diff --git a/Dockerfile b/Dockerfile
index f80579ab4..eaff70e7d 100644
--- a/Dockerfile
+++ b/Dockerfile
@@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
-ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.01-py3
-ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.01-py3-sdk
+ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.02-py3
+ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:24.02-py3-sdk
ARG MODEL_ANALYZER_VERSION=1.38.0dev
ARG MODEL_ANALYZER_CONTAINER_VERSION=24.03dev
diff --git a/README.md b/README.md
index b2764c4e3..f7dfddaa2 100644
--- a/README.md
+++ b/README.md
@@ -19,101 +19,4 @@ limitations under the License.
# Triton Model Analyzer
> [!Warning]
-> ##### LATEST RELEASE
-> You are currently on the `main` branch which tracks under-development progress towards the next release.
-> The latest release of the Triton Model Analyzer is 1.36.0 and is available on branch
-> [r24.01](https://github.com/triton-inference-server/model_analyzer/tree/r24.01).
-
-
-Triton Model Analyzer is a CLI tool which can help you find a more optimal configuration, on a given piece of hardware, for single, multiple, ensemble, or BLS models running on a [Triton Inference Server](https://github.com/triton-inference-server/server/). Model Analyzer will also generate reports to help you better understand the trade-offs of the different configurations along with their compute and memory requirements.
-
-
-# Features
-
-### Search Modes
-
-- [Quick Search](docs/config_search.md#quick-search-mode) will **sparsely** search the [Max Batch Size](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#maximum-batch-size),
- [Dynamic Batching](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#dynamic-batcher), and
- [Instance Group](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#instance-groups) spaces by utilizing a heuristic hill-climbing algorithm to help you quickly find a more optimal configuration
-
-- [Automatic Brute Search](docs/config_search.md#automatic-brute-search) will **exhaustively** search the
- [Max Batch Size](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#maximum-batch-size),
- [Dynamic Batching](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#dynamic-batcher), and
- [Instance Group](https://github.com/triton-inference-server/server/blob/main/docs/user_guide/model_configuration.md#instance-groups)
- parameters of your model configuration
-
-- [Manual Brute Search](docs/config_search.md#manual-brute-search) allows you to create manual sweeps for every parameter that can be specified in the model configuration
-
-### Model Types
-
-- [Ensemble Model Search](docs/config_search.md#ensemble-model-search): Model Analyzer can help you find the optimal
- settings when profiling an ensemble model, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm
-
-- [BLS Model Search](docs/config_search.md#bls-model-search): Model Analyzer can help you find the optimal
- settings when profiling a BLS model, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm
-
-- [Multi-Model Search](docs/config_search.md#multi-model-search-mode): **EARLY ACCESS** - Model Analyzer can help you
- find the optimal settings when profiling multiple concurrent models, utilizing the [Quick Search](docs/config_search.md#quick-search-mode) algorithm
-
-### Other Features
-
-- [Detailed and summary reports](docs/report.md): Model Analyzer is able to generate
- summarized and detailed reports that can help you better understand the trade-offs
- between different model configurations that can be used for your model.
-
-- [QoS Constraints](docs/config.md#constraint): Constraints can help you
- filter out the Model Analyzer results based on your QoS requirements. For
- example, you can specify a latency budget to filter out model configurations
- that do not satisfy the specified latency threshold.
-
-
-# Examples and Tutorials
-
-### **Single Model**
-
-See the [Single Model Quick Start](docs/quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on a simple PyTorch model.
-
-### **Multi Model**
-
-See the [Multi-model Quick Start](docs/mm_quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on two models running concurrently on the same GPU.
-
-### **Ensemble Model**
-
-See the [Ensemble Model Quick Start](docs/ensemble_quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on a simple Ensemble model.
-
-### **BLS Model**
-
-See the [BLS Model Quick Start](docs/bls_quick_start.md) for a guide on how to use Model Analyzer to profile, analyze and report on a simple BLS model.
-
-
-# Documentation
-
-- [Installation](docs/install.md)
-- [Model Analyzer CLI](docs/cli.md)
-- [Launch Modes](docs/launch_modes.md)
-- [Configuring Model Analyzer](docs/config.md)
-- [Model Analyzer Metrics](docs/metrics.md)
-- [Model Config Search](docs/config_search.md)
-- [Checkpointing](docs/checkpoints.md)
-- [Model Analyzer Reports](docs/report.md)
-- [Deployment with Kubernetes](docs/kubernetes_deploy.md)
-
-
-# Reporting problems, asking questions
-
-We appreciate any feedback, questions or bug reporting regarding this
-project. When help with code is needed, follow the process outlined in
-the Stack Overflow (https://stackoverflow.com/help/mcve)
-document. Ensure posted examples are:
-
-- minimal – use as little code as possible that still produces the
- same problem
-
-- complete – provide all parts needed to reproduce the problem. Check
- if you can strip external dependency and still show the problem. The
- less time we spend on reproducing problems the more time we have to
- fix it
-
-- verifiable – test the code you're about to provide to make sure it
- reproduces the problem. Remove all other problems that are not
- related to your request/question.
+> ##### THIS BRANCH IS UNDER ACTIVE DEVELOPMENT AND IS NOT READY FOR USE.
\ No newline at end of file
diff --git a/docs/bls_quick_start.md b/docs/bls_quick_start.md
index 432b6876f..22eb406e0 100644
--- a/docs/bls_quick_start.md
+++ b/docs/bls_quick_start.md
@@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**
```
-docker pull nvcr.io/nvidia/tritonserver:24.01-py3-sdk
+docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```
**2. Run the SDK container**
@@ -59,7 +59,7 @@ docker run -it --gpus 1 \
--shm-size 2G \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
- --net=host nvcr.io/nvidia/tritonserver:24.01-py3-sdk
+ --net=host nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```
**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly
diff --git a/docs/config.md b/docs/config.md
index bc091e86b..b08e933d8 100644
--- a/docs/config.md
+++ b/docs/config.md
@@ -153,7 +153,7 @@ cpu_only_composing_models:
[ reload_model_disable: | default: false]
# Triton Docker image tag used when launching using Docker mode
-[ triton_docker_image: | default: nvcr.io/nvidia/tritonserver:24.01-py3 ]
+[ triton_docker_image: | default: nvcr.io/nvidia/tritonserver:24.02-py3 ]
# Triton Server HTTP endpoint url used by Model Analyzer client"
[ triton_http_endpoint: | default: localhost:8000 ]
diff --git a/docs/ensemble_quick_start.md b/docs/ensemble_quick_start.md
index 4d2ff8501..23abb2bb4 100644
--- a/docs/ensemble_quick_start.md
+++ b/docs/ensemble_quick_start.md
@@ -55,7 +55,7 @@ mkdir examples/quick/ensemble_add_sub/1
**1. Pull the SDK container:**
```
-docker pull nvcr.io/nvidia/tritonserver:24.01-py3-sdk
+docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```
**2. Run the SDK container**
@@ -65,7 +65,7 @@ docker run -it --gpus 1 \
--shm-size 1G \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
- --net=host nvcr.io/nvidia/tritonserver:24.01-py3-sdk
+ --net=host nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```
**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly
diff --git a/docs/kubernetes_deploy.md b/docs/kubernetes_deploy.md
index db0b6230d..ef63b4d15 100644
--- a/docs/kubernetes_deploy.md
+++ b/docs/kubernetes_deploy.md
@@ -79,7 +79,7 @@ images:
triton:
image: nvcr.io/nvidia/tritonserver
- tag: 24.01-py3
+ tag: 24.02-py3
```
The model analyzer executable uses the config file defined in `helm-chart/templates/config-map.yaml`. This config can be modified to supply arguments to model analyzer. Only the content under the `config.yaml` section of the file should be modified.
diff --git a/docs/mm_quick_start.md b/docs/mm_quick_start.md
index 058054e7c..6395f25a7 100644
--- a/docs/mm_quick_start.md
+++ b/docs/mm_quick_start.md
@@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**
```
-docker pull nvcr.io/nvidia/tritonserver:24.01-py3-sdk
+docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```
**2. Run the SDK container**
@@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:24.01-py3-sdk
docker run -it --gpus all \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
- --net=host nvcr.io/nvidia/tritonserver:24.01-py3-sdk
+ --net=host nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```
## `Step 3:` Profile both models concurrently
diff --git a/docs/quick_start.md b/docs/quick_start.md
index 55d4340af..fc0cd87da 100644
--- a/docs/quick_start.md
+++ b/docs/quick_start.md
@@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**
```
-docker pull nvcr.io/nvidia/tritonserver:24.01-py3-sdk
+docker pull nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```
**2. Run the SDK container**
@@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:24.01-py3-sdk
docker run -it --gpus all \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
- --net=host nvcr.io/nvidia/tritonserver:24.01-py3-sdk
+ --net=host nvcr.io/nvidia/tritonserver:24.02-py3-sdk
```
## `Step 3:` Profile the `add_sub` model
diff --git a/helm-chart/values.yaml b/helm-chart/values.yaml
index 5efae3c9c..c15e98e44 100644
--- a/helm-chart/values.yaml
+++ b/helm-chart/values.yaml
@@ -41,4 +41,4 @@ images:
triton:
image: nvcr.io/nvidia/tritonserver
- tag: 24.01-py3
+ tag: 24.02-py3
diff --git a/model_analyzer/config/input/config_defaults.py b/model_analyzer/config/input/config_defaults.py
index 21befaa71..499b71b26 100755
--- a/model_analyzer/config/input/config_defaults.py
+++ b/model_analyzer/config/input/config_defaults.py
@@ -56,7 +56,7 @@
DEFAULT_RUN_CONFIG_PROFILE_MODELS_CONCURRENTLY_ENABLE = False
DEFAULT_REQUEST_RATE_SEARCH_ENABLE = False
DEFAULT_TRITON_LAUNCH_MODE = "local"
-DEFAULT_TRITON_DOCKER_IMAGE = "nvcr.io/nvidia/tritonserver:24.01-py3"
+DEFAULT_TRITON_DOCKER_IMAGE = "nvcr.io/nvidia/tritonserver:24.02-py3"
DEFAULT_TRITON_HTTP_ENDPOINT = "localhost:8000"
DEFAULT_TRITON_GRPC_ENDPOINT = "localhost:8001"
DEFAULT_TRITON_METRICS_URL = "http://localhost:8002/metrics"