-
Notifications
You must be signed in to change notification settings - Fork 476
/
Copy pathindex.html
243 lines (198 loc) · 7.51 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Image Classification</title>
<script
src="https://cdn.jsdelivr.net/npm/[email protected]/dist/umd/index.min.js"
integrity="sha256-9+AQR2dApXE+f/D998vy0RATN/o4++mqVjAZ3lo432g="
crossorigin="anonymous"
></script>
<script
src="https://cdn.jsdelivr.net/npm/[email protected]/dist/chart.umd.min.js"
integrity="sha256-tgiW1vJqfIKxE0F2uVvsXbgUlTyrhPMY/sm30hh/Sxc="
crossorigin="anonymous"
></script>
<script
src="https://cdn.jsdelivr.net/npm/[email protected]/dist/chartjs-plugin-datalabels.min.js"
integrity="sha256-IMCPPZxtLvdt9tam8RJ8ABMzn+Mq3SQiInbDmMYwjDg="
crossorigin="anonymous"
></script>
<script src="./index.js"></script>
<link
rel="stylesheet"
href="https://cdn.jsdelivr.net/npm/[email protected]/normalize.min.css"
integrity="sha256-oeib74n7OcB5VoyaI+aGxJKkNEdyxYjd2m3fi/3gKls="
crossorigin="anonymous"
/>
<link rel="stylesheet" href="./index.css" />
</head>
<body>
<div class="container">
<div class="selections">
<!-- Backend Selection -->
<div class="select-box">
1.
<label for="backend">Backend:</label>
<select id="backend">
<option value="ndarray" selected>CPU - Ndarray</option>
<option value="candle">CPU - Candle</option>
<option value="webgpu">GPU - WebGPU</option>
</select>
</div>
</div>
<div class="row-container">
<!-- Image Selection -->
<div class="select-box">
2.
<select id="imageDropdown">
<option value="" selected>Select Image</option>
<option value="samples/bridge.jpg">Bridge</option>
<option value="samples/cat.jpg">Cat</option>
<option value="samples/coyote.jpg">Coyote</option>
<option value="samples/flamingo.jpg">Flamingo</option>
<option value="samples/pelican.jpg">Pelican</option>
<option value="samples/table-lamp.jpg">Table Lamp</option>
<option value="samples/torch.jpg">Torch</option>
</select>
or
<input type="file" id="fileInput" accept="image/*" />
</div>
</div>
<!-- Time Taken -->
<div id="time"> </div>
<!-- Container for the three boxes -->
<div class="row-container">
<!-- Canvas to Display Image -->
<div class="canvas-box">
<canvas id="imageCanvas" width="224" height="224"></canvas>
</div>
<!-- Chart -->
<div class="chart-box">
<canvas id="chart" width="500" height="224"></canvas>
</div>
</div>
<!-- Clear Button -->
<div class="actions">
<button id="clearButton">Clear</button>
</div>
</div>
<!-- JavaScript Logic -->
<script type="module">
// TODO - Move this to a separate file (index.js)
// DOM Elements
const imgDropdown = $("imageDropdown");
const backendDropdown = $("backend");
const fileInput = $("fileInput");
const canvas = $("imageCanvas");
const ctx = canvas.getContext("2d", { willReadFrequently: true });
const clearButton = $("clearButton");
const time = $("time");
const chart = chartConfigBuilder($("chart"));
// Event Handlers
imgDropdown.addEventListener("change", handleImageDropdownChange);
backendDropdown.addEventListener("change", handleBackendDropdownChange);
fileInput.addEventListener("change", handleFileInputChange);
clearButton.addEventListener("click", resetCanvasAndInputs);
// Module level variables
let imageClassifier;
async function initWasm() {
let simdSupported = await wasmFeatureDetect.simd();
if (isSafari()) {
// TODO enable simd for Safari once it works
// For some reason NDarray backend is not working on Safari with SIMD enabled
// Got the following error:
// recursive use of an object detected which would lead to unsafe aliasing in rust
console.warn("Safari detected. Disabling wasm simd for now ...");
simdSupported = false;
}
if (simdSupported) {
console.debug("SIMD is supported");
} else {
console.debug("SIMD is not supported");
}
let modulePath = simdSupported
? "./pkg/simd/image_classification_web.js"
: "./pkg/no_simd/image_classification_web.js";
const { default: wasm, ImageClassifier } = await import(modulePath);
wasm().then(() => {
// Initialize the classifier and save to module level variable
imageClassifier = new ImageClassifier();
});
}
initWasm();
// Check if WebGPU is supported
if (!navigator.gpu) {
backendDropdown.options[2].disabled = true;
alert("WebGPU is not supported on this device.\n\nDisabling WebGPU backend ...");
}
// Function Definitions
async function handleImageDropdownChange() {
if (this.value) {
await loadImage(this.value);
}
// Reset file input
fileInput.value = "";
}
async function handleBackendDropdownChange() {
const backend = this.value;
if (backend === "ndarray") await imageClassifier.set_backend_ndarray();
if (backend === "candle") await imageClassifier.set_backend_candle();
if (backend === "webgpu") await imageClassifier.set_backend_wgpu();
resetCanvasAndInputs();
}
function handleFileInputChange() {
if (this.files && this.files[0]) {
const reader = new FileReader();
reader.onload = (event) => loadImage(event.target.result);
reader.readAsDataURL(this.files[0]);
// Reset image dropdown
imgDropdown.selectedIndex = 0;
}
}
function resetCanvasAndInputs() {
// Clear canvas and reset inputs
ctx.clearRect(0, 0, canvas.width, canvas.height);
// Reset dropdowns
imgDropdown.selectedIndex = 0;
// Reset file input
fileInput.value = "";
// Clear chart
chart.data.labels = ["", "", "", "", ""];
chart.data.datasets[0].data = [0.0, 0.0, 0.0, 0.0, 0.0];
chart.update();
// Clear time
time.innerHTML = " ";
console.log("Cleared canvas");
}
async function loadImage(src) {
const img = new Image();
img.src = src;
await new Promise((resolve) => {
img.onload = resolve;
});
clearAndDrawCanvas(img);
runInference();
}
async function runInference() {
const data = extractRGBValuesFromCanvas(canvas, ctx);
// Run inference
const startTime = performance.now();
const output = await imageClassifier.inference(data);
const timeTaken = performance.now() - startTime;
// Update chart
const { labels, probabilities } = extractLabelsAndProbabilities(output);
chart.data.labels = labels;
chart.data.datasets[0].data = probabilities;
chart.update();
time.innerHTML = `Inference Time: <span> ${toFixed(timeTaken)} </span> ms.`;
}
function clearAndDrawCanvas(img) {
// Clear canvas
ctx.clearRect(0, 0, canvas.width, canvas.height);
ctx.drawImage(img, 0, 0, 224, 224);
}
</script>
</body>
</html>