id]) != len(in_value):
print(
"expected {} many responses for request id {}, got {}".format(
len(in_value), request_id, len(result_dict[request_id])
)
)
sys.exit(1)
result_list = result_dict[request_id]
for i in range(len(result_list)):
expected_data = np.array([in_value[i]], dtype=np.int32)
this_data = result_list[i][1].as_numpy("OUT")
if not np.array_equal(expected_data, this_data):
print(
"incorrect data: expected {}, got {}".format(expected_data, this_data)
)
sys.exit(1)
print("PASS: repeat_int32")
sys.exit(0)