Skip to content

Latest commit

 

History

History
49 lines (42 loc) · 1.34 KB

File metadata and controls

49 lines (42 loc) · 1.34 KB

🚢 Airbus Ship Detection - ML Course Project

A CNN-based solution using the Airbus Ship Detection dataset that processes satellite imagery for ship detection, achieving 88.54% accuracy.

🎯 Project Overview

Academic project (19CSE305 Machine Learning course) focused on:

  • 🛥️ Ship detection in satellite imagery
  • 🔍 Feature extraction techniques
  • 🧠 CNN architecture implementation
  • 📊 Binary image classification

🔑 Key Features

  • 📊 Mean pixel value extraction from RGB layers
  • ⚖️ Otsu threshold masking
  • 🔄 Hu Moments for shape characterization
  • 🧮 CNN with BatchNormalization
  • 🎯 88.54% accuracy achievement

🛠️ Technical Stack

  • Python
  • TensorFlow/Keras
  • OpenCV
  • NumPy
  • Pandas
  • Matplotlib

🏗️ Model Architecture

  • Input shape: 256x256x3 (RGB)
  • Convolutional layers with 32 filters
  • ReLU activation
  • MaxPooling with 2x2 pool size
  • 25% dropout rate
  • Batch normalization

📈 Feature Extraction Process

  1. Mean Pixel Value
  • Reduces 3 RGB layers to 1 layer
  • Calculates mean of R, G, B values per pixel
  1. Otsu Threshold Masking
  • Calculates threshold per image
  • Binary output (0, 255)
  1. Hu Moments
  • Shape characterization
  • Ship feature extraction

📚 References

  • [1] Analytics Vidhya - Feature Extraction Techniques
  • [2] Otsu's Method - Wikipedia
  • [3] Hu Moments - CV Explained