-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse_stderr.py
156 lines (133 loc) · 5.41 KB
/
parse_stderr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import re
import sys
# common variables
cost_re = r"""INFO:master:Gen=([0-9]*) / age_layer=([0-9]*).*front cost: ([0-9.-]*).*tot_#_evals=([0-9]*).*\(([0-9]*) on funcs, ([0-9]*) on sim\).*evals_per_func_analysis=(.*);.*evals_per_sim_analysis=(.*)"""
#INFO:master:Gen=0 (# age layers=0): begin
generation_re = "INFO:master:Gen=([0-9]*) \(# age layers=([0-9]*)\): begin"
#INFO:master:Of 200 random inds, 45 inds were used in the initial layer.
randomused_re = "INFO:master:Of ([0-9]*) random inds, ([0-9]*) inds were used in the initial layer."
# Of the 45 individuals (45 unique ones), there are 42 unique topologies.
topocount_re = "Of the ([0-9]*) individuals \([0-9]* unique ones\), there are ([0-9]*) unique topologies."
# method 1: using a compile object
cost_obj = re.compile(cost_re)
generation_obj = re.compile(generation_re)
randomused_obj = re.compile(randomused_re)
topocount_obj = re.compile(topocount_re)
fid = open(sys.argv[1])
fid_out = open(sys.argv[2], "w")
front_cost_per_gen = {}
topo_count_per_gen = {}
ind_count_per_gen = {}
topo_count_rnd_per_gen = {}
ind_count_rnd_per_gen = {}
max_age_layers = 0
last_gen_seen = 0
last_age_layer_seen = 0
just_saw_rnd = False
line = fid.readline()
while line:
match_obj = generation_obj.search(line)
if match_obj:
generation = eval(match_obj.group(1))
nb_age_layers = eval(match_obj.group(2))
print " GEN: %s %s" % (generation, nb_age_layers)
last_gen_seen = generation
last_age_layer_seen = 0
match_obj = cost_obj.search(line)
if match_obj:
# Retrieve group(s) by index
generation = eval(match_obj.group(1))
age_layer = eval(match_obj.group(2))
max_age_layers = max(age_layer, max_age_layers)
front_cost = match_obj.group(3)
nb_evals = match_obj.group(4)
nb_evals_on_funcs = match_obj.group(5)
nb_evals_on_sim = match_obj.group(6)
evals_per_func_analysis = match_obj.group(7)
evals_per_sim_analysis = match_obj.group(8)
s = "%s %s %s %s %s %s" % (generation, age_layer, front_cost, nb_evals, nb_evals_on_funcs, nb_evals_on_sim)
print " COST: %s" % s
#fid_out.write(s)
last_age_layer_seen = age_layer
if not generation in front_cost_per_gen.keys():
front_cost_per_gen[generation] = []
front_cost_per_gen[generation].append(front_cost)
match_obj = randomused_obj.search(line)
if match_obj:
rnd_total = eval(match_obj.group(1))
rnd_used = eval(match_obj.group(2))
print " RND: %s %s" % (rnd_total, rnd_used)
just_saw_rnd = True
match_obj = topocount_obj.search(line)
if match_obj:
nb_inds = eval(match_obj.group(1))
nb_topos = eval(match_obj.group(2))
print " TOPO: %s %s" % (nb_inds, nb_topos)
if just_saw_rnd:
just_saw_rnd = False
if not last_gen_seen in topo_count_rnd_per_gen.keys():
topo_count_rnd_per_gen[last_gen_seen] = []
topo_count_rnd_per_gen[last_gen_seen].append(nb_topos)
if not last_gen_seen in ind_count_rnd_per_gen.keys():
ind_count_rnd_per_gen[last_gen_seen] = []
ind_count_rnd_per_gen[last_gen_seen].append(nb_inds)
else:
if not last_gen_seen in topo_count_per_gen.keys():
topo_count_per_gen[last_gen_seen] = []
topo_count_per_gen[last_gen_seen].append(nb_topos)
if not last_gen_seen in ind_count_per_gen.keys():
ind_count_per_gen[last_gen_seen] = []
ind_count_per_gen[last_gen_seen].append(nb_inds)
# next line
line = fid.readline()
fid_out.close()
fid.close()
# output
print "\n"
print "-- Cost per layer per generation"
for gen in range(min(front_cost_per_gen.keys()), max(front_cost_per_gen.keys())+1):
front_costs = front_cost_per_gen[gen]
front_costs.reverse() # make top layer cost first entry
s = "%4d" % gen
for age_layer in range(max_age_layers+1):
if age_layer < len(front_costs): # is actually backward
cost = eval(front_costs[age_layer])
else:
cost = 0.0
s += "%20f " % cost
print s
print "-- Topology count per layer per generation"
for gen in sorted(topo_count_per_gen.keys()):
topo_counts = topo_count_per_gen[gen]
topo_counts.reverse() # make top layer cost first entry
s = "%4d" % gen
for age_layer in range(max_age_layers+1):
if age_layer < len(topo_counts): # is actually backward
count = topo_counts[age_layer]
else:
count = 0
s += "%5d " % count
print s
print "-- Topology count for initial random layers"
for gen in sorted(topo_count_rnd_per_gen.keys()):
topo_counts = topo_count_rnd_per_gen[gen]
s = "%4d %5d" % (gen, topo_counts[0])
print s
print "-- Ind count per layer per generation"
for gen in sorted(ind_count_per_gen.keys()):
counts = ind_count_per_gen[gen]
counts.reverse() # make top layer cost first entry
s = "%4d" % gen
for age_layer in range(max_age_layers+1):
if age_layer < len(counts): # is actually backward
count = counts[age_layer]
else:
count = 0
s += "%5d " % count
print s
print "-- Ind count for initial random layers"
for gen in sorted(ind_count_rnd_per_gen.keys()):
counts = ind_count_rnd_per_gen[gen]
s = "%4d %5d" % (gen, counts[0])
print s
# INFO:master:Gen=0 (# age layers=0): begin